Sample records for identified genome-wide significant

  1. Efficiently Identifying Significant Associations in Genome-wide Association Studies

    PubMed Central

    Eskin, Eleazar

    2013-01-01

    Abstract Over the past several years, genome-wide association studies (GWAS) have implicated hundreds of genes in common disease. More recently, the GWAS approach has been utilized to identify regions of the genome that harbor variation affecting gene expression or expression quantitative trait loci (eQTLs). Unlike GWAS applied to clinical traits, where only a handful of phenotypes are analyzed per study, in eQTL studies, tens of thousands of gene expression levels are measured, and the GWAS approach is applied to each gene expression level. This leads to computing billions of statistical tests and requires substantial computational resources, particularly when applying novel statistical methods such as mixed models. We introduce a novel two-stage testing procedure that identifies all of the significant associations more efficiently than testing all the single nucleotide polymorphisms (SNPs). In the first stage, a small number of informative SNPs, or proxies, across the genome are tested. Based on their observed associations, our approach locates the regions that may contain significant SNPs and only tests additional SNPs from those regions. We show through simulations and analysis of real GWAS datasets that the proposed two-stage procedure increases the computational speed by a factor of 10. Additionally, efficient implementation of our software increases the computational speed relative to the state-of-the-art testing approaches by a factor of 75. PMID:24033261

  2. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms.

    PubMed

    Tashjian, Robert Z; Granger, Erin K; Farnham, James M; Cannon-Albright, Lisa A; Teerlink, Craig C

    2016-02-01

    The precise etiology of rotator cuff disease is unknown, but prior evidence suggests a role for genetic factors. Limited data exist identifying specific genes associated with rotator cuff tearing. The purpose of this study was to identify specific genes or genetic variants associated with rotator cuff tearing by a genome-wide association study with an independent set of rotator cuff tear cases. A set of 311 full-thickness rotator cuff tear cases genotyped on the Illumina 5M single-nucleotide polymorphism (SNP) platform were used in a genome-wide association study with 2641 genetically matched white population controls available from the Illumina iControls database. Tests of association were performed with GEMMA software at 257,558 SNPs that compose the intersection of Illumina SNP platforms and that passed general quality control metrics. SNPs were considered significant if P < 1.94 × 10(-7) (Bonferroni correction: 0.05/257,558). Tests of association revealed 2 significantly associated SNPs, one occurring in SAP30BP (rs820218; P = 3.8E-9) on chromosome 17q25 and another occurring in SASH1 (rs12527089; P = 1.9E-7) on chromosome 6q24. This study represents the first attempt to identify genetic factors influencing rotator cuff tearing by a genome-wide association study using a dense/complete set of SNPs. Two SNPs were significantly associated with rotator cuff tearing, residing in SAP30BP on chromosome 17 and SASH1 on chromosome 6. Both genes are associated with the cellular process of apoptosis. Identification of potential genes or genetic variants associated with rotator cuff tearing may help in identifying individuals at risk for the development of rotator cuff tearing. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.

    PubMed

    Sung, Yun J; Winkler, Thomas W; de Las Fuentes, Lisa; Bentley, Amy R; Brown, Michael R; Kraja, Aldi T; Schwander, Karen; Ntalla, Ioanna; Guo, Xiuqing; Franceschini, Nora; Lu, Yingchang; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K; Li, Changwei; Feitosa, Mary F; Kilpeläinen, Tuomas O; Richard, Melissa A; Noordam, Raymond; Aslibekyan, Stella; Aschard, Hugues; Bartz, Traci M; Dorajoo, Rajkumar; Liu, Yongmei; Manning, Alisa K; Rankinen, Tuomo; Smith, Albert Vernon; Tajuddin, Salman M; Tayo, Bamidele O; Warren, Helen R; Zhao, Wei; Zhou, Yanhua; Matoba, Nana; Sofer, Tamar; Alver, Maris; Amini, Marzyeh; Boissel, Mathilde; Chai, Jin Fang; Chen, Xu; Divers, Jasmin; Gandin, Ilaria; Gao, Chuan; Giulianini, Franco; Goel, Anuj; Harris, Sarah E; Hartwig, Fernando Pires; Horimoto, Andrea R V R; Hsu, Fang-Chi; Jackson, Anne U; Kähönen, Mika; Kasturiratne, Anuradhani; Kühnel, Brigitte; Leander, Karin; Lee, Wen-Jane; Lin, Keng-Hung; 'an Luan, Jian; McKenzie, Colin A; Meian, He; Nelson, Christopher P; Rauramaa, Rainer; Schupf, Nicole; Scott, Robert A; Sheu, Wayne H H; Stančáková, Alena; Takeuchi, Fumihiko; van der Most, Peter J; Varga, Tibor V; Wang, Heming; Wang, Yajuan; Ware, Erin B; Weiss, Stefan; Wen, Wanqing; Yanek, Lisa R; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Alfred, Tamuno; Amin, Najaf; Arking, Dan; Aung, Tin; Barr, R Graham; Bielak, Lawrence F; Boerwinkle, Eric; Bottinger, Erwin P; Braund, Peter S; Brody, Jennifer A; Broeckel, Ulrich; Cabrera, Claudia P; Cade, Brian; Caizheng, Yu; Campbell, Archie; Canouil, Mickaël; Chakravarti, Aravinda; Chauhan, Ganesh; Christensen, Kaare; Cocca, Massimiliano; Collins, Francis S; Connell, John M; de Mutsert, Renée; de Silva, H Janaka; Debette, Stephanie; Dörr, Marcus; Duan, Qing; Eaton, Charles B; Ehret, Georg; Evangelou, Evangelos; Faul, Jessica D; Fisher, Virginia A; Forouhi, Nita G; Franco, Oscar H; Friedlander, Yechiel; Gao, He; Gigante, Bruna; Graff, Misa; Gu, C Charles; Gu, Dongfeng; Gupta, Preeti; Hagenaars, Saskia P; Harris, Tamara B; He, Jiang; Heikkinen, Sami; Heng, Chew-Kiat; Hirata, Makoto; Hofman, Albert; Howard, Barbara V; Hunt, Steven; Irvin, Marguerite R; Jia, Yucheng; Joehanes, Roby; Justice, Anne E; Katsuya, Tomohiro; Kaufman, Joel; Kerrison, Nicola D; Khor, Chiea Chuen; Koh, Woon-Puay; Koistinen, Heikki A; Komulainen, Pirjo; Kooperberg, Charles; Krieger, Jose E; Kubo, Michiaki; Kuusisto, Johanna; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lehne, Benjamin; Lewis, Cora E; Li, Yize; Lim, Sing Hui; Lin, Shiow; Liu, Ching-Ti; Liu, Jianjun; Liu, Jingmin; Liu, Kiang; Liu, Yeheng; Loh, Marie; Lohman, Kurt K; Long, Jirong; Louie, Tin; Mägi, Reedik; Mahajan, Anubha; Meitinger, Thomas; Metspalu, Andres; Milani, Lili; Momozawa, Yukihide; Morris, Andrew P; Mosley, Thomas H; Munson, Peter; Murray, Alison D; Nalls, Mike A; Nasri, Ubaydah; Norris, Jill M; North, Kari; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R; Palmer, Nicholette D; Pankow, James S; Pedersen, Nancy L; Peters, Annette; Peyser, Patricia A; Polasek, Ozren; Raitakari, Olli T; Renström, Frida; Rice, Treva K; Ridker, Paul M; Robino, Antonietta; Robinson, Jennifer G; Rose, Lynda M; Rudan, Igor; Sabanayagam, Charumathi; Salako, Babatunde L; Sandow, Kevin; Schmidt, Carsten O; Schreiner, Pamela J; Scott, William R; Seshadri, Sudha; Sever, Peter; Sitlani, Colleen M; Smith, Jennifer A; Snieder, Harold; Starr, John M; Strauch, Konstantin; Tang, Hua; Taylor, Kent D; Teo, Yik Ying; Tham, Yih Chung; Uitterlinden, André G; Waldenberger, Melanie; Wang, Lihua; Wang, Ya X; Wei, Wen Bin; Williams, Christine; Wilson, Gregory; Wojczynski, Mary K; Yao, Jie; Yuan, Jian-Min; Zonderman, Alan B; Becker, Diane M; Boehnke, Michael; Bowden, Donald W; Chambers, John C; Chen, Yii-Der Ida; de Faire, Ulf; Deary, Ian J; Esko, Tõnu; Farrall, Martin; Forrester, Terrence; Franks, Paul W; Freedman, Barry I; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Horta, Bernardo Lessa; Hung, Yi-Jen; Jonas, Jost B; Kato, Norihiro; Kooner, Jaspal S; Laakso, Markku; Lehtimäki, Terho; Liang, Kae-Woei; Magnusson, Patrik K E; Newman, Anne B; Oldehinkel, Albertine J; Pereira, Alexandre C; Redline, Susan; Rettig, Rainer; Samani, Nilesh J; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wickremasinghe, Ananda R; Wu, Tangchun; Zheng, Wei; Kamatani, Yoichiro; Laurie, Cathy C; Bouchard, Claude; Cooper, Richard S; Evans, Michele K; Gudnason, Vilmundur; Kardia, Sharon L R; Kritchevsky, Stephen B; Levy, Daniel; O'Connell, Jeff R; Psaty, Bruce M; van Dam, Rob M; Sims, Mario; Arnett, Donna K; Mook-Kanamori, Dennis O; Kelly, Tanika N; Fox, Ervin R; Hayward, Caroline; Fornage, Myriam; Rotimi, Charles N; Province, Michael A; van Duijn, Cornelia M; Tai, E Shyong; Wong, Tien Yin; Loos, Ruth J F; Reiner, Alex P; Rotter, Jerome I; Zhu, Xiaofeng; Bierut, Laura J; Gauderman, W James; Caulfield, Mark J; Elliott, Paul; Rice, Kenneth; Munroe, Patricia B; Morrison, Alanna C; Cupples, L Adrienne; Rao, Dabeeru C; Chasman, Daniel I

    2018-03-01

    Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10 -8 ) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10 -8 ). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2). Copyright © 2018 American Society of Human Genetics. All rights reserved.

  4. Genome-wide significant loci for addiction and anxiety.

    PubMed

    Hodgson, K; Almasy, L; Knowles, E E M; Kent, J W; Curran, J E; Dyer, T D; Göring, H H H; Olvera, R L; Fox, P T; Pearlson, G D; Krystal, J H; Duggirala, R; Blangero, J; Glahn, D C

    2016-08-01

    Psychiatric comorbidity is common among individuals with addictive disorders, with patients frequently suffering from anxiety disorders. While the genetic architecture of comorbid addictive and anxiety disorders remains unclear, elucidating the genes involved could provide important insights into the underlying etiology. Here we examine a sample of 1284 Mexican-Americans from randomly selected extended pedigrees. Variance decomposition methods were used to examine the role of genetics in addiction phenotypes (lifetime history of alcohol dependence, drug dependence or chronic smoking) and various forms of clinically relevant anxiety. Genome-wide univariate and bivariate linkage scans were conducted to localize the chromosomal regions influencing these traits. Addiction phenotypes and anxiety were shown to be heritable and univariate genome-wide linkage scans revealed significant quantitative trait loci for drug dependence (14q13.2-q21.2, LOD=3.322) and a broad anxiety phenotype (12q24.32-q24.33, LOD=2.918). Significant positive genetic correlations were observed between anxiety and each of the addiction subtypes (ρg=0.550-0.655) and further investigation with bivariate linkage analyses identified significant pleiotropic signals for alcohol dependence-anxiety (9q33.1-q33.2, LOD=3.054) and drug dependence-anxiety (18p11.23-p11.22, LOD=3.425). This study confirms the shared genetic underpinnings of addiction and anxiety and identifies genomic loci involved in the etiology of these comorbid disorders. The linkage signal for anxiety on 12q24 spans the location of TMEM132D, an emerging gene of interest from previous GWAS of anxiety traits, whilst the bivariate linkage signal identified for anxiety-alcohol on 9q33 peak coincides with a region where rare CNVs have been associated with psychiatric disorders. Other signals identified implicate novel regions of the genome in addiction genetics. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Genome-wide identification of significant aberrations in cancer genome.

    PubMed

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is

  6. Transethnic genome-wide scan identifies novel Alzheimer's disease loci.

    PubMed

    Jun, Gyungah R; Chung, Jaeyoon; Mez, Jesse; Barber, Robert; Beecham, Gary W; Bennett, David A; Buxbaum, Joseph D; Byrd, Goldie S; Carrasquillo, Minerva M; Crane, Paul K; Cruchaga, Carlos; De Jager, Philip; Ertekin-Taner, Nilufer; Evans, Denis; Fallin, M Danielle; Foroud, Tatiana M; Friedland, Robert P; Goate, Alison M; Graff-Radford, Neill R; Hendrie, Hugh; Hall, Kathleen S; Hamilton-Nelson, Kara L; Inzelberg, Rivka; Kamboh, M Ilyas; Kauwe, John S K; Kukull, Walter A; Kunkle, Brian W; Kuwano, Ryozo; Larson, Eric B; Logue, Mark W; Manly, Jennifer J; Martin, Eden R; Montine, Thomas J; Mukherjee, Shubhabrata; Naj, Adam; Reiman, Eric M; Reitz, Christiane; Sherva, Richard; St George-Hyslop, Peter H; Thornton, Timothy; Younkin, Steven G; Vardarajan, Badri N; Wang, Li-San; Wendlund, Jens R; Winslow, Ashley R; Haines, Jonathan; Mayeux, Richard; Pericak-Vance, Margaret A; Schellenberg, Gerard; Lunetta, Kathryn L; Farrer, Lindsay A

    2017-07-01

    Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood. We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset. Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)-based tests (P < 5 × 10 -8 ) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP. We also obtained GWS evidence (P < 2.7 × 10 -6 ) for gene-based association in the total sample with a novel locus, TPBG (P = 1.8 × 10 -6 ). Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia.

    PubMed

    Li, Zhiqiang; Chen, Jianhua; Yu, Hao; He, Lin; Xu, Yifeng; Zhang, Dai; Yi, Qizhong; Li, Changgui; Li, Xingwang; Shen, Jiawei; Song, Zhijian; Ji, Weidong; Wang, Meng; Zhou, Juan; Chen, Boyu; Liu, Yahui; Wang, Jiqiang; Wang, Peng; Yang, Ping; Wang, Qingzhong; Feng, Guoyin; Liu, Benxiu; Sun, Wensheng; Li, Baojie; He, Guang; Li, Weidong; Wan, Chunling; Xu, Qi; Li, Wenjin; Wen, Zujia; Liu, Ke; Huang, Fang; Ji, Jue; Ripke, Stephan; Yue, Weihua; Sullivan, Patrick F; O'Donovan, Michael C; Shi, Yongyong

    2017-11-01

    We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.

  8. Genome wide approaches to identify protein-DNA interactions.

    PubMed

    Ma, Tao; Ye, Zhenqing; Wang, Liguo

    2018-05-29

    Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    PubMed

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C

    2016-12-01

    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.

  10. Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type.

    PubMed

    Green, Elaine K; Di Florio, Arianna; Forty, Liz; Gordon-Smith, Katherine; Grozeva, Detelina; Fraser, Christine; Richards, Alexander L; Moran, Jennifer L; Purcell, Shaun; Sklar, Pamela; Kirov, George; Owen, Michael J; O'Donovan, Michael C; Craddock, Nick; Jones, Lisa; Jones, Ian R

    2017-12-01

    Studies have suggested that Research Diagnostic Criteria for Schizoaffective Disorder Bipolar type (RDC-SABP) might identify a more genetically homogenous subgroup of bipolar disorder. Aiming to identify loci associated with RDC-SABP, we have performed a replication study using independent RDC-SABP cases (n = 144) and controls (n = 6,559), focusing on the 10 loci that reached a p-value <10 -5 for RDC-SABP in the Wellcome Trust Case Control Consortium (WTCCC) bipolar disorder sample. Combining the WTCCC and replication datasets by meta-analysis (combined RDC-SABP, n = 423, controls, n = 9,494), we observed genome-wide significant association at one SNP, rs2352974, located within the intron of the gene TRAIP on chromosome 3p21.31 (p-value, 4.37 × 10 -8 ). This locus did not reach genome-wide significance in bipolar disorder or schizophrenia large Psychiatric Genomic Consortium datasets, suggesting that it may represent a relatively specific genetic risk for the bipolar subtype of schizoaffective disorder. © 2017 Wiley Periodicals, Inc.

  11. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    PubMed Central

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  12. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    PubMed Central

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  13. Genome-wide Association Study Identifies African-Specific Susceptibility Loci in African Americans with Inflammatory Bowel Disease

    PubMed Central

    Brant, Steven R.; Okou, David T.; Simpson, Claire L.; Cutler, David J.; Haritunians, Talin; Bradfield, Jonathan P.; Chopra, Pankaj; Prince, Jarod; Begum, Ferdouse; Kumar, Archana; Huang, Chengrui; Venkateswaran, Suresh; Datta, Lisa W.; Wei, Zhi; Thomas, Kelly; Herrinton, Lisa J.; Klapproth, Jan-Micheal A.; Quiros, Antonio J.; Seminerio, Jenifer; Liu, Zhenqiu; Alexander, Jonathan S.; Baldassano, Robert N.; Dudley-Brown, Sharon; Cross, Raymond K.; Dassopoulos, Themistocles; Denson, Lee A.; Dhere, Tanvi A.; Dryden, Gerald W.; Hanson, John S.; Hou, Jason K.; Hussain, Sunny Z.; Hyams, Jeffrey S.; Isaacs, Kim L.; Kader, Howard; Kappelman, Michael D.; Katz, Jeffry; Kellermayer, Richard; Kirschner, Barbara S.; Kuemmerle, John F.; Kwon, John H.; Lazarev, Mark; Li, Ellen; Mack, David; Mannon, Peter; Moulton, Dedrick E.; Newberry, Rodney D.; Osuntokun, Bankole O.; Patel, Ashish S.; Saeed, Shehzad A.; Targan, Stephan R.; Valentine, John F.; Wang, Ming-Hsi; Zonca, Martin; Rioux, John D.; Duerr, Richard H.; Silverberg, Mark S.; Cho, Judy H.; Hakonarson, Hakon; Zwick, Michael E.; McGovern, Dermot P.B.; Kugathasan, Subra

    2016-01-01

    Background & Aims The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. Methods We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified [IBD-U]) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P<5.0×10−8 in meta-analysis with a nominal evidence (P<.05) in each scan were considered to have genome-wide significance. Results We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance associations for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P<1.6×10−6): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B, PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. Conclusions We performed a genome-wide association study of African Americans with IBD and identified loci associated with CD and UC in only this population; we also replicated loci identified in European populations. The detection of variants associated with IBD risk in only

  14. Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease.

    PubMed

    Brant, Steven R; Okou, David T; Simpson, Claire L; Cutler, David J; Haritunians, Talin; Bradfield, Jonathan P; Chopra, Pankaj; Prince, Jarod; Begum, Ferdouse; Kumar, Archana; Huang, Chengrui; Venkateswaran, Suresh; Datta, Lisa W; Wei, Zhi; Thomas, Kelly; Herrinton, Lisa J; Klapproth, Jan-Micheal A; Quiros, Antonio J; Seminerio, Jenifer; Liu, Zhenqiu; Alexander, Jonathan S; Baldassano, Robert N; Dudley-Brown, Sharon; Cross, Raymond K; Dassopoulos, Themistocles; Denson, Lee A; Dhere, Tanvi A; Dryden, Gerald W; Hanson, John S; Hou, Jason K; Hussain, Sunny Z; Hyams, Jeffrey S; Isaacs, Kim L; Kader, Howard; Kappelman, Michael D; Katz, Jeffry; Kellermayer, Richard; Kirschner, Barbara S; Kuemmerle, John F; Kwon, John H; Lazarev, Mark; Li, Ellen; Mack, David; Mannon, Peter; Moulton, Dedrick E; Newberry, Rodney D; Osuntokun, Bankole O; Patel, Ashish S; Saeed, Shehzad A; Targan, Stephan R; Valentine, John F; Wang, Ming-Hsi; Zonca, Martin; Rioux, John D; Duerr, Richard H; Silverberg, Mark S; Cho, Judy H; Hakonarson, Hakon; Zwick, Michael E; McGovern, Dermot P B; Kugathasan, Subra

    2017-01-01

    The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn's disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P < 5.0 × 10 -8 in meta-analysis with a nominal evidence (P < .05) in each scan were considered to have genome-wide significance. We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P < 1.6 × 10 -6 ): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B,PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. We performed a genome-wide association study of African Americans with IBD and identified loci associated with UC in only this population; we also replicated IBD, CD, and UC loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the

  15. Genome-wide significant risk associations for mucinous ovarian carcinoma

    PubMed Central

    Kelemen, Linda E.; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; M. Lee, Janet; Seo, Ji-Heui; Phelan, Catherine M.; Beesley, Jonathan; Chen, Xiaoqin; Spindler, Tassja J.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chen, Y. Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Engelholm, Svend Aage; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wlodzimierz, Sawicki; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Freedman, Matthew L.; Chenevix-Trench, Georgia; Pharoah, Paul D.; Gayther, Simon A.; Berchuck, Andrew

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas (OC) but not for mucinous ovarian carcinomas (MOC). Genotypes from OC cases and controls were imputed into the 1000 Genomes Project reference panel. Analysis of 1,644 MOC cases and 21,693 controls identified three novel risk associations: rs752590 at 2q13 (P = 3.3 × 10−8), rs711830 at 2q31.1 (P = 7.5 × 10−12) and rs688187 at 19q13.2 (P = 6.8 × 10−13). Expression Quantitative Trait Locus (eQTL) analysis in ovarian and colorectal tumors (which are histologically similar to MOC) identified significant eQTL associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10−4, FDR = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors, and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease. PMID:26075790

  16. Genome-wide study of resistant hypertension identified from electronic health records.

    PubMed

    Dumitrescu, Logan; Ritchie, Marylyn D; Denny, Joshua C; El Rouby, Nihal M; McDonough, Caitrin W; Bradford, Yuki; Ramirez, Andrea H; Bielinski, Suzette J; Basford, Melissa A; Chai, High Seng; Peissig, Peggy; Carrell, David; Pathak, Jyotishman; Rasmussen, Luke V; Wang, Xiaoming; Pacheco, Jennifer A; Kho, Abel N; Hayes, M Geoffrey; Matsumoto, Martha; Smith, Maureen E; Li, Rongling; Cooper-DeHoff, Rhonda M; Kullo, Iftikhar J; Chute, Christopher G; Chisholm, Rex L; Jarvik, Gail P; Larson, Eric B; Carey, David; McCarty, Catherine A; Williams, Marc S; Roden, Dan M; Bottinger, Erwin; Johnson, Julie A; de Andrade, Mariza; Crawford, Dana C

    2017-01-01

    Resistant hypertension is defined as high blood pressure that remains above treatment goals in spite of the concurrent use of three antihypertensive agents from different classes. Despite the important health consequences of resistant hypertension, few studies of resistant hypertension have been conducted. To perform a genome-wide association study for resistant hypertension, we defined and identified cases of resistant hypertension and hypertensives with treated, controlled hypertension among >47,500 adults residing in the US linked to electronic health records (EHRs) and genotyped as part of the electronic MEdical Records & GEnomics (eMERGE) Network. Electronic selection logic using billing codes, laboratory values, text queries, and medication records was used to identify resistant hypertension cases and controls at each site, and a total of 3,006 cases of resistant hypertension and 876 controlled hypertensives were identified among eMERGE Phase I and II sites. After imputation and quality control, a total of 2,530,150 SNPs were tested for an association among 2,830 multi-ethnic cases of resistant hypertension and 876 controlled hypertensives. No test of association was genome-wide significant in the full dataset or in the dataset limited to European American cases (n = 1,719) and controls (n = 708). The most significant finding was CLNK rs13144136 at p = 1.00x10-6 (odds ratio = 0.68; 95% CI = 0.58-0.80) in the full dataset with similar results in the European American only dataset. We also examined whether SNPs known to influence blood pressure or hypertension also influenced resistant hypertension. None was significant after correction for multiple testing. These data highlight both the difficulties and the potential utility of EHR-linked genomic data to study clinically-relevant traits such as resistant hypertension.

  17. A Genome Wide Association Study Identifies Common Variants Associated with Lipid Levels in the Chinese Population

    PubMed Central

    Wu, Chen; Yang, Handong; Yu, Dianke; Yang, Xiaobo; Zhang, Xiaomin; Wang, Yiqin; Sun, Jielin; Gao, Yong; Tan, Aihua; He, Yunfeng; Zhang, Haiying; Qin, Xue; Zhu, Jingwen; Li, Huaixing; Lin, Xu; Zhu, Jiang; Min, Xinwen; Lang, Mingjian; Li, Dongfeng; Zhai, Kan; Chang, Jiang; Tan, Wen; Yuan, Jing; Chen, Weihong; Wang, Youjie; Wei, Sheng; Miao, Xiaoping; Wang, Feng; Fang, Weimin; Liang, Yuan; Deng, Qifei; Dai, Xiayun; Lin, Dafeng; Huang, Suli; Guo, Huan; Lilly Zheng, S.; Xu, Jianfeng; Lin, Dongxin; Hu, Frank B.; Wu, Tangchun

    2013-01-01

    Plasma lipid levels are important risk factors for cardiovascular disease and are influenced by genetic and environmental factors. Recent genome wide association studies (GWAS) have identified several lipid-associated loci, but these loci have been identified primarily in European populations. In order to identify genetic markers for lipid levels in a Chinese population and analyze the heterogeneity between Europeans and Asians, especially Chinese, we performed a meta-analysis of two genome wide association studies on four common lipid traits including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) in a Han Chinese population totaling 3,451 healthy subjects. Replication was performed in an additional 8,830 subjects of Han Chinese ethnicity. We replicated eight loci associated with lipid levels previously reported in a European population. The loci genome wide significantly associated with TC were near DOCK7, HMGCR and ABO; those genome wide significantly associated with TG were near APOA1/C3/A4/A5 and LPL; those genome wide significantly associated with LDL were near HMGCR, ABO and TOMM40; and those genome wide significantly associated with HDL were near LPL, LIPC and CETP. In addition, an additive genotype score of eight SNPs representing the eight loci that were found to be associated with lipid levels was associated with higher TC, TG and LDL levels (P = 5.52×10-16, 1.38×10-6 and 5.59×10-9, respectively). These findings suggest the cumulative effects of multiple genetic loci on plasma lipid levels. Comparisons with previous GWAS of lipids highlight heterogeneity in allele frequency and in effect size for some loci between Chinese and European populations. The results from our GWAS provided comprehensive and convincing evidence of the genetic determinants of plasma lipid levels in a Chinese population. PMID:24386095

  18. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  19. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.

    PubMed

    Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-02-03

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.

  20. Genome-wide association study identifies 74 loci associated with educational attainment

    PubMed Central

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  1. Genome-wide association study identifies 74 loci associated with educational attainment.

    PubMed

    Okbay, Aysu; Beauchamp, Jonathan P; Fontana, Mark Alan; Lee, James J; Pers, Tune H; Rietveld, Cornelius A; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S Fleur W; Oskarsson, Sven; Pickrell, Joseph K; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H; Pina Concas, Maria; Derringer, Jaime; Furlotte, Nicholas A; Galesloot, Tessel E; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M; Harris, Sarah E; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E; Kaasik, Kadri; Kalafati, Ioanna P; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J; deLeeuw, Christiaan; Lind, Penelope A; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B; van der Most, Peter J; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E; Shi, Jianxin; Smith, Albert V; Poot, Raymond A; St Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A; Campbell, Harry; Cappuccio, Francesco P; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans, David M; Faul, Jessica D; Feitosa, Mary F; Forstner, Andreas J; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V; Harris, Tamara B; Heath, Andrew C; Hocking, Lynne J; Holliday, Elizabeth G; Homuth, Georg; Horan, Michael A; Hottenga, Jouke-Jan; de Jager, Philip L; Joshi, Peter K; Jugessur, Astanand; Kaakinen, Marika A; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A L M; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J; Lebreton, Maël P; Levinson, Douglas F; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C M; Loukola, Anu; Madden, Pamela A; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E; Marques-Vidal, Pedro; Meddens, Gerardus A; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W; Myhre, Ronny; Nelson, Christopher P; Nyholt, Dale R; Ollier, William E R; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L; Petrovic, Katja E; Porteous, David J; Räikkönen, Katri; Ring, Susan M; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J; Smith, Blair H; Smith, Jennifer A; Staessen, Jan A; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J A; Venturini, Cristina; Vinkhuyzen, Anna A E; Völker, Uwe; Völzke, Henry; Vonk, Judith M; Vozzi, Diego; Waage, Johannes; Ware, Erin B; Willemsen, Gonneke; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I; Borecki, Ingrid B; Bültmann, Ute; Chabris, Christopher F; Cucca, Francesco; Cusi, Daniele; Deary, Ian J; Dedoussis, George V; van Duijn, Cornelia M; Eriksson, Johan G; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J F; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Lehtimäki, Terho; Lehrer, Steven F; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W J H; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A; Samani, Nilesh J; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I A; Spector, Tim D; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Tung, Joyce Y; Uitterlinden, André G; Vitart, Veronique; Vollenweider, Peter; Weir, David R; Wilson, James F; Wright, Alan F; Conley, Dalton C; Krueger, Robert F; Davey Smith, George; Hofman, Albert; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Yang, Jian; Johannesson, Magnus; Visscher, Peter M; Esko, Tõnu; Koellinger, Philipp D; Cesarini, David; Benjamin, Daniel J

    2016-05-26

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.

  2. Genome-wide significant localization for working and spatial memory: Identifying genes for psychosis using models of cognition.

    PubMed

    Knowles, Emma E M; Carless, Melanie A; de Almeida, Marcio A A; Curran, Joanne E; McKay, D Reese; Sprooten, Emma; Dyer, Thomas D; Göring, Harald H; Olvera, Rene; Fox, Peter; Almasy, Laura; Duggirala, Ravi; Kent, Jack W; Blangero, John; Glahn, David C

    2014-01-01

    It is well established that risk for developing psychosis is largely mediated by the influence of genes, but identifying precisely which genes underlie that risk has been problematic. Focusing on endophenotypes, rather than illness risk, is one solution to this problem. Impaired cognition is a well-established endophenotype of psychosis. Here we aimed to characterize the genetic architecture of cognition using phenotypically detailed models as opposed to relying on general IQ or individual neuropsychological measures. In so doing we hoped to identify genes that mediate cognitive ability, which might also contribute to psychosis risk. Hierarchical factor models of genetically clustered cognitive traits were subjected to linkage analysis followed by QTL region-specific association analyses in a sample of 1,269 Mexican American individuals from extended pedigrees. We identified four genome wide significant QTLs, two for working and two for spatial memory, and a number of plausible and interesting candidate genes. The creation of detailed models of cognition seemingly enhanced the power to detect genetic effects on cognition and provided a number of possible candidate genes for psychosis. © 2013 Wiley Periodicals, Inc.

  3. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus.

    PubMed

    Julià, Antonio; López-Longo, Francisco Javier; Pérez Venegas, José J; Bonàs-Guarch, Silvia; Olivé, Àlex; Andreu, José Luís; Aguirre-Zamorano, Mª Ángeles; Vela, Paloma; Nolla, Joan M; de la Fuente, José Luís Marenco; Zea, Antonio; Pego-Reigosa, José María; Freire, Mercedes; Díez, Elvira; Rodríguez-Almaraz, Esther; Carreira, Patricia; Blanco, Ricardo; Taboada, Víctor Martínez; López-Lasanta, María; Corbeto, Mireia López; Mercader, Josep M; Torrents, David; Absher, Devin; Marsal, Sara; Fernández-Nebro, Antonio

    2018-05-30

    Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 × 10 - 8 ): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 × 10 - 6 ), CTLA4 co-stimulation during T cell activation (p = 3.06 × 10 - 5 ), interleukin-4 signaling (p = 3.97 × 10 - 5 ) and cell surface interactions at the vascular wall (p = 4.63 × 10 - 5 ). Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci.

  4. Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis.

    PubMed

    de Tayrac, Marie; Roth, Marie-Paule; Jouanolle, Anne-Marie; Coppin, Hélène; le Gac, Gérald; Piperno, Alberto; Férec, Claude; Pelucchi, Sara; Scotet, Virginie; Bardou-Jacquet, Edouard; Ropert, Martine; Bouvet, Régis; Génin, Emmanuelle; Mosser, Jean; Deugnier, Yves

    2015-03-01

    Hereditary hemochromatosis (HH) is the most common form of genetic iron loading disease. It is mainly related to the homozygous C282Y/C282Y mutation in the HFE gene that is, however, a necessary but not a sufficient condition to develop clinical and even biochemical HH. This suggests that modifier genes are likely involved in the expressivity of the disease. Our aim was to identify such modifier genes. We performed a genome-wide association study (GWAS) using DNA collected from 474 unrelated C282Y homozygotes. Associations were examined for both quantitative iron burden indices and clinical outcomes with 534,213 single nucleotide polymorphisms (SNP) genotypes, with replication analyses in an independent sample of 748 C282Y homozygotes from four different European centres. One SNP met genome-wide statistical significance for association with transferrin concentration (rs3811647, GWAS p value of 7×10(-9) and replication p value of 5×10(-13)). This SNP, located within intron 11 of the TF gene, had a pleiotropic effect on serum iron (GWAS p value of 4.9×10(-6) and replication p value of 3.2×10(-6)). Both serum transferrin and iron levels were associated with serum ferritin levels, amount of iron removed and global clinical stage (p<0.01). Serum iron levels were also associated with fibrosis stage (p<0.0001). This GWAS, the largest one performed so far in unselected HFE-associated HH (HFE-HH) patients, identified the rs3811647 polymorphism in the TF gene as the only SNP significantly associated with iron metabolism through serum transferrin and iron levels. Because these two outcomes were clearly associated with the biochemical and clinical expression of the disease, an indirect link between the rs3811647 polymorphism and the phenotypic presentation of HFE-HH is likely. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Fast and Accurate Approximation to Significance Tests in Genome-Wide Association Studies

    PubMed Central

    Zhang, Yu; Liu, Jun S.

    2011-01-01

    Genome-wide association studies commonly involve simultaneous tests of millions of single nucleotide polymorphisms (SNP) for disease association. The SNPs in nearby genomic regions, however, are often highly correlated due to linkage disequilibrium (LD, a genetic term for correlation). Simple Bonferonni correction for multiple comparisons is therefore too conservative. Permutation tests, which are often employed in practice, are both computationally expensive for genome-wide studies and limited in their scopes. We present an accurate and computationally efficient method, based on Poisson de-clumping heuristics, for approximating genome-wide significance of SNP associations. Compared with permutation tests and other multiple comparison adjustment approaches, our method computes the most accurate and robust p-value adjustments for millions of correlated comparisons within seconds. We demonstrate analytically that the accuracy and the efficiency of our method are nearly independent of the sample size, the number of SNPs, and the scale of p-values to be adjusted. In addition, our method can be easily adopted to estimate false discovery rate. When applied to genome-wide SNP datasets, we observed highly variable p-value adjustment results evaluated from different genomic regions. The variation in adjustments along the genome, however, are well conserved between the European and the African populations. The p-value adjustments are significantly correlated with LD among SNPs, recombination rates, and SNP densities. Given the large variability of sequence features in the genome, we further discuss a novel approach of using SNP-specific (local) thresholds to detect genome-wide significant associations. This article has supplementary material online. PMID:22140288

  6. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma

    PubMed Central

    Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.

    2015-01-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132

  7. Efficient Genome-wide Association in Biobanks Using Topic Modeling Identifies Multiple Novel Disease Loci

    PubMed Central

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-01-01

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that can be unreliable and fail to capture relationships between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records for 10,845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted a genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes were included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p < 1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than single phenome-wide diagnostic codes, and incorporation of less strongly loading diagnostic codes enhanced association. This strategy provides a more efficient means of identifying phenome-wide associations in biobanks with coded clinical data. PMID:28861588

  8. Genome-wide association study identifies three novel loci for type 2 diabetes.

    PubMed

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A; Yamauchi, Toshimasa; Yasuda, Kazuki; Horikoshi, Momoko; Peng, Chen; Hu, Cheng; Ma, Ronald C W; Imamura, Minako; Iwata, Minoru; Tsunoda, Tatsuhiko; Morizono, Takashi; Shojima, Nobuhiro; So, Wing Yee; Leung, Ting Fan; Kwan, Patrick; Zhang, Rong; Wang, Jie; Yu, Weihui; Maegawa, Hiroshi; Hirose, Hiroshi; Kaku, Kohei; Ito, Chikako; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kashiwagi, Atsunori; Kawamori, Ryuzo; Jia, Weiping; Chan, Juliana C N; Teo, Yik Ying; Shyong, Tai E; Kamatani, Naoyuki; Kubo, Michiaki; Maeda, Shiro; Kadowaki, Takashi

    2014-01-01

    Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly genotyped or imputed using East Asian references from the 1000 Genomes Project (June 2011 release) in 5976 Japanese patients with T2D and 20 829 nondiabetic individuals. Nineteen unreported loci were selected and taken forward to follow-up analyses. Combined discovery and follow-up analyses (30 392 cases and 34 814 controls) identified three new loci with genome-wide significance, which were MIR129-LEP [rs791595; risk allele = A; risk allele frequency (RAF) = 0.080; P = 2.55 × 10(-13); odds ratio (OR) = 1.17], GPSM1 [rs11787792; risk allele = A; RAF = 0.874; P = 1.74 × 10(-10); OR = 1.15] and SLC16A13 (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases.

  9. Genome-wide association analysis identifies 13 new risk loci for schizophrenia.

    PubMed

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L; Kähler, Anna K; Akterin, Susanne; Bergen, Sarah E; Collins, Ann L; Crowley, James J; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K E; Sanchez, Nick; Stahl, Eli A; Williams, Stephanie; Wray, Naomi R; Xia, Kai; Bettella, Francesco; Borglum, Anders D; Bulik-Sullivan, Brendan K; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L; Holmans, Peter; Hougaard, David M; Kendler, Kenneth S; Lin, Kuang; Morris, Derek W; Mors, Ole; Mortensen, Preben B; Neale, Benjamin M; O'Neill, Francis A; Owen, Michael J; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L; Riley, Brien P; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T; Levinson, Douglas F; Gejman, Pablo V; Kendler, Kenneth S; Laurent, Claudine; Mowry, Bryan J; O'Donovan, Michael C; Owen, Michael J; Pulver, Ann E; Riley, Brien P; Schwab, Sibylle G; Wildenauer, Dieter B; Dudbridge, Frank; Holmans, Peter; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A; Nestadt, Gerald; Norton, Nadine; O'Neill, Francis A; Papadimitriou, George N; Ribble, Robert; Sanders, Alan R; Silverman, Jeremy M; Walsh, Dermot; Williams, Nigel M; Wormley, Brandon; Arranz, Maria J; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M; Lin, Kuang; Linszen, Don H; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M; Ophoff, Roel A; Powell, John; Rujescu, Dan; Van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden P; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Spencer, Chris C A; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T; Liddle, Jennifer; Potter, Simon C; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G; Blackwell, Jenefer M; Brown, Matthew A; Corvin, Aiden P; McCarthy, Mark I; Spencer, Chris C A; Bramon, Elvira; Corvin, Aiden P; O'Donovan, Michael C; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A; Sklar, Pamela; Hultman, Christina M; Sullivan, Patrick F

    2013-10-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.

  10. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension

    PubMed Central

    Lu, Xiangfeng; Wang, Laiyuan; Lin, Xu; Huang, Jianfeng; Charles Gu, C.; He, Meian; Shen, Hongbing; He, Jiang; Zhu, Jingwen; Li, Huaixing; Hixson, James E.; Wu, Tangchun; Dai, Juncheng; Lu, Ling; Shen, Chong; Chen, Shufeng; He, Lin; Mo, Zengnan; Hao, Yongchen; Mo, Xingbo; Yang, Xueli; Li, Jianxin; Cao, Jie; Chen, Jichun; Fan, Zhongjie; Li, Ying; Zhao, Liancheng; Li, Hongfan; Lu, Fanghong; Yao, Cailiang; Yu, Lin; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Deng, Ying; Hu, Dongsheng; Zhang, Weidong; Ji, Xu; Guo, Dongshuang; Guo, Zhirong; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Zhou, Xiaoyang; Yan, Weili; Sun, Ningling; Gao, Pingjin; Gu, Dongfeng

    2015-01-01

    Hypertension is a common disorder and the leading risk factor for cardiovascular disease and premature deaths worldwide. Genome-wide association studies (GWASs) in the European population have identified multiple chromosomal regions associated with blood pressure, and the identified loci altogether explain only a small fraction of the variance for blood pressure. The differences in environmental exposures and genetic background between Chinese and European populations might suggest potential different pathways of blood pressure regulation. To identify novel genetic variants affecting blood pressure variation, we conducted a meta-analysis of GWASs of blood pressure and hypertension in 11 816 subjects followed by replication studies including 69 146 additional individuals. We identified genome-wide significant (P < 5.0 × 10−8) associations with blood pressure, which included variants at three new loci (CACNA1D, CYP21A2, and MED13L) and a newly discovered variant near SLC4A7. We also replicated 14 previously reported loci, 8 (CASZ1, MOV10, FGF5, CYP17A1, SOX6, ATP2B1, ALDH2, and JAG1) at genome-wide significance, and 6 (FIGN, ULK4, GUCY1A3, HFE, TBX3-TBX5, and TBX3) at a suggestive level of P = 1.81 × 10−3 to 5.16 × 10−8. These findings provide new mechanistic insights into the regulation of blood pressure and potential targets for treatments. PMID:25249183

  11. Five endometrial cancer risk loci identified through genome-wide association analysis.

    PubMed

    Cheng, Timothy Ht; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica Mj; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Consortium, Chibcha; Jun Li, Mulin; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.

  12. Genome-wide significant risk associations for mucinous ovarian carcinoma.

    PubMed

    Kelemen, Linda E; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; Lee, Janet M; Seo, Ji-Heui; Phelan, Catherine M; Beesley, Jonathan; Chen, Xiaoqing; Spindler, Tassja J; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-08-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10(-8)), rs711830 at 2q31.1 (P = 7.5 × 10(-12)) and rs688187 at 19q13.2 (P = 6.8 × 10(-13)). We identified significant expression quantitative trait locus (eQTL) associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10(-4), false discovery rate (FDR) = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk-associated SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease.

  13. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    PubMed

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  14. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    PubMed Central

    Raman, Harsh; Raman, Rosy; Coombes, Neil; Song, Jie; Diffey, Simon; Kilian, Andrzej; Lindbeck, Kurt; Barbulescu, Denise M.; Batley, Jacqueline; Edwards, David; Salisbury, Phil A.; Marcroft, Steve

    2016-01-01

    Key message “We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola.” Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in

  15. Genome-Wide and Gene-Based Meta-Analyses Identify Novel Loci Influencing Blood Pressure Response to Hydrochlorothiazide.

    PubMed

    Salvi, Erika; Wang, Zhiying; Rizzi, Federica; Gong, Yan; McDonough, Caitrin W; Padmanabhan, Sandosh; Hiltunen, Timo P; Lanzani, Chiara; Zaninello, Roberta; Chittani, Martina; Bailey, Kent R; Sarin, Antti-Pekka; Barcella, Matteo; Melander, Olle; Chapman, Arlene B; Manunta, Paolo; Kontula, Kimmo K; Glorioso, Nicola; Cusi, Daniele; Dominiczak, Anna F; Johnson, Julie A; Barlassina, Cristina; Boerwinkle, Eric; Cooper-DeHoff, Rhonda M; Turner, Stephen T

    2017-01-01

    This study aimed to identify novel loci influencing the antihypertensive response to hydrochlorothiazide monotherapy. A genome-wide meta-analysis of blood pressure (BP) response to hydrochlorothiazide was performed in 1739 white hypertensives from 6 clinical trials within the International Consortium for Antihypertensive Pharmacogenomics Studies, making it the largest study to date of its kind. No signals reached genome-wide significance (P<5×10 - 8 ), and the suggestive regions (P<10 -5 ) were cross-validated in 2 black cohorts treated with hydrochlorothiazide. In addition, a gene-based analysis was performed on candidate genes with previous evidence of involvement in diuretic response, in BP regulation, or in hypertension susceptibility. Using the genome-wide meta-analysis approach, with validation in blacks, we identified 2 suggestive regulatory regions linked to gap junction protein α1 gene (GJA1) and forkhead box A1 gene (FOXA1), relevant for cardiovascular and kidney function. With the gene-based approach, we identified hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 1 gene (HSD3B1) as significantly associated with BP response (P<2.28×10 - 4 ). HSD3B1 encodes the 3β-hydroxysteroid dehydrogenase enzyme and plays a crucial role in the biosynthesis of aldosterone and endogenous ouabain. By amassing all of the available pharmacogenomic studies of BP response to hydrochlorothiazide, and using 2 different analytic approaches, we identified 3 novel loci influencing BP response to hydrochlorothiazide. The gene-based analysis, never before applied to pharmacogenomics of antihypertensive drugs to our knowledge, provided a powerful strategy to identify a locus of interest, which was not identified in the genome-wide meta-analysis because of high allelic heterogeneity. These data pave the way for future investigations on new pathways and drug targets to enhance the current understanding of personalized antihypertensive treatment. © 2016

  16. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set.

    PubMed

    Kanai, Masahiro; Tanaka, Toshihiro; Okada, Yukinori

    2016-10-01

    To assess the statistical significance of associations between variants and traits, genome-wide association studies (GWAS) should employ an appropriate threshold that accounts for the massive burden of multiple testing in the study. Although most studies in the current literature commonly set a genome-wide significance threshold at the level of P=5.0 × 10 -8 , the adequacy of this value for respective populations has not been fully investigated. To empirically estimate thresholds for different ancestral populations, we conducted GWAS simulations using the 1000 Genomes Phase 3 data set for Africans (AFR), Europeans (EUR), Admixed Americans (AMR), East Asians (EAS) and South Asians (SAS). The estimated empirical genome-wide significance thresholds were P sig =3.24 × 10 -8 (AFR), 9.26 × 10 -8 (EUR), 1.83 × 10 -7 (AMR), 1.61 × 10 -7 (EAS) and 9.46 × 10 -8 (SAS). We additionally conducted trans-ethnic meta-analyses across all populations (ALL) and all populations except for AFR (ΔAFR), which yielded P sig =3.25 × 10 -8 (ALL) and 4.20 × 10 -8 (ΔAFR). Our results indicate that the current threshold (P=5.0 × 10 -8 ) is overly stringent for all ancestral populations except for Africans; however, we should employ a more stringent threshold when conducting a meta-analysis, regardless of the presence of African samples.

  17. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    PubMed Central

    Lo, Min-Tzu; Hinds, David A.; Tung, Joyce Y.; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B.; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J.; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E.; Stefansson, Kari; McEvoy, Linda K.; Dale, Anders M.; Andreassen, Ole A.; Chen, Chi-Hua

    2017-01-01

    Summary Personality is influenced by genetic and environmental factors1, and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N=123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N=5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit/hyperactivity disorder (ADHD), and between openness and schizophrenia/bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression/anxiety). PMID:27918536

  18. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders.

    PubMed

    Lo, Min-Tzu; Hinds, David A; Tung, Joyce Y; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E; Stefansson, Kari; McEvoy, Linda K; Dale, Anders M; Andreassen, Ole A; Chen, Chi-Hua

    2017-01-01

    Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422-18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit-hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).

  19. Genome-wide association study identifies a locus associated with rotator cuff injury

    PubMed Central

    Roos, Thomas R.; Roos, Andrew K.; Avins, Andrew L.; Ahmed, Marwa A.; Kleimeyer, John P.; Fredericson, Michael; Ioannidis, John P. A.; Dragoo, Jason L.

    2017-01-01

    Rotator cuff tears are common, especially in the fifth and sixth decades of life, but can also occur in the competitive athlete. Genetic differences may contribute to overall injury risk. Identifying genetic loci associated with rotator cuff injury could shed light on the etiology of this injury. We performed a genome-wide association screen using publically available data from the Research Program in Genes, Environment and Health including 8,357 cases of rotator cuff injury and 94,622 controls. We found rs71404070 to show a genome-wide significant association with rotator cuff injury with p = 2.31x10-8 and an odds ratio of 1.25 per allele. This SNP is located next to cadherin8, which encodes a protein involved in cell adhesion. We also attempted to validate previous gene association studies that had reported a total of 18 SNPs showing a significant association with rotator cuff injury. However, none of the 18 SNPs were validated in our dataset. rs71404070 may be informative in explaining why some individuals are more susceptible to rotator cuff injury than others. PMID:29228018

  20. Efficient genome-wide association in biobanks using topic modeling identifies multiple novel disease loci.

    PubMed

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-08-31

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.

  1. Significance of genome-wide association studies in molecular anthropology.

    PubMed

    Gupta, Vipin; Khadgawat, Rajesh; Sachdeva, Mohinder Pal

    2009-12-01

    The successful advent of a genome-wide approach in association studies raises the hopes of human geneticists for solving a genetic maze of complex traits especially the disorders. This approach, which is replete with the application of cutting-edge technology and supported by big science projects (like Human Genome Project; and even more importantly the International HapMap Project) and various important databases (SNP database, CNV database, etc.), has had unprecedented success in rapidly uncovering many of the genetic determinants of complex disorders. The magnitude of this approach in the genetics of classical anthropological variables like height, skin color, eye color, and other genome diversity projects has certainly expanded the horizons of molecular anthropology. Therefore, in this article we have proposed a genome-wide association approach in molecular anthropological studies by providing lessons from the exemplary study of the Wellcome Trust Case Control Consortium. We have also highlighted the importance and uniqueness of Indian population groups in facilitating the design and finding optimum solutions for other genome-wide association-related challenges.

  2. A robust clustering algorithm for identifying problematic samples in genome-wide association studies.

    PubMed

    Bellenguez, Céline; Strange, Amy; Freeman, Colin; Donnelly, Peter; Spencer, Chris C A

    2012-01-01

    High-throughput genotyping arrays provide an efficient way to survey single nucleotide polymorphisms (SNPs) across the genome in large numbers of individuals. Downstream analysis of the data, for example in genome-wide association studies (GWAS), often involves statistical models of genotype frequencies across individuals. The complexities of the sample collection process and the potential for errors in the experimental assay can lead to biases and artefacts in an individual's inferred genotypes. Rather than attempting to model these complications, it has become a standard practice to remove individuals whose genome-wide data differ from the sample at large. Here we describe a simple, but robust, statistical algorithm to identify samples with atypical summaries of genome-wide variation. Its use as a semi-automated quality control tool is demonstrated using several summary statistics, selected to identify different potential problems, and it is applied to two different genotyping platforms and sample collections. The algorithm is written in R and is freely available at www.well.ox.ac.uk/chris-spencer chris.spencer@well.ox.ac.uk Supplementary data are available at Bioinformatics online.

  3. The association of genome-wide significant spirometric loci with chronic obstructive pulmonary disease susceptibility.

    PubMed

    Castaldi, Peter J; Cho, Michael H; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lomas, David A; Anderson, Wayne; Beaty, Terri H; Hokanson, John E; Crapo, James D; Laird, Nan; Silverman, Edwin K

    2011-12-01

    Two recent metaanalyses of genome-wide association studies conducted by the CHARGE and SpiroMeta consortia identified novel loci yielding evidence of association at or near genome-wide significance (GWS) with FEV(1) and FEV(1)/FVC. We hypothesized that a subset of these markers would also be associated with chronic obstructive pulmonary disease (COPD) susceptibility. Thirty-two single-nucleotide polymorphisms (SNPs) in or near 17 genes in 11 previously identified GWS spirometric genomic regions were tested for association with COPD status in four COPD case-control study samples (NETT/NAS, the Norway case-control study, ECLIPSE, and the first 1,000 subjects in COPDGene; total sample size, 3,456 cases and 1,906 controls). In addition to testing the 32 spirometric GWS SNPs, we tested a dense panel of imputed HapMap2 SNP markers from the 17 genes located near the 32 GWS SNPs and in a set of 21 well studied COPD candidate genes. Of the previously identified GWS spirometric genomic regions, three loci harbored SNPs associated with COPD susceptibility at a 5% false discovery rate: the 4q24 locus including FLJ20184/INTS12/GSTCD/NPNT, the 6p21 locus including AGER and PPT2, and the 5q33 locus including ADAM19. In conclusion, markers previously associated at or near GWS with spirometric measures were tested for association with COPD status in data from four COPD case-control studies, and three loci showed evidence of association with COPD susceptibility at a 5% false discovery rate.

  4. A Genome-Wide Association Study to Identify Genomic Modulators of Rate Control Therapy in Patients with Atrial Fibrillation

    PubMed Central

    Kolek, Matthew J.; Edwards, Todd L.; Muhammad, Raafia; Balouch, Adnan; Shoemaker, M. Benjamin; Blair, Marcia A.; Kor, Kaylen C.; Takahashi, Atsushi; Kubo, Michiaki; Roden, Dan M.; Tanaka, Toshihiro; Darbar, Dawood

    2014-01-01

    For many patients with atrial fibrillation (AF), ventricular rate control with atrioventricular (AV) nodal blockers is considered first-line therapy, though response to treatment is highly variable. Using an extreme phenotype of failure of rate control necessitating AV nodal ablation and pacemaker implantation, we conducted a genome wide association study (GWAS) to identify genomic modulators of rate control therapy. Cases included 95 patients who failed rate control therapy. Controls (N=190) achieved adequate rate control therapy with ≤2 AV nodal blockers using a conventional clinical definition. Genotyping was performed on the Illumina 610-Quad platform, and results were imputed to the 1000 Genomes reference haplotypes. 554,041 single nucleotide polymorphisms (SNPs) met criteria for minor allele frequency (>0.01), call rate (>95%), and quality control, and 6,055,224 SNPs were available after imputation. No SNP reached the canonical threshold for significance for GWAS of P<5 × 10−8. Sixty-three SNPs with P<10−5 at 6 genomic loci were genotyped in a validation cohort of 130 cases and 157 controls. These included 6q24.3 (near SAMD5/SASH1, P=9.36 × 10−8), 4q12 (IGFBP7, P=1.75 × 10−7), 6q22.33 (C6orf174, P=4.86 × 10−7), 3p21.31 (CDCP1, P=1.18 × 10−6), 12p12.1 (SOX5, P=1.62 × 10−6), and 7p11 (LANCL2, P=6.51 × 10−6). However, none of these were significant in the replication cohort or in a meta-analysis of both cohorts. In conclusion, we identified several potentially important genomic modulators of rate control therapy in AF, particularly SOX5, which was previously associated with resting heart rate and PR interval. However these failed to reach genome-wide significance. PMID:25015694

  5. A genome-wide association study to identify genomic modulators of rate control therapy in patients with atrial fibrillation.

    PubMed

    Kolek, Matthew J; Edwards, Todd L; Muhammad, Raafia; Balouch, Adnan; Shoemaker, M Benjamin; Blair, Marcia A; Kor, Kaylen C; Takahashi, Atsushi; Kubo, Michiaki; Roden, Dan M; Tanaka, Toshihiro; Darbar, Dawood

    2014-08-15

    For many patients with atrial fibrillation, ventricular rate control with atrioventricular (AV) nodal blockers is considered first-line therapy, although response to treatment is highly variable. Using an extreme phenotype of failure of rate control necessitating AV nodal ablation and pacemaker implantation, we conducted a genome-wide association study (GWAS) to identify genomic modulators of rate control therapy. Cases included 95 patients who failed rate control therapy. Controls (n = 190) achieved adequate rate control therapy with ≤2 AV nodal blockers using a conventional clinical definition. Genotyping was performed on the Illumina 610-Quad platform, and results were imputed to the 1000 Genomes reference haplotypes. A total of 554,041 single-nucleotide polymorphisms (SNPs) met criteria for minor allele frequency (>0.01), call rate (>95%), and quality control, and 6,055,224 SNPs were available after imputation. No SNP reached the canonical threshold for significance for GWAS of p <5 × 10(-8). Sixty-three SNPs with p <10(-5) at 6 genomic loci were genotyped in a validation cohort of 130 cases and 157 controls. These included 6q24.3 (near SAMD5/SASH1, p = 9.36 × 10(-8)), 4q12 (IGFBP7, p = 1.75 × 10(-7)), 6q22.33 (C6orf174, p = 4.86 × 10(-7)), 3p21.31 (CDCP1, p = 1.18 × 10(-6)), 12p12.1 (SOX5, p = 1.62 × 10(-6)), and 7p11 (LANCL2, p = 6.51 × 10(-6)). However, none of these were significant in the replication cohort or in a meta-analysis of both cohorts. In conclusion, we identified several potentially important genomic modulators of rate control therapy in atrial fibrillation, particularly SOX5, which was previously associated with heart rate at rest and PR interval. However, these failed to reach genome-wide significance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    PubMed

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.

  7. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry.

    PubMed

    Lutz, Sharon M; Cho, Michael H; Young, Kendra; Hersh, Craig P; Castaldi, Peter J; McDonald, Merry-Lynn; Regan, Elizabeth; Mattheisen, Manuel; DeMeo, Dawn L; Parker, Margaret; Foreman, Marilyn; Make, Barry J; Jensen, Robert L; Casaburi, Richard; Lomas, David A; Bhatt, Surya P; Bakke, Per; Gulsvik, Amund; Crapo, James D; Beaty, Terri H; Laird, Nan M; Lange, Christoph; Hokanson, John E; Silverman, Edwin K

    2015-12-03

    Pulmonary function decline is a major contributor to morbidity and mortality among smokers. Post bronchodilator FEV1 and FEV1/FVC ratio are considered the standard assessment of airflow obstruction. We performed a genome-wide association study (GWAS) in 9919 current and former smokers in the COPDGene study (6659 non-Hispanic Whites [NHW] and 3260 African Americans [AA]) to identify associations with spirometric measures (post-bronchodilator FEV1 and FEV1/FVC). We also conducted meta-analysis of FEV1 and FEV1/FVC GWAS in the COPDGene, ECLIPSE, and GenKOLS cohorts (total n = 13,532). Among NHW in the COPDGene cohort, both measures of pulmonary function were significantly associated with SNPs at the 15q25 locus [containing CHRNA3/5, AGPHD1, IREB2, CHRNB4] (lowest p-value = 2.17 × 10(-11)), and FEV1/FVC was associated with a genomic region on chromosome 4 [upstream of HHIP] (lowest p-value = 5.94 × 10(-10)); both regions have been previously associated with COPD. For the meta-analysis, in addition to confirming associations to the regions near CHRNA3/5 and HHIP, genome-wide significant associations were identified for FEV1 on chromosome 1 [TGFB2] (p-value = 8.99 × 10(-9)), 9 [DBH] (p-value = 9.69 × 10(-9)) and 19 [CYP2A6/7] (p-value = 3.49 × 10(-8)) and for FEV1/FVC on chromosome 1 [TGFB2] (p-value = 8.99 × 10(-9)), 4 [FAM13A] (p-value = 3.88 × 10(-12)), 11 [MMP3/12] (p-value = 3.29 × 10(-10)) and 14 [RIN3] (p-value = 5.64 × 10(-9)). In a large genome-wide association study of lung function in smokers, we found genome-wide significant associations at several previously described loci with lung function or COPD. We additionally identified a novel genome-wide significant locus with FEV1 on chromosome 9 [DBH] in a meta-analysis of three study populations.

  8. Novel genes identified in a high-density genome wide association study for nicotine dependence.

    PubMed

    Bierut, Laura Jean; Madden, Pamela A F; Breslau, Naomi; Johnson, Eric O; Hatsukami, Dorothy; Pomerleau, Ovide F; Swan, Gary E; Rutter, Joni; Bertelsen, Sarah; Fox, Louis; Fugman, Douglas; Goate, Alison M; Hinrichs, Anthony L; Konvicka, Karel; Martin, Nicholas G; Montgomery, Grant W; Saccone, Nancy L; Saccone, Scott F; Wang, Jen C; Chase, Gary A; Rice, John P; Ballinger, Dennis G

    2007-01-01

    Tobacco use is a leading contributor to disability and death worldwide, and genetic factors contribute in part to the development of nicotine dependence. To identify novel genes for which natural variation contributes to the development of nicotine dependence, we performed a comprehensive genome wide association study using nicotine dependent smokers as cases and non-dependent smokers as controls. To allow the efficient, rapid, and cost effective screen of the genome, the study was carried out using a two-stage design. In the first stage, genotyping of over 2.4 million single nucleotide polymorphisms (SNPs) was completed in case and control pools. In the second stage, we selected SNPs for individual genotyping based on the most significant allele frequency differences between cases and controls from the pooled results. Individual genotyping was performed in 1050 cases and 879 controls using 31 960 selected SNPs. The primary analysis, a logistic regression model with covariates of age, gender, genotype and gender by genotype interaction, identified 35 SNPs with P-values less than 10(-4) (minimum P-value 1.53 x 10(-6)). Although none of the individual findings is statistically significant after correcting for multiple tests, additional statistical analyses support the existence of true findings in this group. Our study nominates several novel genes, such as Neurexin 1 (NRXN1), in the development of nicotine dependence while also identifying a known candidate gene, the beta3 nicotinic cholinergic receptor. This work anticipates the future directions of large-scale genome wide association studies with state-of-the-art methodological approaches and sharing of data with the scientific community.

  9. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries).

    PubMed

    Ren, Xue; Yang, Guang-Li; Peng, Wei-Feng; Zhao, Yong-Xin; Zhang, Min; Chen, Ze-Hui; Wu, Fu-An; Kantanen, Juha; Shen, Min; Li, Meng-Hua

    2016-02-17

    Horns are a cranial appendage found exclusively in Bovidae, and play important roles in accessing resources and mates. In sheep (Ovies aries), horns vary from polled to six-horned, and human have been selecting polled animals in farming and breeding. Here, we conducted a genome-wide association study on 24 two-horned versus 22 four-horned phenotypes in a native Chinese breed of Sishui Fur sheep. Together with linkage disequilibrium (LD) analyses and haplotype-based association tests, we identified a genomic region comprising 132.0-133.1 Mb on chromosome 2 that contained the top 10 SNPs (including 4 significant SNPs) and 5 most significant haplotypes associated with the polycerate phenotype. In humans and mice, this genomic region contains the HOXD gene cluster and adjacent functional genes EVX2 and KIAA1715, which have a close association with the formation of limbs and genital buds. Our results provide new insights into the genetic basis underlying variable numbers of horns and represent a new resource for use in sheep genetics and breeding.

  10. Sniffing out significant "Pee values": genome wide association study of asparagus anosmia.

    PubMed

    Markt, Sarah C; Nuttall, Elizabeth; Turman, Constance; Sinnott, Jennifer; Rimm, Eric B; Ecsedy, Ethan; Unger, Robert H; Fall, Katja; Finn, Stephen; Jensen, Majken K; Rider, Jennifer R; Kraft, Peter; Mucci, Lorelei A

    2016-12-13

     To determine the inherited factors associated with the ability to smell asparagus metabolites in urine.  Genome wide association study.  Nurses' Health Study and Health Professionals Follow-up Study cohorts.  6909 men and women of European-American descent with available genetic data from genome wide association studies.  Participants were characterized as asparagus smellers if they strongly agreed with the prompt "after eating asparagus, you notice a strong characteristic odor in your urine," and anosmic if otherwise. We calculated per-allele estimates of asparagus anosmia for about nine million single nucleotide polymorphisms using logistic regression. P values <5×10 -8 were considered as genome wide significant.  58.0% of men (n=1449/2500) and 61.5% of women (n=2712/4409) had anosmia. 871 single nucleotide polymorphisms reached genome wide significance for asparagus anosmia, all in a region on chromosome 1 (1q44: 248139851-248595299) containing multiple genes in the olfactory receptor 2 (OR2) family. Conditional analyses revealed three independent markers associated with asparagus anosmia: rs13373863, rs71538191, and rs6689553.  A large proportion of people have asparagus anosmia. Genetic variation near multiple olfactory receptor genes is associated with the ability of an individual to smell the metabolites of asparagus in urine. Future replication studies are necessary before considering targeted therapies to help anosmic people discover what they are missing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. A genome-wide association study identifies risk loci to equine recurrent uveitis in German warmblood horses.

    PubMed

    Kulbrock, Maike; Lehner, Stefanie; Metzger, Julia; Ohnesorge, Bernhard; Distl, Ottmar

    2013-01-01

    Equine recurrent uveitis (ERU) is a common eye disease affecting up to 3-15% of the horse population. A genome-wide association study (GWAS) using the Illumina equine SNP50 bead chip was performed to identify loci conferring risk to ERU. The sample included a total of 144 German warmblood horses. A GWAS showed a significant single nucleotide polymorphism (SNP) on horse chromosome (ECA) 20 at 49.3 Mb, with IL-17A and IL-17F being the closest genes. This locus explained a fraction of 23% of the phenotypic variance for ERU. A GWAS taking into account the severity of ERU, revealed a SNP on ECA18 nearby to the crystalline gene cluster CRYGA-CRYGF. For both genomic regions on ECA18 and 20, significantly associated haplotypes containing the genome-wide significant SNPs could be demonstrated. In conclusion, our results are indicative for a genetic component regulating the possible critical role of IL-17A and IL-17F in the pathogenesis of ERU. The associated SNP on ECA18 may be indicative for cataract formation in the course of ERU.

  12. Genome-wide significant association between a sequence variant at 15q15.2 and lung cancer risk

    PubMed Central

    Rafnar, Thorunn; Sulem, Patrick; Besenbacher, Soren; Gudbjartsson, Daniel F.; Zanon, Carlo; Gudmundsson, Julius; Stacey, Simon N.; Kostic, Jelena P.; Thorgeirsson, Thorgeir E.; Thorleifsson, Gudmar; Bjarnason, Hjordis; Skuladottir, Halla; Gudbjartsson, Tomas; Isaksson, Helgi J.; Isla, Dolores; Murillo, Laura; García-Prats, Maria D.; Panadero, Angeles; Aben, Katja K.H.; Vermeulen, Sita H.; van der Heijden, Henricus F.M.; Feser, William; Miller, York E.; Bunn, Paul A.; Kong, Augustine; Wolf, Holly J.; Franklin, Wilbur A.; Mayordomo, Jose I; Kiemeney, Lambertus A.; Jonsson, Steinn; Thorsteinsdottir, Unnur; Stefansson, Kari

    2010-01-01

    Genome-wide association studies (GWAS) have identified three genomic regions, at 15q24-25.1, 5p15.33 and 6p21.33, which associate with risk of lung cancer. Large meta-analyses of GWA data have failed to find additional associations of genome-wide significance. In this study, we sought to confirm 7 variants with suggestive association to lung cancer (P<10−5) in a recently published meta-analysis. In a GWA dataset of 1,447 lung cancer cases and 36,256 controls in Iceland, three correlated variants on 15q15.2 (rs504417, rs11853991 and rs748404) showed a significant association with lung cancer whereas rs4254535 on 2p14, rs1530057 on 3p24.1, rs6438347 on 3q13.31 and rs1926203 on 10q23.31 did not. The most significant variant, rs748404, was genotyped in additional 1,299 lung cancer cases and 4,102 controls from the Netherlands, Spain and the USA and the results combined with published GWAS data. In this analysis, the T allele of rs748404 reached genome-wide significance (OR=1.15, P=1.1×10−9). Another variant at the same locus, rs12050604, showed association with lung cancer (OR=1.09, 3.6×10−6) and remained significant after adjustment for rs748404 and vice versa. rs748404 is located 140 kb centromeric of the TP53BP1 gene that has been implicated in lung cancer risk. Two fully correlated, non-synonymous coding variants in TP53BP1, rs2602141 (Q1136K) and rs560191 (E353D), showed association with lung cancer in our sample set; however, this association did not remain significant after adjustment for rs748404. Our data show that one or more lung cancer risk variants of genome-wide significance and distinct from the coding variants in TP53BP1 are located at 15q15.2. PMID:21303977

  13. Genome-wide screen identifies a novel prognostic signature for breast cancer survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Xuan Y.; Lee, Matthew J.; Zhu, Jeffrey

    Large genomic datasets in combination with clinical data can be used as an unbiased tool to identify genes important in patient survival and discover potential therapeutic targets. We used a genome-wide screen to identify 587 genes significantly and robustly deregulated across four independent breast cancer (BC) datasets compared to normal breast tissue. Gene expression of 381 genes was significantly associated with relapse-free survival (RFS) in BC patients. We used a gene co-expression network approach to visualize the genetic architecture in normal breast and BCs. In normal breast tissue, co-expression cliques were identified enriched for cell cycle, gene transcription, cell adhesion,more » cytoskeletal organization and metabolism. In contrast, in BC, only two major co-expression cliques were identified enriched for cell cycle-related processes or blood vessel development, cell adhesion and mammary gland development processes. Interestingly, gene expression levels of 7 genes were found to be negatively correlated with many cell cycle related genes, highlighting these genes as potential tumor suppressors and novel therapeutic targets. A forward-conditional Cox regression analysis was used to identify a 12-gene signature associated with RFS. A prognostic scoring system was created based on the 12-gene signature. This scoring system robustly predicted BC patient RFS in 60 sampling test sets and was further validated in TCGA and METABRIC BC data. Our integrated study identified a 12-gene prognostic signature that could guide adjuvant therapy for BC patients and includes novel potential molecular targets for therapy.« less

  14. Genome-wide screen identifies a novel prognostic signature for breast cancer survival

    DOE PAGES

    Mao, Xuan Y.; Lee, Matthew J.; Zhu, Jeffrey; ...

    2017-01-21

    Large genomic datasets in combination with clinical data can be used as an unbiased tool to identify genes important in patient survival and discover potential therapeutic targets. We used a genome-wide screen to identify 587 genes significantly and robustly deregulated across four independent breast cancer (BC) datasets compared to normal breast tissue. Gene expression of 381 genes was significantly associated with relapse-free survival (RFS) in BC patients. We used a gene co-expression network approach to visualize the genetic architecture in normal breast and BCs. In normal breast tissue, co-expression cliques were identified enriched for cell cycle, gene transcription, cell adhesion,more » cytoskeletal organization and metabolism. In contrast, in BC, only two major co-expression cliques were identified enriched for cell cycle-related processes or blood vessel development, cell adhesion and mammary gland development processes. Interestingly, gene expression levels of 7 genes were found to be negatively correlated with many cell cycle related genes, highlighting these genes as potential tumor suppressors and novel therapeutic targets. A forward-conditional Cox regression analysis was used to identify a 12-gene signature associated with RFS. A prognostic scoring system was created based on the 12-gene signature. This scoring system robustly predicted BC patient RFS in 60 sampling test sets and was further validated in TCGA and METABRIC BC data. Our integrated study identified a 12-gene prognostic signature that could guide adjuvant therapy for BC patients and includes novel potential molecular targets for therapy.« less

  15. Genome-wide association studies to identify rice salt-tolerance markers.

    PubMed

    Patishtan, Juan; Hartley, Tom N; Fonseca de Carvalho, Raquel; Maathuis, Frans J M

    2018-05-01

    Salinity is an ever increasing menace that affects agriculture worldwide. Crops such as rice are salt sensitive, but its degree of susceptibility varies widely between cultivars pointing to extensive genetic diversity that can be exploited to identify genes and proteins that are relevant in the response of rice to salt stress. We used a diversity panel of 306 rice accessions and collected phenotypic data after short (6 h), medium (7 d) and long (30 d) salinity treatment (50 mm NaCl). A genome-wide association study (GWAS) was subsequently performed, which identified around 1200 candidate genes from many functional categories, but this was treatment period dependent. Further analysis showed the presence of cation transporters and transcription factors with a known role in salinity tolerance and those that hitherto were not known to be involved in salt stress. Localization analysis of single nucleotide polymorphisms (SNPs) showed the presence of several hundred non-synonymous SNPs (nsSNPs) in coding regions and earmarked specific genomic regions with increased numbers of nsSNPs. It points to components of the ubiquitination pathway as important sources of genetic diversity that could underpin phenotypic variation in stress tolerance. © 2017 John Wiley & Sons Ltd.

  16. Genotypic variability-based genome-wide association study identifies non-additive loci HLA-C and IL12B for psoriasis.

    PubMed

    Wei, Wen-Hua; Massey, Jonathan; Worthington, Jane; Barton, Anne; Warren, Richard B

    2018-03-01

    Genome-wide association studies (GWASs) have identified a number of loci for psoriasis but largely ignored non-additive effects. We report a genotypic variability-based GWAS (vGWAS) that can prioritize non-additive loci without requiring prior knowledge of interaction types or interacting factors in two steps, using a mixed model to partition dichotomous phenotypes into an additive component and non-additive environmental residuals on the liability scale and then the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups genome widely. The vGWAS identified two genome-wide significant (P < 5.0e-08) non-additive loci HLA-C and IL12B that were also genome-wide significant in an accompanying GWAS in the discovery cohort. Both loci were statistically replicated in vGWAS of an independent cohort with a small sample size. HLA-C and IL12B were reported in moderate gene-gene and/or gene-environment interactions in several occasions. We found a moderate interaction with age-of-onset of psoriasis, which was replicated indirectly. The vGWAS also revealed five suggestive loci (P < 6.76e-05) including FUT2 that was associated with psoriasis with environmental aspects triggered by virus infection and/or metabolic factors. Replication and functional investigation are needed to validate the suggestive vGWAS loci.

  17. Sniffing out significant “Pee values”: genome wide association study of asparagus anosmia

    PubMed Central

    Markt, Sarah C; Nuttall, Elizabeth; Turman, Constance; Sinnott, Jennifer; Rimm, Eric B; Ecsedy, Ethan; Unger, Robert H; Fall, Katja; Finn, Stephen; Jensen, Majken K; Rider, Jennifer R; Kraft, Peter

    2016-01-01

    Objective To determine the inherited factors associated with the ability to smell asparagus metabolites in urine. Design Genome wide association study. Setting Nurses’ Health Study and Health Professionals Follow-up Study cohorts. Participants 6909 men and women of European-American descent with available genetic data from genome wide association studies. Main outcome measure Participants were characterized as asparagus smellers if they strongly agreed with the prompt “after eating asparagus, you notice a strong characteristic odor in your urine,” and anosmic if otherwise. We calculated per-allele estimates of asparagus anosmia for about nine million single nucleotide polymorphisms using logistic regression. P values <5×10-8 were considered as genome wide significant. Results 58.0% of men (n=1449/2500) and 61.5% of women (n=2712/4409) had anosmia. 871 single nucleotide polymorphisms reached genome wide significance for asparagus anosmia, all in a region on chromosome 1 (1q44: 248139851-248595299) containing multiple genes in the olfactory receptor 2 (OR2) family. Conditional analyses revealed three independent markers associated with asparagus anosmia: rs13373863, rs71538191, and rs6689553. Conclusion A large proportion of people have asparagus anosmia. Genetic variation near multiple olfactory receptor genes is associated with the ability of an individual to smell the metabolites of asparagus in urine. Future replication studies are necessary before considering targeted therapies to help anosmic people discover what they are missing. PMID:27965198

  18. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits.

    PubMed

    Kim, Young Jin; Go, Min Jin; Hu, Cheng; Hong, Chang Bum; Kim, Yun Kyoung; Lee, Ji Young; Hwang, Joo-Yeon; Oh, Ji Hee; Kim, Dong-Joon; Kim, Nam Hee; Kim, Soeui; Hong, Eun Jung; Kim, Ji-Hyun; Min, Haesook; Kim, Yeonjung; Zhang, Rong; Jia, Weiping; Okada, Yukinori; Takahashi, Atsushi; Kubo, Michiaki; Tanaka, Toshihiro; Kamatani, Naoyuki; Matsuda, Koichi; Park, Taesung; Oh, Bermseok; Kimm, Kuchan; Kang, Daehee; Shin, Chol; Cho, Nam H; Kim, Hyung-Lae; Han, Bok-Ghee; Lee, Jong-Young; Cho, Yoon Shin

    2011-09-11

    To identify the genetic bases for nine metabolic traits, we conducted a meta-analysis combining Korean genome-wide association results from the KARE project (n = 8,842) and the HEXA shared control study (n = 3,703). We verified the associations of the loci selected from the discovery meta-analysis in the replication stage (30,395 individuals from the BioBank Japan genome-wide association study and individuals comprising the Health2 and Shanghai Jiao Tong University Diabetes cohorts). We identified ten genome-wide significant signals newly associated with traits from an overall meta-analysis. The most compelling associations involved 12q24.11 (near MYL2) and 12q24.13 (in C12orf51) for high-density lipoprotein cholesterol, 2p21 (near SIX2-SIX3) for fasting plasma glucose, 19q13.33 (in RPS11) and 6q22.33 (in RSPO3) for renal traits, and 12q24.11 (near MYL2), 12q24.13 (in C12orf51 and near OAS1), 4q31.22 (in ZNF827) and 7q11.23 (near TBL2-BCL7B) for hepatic traits. These findings highlight previously unknown biological pathways for metabolic traits investigated in this study.

  19. Genome-Wide Association Scan in HIV-1-Infected Individuals Identifying Variants Influencing Disease Course

    PubMed Central

    van Manen, Daniëlle; Delaneau, Olivier; Kootstra, Neeltje A.; Boeser-Nunnink, Brigitte D.; Limou, Sophie; Bol, Sebastiaan M.; Burger, Judith A.; Zwinderman, Aeilko H.; Moerland, Perry D.; van 't Slot, Ruben; Zagury, Jean-François; van 't Wout, Angélique B.; Schuitemaker, Hanneke

    2011-01-01

    Background AIDS develops typically after 7–11 years of untreated HIV-1 infection, with extremes of very rapid disease progression (<2 years) and long-term non-progression (>15 years). To reveal additional host genetic factors that may impact on the clinical course of HIV-1 infection, we designed a genome-wide association study (GWAS) in 404 participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS. Methods The association of SNP genotypes with the clinical course of HIV-1 infection was tested in Cox regression survival analyses using AIDS-diagnosis and AIDS-related death as endpoints. Results Multiple, not previously identified SNPs, were identified to be strongly associated with disease progression after HIV-1 infection, albeit not genome-wide significant. However, three independent SNPs in the top ten associations between SNP genotypes and time between seroconversion and AIDS-diagnosis, and one from the top ten associations between SNP genotypes and time between seroconversion and AIDS-related death, had P-values smaller than 0.05 in the French Genomics of Resistance to Immunodeficiency Virus cohort on disease progression. Conclusions Our study emphasizes that the use of different phenotypes in GWAS may be useful to unravel the full spectrum of host genetic factors that may be associated with the clinical course of HIV-1 infection. PMID:21811574

  20. Genome-wide association analysis identifies a meningioma risk locus at 11p15.5.

    PubMed

    Claus, Elizabeth B; Cornish, Alex J; Broderick, Peter; Schildkraut, Joellen M; Dobbins, Sara E; Holroyd, Amy; Calvocoressi, Lisa; Lu, Lingeng; Hansen, Helen M; Smirnov, Ivan; Walsh, Kyle M; Schramm, Johannes; Hoffmann, Per; Nöthen, Markus M; Jöckel, Karl-Heinz; Swerdlow, Anthony; Larsen, Signe Benzon; Johansen, Christoffer; Simon, Matthias; Bondy, Melissa; Wrensch, Margaret; Houlston, Richard; Wiemels, Joseph L

    2018-05-12

    Meningioma are adult brain tumors originating in the meningeal coverings of the brain and spinal cord, with significant heritable basis. Genome-wide association studies (GWAS) have previously identified only a single risk locus for meningioma, at 10p12.31. To identify a susceptibility locus for meningioma, we conducted a meta-analysis of two GWAS, imputed using a merged reference panel of 1,000 Genomes and UK10K data, with validation in two independent sample series totaling 2,138 cases and 12,081 controls. We identified a new susceptibility locus for meningioma at 11p15.5 (rs2686876, odds ratio = 1.44, P = 9.86 × 10-9). A number of genes localize to the region of linkage disequilibrium encompassing rs2686876, including RIC8A, which plays a central role in the development of neural crest-derived structures, such as the meninges. This finding advances our understanding of the genetic basis of meningioma development and provides additional support for a polygenic model of meningioma.

  1. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy

    PubMed Central

    Afshari, Natalie A.; Igo, Robert P.; Morris, Nathan J.; Stambolian, Dwight; Sharma, Shiwani; Pulagam, V. Lakshmi; Dunn, Steven; Stamler, John F.; Truitt, Barbara J.; Rimmler, Jacqueline; Kuot, Abraham; Croasdale, Christopher R.; Qin, Xuejun; Burdon, Kathryn P.; Riazuddin, S. Amer; Mills, Richard; Klebe, Sonja; Minear, Mollie A.; Zhao, Jiagang; Balajonda, Elmer; Rosenwasser, George O.; Baratz, Keith H; Mootha, V. Vinod; Patel, Sanjay V.; Gregory, Simon G.; Bailey-Wilson, Joan E.; Price, Marianne O.; Price, Francis W.; Craig, Jamie E.; Fingert, John H.; Gottsch, John D.; Aldave, Anthony J.; Klintworth, Gordon K.; Lass, Jonathan H.; Li, Yi-Ju; Iyengar, Sudha K.

    2017-01-01

    The structure of the cornea is vital to its transparency, and dystrophies that disrupt corneal organization are highly heritable. To understand the genetic aetiology of Fuchs endothelial corneal dystrophy (FECD), the most prevalent corneal disorder requiring transplantation, we conducted a genome-wide association study (GWAS) on 1,404 FECD cases and 2,564 controls of European ancestry, followed by replication and meta-analysis, for a total of 2,075 cases and 3,342 controls. We identify three novel loci meeting genome-wide significance (P<5 × 10−8): KANK4 rs79742895, LAMC1 rs3768617 and LINC00970/ATP1B1 rs1200114. We also observe an overwhelming effect of the established TCF4 locus. Interestingly, we detect differential sex-specific association at LAMC1, with greater risk in women, and TCF4, with greater risk in men. Combining GWAS results with biological evidence we expand the knowledge of common FECD loci from one to four, and provide a deeper understanding of the underlying pathogenic basis of FECD. PMID:28358029

  2. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma.

    PubMed

    Chahal, Harvind S; Lin, Yuan; Ransohoff, Katherine J; Hinds, David A; Wu, Wenting; Dai, Hong-Ji; Qureshi, Abrar A; Li, Wen-Qing; Kraft, Peter; Tang, Jean Y; Han, Jiali; Sarin, Kavita Y

    2016-07-18

    Cutaneous squamous cell carcinoma represents the second most common cutaneous malignancy, affecting 7-11% of Caucasians in the United States. The genetic determinants of susceptibility to cutaneous squamous cell carcinoma remain largely unknown. Here we report the results of a two-stage genome-wide association study of cutaneous squamous cell carcinoma, totalling 7,404 cases and 292,076 controls. Eleven loci reached genome-wide significance (P<5 × 10(-8)) including seven previously confirmed pigmentation-related loci: MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4 and BNC2. We identify an additional four susceptibility loci: 11q23.3 CADM1, a metastasis suppressor gene involved in modifying tumour interaction with cell-mediated immunity; 2p22.3; 7p21.1 AHR, the dioxin receptor involved in anti-apoptotic pathways and melanoma progression; and 9q34.3 SEC16A, a putative oncogene with roles in secretion and cellular proliferation. These susceptibility loci provide deeper insight into the pathogenesis of squamous cell carcinoma.

  3. A Genome-Wide Association Study Identifies Risk Loci to Equine Recurrent Uveitis in German Warmblood Horses

    PubMed Central

    Kulbrock, Maike; Lehner, Stefanie; Metzger, Julia; Ohnesorge, Bernhard; Distl, Ottmar

    2013-01-01

    Equine recurrent uveitis (ERU) is a common eye disease affecting up to 3–15% of the horse population. A genome-wide association study (GWAS) using the Illumina equine SNP50 bead chip was performed to identify loci conferring risk to ERU. The sample included a total of 144 German warmblood horses. A GWAS showed a significant single nucleotide polymorphism (SNP) on horse chromosome (ECA) 20 at 49.3 Mb, with IL-17A and IL-17F being the closest genes. This locus explained a fraction of 23% of the phenotypic variance for ERU. A GWAS taking into account the severity of ERU, revealed a SNP on ECA18 nearby to the crystalline gene cluster CRYGA-CRYGF. For both genomic regions on ECA18 and 20, significantly associated haplotypes containing the genome-wide significant SNPs could be demonstrated. In conclusion, our results are indicative for a genetic component regulating the possible critical role of IL-17A and IL-17F in the pathogenesis of ERU. The associated SNP on ECA18 may be indicative for cataract formation in the course of ERU. PMID:23977091

  4. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility

    PubMed Central

    Cook, James P; Morris, Andrew P

    2016-01-01

    Genome-wide association studies (GWAS) have traditionally been undertaken in homogeneous populations from the same ancestry group. However, with the increasing availability of GWAS in large-scale multi-ethnic cohorts, we have evaluated a framework for detecting association of genetic variants with complex traits, allowing for population structure, and developed a powerful test of heterogeneity in allelic effects between ancestry groups. We have applied the methodology to identify and characterise loci associated with susceptibility to type 2 diabetes (T2D) using GWAS data from the Resource for Genetic Epidemiology on Adult Health and Aging, a large multi-ethnic population-based cohort, created for investigating the genetic and environmental basis of age-related diseases. We identified a novel locus for T2D susceptibility at genome-wide significance (P<5 × 10−8) that maps to TOMM40-APOE, a region previously implicated in lipid metabolism and Alzheimer's disease. We have also confirmed previous reports that single-nucleotide polymorphisms at the TCF7L2 locus demonstrate the greatest extent of heterogeneity in allelic effects between ethnic groups, with the lowest risk observed in populations of East Asian ancestry. PMID:27189021

  5. Genome-Wide Significant Association between Alcohol Dependence and a Variant in the ADH Gene Cluster

    PubMed Central

    Frank, Josef; Cichon, Sven; Treutlein, Jens; Ridinger, Monika; Mattheisen, Manuel; Hoffmann, Per; Herms, Stefan; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Maier, Wolfgang; Mössner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Scherbaum, Norbert; Schmäl, Christine; Steffens, Michael; Lucae, Susanne; Ising, Marcus; Müller-Myhsok, Bertram; Nöthen, Markus M; Mann, Karl; Kiefer, Falk; Rietschel, Marcella

    2011-01-01

    Alcohol dependence (AD) is an important contributory factor to the global burden of disease. The etiology of AD involves both environmental and genetic factors, and the disorder has a heritability of around 50%. The aim of the present study was to identify susceptibility genes for AD by performing a genome-wide association study (GWAS). The sample comprised 1,333 male in-patients with severe DSM-IV AD and 2,168 controls. These included 487 patients and 1,358 controls from a previous GWAS study by our group. All individuals were of German descent. Single marker tests and a polygenic score based analysis to assess the combined contribution of multiple markers with small effects were performed. The SNP rs1789891, which is located between the ADH1B and ADH1C genes, achieved genome-wide significance (p=1.27E–8; OR=1.46). Other markers from this region were also associated with AD, and conditional analyses indicated that these made a partially independent contribution. The SNP rs1789891 is in complete linkage disequilibrium with the functional Arg272Gln variant (p=1.24E–7, OR=1.31) of the ADH1C gene, which has been reported to modify the rate of ethanol oxidation to acetaldehyde in vitro. A polygenic score based approach produced a significant result (p=9.66E–9). This is the first GWAS of AD to provide genome-wide significant support for the role of the ADH gene cluster and to suggest a polygenic component to the etiology of AD. The latter result suggests that many more AD susceptibility genes still await identification. PMID:22004471

  6. Genome-Wide Association Study Identifies Common Genetic Variants Associated with Salivary Gland Carcinoma and its Subtypes

    PubMed Central

    Xu, Li; Tang, Hongwei; Chen, Diane W.; El-Naggar, Adel K.; Wei, Peng; Sturgis, Erich M.

    2015-01-01

    BACKGROUND Salivary gland carcinomas (SGCs) are a rare malignancy with unknown etiology. We aimed to identify genetic variants modifying risk of SGC and its major subtypes, adenoid cystic carcinoma (ACCA) and mucoepidermoid carcinoma (MECA). METHODS We conducted a genome-wide association study in 309 well-defined SGC cases and 535 cancer-free controls. We performed a SNP-level discovery study in non-Hispanic whites followed by a replication study in Hispanics. A logistic regression was applied to calculate odds ratios (ORs) and 95% confidence intervals (95%CIs). A meta-analysis was conducted of the results. RESULTS Genome-wide significant association with SGC in non-Hispanic whites was detected at coding SNPs in CHRNA2 (OR=8.55, 95%CI: 4.53–16.13, P = 3.6 × 10−11), OR4F15 (OR=5.26, 95%CI: 3.13–8.83, P = 3.5 × 10−10), ZNF343 (OR=3.28, 95%CI: 2.12–5.07, P = 9.1 × 10−8), and PARP4 (OR=2.00, 95%CI: 1.54–2.59, P = 1.7 × 10−7). Meta-analysis of the non-Hispanic white and Hispanic cohorts identified another genome-wide significant SNP in ELL2 (meta-OR=1.86, 95%CI: 1.48–2.34, P = 1.3 × 10−7). Risk alleles largely enriched in MECA, where the SNPs in CHRNA2, OR4F15, and ZNF343 had ORs of 15.71 (95%CI: 6.59–37.47, P = 5.2 × 10−10), 15.60 (95%CI: 6.50–37.41, P = 7.5 × 10−10), and 6.49 (95%CI: 3.36–12.52, P = 2.5 × 10−8), respectively. None of these SNPs retained significant association with ACCA. CONCLUSIONS These findings, for the first time, identify a panel of SNPs associated with SGC risk. Confirmation of these findings along with functional analysis of identified SNPs are needed. PMID:25823930

  7. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy.

    PubMed

    Marenholz, Ingo; Grosche, Sarah; Kalb, Birgit; Rüschendorf, Franz; Blümchen, Katharina; Schlags, Rupert; Harandi, Neda; Price, Mareike; Hansen, Gesine; Seidenberg, Jürgen; Röblitz, Holger; Yürek, Songül; Tschirner, Sebastian; Hong, Xiumei; Wang, Xiaobin; Homuth, Georg; Schmidt, Carsten O; Nöthen, Markus M; Hübner, Norbert; Niggemann, Bodo; Beyer, Kirsten; Lee, Young-Ae

    2017-10-20

    Genetic factors and mechanisms underlying food allergy are largely unknown. Due to heterogeneity of symptoms a reliable diagnosis is often difficult to make. Here, we report a genome-wide association study on food allergy diagnosed by oral food challenge in 497 cases and 2387 controls. We identify five loci at genome-wide significance, the clade B serpin (SERPINB) gene cluster at 18q21.3, the cytokine gene cluster at 5q31.1, the filaggrin gene, the C11orf30/LRRC32 locus, and the human leukocyte antigen (HLA) region. Stratifying the results for the causative food demonstrates that association of the HLA locus is peanut allergy-specific whereas the other four loci increase the risk for any food allergy. Variants in the SERPINB gene cluster are associated with SERPINB10 expression in leukocytes. Moreover, SERPINB genes are highly expressed in the esophagus. All identified loci are involved in immunological regulation or epithelial barrier function, emphasizing the role of both mechanisms in food allergy.

  8. Genome wide profiling in oral squamous cell carcinoma identifies a four genetic marker signature of prognostic significance

    PubMed Central

    Vincent-Chong, Vui King; Salahshourifar, Iman; Woo, Kar Mun; Anwar, Arif; Razali, Rozaimi; Gudimella, Ranganath; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Kallarakkal, Thomas George; Ramanathan, Anand; Wan Mustafa, Wan Mahadzir; Abraham, Mannil Thomas; Tay, Keng Kiong; Zain, Rosnah Binti

    2017-01-01

    Background Cancers of the oral cavity are primarily oral squamous cell carcinomas (OSCCs). Many of the OSCCs present at late stages with an exceptionally poor prognosis. A probable limitation in management of patients with OSCC lies in the insufficient knowledge pertaining to the linkage between copy number alterations in OSCC and oral tumourigenesis thereby resulting in an inability to deliver targeted therapy. Objectives The current study aimed to identify copy number alterations (CNAs) in OSCC using array comparative genomic hybridization (array CGH) and to correlate the CNAs with clinico-pathologic parameters and clinical outcomes. Materials and methods Using array CGH, genome-wide profiling was performed on 75 OSCCs. Selected genes that were harboured in the frequently amplified and deleted regions were validated using quantitative polymerase chain reaction (qPCR). Thereafter, pathway and network functional analysis were carried out using Ingenuity Pathway Analysis (IPA) software. Results Multiple chromosomal regions including 3q, 5p, 7p, 8q, 9p, 10p, 11q were frequently amplified, while 3p and 8p chromosomal regions were frequently deleted. These findings were in confirmation with our previous study using ultra-dense array CGH. In addition, amplification of 8q, 11q, 7p and 9p and deletion of 8p chromosomal regions showed a significant correlation with clinico-pathologic parameters such as the size of the tumour, metastatic lymph nodes and pathological staging. Co-amplification of 7p, 8q, 9p and 11q regions that harbored amplified genes namely CCND1, EGFR, TPM2 and LRP12 respectively, when combined, continues to be an independent prognostic factor in OSCC. Conclusion Amplification of 3q, 5p, 7p, 8q, 9p, 10p, 11q and deletion of 3p and 8p chromosomal regions were recurrent among OSCC patients. Co-alteration of 7p, 8q, 9p and 11q was found to be associated with clinico-pathologic parameters and poor survival. These regions contain genes that play critical roles

  9. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    PubMed Central

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes. PMID:29263807

  10. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    PubMed

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  11. Genome-wide approach identifies a novel gene-maternal pre-pregnancy BMI interaction on preterm birth

    PubMed Central

    Hong, Xiumei; Hao, Ke; Ji, Hongkai; Peng, Shouneng; Sherwood, Ben; Di Narzo, Antonio; Tsai, Hui-Ju; Liu, Xin; Burd, Irina; Wang, Guoying; Ji, Yuelong; Caruso, Deanna; Mao, Guangyun; Bartell, Tami R.; Zhang, Zhongyang; Pearson, Colleen; Heffner, Linda; Cerda, Sandra; Beaty, Terri H.; Fallin, M. Daniele; Lee-Parritz, Aviva; Zuckerman, Barry; Weeks, Daniel E.; Wang, Xiaobin

    2017-01-01

    Preterm birth (PTB) contributes significantly to infant mortality and morbidity with lifelong impact. Few robust genetic factors of PTB have been identified. Such ‘missing heritability' may be partly due to gene × environment interactions (G × E), which is largely unexplored. Here we conduct genome-wide G × E analyses of PTB in 1,733 African-American women (698 mothers of PTB; 1,035 of term birth) from the Boston Birth Cohort. We show that maternal COL24A1 variants have a significant genome-wide interaction with maternal pre-pregnancy overweight/obesity on PTB risk, with rs11161721 (PG × E=1.8 × 10−8; empirical PG × E=1.2 × 10−8) as the top hit. This interaction is replicated in African-American mothers (PG × E=0.01) from an independent cohort and in meta-analysis (PG × E=3.6 × 10−9), but is not replicated in Caucasians. In adipose tissue, rs11161721 is significantly associated with altered COL24A1 expression. Our findings may provide new insight into the aetiology of PTB and improve our ability to predict and prevent PTB. PMID:28598419

  12. Genome-wide association study to identify common variants associated with brachial circumference: a meta-analysis of 14 cohorts.

    PubMed

    Boraska, Vesna; Day-Williams, Aaron; Franklin, Christopher S; Elliott, Katherine S; Panoutsopoulou, Kalliope; Tachmazidou, Ioanna; Albrecht, Eva; Bandinelli, Stefania; Beilin, Lawrence J; Bochud, Murielle; Cadby, Gemma; Ernst, Florian; Evans, David M; Hayward, Caroline; Hicks, Andrew A; Huffman, Jennifer; Huth, Cornelia; James, Alan L; Klopp, Norman; Kolcic, Ivana; Kutalik, Zoltán; Lawlor, Debbie A; Musk, Arthur W; Pehlic, Marina; Pennell, Craig E; Perry, John R B; Peters, Annette; Polasek, Ozren; St Pourcain, Beate; Ring, Susan M; Salvi, Erika; Schipf, Sabine; Staessen, Jan A; Teumer, Alexander; Timpson, Nicholas; Vitart, Veronique; Warrington, Nicole M; Yaghootkar, Hanieh; Zemunik, Tatijana; Zgaga, Lina; An, Ping; Anttila, Verneri; Borecki, Ingrid B; Holmen, Jostein; Ntalla, Ioanna; Palotie, Aarno; Pietiläinen, Kirsi H; Wedenoja, Juho; Winsvold, Bendik S; Dedoussis, George V; Kaprio, Jaakko; Province, Michael A; Zwart, John-Anker; Burnier, Michel; Campbell, Harry; Cusi, Daniele; Smith, George Davey; Frayling, Timothy M; Gieger, Christian; Palmer, Lyle J; Pramstaller, Peter P; Rudan, Igor; Völzke, Henry; Wichmann, H-Erich; Wright, Alan F; Zeggini, Eleftheria

    2012-01-01

    Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.

  13. Genome-wide association study identifies novel breast cancer susceptibility loci

    PubMed Central

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  14. Genome-wide association studies identify genetic loci for low von Willebrand factor levels

    PubMed Central

    van Loon, Janine; Dehghan, Abbas; Weihong, Tang; Trompet, Stella; McArdle, Wendy L; Asselbergs, Folkert F W; Chen, Ming-Huei; Lopez, Lorna M; Huffman, Jennifer E; Leebeek, Frank W G; Basu, Saonli; Stott, David J; Rumley, Ann; Gansevoort, Ron T; Davies, Gail; Wilson, James J F; Witteman, Jacqueline C M; Cao, Xiting; de Craen, Anton J M; Bakker, Stephan J L; Psaty, Bruce M; Starr, John M; Hofman, Albert; Wouter Jukema, J; Deary, Ian J; Hayward, Caroline; van der Harst, Pim; Lowe, Gordon D O; Folsom, Aaron R; Strachan, David P; Smith, Nicolas; de Maat, Moniek P M; O'Donnell, Christopher

    2016-01-01

    Low von Willebrand factor (VWF) levels are associated with bleeding symptoms and are a diagnostic criterion for von Willebrand disease, the most common inherited bleeding disorder. To date, it is unclear which genetic loci are associated with reduced VWF levels. Therefore, we conducted a meta-analysis of genome-wide association studies to identify genetic loci associated with low VWF levels. For this meta-analysis, we included 31 149 participants of European ancestry from 11 community-based studies. From all participants, VWF antigen (VWF:Ag) measurements and genome-wide single-nucleotide polymorphism (SNP) scans were available. Each study conducted analyses using logistic regression of SNPs on dichotomized VWF:Ag measures (lowest 5% for blood group O and non-O) with an additive genetic model adjusted for age and sex. An inverse-variance weighted meta-analysis was performed for VWF:Ag levels. A total of 97 SNPs exceeded the genome-wide significance threshold of 5 × 10−8 and comprised five loci on four different chromosomes: 6q24 (smallest P-value 5.8 × 10−10), 9q34 (2.4 × 10−64), 12p13 (5.3 × 10−22), 12q23 (1.2 × 10−8) and 13q13 (2.6 × 10−8). All loci were within or close to genes, including STXBP5 (Syntaxin Binding Protein 5) (6q24), STAB5 (stabilin-5) (12q23), ABO (9q34), VWF (12p13) and UFM1 (ubiquitin-fold modifier 1) (13q13). Of these, UFM1 has not been previously associated with VWF:Ag levels. Four genes that were previously associated with VWF levels (VWF, ABO, STXBP5 and STAB2) were also associated with low VWF levels, and, in addition, we identified a new gene, UFM1, that is associated with low VWF levels. These findings point to novel mechanisms for the occurrence of low VWF levels. PMID:26486471

  15. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes

    PubMed Central

    Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa; Hara, Kazuo; Yasuda, Kazuki; Grarup, Niels; Zhao, Wei; Wang, Xu; Huerta-Chagoya, Alicia; Hu, Cheng; Moon, Sanghoon; Long, Jirong; Kwak, Soo Heon; Rasheed, Asif; Saxena, Richa; Ma, Ronald C. W.; Okada, Yukinori; Iwata, Minoru; Hosoe, Jun; Shojima, Nobuhiro; Iwasaki, Minaka; Fujita, Hayato; Suzuki, Ken; Danesh, John; Jørgensen, Torben; Jørgensen, Marit E.; Witte, Daniel R.; Brandslund, Ivan; Christensen, Cramer; Hansen, Torben; Mercader, Josep M.; Flannick, Jason; Moreno-Macías, Hortensia; Burtt, Noël P.; Zhang, Rong; Kim, Young Jin; Zheng, Wei; Singh, Jai Rup; Tam, Claudia H. T.; Hirose, Hiroshi; Maegawa, Hiroshi; Ito, Chikako; Kaku, Kohei; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kawamori, Ryuzo; Kubo, Michiaki; Cho, Yoon Shin; Chan, Juliana C. N.; Sanghera, Dharambir; Frossard, Philippe; Park, Kyong Soo; Shu, Xiao-Ou; Kim, Bong-Jo; Florez, Jose C.; Tusié-Luna, Teresa; Jia, Weiping; Tai, E Shyong; Pedersen, Oluf; Saleheen, Danish; Maeda, Shiro; Kadowaki, Takashi

    2016-01-01

    Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P<5 × 10−8), rs1116357 near CCDC85A, rs147538848 in FAM60A, rs1575972 near DMRTA1, rs9309245 near ASB3, rs67156297 near ATP8B2, rs7107784 near MIR4686 and rs67839313 near INAFM2. Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P<0.007). These results indicate that expansion of single ethnic GWAS is still useful to identify novel susceptibility loci to complex traits not only for ethnicity-specific loci but also for common loci across different ethnicities. PMID:26818947

  16. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease.

    PubMed

    Lee, James C; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B; Mansfield, John C; Ahmad, Tariq; Prescott, Natalie J; Satsangi, Jack; Wilson, David C; Jostins, Luke; Anderson, Carl A; Traherne, James A; Lyons, Paul A; Parkes, Miles; Smith, Kenneth G C

    2017-02-01

    For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself but instead the course that the disease takes over time (prognosis). Prognosis may vary substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants. To better characterize how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with disease prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn's disease is largely independent of the contribution to disease susceptibility and point to a biology of prognosis that could provide new therapeutic opportunities.

  17. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease

    PubMed Central

    Lee, James C.; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B.; Mansfield, John C.; Ahmad, Tariq; Prescott, Natalie J.; Satsangi, Jack; Wilson, David C.; Jostins, Luke; Anderson, Carl A.; Traherne, James A.; Lyons, Paul A.; Parkes, Miles; Smith, Kenneth G.C.

    2017-01-01

    For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself, but the course the disease takes over time (prognosis)1–3. This varies substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis4–6, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants7–13. To better characterise how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn’s disease is largely independent from the contribution to disease susceptibility, and point to a biology of prognosis that could provide new therapeutic opportunities. PMID:28067912

  18. Ulcerative colitis loci on chromosomes 1p36 and 12q15 identified by genome-wide association study

    PubMed Central

    Silverberg, Mark S.; Cho, Judy H.; Rioux, John D.; McGovern, Dermot P.B.; Wu, Jing; Annese, Vito; Achkar, Jean-Paul; Goyette, Philippe; Scott, Regan; Xu, Wei; Barmada, M. Michael; Klei, Lambertus; Daly, Mark J.; Abraham, Clara; Bayless, Theodore M.; Bossa, Fabrizio; Griffiths, Anne M.; Ippoliti, Andrew F.; Lahaie, Raymond G.; Latiano, Anna; Paré, Pierre; Proctor, Deborah D.; Regueiro, Miguel D.; Steinhart, A. Hillary; Targan, Stephan R.; Schumm, L. Philip; Kistner, Emily O.; Lee, Annette T.; Gregersen, Peter K.; Rotter, Jerome I.; Brant, Steven R.; Taylor, Kent D.; Roeder, Kathryn; Duerr, Richard H.

    2008-01-01

    Ulcerative colitis is a chronic inflammatory disease of the colon that presents as diarrhea and gastrointestinal bleeding. We performed a genome-wide association study using DNA samples from 1,052 individuals with ulcerative colitis and pre-existing data from 2,571 controls, all of European ancestry. In an analysis that controlled for gender and population structure, ulcerative colitis loci attaining genome-wide significance and subsequent replication in two independent populations were identified on chromosomes 1p36 (rs6426833, combined P = 5.1×10−13, combined OR = 0.73) and 12q15 (rs1558744, combined P = 2.5×10−12, combined OR = 1.35). In addition, combined genome-wide significant evidence for association was found in a region spanning BTNL2 to HLA-DQB1 on chromosome 6p21 (rs2395185, combined P = 1.0×10−16, combined OR = 0.66) and at the IL23R locus on chromosome 1p31 (rs11209026, combined P = 1.3×10−8, combined OR = 0.56; rs10889677, combined P = 1.3×10−8, combined OR = 1.29). PMID:19122664

  19. Physical and genetic-interaction density reveals functional organization and informs significance cutoffs in genome-wide screens

    PubMed Central

    Dittmar, John C.; Pierce, Steven; Rothstein, Rodney; Reid, Robert J. D.

    2013-01-01

    Genome-wide experiments often measure quantitative differences between treated and untreated cells to identify affected strains. For these studies, statistical models are typically used to determine significance cutoffs. We developed a method termed “CLIK” (Cutoff Linked to Interaction Knowledge) that overlays biological knowledge from the interactome on screen results to derive a cutoff. The method takes advantage of the fact that groups of functionally related interacting genes often respond similarly to experimental conditions and, thus, cluster in a ranked list of screen results. We applied CLIK analysis to five screens of the yeast gene disruption library and found that it defined a significance cutoff that differed from traditional statistics. Importantly, verification experiments revealed that the CLIK cutoff correlated with the position in the rank order where the rate of true positives drops off significantly. In addition, the gene sets defined by CLIK analysis often provide further biological perspectives. For example, applying CLIK analysis retrospectively to a screen for cisplatin sensitivity allowed us to identify the importance of the Hrq1 helicase in DNA crosslink repair. Furthermore, we demonstrate the utility of CLIK to determine optimal treatment conditions by analyzing genome-wide screens at multiple rapamycin concentrations. We show that CLIK is an extremely useful tool for evaluating screen quality, determining screen cutoffs, and comparing results between screens. Furthermore, because CLIK uses previously annotated interaction data to determine biologically informed cutoffs, it provides additional insights into screen results, which supplement traditional statistical approaches. PMID:23589890

  20. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features

    PubMed Central

    Adhikari, Kaustubh; Fontanil, Tania; Cal, Santiago; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Chacón-Duque, Juan-Camilo; Al-Saadi, Farah; Johansson, Jeanette A.; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Gonzalez-José, Rolando; Headon, Denis; López-Otín, Carlos; Tobin, Desmond J.; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10−8 to 3 × 10−119), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair. PMID:26926045

  1. Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci.

    PubMed

    Raelson, John V; Little, Randall D; Ruether, Andreas; Fournier, Hélène; Paquin, Bruno; Van Eerdewegh, Paul; Bradley, W E C; Croteau, Pascal; Nguyen-Huu, Quynh; Segal, Jonathan; Debrus, Sophie; Allard, René; Rosenstiel, Philip; Franke, Andre; Jacobs, Gunnar; Nikolaus, Susanna; Vidal, Jean-Michel; Szego, Peter; Laplante, Nathalie; Clark, Hilary F; Paulussen, René J; Hooper, John W; Keith, Tim P; Belouchi, Abdelmajid; Schreiber, Stefan

    2007-09-11

    Genome-wide association (GWA) studies offer a powerful unbiased method for the identification of multiple susceptibility genes for complex diseases. Here we report the results of a GWA study for Crohn's disease (CD) using family trios from the Quebec Founder Population (QFP). Haplotype-based association analyses identified multiple regions associated with the disease that met the criteria for genome-wide significance, with many containing a gene whose function appears relevant to CD. A proportion of these were replicated in two independent German Caucasian samples, including the established CD loci NOD2 and IBD5. The recently described IL23R locus was also identified and replicated. For this region, multiple individuals with all major haplotypes in the QFP were sequenced and extensive fine mapping performed to identify risk and protective alleles. Several additional loci, including a region on 3p21 containing several plausible candidate genes, a region near JAKMIP1 on 4p16.1, and two larger regions on chromosome 17 were replicated. Together with previously published loci, the spectrum of CD genes identified to date involves biochemical networks that affect epithelial defense mechanisms, innate and adaptive immune response, and the repair or remodeling of tissue.

  2. Genome-Wide Association Study to Identify Common Variants Associated with Brachial Circumference: A Meta-Analysis of 14 Cohorts

    PubMed Central

    Boraska, Vesna; Day-Williams, Aaron; Franklin, Christopher S.; Elliott, Katherine S.; Panoutsopoulou, Kalliope; Tachmazidou, Ioanna; Albrecht, Eva; Bandinelli, Stefania; Beilin, Lawrence J.; Bochud, Murielle; Cadby, Gemma; Ernst, Florian; Evans, David M.; Hayward, Caroline; Hicks, Andrew A.; Huffman, Jennifer; Huth, Cornelia; James, Alan L.; Klopp, Norman; Kolcic, Ivana; Kutalik, Zoltán; Lawlor, Debbie A.; Musk, Arthur W.; Pehlic, Marina; Pennell, Craig E.; Perry, John R. B.; Peters, Annette; Polasek, Ozren; Pourcain, Beate St; Ring, Susan M.; Salvi, Erika; Schipf, Sabine; Staessen, Jan A.; Teumer, Alexander; Timpson, Nicholas; Vitart, Veronique; Warrington, Nicole M.; Yaghootkar, Hanieh; Zemunik, Tatijana; Zgaga, Lina; An, Ping; Anttila, Verneri; Borecki, Ingrid B.; Holmen, Jostein; Ntalla, Ioanna; Palotie, Aarno; Pietiläinen, Kirsi H.; Wedenoja, Juho; Winsvold, Bendik S.; Dedoussis, George V.; Kaprio, Jaakko; Province, Michael A.; Zwart, John-Anker; Burnier, Michel; Campbell, Harry; Cusi, Daniele; Davey Smith, George; Frayling, Timothy M.; Gieger, Christian; Palmer, Lyle J.; Pramstaller, Peter P.; Rudan, Igor; Völzke, Henry; Wichmann, H. -Erich; Wright, Alan F.; Zeggini, Eleftheria

    2012-01-01

    Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC. PMID:22479309

  3. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep

    PubMed Central

    Mousel, Michelle R.; Reynolds, James O.; White, Stephen N.

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection. PMID:26098909

  4. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep.

    PubMed

    Mousel, Michelle R; Reynolds, James O; White, Stephen N

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10(-5)) were identified including markers in or near PIK3CB (P = 2.22x10(-6); additive model), KCNB1 (P = 2.93x10(-6); dominance model), ZC3H12C (P = 3.25x10(-6); genotypic model), JPH1 (P = 4.68x20(-6); genotypic model), and MYO3B (P = 5.74x10(-6); recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.

  5. Genome-wide association study of therapeutic opioid dosing identifies a novel locus upstream of OPRM1

    PubMed Central

    Smith, Andrew H.; Jensen, Kevin P.; Li, Jin; Nunez, Yaira; Farrer, Lindsay A.; Hakonarson, Hakon; Cook-Sather, Scott D.; Kranzler, Henry R.; Gelernter, Joel

    2017-01-01

    Opioids are very effective analgesics, but they are also highly addictive. Methadone is used to treat opioid dependence (OD), acting as a selective agonist at the μ-opioid receptor encoded by the gene OPRM1. Determining the optimal methadone maintenance dose is time-consuming; currently, no biomarkers are available to guide treatment. In methadone-treated OD subjects drawn from a case and control sample, we conducted a genome-wide association study (GWAS) of usual daily methadone dose. In African-American (AA) OD subjects (n = 383), we identified a genome-wide significant association between therapeutic methadone dose (mean = 68.0 mg, standard deviation (SD) = 30.1 mg) and rs73568641 (P = 2.8 × 10−8), the nearest gene (306 kilobases) being OPRM1. Each minor (C) allele corresponded to an additional ~20 mg/day of oral methadone, an effect specific to AAs. In European-Americans (EAs) (n = 1,027), no genome-wide significant associations with methadone dose (mean = 77.8 mg, SD = 33.9 mg) were observed. In an independent set of opioid-naïve AA children being treated for surgical pain, rs73568641-C was associated with a higher required dose of morphine (n = 241, P = 3.9 × 10−2). Similarly, independent genomic loci previously shown to associate with higher opioid analgesic dose were associated with higher methadone dose in the OD sample (AA and EA: n = 1,410, genetic score P = 1.3 × 10−3). The present results in AAs indicate that genetic variants influencing opioid sensitivity across different clinical settings could contribute to precision pharmacotherapy for pain and addiction. PMID:28115739

  6. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations

    PubMed Central

    Liang, Jingjing; Le, Thu H.; Edwards, Digna R. Velez; Tayo, Bamidele O.; Gaulton, Kyle J.; Lu, Yingchang; Jensen, Richard A.; Chen, Guanjie; Schwander, Karen; McKenzie, Colin A.; Fox, Ervin; Nalls, Michael A.; Young, J. Hunter; Lane, Jacqueline M.; Zhou, Jie; Tang, Hua; Fornage, Myriam; Musani, Solomon K.; Wang, Heming; Forrester, Terrence; Chu, Pei-Lun; Evans, Michele K.; Morrison, Alanna C.; Martin, Lisa W.; Wiggins, Kerri L.; Hui, Qin; Zhao, Wei; Jackson, Rebecca D.; Faul, Jessica D.; Reiner, Alex P.; Bray, Michael; Denny, Joshua C.; Mosley, Thomas H.; Palmas, Walter; Guo, Xiuqing; Polak, Joseph F.; Taylor, Ken D.; Boerwinkle, Eric; Bottinger, Erwin P.; Liu, Kiang; Risch, Neil; Hunt, Steven C.; Kooperberg, Charles; Zonderman, Alan B.; Becker, Diane M.; Cai, Jianwen; Loos, Ruth J. F.; Psaty, Bruce M.; Weir, David R.; Kardia, Sharon L. R.; Arnett, Donna K.; Won, Sungho; Edwards, Todd L.; Redline, Susan; Cooper, Richard S.; Rao, D. C.; Rotimi, Charles; Levy, Daniel; Chakravarti, Aravinda

    2017-01-01

    Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension. PMID:28498854

  7. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology.

    PubMed

    Levy, Daniel; Neuhausen, Susan L; Hunt, Steven C; Kimura, Masayuki; Hwang, Shih-Jen; Chen, Wei; Bis, Joshua C; Fitzpatrick, Annette L; Smith, Erin; Johnson, Andrew D; Gardner, Jeffrey P; Srinivasan, Sathanur R; Schork, Nicholas; Rotter, Jerome I; Herbig, Utz; Psaty, Bruce M; Sastrasinh, Malinee; Murray, Sarah S; Vasan, Ramachandran S; Province, Michael A; Glazer, Nicole L; Lu, Xiaobin; Cao, Xiaojian; Kronmal, Richard; Mangino, Massimo; Soranzo, Nicole; Spector, Tim D; Berenson, Gerald S; Aviv, Abraham

    2010-05-18

    Telomeres are engaged in a host of cellular functions, and their length is regulated by multiple genes. Telomere shortening, in the course of somatic cell replication, ultimately leads to replicative senescence. In humans, rare mutations in genes that regulate telomere length have been identified in monogenic diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, which are associated with shortened leukocyte telomere length (LTL) and increased risk for aplastic anemia. Shortened LTL is observed in a host of aging-related complex genetic diseases and is associated with diminished survival in the elderly. We report results of a genome-wide association study of LTL in a consortium of four observational studies (n = 3,417 participants with LTL and genome-wide genotyping). SNPs in the regions of the oligonucleotide/oligosaccharide-binding folds containing one gene (OBFC1; rs4387287; P = 3.9 x 10(-9)) and chemokine (C-X-C motif) receptor 4 gene (CXCR4; rs4452212; P = 2.9 x 10(-8)) were associated with LTL at a genome-wide significance level (P < 5 x 10(-8)). We attempted replication of the top SNPs at these loci through de novo genotyping of 1,893 additional individuals and in silico lookup in another observational study (n = 2,876), and we confirmed the association findings for OBFC1 but not CXCR4. In addition, we confirmed the telomerase RNA component (TERC) as a gene associated with LTL (P = 1.1 x 10(-5)). The identification of OBFC1 through genome-wide association as a locus for interindividual variation in LTL in the general population advances the understanding of telomere biology in humans and may provide insights into aging-related disorders linked to altered LTL dynamics.

  8. Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers.

    PubMed

    Deming, Yuetiva; Li, Zeran; Kapoor, Manav; Harari, Oscar; Del-Aguila, Jorge L; Black, Kathleen; Carrell, David; Cai, Yefei; Fernandez, Maria Victoria; Budde, John; Ma, Shengmei; Saef, Benjamin; Howells, Bill; Huang, Kuan-Lin; Bertelsen, Sarah; Fagan, Anne M; Holtzman, David M; Morris, John C; Kim, Sungeun; Saykin, Andrew J; De Jager, Philip L; Albert, Marilyn; Moghekar, Abhay; O'Brien, Richard; Riemenschneider, Matthias; Petersen, Ronald C; Blennow, Kaj; Zetterberg, Henrik; Minthon, Lennart; Van Deerlin, Vivianna M; Lee, Virginia Man-Yee; Shaw, Leslie M; Trojanowski, John Q; Schellenberg, Gerard; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Peskind, Elaine R; Li, Ge; Di Narzo, Antonio F; Kauwe, John S K; Goate, Alison M; Cruchaga, Carlos

    2017-05-01

    More than 20 genetic loci have been associated with risk for Alzheimer's disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case-control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ 42 ), tau, and phosphorylated tau (ptau 181 ) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau 181 , including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ 42 near GLIS1 on 1p32.3 (β = -0.059, P = 2.08 × 10 -8 ) and within SERPINB1 on 6p25 (β = -0.025, P = 1.72 × 10 -8 ) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10 -2 ), disease progression (GLIS1: β = 0.277, P = 1.92 × 10 -2 ), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10 -3 ). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ 42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau 181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings

  9. A Genome-Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish

    PubMed Central

    Geng, Xin; Liu, Shikai; Yao, Jun; Bao, Lisui; Zhang, Jiaren; Li, Chao; Wang, Ruijia; Sha, Jin; Zeng, Peng; Zhi, Degui; Liu, Zhanjiang

    2016-01-01

    Skull morphology is fundamental to evolution and the biological adaptation of species to their environments. With aquaculture fish species, head size is also important for economic reasons because it has a direct impact on fillet yield. However, little is known about the underlying genetic basis of head size. Catfish is the primary aquaculture species in the United States. In this study, we performed a genome-wide association study using the catfish 250K SNP array with backcross hybrid catfish to map the QTL for head size (head length, head width, and head depth). One significantly associated region on linkage group (LG) 7 was identified for head length. In addition, LGs 7, 9, and 16 contain suggestively associated regions for head length. For head width, significantly associated regions were found on LG9, and additional suggestively associated regions were identified on LGs 5 and 7. No region was found associated with head depth. Head size genetic loci were mapped in catfish to genomic regions with candidate genes involved in bone development. Comparative analysis indicated that homologs of several candidate genes are also involved in skull morphology in various other species ranging from amphibian to mammalian species, suggesting possible evolutionary conservation of those genes in the control of skull morphologies. PMID:27558670

  10. Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A.

    PubMed

    Wang, Hansong; Burnett, Terrilea; Kono, Suminori; Haiman, Christopher A; Iwasaki, Motoki; Wilkens, Lynne R; Loo, Lenora W M; Van Den Berg, David; Kolonel, Laurence N; Henderson, Brian E; Keku, Temitope O; Sandler, Robert S; Signorello, Lisa B; Blot, William J; Newcomb, Polly A; Pande, Mala; Amos, Christopher I; West, Dee W; Bézieau, Stéphane; Berndt, Sonja I; Zanke, Brent W; Hsu, Li; Lindor, Noralane M; Haile, Robert W; Hopper, John L; Jenkins, Mark A; Gallinger, Steven; Casey, Graham; Stenzel, Stephanie L; Schumacher, Fredrick R; Peters, Ulrike; Gruber, Stephen B; Tsugane, Shoichiro; Stram, Daniel O; Le Marchand, Loïc

    2014-08-08

    The genetic basis of sporadic colorectal cancer (CRC) is not well explained by known risk polymorphisms. Here we perform a meta-analysis of two genome-wide association studies in 2,627 cases and 3,797 controls of Japanese ancestry and 1,894 cases and 4,703 controls of African ancestry, to identify genetic variants that contribute to CRC susceptibility. We replicate genome-wide statistically significant associations (P<5 × 10(-8)) in 16,823 cases and 18,211 controls of European ancestry. This study reveals a new pan-ethnic CRC risk locus at 10q25 (rs12241008, intronic to VTI1A; P=1.4 × 10(-9)), providing additional insight into the aetiology of CRC and highlighting the value of association mapping in diverse populations.

  11. Pooled Genome-Wide Analysis to Identify Novel Risk Loci for Pediatric Allergic Asthma

    PubMed Central

    Ricci, Giampaolo; Astolfi, Annalisa; Remondini, Daniel; Cipriani, Francesca; Formica, Serena; Dondi, Arianna; Pession, Andrea

    2011-01-01

    Background Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach. Methodology/Principal Findings We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models. Conclusion/Significance Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population. PMID:21359210

  12. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens.

    PubMed

    Liu, Ranran; Sun, Yanfa; Zhao, Guiping; Wang, Fangjie; Wu, Dan; Zheng, Maiqing; Chen, Jilan; Zhang, Lei; Hu, Yaodong; Wen, Jie

    2013-01-01

    Body composition and meat quality traits are important economic traits of chickens. The development of high-throughput genotyping platforms and relevant statistical methods have enabled genome-wide association studies in chickens. In order to identify molecular markers and candidate genes associated with body composition and meat quality traits, genome-wide association studies were conducted using the Illumina 60 K SNP Beadchip to genotype 724 Beijing-You chickens. For each bird, a total of 16 traits were measured, including carcass weight (CW), eviscerated weight (EW), dressing percentage, breast muscle weight (BrW) and percentage (BrP), thigh muscle weight and percentage, abdominal fat weight and percentage, dry matter and intramuscular fat contents of breast and thigh muscle, ultimate pH, and shear force of the pectoralis major muscle at 100 d of age. The SNPs that were significantly associated with the phenotypic traits were identified using both simple (GLM) and compressed mixed linear (MLM) models. For nine of ten body composition traits studied, SNPs showing genome wide significance (P<2.59E-6) have been identified. A consistent region on chicken (Gallus gallus) chromosome 4 (GGA4), including seven significant SNPs and four candidate genes (LCORL, LAP3, LDB2, TAPT1), were found to be associated with CW and EW. Another 0.65 Mb region on GGA3 for BrW and BrP was identified. After measuring the mRNA content in beast muscle for five genes located in this region, the changes in GJA1 expression were found to be consistent with that of breast muscle weight across development. It is highly possible that GJA1 is a functional gene for breast muscle development in chickens. For meat quality traits, several SNPs reaching suggestive association were identified and possible candidate genes with their functions were discussed.

  13. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa.

    PubMed

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-05-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10 -6 ), and rs7700147, an intergenic variant (P=2.93 × 10 -5 ). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.

  14. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    PubMed Central

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-01-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802

  15. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  16. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

    PubMed Central

    Lindström, Sara; Thompson, Deborah J.; Paterson, Andrew D.; Li, Jingmei; Gierach, Gretchen L.; Scott, Christopher; Stone, Jennifer; Douglas, Julie A.; dos-Santos-Silva, Isabel; Fernandez-Navarro, Pablo; Verghase, Jajini; Smith, Paula; Brown, Judith; Luben, Robert; Wareham, Nicholas J.; Loos, Ruth J.F.; Heit, John A.; Pankratz, V. Shane; Norman, Aaron; Goode, Ellen L.; Cunningham, Julie M.; deAndrade, Mariza; Vierkant, Robert A.; Czene, Kamila; Fasching, Peter A.; Baglietto, Laura; Southey, Melissa C.; Giles, Graham G.; Shah, Kaanan P.; Chan, Heang-Ping; Helvie, Mark A.; Beck, Andrew H.; Knoblauch, Nicholas W.; Hazra, Aditi; Hunter, David J.; Kraft, Peter; Pollan, Marina; Figueroa, Jonine D.; Couch, Fergus J.; Hopper, John L.; Hall, Per; Easton, Douglas F.; Boyd, Norman F.; Vachon, Celine M.; Tamimi, Rulla M.

    2015-01-01

    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci. PMID:25342443

  17. Genome-wide association study identifies common genetic variants associated with salivary gland carcinoma and its subtypes.

    PubMed

    Xu, Li; Tang, Hongwei; Chen, Diane W; El-Naggar, Adel K; Wei, Peng; Sturgis, Erich M

    2015-07-15

    Salivary gland carcinomas (SGCs) are a rare malignancy with unknown etiology. The objective of the current study was to identify genetic variants modifying the risk of SGC and its major subtypes: adenoid cystic carcinoma and mucoepidermoid carcinoma. The authors conducted a genome-wide association study in 309 well-defined SGC cases and 535 cancer-free controls. A single-nucleotide polymorphism (SNP)-level discovery study was performed in non-Hispanic white individuals followed by a replication study in Hispanic individuals. A logistic regression analysis was applied to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). A meta-analysis of the results was conducted. A genome-wide significant association with SGC in non-Hispanic white individuals was detected at coding SNPs in CHRNA2 (cholinergic receptor, nicotinic, alpha 2 [neuronal]) (OR, 8.55; 95% CI, 4.53-16.13 [P = 3.6 × 10(-11)]), OR4F15 (olfactory receptor, family 4, subfamily F, member 15) (OR, 5.26; 95% CI, 3.13-8.83 [P = 3.5 × 10(-10)]), ZNF343 (zinc finger protein 343) (OR, 3.28; 95% CI, 2.12-5.07 [P = 9.1 × 10(-8)]), and PARP4 (poly(ADP-ribose) polymerase family, member 4) (OR, 2.00; 95% CI, 1.54-2.59 [P = 1.7 × 10(-7)]). Meta-analysis of the non-Hispanic white and Hispanic cohorts identified another genome-wide significant SNP in ELL2 (meta-OR, 1.86; 95% CI, 1.48-2.34 [P = 1.3 × 10(-7)]). Risk alleles were largely enriched in mucoepidermoid carcinoma, in which the SNPs in CHRNA2, OR4F15, and ZNF343 had ORs of 15.71 (95% CI, 6.59-37.47 [P = 5.2 × 10(-10)]), 15.60 (95% CI, 6.50-37.41 [P = 7.5 × 10(-10)]), and 6.49 (95% CI, 3.36-12.52 [P = 2.5 × 10(-8)]), respectively. None of these SNPs retained a significant association with adenoid cystic carcinoma. To the best of the authors' knowledge, the current study is the first to identify a panel of SNPs associated with the risk of SGC. Confirmation of these findings along with functional analysis of

  18. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    PubMed

    Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dębniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M

    2015-09-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.

  19. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  20. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder

    PubMed Central

    Hou, Liping; Bergen, Sarah E.; Akula, Nirmala; Song, Jie; Hultman, Christina M.; Landén, Mikael; Adli, Mazda; Alda, Martin; Ardau, Raffaella; Arias, Bárbara; Aubry, Jean-Michel; Backlund, Lena; Badner, Judith A.; Barrett, Thomas B.; Bauer, Michael; Baune, Bernhard T.; Bellivier, Frank; Benabarre, Antonio; Bengesser, Susanne; Berrettini, Wade H.; Bhattacharjee, Abesh Kumar; Biernacka, Joanna M.; Birner, Armin; Bloss, Cinnamon S.; Brichant-Petitjean, Clara; Bui, Elise T.; Byerley, William; Cervantes, Pablo; Chillotti, Caterina; Cichon, Sven; Colom, Francesc; Coryell, William; Craig, David W.; Cruceanu, Cristiana; Czerski, Piotr M.; Davis, Tony; Dayer, Alexandre; Degenhardt, Franziska; Del Zompo, Maria; DePaulo, J. Raymond; Edenberg, Howard J.; Étain, Bruno; Falkai, Peter; Foroud, Tatiana; Forstner, Andreas J.; Frisén, Louise; Frye, Mark A.; Fullerton, Janice M.; Gard, Sébastien; Garnham, Julie S.; Gershon, Elliot S.; Goes, Fernando S.; Greenwood, Tiffany A.; Grigoroiu-Serbanescu, Maria; Hauser, Joanna; Heilbronner, Urs; Heilmann-Heimbach, Stefanie; Herms, Stefan; Hipolito, Maria; Hitturlingappa, Shashi; Hoffmann, Per; Hofmann, Andrea; Jamain, Stephane; Jiménez, Esther; Kahn, Jean-Pierre; Kassem, Layla; Kelsoe, John R.; Kittel-Schneider, Sarah; Kliwicki, Sebastian; Koller, Daniel L.; König, Barbara; Lackner, Nina; Laje, Gonzalo; Lang, Maren; Lavebratt, Catharina; Lawson, William B.; Leboyer, Marion; Leckband, Susan G.; Liu, Chunyu; Maaser, Anna; Mahon, Pamela B.; Maier, Wolfgang; Maj, Mario; Manchia, Mirko; Martinsson, Lina; McCarthy, Michael J.; McElroy, Susan L.; McInnis, Melvin G.; McKinney, Rebecca; Mitchell, Philip B.; Mitjans, Marina; Mondimore, Francis M.; Monteleone, Palmiero; Mühleisen, Thomas W.; Nievergelt, Caroline M.; Nöthen, Markus M.; Novák, Tomas; Nurnberger, John I.; Nwulia, Evaristus A.; Ösby, Urban; Pfennig, Andrea; Potash, James B.; Propping, Peter; Reif, Andreas; Reininghaus, Eva; Rice, John; Rietschel, Marcella; Rouleau, Guy A.; Rybakowski, Janusz K.; Schalling, Martin; Scheftner, William A.; Schofield, Peter R.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schweizer, Barbara W.; Severino, Giovanni; Shekhtman, Tatyana; Shilling, Paul D.; Simhandl, Christian; Slaney, Claire M.; Smith, Erin N.; Squassina, Alessio; Stamm, Thomas; Stopkova, Pavla; Streit, Fabian; Strohmaier, Jana; Szelinger, Szabolcs; Tighe, Sarah K.; Tortorella, Alfonso; Turecki, Gustavo; Vieta, Eduard; Volkert, Julia; Witt, Stephanie H.; Wright, Adam; Zandi, Peter P.; Zhang, Peng; Zollner, Sebastian; McMahon, Francis J.

    2016-01-01

    Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behaviour. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ∼2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, P =  5.87 × 10 − 9; odds ratio (OR) = 1.12) and markers within ERBB2 (rs2517959, P =  4.53 × 10 − 9; OR = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS. PMID:27329760

  1. Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Ryles, April B; Kohannim, Omid; Jahanshad, Neda; Medland, Sarah E; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Saykin, Andrew J; Jack, Clifford R; Weiner, Michael W; Toga, Arthur W; Thompson, Paul M

    2013-06-01

    Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (P MA  = 4.79 × 10(-8)). This commonly-carried genetic variant accounted for 2.68 % and 0.84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.

  2. Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Mick, Eric; Todorov, Alexandre; Smalley, Susan; Hu, Xiaolan; Loo, Sandra; Todd, Richard D.; Biederman, Joseph; Byrne, Deirdre; Dechairo, Bryan; Guiney, Allan; McCracken, James; McGough, James; Nelson, Stanley F.; Reiersen, Angela M.; Wilens, Timothy E.; Wozniak, Janet; Neale, Benjamin M.; Faraone, Stephen V.

    2010-01-01

    Objective: Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of…

  3. Genome-wide meta-analyses identify novel loci associated with n-3 and n-6 polyunsaturated fatty acid levels in Chinese and European-ancestry populations.

    PubMed

    Hu, Yao; Li, Huaixing; Lu, Ling; Manichaikul, Ani; Zhu, Jingwen; Chen, Yii-Der I; Sun, Liang; Liang, Shuang; Siscovick, David S; Steffen, Lyn M; Tsai, Michael Y; Rich, Stephen S; Lemaitre, Rozenn N; Lin, Xu

    2016-03-15

    Epidemiological studies suggest that levels of n-3 and n-6 long-chain polyunsaturated fatty acids are associated with risk of cardio-metabolic outcomes across different ethnic groups. Recent genome-wide association studies in populations of European ancestry have identified several loci associated with plasma and/or erythrocyte polyunsaturated fatty acids. To identify additional novel loci, we carried out a genome-wide association study in two population-based cohorts consisting of 3521 Chinese participants, followed by a trans-ethnic meta-analysis with meta-analysis results from 8962 participants of European ancestry. Four novel loci (MYB, AGPAT4, DGAT2 and PPT2) reached genome-wide significance in the trans-ethnic meta-analysis (log10(Bayes Factor) ≥ 6). Of them, associations of MYB and AGPAT4 with docosatetraenoic acid (log10(Bayes Factor) = 11.5 and 8.69, respectively) also reached genome-wide significance in the Chinese-specific genome-wide association analyses (P = 4.15 × 10(-14) and 4.30 × 10(-12), respectively), while associations of DGAT2 with gamma-linolenic acid (log10(Bayes Factor) = 6.16) and of PPT2 with docosapentaenoic acid (log10(Bayes Factor) = 6.24) were nominally significant in both Chinese- and European-specific genome-wide association analyses (P ≤ 0.003). We also confirmed previously reported loci including FADS1, NTAN1, NRBF2, ELOVL2 and GCKR. Different effect sizes in FADS1 and independent association signals in ELOVL2 were observed. These results provide novel insight into the genetic background of polyunsaturated fatty acids and their differences between Chinese and European populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    PubMed Central

    Chambers, John C; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Van der Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E; Coin, Lachlan J; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L; Hottenga, Jouke-Jan; Kühnel, Brigitte; Kumar, Vinod; Lagou, Vasiliki; Liang, Liming; Luan, Jian’an; Vidal, Pedro Marques; Leach, Irene Mateo; O’Reilly, Paul F; Peden, John F; Rahmioglu, Nilufer; Soininen, Pasi; Speliotes, Elizabeth K; Yuan, Xin; Thorleifsson, Gudmar; Alizadeh, Behrooz Z; Atwood, Larry D; Borecki, Ingrid B; Brown, Morris J; Charoen, Pimphen; Cucca, Francesco; Das, Debashish; de Geus, Eco J C; Dixon, Anna L; Döring, Angela; Ehret, Georg; Eyjolfsson, Gudmundur I; Farrall, Martin; Forouhi, Nita G; Friedrich, Nele; Goessling, Wolfram; Gudbjartsson, Daniel F; Harris, Tamara B; Hartikainen, Anna-Liisa; Heath, Simon; Hirschfield, Gideon M; Hofman, Albert; Homuth, Georg; Hyppönen, Elina; Janssen, Harry L A; Johnson, Toby; Kangas, Antti J; Kema, Ido P; Kühn, Jens P; Lai, Sandra; Lathrop, Mark; Lerch, Markus M; Li, Yun; Liang, T Jake; Lin, Jing-Ping; Loos, Ruth J F; Martin, Nicholas G; Moffatt, Miriam F; Montgomery, Grant W; Munroe, Patricia B; Musunuru, Kiran; Nakamura, Yusuke; O’Donnell, Christopher J; Olafsson, Isleifur; Penninx, Brenda W; Pouta, Anneli; Prins, Bram P; Prokopenko, Inga; Puls, Ralf; Ruokonen, Aimo; Savolainen, Markku J; Schlessinger, David; Schouten, Jeoffrey N L; Seedorf, Udo; Sen-Chowdhry, Srijita; Siminovitch, Katherine A; Smit, Johannes H; Spector, Timothy D; Tan, Wenting; Teslovich, Tanya M; Tukiainen, Taru; Uitterlinden, Andre G; Van der Klauw, Melanie M; Vasan, Ramachandran S; Wallace, Chris; Wallaschofski, Henri; Wichmann, H-Erich; Willemsen, Gonneke; Würtz, Peter; Xu, Chun; Yerges-Armstrong, Laura M; Abecasis, Goncalo R; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark; Cookson, William O; van Duijn, Cornelia M; Froguel, Philippe; Matsuda, Koichi; McCarthy, Mark I; Meisinger, Christa; Mooser, Vincent; Pietiläinen, Kirsi H; Schumann, Gunter; Snieder, Harold; Sternberg, Michael J E; Stolk, Ronald P; Thomas, Howard C; Thorsteinsdottir, Unnur; Uda, Manuela; Waeber, Gérard; Wareham, Nicholas J; Waterworth, Dawn M; Watkins, Hugh; Whitfield, John B; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Fox, Caroline S; Ala-Korpela, Mika; Stefansson, Kari; Vollenweider, Peter; Völzke, Henry; Schadt, Eric E; Scott, James; Järvelin, Marjo-Riitta; Elliott, Paul; Kooner, Jaspal S

    2012-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function. PMID:22001757

  5. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    PubMed

    Chambers, John C; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Van der Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E; Coin, Lachlan J; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L; Hottenga, Jouke-Jan; Kühnel, Brigitte; Kumar, Vinod; Lagou, Vasiliki; Liang, Liming; Luan, Jian'an; Vidal, Pedro Marques; Mateo Leach, Irene; O'Reilly, Paul F; Peden, John F; Rahmioglu, Nilufer; Soininen, Pasi; Speliotes, Elizabeth K; Yuan, Xin; Thorleifsson, Gudmar; Alizadeh, Behrooz Z; Atwood, Larry D; Borecki, Ingrid B; Brown, Morris J; Charoen, Pimphen; Cucca, Francesco; Das, Debashish; de Geus, Eco J C; Dixon, Anna L; Döring, Angela; Ehret, Georg; Eyjolfsson, Gudmundur I; Farrall, Martin; Forouhi, Nita G; Friedrich, Nele; Goessling, Wolfram; Gudbjartsson, Daniel F; Harris, Tamara B; Hartikainen, Anna-Liisa; Heath, Simon; Hirschfield, Gideon M; Hofman, Albert; Homuth, Georg; Hyppönen, Elina; Janssen, Harry L A; Johnson, Toby; Kangas, Antti J; Kema, Ido P; Kühn, Jens P; Lai, Sandra; Lathrop, Mark; Lerch, Markus M; Li, Yun; Liang, T Jake; Lin, Jing-Ping; Loos, Ruth J F; Martin, Nicholas G; Moffatt, Miriam F; Montgomery, Grant W; Munroe, Patricia B; Musunuru, Kiran; Nakamura, Yusuke; O'Donnell, Christopher J; Olafsson, Isleifur; Penninx, Brenda W; Pouta, Anneli; Prins, Bram P; Prokopenko, Inga; Puls, Ralf; Ruokonen, Aimo; Savolainen, Markku J; Schlessinger, David; Schouten, Jeoffrey N L; Seedorf, Udo; Sen-Chowdhry, Srijita; Siminovitch, Katherine A; Smit, Johannes H; Spector, Timothy D; Tan, Wenting; Teslovich, Tanya M; Tukiainen, Taru; Uitterlinden, Andre G; Van der Klauw, Melanie M; Vasan, Ramachandran S; Wallace, Chris; Wallaschofski, Henri; Wichmann, H-Erich; Willemsen, Gonneke; Würtz, Peter; Xu, Chun; Yerges-Armstrong, Laura M; Abecasis, Goncalo R; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark; Cookson, William O; van Duijn, Cornelia M; Froguel, Philippe; Matsuda, Koichi; McCarthy, Mark I; Meisinger, Christa; Mooser, Vincent; Pietiläinen, Kirsi H; Schumann, Gunter; Snieder, Harold; Sternberg, Michael J E; Stolk, Ronald P; Thomas, Howard C; Thorsteinsdottir, Unnur; Uda, Manuela; Waeber, Gérard; Wareham, Nicholas J; Waterworth, Dawn M; Watkins, Hugh; Whitfield, John B; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Fox, Caroline S; Ala-Korpela, Mika; Stefansson, Kari; Vollenweider, Peter; Völzke, Henry; Schadt, Eric E; Scott, James; Järvelin, Marjo-Riitta; Elliott, Paul; Kooner, Jaspal S

    2011-10-16

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.

  6. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J. L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schafer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genome-wide association studies (GWAS) are needed. Method: We used case-control analyses of 896 cases…

  7. Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A

    PubMed Central

    Wang, Hansong; Burnett, Terrilea; Kono, Suminori; Haiman, Christopher A.; Iwasaki, Motoki; Wilkens, Lynne R.; Loo, Lenora W.M.; Berg, David Van Den; Kolonel, Laurence N.; Henderson, Brian E.; Keku, Temitope O.; Sandler, Robert S.; Signorello, Lisa B.; Blot, William J.; Newcomb, Polly A.; Pande, Mala; Amos, Christopher I.; West, Dee W.; Bézieau, Stéphane; Berndt, Sonja I.; Zanke, Brent W.; Hsu, Li; Lindor, Noralane M.; Haile, Robert W.; Hopper, John L.; Jenkins, Mark A.; Gallinger, Steven; Casey, Graham; Stenzel, Stephanie L.; Schumacher, Fredrick R.; Peters, Ulrike; Gruber, Stephen B.; Tsugane, Shoichiro; Stram, Daniel O.; Marchand, Loïc Le

    2014-01-01

    The genetic basis of sporadic colorectal cancer (CRC) is not well explained by known risk polymorphisms. Here we perform a meta-analysis of two genome-wide association studies in 2,627 cases and 3,797 controls of Japanese ancestry and 1,894 cases and 4,703 controls of African ancestry, to identify genetic variants that contribute to CRC susceptibility. We replicate genome-wide statistically significant associations (P < 5×10−8) in 16,823 cases and 18,211 controls of European ancestry. This study reveals a new pan-ethnic CRC risk locus at 10q25 (rs12241008, intronic to VTI1A; P=1.4×10−9), providing additional insight into the etiology of CRC and highlighting the value of association mapping in diverse populations. PMID:25105248

  8. Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction

    PubMed Central

    Shrine, Nick R. G.; Loehr, Laura R.; Zhao, Jing Hua; Manichaikul, Ani; Lopez, Lorna M.; Smith, Albert Vernon; Heckbert, Susan R.; Smolonska, Joanna; Tang, Wenbo; Loth, Daan W.; Curjuric, Ivan; Hui, Jennie; Latourelle, Jeanne C.; Henry, Amanda P.; Aldrich, Melinda; Bakke, Per; Beaty, Terri H.; Bentley, Amy R.; Borecki, Ingrid B.; Brusselle, Guy G.; Burkart, Kristin M.; Chen, Ting-hsu; Couper, David; Crapo, James D.; Davies, Gail; Dupuis, Josée; Franceschini, Nora; Gulsvik, Amund; Hancock, Dana B.; Harris, Tamara B.; Hofman, Albert; Imboden, Medea; James, Alan L.; Khaw, Kay-Tee; Lahousse, Lies; Launer, Lenore J.; Litonjua, Augusto; Liu, Yongmei; Lohman, Kurt K.; Lomas, David A.; Lumley, Thomas; Marciante, Kristin D.; McArdle, Wendy L.; Meibohm, Bernd; Morrison, Alanna C.; Musk, Arthur W.; Myers, Richard H.; North, Kari E.; Postma, Dirkje S.; Psaty, Bruce M.; Rich, Stephen S.; Rivadeneira, Fernando; Rochat, Thierry; Rotter, Jerome I.; Artigas, María Soler; Starr, John M.; Uitterlinden, André G.; Wareham, Nicholas J.; Wijmenga, Cisca; Zanen, Pieter; Province, Michael A.; Silverman, Edwin K.; Deary, Ian J.; Palmer, Lyle J.; Cassano, Patricia A.; Gudnason, Vilmundur; Barr, R. Graham; Loos, Ruth J. F.; Strachan, David P.; London, Stephanie J.; Boezen, H. Marike; Probst-Hensch, Nicole; Gharib, Sina A.; Hall, Ian P.; O’Connor, George T.; Tobin, Martin D.; Stricker, Bruno H.

    2012-01-01

    Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations. Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction. PMID:22837378

  9. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    PubMed

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  10. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    PubMed Central

    Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna

    2012-01-01

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313

  11. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers

    PubMed Central

    Deming, Yuetiva; Li, Zeran; Kapoor, Manav; Harari, Oscar; Del-Aguila, Jorge L.; Black, Kathleen; Carrell, David; Cai, Yefei; Fernandez, Maria Victoria; Budde, John; Ma, Shengmei; Saef, Benjamin; Howells, Bill; Huang, Kuanlin; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Kim, Sungeun; Saykin, Andrew J.; De Jager, Philip L.; Albert, Marilyn; Moghekar, Abhay; O’Brien, Richard; Riemenschneider, Matthias; Petersen, Ronald C.; Blennow, Kaj; Zetterberg, Henrik; Minthon, Lennart; Van Deerlin, Vivianna M.; Lee, Virginia Man-Yee; Shaw, Leslie M.; Trojanowski, John Q.; Schellenberg, Gerard; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Peskind, Elaine R.; Li, Ge; Di Narzo, Antonio F.; Kauwe, John S. K.; Goate, Alison M.; Cruchaga, Carlos

    2017-01-01

    More than 20 genetic loci have been associated with risk for Alzheimer’s disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case–control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = −0.059, P = 2.08 × 10−8) and within SERPINB1 on 6p25 (β = −0.025, P = 1.72 × 10−8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10−2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10−2), and age at onset (SER-PINB1: β = 0.043, P = 4.62 × 10−3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform

  12. Fluorescence Reporter-Based Genome-Wide RNA Interference Screening to Identify Alternative Splicing Regulators.

    PubMed

    Misra, Ashish; Green, Michael R

    2017-01-01

    Alternative splicing is a regulated process that leads to inclusion or exclusion of particular exons in a pre-mRNA transcript, resulting in multiple protein isoforms being encoded by a single gene. With more than 90 % of human genes known to undergo alternative splicing, it represents a major source for biological diversity inside cells. Although in vitro splicing assays have revealed insights into the mechanisms regulating individual alternative splicing events, our global understanding of alternative splicing regulation is still evolving. In recent years, genome-wide RNA interference (RNAi) screening has transformed biological research by enabling genome-scale loss-of-function screens in cultured cells and model organisms. In addition to resulting in the identification of new cellular pathways and potential drug targets, these screens have also uncovered many previously unknown mechanisms regulating alternative splicing. Here, we describe a method for the identification of alternative splicing regulators using genome-wide RNAi screening, as well as assays for further validation of the identified candidates. With modifications, this method can also be adapted to study the splicing regulation of pre-mRNAs that contain two or more splice isoforms.

  13. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    PubMed

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  14. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass.

    PubMed

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang; Yerges-Armstrong, Laura M; Chou, Wen-Chi; Stolk, Lisette; Livshits, Gregory; Broer, Linda; Johnson, Toby; Koller, Daniel L; Kutalik, Zoltán; Luan, Jian'an; Malkin, Ida; Ried, Janina S; Smith, Albert V; Thorleifsson, Gudmar; Vandenput, Liesbeth; Hua Zhao, Jing; Zhang, Weihua; Aghdassi, Ali; Åkesson, Kristina; Amin, Najaf; Baier, Leslie J; Barroso, Inês; Bennett, David A; Bertram, Lars; Biffar, Rainer; Bochud, Murielle; Boehnke, Michael; Borecki, Ingrid B; Buchman, Aron S; Byberg, Liisa; Campbell, Harry; Campos Obanda, Natalia; Cauley, Jane A; Cawthon, Peggy M; Cederberg, Henna; Chen, Zhao; Cho, Nam H; Jin Choi, Hyung; Claussnitzer, Melina; Collins, Francis; Cummings, Steven R; De Jager, Philip L; Demuth, Ilja; Dhonukshe-Rutten, Rosalie A M; Diatchenko, Luda; Eiriksdottir, Gudny; Enneman, Anke W; Erdos, Mike; Eriksson, Johan G; Eriksson, Joel; Estrada, Karol; Evans, Daniel S; Feitosa, Mary F; Fu, Mao; Garcia, Melissa; Gieger, Christian; Girke, Thomas; Glazer, Nicole L; Grallert, Harald; Grewal, Jagvir; Han, Bok-Ghee; Hanson, Robert L; Hayward, Caroline; Hofman, Albert; Hoffman, Eric P; Homuth, Georg; Hsueh, Wen-Chi; Hubal, Monica J; Hubbard, Alan; Huffman, Kim M; Husted, Lise B; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Jordan, Joanne M; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O; Klopp, Norman; Kloth, Jacqueline S L; Koistinen, Heikki A; Kraus, William E; Kritchevsky, Stephen; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L; Launer, Lenore J; Lee, Jong-Young; Lerch, Markus M; Lewis, Joshua R; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Liu, Tian; Liu, Youfang; Ljunggren, Östen; Lorentzon, Mattias; Luben, Robert N; Maixner, William; McGuigan, Fiona E; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Melov, Simon; Michaëlsson, Karl; Mitchell, Braxton D; Morris, Andrew P; Mosekilde, Leif; Newman, Anne; Nielson, Carrie M; O'Connell, Jeffrey R; Oostra, Ben A; Orwoll, Eric S; Palotie, Aarno; Parker, Stephen C J; Peacock, Munro; Perola, Markus; Peters, Annette; Polasek, Ozren; Prince, Richard L; Räikkönen, Katri; Ralston, Stuart H; Ripatti, Samuli; Robbins, John A; Rotter, Jerome I; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schadt, Eric E; Schipf, Sabine; Scott, Laura; Sehmi, Joban; Shen, Jian; Soo Shin, Chan; Sigurdsson, Gunnar; Smith, Shad; Soranzo, Nicole; Stančáková, Alena; Steinhagen-Thiessen, Elisabeth; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Swart, Karin M A; Tan, Sian-Tsung; Tarnopolsky, Mark A; Thompson, Patricia; Thomson, Cynthia A; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J; Tuomilehto, Jaakko; van Schoor, Natasja M; Verma, Arjun; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Weedon, Michael N; Welch, Ryan; Wichmann, H-Erich; Widen, Elisabeth; Williams, Frances M K; Wilson, James F; Wright, Nicole C; Xie, Weijia; Yu, Lei; Zhou, Yanhua; Chambers, John C; Döring, Angela; van Duijn, Cornelia M; Econs, Michael J; Gudnason, Vilmundur; Kooner, Jaspal S; Psaty, Bruce M; Spector, Timothy D; Stefansson, Kari; Rivadeneira, Fernando; Uitterlinden, André G; Wareham, Nicholas J; Ossowski, Vicky; Waterworth, Dawn; Loos, Ruth J F; Karasik, David; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P

    2017-07-19

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10 -8 ) or suggestively genome wide (p < 2.3 × 10 -6 ). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.

  15. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    PubMed Central

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  16. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.

    PubMed

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; Wietze van der Veen, J P; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R; Santorico, Stephanie A; Spritz, Richard A

    2016-11-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment.

  17. A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma

    PubMed Central

    Mirabello, Lisa; Koster, Roelof; Moriarity, Branden S.; Spector, Logan G.; Meltzer, Paul S.; Gary, Joy; Machiela, Mitchell J.; Pankratz, Nathan; Panagiotou, Orestis A.; Largaespada, David; Wang, Zhaoming; Gastier-Foster, Julie M.; Gorlick, Richard; Khanna, Chand; de Toledo, Silvia Regina Caminada; Petrilli, Antonio S.; Patiño-Garcia, Ana; Sierrasesúmaga, Luis; Lecanda, Fernando; Andrulis, Irene L.; Wunder, Jay S.; Gokgoz, Nalan; Serra, Massimo; Hattinger, Claudia; Picci, Piero; Scotlandi, Katia; Flanagan, Adrienne M.; Tirabosco, Roberto; Amary, Maria Fernanda; Halai, Dina; Ballinger, Mandy L.; Thomas, David M.; Davis, Sean; Barkauskas, Donald A.; Marina, Neyssa; Helman, Lee; Otto, George M.; Becklin, Kelsie L.; Wolf, Natalie K.; Weg, Madison T.; Tucker, Margaret; Wacholder, Sholom; Fraumeni, Joseph F.; Caporaso, Neil E.; Boland, Joseph F.; Hicks, Belynda D.; Vogt, Aurelie; Burdett, Laurie; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Savage, Sharon A.

    2015-01-01

    Metastasis is the leading cause of death in osteosarcoma patients, the most common pediatric bone malignancy. We conducted a multi-stage genome-wide association study of osteosarcoma metastasis at diagnosis in 935 osteosarcoma patients to determine whether germline genetic variation contributes to risk of metastasis. We identified a SNP, rs7034162, in NFIB significantly associated with metastasis in European osteosarcoma cases, as well as in cases of African and Brazilian ancestry (meta-analysis of all cases: P=1.2×10−9, OR 2.43, 95% CI 1.83–3.24). The risk allele was significantly associated with lowered NFIB expression, which led to increased osteosarcoma cell migration, proliferation, and colony formation. Additionally, a transposon screen in mice identified a significant proportion of osteosarcomas harboring inactivating insertions in Nfib, and had lowered Nfib expression. These data suggest that germline genetic variation at rs7034162 is important in osteosarcoma metastasis, and that NFIB is an osteosarcoma metastasis susceptibility gene. PMID:26084801

  18. Parent-Of-Origin Effects in Autism Identified through Genome-Wide Linkage Analysis of 16,000 SNPs

    PubMed Central

    Fradin, Delphine; Cheslack-Postava, Keely; Ladd-Acosta, Christine; Newschaffer, Craig; Chakravarti, Aravinda; Arking, Dan E.; Feinberg, Andrew; Fallin, M. Daniele

    2010-01-01

    Background Autism is a common heritable neurodevelopmental disorder with complex etiology. Several genome-wide linkage and association scans have been carried out to identify regions harboring genes related to autism or autism spectrum disorders, with mixed results. Given the overlap in autism features with genetic abnormalities known to be associated with imprinting, one possible reason for lack of consistency would be the influence of parent-of-origin effects that may mask the ability to detect linkage and association. Methods and Findings We have performed a genome-wide linkage scan that accounts for potential parent-of-origin effects using 16,311 SNPs among families from the Autism Genetic Resource Exchange (AGRE) and the National Institute of Mental Health (NIMH) autism repository. We report parametric (GH, Genehunter) and allele-sharing linkage (Aspex) results using a broad spectrum disorder case definition. Paternal-origin genome-wide statistically significant linkage was observed on chromosomes 4 (LODGH = 3.79, empirical p<0.005 and LODAspex = 2.96, p = 0.008), 15 (LODGH = 3.09, empirical p<0.005 and LODAspex = 3.62, empirical p = 0.003) and 20 (LODGH = 3.36, empirical p<0.005 and LODAspex = 3.38, empirical p = 0.006). Conclusions These regions may harbor imprinted sites associated with the development of autism and offer fruitful domains for molecular investigation into the role of epigenetic mechanisms in autism. PMID:20824079

  19. Segment-Wise Genome-Wide Association Analysis Identifies a Candidate Region Associated with Schizophrenia in Three Independent Samples

    PubMed Central

    Rietschel, Marcella; Mattheisen, Manuel; Breuer, René; Schulze, Thomas G.; Nöthen, Markus M.; Levinson, Douglas; Shi, Jianxin; Gejman, Pablo V.; Cichon, Sven; Ophoff, Roel A.

    2012-01-01

    Recent studies suggest that variation in complex disorders (e.g., schizophrenia) is explained by a large number of genetic variants with small effect size (Odds Ratio∼1.05–1.1). The statistical power to detect these genetic variants in Genome Wide Association (GWA) studies with large numbers of cases and controls (∼15,000) is still low. As it will be difficult to further increase sample size, we decided to explore an alternative method for analyzing GWA data in a study of schizophrenia, dramatically reducing the number of statistical tests. The underlying hypothesis was that at least some of the genetic variants related to a common outcome are collocated in segments of chromosomes at a wider scale than single genes. Our approach was therefore to study the association between relatively large segments of DNA and disease status. An association test was performed for each SNP and the number of nominally significant tests in a segment was counted. We then performed a permutation-based binomial test to determine whether this region contained significantly more nominally significant SNPs than expected under the null hypothesis of no association, taking linkage into account. Genome Wide Association data of three independent schizophrenia case/control cohorts with European ancestry (Dutch, German, and US) using segments of DNA with variable length (2 to 32 Mbp) was analyzed. Using this approach we identified a region at chromosome 5q23.3-q31.3 (128–160 Mbp) that was significantly enriched with nominally associated SNPs in three independent case-control samples. We conclude that considering relatively wide segments of chromosomes may reveal reliable relationships between the genome and schizophrenia, suggesting novel methodological possibilities as well as raising theoretical questions. PMID:22723893

  20. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea.

    PubMed

    Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2017-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven

  1. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea

    PubMed Central

    Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2018-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional

  2. Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits

    PubMed Central

    Palmer, Cameron D.; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E.; Launer, Lenore J.; Nalls, Michael A.; Clark, Jeanne M.; Mitchell, Braxton D.; Shuldiner, Alan R.; Butler, Johannah L.; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M.; O'Donnell, Christopher J.; Sahani, Dushyant V.; Salomaa, Veikko; Schadt, Eric E.; Schwartz, Stephen M.; Siscovick, David S.; Voight, Benjamin F.; Carr, J. Jeffrey; Feitosa, Mary F.; Harris, Tamara B.; Fox, Caroline S.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%–27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10−8) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT–assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits. PMID:21423719

  3. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.

    PubMed

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun; Hernaez, Ruben; Kim, Lauren J; Palmer, Cameron D; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E; Launer, Lenore J; Nalls, Michael A; Clark, Jeanne M; Mitchell, Braxton D; Shuldiner, Alan R; Butler, Johannah L; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M; O'Donnell, Christopher J; Sahani, Dushyant V; Salomaa, Veikko; Schadt, Eric E; Schwartz, Stephen M; Siscovick, David S; Voight, Benjamin F; Carr, J Jeffrey; Feitosa, Mary F; Harris, Tamara B; Fox, Caroline S; Smith, Albert V; Kao, W H Linda; Hirschhorn, Joel N; Borecki, Ingrid B

    2011-03-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.

  4. Enriched pathways for major depressive disorder identified from a genome-wide association study.

    PubMed

    Kao, Chung-Feng; Jia, Peilin; Zhao, Zhongming; Kuo, Po-Hsiu

    2012-11-01

    Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.

  5. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation

    PubMed Central

    Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368

  6. Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions

    PubMed Central

    Amin, Najaf; Hottenga, Jouke-Jan; Hansell, Narelle K; Janssens, A Cecile JW; de Moor, Marleen HM; Madden, Pamela AF; Zorkoltseva, Irina V; Penninx, Brenda W; Terracciano, Antonio; Uda, Manuela; Tanaka, Toshiko; Esko, Tonu; Realo, Anu; Ferrucci, Luigi; Luciano, Michelle; Davies, Gail; Metspalu, Andres; Abecasis, Goncalo R; Deary, Ian J; Raikkonen, Katri; Bierut, Laura J; Costa, Paul T; Saviouk, Viatcheslav; Zhu, Gu; Kirichenko, Anatoly V; Isaacs, Aaron; Aulchenko, Yurii S; Willemsen, Gonneke; Heath, Andrew C; Pergadia, Michele L; Medland, Sarah E; Axenovich, Tatiana I; de Geus, Eco; Montgomery, Grant W; Wright, Margaret J; Oostra, Ben A; Martin, Nicholas G; Boomsma, Dorret I; van Duijn, Cornelia M

    2013-01-01

    Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10−06, KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene. PMID:23211697

  7. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci

    PubMed Central

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-01-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10−15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  8. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci.

    PubMed

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-06-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10(-15)) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  9. Genome-wide Association Study Identifies Shared Risk Loci Common to Two Malignancies in Golden Retrievers

    PubMed Central

    Tonomura, Noriko; Elvers, Ingegerd; Thomas, Rachael; Megquier, Kate; Turner-Maier, Jason; Howald, Cedric; Sarver, Aaron L.; Swofford, Ross; Frantz, Aric M.; Ito, Daisuke; Mauceli, Evan; Arendt, Maja; Noh, Hyun Ji; Koltookian, Michele; Biagi, Tara; Fryc, Sarah; Williams, Christina; Avery, Anne C.; Kim, Jong-Hyuk; Barber, Lisa; Burgess, Kristine; Lander, Eric S.; Karlsson, Elinor K.; Azuma, Chieko

    2015-01-01

    Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers. PMID:25642983

  10. A genome-wide association study of chronic obstructive pulmonary disease in Hispanics.

    PubMed

    Chen, Wei; Brehm, John M; Manichaikul, Ani; Cho, Michael H; Boutaoui, Nadia; Yan, Qi; Burkart, Kristin M; Enright, Paul L; Rotter, Jerome I; Petersen, Hans; Leng, Shuguang; Obeidat, Ma'en; Bossé, Yohan; Brandsma, Corry-Anke; Hao, Ke; Rich, Stephen S; Powell, Rhea; Avila, Lydiana; Soto-Quiros, Manuel; Silverman, Edwin K; Tesfaigzi, Yohannes; Barr, R Graham; Celedón, Juan C

    2015-03-01

    Genome-wide association studies (GWAS) of chronic obstructive pulmonary disease (COPD) have identified disease-susceptibility loci, mostly in subjects of European descent. We hypothesized that by studying Hispanic populations we would be able to identify unique loci that contribute to COPD pathogenesis in Hispanics but remain undetected in GWAS of non-Hispanic populations. We conducted a metaanalysis of two GWAS of COPD in independent cohorts of Hispanics in Costa Rica and the United States (Multi-Ethnic Study of Atherosclerosis [MESA]). We performed a replication study of the top single-nucleotide polymorphisms in an independent Hispanic cohort in New Mexico (the Lovelace Smokers Cohort). We also attempted to replicate prior findings from genome-wide studies in non-Hispanic populations in Hispanic cohorts. We found no genome-wide significant association with COPD in our metaanalysis of Costa Rica and MESA. After combining the top results from this metaanalysis with those from our replication study in the Lovelace Smokers Cohort, we identified two single-nucleotide polymorphisms approaching genome-wide significance for an association with COPD. The first (rs858249, combined P value = 6.1 × 10(-8)) is near the genes KLHL7 and NUPL2 on chromosome 7. The second (rs286499, combined P value = 8.4 × 10(-8)) is located in an intron of DLG2. The two most significant single-nucleotide polymorphisms in FAM13A from a previous genome-wide study in non-Hispanics were associated with COPD in Hispanics. We have identified two novel loci (in or near the genes KLHL7/NUPL2 and DLG2) that may play a role in COPD pathogenesis in Hispanic populations.

  11. Ancestry-specific and sex-specific risk alleles identified in a genome-wide gene-by-alcohol dependence interaction study of risky sexual behaviors.

    PubMed

    Polimanti, Renato; Zhao, Hongyu; Farrer, Lindsay A; Kranzler, Henry R; Gelernter, Joel

    2017-12-01

    We previously mapped loci for the genome-wide association studies (GWAS) and genome-wide gene-by-alcohol dependence interaction (GW-GxAD) analyses of risky sexual behaviors (RSB). This study extends those findings by analyzing the ancestry- and sex-specific AD-stratified effects on RSB. We examined the concordance of findings for the AD-stratified GWAS and the GW-GxAD analysis of RSB, with concordance defined as genome-wide significance in one analysis and at least nominal significance in the second analysis. A total of 2,173 African-American (AA) and 1,751 European-American (EA) subjects were investigated. Information regarding RSB (lifetime experiences of unprotected sex and multiple sexual partners) and DSM-IV diagnosis of lifetime AD were derived from the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). In our ancestry- and sex-specific analyses, we identified four independent genome-wide significant (GWS) loci (p < 5*10 -8 ) and one suggestive locus (p < 6*10 -8 ). In men, we observed a GWS signal in FAM162A (rs2002594, p = 4.96*10 -8 ). In women, there was a suggestive locus in PLGRKT (rs3824435, p = 5.52*10 -8 ). In AAs, there was a GWS signal in GRK5 (rs1316543, p = 1.25*10 -9 ). In AA men, we observed an intergenic GWS signal (rs12898370, p = 4.49*10 -8 ) near LINGO1. In EA men, there was a GWS signal in CCSER1 (rs62313897; p = 7.93*10 -10 ). The loci identified in this GWAS implicate molecular mechanisms related to psychiatric illness and personality features, suggesting that the interplay between AD and RSB is mediated by alleles associated with behavioral traits. © 2017 Wiley Periodicals, Inc.

  12. A genome-wide association study identifies multiple loci for variation in human ear morphology.

    PubMed

    Adhikari, Kaustubh; Reales, Guillermo; Smith, Andrew J P; Konka, Esra; Palmen, Jutta; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Fuentes, Macarena; Pizarro, María; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Calderón, Rosario; Rosique, Javier; Cheeseman, Michael; Bhutta, Mahmood F; Humphries, Steve E; Gonzalez-José, Rolando; Headon, Denis; Balding, David; Ruiz-Linares, Andrés

    2015-06-24

    Here we report a genome-wide association study for non-pathological pinna morphology in over 5,000 Latin Americans. We find genome-wide significant association at seven genomic regions affecting: lobe size and attachment, folding of antihelix, helix rolling, ear protrusion and antitragus size (linear regression P values 2 × 10(-8) to 3 × 10(-14)). Four traits are associated with a functional variant in the Ectodysplasin A receptor (EDAR) gene, a key regulator of embryonic skin appendage development. We confirm expression of Edar in the developing mouse ear and that Edar-deficient mice have an abnormally shaped pinna. Two traits are associated with SNPs in a region overlapping the T-Box Protein 15 (TBX15) gene, a major determinant of mouse skeletal development. Strongest association in this region is observed for SNP rs17023457 located in an evolutionarily conserved binding site for the transcription factor Cartilage paired-class homeoprotein 1 (CART1), and we confirm that rs17023457 alters in vitro binding of CART1.

  13. SuperDCA for genome-wide epistasis analysis.

    PubMed

    Puranen, Santeri; Pesonen, Maiju; Pensar, Johan; Xu, Ying Ying; Lees, John A; Bentley, Stephen D; Croucher, Nicholas J; Corander, Jukka

    2018-05-29

    The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has previously been shown to yield valuable predictions for single protein structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 10 4 -10 5 polymorphisms, representing the amount of core genomic variation observed in analyses of many bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 10 5 polymorphisms. Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings about this major human pathogen. We also show that our method can uncover signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous organisms at a systems biological level.

  14. Investigation of 95 variants identified in a genome-wide study for association with mortality after acute coronary syndrome.

    PubMed

    Morgan, Thomas M; House, John A; Cresci, Sharon; Jones, Philip; Allayee, Hooman; Hazen, Stanley L; Patel, Yesha; Patel, Riyaz S; Eapen, Danny J; Waddy, Salina P; Quyyumi, Arshed A; Kleber, Marcus E; März, Winfried; Winkelmann, Bernhard R; Boehm, Bernhard O; Krumholz, Harlan M; Spertus, John A

    2011-09-29

    Genome-wide association studies (GWAS) have identified new candidate genes for the occurrence of acute coronary syndrome (ACS), but possible effects of such genes on survival following ACS have yet to be investigated. We examined 95 polymorphisms in 69 distinct gene regions identified in a GWAS for premature myocardial infarction for their association with post-ACS mortality among 811 whites recruited from university-affiliated hospitals in Kansas City, Missouri. We then sought replication of a positive genetic association in a large, racially diverse cohort of myocardial infarction patients (N = 2284) using Kaplan-Meier survival analyses and Cox regression to adjust for relevant covariates. Finally, we investigated the apparent association further in 6086 additional coronary artery disease patients. After Cox adjustment for other ACS risk factors, of 95 SNPs tested in 811 whites only the association with the rs6922269 in MTHFD1L was statistically significant, with a 2.6-fold mortality hazard (P = 0.007). The recessive A/A genotype was of borderline significance in an age- and race-adjusted analysis of the entire combined cohort (N = 3095; P = 0.052), but this finding was not confirmed in independent cohorts (N = 6086). We found no support for the hypothesis that the GWAS-identified variants in this study substantially alter the probability of post-ACS survival. Large-scale, collaborative, genome-wide studies may be required in order to detect genetic variants that are robustly associated with survival in patients with coronary artery disease.

  15. Genome-wide association analysis identifies six new loci associated with forced vital capacity.

    PubMed

    Loth, Daan W; Soler Artigas, María; Gharib, Sina A; Wain, Louise V; Franceschini, Nora; Koch, Beate; Pottinger, Tess D; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P; James, Alan L; Huffman, Jennifer E; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K; Fall, Tove; Viñuela, Ana; Launer, Lenore J; Loehr, Laura R; Fornage, Myriam; Li, Guo; Wilk, Jemma B; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B; North, Kari E; Rudnicka, Alicja R; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F; Hastie, Nicholas D; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A; Pietiläinen, Kirsi H; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G; Eiriksdottir, Gudny; Morrison, Alanna C; Rotter, Jerome I; Gao, Wei; Postma, Dirkje S; White, Wendy B; Rich, Stephen S; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J; Psaty, Bruce M; Lohman, Kurt; Burchard, Esteban G; Uitterlinden, André G; Garcia, Melissa; Joubert, Bonnie R; McArdle, Wendy L; Musk, A Bill; Hansel, Nadia; Heckbert, Susan R; Zgaga, Lina; van Meurs, Joyce B J; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L; Zhao, Jing Hua; Rantanen, Taina; O'Connor, George T; Ripatti, Samuli; Scott, Rodney J; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C; Starr, John M; Wijmenga, Cisca; Minster, Ryan L; Lederer, David J; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P; Gläser, Sven; Hammond, Christopher J; Burkart, Kristin M; Beilby, John; Kritchevsky, Stephen B; Gudnason, Vilmundur; Hancock, Dana B; Williams, O Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F; Wjst, Matthias; Kim, Woo Jin; Porteous, David J; Scotland, Generation; Smith, Blair H; Viljanen, Anne; Heliövaara, Markku; Attia, John R; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J; Boezen, H Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F; Lind, Lars; Stricker, Bruno H; Teumer, Alexander; Spector, Timothy D; Melén, Erik; Peters, Marjolein J; Lange, Leslie A; Barr, R Graham; Bracke, Ken R; Verhamme, Fien M; Sung, Joohon; Hiemstra, Pieter S; Cassano, Patricia A; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P; Brusselle, Guy G; Tobin, Martin D; London, Stephanie J

    2014-07-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

  16. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    PubMed

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  17. Meta-Analysis in Genome-Wide Association Datasets: Strategies and Application in Parkinson Disease

    PubMed Central

    Evangelou, Evangelos; Maraganore, Demetrius M.; Ioannidis, John P.A.

    2007-01-01

    Background Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. Methodology/Principal Findings Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I2 = 0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets). Conclusions/Significance Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies. PMID:17332845

  18. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

    PubMed

    Sidik, Saima M; Huet, Diego; Ganesan, Suresh M; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S; Thiru, Prathapan; Saeij, Jeroen P J; Carruthers, Vern B; Niles, Jacquin C; Lourido, Sebastian

    2016-09-08

    Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework.

    PubMed

    Zhang, Kunlin; Chang, Suhua; Cui, Sijia; Guo, Liyuan; Zhang, Liuyan; Wang, Jing

    2011-07-01

    Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at http://icsnpathway.psych.ac.cn/.

  20. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    PubMed

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural. © 2014 Wiley Periodicals, Inc.

  1. Genome Wide Association Study of Sepsis in Extremely Premature Infants

    PubMed Central

    Srinivasan, Lakshmi; Page, Grier; Kirpalani, Haresh; Murray, Jeffrey C.; Das, Abhik; Higgins, Rosemary D.; Carlo, Waldemar A.; Bell, Edward F.; Goldberg, Ronald N.; Schibler, Kurt; Sood, Beena G.; Stevenson, David K.; Stoll, Barbara J.; Van Meurs, Krisa P.; Johnson, Karen J.; Levy, Joshua; McDonald, Scott A.; Zaterka-Baxter, Kristin M.; Kennedy, Kathleen A.; Sánchez, Pablo J.; Duara, Shahnaz; Walsh, Michele C.; Shankaran, Seetha; Wynn, James L.; Cotten, C. Michael

    2017-01-01

    Objective To identify genetic variants associated with sepsis (early and late-onset) using a genome wide association (GWA) analysis in a cohort of extremely premature infants. Study Design Previously generated GWA data from the Neonatal Research Network’s anonymized genomic database biorepository of extremely premature infants were used for this study. Sepsis was defined as culture-positive early-onset or late-onset sepsis or culture-proven meningitis. Genomic and whole genome amplified DNA was genotyped for 1.2 million single nucleotide polymorphisms (SNPs); 91% of SNPs were successfully genotyped. We imputed 7.2 million additional SNPs. P values and false discovery rates were calculated from multivariate logistic regression analysis adjusting for gender, gestational age and ancestry. Target statistical value was p<10−5. Secondary analyses assessed associations of SNPs with pathogen type. Pathway analyses were also run on primary and secondary end points. Results Data from 757 extremely premature infants were included: 351 infants with sepsis and 406 infants without sepsis. No SNPs reached genome-wide significance levels (5×10−8); two SNPs in proximity to FOXC2 and FOXL1 genes achieved target levels of significance. In secondary analyses, SNPs for ELMO1, IRAK2 (Gram positive sepsis), RALA, IMMP2L (Gram negative sepsis) and PIEZO2 (fungal sepsis) met target significance levels. Pathways associated with sepsis and Gram negative sepsis included gap junctions, fibroblast growth factor receptors, regulators of cell division and Interleukin-1 associated receptor kinase 2 (p values<0.001 and FDR<20%). Conclusions No SNPs met genome-wide significance in this cohort of ELBW infants; however, areas of potential association and pathways meriting further study were identified. PMID:28283553

  2. A genome-wide association study of corneal astigmatism: The CREAM Consortium.

    PubMed

    Shah, Rupal L; Li, Qing; Zhao, Wanting; Tedja, Milly S; Tideman, J Willem L; Khawaja, Anthony P; Fan, Qiao; Yazar, Seyhan; Williams, Katie M; Verhoeven, Virginie J M; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J; Pärssinen, Olavi; Wedenoja, Juho; Biino, Ginevra; Concas, Maria Pina; Uitterlinden, André; Rivadeneira, Fernando; Jaddoe, Vincent W V; Hysi, Pirro G; Sim, Xueling; Tan, Nicholas; Tham, Yih-Chung; Sensaki, Sonoko; Hofman, Albert; Vingerling, Johannes R; Jonas, Jost B; Mitchell, Paul; Hammond, Christopher J; Höhn, René; Baird, Paul N; Wong, Tien-Yin; Cheng, Chinfsg-Yu; Teo, Yik Ying; Mackey, David A; Williams, Cathy; Saw, Seang-Mei; Klaver, Caroline C W; Guggenheim, Jeremy A; Bailey-Wilson, Joan E

    2018-01-01

    To identify genes and genetic markers associated with corneal astigmatism. A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha ( PDGFRA ) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08-1.16), p=5.55×10 -9 . No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans-claudin-7 ( CLDN7 ), acid phosphatase 2, lysosomal ( ACP2 ), and TNF alpha-induced protein 8 like 3 ( TNFAIP8L3 ). In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7 , ACP2 , and TNFAIP8L3 , that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism.

  3. A genome-wide association study of corneal astigmatism: The CREAM Consortium

    PubMed Central

    Shah, Rupal L.; Li, Qing; Zhao, Wanting; Tedja, Milly S.; Tideman, J. Willem L.; Khawaja, Anthony P.; Fan, Qiao; Yazar, Seyhan; Williams, Katie M.; Verhoeven, Virginie J.M.; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J.; Pärssinen, Olavi; Wedenoja, Juho; Biino, Ginevra; Concas, Maria Pina; Uitterlinden, André; Rivadeneira, Fernando; Jaddoe, Vincent W.V.; Hysi, Pirro G.; Sim, Xueling; Tan, Nicholas; Tham, Yih-Chung; Sensaki, Sonoko; Hofman, Albert; Vingerling, Johannes R.; Jonas, Jost B.; Mitchell, Paul; Hammond, Christopher J.; Höhn, René; Baird, Paul N.; Wong, Tien-Yin; Cheng, Chinfsg-Yu; Teo, Yik Ying; Mackey, David A.; Williams, Cathy; Saw, Seang-Mei; Klaver, Caroline C.W.; Bailey-Wilson, Joan E.

    2018-01-01

    Purpose To identify genes and genetic markers associated with corneal astigmatism. Methods A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. Results The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha (PDGFRA) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08–1.16), p=5.55×10−9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans—claudin-7 (CLDN7), acid phosphatase 2, lysosomal (ACP2), and TNF alpha-induced protein 8 like 3 (TNFAIP8L3). Conclusions In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7, ACP2, and TNFAIP8L3, that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism. PMID:29422769

  4. Prediction for Intravenous Immunoglobulin Resistance by Using Weighted Genetic Risk Score Identified From Genome-Wide Association Study in Kawasaki Disease.

    PubMed

    Kuo, Ho-Chang; Wong, Henry Sung-Ching; Chang, Wei-Pin; Chen, Ben-Kuen; Wu, Mei-Shin; Yang, Kuender D; Hsieh, Kai-Sheng; Hsu, Yu-Wen; Liu, Shih-Feng; Liu, Xiao; Chang, Wei-Chiao

    2017-10-01

    Intravenous immunoglobulin (IVIG) is the treatment of choice in Kawasaki disease (KD). IVIG is used to prevent cardiovascular complications related to KD. However, a proportion of KD patients have persistent fever after IVIG treatment and are defined as IVIG resistant. To develop a risk scoring system based on genetic markers to predict IVIG responsiveness in KD patients, a total of 150 KD patients (126 IVIG responders and 24 IVIG nonresponders) were recruited for this study. A genome-wide association analysis was performed to compare the 2 groups and identified risk alleles for IVIG resistance. A weighted genetic risk score was calculated by the natural log of the odds ratio multiplied by the number of risk alleles. Eleven single-nucleotide polymorphisms were identified by genome-wide association study. The KD patients were categorized into 3 groups based on their calculated weighted genetic risk score. Results indicated a significant association between weighted genetic risk score (groups 3 and 4 versus group 1) and the response to IVIG (Fisher's exact P value 4.518×10 - 03 and 8.224×10 - 10 , respectively). This is the first weighted genetic risk score study based on a genome-wide association study in KD. The predictive model integrated the additive effects of all 11 single-nucleotide polymorphisms to provide a prediction of the responsiveness to IVIG. © 2017 The Authors.

  5. A Genome-Wide Association Study of Chronic Obstructive Pulmonary Disease in Hispanics

    PubMed Central

    Chen, Wei; Brehm, John M.; Manichaikul, Ani; Cho, Michael H.; Boutaoui, Nadia; Yan, Qi; Burkart, Kristin M.; Enright, Paul L.; Rotter, Jerome I.; Petersen, Hans; Leng, Shuguang; Obeidat, Ma’en; Bossé, Yohan; Brandsma, Corry-Anke; Hao, Ke; Rich, Stephen S.; Powell, Rhea; Avila, Lydiana; Soto-Quiros, Manuel; Silverman, Edwin K.; Tesfaigzi, Yohannes; Barr, R. Graham

    2015-01-01

    Rationale: Genome-wide association studies (GWAS) of chronic obstructive pulmonary disease (COPD) have identified disease-susceptibility loci, mostly in subjects of European descent. Objectives: We hypothesized that by studying Hispanic populations we would be able to identify unique loci that contribute to COPD pathogenesis in Hispanics but remain undetected in GWAS of non-Hispanic populations. Methods: We conducted a metaanalysis of two GWAS of COPD in independent cohorts of Hispanics in Costa Rica and the United States (Multi-Ethnic Study of Atherosclerosis [MESA]). We performed a replication study of the top single-nucleotide polymorphisms in an independent Hispanic cohort in New Mexico (the Lovelace Smokers Cohort). We also attempted to replicate prior findings from genome-wide studies in non-Hispanic populations in Hispanic cohorts. Measurements and Main Results: We found no genome-wide significant association with COPD in our metaanalysis of Costa Rica and MESA. After combining the top results from this metaanalysis with those from our replication study in the Lovelace Smokers Cohort, we identified two single-nucleotide polymorphisms approaching genome-wide significance for an association with COPD. The first (rs858249, combined P value = 6.1 × 10−8) is near the genes KLHL7 and NUPL2 on chromosome 7. The second (rs286499, combined P value = 8.4 × 10−8) is located in an intron of DLG2. The two most significant single-nucleotide polymorphisms in FAM13A from a previous genome-wide study in non-Hispanics were associated with COPD in Hispanics. Conclusions: We have identified two novel loci (in or near the genes KLHL7/NUPL2 and DLG2) that may play a role in COPD pathogenesis in Hispanic populations. PMID:25584925

  6. Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines

    PubMed Central

    Wang, Jianjun; Liu, Changlin; Li, Mingshun; Zhang, Degui; Bai, Li; Zhang, Shihuang; Li, Xinhai

    2011-01-01

    Background The harvest index for many crops can be improved through introduction of dwarf stature to increase lodging resistance, combined with early maturity. The inbred line Shen5003 has been widely used in maize breeding in China as a key donor line for the dwarf trait. Also, one major quantitative trait locus (QTL) controlling plant height has been identified in bin 5.05–5.06, across several maize bi-parental populations. With the progress of publicly available maize genome sequence, the objective of this work was to identify the candidate genes that affect plant height among Chinese maize inbred lines with genome wide association studies (GWAS). Methods and Findings A total of 284 maize inbred lines were genotyped using over 55,000 evenly spaced SNPs, from which a set of 41,101 SNPs were filtered with stringent quality control for further data analysis. With the population structure controlled in a mixed linear model (MLM) implemented with the software TASSEL, we carried out a genome-wide association study (GWAS) for plant height. A total of 204 SNPs (P≤0.0001) and 105 genomic loci harboring coding regions were identified. Four loci containing genes associated with gibberellin (GA), auxin, and epigenetic pathways may be involved in natural variation that led to a dwarf phenotype in elite maize inbred lines. Among them, a favorable allele for dwarfing on chromosome 5 (SNP PZE-105115518) was also identified in six Shen5003 derivatives. Conclusions The fact that a large number of previously identified dwarf genes are missing from our study highlights the discovery of the consistently significant association of the gene harboring the SNP PZE-105115518 with plant height (P = 8.91e-10) and its confirmation in the Shen5003 introgression lines. Results from this study suggest that, in the maize breeding schema in China, specific alleles were selected, that have played important roles in maize production. PMID:22216221

  7. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  8. Genome-wide association study of alcohol dependence

    PubMed Central

    Treutlein, Jens; Cichon, Sven; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Maier, Wolfgang; Moessner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Fehr, Christoph; Scherbaum, Norbert; Steffens, Michael; Ludwig, Kerstin U.; Frank, Josef; Wichmann, H.- Erich; Schreiber, Stefan; Dragano, Nico; Sommer, Wolfgang; Leonardi-Essmann, Fernando; Lourdusamy, Anbarasu; Gebicke-Haerter, Peter; Wienker, Thomas F.; Sullivan, Patrick F.; Nöthen, Markus M.; Kiefer, Falk; Spanagel, Rainer; Mann, Karl; Rietschel, Marcella

    2014-01-01

    Context Identification of genes contributing to alcohol dependence will improve our understanding of the mechanisms underlying this disorder. Objective To identify susceptibility genes for alcohol dependence through a genome-wide association study (GWAS) and follow-up study in a population of German male inpatients with an early age at onset. Design The GWAS included 487 male inpatients with DSM-IV alcohol dependence with an age at onset below 28 years and 1,358 population based control individuals. The follow-up study included 1,024 male inpatients and 996 age-matched male controls. All subjects were of German descent. The GWAS tested 524,396 single nucleotide polymorphisms (SNPs). All SNPs with p<10-4 were subjected to the follow-up study. In addition, nominally significant SNPs from those genes that had also shown expression changes in rat brains after chronic alcohol consumption were selected for the follow-up step. Results The GWAS produced 121 SNPs with nominal p<10-4. These, together with 19 additional SNPs from homologs of rat genes showing differential expression, were genotyped in the follow-up sample. Fifteen SNPs showed significant association with the same allele as in the GWAS. In the combined analysis, two closely linked intergenic SNPs met genome-wide significance (rs7590720 p=9.72×10-9; rs1344694 p=1.69×10-8). They are located on chromosome 2q35, a region which has been implicated in linkage studies for alcohol phenotypes. Nine SNPs were located in genes, including CDH13 and ADH1C genes which have been reported to be associated with alcohol dependence. Conclusion This is the first GWAS and follow-up study to identify a genome-wide significant association in alcohol dependence. Further independent studies are required to confirm these findings. PMID:19581569

  9. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    PubMed Central

    Loth, Daan W.; Artigas, María Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Viňuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wilk, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietiläinen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Åsa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, André G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B.J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah; Zhao, Jing Hua; Rantanen, Taina; O’Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P.; Gläser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gudnason, Vilmundur; Hancock, Dana B.; Williams, O. Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Viljanen, Anne; Heliövaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, H. Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melén, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.

    2014-01-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease. PMID:24929828

  10. New Sequence Variants in HLA Class II/III Region Associated with Susceptibility to Knee Osteoarthritis Identified by Genome-Wide Association Study

    PubMed Central

    Nakajima, Masahiro; Takahashi, Atsushi; Kou, Ikuyo; Rodriguez-Fontenla, Cristina; Gomez-Reino, Juan J.; Furuichi, Tatsuya; Dai, Jin; Sudo, Akihiro; Uchida, Atsumasa; Fukui, Naoshi; Kubo, Michiaki; Kamatani, Naoyuki; Tsunoda, Tatsuhiko; Malizos, Konstantinos N.; Tsezou, Aspasia; Gonzalez, Antonio; Nakamura, Yusuke; Ikegawa, Shiro

    2010-01-01

    Osteoarthritis (OA) is a common disease that has a definite genetic component. Only a few OA susceptibility genes that have definite functional evidence and replication of association have been reported, however. Through a genome-wide association study and a replication using a total of ∼4,800 Japanese subjects, we identified two single nucleotide polymorphisms (SNPs) (rs7775228 and rs10947262) associated with susceptibility to knee OA. The two SNPs were in a region containing HLA class II/III genes and their association reached genome-wide significance (combined P = 2.43×10−8 for rs7775228 and 6.73×10−8 for rs10947262). Our results suggest that immunologic mechanism is implicated in the etiology of OA. PMID:20305777

  11. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes

    PubMed Central

    Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.

    2014-01-01

    Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276

  12. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    PubMed Central

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  13. Characterization of Genome-Wide Association-Identified Variants for Atrial Fibrillation in African Americans

    PubMed Central

    Delaney, Jessica T.; Jeff, Janina M.; Brown, Nancy J.; Pretorius, Mias; Okafor, Henry E.; Darbar, Dawood; Roden, Dan M.; Crawford, Dana C.

    2012-01-01

    Background Despite a greater burden of risk factors, atrial fibrillation (AF) is less common among African Americans than European-descent populations. Genome-wide association studies (GWAS) for AF in European-descent populations have identified three predominant genomic regions associated with increased risk (1q21, 4q25, and 16q22). The contribution of these loci to AF risk in African American is unknown. Methodology/Principal Findings We studied 73 African Americans with AF from the Vanderbilt-Meharry AF registry and 71 African American controls, with no history of AF including after cardiac surgery. Tests of association were performed for 148 SNPs across the three regions associated with AF, and 22 SNPs were significantly associated with AF (P<0.05). The SNPs with the strongest associations in African Americans were both different from the index SNPs identified in European-descent populations and independent from the index European-descent population SNPs (r2<0.40 in HapMap CEU): 1q21 rs4845396 (odds ratio [OR] 0.30, 95% confidence interval [CI] 0.13–0.67, P = 0.003), 4q25 rs4631108 (OR 3.43, 95% CI 1.59–7.42, P = 0.002), and 16q22 rs16971547 (OR 8.1, 95% CI 1.46–45.4, P = 0.016). Estimates of European ancestry were similar among cases (23.6%) and controls (23.8%). Accordingly, the probability of having two copies of the European derived chromosomes at each region did not differ between cases and controls. Conclusions/Significance Variable European admixture at known AF loci does not explain decreased AF susceptibility in African Americans. These data support the role of 1q21, 4q25, and 16q22 variants in AF risk for African Americans, although the index SNPs differ from those identified in European-descent populations. PMID:22384221

  14. Family-based Association Analyses of Imputed Genotypes Reveal Genome-Wide Significant Association of Alzheimer’s disease with OSBPL6, PTPRG and PDCL3

    PubMed Central

    Herold, Christine; Hooli, Basavaraj V.; Mullin, Kristina; Liu, Tian; Roehr, Johannes T; Mattheisen, Manuel; Parrado, Antonio R.; Bertram, Lars; Lange, Christoph; Tanzi, Rudolph E.

    2015-01-01

    The genetic basis of Alzheimer's disease (AD) is complex and heterogeneous. Over 200 highly penetrant pathogenic variants in the genes APP, PSEN1 and PSEN2 cause a subset of early-onset familial Alzheimer's disease (EOFAD). On the other hand, susceptibility to late-onset forms of AD (LOAD) is indisputably associated to the ε4 allele in the gene APOE, and more recently to variants in more than two-dozen additional genes identified in the large-scale genome-wide association studies (GWAS) and meta-analyses reports. Taken together however, although the heritability in AD is estimated to be as high as 80%, a large proportion of the underlying genetic factors still remain to be elucidated. In this study we performed a systematic family-based genome-wide association and meta-analysis on close to 15 million imputed variants from three large collections of AD families (~3,500 subjects from 1,070 families). Using a multivariate phenotype combining affection status and onset age, meta-analysis of the association results revealed three single nucleotide polymorphisms (SNPs) that achieved genome-wide significance for association with AD risk: rs7609954 in the gene PTPRG (P-value = 3.98·10−08), rs1347297 in the gene OSBPL6 (P-value = 4.53·10−08), and rs1513625 near PDCL3 (P-value = 4.28·10−08). In addition, rs72953347 in OSBPL6 (P-value = 6.36·10−07) and two SNPs in the gene CDKAL1 showed marginally significant association with LOAD (rs10456232, P-value: 4.76·10−07; rs62400067, P-value: 3.54·10−07). In summary, family-based GWAS meta-analysis of imputed SNPs revealed novel genomic variants in (or near) PTPRG, OSBPL6, and PDCL3 that influence risk for AD with genome-wide significance. PMID:26830138

  15. Investigation of 95 variants identified in a genome-wide study for association with mortality after acute coronary syndrome

    PubMed Central

    2011-01-01

    Background Genome-wide association studies (GWAS) have identified new candidate genes for the occurrence of acute coronary syndrome (ACS), but possible effects of such genes on survival following ACS have yet to be investigated. Methods We examined 95 polymorphisms in 69 distinct gene regions identified in a GWAS for premature myocardial infarction for their association with post-ACS mortality among 811 whites recruited from university-affiliated hospitals in Kansas City, Missouri. We then sought replication of a positive genetic association in a large, racially diverse cohort of myocardial infarction patients (N = 2284) using Kaplan-Meier survival analyses and Cox regression to adjust for relevant covariates. Finally, we investigated the apparent association further in 6086 additional coronary artery disease patients. Results After Cox adjustment for other ACS risk factors, of 95 SNPs tested in 811 whites only the association with the rs6922269 in MTHFD1L was statistically significant, with a 2.6-fold mortality hazard (P = 0.007). The recessive A/A genotype was of borderline significance in an age- and race-adjusted analysis of the entire combined cohort (N = 3095; P = 0.052), but this finding was not confirmed in independent cohorts (N = 6086). Conclusions We found no support for the hypothesis that the GWAS-identified variants in this study substantially alter the probability of post-ACS survival. Large-scale, collaborative, genome-wide studies may be required in order to detect genetic variants that are robustly associated with survival in patients with coronary artery disease. PMID:21957892

  16. Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases.

    PubMed

    Degenhardt, Frauke; Niklowitz, Petra; Szymczak, Silke; Jacobs, Gunnar; Lieb, Wolfgang; Menke, Thomas; Laudes, Matthias; Esko, Tõnu; Weidinger, Stephan; Franke, Andre; Döring, Frank; Onur, Simone

    2016-07-01

    Coenzyme Q 10 (CoQ 10 ) is a lipophilic redox molecule that is present in membranes of almost all cells in human tissues. CoQ 10 is, amongst other functions, essential for the respiratory transport chain and is a modulator of inflammatory processes and gene expression. Rare monogenetic CoQ 10 deficiencies show noticeable symptoms in tissues (e.g. kidney) and cell types (e.g. neurons) with a high energy demand. To identify common genetic variants influencing serum CoQ 10 levels, we performed a fixed effects meta-analysis in two independent cross-sectional Northern German cohorts comprising 1300 individuals in total. We identified two genome-wide significant susceptibility loci. The best associated single nucleotide polymorphism (SNP) was rs9952641 (P value = 1.31 × 10 - 8 , β = 0.063, CI 0.95 [0.041, 0.085]) within the COLEC12 gene on chromosome 18. The SNP rs933585 within the NRXN-1 gene on chromosome 2 also showed genome wide significance (P value = 3.64 × 10 - 8 , β = -0.034, CI 0.95 [-0.046, -0.022]). Both genes have been previously linked to neuronal diseases like Alzheimer's disease, autism and schizophrenia. Among our 'top-10' associated variants, four additional loci with known neuronal connections showed suggestive associations with CoQ 10 levels. In summary, this study demonstrates that serum CoQ 10 levels are associated with common genetic loci that are linked to neuronal diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Characterization of genome-wide association-identified variants for atrial fibrillation in African Americans.

    PubMed

    Delaney, Jessica T; Jeff, Janina M; Brown, Nancy J; Pretorius, Mias; Okafor, Henry E; Darbar, Dawood; Roden, Dan M; Crawford, Dana C

    2012-01-01

    Despite a greater burden of risk factors, atrial fibrillation (AF) is less common among African Americans than European-descent populations. Genome-wide association studies (GWAS) for AF in European-descent populations have identified three predominant genomic regions associated with increased risk (1q21, 4q25, and 16q22). The contribution of these loci to AF risk in African American is unknown. We studied 73 African Americans with AF from the Vanderbilt-Meharry AF registry and 71 African American controls, with no history of AF including after cardiac surgery. Tests of association were performed for 148 SNPs across the three regions associated with AF, and 22 SNPs were significantly associated with AF (P<0.05). The SNPs with the strongest associations in African Americans were both different from the index SNPs identified in European-descent populations and independent from the index European-descent population SNPs (r(2)<0.40 in HapMap CEU): 1q21 rs4845396 (odds ratio [OR] 0.30, 95% confidence interval [CI] 0.13-0.67, P = 0.003), 4q25 rs4631108 (OR 3.43, 95% CI 1.59-7.42, P = 0.002), and 16q22 rs16971547 (OR 8.1, 95% CI 1.46-45.4, P = 0.016). Estimates of European ancestry were similar among cases (23.6%) and controls (23.8%). Accordingly, the probability of having two copies of the European derived chromosomes at each region did not differ between cases and controls. Variable European admixture at known AF loci does not explain decreased AF susceptibility in African Americans. These data support the role of 1q21, 4q25, and 16q22 variants in AF risk for African Americans, although the index SNPs differ from those identified in European-descent populations.

  18. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    PubMed

    Klein, Alison P; Wolpin, Brian M; Risch, Harvey A; Stolzenberg-Solomon, Rachael Z; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J; Hoskins, Jason W; Jermusyk, Ashley; Zhong, Jun; Chen, Fei; Albanes, Demetrius; Andreotti, Gabriella; Arslan, Alan A; Babic, Ana; Bamlet, William R; Beane-Freeman, Laura; Berndt, Sonja I; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G; Chung, Charles C; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J Michael; Gazouli, Maria; Giles, Graham G; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E; Goodman, Phyllis J; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A; Hoover, Robert; Hung, Rayjean J; Jacobs, Eric J; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H; Kupcinskas, Juozas; Kurtz, Robert J; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T; Lee, I-Min; LeMarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E; Neoptolemos, John P; Oberg, Ann L; Olson, Sara H; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P; Soucek, Pavel; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D; Tobias, Geoffrey S; Van Den Eeden, Stephen K; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Obazee, Ofure; Petersen, Gloria M; Amundadottir, Laufey T

    2018-02-08

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10 -8 ). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10 -14 ), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10 -10 ), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10 -8 ), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10 -8 ). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.

  19. Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25.

    PubMed

    Fejerman, Laura; Ahmadiyeh, Nasim; Hu, Donglei; Huntsman, Scott; Beckman, Kenneth B; Caswell, Jennifer L; Tsung, Karen; John, Esther M; Torres-Mejia, Gabriela; Carvajal-Carmona, Luis; Echeverry, María Magdalena; Tuazon, Anna Marie D; Ramirez, Carolina; Gignoux, Christopher R; Eng, Celeste; Gonzalez-Burchard, Esteban; Henderson, Brian; Le Marchand, Loic; Kooperberg, Charles; Hou, Lifang; Agalliu, Ilir; Kraft, Peter; Lindström, Sara; Perez-Stable, Eliseo J; Haiman, Christopher A; Ziv, Elad

    2014-10-20

    The genetic contributions to breast cancer development among Latinas are not well understood. Here we carry out a genome-wide association study of breast cancer in Latinas and identify a genome-wide significant risk variant, located 5' of the Estrogen Receptor 1 gene (ESR1; 6q25 region). The minor allele for this variant is strongly protective (rs140068132: odds ratio (OR) 0.60, 95% confidence interval (CI) 0.53-0.67, P=9 × 10(-18)), originates from Indigenous Americans and is uncorrelated with previously reported risk variants at 6q25. The association is stronger for oestrogen receptor-negative disease (OR 0.34, 95% CI 0.21-0.54) than oestrogen receptor-positive disease (OR 0.63, 95% CI 0.49-0.80; P heterogeneity=0.01) and is also associated with mammographic breast density, a strong risk factor for breast cancer (P=0.001). rs140068132 is located within several transcription factor-binding sites and electrophoretic mobility shift assays with MCF-7 nuclear protein demonstrate differential binding of the G/A alleles at this locus. These results highlight the importance of conducting research in diverse populations.

  20. Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25

    PubMed Central

    Fejerman, Laura; Ahmadiyeh, Nasim; Hu, Donglei; Huntsman, Scott; Beckman, Kenneth B.; Caswell, Jennifer L.; Tsung, Karen; John, Esther M.; Torres-Mejia, Gabriela; Carvajal-Carmona, Luis; Echeverry, María Magdalena; Tuazon, Anna Marie D.; Ramirez, Carolina; Carvajal-Carmona, Luis; Echeverry, María Magdalena; Bohórquez, Mabel Elena; Prieto, Rodrigo; Criollo, Ángel; Ramírez, Carolina; Estrada, Ana Patricia; Suáres, John Jairo; Mateus, Gilbert; Castro, Jorge Mario; Sánchez, Yesid; Murillo, Raúl; Lucia Serrano, Martha; Sanabria, Carolina; Olaya, Justo Germán; Bolaños, Fernando; Vélez, Alejandro; Carmona, Jenny Andrea; Vélez, Alejandro; Rodríguez, Nancy Guerrero; Serón Sousa, Cristina; Mendez, Cesar Eduardo Alvarez; Galviz, Ana Isabel Orduz; Gignoux, Christopher R.; Eng, Celeste; Gonzalez-Burchard, Esteban; Henderson, Brian; Marchand, Loic Le; Kooperberg, Charles; Hou, Lifang; Agalliu, Ilir; Kraft, Peter; Lindström, Sara; Perez-Stable, Eliseo J.; Haiman, Christopher A.; Ziv, Elad

    2014-01-01

    The genetic contributions to breast cancer development among Latinas are not well understood. Here we carry out a genome-wide association study of breast cancer in Latinas and identify a genome-wide significant risk variant, located 5′ of the Estrogen Receptor 1 gene (ESR1; 6q25 region). The minor allele for this variant is strongly protective (rs140068132: odds ratio (OR) 0.60, 95% confidence interval (CI) 0.53–0.67, P=9 × 10−18), originates from Indigenous Americans and is uncorrelated with previously reported risk variants at 6q25. The association is stronger for oestrogen receptor-negative disease (OR 0.34, 95% CI 0.21–0.54) than oestrogen receptor-positive disease (OR 0.63, 95% CI 0.49–0.80; P heterogeneity=0.01) and is also associated with mammographic breast density, a strong risk factor for breast cancer (P=0.001). rs140068132 is located within several transcription factor-binding sites and electrophoretic mobility shift assays with MCF-7 nuclear protein demonstrate differential binding of the G/A alleles at this locus. These results highlight the importance of conducting research in diverse populations. PMID:25327703

  1. Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2.

    PubMed

    Cheng, Yu-Ching; Stanne, Tara M; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G; Malik, Rainer; Xu, Huichun; Kittner, Steven J; Cole, John W; O'Connell, Jeffrey R; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C; Kanse, Sandip M; Bis, Joshua C; Fornage, Myriam; Mosley, Thomas H; Hopewell, Jemma C; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M Arfan; Longstreth, W T; Meschia, James F; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B; Markus, Hugh S; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D

    2016-02-01

    Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years. The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls. One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. © 2016 American Heart Association, Inc.

  2. A Discovery Genome-Wide Association Study of Entrepreneurship

    ERIC Educational Resources Information Center

    Quaye, Lydia; Nicolaou, Nicos; Shane, Scott; Mangino, Massimo

    2012-01-01

    To identify specific genetic variants influencing the phenotype of entrepreneurship, we conducted a genome-wide association study (GWAS) with 3,933 Caucasian females from the TwinsUK Adult Twin Registry. Following stringent genotype quality control, GWAF (genome-wide association analyses for family data) software was used to assess the association…

  3. Genome-Wide Association Study Identifies Four Loci Associated with Eruption of Permanent Teeth

    PubMed Central

    Zhang, Hao; Shaffer, John R.; Hansen, Thomas; Esserlind, Ann-Louise; Boyd, Heather A.; Nohr, Ellen A.; Timpson, Nicholas J.; Fatemifar, Ghazaleh; Paternoster, Lavinia; Evans, David M.; Weyant, Robert J.; Levy, Steven M.; Lathrop, Mark; Smith, George Davey; Murray, Jeffrey C.; Olesen, Jes; Werge, Thomas; Marazita, Mary L.; Sørensen, Thorkild I. A.; Melbye, Mads

    2011-01-01

    The sequence and timing of permanent tooth eruption is thought to be highly heritable and can have important implications for the risk of malocclusion, crowding, and periodontal disease. We conducted a genome-wide association study of number of permanent teeth erupted between age 6 and 14 years, analyzed as age-adjusted standard deviation score averaged over multiple time points, based on childhood records for 5,104 women from the Danish National Birth Cohort. Four loci showed association at P<5×10−8 and were replicated in four independent study groups from the United States and Denmark with a total of 3,762 individuals; all combined P-values were below 10−11. Two loci agreed with previous findings in primary tooth eruption and were also known to influence height and breast cancer, respectively. The two other loci pointed to genomic regions without any previous significant genome-wide association study results. The intronic SNP rs7924176 in ADK could be linked to gene expression in monocytes. The combined effect of the four genetic variants was most pronounced between age 10 and 12 years, where children with 6 to 8 delayed tooth eruption alleles had on average 3.5 (95% confidence interval: 2.9–4.1) fewer permanent teeth than children with 0 or 1 of these alleles. PMID:21931568

  4. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype

    PubMed Central

    Ferreira, Manuel A. R.; Matheson, Melanie C.; Tang, Clara S.; Granell, Raquel; Ang, Wei; Hui, Jennie; Kiefer, Amy K.; Duffy, David L.; Baltic, Svetlana; Danoy, Patrick; Bui, Minh; Price, Loren; Sly, Peter D.; Eriksson, Nicholas; Madden, Pamela A.; Abramson, Michael J.; Holt, Patrick G.; Heath, Andrew C.; Hunter, Michael; Musk, Bill; Robertson, Colin F.; Le Souëf, Peter; Montgomery, Grant W.; Henderson, A. John; Tung, Joyce Y.; Dharmage, Shyamali C.; Brown, Matthew A.; James, Alan; Thompson, Philip J.; Pennell, Craig; Martin, Nicholas G.; Evans, David M.; Hinds, David A.; Hopper, John L.

    2014-01-01

    Background To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. Objective We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. Methods We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). Results At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10−9) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10−8). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10−7) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10−6). Conclusion By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency. PMID:24388013

  5. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype.

    PubMed

    Ferreira, Manuel A R; Matheson, Melanie C; Tang, Clara S; Granell, Raquel; Ang, Wei; Hui, Jennie; Kiefer, Amy K; Duffy, David L; Baltic, Svetlana; Danoy, Patrick; Bui, Minh; Price, Loren; Sly, Peter D; Eriksson, Nicholas; Madden, Pamela A; Abramson, Michael J; Holt, Patrick G; Heath, Andrew C; Hunter, Michael; Musk, Bill; Robertson, Colin F; Le Souëf, Peter; Montgomery, Grant W; Henderson, A John; Tung, Joyce Y; Dharmage, Shyamali C; Brown, Matthew A; James, Alan; Thompson, Philip J; Pennell, Craig; Martin, Nicholas G; Evans, David M; Hinds, David A; Hopper, John L

    2014-06-01

    To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10(-9)) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10(-8)). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10(-7)) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10(-6)). By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. A GENOME-WIDE LINKAGE AND ASSOCIATION SCAN REVEALS NOVEL LOCI FOR AUTISM

    PubMed Central

    Weiss, Lauren A.; Arking, Dan E.

    2009-01-01

    Summary Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success 1. Genome-wide association studies (GWAS) using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits (http://www.genome.gov/26525384). Consequently, we initiated a linkage and association mapping study using half a million genome-wide SNPs in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed a SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 × 10−7). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening while the discovery of a single novel association demonstrates the action of common variants. PMID:19812673

  7. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea

    PubMed Central

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23–47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea. PMID:26058368

  8. Identifying and mitigating batch effects in whole genome sequencing data.

    PubMed

    Tom, Jennifer A; Reeder, Jens; Forrest, William F; Graham, Robert R; Hunkapiller, Julie; Behrens, Timothy W; Bhangale, Tushar R

    2017-07-24

    Large sample sets of whole genome sequencing with deep coverage are being generated, however assembling datasets from different sources inevitably introduces batch effects. These batch effects are not well understood and can be due to changes in the sequencing protocol or bioinformatics tools used to process the data. No systematic algorithms or heuristics exist to detect and filter batch effects or remove associations impacted by batch effects in whole genome sequencing data. We describe key quality metrics, provide a freely available software package to compute them, and demonstrate that identification of batch effects is aided by principal components analysis of these metrics. To mitigate batch effects, we developed new site-specific filters that identified and removed variants that falsely associated with the phenotype due to batch effect. These include filtering based on: a haplotype based genotype correction, a differential genotype quality test, and removing sites with missing genotype rate greater than 30% after setting genotypes with quality scores less than 20 to missing. This method removed 96.1% of unconfirmed genome-wide significant SNP associations and 97.6% of unconfirmed genome-wide significant indel associations. We performed analyses to demonstrate that: 1) These filters impacted variants known to be disease associated as 2 out of 16 confirmed associations in an AMD candidate SNP analysis were filtered, representing a reduction in power of 12.5%, 2) In the absence of batch effects, these filters removed only a small proportion of variants across the genome (type I error rate of 3%), and 3) in an independent dataset, the method removed 90.2% of unconfirmed genome-wide SNP associations and 89.8% of unconfirmed genome-wide indel associations. Researchers currently do not have effective tools to identify and mitigate batch effects in whole genome sequencing data. We developed and validated methods and filters to address this deficiency.

  9. Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia.

    PubMed

    Fingerlin, Tasha E; Zhang, Weiming; Yang, Ivana V; Ainsworth, Hannah C; Russell, Pamela H; Blumhagen, Rachel Z; Schwarz, Marvin I; Brown, Kevin K; Steele, Mark P; Loyd, James E; Cosgrove, Gregory P; Lynch, David A; Groshong, Steve; Collard, Harold R; Wolters, Paul J; Bradford, Williamson Z; Kossen, Karl; Seiwert, Scott D; du Bois, Roland M; Garcia, Christine Kim; Devine, Megan S; Gudmundsson, Gunnar; Isaksson, Helgi J; Kaminski, Naftali; Zhang, Yingze; Gibson, Kevin F; Lancaster, Lisa H; Maher, Toby M; Molyneaux, Philip L; Wells, Athol U; Moffatt, Miriam F; Selman, Moises; Pardo, Annie; Kim, Dong Soon; Crapo, James D; Make, Barry J; Regan, Elizabeth A; Walek, Dinesha S; Daniel, Jerry J; Kamatani, Yoichiro; Zelenika, Diana; Murphy, Elissa; Smith, Keith; McKean, David; Pedersen, Brent S; Talbert, Janet; Powers, Julia; Markin, Cheryl R; Beckman, Kenneth B; Lathrop, Mark; Freed, Brian; Langefeld, Carl D; Schwartz, David A

    2016-06-07

    Fibrotic idiopathic interstitial pneumonias (fIIP) are a group of fatal lung diseases with largely unknown etiology and without definitive treatment other than lung transplant to prolong life. There is strong evidence for the importance of both rare and common genetic risk alleles in familial and sporadic disease. We have previously used genome-wide single nucleotide polymorphism data to identify 10 risk loci for fIIP. Here we extend that work to imputed genome-wide genotypes and conduct new RNA sequencing studies of lung tissue to identify and characterize new fIIP risk loci. We performed genome-wide genotype imputation association analyses in 1616 non-Hispanic white (NHW) cases and 4683 NHW controls followed by validation and replication (878 cases, 2017 controls) genotyping and targeted gene expression in lung tissue. Following meta-analysis of the discovery and replication populations, we identified a novel fIIP locus in the HLA region of chromosome 6 (rs7887 P meta  = 3.7 × 10(-09)). Imputation of classic HLA alleles identified two in high linkage disequilibrium that are associated with fIIP (DRB1*15:01 P = 1.3 × 10(-7) and DQB1*06:02 P = 6.1 × 10(-8)). Targeted RNA-sequencing of the HLA locus identified 21 genes differentially expressed between fibrotic and control lung tissue (Q < 0.001), many of which are involved in immune and inflammatory response regulation. In addition, the putative risk alleles, DRB1*15:01 and DQB1*06:02, are associated with expression of the DQB1 gene among fIIP cases (Q < 1 × 10(-16)). We have identified a genome-wide significant association between the HLA region and fIIP. Two HLA alleles are associated with fIIP and affect expression of HLA genes in lung tissue, indicating that the potential genetic risk due to HLA alleles may involve gene regulation in addition to altered protein structure. These studies reveal the importance of the HLA region for risk of fIIP and a basis for the potential

  10. Memory management in genome-wide association studies

    PubMed Central

    2009-01-01

    Genome-wide association is a powerful tool for the identification of genes that underlie common diseases. Genome-wide association studies generate billions of genotypes and pose significant computational challenges for most users including limited computer memory. We applied a recently developed memory management tool to two analyses of North American Rheumatoid Arthritis Consortium studies and measured the performance in terms of central processing unit and memory usage. We conclude that our memory management approach is simple, efficient, and effective for genome-wide association studies. PMID:20018047

  11. ChIP-Seq Analysis for Identifying Genome-Wide Histone Modifications Associated with Stress-Responsive Genes in Plants.

    PubMed

    Li, Guosheng; Jagadeeswaran, Guru; Mort, Andrew; Sunkar, Ramanjulu

    2017-01-01

    Histone modifications represent the crux of epigenetic gene regulation essential for most biological processes including abiotic stress responses in plants. Thus, identification of histone modifications at the genome-scale can provide clues for how some genes are 'turned-on' while some others are "turned-off" in response to stress. This chapter details a step-by-step protocol for identifying genome-wide histone modifications associated with stress-responsive gene regulation using chromatin immunoprecipitation (ChIP) followed by sequencing of the DNA (ChIP-seq).

  12. Meta-analysis of genome-wide association studies identifies genetic risk factors for stroke in African-Americans

    PubMed Central

    Carty, Cara L.; Keene, Keith L.; Cheng, Yu-Ching; Meschia, James F.; Chen, Wei-Min; Nalls, Mike; Bis, Joshua C.; Kittner, Steven J.; Rich, Stephen S.; Tajuddin, Salman; Zonderman, Alan B.; Evans, Michele K.; Langefeld, Carl D.; Gottesman, Rebecca; Mosley, Thomas H.; Shahar, Eyal; Woo, Daniel; Yaffe, Kristine; Liu, YongMei; Sale, Michèle M.; Dichgans, Martin; Malik, Rainer; Longstreth, WT; Mitchell, Braxton D.; Psaty, Bruce M.; Kooperberg, Charles; Reiner, Alexander; Worrall, Bradford B.; Fornage, Myriam

    2015-01-01

    Background and Purpose The majority of genome-wide association studies (GWAS) of stroke have focused on European-ancestry populations; however, none has been conducted in African-Americans despite the disproportionately high burden of stroke in this population. The Consortium of Minority Population genome-wide Association Studies of Stroke (COMPASS) was established to identify stroke susceptibility loci in minority populations. Methods Using METAL, we conducted meta-analyses of GWAS in 14,746 African-Americans (1,365 ischemic and 1,592 total stroke cases) from COMPASS, and tested SNPs with P<10−6 for validation in METASTROKE, a consortium of ischemic stroke genetic studies in European-ancestry populations. We also evaluated stroke loci previously identified in European-ancestry populations. Results The 15q21.3 locus linked with lipid levels and hypertension was associated with total stroke (rs4471613, P=3.9×10−8) in African-Americans. Nominal associations (P<10−6) for total or ischemic stroke were observed for 18 variants in or near genes implicated in cell cycle/ mRNA pre-splicing (PTPRG, CDC5L), platelet function (HPS4), blood-brain barrier permeability (CLDN17), immune response (ELTD1, WDFY4, IL1F10-IL1RN), and histone modification (HDAC9). Two of these loci achieved nominal significance in METASTROKE: 5q35.2 (P=0.03), and 1p31.1 (P=0.018). Four of 7 previously reported ischemic stroke loci (PITX2, HDAC9, CDKN2A/CDKN2B and ZFHX3) were nominally associated (P<0.05) with stroke in COMPASS. Conclusions We identified a novel SNP associated with total stroke in African-Americans and found that ischemic stroke loci identified in European-ancestry populations may also be relevant for African-Americans. Our findings support investigation of diverse populations to identify and characterize genetic risk factors, and the importance of shared genetic risk across populations. PMID:26089329

  13. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis.

    PubMed

    Weidinger, Stephan; Willis-Owen, Saffron A G; Kamatani, Yoichiro; Baurecht, Hansjörg; Morar, Nilesh; Liang, Liming; Edser, Pauline; Street, Teresa; Rodriguez, Elke; O'Regan, Grainne M; Beattie, Paula; Fölster-Holst, Regina; Franke, Andre; Novak, Natalija; Fahy, Caoimhe M; Winge, Mårten C G; Kabesch, Michael; Illig, Thomas; Heath, Simon; Söderhäll, Cilla; Melén, Erik; Pershagen, Göran; Kere, Juha; Bradley, Maria; Lieden, Agne; Nordenskjold, Magnus; Harper, John I; McLean, W H Irwin; Brown, Sara J; Cookson, William O C; Lathrop, G Mark; Irvine, Alan D; Moffatt, Miriam F

    2013-12-01

    Atopic dermatitis (AD) is the most common dermatological disease of childhood. Many children with AD have asthma and AD shares regions of genetic linkage with psoriasis, another chronic inflammatory skin disease. We present here a genome-wide association study (GWAS) of childhood-onset AD in 1563 European cases with known asthma status and 4054 European controls. Using Illumina genotyping followed by imputation, we generated 268 034 consensus genotypes and in excess of 2 million single nucleotide polymorphisms (SNPs) for analysis. Association signals were assessed for replication in a second panel of 2286 European cases and 3160 European controls. Four loci achieved genome-wide significance for AD and replicated consistently across all cohorts. These included the epidermal differentiation complex (EDC) on chromosome 1, the genomic region proximal to LRRC32 on chromosome 11, the RAD50/IL13 locus on chromosome 5 and the major histocompatibility complex (MHC) on chromosome 6; reflecting action of classical HLA alleles. We observed variation in the contribution towards co-morbid asthma for these regions of association. We further explored the genetic relationship between AD, asthma and psoriasis by examining previously identified susceptibility SNPs for these diseases. We found considerable overlap between AD and psoriasis together with variable coincidence between allergic rhinitis (AR) and asthma. Our results indicate that the pathogenesis of AD incorporates immune and epidermal barrier defects with combinations of specific and overlapping effects at individual loci.

  14. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis

    PubMed Central

    Weidinger, Stephan; Willis-Owen, Saffron A.G.; Kamatani, Yoichiro; Baurecht, Hansjörg; Morar, Nilesh; Liang, Liming; Edser, Pauline; Street, Teresa; Rodriguez, Elke; O'Regan, Grainne M.; Beattie, Paula; Fölster-Holst, Regina; Franke, Andre; Novak, Natalija; Fahy, Caoimhe M.; Winge, Mårten C.G.; Kabesch, Michael; Illig, Thomas; Heath, Simon; Söderhäll, Cilla; Melén, Erik; Pershagen, Göran; Kere, Juha; Bradley, Maria; Lieden, Agne; Nordenskjold, Magnus; Harper, John I.; Mclean, W.H. Irwin; Brown, Sara J.; Cookson, William O.C.; Lathrop, G. Mark; Irvine, Alan D.; Moffatt, Miriam F.

    2013-01-01

    Atopic dermatitis (AD) is the most common dermatological disease of childhood. Many children with AD have asthma and AD shares regions of genetic linkage with psoriasis, another chronic inflammatory skin disease. We present here a genome-wide association study (GWAS) of childhood-onset AD in 1563 European cases with known asthma status and 4054 European controls. Using Illumina genotyping followed by imputation, we generated 268 034 consensus genotypes and in excess of 2 million single nucleotide polymorphisms (SNPs) for analysis. Association signals were assessed for replication in a second panel of 2286 European cases and 3160 European controls. Four loci achieved genome-wide significance for AD and replicated consistently across all cohorts. These included the epidermal differentiation complex (EDC) on chromosome 1, the genomic region proximal to LRRC32 on chromosome 11, the RAD50/IL13 locus on chromosome 5 and the major histocompatibility complex (MHC) on chromosome 6; reflecting action of classical HLA alleles. We observed variation in the contribution towards co-morbid asthma for these regions of association. We further explored the genetic relationship between AD, asthma and psoriasis by examining previously identified susceptibility SNPs for these diseases. We found considerable overlap between AD and psoriasis together with variable coincidence between allergic rhinitis (AR) and asthma. Our results indicate that the pathogenesis of AD incorporates immune and epidermal barrier defects with combinations of specific and overlapping effects at individual loci. PMID:23886662

  15. Screen and clean: a tool for identifying interactions in genome-wide association studies.

    PubMed

    Wu, Jing; Devlin, Bernie; Ringquist, Steven; Trucco, Massimo; Roeder, Kathryn

    2010-04-01

    Epistasis could be an important source of risk for disease. How interacting loci might be discovered is an open question for genome-wide association studies (GWAS). Most researchers limit their statistical analyses to testing individual pairwise interactions (i.e., marginal tests for association). A more effective means of identifying important predictors is to fit models that include many predictors simultaneously (i.e., higher-dimensional models). We explore a procedure called screen and clean (SC) for identifying liability loci, including interactions, by using the lasso procedure, which is a model selection tool for high-dimensional regression. We approach the problem by using a varying dictionary consisting of terms to include in the model. In the first step the lasso dictionary includes only main effects. The most promising single-nucleotide polymorphisms (SNPs) are identified using a screening procedure. Next the lasso dictionary is adjusted to include these main effects and the corresponding interaction terms. Again, promising terms are identified using lasso screening. Then significant terms are identified through the cleaning process. Implementation of SC for GWAS requires algorithms to explore the complex model space induced by the many SNPs genotyped and their interactions. We propose and explore a set of algorithms and find that SC successfully controls Type I error while yielding good power to identify risk loci and their interactions. When the method is applied to data obtained from the Wellcome Trust Case Control Consortium study of Type 1 Diabetes it uncovers evidence supporting interaction within the HLA class II region as well as within Chromosome 12q24.

  16. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries

    PubMed Central

    Baurley, James W.; Edlund, Christopher K.; Pardamean, Carissa I.; Conti, David V.; Krasnow, Ruth; Javitz, Harold S.; Hops, Hyman; Swan, Gary E.; Benowitz, Neal L.

    2016-01-01

    Introduction: Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3′-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Methods: Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. Results: African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). Conclusions: This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan

  17. A Genome-wide Association Study of Nonsyndromic Cleft Palate Identifies an Etiologic Missense Variant in GRHL3.

    PubMed

    Leslie, Elizabeth J; Liu, Huan; Carlson, Jenna C; Shaffer, John R; Feingold, Eleanor; Wehby, George; Laurie, Cecelia A; Jain, Deepti; Laurie, Cathy C; Doheny, Kimberly F; McHenry, Toby; Resick, Judith; Sanchez, Carla; Jacobs, Jennifer; Emanuele, Beth; Vieira, Alexandre R; Neiswanger, Katherine; Standley, Jennifer; Czeizel, Andrew E; Deleyiannis, Frederic; Christensen, Kaare; Munger, Ronald G; Lie, Rolv T; Wilcox, Allen; Romitti, Paul A; Field, L Leigh; Padilla, Carmencita D; Cutiongco-de la Paz, Eva Maria C; Lidral, Andrew C; Valencia-Ramirez, Luz Consuelo; Lopez-Palacio, Ana Maria; Valencia, Dora Rivera; Arcos-Burgos, Mauricio; Castilla, Eduardo E; Mereb, Juan C; Poletta, Fernando A; Orioli, Iêda M; Carvalho, Flavia M; Hecht, Jacqueline T; Blanton, Susan H; Buxó, Carmen J; Butali, Azeez; Mossey, Peter A; Adeyemo, Wasiu L; James, Olutayo; Braimah, Ramat O; Aregbesola, Babatunde S; Eshete, Mekonen A; Deribew, Milliard; Koruyucu, Mine; Seymen, Figen; Ma, Lian; de Salamanca, Javier Enríquez; Weinberg, Seth M; Moreno, Lina; Cornell, Robert A; Murray, Jeffrey C; Marazita, Mary L

    2016-04-07

    Cleft palate (CP) is a common birth defect occurring in 1 in 2,500 live births. Approximately half of infants with CP have a syndromic form, exhibiting other physical and cognitive disabilities. The other half have nonsyndromic CP, and to date, few genes associated with risk for nonsyndromic CP have been characterized. To identify such risk factors, we performed a genome-wide association study of this disorder. We discovered a genome-wide significant association with a missense variant in GRHL3 (p.Thr454Met [c.1361C>T]; rs41268753; p = 4.08 × 10(-9)) and replicated the result in an independent sample of case and control subjects. In both the discovery and replication samples, rs41268753 conferred increased risk for CP (OR = 8.3, 95% CI 4.1-16.8; OR = 2.16, 95% CI 1.43-3.27, respectively). In luciferase transactivation assays, p.Thr454Met had about one-third of the activity of wild-type GRHL3, and in zebrafish embryos, perturbed periderm development. We conclude that this mutation is an etiologic variant for nonsyndromic CP and is one of few functional variants identified to date for nonsyndromic orofacial clefting. This finding advances our understanding of the genetic basis of craniofacial development and might ultimately lead to improvements in recurrence risk prediction, treatment, and prognosis. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Genome-wide meta-analysis identifies novel determinants of circulating serum progranulin.

    PubMed

    Tönjes, Anke; Scholz, Markus; Krüger, Jacqueline; Krause, Kerstin; Schleinitz, Dorit; Kirsten, Holger; Gebhardt, Claudia; Marzi, Carola; Grallert, Harald; Ladenvall, Claes; Heyne, Henrike; Laurila, Esa; Kriebel, Jennifer; Meisinger, Christa; Rathmann, Wolfgang; Gieger, Christian; Groop, Leif; Prokopenko, Inga; Isomaa, Bo; Beutner, Frank; Kratzsch, Jürgen; Fischer-Rosinsky, Antje; Pfeiffer, Andreas; Krohn, Knut; Spranger, Joachim; Thiery, Joachim; Blüher, Matthias; Stumvoll, Michael; Kovacs, Peter

    2018-02-01

    Progranulin is a secreted protein with important functions in processes including immune and inflammatory response, metabolism and embryonic development. The present study aimed at identification of genetic factors determining progranulin concentrations. We conducted a genome-wide association meta-analysis for serum progranulin in three independent cohorts from Europe: Sorbs (N = 848) and KORA (N = 1628) from Germany and PPP-Botnia (N = 335) from Finland (total N = 2811). Single nucleotide polymorphisms (SNPs) associated with progranulin levels were replicated in two additional German cohorts: LIFE-Heart Study (Leipzig; N = 967) and Metabolic Syndrome Berlin Potsdam (Berlin cohort; N = 833). We measured mRNA expression of genes in peripheral blood mononuclear cells (PBMC) by micro-arrays and performed mRNA expression quantitative trait and expression-progranulin association studies to functionally substantiate identified loci. Finally, we conducted siRNA silencing experiments in vitro to validate potential candidate genes within the associated loci. Heritability of circulating progranulin levels was estimated at 31.8% and 26.1% in the Sorbs and LIFE-Heart cohort, respectively. SNPs at three loci reached study-wide significance (rs660240 in CELSR2-PSRC1-MYBPHL-SORT1, rs4747197 in CDH23-PSAP and rs5848 in GRN) explaining 19.4%/15.0% of the variance and 61%/57% of total heritability in the Sorbs/LIFE-Heart Study. The strongest evidence for association was at rs660240 (P = 5.75 × 10-50), which was also associated with mRNA expression of PSRC1 in PBMC (P = 1.51 × 10-21). Psrc1 knockdown in murine preadipocytes led to a consecutive 30% reduction in progranulin secretion. In conclusion, the present meta-GWAS combined with mRNA expression identified three loci associated with progranulin and supports the role of PSRC1 in the regulation of progranulin secretion. © The Author(s) 2017. Published by Oxford University Press. All rights

  19. Genome-Wide Association Study (GWAS) and Genome-Wide Environment Interaction Study (GWEIS) of Depressive Symptoms in African American and Hispanic/Latina Women

    PubMed Central

    Dunn, Erin C.; Wiste, Anna; Radmanesh, Farid; Almli, Lynn M.; Gogarten, Stephanie M.; Sofer, Tamar; Faul, Jessica D.; Kardia, Sharon L.R.; Smith, Jennifer A.; Weir, David R.; Zhao, Wei; Soare, Thomas W.; Mirza, Saira S.; Hek, Karin; Tiemeier, Henning W.; Goveas, Joseph S.; Sarto, Gloria E.; Snively, Beverly M.; Cornelis, Marilyn; Koenen, Karestan C.; Kraft, Peter; Purcell, Shaun; Ressler, Kerry J.; Rosand, Jonathan; Wassertheil-Smoller, Sylvia; Smoller, Jordan W.

    2016-01-01

    Background Genome-wide association studies (GWAS) have been unable to identify variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (G×E) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide environment interaction study (GWEIS) of depressive symptoms. Methods Using data from the SHARe cohort of the Women’s Health Initiative, comprising African Americans (n=7179) and Hispanics/Latinas (n=3138), we examined genetic main effects and G×E with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. Results No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20kb from GPR139, p=5.75×10−8) and rs75407252 (intronic to CACNA2D3, p=6.99×10−7). In Hispanics/Latinas, the top signals were rs2532087 (located 27kb from CD38, p=2.44×10−7) and rs4542757 (intronic to DCC, p=7.31×10−7). In the GWEIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; p=4.10×10−10; located 14kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG=0.95), suggesting that common variation underlying depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. Conclusions Our results underscore the need for larger samples, more GWEIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities. PMID:27038408

  20. Genome-Wide Linkage and Association Analysis Identifies Major Gene Loci for Guttural Pouch Tympany in Arabian and German Warmblood Horses

    PubMed Central

    Metzger, Julia; Ohnesorge, Bernhard; Distl, Ottmar

    2012-01-01

    Equine guttural pouch tympany (GPT) is a hereditary condition affecting foals in their first months of life. Complex segregation analyses in Arabian and German warmblood horses showed the involvement of a major gene as very likely. Genome-wide linkage and association analyses including a high density marker set of single nucleotide polymorphisms (SNPs) were performed to map the genomic region harbouring the potential major gene for GPT. A total of 85 Arabian and 373 German warmblood horses were genotyped on the Illumina equine SNP50 beadchip. Non-parametric multipoint linkage analyses showed genome-wide significance on horse chromosomes (ECA) 3 for German warmblood at 16–26 Mb and 34–55 Mb and for Arabian on ECA15 at 64–65 Mb. Genome-wide association analyses confirmed the linked regions for both breeds. In Arabian, genome-wide association was detected at 64 Mb within the region with the highest linkage peak on ECA15. For German warmblood, signals for genome-wide association were close to the peak region of linkage at 52 Mb on ECA3. The odds ratio for the SNP with the highest genome-wide association was 0.12 for the Arabian. In conclusion, the refinement of the regions with the Illumina equine SNP50 beadchip is an important step to unravel the responsible mutations for GPT. PMID:22848553

  1. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    PubMed Central

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  2. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  3. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis.

    PubMed

    Fingerlin, Tasha E; Murphy, Elissa; Zhang, Weiming; Peljto, Anna L; Brown, Kevin K; Steele, Mark P; Loyd, James E; Cosgrove, Gregory P; Lynch, David; Groshong, Steve; Collard, Harold R; Wolters, Paul J; Bradford, Williamson Z; Kossen, Karl; Seiwert, Scott D; du Bois, Roland M; Garcia, Christine Kim; Devine, Megan S; Gudmundsson, Gunnar; Isaksson, Helgi J; Kaminski, Naftali; Zhang, Yingze; Gibson, Kevin F; Lancaster, Lisa H; Cogan, Joy D; Mason, Wendi R; Maher, Toby M; Molyneaux, Philip L; Wells, Athol U; Moffatt, Miriam F; Selman, Moises; Pardo, Annie; Kim, Dong Soon; Crapo, James D; Make, Barry J; Regan, Elizabeth A; Walek, Dinesha S; Daniel, Jerry J; Kamatani, Yoichiro; Zelenika, Diana; Smith, Keith; McKean, David; Pedersen, Brent S; Talbert, Janet; Kidd, Raven N; Markin, Cheryl R; Beckman, Kenneth B; Lathrop, Mark; Schwarz, Marvin I; Schwartz, David A

    2013-06-01

    We performed a genome-wide association study of non-Hispanic, white individuals with fibrotic idiopathic interstitial pneumonias (IIPs; n = 1,616) and controls (n = 4,683), with follow-up replication analyses in 876 cases and 1,890 controls. We confirmed association with TERT at 5p15, MUC5B at 11p15 and the 3q26 region near TERC, and we identified seven newly associated loci (Pmeta = 2.4 × 10(-8) to 1.1 × 10(-19)), including FAM13A (4q22), DSP (6p24), OBFC1 (10q24), ATP11A (13q34), DPP9 (19p13) and chromosomal regions 7q22 and 15q14-15. Our results suggest that genes involved in host defense, cell-cell adhesion and DNA repair contribute to risk of fibrotic IIPs.

  4. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.

    PubMed

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire; van der Valk, Ralf J P; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M; Cousminer, Diana L; Marsh, Julie A; Lehtimäki, Terho; Curtin, John A; Vioque, Jesus; Ahluwalia, Tarunveer S; Myhre, Ronny; Price, Thomas S; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M A; Hirschhorn, Joel N; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A; Lewin, Alexandra M; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E; McMahon, George; Mentch, Frank D; Middeldorp, Christel M; Murray, Clare S; Pahkala, Katja; Pers, Tune H; Pfäffle, Roland; Postma, Dirkje S; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M T; Torrent, Maties; Uitterlinden, André G; van Meurs, Joyce B; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S; Dedoussis, George V; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R; Custovic, Adnan; Raitakari, Olli T; Pennell, Craig E; Widén, Elisabeth; Boomsma, Dorret I; Koppelman, Gerard H; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M; Smith, George Davey; Sørensen, Thorkild I A; Timpson, Nicholas J; Grant, Struan F A; Jaddoe, Vincent W V

    2016-01-15

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Genome-wide association studies in dogs and humans identify ADAMTS20 as a risk variant for cleft lip and palate.

    PubMed

    Wolf, Zena T; Brand, Harrison A; Shaffer, John R; Leslie, Elizabeth J; Arzi, Boaz; Willet, Cali E; Cox, Timothy C; McHenry, Toby; Narayan, Nicole; Feingold, Eleanor; Wang, Xioajing; Sliskovic, Saundra; Karmi, Nili; Safra, Noa; Sanchez, Carla; Deleyiannis, Frederic W B; Murray, Jeffrey C; Wade, Claire M; Marazita, Mary L; Bannasch, Danika L

    2015-03-01

    Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10(-13); adjusted p= 2.2 x 10(-3)). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 - 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans.

  6. Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians.

    PubMed

    Matana, Antonela; Popović, Marijana; Boutin, Thibaud; Torlak, Vesela; Brdar, Dubravka; Gunjača, Ivana; Kolčić, Ivana; Boraska Perica, Vesna; Punda, Ante; Polašek, Ozren; Hayward, Caroline; Barbalić, Maja; Zemunik, Tatijana

    2018-04-18

    Autoimmune thyroid diseases (AITD) are multifactorial endocrine diseases most frequently accompanied by Tg and TPO autoantibodies. Both antibodies have a higher prevalence in females and act under a strong genetic influence. To identify novel variants underlying thyroid antibody levels, we performed GWAS meta-analysis on the plasma levels of TgAb and TPOAb in three Croatian cohorts, as well as gender specific GWAS and a bivariate analysis. No significant association was detected with the level of TgAb and TPOAb in the meta-analysis of GWAS or bivariate results for all individuals. The bivariate analysis in females only revealed a genome-wide significant association for the locus near GRIN3A (rs4457391, P = 7.76 × 10 -9 ). The same locus had borderline association with TPOAb levels in females (rs1935377, P = 8.58 × 10 -8 ). In conclusion, we identified a novel gender specific locus associated with TgAb and TPOAb levels. Our findings provide a novel insight into genetic and gender differences associated with thyroid antibodies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Genome-wide association analysis of age-at-onset in Alzheimer's disease.

    PubMed

    Kamboh, M I; Barmada, M M; Demirci, F Y; Minster, R L; Carrasquillo, M M; Pankratz, V S; Younkin, S G; Saykin, A J; Sweet, R A; Feingold, E; DeKosky, S T; Lopez, O L

    2012-12-01

    The risk of Alzheimer's disease (AD) is strongly determined by genetic factors and recent genome-wide association studies (GWAS) have identified several genes for the disease risk. In addition to the disease risk, age-at-onset (AAO) of AD has also strong genetic component with an estimated heritability of 42%. Identification of AAO genes may help to understand the biological mechanisms that regulate the onset of the disease. Here we report the first GWAS focused on identifying genes for the AAO of AD. We performed a genome-wide meta-analysis on three samples comprising a total of 2222 AD cases. A total of ~2.5 million directly genotyped or imputed single-nucleotide polymorphisms (SNPs) were analyzed in relation to AAO of AD. As expected, the most significant associations were observed in the apolipoprotein E (APOE) region on chromosome 19 where several SNPs surpassed the conservative genome-wide significant threshold (P<5E-08). The most significant SNP outside the APOE region was located in the DCHS2 gene on chromosome 4q31.3 (rs1466662; P=4.95E-07). There were 19 additional significant SNPs in this region at P<1E-04 and the DCHS2 gene is expressed in the cerebral cortex and thus is a potential candidate for affecting AAO in AD. These findings need to be confirmed in additional well-powered samples.

  8. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder.

    PubMed

    Chen, D T; Jiang, X; Akula, N; Shugart, Y Y; Wendland, J R; Steele, C J M; Kassem, L; Park, J-H; Chatterjee, N; Jamain, S; Cheng, A; Leboyer, M; Muglia, P; Schulze, T G; Cichon, S; Nöthen, M M; Rietschel, M; McMahon, F J; Farmer, A; McGuffin, P; Craig, I; Lewis, C; Hosang, G; Cohen-Woods, S; Vincent, J B; Kennedy, J L; Strauss, J

    2013-02-01

    Meta-analyses of bipolar disorder (BD) genome-wide association studies (GWAS) have identified several genome-wide significant signals in European-ancestry samples, but so far account for little of the inherited risk. We performed a meta-analysis of ∼750,000 high-quality genetic markers on a combined sample of ∼14,000 subjects of European and Asian-ancestry (phase I). The most significant findings were further tested in an extended sample of ∼17,700 cases and controls (phase II). The results suggest novel association findings near the genes TRANK1 (LBA1), LMAN2L and PTGFR. In phase I, the most significant single nucleotide polymorphism (SNP), rs9834970 near TRANK1, was significant at the P=2.4 × 10(-11) level, with no heterogeneity. Supportive evidence for prior association findings near ANK3 and a locus on chromosome 3p21.1 was also observed. The phase II results were similar, although the heterogeneity test became significant for several SNPs. On the basis of these results and other established risk loci, we used the method developed by Park et al. to estimate the number, and the effect size distribution, of BD risk loci that could still be found by GWAS methods. We estimate that >63,000 case-control samples would be needed to identify the ∼105 BD risk loci discoverable by GWAS, and that these will together explain <6% of the inherited risk. These results support previous GWAS findings and identify three new candidate genes for BD. Further studies are needed to replicate these findings and may potentially lead to identification of functional variants. Sample size will remain a limiting factor in the discovery of common alleles associated with BD.

  9. Web-Based Genome-Wide Association Study Identifies Two Novel Loci and a Substantial Genetic Component for Parkinson's Disease

    PubMed Central

    Do, Chuong B.; Tung, Joyce Y.; Dorfman, Elizabeth; Kiefer, Amy K.; Drabant, Emily M.; Francke, Uta; Mountain, Joanna L.; Goldman, Samuel M.; Tanner, Caroline M.; Langston, J. William; Wojcicki, Anne; Eriksson, Nicholas

    2011-01-01

    Although the causes of Parkinson's disease (PD) are thought to be primarily environmental, recent studies suggest that a number of genes influence susceptibility. Using targeted case recruitment and online survey instruments, we conducted the largest case-control genome-wide association study (GWAS) of PD based on a single collection of individuals to date (3,426 cases and 29,624 controls). We discovered two novel, genome-wide significant associations with PD–rs6812193 near SCARB2 (, ) and rs11868035 near SREBF1/RAI1 (, )—both replicated in an independent cohort. We also replicated 20 previously discovered genetic associations (including LRRK2, GBA, SNCA, MAPT, GAK, and the HLA region), providing support for our novel study design. Relying on a recently proposed method based on genome-wide sharing estimates between distantly related individuals, we estimated the heritability of PD to be at least 0.27. Finally, using sparse regression techniques, we constructed predictive models that account for 6%–7% of the total variance in liability and that suggest the presence of true associations just beyond genome-wide significance, as confirmed through both internal and external cross-validation. These results indicate a substantial, but by no means total, contribution of genetics underlying susceptibility to both early-onset and late-onset PD, suggesting that, despite the novel associations discovered here and elsewhere, the majority of the genetic component for Parkinson's disease remains to be discovered. PMID:21738487

  10. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    PubMed Central

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O’Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D’Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Study, LifeLines Cohort; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Leach, Irene Mateo; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Consortium, CARDIoGRAM; Consortium, DIAGRAM; Consortium, ICBP; Consortium, MAGIC; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout. PMID:23263486

  11. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error

    PubMed Central

    Cheng, Ching-Yu; Schache, Maria; Ikram, M. Kamran; Young, Terri L.; Guggenheim, Jeremy A.; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J.M.; Barathi, Veluchamy A.; Liao, Jiemin; Hysi, Pirro G.; Bailey-Wilson, Joan E.; St. Pourcain, Beate; Kemp, John P.; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Montgomery, Grant W.; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F.; Amin, Najaf; van Leeuwen, Elisabeth M.; Wilson, James F.; Pennell, Craig E.; van Duijn, Cornelia M.; de Jong, Paulus T.V.M.; Vingerling, Johannes R.; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Rahi, Jugnoo S.; Hysi, Pirro G.; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Delcourt, Cécile; Maubaret, Cecilia; Williams, Cathy; Guggenheim, Jeremy A.; Northstone, Kate; Ring, Susan M.; Davey-Smith, George; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Stambolian, Dwight; Wilson, Joan E. Bailey; MacGregor, Stuart; Lu, Yi; Jonas, Jost B.; Xu, Liang; Saw, Seang-Mei; Baird, Paul N.; Rochtchina, Elena; Mitchell, Paul; Wang, Jie Jin; Jonas, Jost B.; Nangia, Vinay; Hayward, Caroline; Wright, Alan F.; Vitart, Veronique; Polasek, Ozren; Campbell, Harry; Vitart, Veronique; Rudan, Igor; Vatavuk, Zoran; Vitart, Veronique; Paterson, Andrew D.; Hosseini, S. Mohsen; Iyengar, Sudha K.; Igo, Robert P.; Fondran, Jeremy R.; Young, Terri L.; Feng, Sheng; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Metspalu, Andres; Haller, Toomas; Mihailov, Evelin; Pärssinen, Olavi; Wedenoja, Juho; Wilson, Joan E. Bailey; Wojciechowski, Robert; Baird, Paul N.; Schache, Maria; Pfeiffer, Norbert; Höhn, René; Pang, Chi Pui; Chen, Peng; Meitinger, Thomas; Oexle, Konrad; Wegner, Aharon; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Pärssinen, Olavi; Yip, Shea Ping; Ho, Daniel W.H.; Pirastu, Mario; Murgia, Federico; Portas, Laura; Biino, Genevra; Wilson, James F.; Fleck, Brian; Vitart, Veronique; Stambolian, Dwight; Wilson, Joan E. Bailey; Hewitt, Alex W.; Ang, Wei; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Tai, E-Shyong; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Mackey, David A.; MacGregor, Stuart; Hammond, Christopher J.; Hysi, Pirro G.; Deangelis, Margaret M.; Morrison, Margaux; Zhou, Xiangtian; Chen, Wei; Paterson, Andrew D.; Hosseini, S. Mohsen; Mizuki, Nobuhisa; Meguro, Akira; Lehtimäki, Terho; Mäkelä, Kari-Matti; Raitakari, Olli; Kähönen, Mika; Burdon, Kathryn P.; Craig, Jamie E.; Iyengar, Sudha K.; Igo, Robert P.; Lass, Jonathan H.; Reinhart, William; Belin, Michael W.; Schultze, Robert L.; Morason, Todd; Sugar, Alan; Mian, Shahzad; Soong, Hunson Kaz; Colby, Kathryn; Jurkunas, Ula; Yee, Richard; Vital, Mark; Alfonso, Eduardo; Karp, Carol; Lee, Yunhee; Yoo, Sonia; Hammersmith, Kristin; Cohen, Elisabeth; Laibson, Peter; Rapuano, Christopher; Ayres, Brandon; Croasdale, Christopher; Caudill, James; Patel, Sanjay; Baratz, Keith; Bourne, William; Maguire, Leo; Sugar, Joel; Tu, Elmer; Djalilian, Ali; Mootha, Vinod; McCulley, James; Bowman, Wayne; Cavanaugh, H. Dwight; Verity, Steven; Verdier, David; Renucci, Ann; Oliva, Matt; Rotkis, Walter; Hardten, David R.; Fahmy, Ahmad; Brown, Marlene; Reeves, Sherman; Davis, Elizabeth A.; Lindstrom, Richard; Hauswirth, Scott; Hamilton, Stephen; Lee, W. Barry; Price, Francis; Price, Marianne; Kelly, Kathleen; Peters, Faye; Shaughnessy, Michael; Steinemann, Thomas; Dupps, B.J.; Meisler, David M.; Mifflin, Mark; Olson, Randal; Aldave, Anthony; Holland, Gary; Mondino, Bartly J.; Rosenwasser, George; Gorovoy, Mark; Dunn, Steven P.; Heidemann, David G.; Terry, Mark; Shamie, Neda; Rosenfeld, Steven I.; Suedekum, Brandon; Hwang, David; Stone, Donald; Chodosh, James; Galentine, Paul G.; Bardenstein, David; Goddard, Katrina; Chin, Hemin; Mannis, Mark; Varma, Rohit; Borecki, Ingrid; Chew, Emily Y.; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L.; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C.A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; Spencer, Chris C.A.; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M.; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E.; Hosseini, S. Mohsen; Paterson, Andrew D.; Genuth, S.; Nathan, D.M.; Zinman, B.; Crofford, O.; Crandall, J.; Reid, M.; Brown-Friday, J.; Engel, S.; Sheindlin, J.; Martinez, H.; Shamoon, H.; Engel, H.; Phillips, M.; Gubitosi-Klug, R.; Mayer, L.; Pendegast, S.; Zegarra, H.; Miller, D.; Singerman, L.; Smith-Brewer, S.; Novak, M.; Quin, J.; Dahms, W.; Genuth, Saul; Palmert, M.; Brillon, D.; Lackaye, M.E.; Kiss, S.; Chan, R.; Reppucci, V.; Lee, T.; Heinemann, M.; Whitehouse, F.; Kruger, D.; Jones, J.K.; McLellan, M.; Carey, J.D.; Angus, E.; Thomas, A.; Galprin, A.; Bergenstal, R.; Johnson, M.; Spencer, M.; Morgan, K.; Etzwiler, D.; Kendall, D.; Aiello, Lloyd Paul; Golden, E.; Jacobson, A.; Beaser, R.; Ganda, O.; Hamdy, O.; Wolpert, H.; Sharuk, G.; Arrigg, P.; Schlossman, D.; Rosenzwieg, J.; Rand, L.; Nathan, D.M.; Larkin, M.; Ong, M.; Godine, J.; Cagliero, E.; Lou, P.; Folino, K.; Fritz, S.; Crowell, S.; Hansen, K.; Gauthier-Kelly, C.; Service, J.; Ziegler, G.; Luttrell, L.; Caulder, S.; Lopes-Virella, M.; Colwell, J.; Soule, J.; Fernandes, J.; Hermayer, K.; Kwon, S.; Brabham, M.; Blevins, A.; Parker, J.; Lee, D.; Patel, N.; Pittman, C.; Lindsey, P.; Bracey, M.; Lee, K.; Nutaitis, M.; Farr, A.; Elsing, S.; Thompson, T.; Selby, J.; Lyons, T.; Yacoub-Wasef, S.; Szpiech, M.; Wood, D.; Mayfield, R.; Molitch, M.; Schaefer, B.; Jampol, L.; Lyon, A.; Gill, M.; Strugula, Z.; Kaminski, L.; Mirza, R.; Simjanoski, E.; Ryan, D.; Kolterman, O.; Lorenzi, G.; Goldbaum, M.; Sivitz, W.; Bayless, M.; Counts, D.; Johnsonbaugh, S.; Hebdon, M.; Salemi, P.; Liss, R.; Donner, T.; Gordon, J.; Hemady, R.; Kowarski, A.; Ostrowski, D.; Steidl, S.; Jones, B.; Herman, W.H.; Martin, C.L.; Pop-Busui, R.; Sarma, A.; Albers, J.; Feldman, E.; Kim, K.; Elner, S.; Comer, G.; Gardner, T.; Hackel, R.; Prusak, R.; Goings, L.; Smith, A.; Gothrup, J.; Titus, P.; Lee, J.; Brandle, M.; Prosser, L.; Greene, D.A.; Stevens, M.J.; Vine, A.K.; Bantle, J.; Wimmergren, N.; Cochrane, A.; Olsen, T.; Steuer, E.; Rath, P.; Rogness, B.; Hainsworth, D.; Goldstein, D.; Hitt, S.; Giangiacomo, J.; Schade, D.S.; Canady, J.L.; Chapin, J.E.; Ketai, L.H.; Braunstein, C.S.; Bourne, P.A.; Schwartz, S.; Brucker, A.; Maschak-Carey, B.J.; Baker, L.; Orchard, T.; Silvers, N.; Ryan, C.; Songer, T.; Doft, B.; Olson, S.; Bergren, R.L.; Lobes, L.; Rath, P. Paczan; Becker, D.; Rubinstein, D.; Conrad, P.W.; Yalamanchi, S.; Drash, A.; Morrison, A.; Bernal, M.L.; Vaccaro-Kish, J.; Malone, J.; Pavan, P.R.; Grove, N.; Iyer, M.N.; Burrows, A.F.; Tanaka, E.A.; Gstalder, R.; Dagogo-Jack, S.; Wigley, C.; Ricks, H.; Kitabchi, A.; Murphy, M.B.; Moser, S.; Meyer, D.; Iannacone, A.; Chaum, E.; Yoser, S.; Bryer-Ash, M.; Schussler, S.; Lambeth, H.; Raskin, P.; Strowig, S.; Zinman, B.; Barnie, A.; Devenyi, R.; Mandelcorn, M.; Brent, M.; Rogers, S.; Gordon, A.; Palmer, J.; Catton, S.; Brunzell, J.; Wessells, H.; de Boer, I.H.; Hokanson, J.; Purnell, J.; Ginsberg, J.; Kinyoun, J.; Deeb, S.; Weiss, M.; Meekins, G.; Distad, J.; Van Ottingham, L.; Dupre, J.; Harth, J.; Nicolle, D.; Driscoll, M.; Mahon, J.; Canny, C.; May, M.; Lipps, J.; Agarwal, A.; Adkins, T.; Survant, L.; Pate, R.L.; Munn, G.E.; Lorenz, R.; Feman, S.; White, N.; Levandoski, L.; Boniuk, I.; Grand, G.; Thomas, M.; Joseph, D.D.; Blinder, K.; Shah, G.; Boniuk; Burgess; Santiago, J.; Tamborlane, W.; Gatcomb, P.; Stoessel, K.; Taylor, K.; Goldstein, J.; Novella, S.; Mojibian, H.; Cornfeld, D.; Lima, J.; Bluemke, D.; Turkbey, E.; van der Geest, R.J.; Liu, C.; Malayeri, A.; Jain, A.; Miao, C.; Chahal, H.; Jarboe, R.; Maynard, J.; Gubitosi-Klug, R.; Quin, J.; Gaston, P.; Palmert, M.; Trail, R.; Dahms, W.; Lachin, J.; Cleary, P.; Backlund, J.; Sun, W.; Braffett, B.; Klumpp, K.; Chan, K.; Diminick, L.; Rosenberg, D.; Petty, B.; Determan, A.; Kenny, D.; Rutledge, B.; Younes, Naji; Dews, L.; Hawkins, M.; Cowie, C.; Fradkin, J.; Siebert, C.; Eastman, R.; Danis, R.; Gangaputra, S.; Neill, S.; Davis, M.; Hubbard, L.; Wabers, H.; Burger, M.; Dingledine, J.; Gama, V.; Sussman, R.; Steffes, M.; Bucksa, J.; Nowicki, M.; Chavers, B.; O’Leary, D.; Polak, J.; Harrington, A.; Funk, L.; Crow, R.; Gloeb, B.; Thomas, S.; O’Donnell, C.; Soliman, E.; Zhang, Z.M.; Prineas, R.; Campbell, C.; Ryan, C.; Sandstrom, D.; Williams, T.; Geckle, M.; Cupelli, E.; Thoma, F.; Burzuk, B.; Woodfill, T.; Low, P.; Sommer, C.; Nickander, K.; Budoff, M.; Detrano, R.; Wong, N.; Fox, M.; Kim, L.; Oudiz, R.; Weir, G.; Espeland, M.; Manolio, T.; Rand, L.; Singer, D.; Stern, M.; Boulton, A.E.; Clark, C.; D’Agostino, R.; Lopes-Virella, M.; Garvey, W.T.; Lyons, T.J.; Jenkins, A.; Virella, G.; Jaffa, A.; Carter, Rickey; Lackland, D.; Brabham, M.; McGee, D.; Zheng, D.; Mayfield, R.K.; Boright, A.; Bull, S.; Sun, L.; Scherer, S.; Zinman, B.; Natarajan, R.; Miao, F.; Zhang, L.; Chen;, Z.; Nathan, D.M.; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K.H.; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J.; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G.; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W.; Williams, Cathy; Oostra, Ben A.; Teo, Yik-Ying; Hammond, Christopher J.; Stambolian, Dwight; Mackey, David A.; Klaver, Caroline C.W.; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N.

    2013-01-01

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. PMID:24144296

  12. Novel genetic loci underlying human intracranial volume identified through genome-wide association.

    PubMed

    Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-12-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρ genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.

  13. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility.

    PubMed

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J; Krueger, Gerald G; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T S; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L; Qureshi, Abrar A; de Bakker, Paul I W; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-04-23

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations.

  14. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility

    PubMed Central

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J.; Krueger, Gerald G.; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T. S.; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L.; Qureshi, Abrar A.; de Bakker, Paul I. W.; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-01-01

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations. PMID:25903422

  15. Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes.

    PubMed

    Li, Jiang; Yoshikawa, Akane; Brennan, Mark D; Ramsey, Timothy L; Meltzer, Herbert Y

    2018-02-01

    Biomarkers which predict response to atypical antipsychotic drugs (AAPDs) increases their benefit/risk ratio. We sought to identify common variants in genes which predict response to lurasidone, an AAPD, by associating genome-wide association study (GWAS) data and changes (Δ) in Positive And Negative Syndrome Scale (PANSS) scores from two 6-week randomized, placebo-controlled trials of lurasidone in schizophrenia (SCZ) patients. We also included SCZ risk SNPs identified by the Psychiatric Genomics Consortium using a polygenic risk analysis. The top genomic loci, with uncorrected p<10 -4 , include: 1) synaptic adhesion (PTPRD, LRRC4C, NRXN1, ILIRAPL1, SLITRK1) and scaffolding (MAGI1, MAGI2, NBEA) genes, both essential for synaptic function; 2) other synaptic plasticity-related genes (NRG1/3 and KALRN); 3) the neuron-specific RNA splicing regulator, RBFOX1; and 4) ion channel genes, e.g. KCNA10, KCNAB1, KCNK9 and CACNA2D3). Some genes predicted response for patients with both European and African Ancestries. We replicated some SNPs reported to predict response to other atypical APDs in other GWAS. Although none of the biomarkers reached genome-wide significance, many of the genes and associated pathways have previously been linked to SCZ. Two polygenic modeling approaches, GCTA-GREML and PLINK-Polygenic Risk Score, demonstrated that some risk genes related to neurodevelopment, synaptic biology, immune response, and histones, also contributed to prediction of response. The top hits predicting response to lurasidone did not predict improvement with placebo. This is the first evidence from clinical trials that SCZ risk SNPs are related to clinical response to an AAPD. These results need to be replicated in an independent sample. Copyright © 2017. Published by Elsevier B.V.

  16. GENOME-WIDE ASSOCIATION STUDY (GWAS) AND GENOME-WIDE BY ENVIRONMENT INTERACTION STUDY (GWEIS) OF DEPRESSIVE SYMPTOMS IN AFRICAN AMERICAN AND HISPANIC/LATINA WOMEN.

    PubMed

    Dunn, Erin C; Wiste, Anna; Radmanesh, Farid; Almli, Lynn M; Gogarten, Stephanie M; Sofer, Tamar; Faul, Jessica D; Kardia, Sharon L R; Smith, Jennifer A; Weir, David R; Zhao, Wei; Soare, Thomas W; Mirza, Saira S; Hek, Karin; Tiemeier, Henning; Goveas, Joseph S; Sarto, Gloria E; Snively, Beverly M; Cornelis, Marilyn; Koenen, Karestan C; Kraft, Peter; Purcell, Shaun; Ressler, Kerry J; Rosand, Jonathan; Wassertheil-Smoller, Sylvia; Smoller, Jordan W

    2016-04-01

    Genome-wide association studies (GWAS) have made little progress in identifying variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (GxE) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide by environment interaction study (GWEIS) of depressive symptoms. Using data from the SHARe cohort of the Women's Health Initiative, comprising African Americans (n = 7,179) and Hispanics/Latinas (n = 3,138), we examined genetic main effects and GxE with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20 kb from GPR139, P = 5.75 × 10(-8) ) and rs75407252 (intronic to CACNA2D3, P = 6.99 × 10(-7) ). In Hispanics/Latinas, the top signals were rs2532087 (located 27 kb from CD38, P = 2.44 × 10(-7) ) and rs4542757 (intronic to DCC, P = 7.31 × 10(-7) ). In the GEWIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; P = 4.10 × 10(-10) ; located 14 kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG = 0.95), suggesting that common variation underlying self-reported depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. Our results underscore the need for larger samples, more GEWIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities. © 2016 Wiley Periodicals, Inc.

  17. Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank.

    PubMed

    Hall, Lynsey S; Adams, Mark J; Arnau-Soler, Aleix; Clarke, Toni-Kim; Howard, David M; Zeng, Yanni; Davies, Gail; Hagenaars, Saskia P; Maria Fernandez-Pujals, Ana; Gibson, Jude; Wigmore, Eleanor M; Boutin, Thibaud S; Hayward, Caroline; Scotland, Generation; Porteous, David J; Deary, Ian J; Thomson, Pippa A; Haley, Chris S; McIntosh, Andrew M

    2018-01-10

    Few replicable genetic associations for Major Depressive Disorder (MDD) have been identified. Recent studies of MDD have identified common risk variants by using a broader phenotype definition in very large samples, or by reducing phenotypic and ancestral heterogeneity. We sought to ascertain whether it is more informative to maximize the sample size using data from all available cases and controls, or to use a sex or recurrent stratified subset of affected individuals. To test this, we compared heritability estimates, genetic correlation with other traits, variance explained by MDD polygenic score, and variants identified by genome-wide meta-analysis for broad and narrow MDD classifications in two large British cohorts - Generation Scotland and UK Biobank. Genome-wide meta-analysis of MDD in males yielded one genome-wide significant locus on 3p22.3, with three genes in this region (CRTAP, GLB1, and TMPPE) demonstrating a significant association in gene-based tests. Meta-analyzed MDD, recurrent MDD and female MDD yielded equivalent heritability estimates, showed no detectable difference in association with polygenic scores, and were each genetically correlated with six health-correlated traits (neuroticism, depressive symptoms, subjective well-being, MDD, a cross-disorder phenotype and Bipolar Disorder). Whilst stratified GWAS analysis revealed a genome-wide significant locus for male MDD, the lack of independent replication, and the consistent pattern of results in other MDD classifications suggests that phenotypic stratification using recurrence or sex in currently available sample sizes is currently weakly justified. Based upon existing studies and our findings, the strategy of maximizing sample sizes is likely to provide the greater gain.

  18. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese

    PubMed Central

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-01-01

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10−13, BCAS3), 9p24.2 (rs12236871, P=1.48 × 10−10, RFX3) and 11p15.5 (rs179785, P=1.28 × 10−8, KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis. PMID:25967671

  19. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese.

    PubMed

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-05-13

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10(-13), BCAS3), 9p24.2 (rs12236871, P=1.48 × 10(-10), RFX3) and 11p15.5 (rs179785, P=1.28 × 10(-8), KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis.

  20. GWAMA: software for genome-wide association meta-analysis.

    PubMed

    Mägi, Reedik; Morris, Andrew P

    2010-05-28

    Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  1. Genome-wide association study of colorectal cancer identifies six new susceptibility loci.

    PubMed

    Schumacher, Fredrick R; Schmit, Stephanie L; Jiao, Shuo; Edlund, Christopher K; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P; Harju, John F; Idos, Gregory E; Lejbkowicz, Flavio; Manion, Frank J; McDonnell, Kevin; McNeil, Caroline E; Melas, Marilena; Rennert, Hedy S; Shi, Wei; Thomas, Duncan C; Van Den Berg, David J; Hutter, Carolyn M; Aragaki, Aaron K; Butterbach, Katja; Caan, Bette J; Carlson, Christopher S; Chanock, Stephen J; Curtis, Keith R; Fuchs, Charles S; Gala, Manish; Giovannucc, Edward L; Giocannucci, Edward L; Gogarten, Stephanie M; Hayes, Richard B; Henderson, Brian; Hunter, David J; Jackson, Rebecca D; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Kury, Sebastian; LaCroix, Andrea; Laurie, Cathy C; Laurie, Cecelia A; Lemire, Mathieu; Lemire, Mathiew; Levine, David; Ma, Jing; Makar, Karen W; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M; Wu, Kana; Kono, Suminori; West, Dee W; Berndt, Sonja I; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Coetzee, Gerhard A; Conti, David V; Duggan, David; Figueiredo, Jane C; Fortini, Barbara K; Gallinger, Steven J; Gauderman, W James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A; Potter, John D; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B; Peters, Ulrike

    2015-07-07

    Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.

  2. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries.

    PubMed

    Baurley, James W; Edlund, Christopher K; Pardamean, Carissa I; Conti, David V; Krasnow, Ruth; Javitz, Harold S; Hops, Hyman; Swan, Gary E; Benowitz, Neal L; Bergen, Andrew W

    2016-09-01

    Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3'-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan-continental population biomarkers for nicotine metabolism. This

  3. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  4. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    PubMed

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  5. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    PubMed Central

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A; Spritz, Richard A

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from destruction of melanocytes1, with epidemiologic association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1, GWAS2), we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We carried out a third GWAS (GWAS3) in EUR subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new loci and 7 suggestive loci, most encoding immune and apoptotic regulators, some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some corresponding to eQTL at these loci. Together, the identified genes provide a framework for vitiligo genetic architecture and pathobiology, highlight relationships to other autoimmune diseases and melanoma, and offer potential targets for treatment. PMID:27723757

  6. Genome-wide association analysis identifies three new breast cancer susceptibility loci.

    PubMed

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; dos Santos Silva, Isabel; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans B L; Fasching, Peter A; Lux, Michael P; Beckmann, Matthias W; Ekici, Arif B; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Alonso, M Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V; Antonenkova, Natalia N; Rogov, Yuri I; Karstens, Johann H; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnaes, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J; Tollenaar, Rob A E M; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J; Hollestelle, Antoinette; Oldenburg, Rogier A; van den Ouweland, Ans M W; Cox, Angela; Reed, Malcolm W R; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A J; Chenevix-Trench, Georgia; Pharoah, Paul D P; Lathrop, Mark; Dunning, Alison M; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2012-01-22

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10(-35)), 12q24 (rs1292011; P = 4.3 × 10(-19)) and 21q21 (rs2823093; P = 1.1 × 10(-12)). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.

  7. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    PubMed Central

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; Silva, Isabel dos Santos; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans BL; Fasching, Peter A.; Lux, Michael P.; Beckmann, Matthias W.; Ekici, Arif B.; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L.; Alonso, M. Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Rogov, Yuri I.; Karstens, Johann H.; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J.; Tollenaar, Rob A.E.M.; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J.; Hollestelle, Antoinette; Oldenburg, Rogier A.; van den Ouweland, Ans M.W.; Cox, Angela; Reed, Malcolm WR; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A. J.; Chenevix-Trench, Georgia; Pharoah, Paul D.P.; Lathrop, Mark; Dunning, Alison M.; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ~ 8% of the heritability of the disease. We followed up 72 promising associations from two independent Genome Wide Association Studies (GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and nine breast cancer GWAS. We identified three new breast cancer risk loci on 12p11 (rs10771399; P=2.7 × 10−35), 12q24 (rs1292011; P=4.3×10−19) and 21q21 (rs2823093; P=1.1×10−12). SNP rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) plays a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, while NRIP1 (21q21) encodes an ER co-factor and has a role in the regulation of breast cancer cell growth. PMID:22267197

  8. META-ANALYSIS OF GENOME-WIDE STUDIES IDENTIFIES WNT16 AND ESR1 SNPS ASSOCIATED WITH BONE MINERAL DENSITY IN PREMENOPAUSAL WOMEN

    PubMed Central

    Koller, Daniel L.; Zheng, Hou-Feng; Karasik, David; Yerges-Armstrong, Laura; Liu, Ching-Ti; McGuigan, Fiona; Kemp, John P.; Giroux, Sylvie; Lai, Dongbing; Edenberg, Howard J.; Peacock, Munro; Czerwinski, Stefan A.; Choh, Audrey C.; McMahon, George; St Pourcain, Beate; Timpson, Nicholas J.; Lawlor, Debbie A; Evans, David M; Towne, Bradford; Blangero, John; Carless, Melanie A.; Kammerer, Candace; Goltzman, David; Kovacs, Christopher S.; Prior, Jerilynn C.; Spector, Tim D.; Rousseau, Francois; Tobias, Jon H.; Akesson, Kristina; Econs, Michael J.; Mitchell, Braxton D.; Richards, J. Brent; Kiel, Douglas P.; Foroud, Tatiana

    2013-01-01

    Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous SNPs of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n= 4,061 women, ages 20 to 45) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. Following imputation, age- and weight-adjusted BMD values were tested for association with each SNP. Association of a SNP in the WNT16 gene (rs3801387; p=1.7 × 10−9) and multiple SNPs in the ESR1/C6orf97 (rs4870044; p=1.3 × 10−8) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven Replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n=5,597 for femoral neck; 4,744 for lumbar spine). When the data from the Discovery and Replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p=1.3 × 10−11; ESR1/C6orf97 joint p= 1.4 × 10−10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p< 1 × 10−5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. PMID:23074152

  9. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women.

    PubMed

    Koller, Daniel L; Zheng, Hou-Feng; Karasik, David; Yerges-Armstrong, Laura; Liu, Ching-Ti; McGuigan, Fiona; Kemp, John P; Giroux, Sylvie; Lai, Dongbing; Edenberg, Howard J; Peacock, Munro; Czerwinski, Stefan A; Choh, Audrey C; McMahon, George; St Pourcain, Beate; Timpson, Nicholas J; Lawlor, Debbie A; Evans, David M; Towne, Bradford; Blangero, John; Carless, Melanie A; Kammerer, Candace; Goltzman, David; Kovacs, Christopher S; Prior, Jerilynn C; Spector, Tim D; Rousseau, Francois; Tobias, Jon H; Akesson, Kristina; Econs, Michael J; Mitchell, Braxton D; Richards, J Brent; Kiel, Douglas P; Foroud, Tatiana

    2013-03-01

    Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous single-nucleotide polymorphisms (SNPs) of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n = 4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age- and weight-adjusted bone-mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p = 1.7 × 10(-9) ) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p = 1.3 × 10(-8) ) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n = 5597 for femoral neck; n = 4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p = 1.3 × 10(-11) ; ESR1/C6orf97 joint p = 1.4 × 10(-10) ). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p < 1 × 10(-5) ). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the

  10. Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations

    PubMed Central

    Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M

    2014-01-01

    Aims Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Methods Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Results Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10−9) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10−16), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. Conclusions In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. PMID:24528284

  11. Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.

    PubMed

    Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M

    2014-08-01

    Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10(-9) ) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10(-16) ), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. © 2014 The British Pharmacological Society.

  12. Ethnic specificity of lupus-associated loci identified in a genome-wide association study in Korean women.

    PubMed

    Lee, Hye-Soon; Kim, Taehyeung; Bang, So Young; Na, Young Ji; Kim, Il; Kim, Kwangwoo; Kim, Jae-Hoon; Chung, Yeun-Jun; Shin, Hyoung Doo; Kang, Young Mo; Shim, Seung-Cheol; Suh, Chang-Hee; Park, Yong-Beom; Kim, Jong-Sung; Kang, Changwon; Bae, Sang-Cheol

    2014-06-01

    To identify novel genetic candidates for systemic lupus erythematosus (SLE) in the Korean population, and to validate the risk loci for SLE identified in previous genome-wide association studies (GWAS). We performed a GWAS in 400 Korean female SLE patients and 445 controls. Selected single-nucleotide polymorphisms (SNP) were then replicated in an independent cohort of 385 SLE patients and 583 controls (replication cohort 1), and in a further 811 SLE patients and 1502 controls (replication cohort 2). In the GWAS phase, rs9275428 located near HLA-DQB1 showed the strongest association with SLE (OR 0.50, false discovery rate (FDR) p=3.07×10(-6)). Although no loci reached genome-wide significance outside major histocompatibility complex (MHC), C8orf13-BLK, STAT4, CSMD1, DIAPH3, GLDC and TNFSF4 showed FDR p < 0.05. Our results suggest that STAT4, BLK, IRF5, PTTG1-miR-146a, UBE2L3 and TNFAIP3 are shared susceptibility loci among Caucasians and Asians, while ETS1, IKZF1, SLC15A4 are likely to be Asian-specific loci. In a combined analysis of 1596 SLE patients and 2540 controls for selected 22 candidate SNP, STAT4 and BLK as positive controls showed a strong association with SLE (FDR p=9.85×10(-13) and 2.28×10(-8), respectively). Of these, 16 candidates (PEX5L, TRAJ50, MYO18B, SOS1, ARHGAP26, SMURF1, CADPS, HAND1, FAM78B, DIAPH3, TBL1XR1, CSMD1, ZBTB20, C3orf21, HIPK1 and AP001042.1) showed only nominal significance (7.05×10(-4)≤FDR p≤4.38×10(-2)). There are similarities and differences in genetic susceptibility for SLE between Caucasian and Asian ethnic groups. Although 16 putative novel loci for SLE have been suggested in the Korean population, further research on a larger sample is required to discriminate truth from error.

  13. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway

    USDA-ARS?s Scientific Manuscript database

    Low plasma B-vitamin levels and elevated homocysteine have been associated with cancer, cardiovascular disease, and neurodegenerative disorders. Common variants in FUT2 on chromosome 19q13 were associated with plasma vitamin B12 levels among women in a genome-wide association study (GWAS) in the Nur...

  14. A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes

    PubMed Central

    Meng, Jia; Kanzaki, Gregory; Meas, Diane; Lam, Christopher K.; Crummer, Heather; Tain, Justina; Xu, H. Howard

    2013-01-01

    Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250,000 library transformants for conditional growth-inhibitory recombinant clones from two shot-gun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer-sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes while 18 originated from non-essential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12 fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression. PMID:22268863

  15. Genome-wide screening and identification of antigens for rickettsial vaccine development

    USDA-ARS?s Scientific Manuscript database

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  16. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment.

    PubMed

    Wang, Zhaoxi; Claus Henn, Birgit; Wang, Chaolong; Wei, Yongyue; Su, Li; Sun, Ryan; Chen, Han; Wagner, Peter J; Lu, Quan; Lin, Xihong; Wright, Robert; Bellinger, David; Kile, Molly; Mazumdar, Maitreyi; Tellez-Rojo, Martha Maria; Schnaas, Lourdes; Christiani, David C

    2017-07-28

    Neurodevelopment is a complex process involving both genetic and environmental factors. Prenatal exposure to lead (Pb) has been associated with lower performance on neurodevelopmental tests. Adverse neurodevelopmental outcomes are more frequent and/or more severe when toxic exposures interact with genetic susceptibility. To explore possible loci associated with increased susceptibility to prenatal Pb exposure, we performed a genome-wide gene-environment interaction study (GWIS) in young children from Mexico (n = 390) and Bangladesh (n = 497). Prenatal Pb exposure was estimated by cord blood Pb concentration. Neurodevelopment was assessed using the Bayley Scales of Infant Development. We identified a locus on chromosome 8, containing UNC5D, and demonstrated evidence of its genome-wide significance with mental composite scores (rs9642758, p meta  = 4.35 × 10 -6 ). Within this locus, the joint effects of two independent single nucleotide polymorphisms (SNPs, rs9642758 and rs10503970) had a p-value of 4.38 × 10 -9 for mental composite scores. Correlating GWIS results with in vitro transcriptomic profiles identified one common gene, SLC1A5, which is involved in synaptic function, neuronal development, and excitotoxicity. Further analysis revealed interconnected interactions that formed a large network of 52 genes enriched with oxidative stress genes and neurodevelopmental genes. Our findings suggest that certain genetic polymorphisms within/near genes relevant to neurodevelopment might modify the toxic effects of Pb exposure via oxidative stress.

  17. Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels

    PubMed Central

    van Rooij, Frank J. A.; Ehret, Georg B.; Boerwinkle, Eric; Felix, Janine F.; Leak, Tennille S.; Harris, Tamara B.; Yang, Qiong; Dehghan, Abbas; Aspelund, Thor; Katz, Ronit; Homuth, Georg; Kocher, Thomas; Rettig, Rainer; Ried, Janina S.; Gieger, Christian; Prucha, Hanna; Pfeufer, Arne; Meitinger, Thomas; Coresh, Josef; Hofman, Albert; Sarnak, Mark J.; Chen, Yii-Der Ida; Uitterlinden, André G.; Chakravarti, Aravinda; Psaty, Bruce M.; van Duijn, Cornelia M.; Kao, W. H. Linda; Witteman, Jacqueline C. M.; Gudnason, Vilmundur; Siscovick, David S.; Fox, Caroline S.; Köttgen, Anna

    2010-01-01

    Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ∼2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5×10−8) or suggestive associations (p<4×10−7) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4×10−7. Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels. PMID:20700443

  18. Genome-wide Association Study Identifies Loci for the Polled Phenotype in Yak

    PubMed Central

    Wu, Xiaoyun; Wang, Kun; Ding, Xuezhi; Wang, Mingcheng; Chu, Min; Xie, Xiuyue; Qiu, Qiang; Yan, Ping

    2016-01-01

    The absence of horns, known as the polled phenotype, is an economically important trait in modern yak husbandry, but the genomic structure and genetic basis of this phenotype have yet to be discovered. Here, we conducted a genome-wide association study with a panel of 10 horned and 10 polled yaks using whole genome sequencing. We mapped the POLLED locus to a 200-kb interval, which comprises three protein-coding genes. Further characterization of the candidate region showed recent artificial selection signals resulting from the breeding process. We suggest that expressional variations rather than structural variations in protein probably contribute to the polled phenotype. Our results not only represent the first and important step in establishing the genomic structure of the polled region in yak, but also add to our understanding of the polled trait in bovid species. PMID:27389700

  19. A genome-wide association study in soybean

    USDA-ARS?s Scientific Manuscript database

    A genome-wide association study (GWAS) was performed to estimate the feasibility of identifying genes controlling the quantitative traits, seed protein and oil concentration, in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleo...

  20. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    PubMed Central

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-01-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. PMID:15084750

  1. Genome-Wide siRNA-Based Functional Genomics of Pigmentation Identifies Novel Genes and Pathways That Impact Melanogenesis in Human Cells

    PubMed Central

    Bodemann, Brian; Petersen, Sean; Aruri, Jayavani; Koshy, Shiney; Richardson, Zachary; Le, Lu Q.; Krasieva, Tatiana; Roth, Michael G.; Farmer, Pat; White, Michael A.

    2008-01-01

    Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo), neurologic disorders (Parkinson's disease), auditory disorders (Waardenburg's syndrome), and opthalmologic disorders (age related macular degeneration). Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi) provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype and operate

  2. Genome-wide association analysis of age-at-onset in Alzheimer’s disease

    PubMed Central

    Kamboh, M. Ilyas; Barmada, M. Michael; Demirci, F. Yesim; Minster, Ryan L.; Carrasquillo, Minerva M.; Pankratz, V. Shane; Younkin, Steven G.; Saykin, Andrew J.; Sweet, Robert A.; Feingold, Eleanor; DeKosky, Steven T.; Lopez, Oscar L.

    2011-01-01

    The risk of Alzheimer’s disease (AD) is strongly determined by genetic factors and recent genome-wide association studies (GWAS) have identified several genes for the disease risk. In addition to the disease risk, age-at-onset (AAO) of AD has also strong genetic component with an estimated heritability of 42%. Identification of AAO genes may help to understand the biological mechanisms that regulate the onset of the disease. Here we report the first GWAS focused on identifying genes for the AAO of AD. We performed a genome-wide meta analysis on 3 samples comprising a total of 2,222 AD cases. A total of ~2.5 million directly genotyped or imputed SNPs were analyzed in relation to AAO of AD. As expected, the most significant associations were observed in the APOE region on chromosome 19 where several SNPs surpassed the conservative genome-wide significant threshold (P<5E-08). The most significant SNP outside the APOE region was located in the DCHS2 gene on chromosome 4q31.3 (rs1466662; P=4.95E-07). There were 19 additional significant SNPs in this region at P<1E-04 and the DCHS2 gene is expressed in the cerebral cortex and thus is a potential candidate for affecting AAO in AD. These findings need to be confirmed in additional well-powered samples. PMID:22005931

  3. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  4. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error.

    PubMed

    Cheng, Ching-Yu; Schache, Maria; Ikram, M Kamran; Young, Terri L; Guggenheim, Jeremy A; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J M; Barathi, Veluchamy A; Liao, Jiemin; Hysi, Pirro G; Bailey-Wilson, Joan E; St Pourcain, Beate; Kemp, John P; McMahon, George; Timpson, Nicholas J; Evans, David M; Montgomery, Grant W; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F; Amin, Najaf; van Leeuwen, Elisabeth M; Wilson, James F; Pennell, Craig E; van Duijn, Cornelia M; de Jong, Paulus T V M; Vingerling, Johannes R; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Burdon, Kathryn P; Craig, Jamie E; Iyengar, Sudha K; Igo, Robert P; Lass, Jonathan H; Chew, Emily Y; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E; Hosseini, S Mohsen; Paterson, Andrew D; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K H; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W; Williams, Cathy; Oostra, Ben A; Teo, Yik-Ying; Hammond, Christopher J; Stambolian, Dwight; Mackey, David A; Klaver, Caroline C W; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N

    2013-08-08

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes.

    PubMed

    Murat, Claude; Zampieri, Elisa; Vallino, Marta; Daghino, Stefania; Perotto, Silvia; Bonfante, Paola

    2011-05-01

    Characterization of genomic variation among different microbial species, or different strains of the same species, is a field of significant interest with a wide range of potential applications. We have investigated the genomic variation in mycorrhizal fungal genomes through genomic suppressive subtractive hybridization. The comparison was between phylogenetically distant and close truffle species (Tuber spp.), and between isolates of the ericoid mycorrhizal fungus Oidiodendron maius featuring different degrees of metal tolerance. In the interspecies experiment, almost all the sequences that were identified in the Tuber melanosporum genome and absent in Tuber borchii and Tuber indicum corresponded to transposable elements. In the intraspecies comparison, some specific sequences corresponded to regions coding for enzymes, among them a glutathione synthetase known to be involved in metal tolerance. This approach is a quick and rather inexpensive tool to develop molecular markers for mycorrhizal fungi tracking and barcoding, to identify functional genes and to investigate the genome plasticity, adaptation and evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

    PubMed

    Nicolas, Aude; Kenna, Kevin P; Renton, Alan E; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A; Kenna, Brendan J; Nalls, Mike A; Keagle, Pamela; Rivera, Alberto M; van Rheenen, Wouter; Murphy, Natalie A; van Vugt, Joke J F A; Geiger, Joshua T; Van der Spek, Rick A; Pliner, Hannah A; Shankaracharya; Smith, Bradley N; Marangi, Giuseppe; Topp, Simon D; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D; Kenna, Aoife; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B; Gitler, Aaron D; Harris, Tim; Myers, Richard M; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Svendsen, Clive N; Thompson, Leslie M; Van Eyk, Jennifer E; Berry, James D; Miller, Timothy M; Kolb, Stephen J; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P; Sorarù, Gianni; Cereda, Cristina; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W; Sidle, Katie C; Malaspina, Andrea; Hardy, John; Singleton, Andrew B; Johnson, Janel O; Arepalli, Sampath; Sapp, Peter C; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; Ten Asbroek, Anneloor L M A; Muñoz-Blanco, José Luis; Hernandez, Dena G; Ding, Jinhui; Gibbs, J Raphael; Scholz, Sonja W; Floeter, Mary Kay; Campbell, Roy H; Landi, Francesco; Bowser, Robert; Pulst, Stefan M; Ravits, John M; MacGowan, Daniel J L; Kirby, Janine; Pioro, Erik P; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L; Brady, Christopher B; Kowall, Neil W; Troncoso, Juan C; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D; Kamel, Freya; Van Den Bosch, Ludo; Baloh, Robert H; Strom, Tim M; Meitinger, Thomas; Shatunov, Aleksey; Van Eijk, Kristel R; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell L; Van Es, Michael A; Weber, Markus; Boylan, Kevin B; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen E; Basak, A Nazli; Mora, Jesús S; Drory, Vivian E; Shaw, Pamela J; Turner, Martin R; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L; Fifita, Jennifer A; Nicholson, Garth A; Blair, Ian P; Rouleau, Guy A; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W; Maragakis, Nicholas J; Rothstein, Jeffrey D; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A; Feldman, Eva L; Gibson, Summer B; Taroni, Franco; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Camu, William; Trojanowski, John Q; Van Deerlin, Vivianna M; Brown, Robert H; van den Berg, Leonard H; Veldink, Jan H; Harms, Matthew B; Glass, Jonathan D; Stone, David J; Tienari, Pentti; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E; Traynor, Bryan J; Landers, John E

    2018-03-21

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C. V. Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers. PMID:27857720

  8. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C V Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum , indicating a population bottleneck during domestication of C. baccatum . In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum , 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index ( F ST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.

  9. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  10. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    PubMed

    Raviram, Ramya; Rocha, Pedro P; Müller, Christian L; Miraldi, Emily R; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina; Bonneau, Richard; Skok, Jane A

    2016-03-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  11. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments

    PubMed Central

    Raviram, Ramya; Rocha, Pedro P.; Müller, Christian L.; Miraldi, Emily R.; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina

    2016-01-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or “bait”) that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes. PMID:26938081

  12. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci

    PubMed Central

    Tromp, Gerard; Kuivaniemi, Helena; Gretarsdottir, Solveig; Baas, Annette F.; Giusti, Betti; Strauss, Ewa; van‘t Hof, Femke N.G.; Webb, Thomas R.; Erdman, Robert; Ritchie, Marylyn D.; Elmore, James R.; Verma, Anurag; Pendergrass, Sarah; Kullo, Iftikhar J.; Ye, Zi; Peissig, Peggy L.; Gottesman, Omri; Verma, Shefali S.; Malinowski, Jennifer; Rasmussen-Torvik, Laura J.; Borthwick, Kenneth M.; Smelser, Diane T.; Crosslin, David R.; de Andrade, Mariza; Ryer, Evan J.; McCarty, Catherine A.; Böttinger, Erwin P.; Pacheco, Jennifer A.; Crawford, Dana C.; Carrell, David S.; Gerhard, Glenn S.; Franklin, David P.; Carey, David J.; Phillips, Victoria L.; Williams, Michael J.A.; Wei, Wenhua; Blair, Ross; Hill, Andrew A.; Vasudevan, Thodor M.; Lewis, David R.; Thomson, Ian A.; Krysa, Jo; Hill, Geraldine B.; Roake, Justin; Merriman, Tony R.; Oszkinis, Grzegorz; Galora, Silvia; Saracini, Claudia; Abbate, Rosanna; Pulli, Raffaele; Pratesi, Carlo; Saratzis, Athanasios; Verissimo, Ana R.; Bumpstead, Suzannah; Badger, Stephen A.; Clough, Rachel E.; Cockerill, Gillian; Hafez, Hany; Scott, D. Julian A.; Futers, T. Simon; Romaine, Simon P.R.; Bridge, Katherine; Griffin, Kathryn J.; Bailey, Marc A.; Smith, Alberto; Thompson, Matthew M.; van Bockxmeer, Frank M.; Matthiasson, Stefan E.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Blankensteijn, Jan D.; Teijink, Joep A.W.; Wijmenga, Cisca; de Graaf, Jacqueline; Kiemeney, Lambertus A.; Lindholt, Jes S.; Hughes, Anne; Bradley, Declan T.; Stirrups, Kathleen; Golledge, Jonathan; Norman, Paul E.; Powell, Janet T.; Humphries, Steve E.; Hamby, Stephen E.; Goodall, Alison H.; Nelson, Christopher P.; Sakalihasan, Natzi; Courtois, Audrey; Ferrell, Robert E.; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Eicher, John D.; Johnson, Andrew D.; Betsholtz, Christer; Ruusalepp, Arno; Franzén, Oscar; Schadt, Eric E.; Björkegren, Johan L.M.; Lipovich, Leonard; Drolet, Anne M.; Verhoeven, Eric L.; Zeebregts, Clark J.; Geelkerken, Robert H.; van Sambeek, Marc R.; van Sterkenburg, Steven M.; de Vries, Jean-Paul; Stefansson, Kari; Thompson, John R.; de Bakker, Paul I.W.; Deloukas, Panos; Sayers, Robert D.; Harrison, Seamus C.; van Rij, Andre M.; Samani, Nilesh J.

    2017-01-01

    Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies. Methods and Results: Through a meta-analysis of 6 genome-wide association study data sets and a validation study totaling 10 204 cases and 107 766 controls, we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches, we observed no new associations between the lead AAA single nucleotide polymorphisms and coronary artery disease, blood pressure, lipids, or diabetes mellitus. Network analyses identified ERG, IL6R, and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA seem to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease. PMID:27899403

  13. Pooled genome wide association detects association upstream of FCRL3 with Graves' disease.

    PubMed

    Khong, Jwu Jin; Burdon, Kathryn P; Lu, Yi; Laurie, Kate; Leonardos, Lefta; Baird, Paul N; Sahebjada, Srujana; Walsh, John P; Gajdatsy, Adam; Ebeling, Peter R; Hamblin, Peter Shane; Wong, Rosemary; Forehan, Simon P; Fourlanos, Spiros; Roberts, Anthony P; Doogue, Matthew; Selva, Dinesh; Montgomery, Grant W; Macgregor, Stuart; Craig, Jamie E

    2016-11-18

    Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10 -8 ). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10 -4 . Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.

  14. Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Kim, Deog Kyeom; Cho, Michael H.; Hersh, Craig P.; Lomas, David A.; Miller, Bruce E.; Kong, Xiangyang; Bakke, Per; Gulsvik, Amund; Agustí, Alvar; Wouters, Emiel; Celli, Bartolome; Coxson, Harvey; Vestbo, Jørgen; MacNee, William; Yates, Julie C.; Rennard, Stephen; Litonjua, Augusto; Qiu, Weiliang; Beaty, Terri H.; Crapo, James D.; Riley, John H.; Tal-Singer, Ruth

    2012-01-01

    Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility. Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD. Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated. Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts. Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552). PMID

  15. A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes.

    PubMed

    Meng, Jia; Kanzaki, Gregory; Meas, Diane; Lam, Christopher K; Crummer, Heather; Tain, Justina; Xu, H Howard

    2012-04-01

    Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250 000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  17. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.

    PubMed

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson L S; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances M K; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando

    2012-04-15

    Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

  18. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes

    PubMed Central

    Matsuo, Hirotaka; Yamamoto, Ken; Nakaoka, Hirofumi; Nakayama, Akiyoshi; Sakiyama, Masayuki; Chiba, Toshinori; Takahashi, Atsushi; Nakamura, Takahiro; Nakashima, Hiroshi; Takada, Yuzo; Danjoh, Inaho; Shimizu, Seiko; Abe, Junko; Kawamura, Yusuke; Terashige, Sho; Ogata, Hiraku; Tatsukawa, Seishiro; Yin, Guang; Okada, Rieko; Morita, Emi; Naito, Mariko; Tokumasu, Atsumi; Onoue, Hiroyuki; Iwaya, Keiichi; Ito, Toshimitsu; Takada, Tappei; Inoue, Katsuhisa; Kato, Yukio; Nakamura, Yukio; Sakurai, Yutaka; Suzuki, Hiroshi; Kanai, Yoshikatsu; Hosoya, Tatsuo; Hamajima, Nobuyuki; Inoue, Ituro; Kubo, Michiaki; Ichida, Kimiyoshi; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-01-01

    Objective Gout, caused by hyperuricaemia, is a multifactorial disease. Although genome-wide association studies (GWASs) of gout have been reported, they included self-reported gout cases in which clinical information was insufficient. Therefore, the relationship between genetic variation and clinical subtypes of gout remains unclear. Here, we first performed a GWAS of clinically defined gout cases only. Methods A GWAS was conducted with 945 patients with clinically defined gout and 1213 controls in a Japanese male population, followed by replication study of 1048 clinically defined cases and 1334 controls. Results Five gout susceptibility loci were identified at the genome-wide significance level (p<5.0×10−8), which contained well-known urate transporter genes (ABCG2 and SLC2A9) and additional genes: rs1260326 (p=1.9×10−12; OR=1.36) of GCKR (a gene for glucose and lipid metabolism), rs2188380 (p=1.6×10−23; OR=1.75) of MYL2-CUX2 (genes associated with cholesterol and diabetes mellitus) and rs4073582 (p=6.4×10−9; OR=1.66) of CNIH-2 (a gene for regulation of glutamate signalling). The latter two are identified as novel gout loci. Furthermore, among the identified single-nucleotide polymorphisms (SNPs), we demonstrated that the SNPs of ABCG2 and SLC2A9 were differentially associated with types of gout and clinical parameters underlying specific subtypes (renal underexcretion type and renal overload type). The effect of the risk allele of each SNP on clinical parameters showed significant linear relationships with the ratio of the case–control ORs for two distinct types of gout (r=0.96 [p=4.8×10−4] for urate clearance and r=0.96 [p=5.0×10−4] for urinary urate excretion). Conclusions Our findings provide clues to better understand the pathogenesis of gout and will be useful for development of companion diagnostics. PMID:25646370

  19. Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci.

    PubMed

    Stafford-Smith, Mark; Li, Yi-Ju; Mathew, Joseph P; Li, Yen-Wei; Ji, Yunqi; Phillips-Bute, Barbara G; Milano, Carmelo A; Newman, Mark F; Kraus, William E; Kertai, Miklos D; Shah, Svati H; Podgoreanu, Mihai V

    2015-10-01

    Acute kidney injury (AKI) is a common, serious complication of cardiac surgery. Since prior studies have supported a genetic basis for postoperative AKI, we conducted a genome-wide association study (GWAS) for AKI following coronary bypass graft (CABG) surgery. The discovery data set consisted of 873 nonemergent CABG surgery patients with cardiopulmonary bypass (PEGASUS), while a replication data set had 380 cardiac surgical patients (CATHGEN). Single-nucleotide polymorphism (SNP) data were based on Illumina Human610-Quad (PEGASUS) and OMNI1-Quad (CATHGEN) BeadChips. We used linear regression with adjustment for a clinical AKI risk score to test SNP associations with the postoperative peak rise relative to preoperative serum creatinine concentration as a quantitative AKI trait. Nine SNPs meeting significance in the discovery set were detected. The rs13317787 in GRM7|LMCD1-AS1 intergenic region (3p21.6) and rs10262995 in BBS9 (7p14.3) were replicated with significance in the CATHGEN data set and exhibited significantly strong overall association following meta-analysis. Additional fine mapping using imputed SNPs across these two regions and meta-analysis found genome-wide significance at the GRM7|LMCD1-AS1 locus and a significantly strong association at BBS9. Thus, through an unbiased GWAS approach, we found two new loci associated with post-CABG AKI providing new insights into the pathogenesis of perioperative AKI.

  20. Reparameterization of PAM50 Expression Identifies Novel Breast Tumor Dimensions and Leads to Discovery of a Genome-Wide Significant Breast Cancer Locus at 12q15.

    PubMed

    Madsen, Michael J; Knight, Stacey; Sweeney, Carol; Factor, Rachel; Salama, Mohamed; Stijleman, Inge J; Rajamanickam, Venkatesh; Welm, Bryan E; Arunachalam, Sasi; Jones, Brandt; Rachamadugu, Rakesh; Rowe, Kerry; Cessna, Melissa H; Thomas, Alun; Kushi, Lawrence H; Caan, Bette J; Bernard, Philip S; Camp, Nicola J

    2018-06-01

    Background: Breast tumor subtyping has failed to provide impact in susceptibility genetics. The PAM50 assay categorizes breast tumors into: Luminal A, Luminal B, HER2-enriched and Basal-like. However, tumors are often more complex than simple categorization can describe. The identification of heritable tumor characteristics has potential to decrease heterogeneity and increase power for gene finding. Methods: We used 911 sporadic breast tumors with PAM50 expression data to derive tumor dimensions using principal components (PC). Dimensions in 238 tumors from high-risk pedigrees were compared with the sporadic tumors. Proof-of-concept gene mapping, informed by tumor dimension, was performed using Shared Genomic Segment (SGS) analysis. Results: Five dimensions (PC1-5) explained the majority of the PAM50 expression variance: three captured intrinsic subtype, two were novel (PC3, PC5). All five replicated in 745 TCGA tumors. Both novel dimensions were significantly enriched in the high-risk pedigrees (intrinsic subtypes were not). SGS gene-mapping in a pedigree identified a 0.5 Mb genome-wide significant region at 12q15 This region segregated through 32 meioses to 8 breast cancer cases with extreme PC3 tumors ( P = 2.6 × 10 -8 ). Conclusions: PC analysis of PAM50 gene expression revealed multiple independent, quantitative measures of tumor diversity. These tumor dimensions show evidence for heritability and potential as powerful traits for gene mapping. Impact: Our study suggests a new approach to describe tumor expression diversity, provides new avenues for germline studies, and proposes a new breast cancer locus. Similar reparameterization of expression patterns may inform other studies attempting to model the effects of tumor heterogeneity. Cancer Epidemiol Biomarkers Prev; 27(6); 644-52. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits.

    PubMed

    Justice, Anne E; Winkler, Thomas W; Feitosa, Mary F; Graff, Misa; Fisher, Virginia A; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S; Ahluwalia, Tarunveer S; Chu, Audrey Y; Heard-Costa, Nancy L; Lim, Elise; Perez, Jeremiah; Eicher, John D; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E; Jackson, Anne U; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P S; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A; Stančáková, Alena; Strawbridge, Rona J; Stringham, Heather M; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vedantam, Sailaja L; Verweij, Niek; Vink, Jacqueline M; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E; Zubair, Niha; Abecasis, Gonçalo R; Adair, Linda S; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J L; Bartz, Traci M; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M; Buyske, Steve; Campbell, Harry; Chambers, John C; Collins, Francis S; Curran, Joanne E; de Borst, Gert J; de Craen, Anton J M; de Geus, Eco J C; Dedoussis, George; Delgado, Graciela E; den Ruijter, Hester M; Eiriksdottir, Gudny; Eriksson, Anna L; Esko, Tõnu; Faul, Jessica D; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas D; Heath, Andrew C; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A; Jørgensen, Marit E; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Leander, Karin; Lee, Nanette R; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A F; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G; McKenzie, Colin A; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W; Musk, Aw Bill; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Oldehinkel, Albertine J; Olden, Matthias; Ong, Ken K; Padmanabhan, Sandosh; Peyser, Patricia A; Pisinger, Charlotta; Porteous, David J; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rasmussen-Torvik, Laura J; Rawal, Rajesh; Rice, Treva; Ridker, Paul M; Rose, Lynda M; Bien, Stephanie A; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A; Sennblad, Bengt; Siemelink, Marten A; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A; Stott, David J; Swertz, Morris A; Swift, Amy J; Taylor, Kent D; Tayo, Bamidele O; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R G J; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A; Boomsma, Dorret I; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I; Chen, Yii-DerIda; Chines, Peter S; Cooper, Richard S; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans-Jörgen; Gudnason, Vilmundur; Haiman, Christopher A; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D; Wouter Jukema, J; Kardia, Sharon L R; Kivimaki, Mika; Kooner, Jaspal S; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I; Metspalu, Andres; Morris, Andrew P; Ohlsson, Claes; Palmer, Lyle J; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Smith, Blair H; Sørensen, Thorkild I A; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J; Weir, David R; Whitfield, John B; Wilson, James F; Tyrrell, Jessica; Frayling, Timothy M; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S; Hirschhorn, Joel N; Hunter, David J; Spector, Tim D; Strachan, David P; van Duijn, Cornelia M; Heid, Iris M; Mohlke, Karen L; Marchini, Jonathan; Loos, Ruth J F; Kilpeläinen, Tuomas O; Liu, Ching-Ti; Borecki, Ingrid B; North, Kari E; Cupples, L Adrienne

    2017-04-26

    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.

  2. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    PubMed Central

    Justice, Anne E.; Winkler, Thomas W.; Feitosa, Mary F.; Graff, Misa; Fisher, Virginia A.; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S.; Ahluwalia, Tarunveer S.; Chu, Audrey Y.; Heard-Costa, Nancy L.; Lim, Elise; Perez, Jeremiah; Eicher, John D.; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F.; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E.; Jackson, Anne U.; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E.; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P. S.; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A.; Stančáková, Alena; Strawbridge, Rona J.; Stringham, Heather M.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vedantam, Sailaja L.; Verweij, Niek; Vink, Jacqueline M.; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E.; Zubair, Niha; Abecasis, Gonçalo R.; Adair, Linda S.; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J. L.; Bartz, Traci M.; Beilby, John; Bergman, Richard N.; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L.; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M.; Buyske, Steve; Campbell, Harry; Chambers, John C.; Collins, Francis S.; Curran, Joanne E.; de Borst, Gert J.; de Craen, Anton J. M.; de Geus, Eco J. C.; Dedoussis, George; Delgado, Graciela E.; den Ruijter, Hester M.; Eiriksdottir, Gudny; Eriksson, Anna L.; Esko, Tõnu; Faul, Jessica D.; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B.; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas D.; Heath, Andrew C.; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J.; Hollensted, Mette; Holmen, Oddgeir L.; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L.; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A.; Jørgensen, Marit E.; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A.; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K.; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Leander, Karin; Lee, Nanette R.; Lind, Lars; Lindgren, Cecilia M.; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A. F.; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G.; McKenzie, Colin A.; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W.; Musk, AW (Bill); Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M.; Oldehinkel, Albertine J.; Olden, Matthias; Ong, Ken K.; Padmanabhan, Sandosh; Peyser, Patricia A.; Pisinger, Charlotta; Porteous, David J.; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rasmussen-Torvik, Laura J.; Rawal, Rajesh; Rice, Treva; Ridker, Paul M.; Rose, Lynda M.; Bien, Stephanie A.; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A.; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A.; Sennblad, Bengt; Siemelink, Marten A.; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A.; Stott, David J.; Swertz, Morris A.; Swift, Amy J.; Taylor, Kent D.; Tayo, Bamidele O.; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M.; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R. G. J.; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H. R.; Wong, Andrew; Wright, Alan F.; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A.; Boomsma, Dorret I.; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I.; Chen, Yii-DerIda; Chines, Peter S.; Cooper, Richard S.; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans- Jörgen; Gudnason, Vilmundur; Haiman, Christopher A.; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D.; Wouter Jukema, J; Kardia, Sharon L. R.; Kivimaki, Mika; Kooner, Jaspal S.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I.; Metspalu, Andres; Morris, Andrew P.; Ohlsson, Claes; Palmer, Lyle J.; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Smith, Blair H.; Sørensen, Thorkild I. A.; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J.; Weir, David R.; Whitfield, John B.; Wilson, James F.; Tyrrell, Jessica; Frayling, Timothy M.; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S.; Hirschhorn, Joel N.; Hunter, David J.; Spector, Tim D.; Strachan, David P.; van Duijn, Cornelia M.; Heid, Iris M.; Mohlke, Karen L.; Marchini, Jonathan; Loos, Ruth J. F.; Kilpeläinen, Tuomas O.; Liu, Ching-Ti; Borecki, Ingrid B.; North, Kari E.; Cupples, L Adrienne

    2017-01-01

    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution. PMID:28443625

  3. Genome-wide association analysis identifies loci governing mercury accumulation in maize.

    PubMed

    Zhao, Zhan; Fu, Zhongjun; Lin, Yanan; Chen, Hao; Liu, Kun; Xing, Xiaolong; Liu, Zonghua; Li, Weihua; Tang, Jihua

    2017-03-21

    Owing to the rapid development of urbanisation and industrialisation, heavy metal pollution has become a widespread environmental problem. Maize planted on mercury (Hg)-polluted soil can absorb and accumulate Hg in its edible parts, posing a potential threat to human health. To understand the genetic mechanism of Hg accumulation in maize, we performed a genome-wide association study using a mixed linear model on an association population consisting of 230 maize inbred lines with abundant genetic variation. The order of relative Hg concentrations in different maize tissues was as follows: leaves > bracts > stems > axes > kernels. Combined two locations, a total of 37 significant single-nucleotide polymorphisms (SNPs) associated with kernels, 12 with axes, 13 with stems, 27 with bracts and 23 with leaves were detected with p < 0.0001. Each significant SNP was calculated and the SNPs significant associated with kernels, axes, stems, bracts and leaves explained 6.96%-10.56%, 7.19%-15.87%, 7.11%-10.19%, 7.16%-8.71% and 6.91%-9.17% of the phenotypic variation, respectively. Among the significant SNPs, nine co-localised with previously detected quantitative trait loci. This study will aid in the selection of Hg-accumulation inbred lines that satisfy the needs for pollution-safe cultivars and maintaining maize production.

  4. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations.

    PubMed

    Demirkan, Ayşe; van Duijn, Cornelia M; Ugocsai, Peter; Isaacs, Aaron; Pramstaller, Peter P; Liebisch, Gerhard; Wilson, James F; Johansson, Åsa; Rudan, Igor; Aulchenko, Yurii S; Kirichenko, Anatoly V; Janssens, A Cecile J W; Jansen, Ritsert C; Gnewuch, Carsten; Domingues, Francisco S; Pattaro, Cristian; Wild, Sarah H; Jonasson, Inger; Polasek, Ozren; Zorkoltseva, Irina V; Hofman, Albert; Karssen, Lennart C; Struchalin, Maksim; Floyd, James; Igl, Wilmar; Biloglav, Zrinka; Broer, Linda; Pfeufer, Arne; Pichler, Irene; Campbell, Susan; Zaboli, Ghazal; Kolcic, Ivana; Rivadeneira, Fernando; Huffman, Jennifer; Hastie, Nicholas D; Uitterlinden, Andre; Franke, Lude; Franklin, Christopher S; Vitart, Veronique; Nelson, Christopher P; Preuss, Michael; Bis, Joshua C; O'Donnell, Christopher J; Franceschini, Nora; Witteman, Jacqueline C M; Axenovich, Tatiana; Oostra, Ben A; Meitinger, Thomas; Hicks, Andrew A; Hayward, Caroline; Wright, Alan F; Gyllensten, Ulf; Campbell, Harry; Schmitz, Gerd

    2012-01-01

    Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10(-204)) and 10 loci for sphingolipids (smallest P-value = 3.10×10(-57)). After a correction for multiple comparisons (P-value<2.2×10(-9)), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our

  5. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies

    PubMed Central

    Song, Ci; Nutile, Teresa; Vernon Smith, Albert; Concas, Maria Pina; Traglia, Michela; Barbieri, Caterina; Ndiaye, Ndeye Coumba; Stathopoulou, Maria G.; Lagou, Vasiliki; Maestrale, Giovanni Battista; Sala, Cinzia; Debette, Stephanie; Kovacs, Peter; Lind, Lars; Lamont, John; Fitzgerald, Peter; Tönjes, Anke; Gudnason, Vilmundur; Toniolo, Daniela; Pirastu, Mario; Bellenguez, Celine; Vasan, Ramachandran S.; Ingelsson, Erik; Leutenegger, Anne-Louise; Johnson, Andrew D.; DeStefano, Anita L.; Visvikis-Siest, Sophie; Seshadri, Sudha; Ciullo, Marina

    2016-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79x10-13), rs74506613 (JMJD1C, P = 1.17x10-19), rs4782371 (ZFPM1, P = 1.59x10-9) and rs2639990 (ZADH2, P = 1.72x10-8), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52x10-18; rs7043199, VLDLR-AS1, P = 5.12x10-14) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39x10-1467; rs1740073, C6orf223, P = 2.34x10-17; rs6993770, ZFPM2, P = 2.44x10-60; rs2375981, KCNV2, P = 1.48x10-100). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the

  6. Genome-Wide Association of Heroin Dependence in Han Chinese.

    PubMed

    Kalsi, Gursharan; Euesden, Jack; Coleman, Jonathan R I; Ducci, Francesca; Aliev, Fazil; Newhouse, Stephen J; Liu, Xiehe; Ma, Xiaohong; Wang, Yingcheng; Collier, David A; Asherson, Philip; Li, Tao; Breen, Gerome

    2016-01-01

    Drug addiction is a costly and recurring healthcare problem, necessitating a need to understand risk factors and mechanisms of addiction, and to identify new biomarkers. To date, genome-wide association studies (GWAS) for heroin addiction have been limited; moreover they have been restricted to examining samples of European and African-American origin due to difficulty of recruiting samples from other populations. This is the first study to test a Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 ethnically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded suggestive evidence for association between variants in the genes CCDC42 (coiled coil domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110-6). In addition, we found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based association analysis identified genome-wide significant association between variants in CCDC42 and heroin addiction. Additionally, when we investigated shared risk variants between heroin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic risk scores, we found a suggestive relationship with variants predicting tobacco addiction, and a significant relationship with variants predicting schizophrenia. Our genome wide association study of heroin dependence provides data in a novel sample, with functionally plausible results and evidence of genetic data of value to the field.

  7. Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent

    PubMed Central

    Chang, Bao-Li; Spangler, Elaine; Gallagher, Stephen; Haiman, Christopher A.; Henderson, Brian; Isaacs, William; Benford, Marnita L.; Kidd, LaCreis R.; Cooney, Kathleen; Strom, Sara; Ann Ingles, Sue; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Xu, Jianfeng; Giri, Veda N.; Rybicki, Benjamin; Neslund-Dudas, Christine; Kibel, Adam S.; Thompson, Ian M.; Leach, Robin J.; Ostrander, Elaine A.; Stanford, Janet L.; Witte, John; Casey, Graham; Eeles, Rosalind; Hsing, Ann W.; Chanock, Stephen; Hu, Jennifer J.; John, Esther M.; Park, Jong; Stefflova, Klara; Zeigler-Johnson, Charnita; Rebbeck, Timothy R.

    2010-01-01

    Background Genome-wide association studies (GWAS) have identified numerous prostate cancer susceptibility alleles, but these loci have been identified primarily in men of European descent. There is limited information about the role of these loci in men of African descent. Methods We identified 7,788 prostate cancer cases and controls with genotype data for 47 GWAS-identified loci. Results We identified significant associations for SNP rs10486567 at JAZF1, rs10993994 at MSMB, rs12418451 and rs7931342 at 11q13, and rs5945572 and rs5945619 at NUDT10/11. These associations were in the same direction and of similar magnitude as those reported in men of European descent. Significance was attained at all report prostate cancer susceptibility regions at chromosome 8q24, including associations reaching genome-wide significance in region 2. Conclusion We have validated in men of African descent the associations at some, but not all, prostate cancer susceptibility loci originally identified in European descent populations. This may be due to heterogeneity in genetic etiology or in the pattern of genetic variation across populations. Impact The genetic etiology of prostate cancer in men of African descent differs from that of men of European descent. PMID:21071540

  8. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.

    PubMed

    Fan, Qianrui; Wang, Wenyu; Hao, Jingcan; He, Awen; Wen, Yan; Guo, Xiong; Wu, Cuiyan; Ning, Yujie; Wang, Xi; Wang, Sen; Zhang, Feng

    2017-08-01

    Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10 -10 ), MGC57346 (p value=6.92×10 -7 ), BLK (p value=1.01×10 -6 ), XKR6 (p value=1.11×10 -6 ), C17ORF69 (p value=1.12×10 -6 ) and KIAA1267 (p value=4.00×10 -6 ). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism. Copyright © 2017. Published by Elsevier Inc.

  9. SUSCEPTIBILITY LOCI FOR UMBILICAL HERNIA IN SWINE DETECTED BY GENOME-WIDE ASSOCIATION.

    PubMed

    Liao, X J; Lia, L; Zhang, Z Y; Long, Y; Yang, B; Ruan, G R; Su, Y; Ai, H S; Zhang, W C; Deng, W Y; Xiao, S J; Ren, J; Ding, N S; Huang, L S

    2015-10-01

    Umbilical hernia (UH) is a complex disorder caused by both genetic and environmental factors. UH brings animal welfare problems and severe economic loss to the pig industry. Until now, the genetic basis of UH is poorly understood. The high-density 60K porcine SNP array enables the rapid application of genome-wide association study (GWAS) to identify genetic loci for phenotypic traits at genome wide scale in pigs. The objective of this research was to identify susceptibility loci for swine umbilical hernia using the GWAS approach. We genotyped 478 piglets from 142 families representing three Western commercial breeds with the Illumina PorcineSNP60 BeadChip. Then significant SNPs were detected by GWAS using ROADTRIPS (Robust Association-Detection Test for Related Individuals with Population Substructure) software base on a Bonferroni corrected threshold (P = 1.67E-06) or suggestive threshold (P = 3.34E-05) and false discovery rate (FDR = 0.05). After quality control, 29,924 qualified SNPs and 472 piglets were used for GWAS. Two suggestive loci predisposing to pig UH were identified at 44.25MB on SSC2 (rs81358018, P = 3.34E-06, FDR = 0.049933) and at 45.90MB on SSC17 (rs81479278, P = 3.30E-06, FDR = 0.049933) in Duroc population, respectively. And no SNP was detected to be associated with pig UH at significant level in neither Landrace nor Large White population. Furthermore, we carried out a meta-analysis in the combined pure-breed population containing all the 472 piglets. rs81479278 (P = 1.16E-06, FDR = 0.022475) was identified to associate with pig UH at genome-wide significant level. SRC was characterized as plausible candidate gene for susceptibility to pig UH according to its genomic position and biological functions. To our knowledge, this study gives the first description of GWAS identifying susceptibility loci for umbilical hernia in pigs. Our findings provide deeper insights to the genetic architecture of umbilical hernia in pigs.

  10. Genome-wide Association Study of Obsessive-Compulsive Disorder

    PubMed Central

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  11. Genome-wide association study identifies three new melanoma susceptibility loci.

    PubMed

    Barrett, Jennifer H; Iles, Mark M; Harland, Mark; Taylor, John C; Aitken, Joanne F; Andresen, Per Arne; Akslen, Lars A; Armstrong, Bruce K; Avril, Marie-Francoise; Azizi, Esther; Bakker, Bert; Bergman, Wilma; Bianchi-Scarrà, Giovanna; Bressac-de Paillerets, Brigitte; Calista, Donato; Cannon-Albright, Lisa A; Corda, Eve; Cust, Anne E; Dębniak, Tadeusz; Duffy, David; Dunning, Alison M; Easton, Douglas F; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Giles, Graham G; Hansson, Johan; Hocevar, Marko; Höiom, Veronica; Hopper, John L; Ingvar, Christian; Janssen, Bart; Jenkins, Mark A; Jönsson, Göran; Kefford, Richard F; Landi, Giorgio; Landi, Maria Teresa; Lang, Julie; Lubiński, Jan; Mackie, Rona; Malvehy, Josep; Martin, Nicholas G; Molven, Anders; Montgomery, Grant W; van Nieuwpoort, Frans A; Novakovic, Srdjan; Olsson, Håkan; Pastorino, Lorenza; Puig, Susana; Puig-Butille, Joan Anton; Randerson-Moor, Juliette; Snowden, Helen; Tuominen, Rainer; Van Belle, Patricia; van der Stoep, Nienke; Whiteman, David C; Zelenika, Diana; Han, Jiali; Fang, Shenying; Lee, Jeffrey E; Wei, Qingyi; Lathrop, G Mark; Gillanders, Elizabeth M; Brown, Kevin M; Goldstein, Alisa M; Kanetsky, Peter A; Mann, Graham J; Macgregor, Stuart; Elder, David E; Amos, Christopher I; Hayward, Nicholas K; Gruis, Nelleke A; Demenais, Florence; Bishop, Julia A Newton; Bishop, D Timothy

    2011-10-09

    We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10(-5) and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10(-3): an SNP in ATM (rs1801516, overall P = 3.4 × 10(-9)), an SNP in MX2 (rs45430, P = 2.9 × 10(-9)) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 × 10(-10)). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 × 10(-7) under a fixed-effects model and P = 1.2 × 10(-3) under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.

  12. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

    PubMed

    Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B

    2016-04-01

    Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    PubMed

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  14. Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach.

    PubMed

    Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M

    2017-03-27

    Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide

  15. Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms (SNPs) Associated With the Development of Erectile Dysfunction in African-American Men After Radiotherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, Sarah L.; Ostrer, Harry; Stock, Richard

    2010-12-01

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with erectile dysfunction (ED) among African-American prostate cancer patients treated with external beam radiation therapy. Methods and Materials: A cohort of African-American prostate cancer patients treated with external beam radiation therapy was observed for the development of ED by use of the five-item Sexual Health Inventory for Men (SHIM) questionnaire. Final analysis included 27 cases (post-treatment SHIM score {<=}7) and 52 control subjects (post-treatment SHIM score {>=}16). A genome-wide association study was performed using approximately 909,000 SNPs genotyped on Affymetrix 6.0 arrays (Affymetrix, Santa Clara, CA). Results: We identified SNP rs2268363, locatedmore » in the follicle-stimulating hormone receptor (FSHR) gene, as significantly associated with ED after correcting for multiple comparisons (unadjusted p = 5.46 x 10{sup -8}, Bonferroni p = 0.028). We identified four additional SNPs that tended toward a significant association with an unadjusted p value < 10{sup -6}. Inference of population substructure showed that cases had a higher proportion of African ancestry than control subjects (77% vs. 60%, p = 0.005). A multivariate logistic regression model that incorporated estimated ancestry and four of the top-ranked SNPs was a more accurate classifier of ED than a model that included only clinical variables. Conclusions: To our knowledge, this is the first genome-wide association study to identify SNPs associated with adverse effects resulting from radiotherapy. It is important to note that the SNP that proved to be significantly associated with ED is located within a gene whose encoded product plays a role in male gonad development and function. Another key finding of this project is that the four SNPs most strongly associated with ED were specific to persons of African ancestry and would therefore not have been identified had a cohort of European ancestry been screened

  16. Genome-wide copy number variation analysis identified deletions in SFMBT1 associated with fasting plasma glucose in a Han Chinese population.

    PubMed

    Chung, Ren-Hua; Chiu, Yen-Feng; Hung, Yi-Jen; Lee, Wen-Jane; Wu, Kwan-Dun; Chen, Hui-Ling; Lin, Ming-Wei; Chen, Yii-Der I; Quertermous, Thomas; Hsiung, Chao A

    2017-08-08

    Fasting glucose and fasting insulin are glycemic traits closely related to diabetes, and understanding the role of genetic factors in these traits can help reveal the etiology of type 2 diabetes. Although single nucleotide polymorphisms (SNPs) in several candidate genes have been found to be associated with fasting glucose and fasting insulin, copy number variations (CNVs), which have been reported to be associated with several complex traits, have not been reported for association with these two traits. We aimed to identify CNVs associated with fasting glucose and fasting insulin. We conducted a genome-wide CNV association analysis for fasting plasma glucose (FPG) and fasting plasma insulin (FPI) using a family-based genome-wide association study sample from a Han Chinese population in Taiwan. A family-based CNV association test was developed in this study to identify common CNVs (i.e., CNVs with frequencies ≥ 5%), and a generalized estimating equation approach was used to test the associations between the traits and counts of global rare CNVs (i.e., CNVs with frequencies <5%). We found a significant genome-wide association for common deletions with a frequency of 5.2% in the Scm-like with four mbt domains 1 (SFMBT1) gene with FPG (association p-value = 2×10 -4 and an adjusted p-value = 0.0478 for multiple testing). No significant association was observed between global rare CNVs and FPG or FPI. The deletions in 20 individuals with DNA samples available were successfully validated using PCR-based amplification. The association of the deletions in SFMBT1 with FPG was further evaluated using an independent population-based replication sample obtained from the Taiwan Biobank. An association p-value of 0.065, which was close to the significance level of 0.05, for FPG was obtained by testing 9 individuals with CNVs in the SFMBT1 gene region and 11,692 individuals with normal copies in the replication cohort. Previous studies have found that SNPs in SFMBT1 are

  17. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses

    PubMed Central

    Derringer, Jaime; Gratten, Jacob; Lee, James J; Liu, Jimmy Z; de Vlaming, Ronald; Ahluwalia, Tarunveer S; Buchwald, Jadwiga; Cavadino, Alana; Frazier-Wood, Alexis C; Davies, Gail; Furlotte, Nicholas A; Garfield, Victoria; Geisel, Marie Henrike; Gonzalez, Juan R; Haitjema, Saskia; Karlsson, Robert; van der Laan, Sander W; Ladwig, Karl-Heinz; Lahti, Jari; van der Lee, Sven J; Miller, Michael B; Lind, Penelope A; Liu, Tian; Matteson, Lindsay; Mihailov, Evelin; Minica, Camelia C; Nolte, Ilja M; Mook-Kanamori, Dennis O; van der Most, Peter J; Oldmeadow, Christopher; Qian, Yong; Raitakari, Olli; Rawal, Rajesh; Realo, Anu; Rueedi, Rico; Schmidt, Börge; Smith, Albert V; Stergiakouli, Evie; Tanaka, Toshiko; Taylor, Kent; Thorleifsson, Gudmar; Wedenoja, Juho; Wellmann, Juergen; Westra, Harm-Jan; Willems, Sara M; Zhao, Wei; Amin, Najaf; Bakshi, Andrew; Bergmann, Sven; Bjornsdottir, Gyda; Boyle, Patricia A; Cherney, Samantha; Cox, Simon R; Davis, Oliver S P; Ding, Jun; Direk, Nese; Eibich, Peter; Emeny, Rebecca T; Fatemifar, Ghazaleh; Faul, Jessica D; Ferrucci, Luigi; Forstner, Andreas J; Gieger, Christian; Gupta, Richa; Harris, Tamara B; Harris, Juliette M; Holliday, Elizabeth G; Hottenga, Jouke-Jan; De Jager, Philip L; Kaakinen, Marika A; Kajantie, Eero; Karhunen, Ville; Kolcic, Ivana; Kumari, Meena; Launer, Lenore J; Franke, Lude; Li-Gao, Ruifang; Liewald, David C; Koini, Marisa; Loukola, Anu; Marques-Vidal, Pedro; Montgomery, Grant W; Mosing, Miriam A; Paternoster, Lavinia; Pattie, Alison; Petrovic, Katja E; Pulkki-Råback, Laura; Quaye, Lydia; Räikkönen, Katri; Rudan, Igor; Scott, Rodney J; Smith, Jennifer A; Sutin, Angelina R; Trzaskowski, Maciej; Vinkhuyzen, Anna E; Yu, Lei; Zabaneh, Delilah; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Boomsma, Dorret I; Snieder, Harold; Chang, Shun-Chiao; Cucca, Francesco; Deary, Ian J; van Duijn, Cornelia M; Eriksson, Johan G; Bültmann, Ute; de Geus, Eco J C; Groenen, Patrick J F; Gudnason, Vilmundur; Hansen, Torben; Hartman, Catharine A; Haworth, Claire M A; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Hyppönen, Elina; Iacono, William G; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Keltikangas-Järvinen, Liisa; Kraft, Peter; Kubzansky, Laura D; Lehtimäki, Terho; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Mills, Melinda; de Mutsert, Renée; Oldehinkel, Albertine J; Pasterkamp, Gerard; Pedersen, Nancy L; Plomin, Robert; Polasek, Ozren; Power, Christine; Rich, Stephen S; Rosendaal, Frits R; den Ruijter, Hester M; Schlessinger, David; Schmidt, Helena; Svento, Rauli; Schmidt, Reinhold; Alizadeh, Behrooz Z; Sørensen, Thorkild I A; Spector, Tim D; Starr, John M; Stefansson, Kari; Steptoe, Andrew; Terracciano, Antonio; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Uitterlinden, André G; Vollenweider, Peter; Wagner, Gert G; Weir, David R; Yang, Jian; Conley, Dalton C; Smith, George Davey; Hofman, Albert; Johannesson, Magnus; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Pickrell, Joseph K; Esko, Tõnu; Krueger, Robert F; Beauchamp, Jonathan P; Koellinger, Philipp D; Benjamin, Daniel J; Bartels, Meike; Cesarini, David

    2016-01-01

    We conducted genome-wide association studies of three phenotypes: subjective well-being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). We identified three variants associated with subjective well-being, two with depressive symptoms, and eleven with neuroticism, including two inversion polymorphisms. The two depressive symptoms loci replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings, and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal/pancreas tissues are strongly enriched for association. PMID:27089181

  18. A Multinational Arab Genome-Wide Association Study Identifies New Genetic Associations for Rheumatoid Arthritis.

    PubMed

    Saxena, Richa; Plenge, Robert M; Bjonnes, Andrew C; Dashti, Hassan S; Okada, Yukinori; Gad El Haq, Wessam; Hammoudeh, Mohammed; Al Emadi, Samar; Masri, Basel K; Halabi, Hussein; Badsha, Humeira; Uthman, Imad W; Margolin, Lauren; Gupta, Namrata; Mahfoud, Ziyad R; Kapiri, Marianthi; Dargham, Soha R; Aranki, Grace; Kazkaz, Layla A; Arayssi, Thurayya

    2017-05-01

    Genetic factors underlying susceptibility to rheumatoid arthritis (RA) in Arab populations are largely unknown. This genome-wide association study (GWAS) was undertaken to explore the generalizability of previously reported RA loci to Arab subjects and to discover new Arab-specific genetic loci. The Genetics of Rheumatoid Arthritis in Some Arab States Study was designed to examine the genetics and clinical features of RA patients from Jordan, the Kingdom of Saudi Arabia, Lebanon, Qatar, and the United Arab Emirates. In total, >7 million single-nucleotide polymorphisms (SNPs) were tested for association with RA overall and with seropositive or seronegative RA in 511 RA cases and 352 healthy controls. In addition, replication of 15 signals was attempted in 283 RA cases and 221 healthy controls. A genetic risk score of 68 known RA SNPs was also examined in this study population. Three loci (HLA region, intergenic 5q13, and 17p13 at SMTNL2/GGT6) reached genome-wide significance in the analyses of association with RA and with seropositive RA, and for all 3 loci, evidence of independent replication was demonstrated. Consistent with the findings in European and East Asian populations, the association of RA with HLA-DRB1 amino acid position 11 conferred the strongest effect (P = 4.8 × 10 -16 ), and a weighted genetic risk score of previously associated RA loci was found to be associated with RA (P = 3.41 × 10 -5 ) and with seropositive RA (P = 1.48 × 10 -6 ) in this population. In addition, 2 novel associations specific to Arab populations were found at the 5q13 and 17p13 loci. This first RA GWAS in Arab populations confirms that established HLA-region and known RA risk alleles contribute strongly to the risk and severity of disease in some Arab groups, suggesting that the genetic architecture of RA is similar across ethnic groups. Moreover, this study identified 2 novel RA risk loci in Arabs, offering further population-specific insights into the

  19. Multi-trait analysis of genome-wide association summary statistics using MTAG.

    PubMed

    Turley, Patrick; Walters, Raymond K; Maghzian, Omeed; Okbay, Aysu; Lee, James J; Fontana, Mark Alan; Nguyen-Viet, Tuan Anh; Wedow, Robbee; Zacher, Meghan; Furlotte, Nicholas A; Magnusson, Patrik; Oskarsson, Sven; Johannesson, Magnus; Visscher, Peter M; Laibson, David; Cesarini, David; Neale, Benjamin M; Benjamin, Daniel J

    2018-02-01

    We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff  = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.

  20. Genome-wide association analysis of ischemic stroke in young adults.

    PubMed

    Cheng, Yu-Ching; O'Connell, Jeffrey R; Cole, John W; Stine, O Colin; Dueker, Nicole; McArdle, Patrick F; Sparks, Mary J; Shen, Jess; Laurie, Cathy C; Nelson, Sarah; Doheny, Kimberly F; Ling, Hua; Pugh, Elizabeth W; Brott, Thomas G; Brown, Robert D; Meschia, James F; Nalls, Michael; Rich, Stephen S; Worrall, Bradford; Anderson, Christopher D; Biffi, Alessandro; Cortellini, Lynelle; Furie, Karen L; Rost, Natalia S; Rosand, Jonathan; Manolio, Teri A; Kittner, Steven J; Mitchell, Braxton D

    2011-11-01

    Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases and 927 controls, ages 15-49 years. Genotypes were imputed using the HapMap3 reference panel to provide 1.4 million SNPs for analysis. Logistic regression models adjusting for age, recruitment stages, and population structure were used to determine the association of IS with individual SNPs. Although no single SNP reached genome-wide significance (P < 5 × 10(-8)), we identified two SNPs in chromosome 2q23.3, rs2304556 (in FMNL2; P = 1.2 × 10(-7)) and rs1986743 (in ARL6IP6; P = 2.7 × 10(-7)), strongly associated with early-onset stroke. These data suggest that a novel locus on human chromosome 2q23.3 may be associated with IS susceptibility among young adults.

  1. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.

    PubMed

    Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle

    2018-06-25

    Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

  2. Genome-wide association study of Tourette Syndrome

    PubMed Central

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  3. Genome-wide association studies and epigenome-wide association studies go together in cancer control

    PubMed Central

    Verma, Mukesh

    2016-01-01

    Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment. PMID:27079684

  4. Genome-wide association study of rice grain width variation.

    PubMed

    Zheng, Xiao-Ming; Gong, Tingting; Ou, Hong-Ling; Xue, Dayuan; Qiao, Weihua; Wang, Junrui; Liu, Sha; Yang, Qingwen; Olsen, Kenneth M

    2018-04-01

    Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.

  5. Genome-wide expression profiling in pediatric septic shock

    PubMed Central

    Wong, Hector R.

    2013-01-01

    For nearly a decade, our research group has had the privilege of developing and mining a multi-center, microarray-based, genome-wide expression database of critically ill children (≤ 10 years of age) with septic shock. Using bioinformatic and systems biology approaches, the expression data generated through this discovery-oriented, exploratory approach have been leveraged for a variety of objectives, which will be reviewed. Fundamental observations include wide spread repression of gene programs corresponding to the adaptive immune system, and biologically significant differential patterns of gene expression across developmental age groups. The data have also identified gene expression-based subclasses of pediatric septic shock having clinically relevant phenotypic differences. The data have also been leveraged for the discovery of novel therapeutic targets, and for the discovery and development of novel stratification and diagnostic biomarkers. Almost a decade of genome-wide expression profiling in pediatric septic shock is now demonstrating tangible results. The studies have progressed from an initial discovery-oriented and exploratory phase, to a new phase where the data are being translated and applied to address several areas of clinical need. PMID:23329198

  6. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    PubMed Central

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  7. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  8. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing.

    PubMed

    Palaiokostas, Christos; Cariou, Sophie; Bestin, Anastasia; Bruant, Jean-Sebastien; Haffray, Pierrick; Morin, Thierry; Cabon, Joëlle; Allal, François; Vandeputte, Marc; Houston, Ross D

    2018-06-08

    European sea bass (Dicentrarchus labrax) is one of the most important species for European aquaculture. Viral nervous necrosis (VNN), commonly caused by the redspotted grouper nervous necrosis virus (RGNNV), can result in high levels of morbidity and mortality, mainly during the larval and juvenile stages of cultured sea bass. In the absence of efficient therapeutic treatments, selective breeding for host resistance offers a promising strategy to control this disease. Our study aimed at investigating genetic resistance to VNN and genomic-based approaches to improve disease resistance by selective breeding. A population of 1538 sea bass juveniles from a factorial cross between 48 sires and 17 dams was challenged with RGNNV with mortalities and survivors being recorded and sampled for genotyping by the RAD sequencing approach. We used genome-wide genotype data from 9195 single nucleotide polymorphisms (SNPs) for downstream analysis. Estimates of heritability of survival on the underlying scale for the pedigree and genomic relationship matrices were 0.27 (HPD interval 95%: 0.14-0.40) and 0.43 (0.29-0.57), respectively. Classical genome-wide association analysis detected genome-wide significant quantitative trait loci (QTL) for resistance to VNN on chromosomes (unassigned scaffolds in the case of 'chromosome' 25) 3, 20 and 25 (P < 1e06). Weighted genomic best linear unbiased predictor provided additional support for the QTL on chromosome 3 and suggested that it explained 4% of the additive genetic variation. Genomic prediction approaches were tested to investigate the potential of using genome-wide SNP data to estimate breeding values for resistance to VNN and showed that genomic prediction resulted in a 13% increase in successful classification of resistant and susceptible animals compared to pedigree-based methods, with Bayes A and Bayes B giving the highest predictive ability. Genome-wide significant QTL were identified but each with relatively small effects on

  9. CisMiner: Genome-Wide In-Silico Cis-Regulatory Module Prediction by Fuzzy Itemset Mining

    PubMed Central

    Navarro, Carmen; Lopez, Francisco J.; Cano, Carlos; Garcia-Alcalde, Fernando; Blanco, Armando

    2014-01-01

    Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by

  10. Genome-wide association study identifies phospholipase C zeta 1 (PLCz1) as a stallion fertility locus in Hanoverian warmblood horses.

    PubMed

    Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2014-01-01

    A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions.

  11. Genome-Wide Association Study Identifies Phospholipase C zeta 1 (PLCz1) as a Stallion Fertility Locus in Hanoverian Warmblood Horses

    PubMed Central

    Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2014-01-01

    A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions. PMID:25354211

  12. Very low-depth sequencing in a founder population identifies a cardioprotective APOC3 signal missed by genome-wide imputation.

    PubMed

    Gilly, Arthur; Ritchie, Graham Rs; Southam, Lorraine; Farmaki, Aliki-Eleni; Tsafantakis, Emmanouil; Dedoussis, George; Zeggini, Eleftheria

    2016-06-01

    Cohort-wide very low-depth whole-genome sequencing (WGS) can comprehensively capture low-frequency sequence variation for the cost of a dense genome-wide genotyping array. Here, we analyse 1x sequence data across the APOC3 gene in a founder population from the island of Crete in Greece (n = 1239) and find significant evidence for association with blood triglyceride levels with the previously reported R19X cardioprotective null mutation (β = -1.09,σ = 0.163, P = 8.2 × 10 -11 ) and a second loss of function mutation, rs138326449 (β = -1.17,σ = 0.188, P = 1.14 × 10 -9 ). The signal cannot be recapitulated by imputing genome-wide genotype data on a large reference panel of 5122 individuals including 249 with 4x WGS data from the same population. Gene-level meta-analysis with other studies reporting burden signals at APOC3 provides robust evidence for a replicable cardioprotective rare variant aggregation (P = 3.2 × 10 -31 , n = 13 480). © The Author 2016. Published by Oxford University Press.

  13. Very low-depth sequencing in a founder population identifies a cardioprotective APOC3 signal missed by genome-wide imputation

    PubMed Central

    Gilly, Arthur; Ritchie, Graham Rs; Southam, Lorraine; Farmaki, Aliki-Eleni; Tsafantakis, Emmanouil; Dedoussis, George; Zeggini, Eleftheria

    2016-01-01

    Cohort-wide very low-depth whole-genome sequencing (WGS) can comprehensively capture low-frequency sequence variation for the cost of a dense genome-wide genotyping array. Here, we analyse 1x sequence data across the APOC3 gene in a founder population from the island of Crete in Greece (n = 1239) and find significant evidence for association with blood triglyceride levels with the previously reported R19X cardioprotective null mutation (β = −1.09,σ = 0.163, P = 8.2 × 10−11) and a second loss of function mutation, rs138326449 (β = −1.17,σ = 0.188, P = 1.14 × 10−9). The signal cannot be recapitulated by imputing genome-wide genotype data on a large reference panel of 5122 individuals including 249 with 4x WGS data from the same population. Gene-level meta-analysis with other studies reporting burden signals at APOC3 provides robust evidence for a replicable cardioprotective rare variant aggregation (P = 3.2 × 10−31, n = 13 480). PMID:27146844

  14. Genome-Wide Association Study of Seed Dormancy and the Genomic Consequences of Improvement Footprints in Rice (Oryza sativa L.)

    PubMed Central

    Lu, Qing; Niu, Xiaojun; Zhang, Mengchen; Wang, Caihong; Xu, Qun; Feng, Yue; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Chen, Xiaoping; Liang, Xuanqiang; Wei, Xinghua

    2018-01-01

    Seed dormancy is an important agronomic trait affecting grain yield and quality because of pre-harvest germination and is influenced by both environmental and genetic factors. However, our knowledge of the factors controlling seed dormancy remains limited. To better reveal the molecular mechanism underlying this trait, a genome-wide association study was conducted in an indica-only population consisting of 453 accessions genotyped using 5,291 SNPs. Nine known and new significant SNPs were identified on eight chromosomes. These lead SNPs explained 34.9% of the phenotypic variation, and four of them were designed as dCAPS markers in the hope of accelerating molecular breeding. Moreover, a total of 212 candidate genes was predicted and eight candidate genes showed plant tissue-specific expression in expression profile data from different public bioinformatics databases. In particular, LOC_Os03g10110, which had a maize homolog involved in embryo development, was identified as a candidate regulator for further biological function investigations. Additionally, a polymorphism information content ratio method was used to screen improvement footprints and 27 selective sweeps were identified, most of which harbored domestication-related genes. Further studies suggested that three significant SNPs were adjacent to the candidate selection signals, supporting the accuracy of our genome-wide association study (GWAS) results. These findings show that genome-wide screening for selective sweeps can be used to identify new improvement-related DNA regions, although the phenotypes are unknown. This study enhances our knowledge of the genetic variation in seed dormancy, and the new dormancy-associated SNPs will provide real benefits in molecular breeding. PMID:29354150

  15. Genome-wide association analysis for feed efficiency in Angus cattle.

    PubMed

    Rolf, M M; Taylor, J F; Schnabel, R D; McKay, S D; McClure, M C; Northcutt, S L; Kerley, M S; Weaber, R L

    2012-08-01

    Estimated breeding values for average daily feed intake (AFI; kg/day), residual feed intake (RFI; kg/day) and average daily gain (ADG; kg/day) were generated using a mixed linear model incorporating genomic relationships for 698 Angus steers genotyped with the Illumina BovineSNP50 assay. Association analyses of estimated breeding values (EBVs) were performed for 41,028 single nucleotide polymorphisms (SNPs), and permutation analysis was used to empirically establish the genome-wide significance threshold (P < 0.05) for each trait. SNPs significantly associated with each trait were used in a forward selection algorithm to identify genomic regions putatively harbouring genes with effects on each trait. A total of 53, 66 and 68 SNPs explained 54.12% (24.10%), 62.69% (29.85%) and 55.13% (26.54%) of the additive genetic variation (when accounting for the genomic relationships) in steer breeding values for AFI, RFI and ADG, respectively, within this population. Evaluation by pathway analysis revealed that many of these SNPs are in genomic regions that harbour genes with metabolic functions. The presence of genetic correlations between traits resulted in 13.2% of SNPs selected for AFI and 4.5% of SNPs selected for RFI also being selected for ADG in the analysis of breeding values. While our study identifies panels of SNPs significant for efficiency traits in our population, validation of all SNPs in independent populations will be necessary before commercialization. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  16. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.

    PubMed

    Jaiswal, Alok; Peddinti, Gopal; Akimov, Yevhen; Wennerberg, Krister; Kuznetsov, Sergey; Tang, Jing; Aittokallio, Tero

    2017-06-01

    Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity. We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments. Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel

  17. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    PubMed Central

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm WR; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; TAN, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John WM; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dmitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert AEM; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul PDP; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-01-01

    Genome wide association studies (GWAS) and large scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS comprising of 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 controls from 41 studies genotyped on a 200K custom array (iCOGS). Analyses were restricted to women of European ancestry. Genotypes for more than 11M SNPs were generated by imputation using the 1000 Genomes Project reference panel. We identified 15 novel loci associated with breast cancer at P<5×10−8. Combining association analysis with ChIP-Seq data in mammary cell lines and ChIA-PET chromatin interaction data in ENCODE, we identified likely target genes in two regions: SETBP1 on 18q12.3 and RNF115 and PDZK1 on 1q21.1. One association appears to be driven by an amino-acid substitution in EXO1. PMID:25751625

  18. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    PubMed

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  19. Genome-wide association study in discordant sibships identifies multiple inherited susceptibility alleles linked to lung cancer.

    PubMed

    Galvan, Antonella; Falvella, Felicia S; Frullanti, Elisa; Spinola, Monica; Incarbone, Matteo; Nosotti, Mario; Santambrogio, Luigi; Conti, Barbara; Pastorino, Ugo; Gonzalez-Neira, Anna; Dragani, Tommaso A

    2010-03-01

    We analyzed a series of young (median age = 52 years) non-smoker lung cancer patients and their unaffected siblings as controls, using a genome-wide 620 901 single-nucleotide polymorphism (SNP) array analysis and a case-control DNA pooling approach. We identified 82 putatively associated SNPs that were retested by individual genotyping followed by use of the sib transmission disequilibrium test, pointing to 36 SNPs associated with lung cancer risk in the discordant sibs series. Analysis of these 36 SNPs in a polygenic model characterized by additive and interchangeable effects of rare alleles revealed a highly statistically significant dosage-dependent association between risk allele carrier status and proportion of cancer cases. Replication of the same 36 SNPs in a population-based series confirmed the association with lung cancer for three SNPs, suggesting that phenocopies and genetic heterogeneity can play a major role in the complex genetics of lung cancer risk in the general population.

  20. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.

    PubMed

    Wray, Naomi R; Ripke, Stephan; Mattheisen, Manuel; Trzaskowski, Maciej; Byrne, Enda M; Abdellaoui, Abdel; Adams, Mark J; Agerbo, Esben; Air, Tracy M; Andlauer, Till M F; Bacanu, Silviu-Alin; Bækvad-Hansen, Marie; Beekman, Aartjan F T; Bigdeli, Tim B; Binder, Elisabeth B; Blackwood, Douglas R H; Bryois, Julien; Buttenschøn, Henriette N; Bybjerg-Grauholm, Jonas; Cai, Na; Castelao, Enrique; Christensen, Jane Hvarregaard; Clarke, Toni-Kim; Coleman, Jonathan I R; Colodro-Conde, Lucía; Couvy-Duchesne, Baptiste; Craddock, Nick; Crawford, Gregory E; Crowley, Cheynna A; Dashti, Hassan S; Davies, Gail; Deary, Ian J; Degenhardt, Franziska; Derks, Eske M; Direk, Nese; Dolan, Conor V; Dunn, Erin C; Eley, Thalia C; Eriksson, Nicholas; Escott-Price, Valentina; Kiadeh, Farnush Hassan Farhadi; Finucane, Hilary K; Forstner, Andreas J; Frank, Josef; Gaspar, Héléna A; Gill, Michael; Giusti-Rodríguez, Paola; Goes, Fernando S; Gordon, Scott D; Grove, Jakob; Hall, Lynsey S; Hannon, Eilis; Hansen, Christine Søholm; Hansen, Thomas F; Herms, Stefan; Hickie, Ian B; Hoffmann, Per; Homuth, Georg; Horn, Carsten; Hottenga, Jouke-Jan; Hougaard, David M; Hu, Ming; Hyde, Craig L; Ising, Marcus; Jansen, Rick; Jin, Fulai; Jorgenson, Eric; Knowles, James A; Kohane, Isaac S; Kraft, Julia; Kretzschmar, Warren W; Krogh, Jesper; Kutalik, Zoltán; Lane, Jacqueline M; Li, Yihan; Li, Yun; Lind, Penelope A; Liu, Xiaoxiao; Lu, Leina; MacIntyre, Donald J; MacKinnon, Dean F; Maier, Robert M; Maier, Wolfgang; Marchini, Jonathan; Mbarek, Hamdi; McGrath, Patrick; McGuffin, Peter; Medland, Sarah E; Mehta, Divya; Middeldorp, Christel M; Mihailov, Evelin; Milaneschi, Yuri; Milani, Lili; Mill, Jonathan; Mondimore, Francis M; Montgomery, Grant W; Mostafavi, Sara; Mullins, Niamh; Nauck, Matthias; Ng, Bernard; Nivard, Michel G; Nyholt, Dale R; O'Reilly, Paul F; Oskarsson, Hogni; Owen, Michael J; Painter, Jodie N; Pedersen, Carsten Bøcker; Pedersen, Marianne Giørtz; Peterson, Roseann E; Pettersson, Erik; Peyrot, Wouter J; Pistis, Giorgio; Posthuma, Danielle; Purcell, Shaun M; Quiroz, Jorge A; Qvist, Per; Rice, John P; Riley, Brien P; Rivera, Margarita; Saeed Mirza, Saira; Saxena, Richa; Schoevers, Robert; Schulte, Eva C; Shen, Ling; Shi, Jianxin; Shyn, Stanley I; Sigurdsson, Engilbert; Sinnamon, Grant B C; Smit, Johannes H; Smith, Daniel J; Stefansson, Hreinn; Steinberg, Stacy; Stockmeier, Craig A; Streit, Fabian; Strohmaier, Jana; Tansey, Katherine E; Teismann, Henning; Teumer, Alexander; Thompson, Wesley; Thomson, Pippa A; Thorgeirsson, Thorgeir E; Tian, Chao; Traylor, Matthew; Treutlein, Jens; Trubetskoy, Vassily; Uitterlinden, André G; Umbricht, Daniel; Van der Auwera, Sandra; van Hemert, Albert M; Viktorin, Alexander; Visscher, Peter M; Wang, Yunpeng; Webb, Bradley T; Weinsheimer, Shantel Marie; Wellmann, Jürgen; Willemsen, Gonneke; Witt, Stephanie H; Wu, Yang; Xi, Hualin S; Yang, Jian; Zhang, Futao; Arolt, Volker; Baune, Bernhard T; Berger, Klaus; Boomsma, Dorret I; Cichon, Sven; Dannlowski, Udo; de Geus, E C J; DePaulo, J Raymond; Domenici, Enrico; Domschke, Katharina; Esko, Tõnu; Grabe, Hans J; Hamilton, Steven P; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Kendler, Kenneth S; Kloiber, Stefan; Lewis, Glyn; Li, Qingqin S; Lucae, Susanne; Madden, Pamela F A; Magnusson, Patrik K; Martin, Nicholas G; McIntosh, Andrew M; Metspalu, Andres; Mors, Ole; Mortensen, Preben Bo; Müller-Myhsok, Bertram; Nordentoft, Merete; Nöthen, Markus M; O'Donovan, Michael C; Paciga, Sara A; Pedersen, Nancy L; Penninx, Brenda W J H; Perlis, Roy H; Porteous, David J; Potash, James B; Preisig, Martin; Rietschel, Marcella; Schaefer, Catherine; Schulze, Thomas G; Smoller, Jordan W; Stefansson, Kari; Tiemeier, Henning; Uher, Rudolf; Völzke, Henry; Weissman, Myrna M; Werge, Thomas; Winslow, Ashley R; Lewis, Cathryn M; Levinson, Douglas F; Breen, Gerome; Børglum, Anders D; Sullivan, Patrick F

    2018-05-01

    Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.

  1. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study.

    PubMed

    de Vries, Paul S; Sabater-Lleal, Maria; Chasman, Daniel I; Trompet, Stella; Ahluwalia, Tarunveer S; Teumer, Alexander; Kleber, Marcus E; Chen, Ming-Huei; Wang, Jie Jin; Attia, John R; Marioni, Riccardo E; Steri, Maristella; Weng, Lu-Chen; Pool, Rene; Grossmann, Vera; Brody, Jennifer A; Venturini, Cristina; Tanaka, Toshiko; Rose, Lynda M; Oldmeadow, Christopher; Mazur, Johanna; Basu, Saonli; Frånberg, Mattias; Yang, Qiong; Ligthart, Symen; Hottenga, Jouke J; Rumley, Ann; Mulas, Antonella; de Craen, Anton J M; Grotevendt, Anne; Taylor, Kent D; Delgado, Graciela E; Kifley, Annette; Lopez, Lorna M; Berentzen, Tina L; Mangino, Massimo; Bandinelli, Stefania; Morrison, Alanna C; Hamsten, Anders; Tofler, Geoffrey; de Maat, Moniek P M; Draisma, Harmen H M; Lowe, Gordon D; Zoledziewska, Magdalena; Sattar, Naveed; Lackner, Karl J; Völker, Uwe; McKnight, Barbara; Huang, Jie; Holliday, Elizabeth G; McEvoy, Mark A; Starr, John M; Hysi, Pirro G; Hernandez, Dena G; Guan, Weihua; Rivadeneira, Fernando; McArdle, Wendy L; Slagboom, P Eline; Zeller, Tanja; Psaty, Bruce M; Uitterlinden, André G; de Geus, Eco J C; Stott, David J; Binder, Harald; Hofman, Albert; Franco, Oscar H; Rotter, Jerome I; Ferrucci, Luigi; Spector, Tim D; Deary, Ian J; März, Winfried; Greinacher, Andreas; Wild, Philipp S; Cucca, Francesco; Boomsma, Dorret I; Watkins, Hugh; Tang, Weihong; Ridker, Paul M; Jukema, Jan W; Scott, Rodney J; Mitchell, Paul; Hansen, Torben; O'Donnell, Christopher J; Smith, Nicholas L; Strachan, David P; Dehghan, Abbas

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10-8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10-8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.

  2. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    PubMed Central

    de Vries, Paul S.; Sabater-Lleal, Maria; Chasman, Daniel I.; Trompet, Stella; Kleber, Marcus E.; Chen, Ming-Huei; Wang, Jie Jin; Attia, John R.; Marioni, Riccardo E.; Weng, Lu-Chen; Grossmann, Vera; Brody, Jennifer A.; Venturini, Cristina; Tanaka, Toshiko; Rose, Lynda M.; Oldmeadow, Christopher; Mazur, Johanna; Basu, Saonli; Yang, Qiong; Ligthart, Symen; Hottenga, Jouke J.; Rumley, Ann; Mulas, Antonella; de Craen, Anton J. M.; Grotevendt, Anne; Taylor, Kent D.; Delgado, Graciela E.; Kifley, Annette; Lopez, Lorna M.; Berentzen, Tina L.; Mangino, Massimo; Bandinelli, Stefania; Morrison, Alanna C.; Hamsten, Anders; Tofler, Geoffrey; de Maat, Moniek P. M.; Draisma, Harmen H. M.; Lowe, Gordon D.; Zoledziewska, Magdalena; Sattar, Naveed; Lackner, Karl J.; Völker, Uwe; McKnight, Barbara; Huang, Jie; Holliday, Elizabeth G.; McEvoy, Mark A.; Starr, John M.; Hysi, Pirro G.; Hernandez, Dena G.; Guan, Weihua; Rivadeneira, Fernando; McArdle, Wendy L.; Slagboom, P. Eline; Zeller, Tanja; Psaty, Bruce M.; Uitterlinden, André G.; de Geus, Eco J. C.; Stott, David J.; Binder, Harald; Hofman, Albert; Franco, Oscar H.; Rotter, Jerome I.; Ferrucci, Luigi; Spector, Tim D.; Deary, Ian J.; März, Winfried; Greinacher, Andreas; Wild, Philipp S.; Cucca, Francesco; Boomsma, Dorret I.; Watkins, Hugh; Tang, Weihong; Ridker, Paul M.; Jukema, Jan W.; Scott, Rodney J.; Mitchell, Paul; Hansen, Torben; O'Donnell, Christopher J.; Smith, Nicholas L.; Strachan, David P.

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10−8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10−8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development. PMID:28107422

  3. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    PubMed Central

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  4. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    PubMed

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  5. A Genome-Wide Association Study Identifies A New Ovarian Cancer Susceptibility Locus On 9p22.2

    PubMed Central

    Song, Honglin; Ramus, Susan J.; Tyrer, Jonathan; Bolton, Kelly L.; Gentry-Maharaj, Aleksandra; Wozniak, Eva; Anton-Culver, Hoda; Chang-Claude, Jenny; Cramer, Daniel W.; DiCioccio, Richard; Dörk, Thilo; Goode, Ellen L.; Goodman, Marc T; Schildkraut, Joellen M; Sellers, Thomas; Baglietto, Laura; Beckmann, Matthias W.; Beesley, Jonathan; Blaakaer, Jan; Carney, Michael E; Chanock, Stephen; Chen, Zhihua; Cunningham, Julie M.; Dicks, Ed; Doherty, Jennifer A.; Dürst, Matthias; Ekici, Arif B.; Fenstermacher, David; Fridley, Brooke L.; Giles, Graham; Gore, Martin E.; De Vivo, Immaculata; Hillemanns, Peter; Hogdall, Claus; Hogdall, Estrid; Iversen, Edwin S; Jacobs, Ian J; Jakubowska, Anna; Li, Dong; Lissowska, Jolanta; Lubiński, Jan; Lurie, Galina; McGuire, Valerie; McLaughlin, John; Mędrek, Krzysztof; Moorman, Patricia G.; Moysich, Kirsten; Narod, Steven; Phelan, Catherine; Pye, Carole; Risch, Harvey; Runnebaum, Ingo B; Severi, Gianluca; Southey, Melissa; Stram, Daniel O.; Thiel, Falk C.; Terry, Kathryn L.; Tsai, Ya-Yu; Tworoger, Shelley S.; Van Den Berg, David J.; Vierkant, Robert A.; Wang-Gohrke, Shan; Webb, Penelope M.; Wilkens, Lynne R.; Wu, Anna H; Yang, Hannah; Brewster, Wendy; Ziogas, Argyrios; Houlston, Richard; Tomlinson, Ian; Whittemore, Alice S; Rossing, Mary Anne; Ponder, Bruce A.J.; Pearce, Celeste Leigh; Ness, Roberta B.; Menon, Usha; Kjaer, Susanne Krüger; Gronwald, Jacek; Garcia-Closas, Montserrat; Fasching, Peter A.; Easton, Douglas F; Chenevix-Trench, Georgia; Berchuck, Andrew; Pharoah, Paul D.P.; Gayther, Simon A.

    2009-01-01

    Epithelial ovarian cancer has a major heritable component, but the known susceptibility genes explain less than half the excess familial risk1. We performed a genome wide association study (GWAS) to identify common ovarian cancer susceptibility alleles. We evaluated 507,094 SNPs genotyped in 1,817 cases and 2,353 controls from the UK and ~2 million imputed SNPs. We genotyped the 22,790 top ranked SNPs in 4,274 cases and 4,809 controls of European ancestry from Europe, USA and Australia. We identified 12 SNPs at 9p22 associated with disease risk (P<10−8). The most significant SNP (rs3814113; P = 2.5 × 10−17) was genotyped in a further 2,670 ovarian cancer cases and 4,668 controls confirming its association (combined data odds ratio = 0.82 95% CI 0.79 – 0.86, P-trend = 5.1 × 10−19). The association differs by histological subtype, being strongest for serous ovarian cancers (OR 0.77 95% CI 0.73 – 0.81, Ptrend = 4.1 × 10−21). PMID:19648919

  6. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome

    PubMed Central

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; İncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strømme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI: http://dx.doi.org/10.7554/eLife.06602.001 PMID:26026149

  7. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  8. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes.

    PubMed

    Matsuo, Hirotaka; Yamamoto, Ken; Nakaoka, Hirofumi; Nakayama, Akiyoshi; Sakiyama, Masayuki; Chiba, Toshinori; Takahashi, Atsushi; Nakamura, Takahiro; Nakashima, Hiroshi; Takada, Yuzo; Danjoh, Inaho; Shimizu, Seiko; Abe, Junko; Kawamura, Yusuke; Terashige, Sho; Ogata, Hiraku; Tatsukawa, Seishiro; Yin, Guang; Okada, Rieko; Morita, Emi; Naito, Mariko; Tokumasu, Atsumi; Onoue, Hiroyuki; Iwaya, Keiichi; Ito, Toshimitsu; Takada, Tappei; Inoue, Katsuhisa; Kato, Yukio; Nakamura, Yukio; Sakurai, Yutaka; Suzuki, Hiroshi; Kanai, Yoshikatsu; Hosoya, Tatsuo; Hamajima, Nobuyuki; Inoue, Ituro; Kubo, Michiaki; Ichida, Kimiyoshi; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-04-01

    Gout, caused by hyperuricaemia, is a multifactorial disease. Although genome-wide association studies (GWASs) of gout have been reported, they included self-reported gout cases in which clinical information was insufficient. Therefore, the relationship between genetic variation and clinical subtypes of gout remains unclear. Here, we first performed a GWAS of clinically defined gout cases only. A GWAS was conducted with 945 patients with clinically defined gout and 1213 controls in a Japanese male population, followed by replication study of 1048 clinically defined cases and 1334 controls. Five gout susceptibility loci were identified at the genome-wide significance level (p<5.0×10(-8)), which contained well-known urate transporter genes (ABCG2 and SLC2A9) and additional genes: rs1260326 (p=1.9×10(-12); OR=1.36) of GCKR (a gene for glucose and lipid metabolism), rs2188380 (p=1.6×10(-23); OR=1.75) of MYL2-CUX2 (genes associated with cholesterol and diabetes mellitus) and rs4073582 (p=6.4×10(-9); OR=1.66) of CNIH-2 (a gene for regulation of glutamate signalling). The latter two are identified as novel gout loci. Furthermore, among the identified single-nucleotide polymorphisms (SNPs), we demonstrated that the SNPs of ABCG2 and SLC2A9 were differentially associated with types of gout and clinical parameters underlying specific subtypes (renal underexcretion type and renal overload type). The effect of the risk allele of each SNP on clinical parameters showed significant linear relationships with the ratio of the case-control ORs for two distinct types of gout (r=0.96 [p=4.8×10(-4)] for urate clearance and r=0.96 [p=5.0×10(-4)] for urinary urate excretion). Our findings provide clues to better understand the pathogenesis of gout and will be useful for development of companion diagnostics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Identifying Pleiotropic Genes in Genome-Wide Association Studies for Multivariate Phenotypes with Mixed Measurement Scales

    PubMed Central

    Williams, L. Keoki; Buu, Anne

    2017-01-01

    We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206

  10. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing

    PubMed Central

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182

  11. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing.

    PubMed

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses.

  12. Type 2 diabetes mellitus disease risk genes identified by genome wide copy number variation scan in normal populations.

    PubMed

    Prabhanjan, Manasa; Suresh, Raviraj V; Murthy, Megha N; Ramachandra, Nallur B

    2016-03-01

    To identify the role of copy number variations (CNVs) on disease risk genes and its effect on disease phenotypes in type 2 diabetes mellitus (T2DM) in 12 random populations using high throughput arrays. CNV analysis was carried out on a total of 1715 individuals from 12 populations, from ArrayExpress Archive of the European Bioinformatics Institute along with our subjects using Affymetrix Genome Wide SNP 6.0 array. CNV effect on T2DM genes were analyzed using several bioinformatics tools and a molecular protein interaction network was constructed to identify the disease mechanism altered by the CNVs. Analysis showed 34.4% of the total population to be under CNV burden for T2DM, with 83 disease causal and associated genes being under CNV influence. Hotspots were identified on chromosomes 22, 12, 6, 19 and 11.Overlap studies with case cohorts revealed significant disease risk genes such as EGFR, E2F1, PPP1R3A, HLA and TSPAN8. CNVs play a significant role in predisposing T2DM in normal cohorts and contribute to the phenotypic effects. Thus, CNVs should be considered as one of the major contributors in predisposition of the disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Genome-wide association analysis of young onset stroke identifies a locus on chromosome 10q25 near HABP2

    PubMed Central

    Cheng, Yu-Ching; Stanne, Tara M.; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G.; Malik, Rainer; Xu, Huichun; Kittner, Steven J.; Cole, John W.; O’Connell, Jeffrey R.; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M.; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A.; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C.; Kanse, Sandip M.; Bis, Joshua C.; Fornage, Myriam; Mosley, Thomas H.; Hopewell, Jemma C.; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M. Arfan; Longstreth, WT; Meschia, James F.; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B.; Markus, Hugh S.; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D.

    2015-01-01

    Background and Purpose Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a two-stage meta-analysis of genome-wide association studies (GWAS), focusing on stroke cases with an age of onset < 60 years old. Methods The Discovery stage of our GWAS included 4,505 cases and 21,968 controls of European, South-Asian and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10−6 and performed in silico association analyses in an independent sample of up to 1,003 cases and 7,745 controls. Results One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the Discovery and Follow-up Stages (rs11196288, OR=1.41, P=9.5×10−9). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that two SNPs in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. Conclusions HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. PMID:26732560

  14. Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium.

    PubMed

    Power, Robert A; Tansey, Katherine E; Buttenschøn, Henriette Nørmølle; Cohen-Woods, Sarah; Bigdeli, Tim; Hall, Lynsey S; Kutalik, Zoltán; Lee, S Hong; Ripke, Stephan; Steinberg, Stacy; Teumer, Alexander; Viktorin, Alexander; Wray, Naomi R; Arolt, Volker; Baune, Bernard T; Boomsma, Dorret I; Børglum, Anders D; Byrne, Enda M; Castelao, Enrique; Craddock, Nick; Craig, Ian W; Dannlowski, Udo; Deary, Ian J; Degenhardt, Franziska; Forstner, Andreas J; Gordon, Scott D; Grabe, Hans J; Grove, Jakob; Hamilton, Steven P; Hayward, Caroline; Heath, Andrew C; Hocking, Lynne J; Homuth, Georg; Hottenga, Jouke J; Kloiber, Stefan; Krogh, Jesper; Landén, Mikael; Lang, Maren; Levinson, Douglas F; Lichtenstein, Paul; Lucae, Susanne; MacIntyre, Donald J; Madden, Pamela; Magnusson, Patrik K E; Martin, Nicholas G; McIntosh, Andrew M; Middeldorp, Christel M; Milaneschi, Yuri; Montgomery, Grant W; Mors, Ole; Müller-Myhsok, Bertram; Nyholt, Dale R; Oskarsson, Hogni; Owen, Michael J; Padmanabhan, Sandosh; Penninx, Brenda W J H; Pergadia, Michele L; Porteous, David J; Potash, James B; Preisig, Martin; Rivera, Margarita; Shi, Jianxin; Shyn, Stanley I; Sigurdsson, Engilbert; Smit, Johannes H; Smith, Blair H; Stefansson, Hreinn; Stefansson, Kari; Strohmaier, Jana; Sullivan, Patrick F; Thomson, Pippa; Thorgeirsson, Thorgeir E; Van der Auwera, Sandra; Weissman, Myrna M; Breen, Gerome; Lewis, Cathryn M

    2017-02-15

    Major depressive disorder (MDD) is a disabling mood disorder, and despite a known heritable component, a large meta-analysis of genome-wide association studies revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age at onset in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by age at onset. Discovery case-control genome-wide association studies were performed where cases were stratified using increasing/decreasing age-at-onset cutoffs; significant single nucleotide polymorphisms were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 control subjects for subsetting. Polygenic score analysis was used to examine whether differences in shared genetic risk exists between earlier and adult-onset MDD with commonly comorbid disorders of schizophrenia, bipolar disorder, Alzheimer's disease, and coronary artery disease. We identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, odds ratio: 1.16, 95% confidence interval: 1.11-1.21, p = 5.2 × 10 -11 ). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset MDD. We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Genome-wide Analysis of Genetic Loci Associated with Alzheimer’s Disease

    PubMed Central

    Seshadri, Sudha; Fitzpatrick, Annette L.; Arfan Ikram, M; DeStefano, Anita L.; Gudnason, Vilmundur; Boada, Merce; Bis, Joshua C.; Smith, Albert V.; Carassquillo, Minerva M.; Charles Lambert, Jean; Harold, Denise; Schrijvers, Elisabeth M. C.; Ramirez-Lorca, Reposo; Debette, Stephanie; Longstreth, W.T.; Janssens, A. Cecile J.W.; Shane Pankratz, V.; Dartigues, Jean François; Hollingworth, Paul; Aspelund, Thor; Hernandez, Isabel; Beiser, Alexa; Kuller, Lewis H.; Koudstaal, Peter J.; Dickson, Dennis W.; Tzourio, Christophe; Abraham, Richard; Antunez, Carmen; Du, Yangchun; Rotter, Jerome I.; Aulchenko, Yurii S.; Harris, Tamara B.; Petersen, Ronald C.; Berr, Claudine; Owen, Michael J.; Lopez-Arrieta, Jesus; Varadarajan, Badri N.; Becker, James T.; Rivadeneira, Fernando; Nalls, Michael A.; Graff-Radford, Neill R.; Campion, Dominique; Auerbach, Sanford; Rice, Kenneth; Hofman, Albert; Jonsson, Palmi V.; Schmidt, Helena; Lathrop, Mark; Mosley, Thomas H.; Au, Rhoda; Psaty, Bruce M.; Uitterlinden, Andre G.; Farrer, Lindsay A.; Lumley, Thomas; Ruiz, Agustin; Williams, Julie; Amouyel, Philippe; Younkin, Steve G.; Wolf, Philip A.; Launer, Lenore J.; Lopez, Oscar L.; van Duijn, Cornelia M.; Breteler, Monique M. B.

    2010-01-01

    Context Genome wide association studies (GWAS) have recently identified CLU, PICALM and CR1 as novel genes for late-onset Alzheimer’s disease (AD). Objective In a three-stage analysis of new and previously published GWAS on over 35000 persons (8371 AD cases), we sought to identify and strengthen additional loci associated with AD and confirm these in an independent sample. We also examined the contribution of recently identified genes to AD risk prediction. Design, Setting, and Participants We identified strong genetic associations (p<10−3) in a Stage 1 sample of 3006 AD cases and 14642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium (1367 AD cases (973 incident)) with previously reported results from the Translational Genomics Research Institute (TGEN) and Mayo AD GWAS. We identified 2708 single nucleotide polymorphisms (SNPs) with p-values<10−3, and in Stage 2 pooled results for these SNPs with the European AD Initiative (2032 cases, 5328 controls) to identify ten loci with p-values<10−5. In Stage 3, we combined data for these ten loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases, 6995 controls) to identify four SNPs with a p-value<1.7×10−8. These four SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Main outcome measure Alzheimer’s Disease. Results We showed genome-wide significance for two new loci: rs744373 near BIN1 (OR:1.13; 95%CI:1.06–1.21 per copy of the minor allele; p=1.6×10−11) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR:1.18; 95%CI1.07–1.29; p=6.5×10−9). Associations of CLU, PICALM, BIN1 and EXOC3L2 with AD were confirmed in the Spanish sample (p<0.05). However, CLU and PICALM did not improve incident AD prediction beyond age, sex, and APOE (improvement in area under receiver-operating-characteristic curve <0.003). Conclusions Two novel genetic loci for AD are reported

  16. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicargo sativa L.) using Genotyping by Sequencing

    USDA-ARS?s Scientific Manuscript database

    : In this study, we used a diverse panel of alfalfa accessions to identify molecular markers associated with salt tolerance during germination by genome-wide association (GWA) mapping and genotyping-by-sequencing (GBS). Three levels of salt treatments were applied during seed germination. Phenotypic...

  17. Genome-wide association study of Alzheimer's disease.

    PubMed

    Kamboh, M I; Demirci, F Y; Wang, X; Minster, R L; Carrasquillo, M M; Pankratz, V S; Younkin, S G; Saykin, A J; Jun, G; Baldwin, C; Logue, M W; Buros, J; Farrer, L; Pericak-Vance, M A; Haines, J L; Sweet, R A; Ganguli, M; Feingold, E; Dekosky, S T; Lopez, O L; Barmada, M M

    2012-05-15

    In addition to apolipoprotein E (APOE), recent large genome-wide association studies (GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for late-onset Alzheimer's disease (LOAD). However, the genetic effect attributable to known loci is about 50%, indicating that additional risk genes for LOAD remain to be identified. In this study, we have used a new GWAS data set from the University of Pittsburgh (1291 cases and 938 controls) to examine in detail the recently implicated nine new regions with Alzheimer's disease (AD) risk, and also performed a meta-analysis utilizing the top 1% GWAS single-nucleotide polymorphisms (SNPs) with P<0.01 along with four independent data sets (2727 cases and 3336 controls) for these SNPs in an effort to identify new AD loci. The new GWAS data were generated on the Illumina Omni1-Quad chip and imputed at ~2.5 million markers. As expected, several markers in the APOE regions showed genome-wide significant associations in the Pittsburg sample. While we observed nominal significant associations (P<0.05) either within or adjacent to five genes (PICALM, BIN1, ABCA7, MS4A4/MS4A6E and EPHA1), significant signals were observed 69-180 kb outside of the remaining four genes (CD33, CLU, CD2AP and CR1). Meta-analysis on the top 1% SNPs revealed a suggestive novel association in the PPP1R3B gene (top SNP rs3848140 with P = 3.05E-07). The association of this SNP with AD risk was consistent in all five samples with a meta-analysis odds ratio of 2.43. This is a potential candidate gene for AD as this is expressed in the brain and is involved in lipid metabolism. These findings need to be confirmed in additional samples.

  18. Genome-wide association study of Alzheimer's disease

    PubMed Central

    Kamboh, M I; Demirci, F Y; Wang, X; Minster, R L; Carrasquillo, M M; Pankratz, V S; Younkin, S G; Saykin, A J; Jun, G; Baldwin, C; Logue, M W; Buros, J; Farrer, L; Pericak-Vance, M A; Haines, J L; Sweet, R A; Ganguli, M; Feingold, E; DeKosky, S T; Lopez, O L; Barmada, M M

    2012-01-01

    In addition to apolipoprotein E (APOE), recent large genome-wide association studies (GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for late-onset Alzheimer's disease (LOAD). However, the genetic effect attributable to known loci is about 50%, indicating that additional risk genes for LOAD remain to be identified. In this study, we have used a new GWAS data set from the University of Pittsburgh (1291 cases and 938 controls) to examine in detail the recently implicated nine new regions with Alzheimer's disease (AD) risk, and also performed a meta-analysis utilizing the top 1% GWAS single-nucleotide polymorphisms (SNPs) with P<0.01 along with four independent data sets (2727 cases and 3336 controls) for these SNPs in an effort to identify new AD loci. The new GWAS data were generated on the Illumina Omni1-Quad chip and imputed at ∼2.5 million markers. As expected, several markers in the APOE regions showed genome-wide significant associations in the Pittsburg sample. While we observed nominal significant associations (P<0.05) either within or adjacent to five genes (PICALM, BIN1, ABCA7, MS4A4/MS4A6E and EPHA1), significant signals were observed 69–180 kb outside of the remaining four genes (CD33, CLU, CD2AP and CR1). Meta-analysis on the top 1% SNPs revealed a suggestive novel association in the PPP1R3B gene (top SNP rs3848140 with P=3.05E–07). The association of this SNP with AD risk was consistent in all five samples with a meta-analysis odds ratio of 2.43. This is a potential candidate gene for AD as this is expressed in the brain and is involved in lipid metabolism. These findings need to be confirmed in additional samples. PMID:22832961

  19. A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of α1-antitrypsin deficiency.

    PubMed

    O'Reilly, Linda P; Long, Olivia S; Cobanoglu, Murat C; Benson, Joshua A; Luke, Cliff J; Miedel, Mark T; Hale, Pamela; Perlmutter, David H; Bahar, Ivet; Silverman, Gary A; Pak, Stephen C

    2014-10-01

    α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Genome-wide analysis of disease progression in age-related macular degeneration.

    PubMed

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  1. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development—Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus

    PubMed Central

    Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin

    2016-01-01

    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10−8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility. PMID:27171399

  2. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array.

    PubMed

    Zhu, Bo; Niu, Hong; Zhang, Wengang; Wang, Zezhao; Liang, Yonghu; Guan, Long; Guo, Peng; Chen, Yan; Zhang, Lupei; Guo, Yong; Ni, Heming; Gao, Xue; Gao, Huijiang; Xu, Lingyang; Li, Junya

    2017-06-14

    Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.

  3. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition.

    PubMed

    Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong

    2016-11-21

    Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome

  4. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hun; Kerns, Sarah; Ostrer, Harry; Powell, Simon N.; Rosenstein, Barry; Deasy, Joseph O.

    2017-02-01

    The biological cause of clinically observed variability of normal tissue damage following radiotherapy is poorly understood. We hypothesized that machine/statistical learning methods using single nucleotide polymorphism (SNP)-based genome-wide association studies (GWAS) would identify groups of patients of differing complication risk, and furthermore could be used to identify key biological sources of variability. We developed a novel learning algorithm, called pre-conditioned random forest regression (PRFR), to construct polygenic risk models using hundreds of SNPs, thereby capturing genomic features that confer small differential risk. Predictive models were trained and validated on a cohort of 368 prostate cancer patients for two post-radiotherapy clinical endpoints: late rectal bleeding and erectile dysfunction. The proposed method results in better predictive performance compared with existing computational methods. Gene ontology enrichment analysis and protein-protein interaction network analysis are used to identify key biological processes and proteins that were plausible based on other published studies. In conclusion, we confirm that novel machine learning methods can produce large predictive models (hundreds of SNPs), yielding clinically useful risk stratification models, as well as identifying important underlying biological processes in the radiation damage and tissue repair process. The methods are generally applicable to GWAS data and are not specific to radiotherapy endpoints.

  5. Genome-wide association studies identified multiple genetic loci for body size at four growth stages in Chinese Holstein cattle.

    PubMed

    Zhang, Xu; Chu, Qin; Guo, Gang; Dong, Ganghui; Li, Xizhi; Zhang, Qin; Zhang, Shengli; Zhang, Zhiwu; Wang, Yachun

    2017-01-01

    The growth and maturity of cattle body size affect not only feed efficiency, but also productivity and longevity. Dissecting the genetic architecture of body size is critical for cattle breeding to improve both efficiency and productivity. The volume and weight of body size are indicated by several measurements. Among them, Heart Girth (HG) and Hip Height (HH) are the most important traits. They are widely used as predictors of body weight (BW). Few association studies have been conducted for HG and HH in cattle focusing on single growth stage. In this study, we extended the Genome-wide association studies to a full spectrum of four growth stages (6-, 12-, 18-, and 24-months after birth) in Chinese Holstein heifers. The whole genomic single nucleotide polymorphisms (SNPs) were obtained from the Illumina BovineSNP50 v2 BeadChip genotyped on 3,325 individuals. Estimated breeding values (EBVs) were derived for both HG and HH at the four different ages and analyzed separately for GWAS by using the Fixed and random model Circuitous Probability Unification (FarmCPU) method. In total, 27 SNPs were identified to be significantly associated with HG and HH at different growth stages. We found 66 candidate genes located nearby the associated SNPs, including nine genes that were known as highly related to development and skeletal and muscular growth. In addition, biological function analysis was performed by Ingenuity Pathway Analysis and an interaction network related to development was obtained, which contained 16 genes out of the 66 candidates. The set of putative genes provided valuable resources and can help elucidate the genomic architecture and mechanisms underlying growth traits in dairy cattle.

  6. Genome-wide gene–environment interaction analysis for asbestos exposure in lung cancer susceptibility

    PubMed Central

    Wei, Qingyi Wei

    2012-01-01

    Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene–environment interactions. To determine gene–asbestos interactions in lung cancer risk, we conducted genome-wide gene–environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10–6, which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10–5). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene–asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk. Abbreviations:CIconfidence intervalEenvironmentFDRfalse discovery rateGgeneGSEAgene-set-enrichment analysisGWASgenome-wide association studiesi-GSEAimproved gene-set-enrichment analysis approachORodds ratioSNPsingle nucleotide polymorphism PMID:22637743

  7. Bioinformatics challenges for genome-wide association studies.

    PubMed

    Moore, Jason H; Asselbergs, Folkert W; Williams, Scott M

    2010-02-15

    The sequencing of the human genome has made it possible to identify an informative set of >1 million single nucleotide polymorphisms (SNPs) across the genome that can be used to carry out genome-wide association studies (GWASs). The availability of massive amounts of GWAS data has necessitated the development of new biostatistical methods for quality control, imputation and analysis issues including multiple testing. This work has been successful and has enabled the discovery of new associations that have been replicated in multiple studies. However, it is now recognized that most SNPs discovered via GWAS have small effects on disease susceptibility and thus may not be suitable for improving health care through genetic testing. One likely explanation for the mixed results of GWAS is that the current biostatistical analysis paradigm is by design agnostic or unbiased in that it ignores all prior knowledge about disease pathobiology. Further, the linear modeling framework that is employed in GWAS often considers only one SNP at a time thus ignoring their genomic and environmental context. There is now a shift away from the biostatistical approach toward a more holistic approach that recognizes the complexity of the genotype-phenotype relationship that is characterized by significant heterogeneity and gene-gene and gene-environment interaction. We argue here that bioinformatics has an important role to play in addressing the complexity of the underlying genetic basis of common human diseases. The goal of this review is to identify and discuss those GWAS challenges that will require computational methods.

  8. Genome Wide Analysis of Fertility and Production Traits in Italian Holstein Cattle

    PubMed Central

    Stella, Alessandra; Biffani, Stefano; Negrini, Riccardo; Lazzari, Barbara; Ajmone-Marsan, Paolo; Williams, John L .

    2013-01-01

    A genome wide scan was performed on a total of 2093 Italian Holstein proven bulls genotyped with 50K single nucleotide polymorphisms (SNPs), with the objective of identifying loci associated with fertility related traits and to test their effects on milk production traits. The analysis was carried out using estimated breeding values for the aggregate fertility index and for each trait contributing to the index: angularity, calving interval, non-return rate at 56 days, days to first service, and 305 day first parity lactation. In addition, two production traits not included in the aggregate fertility index were analysed: fat yield and protein yield. Analyses were carried out using all SNPs treated separately, further the most significant marker on BTA14 associated to milk quality located in the DGAT1 region was treated as fixed effect. Genome wide association analysis identified 61 significant SNPs and 75 significant marker-trait associations. Eight additional SNP associations were detected when SNP located near DGAT1 was included as a fixed effect. As there were no obvious common SNPs between the traits analyzed independently in this study, a network analysis was carried out to identify unforeseen relationships that may link production and fertility traits. PMID:24265800

  9. A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius.

    PubMed

    Chesi, Alessandra; Mitchell, Jonathan A; Kalkwarf, Heidi J; Bradfield, Jonathan P; Lappe, Joan M; McCormack, Shana E; Gilsanz, Vicente; Oberfield, Sharon E; Hakonarson, Hakon; Shepherd, John A; Kelly, Andrea; Zemel, Babette S; Grant, Struan F A

    2015-09-01

    Childhood fractures are common, with the forearm being the most common site. Genome-wide association studies (GWAS) have identified more than 60 loci associated with bone mineral density (BMD) in adults but less is known about genetic influences specific to bone in childhood. To identify novel genetic factors that influence pediatric bone strength at a common site for childhood fractures, we performed a sex-stratified trans-ethnic genome-wide association study of areal BMD (aBMD) and bone mineral content (BMC) Z-scores measured by dual energy X-ray absorptiometry at the one-third distal radius, in a cohort of 1399 children without clinical abnormalities in bone health. We tested signals with P < 5 × 10(-6) for replication in an independent, same-age cohort of 486 Caucasian children. Two loci yielded a genome-wide significant combined P-value: rs7797976 within CPED1 in females [P = 2.4 × 10(-11), β =- 0.30 standard deviations (SD) per T allele; aBMD-Z] and rs7035284 at 9p21.3 in males (P = 1.2 × 10(-8), β = 0.28 SD per G allele; BMC-Z). Signals at the CPED1-WNT16-FAM3C locus have been previously associated with BMD at other skeletal sites in adults and children. Our result at the distal radius underscores the importance of this locus at multiple skeletal sites. The 9p21.3 locus is within a gene desert, with the nearest gene flanking each side being MIR31HG and MTAP, neither of which has been implicated in BMD or BMC previously. These findings suggest that genetic determinants of childhood bone accretion at the radius, a skeletal site that is primarily cortical bone, exist and also differ by sex. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies

    PubMed Central

    Murabito, Joanne M.; White, Charles C.; Kavousi, Maryam; Sun, Yan V.; Feitosa, Mary F.; Nambi, Vijay; Lamina, Claudia; Schillert, Arne; Coassin, Stefan; Bis, Joshua C.; Broer, Linda; Crawford, Dana C.; Franceschini, Nora; Frikke-Schmidt, Ruth; Haun, Margot; Holewijn, Suzanne; Huffman, Jennifer E.; Hwang, Shih-Jen; Kiechl, Stefan; Kollerits, Barbara; Montasser, May E.; Nolte, Ilja M.; Rudock, Megan E.; Senft, Andrea; Teumer, Alexander; van der Harst, Pim; Vitart, Veronique; Waite, Lindsay L.; Wood, Andrew R.; Wassel, Christina L.; Absher, Devin M.; Allison, Matthew A.; Amin, Najaf; Arnold, Alice; Asselbergs, Folkert W.; Aulchenko, Yurii; Bandinelli, Stefania; Barbalic, Maja; Boban, Mladen; Brown-Gentry, Kristin; Couper, David J.; Criqui, Michael H.; Dehghan, Abbas; Heijer, Martin den; Dieplinger, Benjamin; Ding, Jingzhong; Dörr, Marcus; Espinola-Klein, Christine; Felix, Stephan B.; Ferrucci, Luigi; Folsom, Aaron R.; Fraedrich, Gustav; Gibson, Quince; Goodloe, Robert; Gunjaca, Grgo; Haltmayer, Meinhard; Heiss, Gerardo; Hofman, Albert; Kieback, Arne; Kiemeney, Lambertus A.; Kolcic, Ivana; Kullo, Iftikhar J.; Kritchevsky, Stephen B.; Lackner, Karl J.; Li, Xiaohui; Lieb, Wolfgang; Lohman, Kurt; Meisinger, Christa; Melzer, David; Mohler, Emile R; Mudnic, Ivana; Mueller, Thomas; Navis, Gerjan; Oberhollenzer, Friedrich; Olin, Jeffrey W.; O’Connell, Jeff; O’Donnell, Christopher J.; Palmas, Walter; Penninx, Brenda W.; Petersmann, Astrid; Polasek, Ozren; Psaty, Bruce M.; Rantner, Barbara; Rice, Ken; Rivadeneira, Fernando; Rotter, Jerome I.; Seldenrijk, Adrie; Stadler, Marietta; Summerer, Monika; Tanaka, Toshiko; Tybjaerg-Hansen, Anne; Uitterlinden, Andre G.; van Gilst, Wiek H.; Vermeulen, Sita H.; Wild, Sarah H.; Wild, Philipp S.; Willeit, Johann; Zeller, Tanja; Zemunik, Tatijana; Zgaga, Lina; Assimes, Themistocles L.; Blankenberg, Stefan; Boerwinkle, Eric; Campbell, Harry; Cooke, John P.; de Graaf, Jacqueline; Herrington, David; Kardia, Sharon L. R.; Mitchell, Braxton D.; Murray, Anna; Münzel, Thomas; Newman, Anne; Oostra, Ben A.; Rudan, Igor; Shuldiner, Alan R.; Snieder, Harold; van Duijn, Cornelia M.; Völker, Uwe; Wright, Alan F.; Wichmann, H.-Erich; Wilson, James F.; Witteman, Jacqueline C.M.; Liu, Yongmei; Hayward, Caroline; Borecki, Ingrid B.; Ziegler, Andreas; North, Kari E.; Cupples, L. Adrienne; Kronenberg, Florian

    2012-01-01

    Background Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts. Methods and Results Continuous ABI and PAD (ABI≤0.9) phenotypes adjusted for age and sex were examined. Each study conducted genotyping and imputed data to the ~2.5 million SNPs in HapMap. Linear and logistic regression models were used to test each SNP for association with ABI and PAD using additive genetic models. Study-specific data were combined using fixed-effects inverse variance weighted meta-analyses. There were a total of 41,692 participants of European ancestry (~60% women, mean ABI 1.02 to 1.19), including 3,409 participants with PAD and with GWAS data available. In the discovery meta-analysis, rs10757269 on chromosome 9 near CDKN2B had the strongest association with ABI (β= −0.006, p=2.46x10−8). We sought replication of the 6 strongest SNP associations in 5 population-based studies and 3 clinical samples (n=16,717). The association for rs10757269 strengthened in the combined discovery and replication analysis (p=2.65x10−9). No other SNP associations for ABI or PAD achieved genome-wide significance. However, two previously reported candidate genes for PAD and one SNP associated with coronary artery disease (CAD) were associated with ABI : DAB21P (rs13290547, p=3.6x10−5); CYBA (rs3794624, p=6.3x10−5); and rs1122608 (LDLR, p=0.0026). Conclusions GWAS in more than 40,000 individuals identified one genome-wide significant association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for CAD are associated with ABI. PMID:22199011

  11. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  12. snpGeneSets: An R Package for Genome-Wide Study Annotation

    PubMed Central

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-01-01

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/. PMID:27807048

  13. Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination

    PubMed Central

    Startek, Michał; Szafranski, Przemyslaw; Gambin, Tomasz; Campbell, Ian M.; Hixson, Patricia; Shaw, Chad A.; Stankiewicz, Paweł; Gambin, Anna

    2015-01-01

    Nonallelic homologous recombination (NAHR), occurring between low-copy repeats (LCRs) >10 kb in size and sharing >97% DNA sequence identity, is responsible for the majority of recurrent genomic rearrangements in the human genome. Recent studies have shown that transposable elements (TEs) can also mediate recurrent deletions and translocations, indicating the features of substrates that mediate NAHR may be significantly less stringent than previously believed. Using >4 kb length and >95% sequence identity criteria, we analyzed of the genome-wide distribution of long interspersed element (LINE) retrotransposon and their potential to mediate NAHR. We identified 17 005 directly oriented LINE pairs located <10 Mbp from each other as potential NAHR substrates, placing 82.8% of the human genome at risk of LINE–LINE-mediated instability. Cross-referencing these regions with CNVs in the Baylor College of Medicine clinical chromosomal microarray database of 36 285 patients, we identified 516 CNVs potentially mediated by LINEs. Using long-range PCR of five different genomic regions in a total of 44 patients, we confirmed that the CNV breakpoints in each patient map within the LINE elements. To additionally assess the scale of LINE–LINE/NAHR phenomenon in the human genome, we tested DNA samples from six healthy individuals on a custom aCGH microarray targeting LINE elements predicted to mediate CNVs and identified 25 LINE–LINE rearrangements. Our data indicate that LINE–LINE-mediated NAHR is widespread and under-recognized, and is an important mechanism of structural rearrangement contributing to human genomic variability. PMID:25613453

  14. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    PubMed

    Cordell, Heather J; Han, Younghun; Mells, George F; Li, Yafang; Hirschfield, Gideon M; Greene, Casey S; Xie, Gang; Juran, Brian D; Zhu, Dakai; Qian, David C; Floyd, James A B; Morley, Katherine I; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Gershwin, M Eric; Anderson, Carl A; Lazaridis, Konstantinos N; Invernizzi, Pietro; Seldin, Michael F; Sandford, Richard N; Amos, Christopher I; Siminovitch, Katherine A

    2015-09-22

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist.

  15. Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee

    PubMed Central

    Hamza, Taye H.; Chen, Honglei; Hill-Burns, Erin M.; Rhodes, Shannon L.; Montimurro, Jennifer; Kay, Denise M.; Tenesa, Albert; Kusel, Victoria I.; Sheehan, Patricia; Eaaswarkhanth, Muthukrishnan; Yearout, Dora; Samii, Ali; Roberts, John W.; Agarwal, Pinky; Bordelon, Yvette; Park, Yikyung; Wang, Liyong; Gao, Jianjun; Vance, Jeffery M.; Kendler, Kenneth S.; Bacanu, Silviu-Alin; Scott, William K.; Ritz, Beate; Nutt, John; Factor, Stewart A.; Zabetian, Cyrus P.; Payami, Haydeh

    2011-01-01

    Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df = 10−6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10−7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication = 0.59, PReplication = 10−3; ORPooled = 0.51, PPooled = 7×10−8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10−3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10−13). Imputation revealed a block of SNPs that achieved P2df<5×10−8 in GWAIS, and OR = 0.41, P = 3×10−8 in heavy coffee-drinkers. This study is proof of concept

  16. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    PubMed Central

    Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus

    2017-01-01

    BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258

  17. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2

    PubMed Central

    Wright, Fred A.; Strug, Lisa J.; Doshi, Vishal K.; Commander, Clayton W.; Blackman, Scott M.; Sun, Lei; Berthiaume, Yves; Cutler, David; Cojocaru, Andreea; Collaco, J. Michael; Corey, Mary; Dorfman, Ruslan; Goddard, Katrina; Green, Deanna; Kent, Jack W.; Lange, Ethan M.; Lee, Seunggeun; Li, Weili; Luo, Jingchun; Mayhew, Gregory M.; Naughton, Kathleen M.; Pace, Rhonda G.; Paré, Peter; Rommens, Johanna M.; Sandford, Andrew; Stonebraker, Jaclyn R.; Sun, Wei; Taylor, Chelsea; Vanscoy, Lori L.; Zou, Fei; Blangero, John; Zielenski, Julian; O’Neal, Wanda K.; Drumm, Mitchell L.; Durie, Peter R.; Knowles, Michael R.; Cutting, Garry R.

    2012-01-01

    A combined genome-wide association and linkage study was used to identify loci causing variation in CF lung disease severity. A significant association (P=3. 34 × 10-8) near EHF and APIP (chr11p13) was identified in F508del homozygotes (n=1,978). The association replicated in F508del homozygotes (P=0.006) from a separate family-based study (n=557), with P=1.49 × 10-9 for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family-based study identified a significant QTL on chromosome 20q13.2 (LOD=5.03). Our findings provide insight into the causes of variation in lung disease severity in CF and suggest new therapeutic targets for this life-limiting disorder. PMID:21602797

  18. The complex genetics of gait speed: genome-wide meta-analysis approach

    PubMed Central

    Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil

    2017-01-01

    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804

  19. Genomic prediction and genome-wide association analysis of female longevity in a composite beef cattle breed.

    PubMed

    Hamidi Hay, E; Roberts, A

    2017-04-01

    Longevity is a highly important trait to the efficiency of beef cattle production. The objective of this study was to evaluate the genomic prediction of longevity and identify genomic regions associated with this trait. The data used in this study consisted of 547 Composite Gene Combination cows (1/2 Red Angus, 1/4 Charolais, 1/4 Tarentaise) born from 2002 to 2011 genotyped with Illumina BovineSNP50 BeadChip. Three models were used to assess genomic prediction: Bayes A, Bayes B and GBLUP using a genomic relationship matrix. To identify genomic regions associated with longevity 2 approaches were adopted: single marker genome wide association and Bayesian approach using GenSel software. The genomic prediction accuracy was low 0.28, 0.25, and 0.22 for Bayes A, Bayes B and GBLUP, respectively. The single-marker genome wide association study (GWAS)identified 5 loci with -value less than 0.05 after false discovery correction: UA-IFASA-7571 on chromosome 19 (58.03 Mb), ARS-BFGL-BAC-15059 on BTA 1 (28.8 Mb), ARS-BFGL-NGS-104159 on BTA3 (29.4 Mb), ARS-BFGL-NGS-32882 on BTA9 (104.07 Mb) and ARS-BFGL-NGS-32883 on BTA25 (33.77 Mb). The Bayesian GWAS yielded 4 genomic regions overlapping with the single marker GWAS results. The region with the highest percentage of genomic variance (3.73%) was detected on chromosome 19. Both GWAS approaches adopted in this study showed evidence for association with various chromosomal locations.

  20. Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing.

    PubMed

    Tan, Cheng; Wu, Zhenfang; Ren, Jiangli; Huang, Zhuolin; Liu, Dewu; He, Xiaoyan; Prakapenka, Dzianis; Zhang, Ran; Li, Ning; Da, Yang; Hu, Xiaoxiang

    2017-03-29

    The number of teats in pigs is related to a sow's ability to rear piglets to weaning age. Several studies have identified genes and genomic regions that affect teat number in swine but few common results were reported. The objective of this study was to identify genetic factors that affect teat number in pigs, evaluate the accuracy of genomic prediction, and evaluate the contribution of significant genes and genomic regions to genomic broad-sense heritability and prediction accuracy using 41,108 autosomal single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing on 2936 Duroc boars. Narrow-sense heritability and dominance heritability of teat number estimated by genomic restricted maximum likelihood were 0.365 ± 0.030 and 0.035 ± 0.019, respectively. The accuracy of genomic predictions, calculated as the average correlation between the genomic best linear unbiased prediction and phenotype in a tenfold validation study, was 0.437 ± 0.064 for the model with additive and dominance effects and 0.435 ± 0.064 for the model with additive effects only. Genome-wide association studies (GWAS) using three methods of analysis identified 85 significant SNP effects for teat number on chromosomes 1, 6, 7, 10, 11, 12 and 14. The region between 102.9 and 106.0 Mb on chromosome 7, which was reported in several studies, had the most significant SNP effects in or near the PTGR2, FAM161B, LIN52, VRTN, FCF1, AREL1 and LRRC74A genes. This region accounted for 10.0% of the genomic additive heritability and 8.0% of the accuracy of prediction. The second most significant chromosome region not reported by previous GWAS was the region between 77.7 and 79.7 Mb on chromosome 11, where SNPs in the FGF14 gene had the most significant effect and accounted for 5.1% of the genomic additive heritability and 5.2% of the accuracy of prediction. The 85 significant SNPs accounted for 28.5 to 28.8% of the genomic additive heritability and 35.8 to 36.8% of the accuracy of

  1. Genome-Wide Association Scan Meta-Analysis Identifies Three Loci Influencing Adiposity and Fat Distribution

    PubMed Central

    Qi, Lu; Speliotes, Elizabeth K.; Thorleifsson, Gudmar; Willer, Cristen J.; Herrera, Blanca M.; Jackson, Anne U.; Lim, Noha; Scheet, Paul; Soranzo, Nicole; Amin, Najaf; Aulchenko, Yurii S.; Chambers, John C.; Drong, Alexander; Luan, Jian'an; Lyon, Helen N.; Rivadeneira, Fernando; Sanna, Serena; Timpson, Nicholas J.; Zillikens, M. Carola; Zhao, Jing Hua; Almgren, Peter; Bandinelli, Stefania; Bennett, Amanda J.; Bergman, Richard N.; Bonnycastle, Lori L.; Bumpstead, Suzannah J.; Chanock, Stephen J.; Cherkas, Lynn; Chines, Peter; Coin, Lachlan; Cooper, Cyrus; Crawford, Gabriel; Doering, Angela; Dominiczak, Anna; Doney, Alex S. F.; Ebrahim, Shah; Elliott, Paul; Erdos, Michael R.; Estrada, Karol; Ferrucci, Luigi; Fischer, Guido; Forouhi, Nita G.; Gieger, Christian; Grallert, Harald; Groves, Christopher J.; Grundy, Scott; Guiducci, Candace; Hadley, David; Hamsten, Anders; Havulinna, Aki S.; Hofman, Albert; Holle, Rolf; Holloway, John W.; Illig, Thomas; Isomaa, Bo; Jacobs, Leonie C.; Jameson, Karen; Jousilahti, Pekka; Karpe, Fredrik; Kuusisto, Johanna; Laitinen, Jaana; Lathrop, G. Mark; Lawlor, Debbie A.; Mangino, Massimo; McArdle, Wendy L.; Meitinger, Thomas; Morken, Mario A.; Morris, Andrew P.; Munroe, Patricia; Narisu, Narisu; Nordström, Anna; Nordström, Peter; Oostra, Ben A.; Palmer, Colin N. A.; Payne, Felicity; Peden, John F.; Prokopenko, Inga; Renström, Frida; Ruokonen, Aimo; Salomaa, Veikko; Sandhu, Manjinder S.; Scott, Laura J.; Scuteri, Angelo; Silander, Kaisa; Song, Kijoung; Yuan, Xin; Stringham, Heather M.; Swift, Amy J.; Tuomi, Tiinamaija; Uda, Manuela; Vollenweider, Peter; Waeber, Gerard; Wallace, Chris; Walters, G. Bragi; Weedon, Michael N.; Witteman, Jacqueline C. M.; Zhang, Cuilin; Zhang, Weihua; Caulfield, Mark J.; Collins, Francis S.; Davey Smith, George; Day, Ian N. M.; Franks, Paul W.; Hattersley, Andrew T.; Hu, Frank B.; Jarvelin, Marjo-Riitta; Kong, Augustine; Kooner, Jaspal S.; Laakso, Markku; Lakatta, Edward; Mooser, Vincent; Morris, Andrew D.; Peltonen, Leena; Samani, Nilesh J.; Spector, Timothy D.; Strachan, David P.; Tanaka, Toshiko; Tuomilehto, Jaakko; Uitterlinden, André G.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Watkins for the PROCARDIS consortia, Hugh; Waterworth, Dawn M.; Boehnke, Michael; Deloukas, Panos; Groop, Leif; Hunter, David J.; Thorsteinsdottir, Unnur; Schlessinger, David; Wichmann, H.-Erich; Frayling, Timothy M.; Abecasis, Gonçalo R.; Hirschhorn, Joel N.; Loos, Ruth J. F.; Stefansson, Kari; Mohlke, Karen L.; Barroso, Inês; McCarthy for the GIANT consortium, Mark I.

    2009-01-01

    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist–hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9×10−11) and MSRA (WC, P = 8.9×10−9). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6×10−8). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity. PMID:19557161

  2. Significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite DNA loci from a genome-wide database.

    PubMed

    Glenn, Travis C; Lance, Stacey L; McKee, Anna M; Webster, Bonnie L; Emery, Aidan M; Zerlotini, Adhemar; Oliveira, Guilherme; Rollinson, David; Faircloth, Brant C

    2013-10-17

    Urogenital schistosomiasis caused by Schistosoma haematobium is widely distributed across Africa and is increasingly being targeted for control. Genome sequences and population genetic parameters can give insight into the potential for population- or species-level drug resistance. Microsatellite DNA loci are genetic markers in wide use by Schistosoma researchers, but there are few primers available for S. haematobium. We sequenced 1,058,114 random DNA fragments from clonal cercariae collected from a snail infected with a single Schistosoma haematobium miracidium. We assembled and aligned the S. haematobium sequences to the genomes of S. mansoni and S. japonicum, identifying microsatellite DNA loci across all three species and designing primers to amplify the loci in S. haematobium. To validate our primers, we screened 32 randomly selected primer pairs with population samples of S. haematobium. We designed >13,790 primer pairs to amplify unique microsatellite loci in S. haematobium, (available at http://www.cebio.org/projetos/schistosoma-haematobium-genome). The three Schistosoma genomes contained similar overall frequencies of microsatellites, but the frequency and length distributions of specific motifs differed among species. We identified 15 primer pairs that amplified consistently and were easily scored. We genotyped these 15 loci in S. haematobium individuals from six locations: Zanzibar had the highest levels of diversity; Malawi, Mauritius, Nigeria, and Senegal were nearly as diverse; but the sample from South Africa was much less diverse. About half of the primers in the database of Schistosoma haematobium microsatellite DNA loci should yield amplifiable and easily scored polymorphic markers, thus providing thousands of potential markers. Sequence conservation among S. haematobium, S. japonicum, and S. mansoni is relatively high, thus it should now be possible to identify markers that are universal among Schistosoma species (i.e., using DNA sequences

  3. Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation.

    PubMed

    Mullin, Benjamin H; Zhao, Jing Hua; Brown, Suzanne J; Perry, John R B; Luan, Jian'an; Zheng, Hou-Feng; Langenberg, Claudia; Dudbridge, Frank; Scott, Robert; Wareham, Nick J; Spector, Tim D; Richards, J Brent; Walsh, John P; Wilson, Scott G

    2017-07-15

    Osteoporosis is a common and debilitating bone disease that is characterised by low bone mineral density, typically assessed using dual-energy X-ray absorptiometry. Quantitative ultrasound (QUS), commonly utilising the two parameters velocity of sound (VOS) and broadband ultrasound attenuation (BUA), is an alternative technology used to assess bone properties at peripheral skeletal sites. The genetic influence on the bone qualities assessed by QUS remains an under-studied area. We performed a comprehensive genome-wide association study (GWAS) including low-frequency variants (minor allele frequency ≥0.005) for BUA and VOS using a discovery population of individuals with whole-genome sequence (WGS) data from the UK10K project (n = 1268). These results were then meta-analysed with those from two deeply imputed GWAS replication cohorts (n = 1610 and 13 749). In the gender-combined analysis, we identified eight loci associated with BUA and five with VOS at the genome-wide significance level, including three novel loci for BUA at 8p23.1 (PPP1R3B), 11q23.1 (LOC387810) and 22q11.21 (SEPT5) (P = 2.4 × 10-8 to 1.6 × 10-9). Gene-based association testing in the gender-combined dataset revealed eight loci associated with BUA and seven with VOS after correction for multiple testing, with one novel locus for BUA at FAM167A (8p23.1) (P = 1.4 × 10-6). An additional novel locus for BUA was seen in the male-specific analysis at DEFB103B (8p23.1) (P = 1.8 × 10-6). Fracture analysis revealed significant associations between variation at the WNT16 and RSPO3 loci and fracture risk (P = 0.004 and 4.0 × 10-4, respectively). In conclusion, by performing a large GWAS meta-analysis for QUS parameters of bone using a combination of WGS and deeply imputed genotype data, we have identified five novel genetic loci associated with BUA. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  4. A genome-wide association study for somatic cell score using the Illumina high-density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility

    PubMed Central

    Meredith, Brian K.; Berry, Donagh P.; Kearney, Francis; Finlay, Emma K.; Fahey, Alan G.; Bradley, Daniel G.; Lynn, David J.

    2013-01-01

    Mastitis is an inflammation-driven disease of the bovine mammary gland that occurs in response to physical damage or infection and is one of the most costly production-related diseases in the dairy industry worldwide. We performed a genome-wide association study (GWAS) to identify genetic loci associated with somatic cell score (SCS), an indicator trait of mammary gland inflammation. A total of 702 Holstein-Friesian bulls were genotyped for 777,962 single nucleotide polymorphisms (SNPs) and associated with SCS phenotypes. The SCS phenotypes were expressed as daughter yield deviations (DYD) based on a large number of progeny performance records. A total of 138 SNPs on 15 different chromosomes reached genome-wide significance (corrected p-value ≤ 0.05) for association with SCS (after correction for multiple testing). We defined 28 distinct QTL regions and a number of candidate genes located in these QTL regions were identified. The most significant association (p-value = 1.70 × 10−7) was observed on chromosome 6. This QTL had no known genes annotated within it, however, the Ensembl Genome Browser predicted the presence of a small non-coding RNA (a Y RNA gene) in this genomic region. This Y RNA gene was 99% identical to human RNY4. Y RNAs are a rare type of non-coding RNA that were originally discovered due to their association with the autoimmune disease, systemic lupus erythematosus. Examining small-RNA sequencing (RNAseq) data being generated by us in multiple different mastitis-pathogen challenged cell-types has revealed that this Y RNA is expressed (but not differentially expressed) in these cells. Other QTL regions identified in this study also encoded strong candidate genes for mastitis susceptibility. A QTL region on chromosome 13, for example, was found to contain a cluster of β-defensin genes, a gene family with known roles in innate immunity. Due to the increased SNP density, this study also refined the boundaries for several known QTL for SCS and

  5. Genetics of Venous Thrombosis: Insights from a New Genome Wide Association Study

    PubMed Central

    Germain, Marine; Saut, Noémie; Greliche, Nicolas; Dina, Christian; Lambert, Jean-Charles; Perret, Claire; Cohen, William; Oudot-Mellakh, Tiphaine; Antoni, Guillemette; Alessi, Marie-Christine; Zelenika, Diana; Cambien, François; Tiret, Laurence; Bertrand, Marion; Dupuy, Anne-Marie; Letenneur, Luc; Lathrop, Mark; Emmerich, Joseph; Amouyel, Philippe; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel

    2011-01-01

    Background Venous Thrombosis (VT) is a common multifactorial disease associated with a major public health burden. Genetics factors are known to contribute to the susceptibility of the disease but how many genes are involved and their contribution to VT risk still remain obscure. We aimed to identify genetic variants associated with VT risk. Methodology/Principal Findings We conducted a genome-wide association study (GWAS) based on 551,141 SNPs genotyped in 1,542 cases and 1,110 controls. Twelve SNPs reached the genome-wide significance level of 2.0×10−8 and encompassed four known VT-associated loci, ABO, F5, F11 and FGG. By means of haplotype analyses, we also provided novel arguments in favor of a role of HIVEP1, PROCR and STAB2, three loci recently hypothesized to participate in the susceptibility to VT. However, no novel VT-associated loci came out of our GWAS. Using a recently proposed statistical methodology, we also showed that common variants could explain about 35% of the genetic variance underlying VT susceptibility among which 3% could be attributable to the main identified VT loci. This analysis additionally suggested that the common variants left to be identified are not uniformly distributed across the genome and that chromosome 20, itself, could contribute to ∼7% of the total genetic variance. Conclusions/Significance This study might also provide a valuable source of information to expand our understanding of biological mechanisms regulating quantitative biomarkers for VT. PMID:21980494

  6. Accurate computation of survival statistics in genome-wide studies.

    PubMed

    Vandin, Fabio; Papoutsaki, Alexandra; Raphael, Benjamin J; Upfal, Eli

    2015-05-01

    A key challenge in genomics is to identify genetic variants that distinguish patients with different survival time following diagnosis or treatment. While the log-rank test is widely used for this purpose, nearly all implementations of the log-rank test rely on an asymptotic approximation that is not appropriate in many genomics applications. This is because: the two populations determined by a genetic variant may have very different sizes; and the evaluation of many possible variants demands highly accurate computation of very small p-values. We demonstrate this problem for cancer genomics data where the standard log-rank test leads to many false positive associations between somatic mutations and survival time. We develop and analyze a novel algorithm, Exact Log-rank Test (ExaLT), that accurately computes the p-value of the log-rank statistic under an exact distribution that is appropriate for any size populations. We demonstrate the advantages of ExaLT on data from published cancer genomics studies, finding significant differences from the reported p-values. We analyze somatic mutations in six cancer types from The Cancer Genome Atlas (TCGA), finding mutations with known association to survival as well as several novel associations. In contrast, standard implementations of the log-rank test report dozens-hundreds of likely false positive associations as more significant than these known associations.

  7. Accurate Computation of Survival Statistics in Genome-Wide Studies

    PubMed Central

    Vandin, Fabio; Papoutsaki, Alexandra; Raphael, Benjamin J.; Upfal, Eli

    2015-01-01

    A key challenge in genomics is to identify genetic variants that distinguish patients with different survival time following diagnosis or treatment. While the log-rank test is widely used for this purpose, nearly all implementations of the log-rank test rely on an asymptotic approximation that is not appropriate in many genomics applications. This is because: the two populations determined by a genetic variant may have very different sizes; and the evaluation of many possible variants demands highly accurate computation of very small p-values. We demonstrate this problem for cancer genomics data where the standard log-rank test leads to many false positive associations between somatic mutations and survival time. We develop and analyze a novel algorithm, Exact Log-rank Test (ExaLT), that accurately computes the p-value of the log-rank statistic under an exact distribution that is appropriate for any size populations. We demonstrate the advantages of ExaLT on data from published cancer genomics studies, finding significant differences from the reported p-values. We analyze somatic mutations in six cancer types from The Cancer Genome Atlas (TCGA), finding mutations with known association to survival as well as several novel associations. In contrast, standard implementations of the log-rank test report dozens-hundreds of likely false positive associations as more significant than these known associations. PMID:25950620

  8. Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q.

    PubMed

    Luciano, M; Wright, M J; Duffy, D L; Wainwright, M A; Zhu, G; Evans, D M; Geffen, G M; Montgomery, G W; Martin, N G

    2006-01-01

    A genome-wide linkage scan of 795 microsatellite markers (761 autosomal, 34 X chromosome) was performed on Multidimensional Aptitude Battery subtests and verbal, performance and full scale scores, the WAIS-R Digit Symbol subtest, and two word-recognition tests (Schonell Graded Word Reading Test, Cambridge Contextual Reading Test) highly predictive of IQ. The sample included 361 families comprising 2-5 siblings who ranged in age from 15.7 to 22.2 years; genotype, but not phenotype, data were available for 81% of parents. A variance components analysis which controlled for age and sex effects showed significant linkage for the Cambridge reading test and performance IQ to the same region on chromosome 2, with respective LOD scores of 4.15 and 3.68. Suggestive linkage (LOD score>2.2) for various measures was further supported on chromosomes 6, 7, 11, 14, 21 and 22. Where location of linkage peaks converged for IQ subtests within the same scale, the overall scale score provided increased evidence for linkage to that region over any individual subtest. Association studies of candidate genes, particularly those involved in neural transmission and development, will be directed to genes located under the linkage peaks identified in this study.

  9. Genome-Wide RNAi Screen Identifies Broadly-Acting Host Factors That Inhibit Arbovirus Infection

    PubMed Central

    Yasunaga, Ari; Hanna, Sheri L.; Li, Jianqing; Cho, Hyelim; Rose, Patrick P.; Spiridigliozzi, Anna; Gold, Beth; Diamond, Michael S.; Cherry, Sara

    2014-01-01

    Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts. PMID:24550726

  10. Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex.

    PubMed

    Wilbe, Maria; Jokinen, Päivi; Truvé, Katarina; Seppala, Eija H; Karlsson, Elinor K; Biagi, Tara; Hughes, Angela; Bannasch, Danika; Andersson, Göran; Hansson-Hamlin, Helene; Lohi, Hannes; Lindblad-Toh, Kerstin

    2010-03-01

    The unique canine breed structure makes dogs an excellent model for studying genetic diseases. Within a dog breed, linkage disequilibrium is extensive, enabling genome-wide association (GWA) with only around 15,000 SNPs and fewer individuals than in human studies. Incidences of specific diseases are elevated in different breeds, indicating that a few genetic risk factors might have accumulated through drift or selective breeding. In this study, a GWA study with 81 affected dogs (cases) and 57 controls from the Nova Scotia duck tolling retriever breed identified five loci associated with a canine systemic lupus erythematosus (SLE)-related disease complex that includes both antinuclear antibody (ANA)-positive immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). Fine mapping with twice as many dogs validated these loci. Our results indicate that the homogeneity of strong genetic risk factors within dog breeds allows multigenic disorders to be mapped with fewer than 100 cases and 100 controls, making dogs an excellent model in which to identify pathways involved in human complex diseases.

  11. Genome-wide association study of the four-constitution medicine.

    PubMed

    Yin, Chang Shik; Park, Hi Joon; Chung, Joo-Ho; Lee, Hye-Jung; Lee, Byung-Cheol

    2009-12-01

    Four-constitution medicine (FCM), also known as Sasang constitutional medicine, and the heritage of the long history of individualized acupuncture medicine tradition, is one of the holistic and traditional systems of constitution to appraise and categorize individual differences into four major types. This study first reports a genome-wide association study on FCM, to explore the genetic basis of FCM and facilitate the integration of FCM with conventional individual differences research. Healthy individuals of the Korean population were classified into the four constitutional types (FCTs). A total of 353,202 single nucleotide polymorphisms (SNPs) were typed using whole genome amplified samples, and six-way comparison of FCM types provided lists of significantly differential SNPs. In one-to-one FCT comparisons, 15,944 SNPs were significantly differential, and 5 SNPs were commonly significant in all of the three comparisons. In one-to-two FCT comparisons, 22,616 SNPs were significantly differential, and 20 SNPs were commonly significant in all of the three comparison groups. This study presents the association between genome-wide SNP profiles and the categorization of the FCM, and it could further provide a starting point of genome-based identification and research of the constitutions of FCM.

  12. A Genome-wide Association Study Identifies Risk Alleles in Plasminogen and P4HA2 Associated with Giant Cell Arteritis.

    PubMed

    Carmona, F David; Vaglio, Augusto; Mackie, Sarah L; Hernández-Rodríguez, José; Monach, Paul A; Castañeda, Santos; Solans, Roser; Morado, Inmaculada C; Narváez, Javier; Ramentol-Sintas, Marc; Pease, Colin T; Dasgupta, Bhaskar; Watts, Richard; Khalidi, Nader; Langford, Carol A; Ytterberg, Steven; Boiardi, Luigi; Beretta, Lorenzo; Govoni, Marcello; Emmi, Giacomo; Bonatti, Francesco; Cimmino, Marco A; Witte, Torsten; Neumann, Thomas; Holle, Julia; Schönau, Verena; Sailler, Laurent; Papo, Thomas; Haroche, Julien; Mahr, Alfred; Mouthon, Luc; Molberg, Øyvind; Diamantopoulos, Andreas P; Voskuyl, Alexandre; Brouwer, Elisabeth; Daikeler, Thomas; Berger, Christoph T; Molloy, Eamonn S; O'Neill, Lorraine; Blockmans, Daniel; Lie, Benedicte A; Mclaren, Paul; Vyse, Timothy J; Wijmenga, Cisca; Allanore, Yannick; Koeleman, Bobby P C; Barrett, Jennifer H; Cid, María C; Salvarani, Carlo; Merkel, Peter A; Morgan, Ann W; González-Gay, Miguel A; Martín, Javier

    2017-01-05

    Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analyzed in 2,134 case subjects and 9,125 unaffected individuals from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, p = 1.94 × 10 -54 , per-allele OR = 1.79; and rs9275592, p = 1.14 × 10 -40 , OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, p = 1.23 × 10 -10 , OR = 1.28; and rs128738, p = 4.60 × 10 -9 , OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. A genome-wide association analysis identifies NMNAT2 and HCP5 as susceptibility loci for Kawasaki disease.

    PubMed

    Kim, Jae-Jung; Yun, Sin Weon; Yu, Jeong Jin; Yoon, Kyung Lim; Lee, Kyung-Yil; Kil, Hong-Ryang; Kim, Gi Beom; Han, Myung-Ki; Song, Min Seob; Lee, Hyoung Doo; Ha, Kee Soo; Sohn, Sejung; Johnson, Todd A; Takahashi, Atsushi; Kubo, Michiaki; Tsunoda, Tatsuhiko; Ito, Kaoru; Onouchi, Yoshihiro; Hong, Young Mi; Jang, Gi Young; Lee, Jong-Keuk

    2017-12-01

    Kawasaki disease (KD), a systemic vasculitis of infants and children, manifests as fever and mucocutaneous inflammation. Although its etiology is largely unknown, the epidemiological data suggest that genetic factors are important in KD susceptibility. To identify genetic variants influencing KD susceptibility, we performed a genome-wide association study (GWAS) and replication study using a total of 915 children with KD and 4553 controls in the Korean population. Six single-nucleotide polymorphisms (SNPs) in three loci were associated significantly with KD susceptibility (P<1.0 × 10 -5 ), including the previously reported BLK locus (rs6993775, odds ratio (OR)=1.52, P=2.52 × 10 -11 ). The other two loci were newly identified: NMNAT2 on chromosome 1q25.3 (rs2078087, OR=1.33, P=1.15 × 10 -6 ) and the human leukocyte antigen (HLA) region on chromosome 6p21.3 (HLA-C, HLA-B, MICA and HCP5) (rs9380242, rs9378199, rs9266669 and rs6938467; OR=1.33-1.51, P=8.93 × 10 -6 to 5.24 × 10 -8 ). Additionally, SNP rs17280682 in NLRP14 was associated significantly with KD with a family history (18 cases vs 4553 controls, OR=6.76, P=5.46 × 10 -6 ). These results provide new insights into the pathogenesis and pathophysiology of KD.

  14. A genome-wide association meta-analysis identifies new childhood obesity loci

    PubMed Central

    Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, André; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M.A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St. Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeinera, Fernando; Uitterlinden, André G.; van Duijn, Cornelia M.; van der Valk, Ralf J.P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, William J.; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Mägi, Reedik; Boreham, Colin A.G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimäki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George; Ring, Susan M.; Kemp, John P.; Buxton, Jessica L.; Blakemore, Alexandra I.F.; Bustamante, Mariona; Guxens, Mònica; Hirschhorn, Joel N.; Gillman, Matthew W.; Kreiner-Møller, Eskil; Bisgaard, Hans; Gilliland, Frank D.; Heinrich, Joachim; Wheeler, Eleanor; Barroso, Inês; O'Rahilly, Stephen; Meirhaeghe, Aline; Sørensen, Thorkild I.A.; Power, Chris; Palmer, Lyle J.; Hinney, Anke; Widen, Elisabeth; Farooqi, I. Sadaf; McCarthy, Mark I.; Froguel, Philippe; Meyre, David; Hebebrand, Johannes; Jarvelin, Marjo-Riitta; Jaddoe, Vincent W.V.; Smith, George Davey; Hakonarson, Hakon; Grant, Struan F.A.

    2012-01-01

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1. PMID:22484627

  15. A Genome-wide Regulatory Network Identifies Key Transcription Factors for Memory CD8+ T Cell Development

    PubMed Central

    Hu, Guangan; Chen, Jianzhu

    2014-01-01

    Memory CD8+ T cell development is defined by the expression of a specific set of memory signature genes (MSGs). Despite recent progress, many components of the transcriptional control of memory CD8+ T cell development are still unknown. To identify transcription factors (TFs) and their interactions in memory CD8+ T cell development, we construct a genome-wide regulatory network and apply it to identify key TFs that regulate MSGs. Most of the known TFs in memory CD8+ T cell development are rediscovered and about a dozen new TFs are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified and Bach2 is further shown to promote both development and recall proliferation of memory CD8+ T cells through Prdm1 and Id3. Gene perturbation study identifies the mode of interactions among the TFs with Sox4 as a hub. The identified TFs and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8+ T cell development. PMID:24335726

  16. Gene expression levels as endophenotypes in genome-wide association studies of Alzheimer disease

    PubMed Central

    Zou, F.; Carrasquillo, M. M.; Pankratz, V. S.; Belbin, O.; Morgan, K.; Allen, M.; Wilcox, S. L.; Ma, L.; Walker, L. P.; Kouri, N.; Burgess, J. D.; Younkin, L. H.; Younkin, Samuel G.; Younkin, C. S.; Bisceglio, G. D.; Crook, J. E.; Dickson, D. W.; Petersen, R. C.; Graff-Radford, N.; Younkin, Steven G.; Ertekin-Taner, N.

    2010-01-01

    Background: Late-onset Alzheimer disease (LOAD) is a common disorder with a substantial genetic component. We postulate that many disease susceptibility variants act by altering gene expression levels. Methods: We measured messenger RNA (mRNA) expression levels of 12 LOAD candidate genes in the cerebella of 200 subjects with LOAD. Using the genotypes from our LOAD genome-wide association study for the cis-single nucleotide polymorphisms (SNPs) (n = 619) of these 12 LOAD candidate genes, we tested for associations with expression levels as endophenotypes. The strongest expression cis-SNP was tested for AD association in 7 independent case-control series (2,280 AD and 2,396 controls). Results: We identified 3 SNPs that associated significantly with IDE (insulin degrading enzyme) expression levels. A single copy of the minor allele for each significant SNP was associated with ∼twofold higher IDE expression levels. The most significant SNP, rs7910977, is 4.2 kb beyond the 3′ end of IDE. The association observed with this SNP was significant even at the genome-wide level (p = 2.7 × 10−8). Furthermore, the minor allele of rs7910977 associated significantly (p = 0.0046) with reduced LOAD risk (OR = 0.81 with a 95% CI of 0.70-0.94), as expected biologically from its association with elevated IDE expression. Conclusions: These results provide strong evidence that IDE is a late-onset Alzheimer disease (LOAD) gene with variants that modify risk of LOAD by influencing IDE expression. They also suggest that the use of expression levels as endophenotypes in genome-wide association studies may provide a powerful approach for the identification of disease susceptibility alleles. GLOSSARY AD = Alzheimer disease; CI = confidence interval; GWAS = genome-wide association study; LOAD = late-onset Alzheimer disease; mRNA = messenger RNA; OR = odds ratio; SNP = single nucleotide polymorphism. PMID:20142614

  17. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome

  18. A genome-wide association study of seed protein and oil content in soybean.

    PubMed

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise

  19. Meta-Analysis of Genome-Wide Scans Provides Evidence for Sex- and Site-Specific Regulation of Bone Mass

    PubMed Central

    Sham, Pak C; Zintzaras, Elias; Lewis, Cathryn M; Deng, Hong-Wen; Econs, Michael J; Karasik, David; Devoto, Marcella; Kammerer, Candace M; Spector, Tim; Andrew, Toby; Cupples, L Adrienne; Duncan, Emma L; Foroud, Tatiana; Kiel, Douglas P; Koller, Daniel; Langdahl, Bente; Mitchell, Braxton D; Peacock, Munro; Recker, Robert; Shen, Hui; Sol-Church, Katia; Spotila, Loretta D; Uitterlinden, Andre G; Wilson, Scott G; Kung, Annie WC; Ralston, Stuart H

    2014-01-01

    identified on chromosomes 17p12-q21.33, 14q13.1-q24.1, 9q21.32-q31.1, and 5q14.3-q23.2. There was no correlation in average ranks of bins between men and women and the loci that regulated BMD in men and women and at different sites were largely distinct. Conclusions This large-scale meta-analysis provided evidence for replication of several QTLs identified in previous studies and also identified a QTL on chromosome 18p11-q12.3, which had not been detected by individual studies. However, despite the large sample size, none of the individual loci identified reached genome-wide significance. PMID:17228994

  20. A genome-wide approach to children's aggressive behavior: The EAGLE consortium.

    PubMed

    Pappa, Irene; St Pourcain, Beate; Benke, Kelly; Cavadino, Alana; Hakulinen, Christian; Nivard, Michel G; Nolte, Ilja M; Tiesler, Carla M T; Bakermans-Kranenburg, Marian J; Davies, Gareth E; Evans, David M; Geoffroy, Marie-Claude; Grallert, Harald; Groen-Blokhuis, Maria M; Hudziak, James J; Kemp, John P; Keltikangas-Järvinen, Liisa; McMahon, George; Mileva-Seitz, Viara R; Motazedi, Ehsan; Power, Christine; Raitakari, Olli T; Ring, Susan M; Rivadeneira, Fernando; Rodriguez, Alina; Scheet, Paul A; Seppälä, Ilkka; Snieder, Harold; Standl, Marie; Thiering, Elisabeth; Timpson, Nicholas J; Veenstra, René; Velders, Fleur P; Whitehouse, Andrew J O; Smith, George Davey; Heinrich, Joachim; Hypponen, Elina; Lehtimäki, Terho; Middeldorp, Christel M; Oldehinkel, Albertine J; Pennell, Craig E; Boomsma, Dorret I; Tiemeier, Henning

    2016-07-01

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10-54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10(-8) ). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

    PubMed Central

    Gorski, Mathias; van der Most, Peter J.; Teumer, Alexander; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Nolte, Ilja M.; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F.; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P.; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C.; Curhan, Gary C.; d’Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H.; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J.; Harris, Tamara B.; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G.; Homuth, Georg; Hu, Frank B.; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K.; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J.; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J. F.; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A.; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J.; Olden, Matthias; WJH Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P.; Probst-Hensch, Nicole; Raitakari, Olli T.; Rettig, Rainer; Ridker, Paul M.; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E.; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J.; Sedaghat, Sanaz; Smith, Albert V.; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G.; Ulivi, Sheila; Viikari, Jorma S.; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I.; Tromp, Gerard; Snieder, Harold; Heid, Iris M.; Fox, Caroline S.; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A.; Fuchsberger, Christian

    2017-01-01

    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10−8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples. PMID:28452372

  2. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

    PubMed

    Gorski, Mathias; van der Most, Peter J; Teumer, Alexander; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Nolte, Ilja M; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C; Curhan, Gary C; d'Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J; Harris, Tamara B; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G; Homuth, Georg; Hu, Frank B; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J F; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J; Olden, Matthias; Wjh Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P; Probst-Hensch, Nicole; Raitakari, Olli T; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J; Sedaghat, Sanaz; Smith, Albert V; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G; Ulivi, Sheila; Viikari, Jorma S; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I; Tromp, Gerard; Snieder, Harold; Heid, Iris M; Fox, Caroline S; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A; Fuchsberger, Christian

    2017-04-28

    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10 -8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.

  3. Genome-wide association study of handedness excludes simple genetic models

    PubMed Central

    Armour, J AL; Davison, A; McManus, I C

    2014-01-01

    Handedness is a human behavioural phenotype that appears to be congenital, and is often assumed to be inherited, but for which the developmental origin and underlying causation(s) have been elusive. Models of the genetic basis of variation in handedness have been proposed that fit different features of the observed resemblance between relatives, but none has been decisively tested or a corresponding causative locus identified. In this study, we applied data from well-characterised individuals studied at the London Twin Research Unit. Analysis of genome-wide SNP data from 3940 twins failed to identify any locus associated with handedness at a genome-wide level of significance. The most straightforward interpretation of our analyses is that they exclude the simplest formulations of the ‘right-shift' model of Annett and the ‘dextral/chance' model of McManus, although more complex modifications of those models are still compatible with our observations. For polygenic effects, our study is inadequately powered to reliably detect alleles with effect sizes corresponding to an odds ratio of 1.2, but should have good power to detect effects at an odds ratio of 2 or more. PMID:24065183

  4. Genome-Wide Landscapes of Human Local Adaptation in Asia

    PubMed Central

    Lu, Dongsheng; Xu, Shuhua

    2013-01-01

    Genetic studies of human local adaptation have been facilitated greatly by recent advances in high-throughput genotyping and sequencing technologies. However, few studies have investigated local adaptation in Asian populations on a genome-wide scale and with a high geographic resolution. In this study, taking advantage of the dense population coverage in Southeast Asia, which is the part of the world least studied in term of natural selection, we depicted genome-wide landscapes of local adaptations in 63 Asian populations representing the majority of linguistic and ethnic groups in Asia. Using genome-wide data analysis, we discovered many genes showing signs of local adaptation or natural selection. Notable examples, such as FOXQ1, MAST2, and CDH4, were found to play a role in hair follicle development and human cancer, signal transduction, and tumor repression, respectively. These showed strong indications of natural selection in Philippine Negritos, a group of aboriginal hunter-gatherers living in the Philippines. MTTP, which has associations with metabolic syndrome, body mass index, and insulin regulation, showed a strong signature of selection in Southeast Asians, including Indonesians. Functional annotation analysis revealed that genes and genetic variants underlying natural selections were generally enriched in the functional category of alternative splicing. Specifically, many genes showing significant difference with respect to allele frequency between northern and southern Asian populations were found to be associated with human height and growth and various immune pathways. In summary, this study contributes to the overall understanding of human local adaptation in Asia and has identified both known and novel signatures of natural selection in the human genome. PMID:23349834

  5. Investigation of Maternal Genotype Effects in Autism by Genome-Wide Association

    PubMed Central

    Yuan, Han; Dougherty, Joseph D.

    2014-01-01

    Lay Abstract Autism spectrum disorders (ASDs) are pervasive developmental disorders which have both a genetic and environmental component. One source of the environmental component is the in utero (prenatal) environment. The maternal genome can potentially contribute to the risk of autism in children by altering this prenatal environment. In this study, the possibility of maternal genotype effects was explored by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. We performed a case/control genome-wide association study (GWAS) using mothers of probands as cases and either fathers of probands or normal females as controls, using two collections of families with autism. We did not identify any SNP that reached significance and thus a common variant of large effect is unlikely. However, there was evidence for the possibility of a large number of alleles each carrying a small effect. This suggested that if there is a contribution to autism risk through common-variant maternal genetic effects, it may be the result of multiple loci of small effects. We did not investigate rare variants in this study. Scientific Abstract Like most psychiatric disorders, autism spectrum disorders have both a genetic and an environmental component. While previous studies have clearly demonstrated the contribution of in utero (prenatal) environment on autism risk, most of them focused on transient environmental factors. Based on a recent sibling study, we hypothesized that environmental factors could also come from the maternal genome, which would result in persistent effects across siblings. In this study, the possibility of maternal genotype effects was examined by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. A case/control genome-wide association study (GWAS) was performed using mothers of

  6. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies

    PubMed Central

    Zhang, Shujun

    2018-01-01

    Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study. PMID:29377896

  7. Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures

    PubMed Central

    Wang, Xinchen; Tucker, Nathan R; Rizki, Gizem; Mills, Robert; Krijger, Peter HL; de Wit, Elzo; Subramanian, Vidya; Bartell, Eric; Nguyen, Xinh-Xinh; Ye, Jiangchuan; Leyton-Mange, Jordan; Dolmatova, Elena V; van der Harst, Pim; de Laat, Wouter; Ellinor, Patrick T; Newton-Cheh, Christopher; Milan, David J; Kellis, Manolis; Boyer, Laurie A

    2016-01-01

    Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies. We demonstrate that these 'sub-threshold' signals represent novel loci, and that epigenomic maps are effective at discriminating true biological signals from noise. We experimentally validate the molecular, gene-regulatory, cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most sub-threshold loci have regulatory consequences and that genetic perturbation of nearby genes causes cardiac phenotypes in mouse. Our work provides a general approach for improving the detection of novel loci associated with complex human traits. DOI: http://dx.doi.org/10.7554/eLife.10557.001 PMID:27162171

  8. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    PubMed

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic

  9. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    PubMed

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at <16 years. Genome-wide association studies for childhood pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia

  10. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair.

    PubMed

    Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pospiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred

    2018-02-01

    Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62-0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. © The Author(s) 2017. Published by Oxford University Press.

  11. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair

    PubMed Central

    Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pośpiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred

    2018-01-01

    Abstract Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. PMID:29220522

  12. Genome-wide association study identifies genes associated with neuropathy in patients with head and neck cancer.

    PubMed

    Reyes-Gibby, Cielito C; Wang, Jian; Yeung, Sai-Ching J; Chaftari, Patrick; Yu, Robert K; Hanna, Ehab Y; Shete, Sanjay

    2018-06-08

    Neuropathic pain (NP), defined as pain initiated or caused by a primary lesion or dysfunction in the nervous system, is a debilitating chronic pain condition often resulting from cancer treatment. Among cancer patients, neuropathy during cancer treatment is a predisposing event for NP. To identify genetic variants influencing the development of NP, we conducted a genome-wide association study in 1,043 patients with squamous cell carcinoma of the head and neck, based on 714,494 tagging single-nucleotide polymorphisms (SNPs) (130 cases, 913 controls). About 12.5% of the patients, who previously had cancer treatment, had neuropathy-associated diagnoses, as defined using the ICD-9/ICD-10 codes. We identified four common SNPs representing four genomic regions: 7q22.3 (rs10950641; SNX8; P = 3.39 × 10 -14 ), 19p13.2 (rs4804217; PCP2; P = 2.95 × 10 -9 ), 3q27.3 (rs6796803; KNG1; P = 6.42 × 10 -9 ) and 15q22.2 (rs4775319; RORA; P = 1.02 × 10 -8 ), suggesting SNX8, PCP2, KNG1 and RORA might be novel target genes for NP in patients with head and neck cancer. Future experimental validation to explore physiological effects of the identified SNPs will provide a better understanding of the biological mechanisms underlying NP and may provide insights into novel therapeutic targets for treatment and management of NP.

  13. A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries)

    PubMed Central

    Li, M-H; Tiirikka, T; Kantanen, J

    2014-01-01

    In sheep, coat colour (and pattern) is one of the important traits of great biological, economic and social importance. However, the genetics of sheep coat colour has not yet been fully clarified. We conducted a genome-wide association study of sheep coat colours by genotyping 47 303 single-nucleotide polymorphisms (SNPs) in the Finnsheep population in Finland. We identified 35 SNPs associated with all the coat colours studied, which cover genomic regions encompassing three known pigmentation genes (TYRP1, ASIP and MITF) in sheep. Eighteen of these associations were confirmed in further tests between white versus non-white individuals, but none of the 35 associations were significant in the analysis of only non-white colours. Across the tests, the s66432.1 in ASIP showed significant association (P=4.2 × 10−11 for all the colours; P=2.3 × 10−11 for white versus non-white colours) with the variation in coat colours and strong linkage disequilibrium with other significant variants surrounding the ASIP gene. The signals detected around the ASIP gene were explained by differences in white versus non-white alleles. Further, a genome scan for selection for white coat pigmentation identified a strong and striking selection signal spanning ASIP. Our study identified the main candidate gene for the coat colour variation between white and non-white as ASIP, an autosomal gene that has been directly implicated in the pathway regulating melanogenesis. Together with ASIP, the two other newly identified genes (TYRP1 and MITF) in the Finnsheep, bordering associated SNPs, represent a new resource for enriching sheep coat-colour genetics and breeding. PMID:24022497

  14. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    PubMed

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  15. GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases

    PubMed Central

    Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith

    2014-01-01

    CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782

  16. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus.

    PubMed

    Cheng, Han; Koning, Katie; O'Hearn, Aileen; Wang, Minxiu; Rumschlag-Booms, Emily; Varhegyi, Elizabeth; Rong, Lijun

    2015-11-24

    Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.

  17. Genome-wide transcriptome analysis in the ovaries of two goats identifies differentially expressed genes related to fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu

    2016-05-10

    The goats are widely kept as livestock throughout the world. Two excellent domestic breeds in China, the Laiwu Black and Jining Grey goats, have different fecundities and prolificacies. Although the goat genome sequences have been resolved recently, little is known about the gene regulations at the transcriptional level in goat. To understand the molecular and genetic mechanisms related to the fecundities and prolificacies, we performed genome-wide sequencing of the mRNAs from two breeds of goat using the next-generation RNA-Seq technology and used functional annotation to identify pathways of interest. Digital gene expression analysis showed 338 genes were up-regulated in the Jining Grey goats and 404 were up-regulated in the Laiwu Black goats. Quantitative real-time PCR verified the reliability of the RNA-Seq data. This study suggests that multiple genes responsible for various biological functions and signaling pathways are differentially expressed in the two different goat breeds, and these genes might be involved in the regulation of goat fecundity and prolificacy. Taken together, our study provides insight into the transcriptional regulation in the ovaries of 2 species of goats that might serve as a key resource for understanding goat fecundity, prolificacy and genetic diversity between species. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle

    PubMed Central

    2012-01-01

    Background Significant quantitative trait loci (QTL) for carcass weight were previously mapped on several chromosomes in Japanese Black half-sib families. Two QTL, CW-1 and CW-2, were narrowed down to 1.1-Mb and 591-kb regions, respectively. Recent advances in genomic tools allowed us to perform a genome-wide association study (GWAS) in cattle to detect associations in a general population and estimate their effect size. Here, we performed a GWAS for carcass weight using 1156 Japanese Black steers. Results Bonferroni-corrected genome-wide significant associations were detected in three chromosomal regions on bovine chromosomes (BTA) 6, 8, and 14. The associated single nucleotide polymorphisms (SNP) on BTA 6 were in linkage disequilibrium with the SNP encoding NCAPG Ile442Met, which was previously identified as a candidate quantitative trait nucleotide for CW-2. In contrast, the most highly associated SNP on BTA 14 was located 2.3-Mb centromeric from the previously identified CW-1 region. Linkage disequilibrium mapping led to a revision of the CW-1 region within a 0.9-Mb interval around the associated SNP, and targeted resequencing followed by association analysis highlighted the quantitative trait nucleotides for bovine stature in the PLAG1-CHCHD7 intergenic region. The association on BTA 8 was accounted for by two SNP on the BovineSNP50 BeadChip and corresponded to CW-3, which was simultaneously detected by linkage analyses using half-sib families. The allele substitution effects of CW-1, CW-2, and CW-3 were 28.4, 35.3, and 35.0 kg per allele, respectively. Conclusion The GWAS revealed the genetic architecture underlying carcass weight variation in Japanese Black cattle in which three major QTL accounted for approximately one-third of the genetic variance. PMID:22607022

  19. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits

    PubMed Central

    Volkov, Petr; Olsson, Anders H.; Gillberg, Linn; Jørgensen, Sine W.; Brøns, Charlotte; Eriksson, Karl-Fredrik; Groop, Leif; Jansson, Per-Anders; Nilsson, Emma; Rönn, Tina; Vaag, Allan; Ling, Charlotte

    2016-01-01

    Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and

  20. Genome-wide analysis of epistasis in body mass index using multiple human populations.

    PubMed

    Wei, Wen-Hua; Hemani, Gib; Gyenesei, Attila; Vitart, Veronique; Navarro, Pau; Hayward, Caroline; Cabrera, Claudia P; Huffman, Jennifer E; Knott, Sara A; Hicks, Andrew A; Rudan, Igor; Pramstaller, Peter P; Wild, Sarah H; Wilson, James F; Campbell, Harry; Hastie, Nicholas D; Wright, Alan F; Haley, Chris S

    2012-08-01

    We surveyed gene-gene interactions (epistasis) in human body mass index (BMI) in four European populations (n<1200) via exhaustive pair-wise genome scans where interactions were computed as F ratios by testing a linear regression model fitting two single-nucleotide polymorphisms (SNPs) with interactions against the one without. Before the association tests, BMI was corrected for sex and age, normalised and adjusted for relatedness. Neither single SNPs nor SNP interactions were genome-wide significant in either cohort based on the consensus threshold (P=5.0E-08) and a Bonferroni corrected threshold (P=1.1E-12), respectively. Next we compared sub genome-wide significant SNP interactions (P<5.0E-08) across cohorts to identify common epistatic signals, where SNPs were annotated to genes to test for gene ontology (GO) enrichment. Among the epistatic genes contributing to the commonly enriched GO terms, 19 were shared across study cohorts of which 15 are previously published genome-wide association loci, including CDH13 (cadherin 13) associated with height and SORCS2 (sortilin-related VPS10 domain containing receptor 2) associated with circulating insulin-like growth factor 1 and binding protein 3. Interactions between the 19 shared epistatic genes and those involving BMI candidate loci (P<5.0E-08) were tested across cohorts and found eight replicated at the SNP level (P<0.05) in at least one cohort, which were further tested and showed limited replication in a separate European population (n>5000). We conclude that genome-wide analysis of epistasis in multiple populations is an effective approach to provide new insights into the genetic regulation of BMI but requires additional efforts to confirm the findings.

  1. Using rice genome-wide association studies to identify DNA markers for marker-assisted selection

    USDA-ARS?s Scientific Manuscript database

    Rice association mapping panels are collections of rice (Oryza sativa L.) accessions developed for genome-wide association (GWA) studies. One of these panels, the Rice Diversity Panel 1 (RDP1) was phenotyped by various research groups for several traits of interest, and more recently, genotyped with...

  2. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice

    PubMed Central

    Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby

    2018-01-01

    Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits. PMID:29425206

  3. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    PubMed

    Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby; Frei, Michael

    2018-01-01

    Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  4. Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci

    NASA Astrophysics Data System (ADS)

    Law, Philip J.; Sud, Amit; Mitchell, Jonathan S.; Henrion, Marc; Orlando, Giulia; Lenive, Oleg; Broderick, Peter; Speedy, Helen E.; Johnson, David C.; Kaiser, Martin; Weinhold, Niels; Cooke, Rosie; Sunter, Nicola J.; Jackson, Graham H.; Summerfield, Geoffrey; Harris, Robert J.; Pettitt, Andrew R.; Allsup, David J.; Carmichael, Jonathan; Bailey, James R.; Pratt, Guy; Rahman, Thahira; Pepper, Chris; Fegan, Chris; von Strandmann, Elke Pogge; Engert, Andreas; Försti, Asta; Chen, Bowang; Filho, Miguel Inacio Da Silva; Thomsen, Hauke; Hoffmann, Per; Noethen, Markus M.; Eisele, Lewin; Jöckel, Karl-Heinz; Allan, James M.; Swerdlow, Anthony J.; Goldschmidt, Hartmut; Catovsky, Daniel; Morgan, Gareth J.; Hemminki, Kari; Houlston, Richard S.

    2017-01-01

    B-cell malignancies (BCM) originate from the same cell of origin, but at different maturation stages and have distinct clinical phenotypes. Although genetic risk variants for individual BCMs have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. We explored genome-wide association studies of chronic lymphocytic leukaemia (CLL, N = 1,842), Hodgkin lymphoma (HL, N = 1,465) and multiple myeloma (MM, N = 3,790). We identified a novel pleiotropic risk locus at 3q22.2 (NCK1, rs11715604, P = 1.60 × 10-9) with opposing effects between CLL (P = 1.97 × 10-8) and HL (P = 3.31 × 10-3). Eight established non-HLA risk loci showed pleiotropic associations. Within the HLA region, Ser37 + Phe37 in HLA-DRB1 (P = 1.84 × 10-12) was associated with increased CLL and HL risk (P = 4.68 × 10-12), and reduced MM risk (P = 1.12 × 10-2), and Gly70 in HLA-DQB1 (P = 3.15 × 10-10) showed opposing effects between CLL (P = 3.52 × 10-3) and HL (P = 3.41 × 10-9). By integrating eQTL, Hi-C and ChIP-seq data, we show that the pleiotropic risk loci are enriched for B-cell regulatory elements, as well as an over-representation of binding of key B-cell transcription factors. These data identify shared biological pathways influencing the development of CLL, HL and MM. The identification of these risk loci furthers our understanding of the aetiological basis of BCMs.

  5. Development and application of a novel genome-wide SNP array reveals domestication history in soybean

    PubMed Central

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-01-01

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean. PMID:26856884

  6. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  7. Genome-Wide Association Studies of the PR Interval in African Americans

    PubMed Central

    Palmer, Cameron; Meng, Yan A.; Soliman, Elsayed Z.; Musani, Solomon K.; Kerr, Kathleen F.; Schnabel, Renate B.; Lubitz, Steven A.; Sotoodehnia, Nona; Redline, Susan; Pfeufer, Arne; Müller, Martina; Evans, Daniel S.; Nalls, Michael A.; Liu, Yongmei; Newman, Anne B.; Zonderman, Alan B.; Evans, Michele K.; Deo, Rajat; Ellinor, Patrick T.; Paltoo, Dina N.

    2011-01-01

    The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10−8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1–6.1, p = 3×10−23). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8–3.0, p = 3×10−16) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples

  8. A Genome-Wide Linkage Study for Chronic Obstructive Pulmonary Disease in a Dutch Genetic Isolate Identifies Novel Rare Candidate Variants.

    PubMed

    Nedeljkovic, Ivana; Terzikhan, Natalie; Vonk, Judith M; van der Plaat, Diana A; Lahousse, Lies; van Diemen, Cleo C; Hobbs, Brian D; Qiao, Dandi; Cho, Michael H; Brusselle, Guy G; Postma, Dirkje S; Boezen, H M; van Duijn, Cornelia M; Amin, Najaf

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex and heritable disease, associated with multiple genetic variants. Specific familial types of COPD may be explained by rare variants, which have not been widely studied. We aimed to discover rare genetic variants underlying COPD through a genome-wide linkage scan. Affected-only analysis was performed using the 6K Illumina Linkage IV Panel in 142 cases clustered in 27 families from a genetic isolate, the Erasmus Rucphen Family (ERF) study. Potential causal variants were identified by searching for shared rare variants in the exome-sequence data of the affected members of the families contributing most to the linkage peak. The identified rare variants were then tested for association with COPD in a large meta-analysis of several cohorts. Significant evidence for linkage was observed on chromosomes 15q14-15q25 [logarithm of the odds (LOD) score = 5.52], 11p15.4-11q14.1 (LOD = 3.71) and 5q14.3-5q33.2 (LOD = 3.49). In the chromosome 15 peak, that harbors the known COPD locus for nicotinic receptors, and in the chromosome 5 peak we could not identify shared variants. In the chromosome 11 locus, we identified four rare (minor allele frequency (MAF) <0.02), predicted pathogenic, missense variants. These were shared among the affected family members. The identified variants localize to genes including neuroblast differentiation-associated protein ( AHNAK ), previously associated with blood biomarkers in COPD, phospholipase C Beta 3 ( PLCB3 ), shown to increase airway hyper-responsiveness, solute carrier family 22-A11 ( SLC22A11 ), involved in amino acid metabolism and ion transport, and metallothionein-like protein 5 ( MTL5 ), involved in nicotinate and nicotinamide metabolism. Association of SLC22A11 and MTL5 variants were confirmed in the meta-analysis of 9,888 cases and 27,060 controls. In conclusion, we have identified novel rare variants in plausible genes related to COPD. Further studies utilizing large sample

  9. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice.

    PubMed

    McIntyre, Rebecca E; Nicod, Jérôme; Robles-Espinoza, Carla Daniela; Maciejowski, John; Cai, Na; Hill, Jennifer; Verstraten, Ruth; Iyer, Vivek; Rust, Alistair G; Balmus, Gabriel; Mott, Richard; Flint, Jonathan; Adams, David J

    2016-08-09

    In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males. Copyright © 2016 McIntyre et al.

  10. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene.

    PubMed

    Himes, Blanca E; Sheppard, Keith; Berndt, Annerose; Leme, Adriana S; Myers, Rachel A; Gignoux, Christopher R; Levin, Albert M; Gauderman, W James; Yang, James J; Mathias, Rasika A; Romieu, Isabelle; Torgerson, Dara G; Roth, Lindsey A; Huntsman, Scott; Eng, Celeste; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J; Lemanske, Robert F; Zeiger, Robert S; Strunk, Robert C; Martinez, Fernando D; Boushey, Homer; Chinchilli, Vernon M; Israel, Elliot; Mauger, David; Koppelman, Gerard H; Postma, Dirkje S; Nieuwenhuis, Maartje A E; Vonk, Judith M; Lima, John J; Irvin, Charles G; Peters, Stephen P; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Litonjua, Augusto A; Tantisira, Kelan G; Raby, Benjamin A; Bleecker, Eugene R; Meyers, Deborah A; London, Stephanie J; Barnes, Kathleen C; Gilliland, Frank D; Williams, L Keoki; Burchard, Esteban G; Nicolae, Dan L; Ober, Carole; DeMeo, Dawn L; Silverman, Edwin K; Paigen, Beverly; Churchill, Gary; Shapiro, Steve D; Weiss, Scott T

    2013-01-01

    Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association (EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.

  11. A genome-wide analysis of gene–caffeine consumption interaction on basal cell carcinoma

    PubMed Central

    Li, Xin; Cornelis, Marilyn C.; Liang, Liming; Song, Fengju; De Vivo, Immaculata; Giovannucci, Edward; Tang, Jean Y.; Han, Jiali

    2016-01-01

    Animal models have suggested that oral or topical administration of caffeine could inhibit ultraviolet-induced carcinogenesis via the ataxia telangiectasia and rad3 (ATR)-related apoptosis. Previous epidemiological studies have demonstrated that increased caffeine consumption is associated with reduced risk of basal cell carcinoma (BCC). To identify common genetic markers that may modify this association, we tested gene–caffeine intake interaction on BCC risk in a genome-wide analysis. We included 3383 BCC cases and 8528 controls of European ancestry from the Nurses’ Health Study and Health Professionals Follow-up Study. Single nucleotide polymorphism (SNP) rs142310826 near the NEIL3 gene showed a genome-wide significant interaction with caffeine consumption (P = 1.78 × 10–8 for interaction) on BCC risk. There was no gender difference for this interaction (P = 0.64 for heterogeneity). NEIL3, a gene belonging to the base excision DNA repair pathway, encodes a DNA glycosylase that recognizes and removes lesions produced by oxidative stress. In addition, we identified several loci with P value for interaction <5 × 10–7 in gender-specific analyses (P for heterogeneity between genders < 0.001) including those mapping to the genes LRRTM4, ATF3 and DCLRE1C in women and POTEA in men. Finally, we tested the associations between caffeine consumption-related SNPs reported by previous genome-wide association studies and risk of BCC, both individually and jointly, but found no significant association. In sum, we identified a DNA repair gene that could be involved in caffeine-mediated skin tumor inhibition. Further studies are warranted to confirm these findings. PMID:27797824

  12. Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis.

    PubMed

    van Hulzen, Kimm J E; Scholz, Claus J; Franke, Barbara; Ripke, Stephan; Klein, Marieke; McQuillin, Andrew; Sonuga-Barke, Edmund J; Kelsoe, John R; Landén, Mikael; Andreassen, Ole A; Lesch, Klaus-Peter; Weber, Heike; Faraone, Stephen V; Arias-Vasquez, Alejandro; Reif, Andreas

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BPD) are frequently co-occurring and highly heritable mental health conditions. We hypothesized that BPD cases with an early age of onset (≤21 years old) would be particularly likely to show genetic covariation with ADHD. Genome-wide association study data were available for 4609 individuals with ADHD, 9650 individuals with BPD (5167 thereof with early-onset BPD), and 21,363 typically developing controls. We conducted a cross-disorder genome-wide association study meta-analysis to identify whether the observed comorbidity between ADHD and BPD could be due to shared genetic risks. We found a significant single nucleotide polymorphism-based genetic correlation between ADHD and BPD in the full and age-restricted samples (r Gfull = .64, p = 3.13 × 10 -14 ; r Grestricted = .71, p = 4.09 × 10 -16 ). The meta-analysis between the full BPD sample identified two genome-wide significant (p rs7089973 = 2.47 × 10 -8 ; p rs11756438 = 4.36 × 10 -8 ) regions located on chromosomes 6 (CEP85L) and 10 (TAF9BP2). Restricting the analyses to BPD cases with an early onset yielded one genome-wide significant association (p rs58502974 = 2.11 × 10 -8 ) on chromosome 5 in the ADCY2 gene. Additional nominally significant regions identified contained known expression quantitative trait loci with putative functional consequences for NT5DC1, NT5DC2, and CACNB3 expression, whereas functional predictions implicated ABLIM1 as an allele-specific expressed gene in neuronal tissue. The single nucleotide polymorphism-based genetic correlation between ADHD and BPD is substantial, significant, and consistent with the existence of genetic overlap between ADHD and BPD, with potential differential genetic mechanisms involved in early and later BPD onset. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  14. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance.

    PubMed

    Saunus, Jodi M; Quinn, Michael C J; Patch, Ann-Marie; Pearson, John V; Bailey, Peter J; Nones, Katia; McCart Reed, Amy E; Miller, David; Wilson, Peter J; Al-Ejeh, Fares; Mariasegaram, Mythily; Lau, Queenie; Withers, Teresa; Jeffree, Rosalind L; Reid, Lynne E; Da Silva, Leonard; Matsika, Admire; Niland, Colleen M; Cummings, Margaret C; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Kassahn, Karin S; Narayanan, Vairavan; Taib, Nur Aishah; Teo, Soo-Hwang; Chow, Yock Ping; kConFab; Jat, Parmjit S; Brandner, Sebastian; Flanagan, Adrienne M; Khanna, Kum Kum; Chenevix-Trench, Georgia; Grimmond, Sean M; Simpson, Peter T; Waddell, Nicola; Lakhani, Sunil R

    2015-11-01

    Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting

  15. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis

    PubMed Central

    Fogh, Isabella; Ratti, Antonia; Gellera, Cinzia; Lin, Kuang; Tiloca, Cinzia; Moskvina, Valentina; Corrado, Lucia; Sorarù, Gianni; Cereda, Cristina; Corti, Stefania; Gentilini, Davide; Calini, Daniela; Castellotti, Barbara; Mazzini, Letizia; Querin, Giorgia; Gagliardi, Stella; Del Bo, Roberto; Conforti, Francesca L.; Siciliano, Gabriele; Inghilleri, Maurizio; Saccà, Francesco; Bongioanni, Paolo; Penco, Silvana; Corbo, Massimo; Sorbi, Sandro; Filosto, Massimiliano; Ferlini, Alessandra; Di Blasio, Anna M.; Signorini, Stefano; Shatunov, Aleksey; Jones, Ashley; Shaw, Pamela J.; Morrison, Karen E.; Farmer, Anne E.; Van Damme, Philip; Robberecht, Wim; Chiò, Adriano; Traynor, Bryan J.; Sendtner, Michael; Melki, Judith; Meininger, Vincent; Hardiman, Orla; Andersen, Peter M.; Leigh, Nigel P.; Glass, Jonathan D.; Overste, Daniel; Diekstra, Frank P.; Veldink, Jan H.; van Es, Michael A.; Shaw, Christopher E.; Weale, Michael E.; Lewis, Cathryn M.; Williams, Julie; Brown, Robert H.; Landers, John E.; Ticozzi, Nicola; Ceroni, Mauro; Pegoraro, Elena; Comi, Giacomo P.; D'Alfonso, Sandra; van den Berg, Leonard H.; Taroni, Franco; Al-Chalabi, Ammar; Powell, John; Silani, Vincenzo; Brescia Morra, Vincenzo; Filla, Alessandro; Massimo, Filosto; Marsili, Angela; Viviana, Pensato; Puorro, Giorgia; La Bella, Vincenzo; Logroscino, Giancarlo; Monsurrò, Maria Rosaria; Quattrone, Aldo; Simone, Isabella Laura; Ahmeti, Kreshnik B.; Ajroud-Driss, Senda; Armstrong, Jennifer; Birve, Anne; Blauw, Hylke M.; Bruijn, Lucie; Chen, Wenjie; Comeau, Mary C.; Cronin, Simon; Soraya, Gkazi Athina; Grab, Josh D.; Groen, Ewout J.; Haines, Jonathan L.; Heller, Scott; Huang, Jie; Hung, Wu-Yen; Jaworski, James M.; Khan, Humaira; Langefeld, Carl D.; Marion, Miranda C.; McLaughlin, Russell L.; Miller, Jack W.; Mora, Gabriele; Pericak-Vance, Margaret A.; Rampersaud, Evadnie; Siddique, Nailah; Siddique, Teepu; Smith, Bradley N.; Sufit, Robert; Topp, Simon; Vance, Caroline; van Vught, Paul; Yang, Yi; Zheng, J.G.

    2014-01-01

    Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (∼90%) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P = 1.11 × 10−8; OR 0.82) that was validated when combined with genotype data from a replication cohort (P = 8.62 × 10−9; OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P = 7.69 × 10−9; OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as ∼12% using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci. PMID:24256812

  16. Genome-wide selection components analysis in a fish with male pregnancy.

    PubMed

    Flanagan, Sarah P; Jones, Adam G

    2017-04-01

    A major goal of evolutionary biology is to identify the genome-level targets of natural and sexual selection. With the advent of next-generation sequencing, whole-genome selection components analysis provides a promising avenue in the search for loci affected by selection in nature. Here, we implement a genome-wide selection components analysis in the sex role reversed Gulf pipefish, Syngnathus scovelli. Our approach involves a double-digest restriction-site associated DNA sequencing (ddRAD-seq) technique, applied to adult females, nonpregnant males, pregnant males, and their offspring. An F ST comparison of allele frequencies among these groups reveals 47 genomic regions putatively experiencing sexual selection, as well as 468 regions showing a signature of differential viability selection between males and females. A complementary likelihood ratio test identifies similar patterns in the data as the F ST analysis. Sexual selection and viability selection both tend to favor the rare alleles in the population. Ultimately, we conclude that genome-wide selection components analysis can be a useful tool to complement other approaches in the effort to pinpoint genome-level targets of selection in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. Unraveling the Genetic Etiology of Adult Antisocial Behavior: A Genome-Wide Association Study

    PubMed Central

    Tielbeek, Jorim J.; Medland, Sarah E.; Benyamin, Beben; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Wray, Naomi R.; Verweij, Karin J. H.

    2012-01-01

    Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS) on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10−5) was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies. PMID:23077488

  18. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    PubMed Central

    van Haaften, Gijs; Vastenhouw, Nadine L.; Nollen, Ellen A. A.; Plasterk, Ronald H. A.; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect the germ line against DNA double-strand breaks. Besides known DNA-repair proteins such as the C. elegans orthologs of TopBP1, RPA2, and RAD51, eight genes previously unassociated with a double-strand-break response were identified. Knockdown of these genes increased sensitivity to ionizing radiation and camptothecin and resulted in increased chromosomal nondisjunction. All genes have human orthologs that may play a role in human carcinogenesis. PMID:15326288

  19. From The Cover: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    NASA Astrophysics Data System (ADS)

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-04-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. protein misfolding | neurodegenerative diseases

  20. Genome-wide Association Study Identifies Peanut Allergy-Specific Loci and Evidence of Epigenetic Mediation in U.S. Children

    PubMed Central

    Hong, Xiumei; Hao, Ke; Ladd-Acosta, Christine; Hansen, Kasper D; Tsai, Hui-Ju; Liu, Xin; Xu, Xin; Thornton, Timothy A.; Caruso, Deanna; Keet, Corinne A; Sun, Yifei; Wang, Guoying; Luo, Wei; Kumar, Rajesh; Fuleihan, Ramsay; Singh, Anne Marie; Kim, Jennifer S; Story, Rachel E; Gupta, Ruchi S; Gao, Peisong; Chen, Zhu; Walker, Sheila O.; Bartell, Tami R; Beaty, Terri H; Fallin, M Daniele; Schleimer, Robert; Holt, Patrick G; Nadeau, Kari Christine; Wood, Robert A; Pongracic, Jacqueline A; Weeks, Daniel E; Wang, Xiaobin

    2015-01-01

    Food allergy (FA) affects 2–10% of U.S. children and is a growing clinical and public health problem. Here we conduct the first genome-wide association study of well-defined FA, including specific subtypes (peanut, milk, and egg) in 2,759 U.S. participants (1,315 children; 1,444 parents) from the Chicago Food Allergy Study; and identify peanut allergy (PA)-specific loci in the HLA-DR and -DQ gene region at 6p21.32, tagged by rs7192 (p=5.5×10−8) and rs9275596 (p=6.8×10−10), in 2,197 participants of European ancestry. We replicate these associations in an independent sample of European ancestry. These associations are further supported by meta-analyses across the discovery and replication samples. Both single-nucleotide polymorphisms (SNPs) are associated with differential DNA methylation levels at multiple CpG sites (p<5×10−8); and differential DNA methylation of the HLA-DQB1 and HLA-DRB1 genes partially mediate the identified SNP-PA associations. This study suggests that the HLA-DR and -DQ gene region likely poses significant genetic risk for PA. PMID:25710614

  1. A Genome-Wide Breast Cancer Scan in African Americans

    DTIC Science & Technology

    2011-06-01

    cancer in women of African ancestry. 13 References 1. Easton DF, P.K., Dunning AM, Pharoah PDP, Thompson D, Ballinger DG, et al . Genome...M, Hankinson, SE, et al . A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer...Millikan, R.C. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 295, 2492-502 ( 2006 ). 16 17. Huo, D., Ikpatt

  2. Population Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data

    PubMed Central

    Oetjens, Matthew T.; Brown-Gentry, Kristin; Goodloe, Robert; Dilks, Holli H.; Crawford, Dana C.

    2016-01-01

    Population stratification or confounding by genetic ancestry is a potential cause of false associations in genetic association studies. Estimation of and adjustment for genetic ancestry has become common practice thanks in part to the availability of ancestry informative markers on genome-wide association study (GWAS) arrays. While array data is now widespread, these data are not ubiquitous as several large epidemiologic and clinic-based studies lack genome-wide data. One such large epidemiologic-based study lacking genome-wide data accessible to investigators is the National Health and Nutrition Examination Surveys (NHANES), population-based cross-sectional surveys of Americans linked to demographic, health, and lifestyle data conducted by the Centers for Disease Control and Prevention. DNA samples (n = 14,998) were extracted from biospecimens from consented NHANES participants between 1991–1994 (NHANES III, phase 2) and 1999–2002 and represent three major self-identified racial/ethnic groups: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We as the Epidemiologic Architecture for Genes Linked to Environment study genotyped candidate gene and GWAS-identified index variants in NHANES as part of the larger Population Architecture using Genomics and Epidemiology I study for collaborative genetic association studies. To enable basic quality control such as estimation of genetic ancestry to control for population stratification in NHANES san genome-wide data, we outline here strategies that use limited genetic data to identify the markers optimal for characterizing genetic ancestry. From among 411 and 295 autosomal SNPs available in NHANES III and NHANES 1999–2002, we demonstrate that markers with ancestry information can be identified to estimate global ancestry. Despite limited resolution, global genetic ancestry is highly correlated with self-identified race for the majority of participants, although less so

  3. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index

    PubMed Central

    Wen, Wanqing; Zheng, Wei; Okada, Yukinori; Takeuchi, Fumihiko; Tabara, Yasuharu; Hwang, Joo-Yeon; Dorajoo, Rajkumar; Li, Huaixing; Tsai, Fuu-Jen; Yang, Xiaobo; He, Jiang; Wu, Ying; He, Meian; Zhang, Yi; Liang, Jun; Guo, Xiuqing; Sheu, Wayne Huey-Herng; Delahanty, Ryan; Guo, Xingyi; Kubo, Michiaki; Yamamoto, Ken; Ohkubo, Takayoshi; Go, Min Jin; Liu, Jian Jun; Gan, Wei; Chen, Ching-Chu; Gao, Yong; Li, Shengxu; Lee, Nanette R.; Wu, Chen; Zhou, Xueya; Song, Huaidong; Yao, Jie; Lee, I-Te; Long, Jirong; Tsunoda, Tatsuhiko; Akiyama, Koichi; Takashima, Naoyuki; Cho, Yoon Shin; Ong, Rick TH; Lu, Ling; Chen, Chien-Hsiun; Tan, Aihua; Rice, Treva K; Adair, Linda S.; Gui, Lixuan; Allison, Matthew; Lee, Wen-Jane; Cai, Qiuyin; Isomura, Minoru; Umemura, Satoshi; Kim, Young Jin; Seielstad, Mark; Hixson, James; Xiang, Yong-Bing; Isono, Masato; Kim, Bong-Jo; Sim, Xueling; Lu, Wei; Nabika, Toru; Lee, Juyoung; Lim, Wei-Yen; Gao, Yu-Tang; Takayanagi, Ryoichi; Kang, Dae-Hee; Wong, Tien Yin; Hsiung, Chao Agnes; Wu, I-Chien; Juang, Jyh-Ming Jimmy; Shi, Jiajun; Choi, Bo Youl; Aung, Tin; Hu, Frank; Kim, Mi Kyung; Lim, Wei Yen; Wang, Tzung-Dao; Shin, Min-Ho; Lee, Jeannette; Ji, Bu-Tian; Lee, Young-Hoon; Young, Terri L.; Shin, Dong Hoon; Chun, Byung-Yeol; Cho, Myeong-Chan; Han, Bok-Ghee; Hwu, Chii-Min; Assimes, Themistocles L.; Absher, Devin; Yan, Xiaofei; Kim, Eric; Kuo, Jane Z.; Kwon, Soonil; Taylor, Kent D.; Chen, Yii-Der I.; Rotter, Jerome I.; Qi, Lu; Zhu, Dingliang; Wu, Tangchun; Mohlke, Karen L.; Gu, Dongfeng; Mo, Zengnan; Wu, Jer-Yuarn; Lin, Xu; Miki, Tetsuro; Tai, E. Shyong; Lee, Jong-Young; Kato, Norihiro; Shu, Xiao-Ou; Tanaka, Toshihiro

    2014-01-01

    Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index (BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a meta-analysis of associations between BMI and ∼2.5 million genotyped or imputed single nucleotide polymorphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among 7488–47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the KCNQ1 (rs2237892, P = 9.29 × 10−13), ALDH2/MYL2 (rs671, P = 3.40 × 10−11; rs12229654, P = 4.56 × 10−9), ITIH4 (rs2535633, P = 1.77 × 10−10) and NT5C2 (rs11191580, P = 3.83 × 10−8) genes. The association of BMI with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51 BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at the genome-wide significance level (P < 5.0 × 10−8) and an additional 14 at P < 1.0 × 10−3 with the same direction of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis of obesity. PMID:24861553

  4. Detecting associated single-nucleotide polymorphisms on the X chromosome in case control genome-wide association studies.

    PubMed

    Chen, Zhongxue; Ng, Hon Keung Tony; Li, Jing; Liu, Qingzhong; Huang, Hanwen

    2017-04-01

    In the past decade, hundreds of genome-wide association studies have been conducted to detect the significant single-nucleotide polymorphisms that are associated with certain diseases. However, most of the data from the X chromosome were not analyzed and only a few significant associated single-nucleotide polymorphisms from the X chromosome have been identified from genome-wide association studies. This is mainly due to the lack of powerful statistical tests. In this paper, we propose a novel statistical approach that combines the information of single-nucleotide polymorphisms on the X chromosome from both males and females in an efficient way. The proposed approach avoids the need of making strong assumptions about the underlying genetic models. Our proposed statistical test is a robust method that only makes the assumption that the risk allele is the same for both females and males if the single-nucleotide polymorphism is associated with the disease for both genders. Through simulation study and a real data application, we show that the proposed procedure is robust and have excellent performance compared to existing methods. We expect that many more associated single-nucleotide polymorphisms on the X chromosome will be identified if the proposed approach is applied to current available genome-wide association studies data.

  5. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.

    PubMed

    Fei, Teng; Chen, Yiwen; Xiao, Tengfei; Li, Wei; Cato, Laura; Zhang, Peng; Cotter, Maura B; Bowden, Michaela; Lis, Rosina T; Zhao, Shuang G; Wu, Qiu; Feng, Felix Y; Loda, Massimo; He, Housheng Hansen; Liu, X Shirley; Brown, Myles

    2017-06-27

    Alternative RNA splicing plays an important role in cancer. To determine which factors involved in RNA processing are essential in prostate cancer, we performed a genome-wide CRISPR/Cas9 knockout screen to identify the genes that are required for prostate cancer growth. Functional annotation defined a set of essential spliceosome and RNA binding protein (RBP) genes, including most notably heterogeneous nuclear ribonucleoprotein L (HNRNPL). We defined the HNRNPL-bound RNA landscape by RNA immunoprecipitation coupled with next-generation sequencing and linked these RBP-RNA interactions to changes in RNA processing. HNRNPL directly regulates the alternative splicing of a set of RNAs, including those encoding the androgen receptor, the key lineage-specific prostate cancer oncogene. HNRNPL also regulates circular RNA formation via back splicing. Importantly, both HNRNPL and its RNA targets are aberrantly expressed in human prostate tumors, supporting their clinical relevance. Collectively, our data reveal HNRNPL and its RNA clients as players in prostate cancer growth and potential therapeutic targets.

  6. A High Resolution Genome-Wide Scan for Significant Selective Sweeps: An Application to Pooled Sequence Data in Laying Chickens

    PubMed Central

    Qanbari, Saber; Strom, Tim M.; Haberer, Georg; Weigend, Steffen; Gheyas, Almas A.; Turner, Frances; Burt, David W.; Preisinger, Rudolf; Gianola, Daniel; Simianer, Henner

    2012-01-01

    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a “creeping window” strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes. PMID:23209582

  7. A genome-wide survey of transgenerational genetic effects in autism.

    PubMed

    Tsang, Kathryn M; Croen, Lisa A; Torres, Anthony R; Kharrazi, Martin; Delorenze, Gerald N; Windham, Gayle C; Yoshida, Cathleen K; Zerbo, Ousseny; Weiss, Lauren A

    2013-01-01

    Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4)) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.

  8. Genome-Wide Association Studies of Metabolites in Patients with CKD Identify Multiple Loci and Illuminate Tubular Transport Mechanisms.

    PubMed

    Li, Yong; Sekula, Peggy; Wuttke, Matthias; Wahrheit, Judith; Hausknecht, Birgit; Schultheiss, Ulla T; Gronwald, Wolfram; Schlosser, Pascal; Tucci, Sara; Ekici, Arif B; Spiekerkoetter, Ute; Kronenberg, Florian; Eckardt, Kai-Uwe; Oefner, Peter J; Köttgen, Anna

    2018-05-01

    Background The kidneys have a central role in the generation, turnover, transport, and excretion of metabolites, and these functions can be altered in CKD. Genetic studies of metabolite concentrations can identify proteins performing these functions. Methods We conducted genome-wide association studies and aggregate rare variant tests of the concentrations of 139 serum metabolites and 41 urine metabolites, as well as their pairwise ratios and fractional excretions in up to 1168 patients with CKD. Results After correction for multiple testing, genome-wide significant associations were detected for 25 serum metabolites, two urine metabolites, and 259 serum and 14 urinary metabolite ratios. These included associations already known from population-based studies. Additional findings included an association for the uremic toxin putrescine and variants upstream of an enzyme catalyzing the oxidative deamination of polyamines ( AOC1 , P -min=2.4×10 -12 ), a relatively high carrier frequency (2%) for rare deleterious missense variants in ACADM that are collectively associated with serum ratios of medium-chain acylcarnitines ( P -burden=6.6×10 -16 ), and associations of a common variant in SLC7A9 with several ratios of lysine to neutral amino acids in urine, including the lysine/glutamine ratio ( P =2.2×10 -23 ). The associations of this SLC7A9 variant with ratios of lysine to specific neutral amino acids were much stronger than the association with lysine concentration alone. This finding is consistent with SLC7A9 functioning as an exchanger of urinary cationic amino acids against specific intracellular neutral amino acids at the apical membrane of proximal tubular cells. Conclusions Metabolomic indices of specific kidney functions in genetic studies may provide insight into human renal physiology. Copyright © 2018 by the American Society of Nephrology.

  9. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    PubMed Central

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  10. A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

    PubMed Central

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. Methods 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). Results No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium’s panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10–14) and explained approximately 2% of the phenotypic variance. Conclusions Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data. PMID:23871474

  11. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation.

    PubMed

    Bramon, Elvira; Pirinen, Matti; Strange, Amy; Lin, Kuang; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Band, Gavin; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J; Arranz, Maria J; Bakker, Steven; Bender, Stephan; Bruggeman, Richard; Cahn, Wiepke; Chandler, David; Collier, David A; Crespo-Facorro, Benedicto; Dazzan, Paola; de Haan, Lieuwe; Di Forti, Marta; Dragović, Milan; Giegling, Ina; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, René S; Kalaydjieva, Luba; Kravariti, Eugenia; Lawrie, Stephen; Linszen, Don H; Mata, Ignacio; McDonald, Colm; McIntosh, Andrew; Myin-Germeys, Inez; Ophoff, Roel A; Pariante, Carmine M; Paunio, Tiina; Picchioni, Marco; Ripke, Stephan; Rujescu, Dan; Sauer, Heinrich; Shaikh, Madiha; Sussmann, Jessika; Suvisaari, Jaana; Tosato, Sarah; Toulopoulou, Timothea; Van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Whalley, Heather; Wiersma, Durk; Blackwell, Jenefer M; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A Z; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Wood, Nicholas W; Barroso, Ines; Peltonen, Leena; Lewis, Cathryn M; Murray, Robin M; Donnelly, Peter; Powell, John; Spencer, Chris C A

    2014-03-01

    Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium's panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10(-14)) and explained approximately 2% of the phenotypic variance. Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle.

    PubMed

    Yue, S J; Zhao, Y Q; Gu, X R; Yin, B; Jiang, Y L; Wang, Z H; Shi, K R

    2017-12-01

    A genome-wide association study (GWAS) was conducted on 15 milk production traits in Chinese Holstein. The experimental population consisted of 445 cattle, each genotyped by the GGP (GeneSeek genomic profiling)-BovineLD V3 SNP chip, which had 26 151 public SNPs in its manifest file. After data cleaning, 20 326 SNPs were retained for the GWAS. The phenotypes were estimated breeding values of traits, provided by a public dairy herd improvement program center that had been collected once a month for 3 years. Two statistical models, a fixed-effect linear regression model and a mixed-effect linear model, were used to estimate the association effects of SNPs on each of the phenotypes. Genome-wide significant and suggestive thresholds were set at 2.46E-06 and 4.95E-05 respectively. The two statistical models concurrently identified two genome-wide significant (P < 0.05) SNPs on milk production traits in this Chinese Holstein population. The positional candidate genes, which were the ones closest to these two identified SNPs, were EEF2K (eukaryotic elongation factor 2 kinase) and KLHL1 (kelch like family member 1). These two genes could serve as new candidate genes for milk yield and lactation persistence, yet their roles need to be verified in further function studies. © 2017 Stichting International Foundation for Animal Genetics.

  13. A GENOME WIDE ASSOCIATION STUDY FOR DIABETIC NEPHROPATHY GENES IN AFRICAN AMERICANS

    PubMed Central

    McDonough, Caitrin W.; Palmer, Nicholette D.; Hicks, Pamela J.; Roh, Bong H.; An, S. Sandy; Cooke, Jessica N.; Hester, Jessica M.; Wing, Maria R.; Bostrom, Meredith A.; Rudock, Megan E.; Lewis, Joshua P.; Talbert, Matthew E.; Blevins, Rebecca A.; Lu, Lingyi; Ng, Maggie C.Y.; Sale, Michele M.; Divers, Jasmin; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2011-01-01

    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD. PMID:21150874

  14. A genome-wide association study for diabetic nephropathy genes in African Americans.

    PubMed

    McDonough, Caitrin W; Palmer, Nicholette D; Hicks, Pamela J; Roh, Bong H; An, S Sandy; Cooke, Jessica N; Hester, Jessica M; Wing, Maria R; Bostrom, Meredith A; Rudock, Megan E; Lewis, Joshua P; Talbert, Matthew E; Blevins, Rebecca A; Lu, Lingyi; Ng, Maggie C Y; Sale, Michele M; Divers, Jasmin; Langefeld, Carl D; Freedman, Barry I; Bowden, Donald W

    2011-03-01

    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD.

  15. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies

    PubMed Central

    Elks, Cathy E.; Perry, John R.B.; Sulem, Patrick; Chasman, Daniel I.; Franceschini, Nora; He, Chunyan; Lunetta, Kathryn L.; Visser, Jenny A.; Byrne, Enda M.; Cousminer, Diana L.; Gudbjartsson, Daniel F.; Esko, Tõnu; Feenstra, Bjarke; Hottenga, Jouke-Jan; Koller, Daniel L.; Kutalik, Zoltán; Lin, Peng; Mangino, Massimo; Marongiu, Mara; McArdle, Patrick F.; Smith, Albert V.; Stolk, Lisette; van Wingerden, Sophie W.; Zhao, Jing Hua; Albrecht, Eva; Corre, Tanguy; Ingelsson, Erik; Hayward, Caroline; Magnusson, Patrik K.E.; Smith, Erin N.; Ulivi, Shelia; Warrington, Nicole M.; Zgaga, Lina; Alavere, Helen; Amin, Najaf; Aspelund, Thor; Bandinelli, Stefania; Barroso, Ines; Berenson, Gerald S.; Bergmann, Sven; Blackburn, Hannah; Boerwinkle, Eric; Buring, Julie E.; Busonero, Fabio; Campbell, Harry; Chanock, Stephen J.; Chen, Wei; Cornelis, Marilyn C.; Couper, David; Coviello, Andrea D.; d’Adamo, Pio; de Faire, Ulf; de Geus, Eco J.C.; Deloukas, Panos; Döring, Angela; Smith, George Davey; Easton, Douglas F.; Eiriksdottir, Gudny; Emilsson, Valur; Eriksson, Johan; Ferrucci, Luigi; Folsom, Aaron R.; Foroud, Tatiana; Garcia, Melissa; Gasparini, Paolo; Geller, Frank; Gieger, Christian; Gudnason, Vilmundur; Hall, Per; Hankinson, Susan E.; Ferreli, Liana; Heath, Andrew C.; Hernandez, Dena G.; Hofman, Albert; Hu, Frank B.; Illig, Thomas; Järvelin, Marjo-Riitta; Johnson, Andrew D.; Karasik, David; Khaw, Kay-Tee; Kiel, Douglas P.; Kilpeläinen, Tuomas O.; Kolcic, Ivana; Kraft, Peter; Launer, Lenore J.; Laven, Joop S.E.; Li, Shengxu; Liu, Jianjun; Levy, Daniel; Martin, Nicholas G.; McArdle, Wendy L.; Melbye, Mads; Mooser, Vincent; Murray, Jeffrey C.; Murray, Sarah S.; Nalls, Michael A.; Navarro, Pau; Nelis, Mari; Ness, Andrew R.; Northstone, Kate; Oostra, Ben A.; Peacock, Munro; Palmer, Lyle J.; Palotie, Aarno; Paré, Guillaume; Parker, Alex N.; Pedersen, Nancy L.; Peltonen, Leena; Pennell, Craig E.; Pharoah, Paul; Polasek, Ozren; Plump, Andrew S.; Pouta, Anneli; Porcu, Eleonora; Rafnar, Thorunn; Rice, John P.; Ring, Susan M.; Rivadeneira, Fernando; Rudan, Igor; Sala, Cinzia; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schork, Nicholas J.; Scuteri, Angelo; Segrè, Ayellet V.; Shuldiner, Alan R.; Soranzo, Nicole; Sovio, Ulla; Srinivasan, Sathanur R.; Strachan, David P.; Tammesoo, Mar-Liis; Tikkanen, Emmi; Toniolo, Daniela; Tsui, Kim; Tryggvadottir, Laufey; Tyrer, Jonathon; Uda, Manuela; van Dam, Rob M.; van Meurs, Joyve B.J.; Vollenweider, Peter; Waeber, Gerard; Wareham, Nicholas J.; Waterworth, Dawn M.; Weedon, Michael N.; Wichmann, H. Erich; Willemsen, Gonneke; Wilson, James F.; Wright, Alan F.; Young, Lauren; Zhai, Guangju; Zhuang, Wei Vivian; Bierut, Laura J.; Boomsma, Dorret I.; Boyd, Heather A.; Crisponi, Laura; Demerath, Ellen W.; van Duijn, Cornelia M.; Econs, Michael J.; Harris, Tamara B.; Hunter, David J.; Loos, Ruth J.F.; Metspalu, Andres; Montgomery, Grant W.; Ridker, Paul M.; Spector, Tim D.; Streeten, Elizabeth A.; Stefansson, Kari; Thorsteinsdottir, Unnur; Uitterlinden, André G.; Widen, Elisabeth; Murabito, Joanne M.; Ong, Ken K.; Murray, Anna

    2011-01-01

    To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P=5.4×10−60) and 9q31.2 (P=2.2×10−33), we identified 30 novel menarche loci (all P<5×10−8) and found suggestive evidence for a further 10 loci (P<1.9×10−6). New loci included four previously associated with BMI (in/near FTO, SEC16B, TRA2B and TMEM18), three in/near other genes implicated in energy homeostasis (BSX, CRTC1, and MCHR2), and three in/near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and MAGENTA pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing. PMID:21102462

  16. Genome-wide scans for loci under selection in humans

    PubMed Central

    2005-01-01

    Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection. PMID:16004726

  17. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    PubMed Central

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  18. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity.

    PubMed

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P; Nir, Talia M; Toga, Arthur W; Jack, Clifford R; Saykin, Andrew J; Green, Robert C; Weiner, Michael W; Medland, Sarah E; Montgomery, Grant W; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2013-03-19

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.

  19. A mega-analysis of genome-wide association studies for major depressive disorder.

    PubMed

    Ripke, Stephan; Wray, Naomi R; Lewis, Cathryn M; Hamilton, Steven P; Weissman, Myrna M; Breen, Gerome; Byrne, Enda M; Blackwood, Douglas H R; Boomsma, Dorret I; Cichon, Sven; Heath, Andrew C; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A F; Martin, Nicholas G; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M; Penninx, Brenda P; Pergadia, Michele L; Potash, James B; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H; Preisig, Martin; Smoller, Jordan W; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R; Bettecken, Thomas; Binder, Elisabeth B; Breuer, René; Castro, Victor M; Churchill, Susanne E; Coryell, William H; Craddock, Nick; Craig, Ian W; Czamara, Darina; De Geus, Eco J; Degenhardt, Franziska; Farmer, Anne E; Fava, Maurizio; Frank, Josef; Gainer, Vivian S; Gallagher, Patience J; Gordon, Scott D; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A; Kohane, Isaac S; Kohli, Martin A; Korszun, Ania; Landen, Mikael; Lawson, William B; Lewis, Glyn; Macintyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M; Middleton, Lefkos; Montgomery, Grant M; Murphy, Shawn N; Nauck, Matthias; Nolen, Willem A; Nyholt, Dale R; O'Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A; Schulz, Andrea; Schulze, Thomas G; Shyn, Stanley I; Sigurdsson, Engilbert; Slager, Susan L; Smit, Johannes H; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B; Willemsen, Gonneke; Zitman, Frans G; Neale, Benjamin; Daly, Mark; Levinson, Douglas F; Sullivan, Patrick F

    2013-04-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.

  20. Genome-Wide Linkage, Exome Sequencing and Functional Analyses Identify ABCB6 as the Pathogenic Gene of Dyschromatosis Universalis Hereditaria

    PubMed Central

    Wang, Na; Wang, Chuan; Chen, Xuechao; Sheng, Donglai; Fu, Xi’an; See, Kelvin; Foo, Jia Nee; Low, Huiqi; Liany, Herty; Irwan, Ishak Darryl; Liu, Jian; Yang, Baoqi; Chen, Mingfei; Yu, Yongxiang; Yu, Gongqi; Niu, Guiye; You, Jiabao; Zhou, Yan; Ma, Shanshan; Wang, Ting; Yan, Xiaoxiao; Goh, Boon Kee; Common, John E. A.; Lane, Birgitte E.; Sun, Yonghu; Zhou, Guizhi; Lu, Xianmei; Wang, Zhenhua; Tian, Hongqing; Cao, Yuanhua; Chen, Shumin; Liu, Qiji; Liu, Jianjun; Zhang, Furen

    2014-01-01

    Background As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH) had remained unclear until recently when ABCB6 was reported as a causative gene of DUH. Methodology We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation. Results Genome-wide linkage (assuming autosomal dominant inheritance mode) and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val) that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val) and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys) in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them. Conclusion Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma. PMID:24498303

  1. EG-13GENOME-WIDE METHYLATION ANALYSIS IDENTIFIES GENOMIC DNA DEMETHYLATION DURING MALIGNANT PROGRESSION OF GLIOMAS

    PubMed Central

    Saito, Kuniaki; Mukasa, Akitake; Nagae, Genta; Aihara, Koki; Otani, Ryohei; Takayanagi, Shunsaku; Omata, Mayu; Tanaka, Shota; Shibahara, Junji; Takahashi, Miwako; Momose, Toshimitsu; Shimamura, Teppei; Miyano, Satoru; Narita, Yoshitaka; Ueki, Keisuke; Nishikawa, Ryo; Nagane, Motoo; Aburatani, Hiroyuki; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas often undergo malignant progression, and these transformations are a leading cause of death in patients with low-grade gliomas. However, the molecular mechanisms underlying malignant tumor progression are still not well understood. Recent evidence indicates that epigenetic deregulation is an important cause of gliomagenesis; therefore, we examined the impact of epigenetic changes during malignant progression of low-grade gliomas. Specifically, we used the Illumina Infinium Human Methylation 450K BeadChip to perform genome-wide DNA methylation analysis of 120 gliomas and four normal brains. This study sample included 25 matched-pairs of initial low-grade gliomas and recurrent tumors (temporal heterogeneity) and 20 of the 25 recurring tumors recurred as malignant progressions, and one matched-pair of newly emerging malignant lesions and pre-existing lesions (spatial heterogeneity). Analyses of methylation profiles demonstrated that most low-grade gliomas in our sample (43/51; 84%) had a CpG island methylator phenotype (G-CIMP). Remarkably, approximately 50% of secondary glioblastomas that had progressed from low-grade tumors with the G-CIMP status exhibited a characteristic partial demethylation of genomic DNA during malignant progression, but other recurrent gliomas showed no apparent change in DNA methylation pattern. Interestingly, we found that most loci that were demethylated during malignant progression were located outside of CpG islands. The information of histone modifications patterns in normal human astrocytes and embryonal stem cells also showed that the ratio of active marks at the site corresponding to DNA demethylated loci in G-CIMP-demethylated tumors was significantly lower; this finding indicated that most demethylated loci in G-CIMP-demethylated tumors were likely transcriptionally inactive. A small number of the genes that were upregulated and had demethylated CpG islands were associated with cell cycle-related pathway. In

  2. Genome-Wide Association Study of Erosive Tooth Wear in a Finnish Cohort.

    PubMed

    Alaraudanjoki, Viivi Karoliina; Koivisto, Salla; Pesonen, Paula; Männikkö, Minna; Leinonen, Jukka; Tjäderhane, Leo; Laitala, Marja-Liisa; Lussi, Adrian; Anttonen, Vuokko Anna-Marketta

    2018-06-13

    Erosive tooth wear is defined as irreversible loss of dental tissues due to intrinsic or extrinsic acids, exacerbated by mechanical forces. Recent studies have suggested a higher prevalence of erosive tooth wear in males, as well as a genetic contribution to susceptibility to erosive tooth wear. Our aim was to examine erosive tooth wear by performing a genome-wide association study (GWAS) in a sample of the Northern Finland Birth Cohort 1966 (n = 1,962). Erosive tooth wear was assessed clinically using the basic erosive wear examination. A GWAS was performed for the whole sample as well as separately for males and females. We identified one genome-wide significant signal (rs11681214) in the GWAS of the whole sample near the genes PXDN and MYT1L. When the sample was stratified by sex, the strongest genome-wide significant signals were observed in or near the genes FGFR1, C8orf86, CDH4, SCD5, F2R, and ING1. Additionally, multiple suggestive association signals were detected in all GWASs performed. Many of the signals were in or near the genes putatively related to oral environment or tooth development, and some were near the regions considered to be associated with dental caries, such as 2p24, 4q21, and 13q33. Replications of these associations in other samples, as well as experimental studies to determine the biological functions of associated genetic variants, are needed. © 2018 S. Karger AG, Basel.

  3. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.

    PubMed

    Smith, Nicholas L; Felix, Janine F; Morrison, Alanna C; Demissie, Serkalem; Glazer, Nicole L; Loehr, Laura R; Cupples, L Adrienne; Dehghan, Abbas; Lumley, Thomas; Rosamond, Wayne D; Lieb, Wolfgang; Rivadeneira, Fernando; Bis, Joshua C; Folsom, Aaron R; Benjamin, Emelia; Aulchenko, Yurii S; Haritunians, Talin; Couper, David; Murabito, Joanne; Wang, Ying A; Stricker, Bruno H; Gottdiener, John S; Chang, Patricia P; Wang, Thomas J; Rice, Kenneth M; Hofman, Albert; Heckbert, Susan R; Fox, Ervin R; O'Donnell, Christopher J; Uitterlinden, Andre G; Rotter, Jerome I; Willerson, James T; Levy, Daniel; van Duijn, Cornelia M; Psaty, Bruce M; Witteman, Jacqueline C M; Boerwinkle, Eric; Vasan, Ramachandran S

    2010-06-01

    Although genetic factors contribute to the onset of heart failure (HF), no large-scale genome-wide investigation of HF risk has been published to date. We have investigated the association of 2,478,304 single-nucleotide polymorphisms with incident HF by meta-analyzing data from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study. Eligible participants for these analyses were of European or African ancestry and free of clinical HF at baseline. Each study independently conducted genome-wide scans and imputed data to the approximately 2.5 million single-nucleotide polymorphisms in HapMap. Within each study, Cox proportional hazards regression models provided age- and sex-adjusted estimates of the association between each variant and time to incident HF. Fixed-effect meta-analyses combined results for each single-nucleotide polymorphism from the 4 cohorts to produce an overall association estimate and P value. A genome-wide significance P value threshold was set a priori at 5.0x10(-7). During a mean follow-up of 11.5 years, 2526 incident HF events (12%) occurred in 20 926 European-ancestry participants. The meta-analysis identified a genome-wide significant locus at chromosomal position 15q22 (1.4x10(-8)), which was 58.8 kb from USP3. Among 2895 African-ancestry participants, 466 incident HF events (16%) occurred during a mean follow-up of 13.7 years. One genome-wide significant locus was identified at 12q14 (6.7x10(-8)), which was 6.3 kb from LRIG3. We identified 2 loci that were associated with incident HF and exceeded genome-wide significance. The findings merit replication in other community-based settings of incident HF.

  4. Genome-wide identification of nuclear receptor (NR) genes and the evolutionary significance of the NR1O subfamily in the monogonont rotifer Brachionus spp.

    PubMed

    Kim, Duck-Hyun; Kim, Hui-Su; Hwang, Dae-Sik; Kim, Hee-Jin; Hagiwara, Atsushi; Lee, Jae-Seong; Jeong, Chang-Bum

    2017-10-01

    Nuclear receptors (NRs) are a large family of transcription factors that are involved in many fundamental biological processes. NRs are considered to have originated from a common ancestor, and are highly conserved throughout the whole animal taxa. Therefore, the genome-wide identification of NR genes in an animal taxon can provide insight into the evolutionary tendencies of NRs. Here, we identified all the NR genes in the monogonont rotifer Brachionus spp., which are considered an ecologically key species due to their abundance and world-wide distribution. The NR family was composed of 40, 32, 29, and 32 genes in the genomes of the rotifers B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis, respectively, which were classified into seven distinct subfamilies. The composition of each subfamily was highly conserved between species, except for NR1O genes, suggesting that they have undergone sporadic evolutionary processes for adaptation to their different environmental pressures. In addition, despite the dynamics of NR evolution, the significance of the conserved endocrine system, particularly for estrogen receptor (ER)-signaling, in rotifers was discussed on the basis of phylogenetic analyses. The results of this study may help provide a better understanding the evolution of NRs, and expand our knowledge of rotifer endocrine systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Jointly determining significance levels of primary and replication studies by controlling the false discovery rate in two-stage genome-wide association studies.

    PubMed

    Jiang, Wei; Yu, Weichuan

    2017-01-01

    In genome-wide association studies, we normally discover associations between genetic variants and diseases/traits in primary studies, and validate the findings in replication studies. We consider the associations identified in both primary and replication studies as true findings. An important question under this two-stage setting is how to determine significance levels in both studies. In traditional methods, significance levels of the primary and replication studies are determined separately. We argue that the separate determination strategy reduces the power in the overall two-stage study. Therefore, we propose a novel method to determine significance levels jointly. Our method is a reanalysis method that needs summary statistics from both studies. We find the most powerful significance levels when controlling the false discovery rate in the two-stage study. To enjoy the power improvement from the joint determination method, we need to select single nucleotide polymorphisms for replication at a less stringent significance level. This is a common practice in studies designed for discovery purpose. We suggest this practice is also suitable in studies with validation purpose in order to identify more true findings. Simulation experiments show that our method can provide more power than traditional methods and that the false discovery rate is well-controlled. Empirical experiments on datasets of five diseases/traits demonstrate that our method can help identify more associations. The R-package is available at: http://bioinformatics.ust.hk/RFdr.html .

  6. GENOME-WIDE GENE-SODIUM INTERACTION ANALYSES ON BLOOD PRESSURE: THE GENSALT STUDY

    PubMed Central

    Li, Changwei; He, Jiang; Chen, Jing; Zhao, Jinying; Gu, Dongfeng; Hixson, James E.; Rao, Dabeeru C.; Jaquish, Cashell E.; Gu, Charles C.; Chen, Jichun; Huang, Jianfeng; Chen, Shufeng; Kelly, Tanika N.

    2016-01-01

    We performed genome-wide analyses to identify genomic loci that interact with sodium to influence blood pressure (BP) using single marker (one and two degree-of-freedom joint tests) and gene-based tests among 1,876 Chinese participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. Among GenSalt participants, the average of three urine samples was used to estimate sodium excretion. Nine BP measurements were taken using a random-zero-sphygmomanometer. A total of 2.05 million SNPs were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P <1.00×10−4) from GenSalt were evaluated for replication among 775 Chinese participants of the Multi-ethnic Study of Atherosclerosis (MESA). SNP and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The one degree-of-freedom tests identified interactions for UST rs13211840 on diastolic BP (P=3.13×10−9). The two degree-of-freedom tests additionally identified associations for CLGN rs2567241 (P=3.90×10−12) and LOC105369882 rs11104632 (P=4.51×10−8) with systolic BP. The CLGN variant rs2567241 was also associated with diastolic BP (P=3.11×10−22) and mean arterial pressure (P= 2.86×10−15). Genome-wide gene-based analysis identified MKNK1 (P=6.70×10−7), C2orf80 (P<1.00×10−12), EPHA6 (P=2.88×10−7), SCOC-AS1 (P=4.35×10−14), SCOC (P=6.46×10−11), CLGN (P=3.68×10−13), MGAT4D (P=4.73×10−11), ARHGAP42 (P=<1.00×10−12), CASP4 (P=1.31×10−8), and LINC01478 (P=6.75×10−10) that were associated with at least one BP phenotype. In summary, we identified 8 novel and 1 previously reported BP loci through the examination of SNP and gene-based interactions with sodium. PMID:27271309

  7. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    PubMed Central

    Mitchell, Jonathan S.; Li, Ni; Weinhold, Niels; Försti, Asta; Ali, Mina; van Duin, Mark; Thorleifsson, Gudmar; Johnson, David C.; Chen, Bowang; Halvarsson, Britt-Marie; Gudbjartsson, Daniel F.; Kuiper, Rowan; Stephens, Owen W.; Bertsch, Uta; Broderick, Peter; Campo, Chiara; Einsele, Hermann; Gregory, Walter A.; Gullberg, Urban; Henrion, Marc; Hillengass, Jens; Hoffmann, Per; Jackson, Graham H.; Johnsson, Ellinor; Jöud, Magnus; Kristinsson, Sigurður Y.; Lenhoff, Stig; Lenive, Oleg; Mellqvist, Ulf-Henrik; Migliorini, Gabriele; Nahi, Hareth; Nelander, Sven; Nickel, Jolanta; Nöthen, Markus M.; Rafnar, Thorunn; Ross, Fiona M.; da Silva Filho, Miguel Inacio; Swaminathan, Bhairavi; Thomsen, Hauke; Turesson, Ingemar; Vangsted, Annette; Vogel, Ulla; Waage, Anders; Walker, Brian A.; Wihlborg, Anna-Karin; Broyl, Annemiek; Davies, Faith E.; Thorsteinsdottir, Unnur; Langer, Christian; Hansson, Markus; Kaiser, Martin; Sonneveld, Pieter; Stefansson, Kari; Morgan, Gareth J.; Goldschmidt, Hartmut; Hemminki, Kari; Nilsson, Björn; Houlston, Richard S.

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10−8), 6q21 (rs9372120, P=9.09 × 10−15), 7q36.1 (rs7781265, P=9.71 × 10−9), 8q24.21 (rs1948915, P=4.20 × 10−11), 9p21.3 (rs2811710, P=1.72 × 10−13), 10p12.1 (rs2790457, P=1.77 × 10−8), 16q23.1 (rs7193541, P=5.00 × 10−12) and 20q13.13 (rs6066835, P=1.36 × 10−13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development. PMID:27363682

  8. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    PubMed

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-05-27

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies

    PubMed Central

    2014-01-01

    Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the

  10. A Genome-Wide Association Study Identifies the Skin Color Genes IRF4, MC1R, ASIP, and BNC2 Influencing Facial Pigmented Spots.

    PubMed

    Jacobs, Leonie C; Hamer, Merel A; Gunn, David A; Deelen, Joris; Lall, Jaspal S; van Heemst, Diana; Uh, Hae-Won; Hofman, Albert; Uitterlinden, André G; Griffiths, Christopher E M; Beekman, Marian; Slagboom, P Eline; Kayser, Manfred; Liu, Fan; Nijsten, Tamar

    2015-07-01

    Facial pigmented spots are a common skin aging feature, but genetic predisposition has yet to be thoroughly investigated. We conducted a genome-wide association study for pigmented spots in 2,844 Dutch Europeans from the Rotterdam Study (mean age: 66.9±8.0 years; 47% male). Using semi-automated image analysis of high-resolution digital facial photographs, facial pigmented spots were quantified as the percentage of affected skin area (mean women: 2.0% ±0.9, men: 0.9% ±0.6). We identified genome-wide significant association with pigmented spots at three genetic loci: IRF4 (rs12203592, P=1.8 × 10(-27)), MC1R (compound heterozygosity score, P=2.3 × 10(-24)), and RALY/ASIP (rs6059655, P=1.9 × 10(-9)). In addition, after adjustment for the other three top-associated loci the BNC2 locus demonstrated significant association (rs62543565, P=2.3 × 10(-8)). The association signals observed at all four loci were successfully replicated (P<0.05) in an independent Dutch cohort (Leiden Longevity Study n=599). Although the four genes have previously been associated with skin color variation and skin cancer risk, all association signals remained highly significant (P<2 × 10(-8)) when conditioning the association analyses on skin color. We conclude that genetic variations in IRF4, MC1R, RALY/ASIP, and BNC2 contribute to the acquired amount of facial pigmented spots during aging, through pathways independent of the basal melanin production.

  11. Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder.

    PubMed

    de Moor, Marleen H M; van den Berg, Stéphanie M; Verweij, Karin J H; Krueger, Robert F; Luciano, Michelle; Arias Vasquez, Alejandro; Matteson, Lindsay K; Derringer, Jaime; Esko, Tõnu; Amin, Najaf; Gordon, Scott D; Hansell, Narelle K; Hart, Amy B; Seppälä, Ilkka; Huffman, Jennifer E; Konte, Bettina; Lahti, Jari; Lee, Minyoung; Miller, Mike; Nutile, Teresa; Tanaka, Toshiko; Teumer, Alexander; Viktorin, Alexander; Wedenoja, Juho; Abecasis, Goncalo R; Adkins, Daniel E; Agrawal, Arpana; Allik, Jüri; Appel, Katja; Bigdeli, Timothy B; Busonero, Fabio; Campbell, Harry; Costa, Paul T; Davey Smith, George; Davies, Gail; de Wit, Harriet; Ding, Jun; Engelhardt, Barbara E; Eriksson, Johan G; Fedko, Iryna O; Ferrucci, Luigi; Franke, Barbara; Giegling, Ina; Grucza, Richard; Hartmann, Annette M; Heath, Andrew C; Heinonen, Kati; Henders, Anjali K; Homuth, Georg; Hottenga, Jouke-Jan; Iacono, William G; Janzing, Joost; Jokela, Markus; Karlsson, Robert; Kemp, John P; Kirkpatrick, Matthew G; Latvala, Antti; Lehtimäki, Terho; Liewald, David C; Madden, Pamela A F; Magri, Chiara; Magnusson, Patrik K E; Marten, Jonathan; Maschio, Andrea; Medland, Sarah E; Mihailov, Evelin; Milaneschi, Yuri; Montgomery, Grant W; Nauck, Matthias; Ouwens, Klaasjan G; Palotie, Aarno; Pettersson, Erik; Polasek, Ozren; Qian, Yong; Pulkki-Råback, Laura; Raitakari, Olli T; Realo, Anu; Rose, Richard J; Ruggiero, Daniela; Schmidt, Carsten O; Slutske, Wendy S; Sorice, Rossella; Starr, John M; St Pourcain, Beate; Sutin, Angelina R; Timpson, Nicholas J; Trochet, Holly; Vermeulen, Sita; Vuoksimaa, Eero; Widen, Elisabeth; Wouda, Jasper; Wright, Margaret J; Zgaga, Lina; Porteous, David; Minelli, Alessandra; Palmer, Abraham A; Rujescu, Dan; Ciullo, Marina; Hayward, Caroline; Rudan, Igor; Metspalu, Andres; Kaprio, Jaakko; Deary, Ian J; Räikkönen, Katri; Wilson, James F; Keltikangas-Järvinen, Liisa; Bierut, Laura J; Hettema, John M; Grabe, Hans J; van Duijn, Cornelia M; Evans, David M; Schlessinger, David; Pedersen, Nancy L; Terracciano, Antonio; McGue, Matt; Penninx, Brenda W J H; Martin, Nicholas G; Boomsma, Dorret I

    2015-07-01

    Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63,000 participants (including MDD cases). To identify genetic variants associated with neuroticism by performing a meta-analysis of genome-wide association results based on 1000 Genomes imputation; to evaluate whether common genetic variants as assessed by single-nucleotide polymorphisms (SNPs) explain variation in neuroticism by estimating SNP-based heritability; and to examine whether SNPs that predict neuroticism also predict MDD. Genome-wide association meta-analysis of 30 cohorts with genome-wide genotype, personality, and MDD data from the Genetics of Personality Consortium. The study included 63,661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States, or Australia. Analyses were conducted between 2012 and 2014. Neuroticism scores harmonized across all 29 discovery cohorts by item response theory analysis, and clinical MDD case-control status in 2 of the cohorts. A genome-wide significant SNP was found on 3p14 in MAGI1 (rs35855737; P = 9.26 × 10-9 in the discovery meta-analysis). This association was not replicated (P = .32), but the SNP was still genome-wide significant in the meta-analysis of all 30 cohorts (P = 2.38 × 10-8). Common genetic variants explain 15% of the variance in neuroticism. Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts significantly predicted neuroticism (1.09 × 10-12 < P < .05) and MDD (4.02 × 10-9 < P < .05) in the 2 other cohorts. This study identifies a novel locus for neuroticism. The variant is located in a known gene that has been associated with

  12. Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response

    USDA-ARS?s Scientific Manuscript database

    Non-high-density lipoprotein cholesterol (NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) t...

  13. A genome-wide association search for type 2 diabetes genes in African Americans.

    PubMed

    Palmer, Nicholette D; McDonough, Caitrin W; Hicks, Pamela J; Roh, Bong H; Wing, Maria R; An, S Sandy; Hester, Jessica M; Cooke, Jessica N; Bostrom, Meredith A; Rudock, Megan E; Talbert, Matthew E; Lewis, Joshua P; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T; Sale, Michele M; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N; Ng, Maggie C Y; Langefeld, Carl D; Freedman, Barry I; Bowden, Donald W; Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur; Morris, Andrew P; Dina, Christian; Welch, Ryan P; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii S; Thorleifsson, Gudmar; McCulloch, Laura J; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming; Willer, Cristen J; Raychaudhuri, Soumya; McCarroll, Steve A; Langenberg, Claudia; Hofmann, Oliver M; Dupuis, Josée; Qi, Lu; Segrè, Ayellet V; van Hoek, Mandy; Navarro, Pau; Ardlie, Kristin; Balkau, Beverley; Benediktsson, Rafn; Bennett, Amanda J; Blagieva, Roza; Boerwinkle, Eric; Bonnycastle, Lori L; Boström, Kristina Bengtsson; Bravenboer, Bert; Bumpstead, Suzannah; Burtt, Noël P; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn; Couper, David J; Crawford, Gabe; Doney, Alex S F; Elliott, Katherine S; Elliott, Amanda L; Erdos, Michael R; Fox, Caroline S; Franklin, Christopher S; Ganser, Martha; Gieger, Christian; Grarup, Niels; Green, Todd; Griffin, Simon; Groves, Christopher J; Guiducci, Candace; Hadjadj, Samy; Hassanali, Neelam; Herder, Christian; Isomaa, Bo; Jackson, Anne U; Johnson, Paul R V; Jørgensen, Torben; Kao, Wen H L; Klopp, Norman; Kong, Augustine; Kraft, Peter; Kuusisto, Johanna; Lauritzen, Torsten; Li, Man; Lieverse, Aloysius; Lindgren, Cecilia M; Lyssenko, Valeriya; Marre, Michel; Meitinger, Thomas; Midthjell, Kristian; Morken, Mario A; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R; Payne, Felicity; Perry, John R B; Petersen, Ann-Kristin; Platou, Carl; Proença, Christine; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, N William; Robertson, Neil R; Rocheleau, Ghislain; Roden, Michael; Sampson, Michael J; Saxena, Richa; Shields, Beverley M; Shrader, Peter; Sigurdsson, Gunnar; Sparsø, Thomas; Strassburger, Klaus; Stringham, Heather M; Sun, Qi; Swift, Amy J; Thorand, Barbara; Tichet, Jean; Tuomi, Tiinamaija; van Dam, Rob M; van Haeften, Timon W; van Herpt, Thijs; van Vliet-Ostaptchouk, Jana V; Walters, G Bragi; Weedon, Michael N; Wijmenga, Cisca; Witteman, Jacqueline; Bergman, Richard N; Cauchi, Stephane; Collins, Francis S; Gloyn, Anna L; Gyllensten, Ulf; Hansen, Torben; Hide, Winston A; Hitman, Graham A; Hofman, Albert; Hunter, David J; Hveem, Kristian; Laakso, Markku; Mohlke, Karen L; Morris, Andrew D; Palmer, Colin N A; Pramstaller, Peter P; Rudan, Igor; Sijbrands, Eric; Stein, Lincoln D; Tuomilehto, Jaakko; Uitterlinden, Andre; Walker, Mark; Wareham, Nicholas J; Watanabe, Richard M; Abecasis, Goncalo R; Boehm, Bernhard O; Campbell, Harry; Daly, Mark J; Hattersley, Andrew T; Hu, Frank B; Meigs, James B; Pankow, James S; Pedersen, Oluf; Wichmann, H-Erich; Barroso, Inês; Florez, Jose C; Frayling, Timothy M; Groop, Leif; Sladek, Rob; Thorsteinsdottir, Unnur; Wilson, James F; Illig, Thomas; Froguel, Philippe; van Duijn, Cornelia M; Stefansson, Kari; Altshuler, David; Boehnke, Michael; McCarthy, Mark I; Soranzo, Nicole; Wheeler, Eleanor; Glazer, Nicole L; Bouatia-Naji, Nabila; Mägi, Reedik; Randall, Joshua; Johnson, Toby; Elliott, Paul; Rybin, Denis; Henneman, Peter; Dehghan, Abbas; Hottenga, Jouke Jan; Song, Kijoung; Goel, Anuj; Egan, Josephine M; Lajunen, Taina; Doney, Alex; Kanoni, Stavroula; Cavalcanti-Proença, Christine; Kumari, Meena; Timpson, Nicholas J; Zabena, Carina; Ingelsson, Erik; An, Ping; O'Connell, Jeffrey; Luan, Jian'an; Elliott, Amanda; McCarroll, Steven A; Roccasecca, Rosa Maria; Pattou, François; Sethupathy, Praveen; Ariyurek, Yavuz; Barter, Philip; Beilby, John P; Ben-Shlomo, Yoav; Bergmann, Sven; Bochud, Murielle; Bonnefond, Amélie; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Bumpstead, Suzannah J; Chen, Yii-Der Ida; Chines, Peter; Clarke, Robert; Coin, Lachlan J M; Cooper, Matthew N; Crisponi, Laura; Day, Ian N M; de Geus, Eco J C; Delplanque, Jerome; Fedson, Annette C; Fischer-Rosinsky, Antje; Forouhi, Nita G; Frants, Rune; Franzosi, Maria Grazia; Galan, Pilar; Goodarzi, Mark O; Graessler, Jürgen; Grundy, Scott; Gwilliam, Rhian; Hallmans, Göran; Hammond, Naomi; Han, Xijing; Hartikainen, Anna-Liisa; Hayward, Caroline; Heath, Simon C; Hercberg, Serge; Hicks, Andrew A; Hillman, David R; Hingorani, Aroon D; Hui, Jennie; Hung, Joe; Jula, Antti; Kaakinen, Marika; Kaprio, Jaakko; Kesaniemi, Y Antero; Kivimaki, Mika; Knight, Beatrice; Koskinen, Seppo; Kovacs, Peter; Kyvik, Kirsten Ohm; Lathrop, G Mark; Lawlor, Debbie A; Le Bacquer, Olivier; Lecoeur, Cécile; Li, Yun; Mahley, Robert; Mangino, Massimo; Manning, Alisa K; Martínez-Larrad, María Teresa; McAteer, Jarred B; McPherson, Ruth; Meisinger, Christa; Melzer, David; Meyre, David; Mitchell, Braxton D; Mukherjee, Sutapa; Naitza, Silvia; Neville, Matthew J; Oostra, Ben A; Orrù, Marco; Pakyz, Ruth; Paolisso, Giuseppe; Pattaro, Cristian; Pearson, Daniel; Peden, John F; Pedersen, Nancy L; Perola, Markus; Pfeiffer, Andreas F H; Pichler, Irene; Polasek, Ozren; Posthuma, Danielle; Potter, Simon C; Pouta, Anneli; Province, Michael A; Psaty, Bruce M; Rayner, Nigel W; Rice, Kenneth; Ripatti, Samuli; Rivadeneira, Fernando; Rolandsson, Olov; Sandbaek, Annelli; Sandhu, Manjinder; Sanna, Serena; Sayer, Avan Aihie; Scheet, Paul; Seedorf, Udo; Sharp, Stephen J; Shields, Beverley; Sijbrands, Eric J G; Silveira, Angela; Simpson, Laila; Singleton, Andrew; Smith, Nicholas L; Sovio, Ulla; Swift, Amy; Syddall, Holly; Syvänen, Ann-Christine; Tanaka, Toshiko; Tönjes, Anke; Uitterlinden, André G; van Dijk, Ko Willems; Varma, Dhiraj; Visvikis-Siest, Sophie; Vitart, Veronique; Vogelzangs, Nicole; Waeber, Gérard; Wagner, Peter J; Walley, Andrew; Ward, Kim L; Watkins, Hugh; Wild, Sarah H; Willemsen, Gonneke; Witteman, Jaqueline C M; Yarnell, John W G; Zelenika, Diana; Zethelius, Björn; Zhai, Guangju; Zhao, Jing Hua; Zillikens, M Carola; Borecki, Ingrid B; Loos, Ruth J F; Meneton, Pierre; Magnusson, Patrik K E; Nathan, David M; Williams, Gordon H; Silander, Kaisa; Salomaa, Veikko; Smith, George Davey; Bornstein, Stefan R; Schwarz, Peter; Spranger, Joachim; Karpe, Fredrik; Shuldiner, Alan R; Cooper, Cyrus; Dedoussis, George V; Serrano-Ríos, Manuel; Lind, Lars; Palmer, Lyle J; Franks, Paul W; Ebrahim, Shah; Marmot, Michael; Kao, W H Linda; Pramstaller, Peter Paul; Wright, Alan F; Stumvoll, Michael; Hamsten, Anders; Buchanan, Thomas A; Valle, Timo T; Rotter, Jerome I; Siscovick, David S; Penninx, Brenda W J H; Boomsma, Dorret I; Deloukas, Panos; Spector, Timothy D; Ferrucci, Luigi; Cao, Antonio; Scuteri, Angelo; Schlessinger, David; Uda, Manuela; Ruokonen, Aimo; Jarvelin, Marjo-Riitta; Waterworth, Dawn M; Vollenweider, Peter; Peltonen, Leena; Mooser, Vincent; Sladek, Robert

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.

  14. A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans

    PubMed Central

    Palmer, Nicholette D.; McDonough, Caitrin W.; Hicks, Pamela J.; Roh, Bong H.; Wing, Maria R.; An, S. Sandy; Hester, Jessica M.; Cooke, Jessica N.; Bostrom, Meredith A.; Rudock, Megan E.; Talbert, Matthew E.; Lewis, Joshua P.; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T.; Sale, Michele M.; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N.; Ng, Maggie C. Y.; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations. PMID:22238593

  15. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    PubMed

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  16. Genome-wide association studies identify four ER negative-specific breast cancer risk loci.

    PubMed

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van't; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Dos Santos Silva, Isabel; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Berg, David Van Den; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-Gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-04-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.

  17. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma.

    PubMed

    Khor, Chiea Chuen; Do, Tan; Jia, Hongyan; Nakano, Masakazu; George, Ronnie; Abu-Amero, Khaled; Duvesh, Roopam; Chen, Li Jia; Li, Zheng; Nongpiur, Monisha E; Perera, Shamira A; Qiao, Chunyan; Wong, Hon-Tym; Sakai, Hiroshi; Barbosa de Melo, Mônica; Lee, Mei-Chin; Chan, Anita S; Azhany, Yaakub; Dao, Thi Lam Huong; Ikeda, Yoko; Perez-Grossmann, Rodolfo A; Zarnowski, Tomasz; Day, Alexander C; Jonas, Jost B; Tam, Pancy O S; Tran, Tuan Anh; Ayub, Humaira; Akhtar, Farah; Micheal, Shazia; Chew, Paul T K; Aljasim, Leyla A; Dada, Tanuj; Luu, Tam Thi; Awadalla, Mona S; Kitnarong, Naris; Wanichwecharungruang, Boonsong; Aung, Yee Yee; Mohamed-Noor, Jelinar; Vijayan, Saravanan; Sarangapani, Sripriya; Husain, Rahat; Jap, Aliza; Baskaran, Mani; Goh, David; Su, Daniel H; Wang, Huaizhou; Yong, Vernon K; Yip, Leonard W; Trinh, Tuyet Bach; Makornwattana, Manchima; Nguyen, Thanh Thu; Leuenberger, Edgar U; Park, Ki-Ho; Wiyogo, Widya Artini; Kumar, Rajesh S; Tello, Celso; Kurimoto, Yasuo; Thapa, Suman S; Pathanapitoon, Kessara; Salmon, John F; Sohn, Yong Ho; Fea, Antonio; Ozaki, Mineo; Lai, Jimmy S M; Tantisevi, Visanee; Khaing, Chaw Chaw; Mizoguchi, Takanori; Nakano, Satoko; Kim, Chan-Yun; Tang, Guangxian; Fan, Sujie; Wu, Renyi; Meng, Hailin; Nguyen, Thi Thuy Giang; Tran, Tien Dat; Ueno, Morio; Martinez, Jose Maria; Ramli, Norlina; Aung, Yin Mon; Reyes, Rigo Daniel; Vernon, Stephen A; Fang, Seng Kheong; Xie, Zhicheng; Chen, Xiao Yin; Foo, Jia Nee; Sim, Kar Seng; Wong, Tina T; Quek, Desmond T; Venkatesh, Rengaraj; Kavitha, Srinivasan; Krishnadas, Subbiah R; Soumittra, Nagaswamy; Shantha, Balekudaru; Lim, Boon-Ang; Ogle, Jeanne; de Vasconcellos, José P C; Costa, Vital P; Abe, Ricardo Y; de Souza, Bruno B; Sng, Chelvin C; Aquino, Maria C; Kosior-Jarecka, Ewa; Fong, Guillermo Barreto; Tamanaja, Vania Castro; Fujita, Ricardo; Jiang, Yuzhen; Waseem, Naushin; Low, Sancy; Pham, Huan Nguyen; Al-Shahwan, Sami; Craven, E Randy; Khan, Muhammad Imran; Dada, Rrima; Mohanty, Kuldeep; Faiq, Muneeb A; Hewitt, Alex W; Burdon, Kathryn P; Gan, Eng Hui; Prutthipongsit, Anuwat; Patthanathamrongkasem, Thipnapa; Catacutan, Mary Ann T; Felarca, Irene R; Liao, Chona S; Rusmayani, Emma; Istiantoro, Vira Wardhana; Consolandi, Giulia; Pignata, Giulia; Lavia, Carlo; Rojanapongpun, Prin; Mangkornkanokpong, Lerprat; Chansangpetch, Sunee; Chan, Jonathan C H; Choy, Bonnie N K; Shum, Jennifer W H; Than, Hlaing May; Oo, Khin Thida; Han, Aye Thi; Yong, Victor H; Ng, Xiao-Yu; Goh, Shuang Ru; Chong, Yaan Fun; Hibberd, Martin L; Seielstad, Mark; Png, Eileen; Dunstan, Sarah J; Chau, Nguyen Van Vinh; Bei, Jinxin; Zeng, Yi Xin; Karkey, Abhilasha; Basnyat, Buddha; Pasutto, Francesca; Paoli, Daniela; Frezzotti, Paolo; Wang, Jie Jin; Mitchell, Paul; Fingert, John H; Allingham, R Rand; Hauser, Michael A; Lim, Soon Thye; Chew, Soo Hong; Ebstein, Richard P; Sakuntabhai, Anavaj; Park, Kyu Hyung; Ahn, Jeeyun; Boland, Greet; Snippe, Harm; Stead, Richard; Quino, Raquel; Zaw, Su Nyunt; Lukasik, Urszula; Shetty, Rohit; Zahari, Mimiwati; Bae, Hyoung Won; Oo, Nay Lin; Kubota, Toshiaki; Manassakorn, Anita; Ho, Wing Lau; Dallorto, Laura; Hwang, Young Hoon; Kiire, Christine A; Kuroda, Masako; Djamal, Zeiras Eka; Peregrino, Jovell Ian M; Ghosh, Arkasubhra; Jeoung, Jin Wook; Hoan, Tung S; Srisamran, Nuttamon; Sandragasu, Thayanithi; Set, Saw Htoo; Doan, Vi Huyen; Bhattacharya, Shomi S; Ho, Ching-Lin; Tan, Donald T; Sihota, Ramanjit; Loon, Seng-Chee; Mori, Kazuhiko; Kinoshita, Shigeru; Hollander, Anneke I den; Qamar, Raheel; Wang, Ya-Xing; Teo, Yik Y; Tai, E-Shyong; Hartleben-Matkin, Curt; Lozano-Giral, David; Saw, Seang Mei; Cheng, Ching-Yu; Zenteno, Juan C; Pang, Chi Pui; Bui, Huong T T; Hee, Owen; Craig, Jamie E; Edward, Deepak P; Yonahara, Michiko; Neto, Jamil Miguel; Guevara-Fujita, Maria L; Xu, Liang; Ritch, Robert; Liza-Sharmini, Ahmad Tajudin; Wong, Tien Y; Al-Obeidan, Saleh; Do, Nhu Hon; Sundaresan, Periasamy; Tham, Clement C; Foster, Paul J; Vijaya, Lingam; Tashiro, Kei; Vithana, Eranga N; Wang, Ningli; Aung, Tin

    2016-05-01

    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 × 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 × 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 × 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 × 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 × 10(-12)). We also confirmed significant association at three previously described loci (P < 5 × 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG.

  18. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy

    PubMed Central

    Kouri, Naomi; Ross, Owen A.; Dombroski, Beth; Younkin, Curtis S.; Serie, Daniel J.; Soto-Ortolaza, Alexandra; Baker, Matthew; Finch, Ni Cole A.; Yoon, Hyejin; Kim, Jungsu; Fujioka, Shinsuke; McLean, Catriona A.; Ghetti, Bernardino; Spina, Salvatore; Cantwell, Laura B.; Farlow, Martin R.; Grafman, Jordan; Huey, Edward D.; Ryung Han, Mi; Beecher, Sherry; Geller, Evan T.; Kretzschmar, Hans A.; Roeber, Sigrun; Gearing, Marla; Juncos, Jorge L.; Vonsattel, Jean Paul G.; Van Deerlin, Vivianna M.; Grossman, Murray; Hurtig, Howard I.; Gross, Rachel G.; Arnold, Steven E.; Trojanowski, John Q.; Lee, Virginia M.; Wenning, Gregor K.; White, Charles L.; Höglinger, Günter U.; Müller, Ulrich; Devlin, Bernie; Golbe, Lawrence I.; Crook, Julia; Parisi, Joseph E.; Boeve, Bradley F.; Josephs, Keith A.; Wszolek, Zbigniew K.; Uitti, Ryan J.; Graff-Radford, Neill R.; Litvan, Irene; Younkin, Steven G.; Wang, Li-San; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hakonarsen, Hakon; Schellenberg, Gerard D.; Dickson, Dennis W.

    2015-01-01

    Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10−12), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10−8), and 2p22 at SOS1 (rs963731; P=1.76 × 10−7). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10−7) and MAPT H1c (17q21; rs242557; P=7.91 × 10−6). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein). PMID:26077951

  19. Landscape genomics reveals altered genome wide diversity within revegetated stands of Eucalyptus microcarpa (Grey Box).

    PubMed

    Jordan, Rebecca; Dillon, Shannon K; Prober, Suzanne M; Hoffmann, Ary A

    2016-12-01

    In order to contribute to evolutionary resilience and adaptive potential in highly modified landscapes, revegetated areas should ideally reflect levels of genetic diversity within and across natural stands. Landscape genomic analyses enable such diversity patterns to be characterized at genome and chromosomal levels. Landscape-wide patterns of genomic diversity were assessed in Eucalyptus microcarpa, a dominant tree species widely used in revegetation in Southeastern Australia. Trees from small and large patches within large remnants, small isolated remnants and revegetation sites were assessed across the now highly fragmented distribution of this species using the DArTseq genomic approach. Genomic diversity was similar within all three types of remnant patches analysed, although often significantly but only slightly lower in revegetation sites compared with natural remnants. Differences in diversity between stand types varied across chromosomes. Genomic differentiation was higher between small, isolated remnants, and among revegetated sites compared with natural stands. We conclude that small remnants and revegetated sites of our E. microcarpa samples largely but not completely capture patterns in genomic diversity across the landscape. Genomic approaches provide a powerful tool for assessing restoration efforts across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Genome-wide genetic investigation of serological measures of common infections

    PubMed Central

    Rubicz, Rohina; Yolken, Robert; Drigalenko, Eugene; Carless, Melanie A; Dyer, Thomas D; Kent Jr, Jack; Curran, Joanne E; Johnson, Matthew P; Cole, Shelley A; Fowler, Sharon P; Arya, Rector; Puppala, Sobha; Almasy, Laura; Moses, Eric K; Kraig, Ellen; Duggirala, Ravindranath; Blangero, John; Leach, Charles T; Göring, Harald HH

    2015-01-01

    Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10−8). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels. PMID:25758998

  1. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene

    PubMed Central

    Rafnar, Thorunn; Vermeulen, Sita H.; Sulem, Patrick; Thorleifsson, Gudmar; Aben, Katja K.; Witjes, J. Alfred; Grotenhuis, Anne J.; Verhaegh, Gerald W.; Hulsbergen-van de Kaa, Christina A.; Besenbacher, Soren; Gudbjartsson, Daniel; Stacey, Simon N.; Gudmundsson, Julius; Johannsdottir, Hrefna; Bjarnason, Hjordis; Zanon, Carlo; Helgadottir, Hafdis; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Jonsson, Eirikur; Geirsson, Gudmundur; Nikulasson, Sigfus; Petursdottir, Vigdis; Bishop, D. Timothy; Chung-Sak, Sei; Choudhury, Ananya; Elliott, Faye; Barrett, Jennifer H.; Knowles, Margaret A.; de Verdier, Petra J.; Ryk, Charlotta; Lindblom, Annika; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Vineis, Paolo; Polidoro, Silvia; Guarrera, Simonetta; Sacerdote, Carlotta; Panadero, Angeles; Sanz-Velez, José I.; Sanchez, Manuel; Valdivia, Gabriel; Garcia-Prats, Maria D.; Hengstler, Jan G.; Selinski, Silvia; Gerullis, Holger; Ovsiannikov, Daniel; Khezri, Abdolaziz; Aminsharifi, Alireza; Malekzadeh, Mahyar; van den Berg, Leonard H.; Ophoff, Roel A.; Veldink, Jan H.; Zeegers, Maurice P.; Kellen, Eliane; Fostinelli, Jacopo; Andreoli, Daniele; Arici, Cecilia; Porru, Stefano; Buntinx, Frank; Ghaderi, Abbas; Golka, Klaus; Mayordomo, José I.; Matullo, Giuseppe; Kumar, Rajiv; Steineck, Gunnar; Kiltie, Anne E.; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; Kiemeney, Lambertus A.

    2011-01-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European GWAS. The discovery sample set consisted of 1631 cases and 3822 controls from the Netherlands and 603 cases and 37 781 controls from Iceland. For follow-up, we used 3790 cases and 7507 controls from 13 sample sets of European and Iranian ancestry. Based on the discovery analysis, we followed up signals in the urea transporter (UT) gene SLC14A. The strongest signal at this locus was represented by a SNP in intron 3, rs17674580, that reached genome-wide significance in the overall analysis of the discovery and follow-up groups: odds ratio = 1.17, P = 7.6 × 10−11. SLC14A1 codes for UTs that define the Kidd blood group and are crucial for the maintenance of a constant urea concentration gradient in the renal medulla and, through this, the kidney's ability to concentrate urine. It is speculated that rs17674580, or other sequence variants in LD with it, indirectly modifies UBC risk by affecting urine production. If confirmed, this would support the ‘urogenous contact hypothesis’ that urine production and voiding frequency modify the risk of UBC. PMID:21750109

  2. Genome-wide identification of bacterial plant colonization genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  3. Genome-wide identification of bacterial plant colonization genes

    DOE PAGES

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.; ...

    2017-09-22

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  4. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  5. Motif mismatches in microsatellites: insights from genome-wide investigation among 20 insect species.

    PubMed

    Behura, Susanta K; Severson, David W

    2015-02-01

    We present a detailed genome-wide comparative study of motif mismatches of microsatellites among 20 insect species representing five taxonomic orders. The results show that varying proportions (∼15-46%) of microsatellites identified in these species are imperfect in motif structure, and that they also vary in chromosomal distribution within genomes. It was observed that the genomic abundance of imperfect repeats is significantly associated with the length and number of motif mismatches of microsatellites. Furthermore, microsatellites with a higher number of mismatches tend to have lower abundance in the genome, suggesting that sequence heterogeneity of repeat motifs is a key determinant of genomic abundance of microsatellites. This relationship seems to be a general feature of microsatellites even in unrelated species such as yeast, roundworm, mouse and human. We provide a mechanistic explanation of the evolutionary link between motif heterogeneity and genomic abundance of microsatellites by examining the patterns of motif mismatches and allele sequences of single-nucleotide polymorphisms identified within microsatellite loci. Using Drosophila Reference Genetic Panel data, we further show that pattern of allelic variation modulates motif heterogeneity of microsatellites, and provide estimates of allele age of specific imperfect microsatellites found within protein-coding genes. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution

    PubMed Central

    Boueiz, Adel; Lutz, Sharon M.; Cho, Michael H.; Hersh, Craig P.; Bowler, Russell P.; Washko, George R.; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M.; Beaty, Terri H.; Coxson, Harvey O.; Crapo, James D.; Silverman, Edwin K.; Castaldi, Peter J.

    2017-01-01

    Rationale: Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe–predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. Objectives: To identify the genetic influences of emphysema distribution in non–alpha-1 antitrypsin–deficient smokers. Methods: A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism–, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. Measurements and Main Results: We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. Conclusions: This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings

  7. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution.

    PubMed

    Boueiz, Adel; Lutz, Sharon M; Cho, Michael H; Hersh, Craig P; Bowler, Russell P; Washko, George R; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M; Beaty, Terri H; Coxson, Harvey O; Crapo, James D; Silverman, Edwin K; Castaldi, Peter J; DeMeo, Dawn L

    2017-03-15

    Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe-predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. To identify the genetic influences of emphysema distribution in non-alpha-1 antitrypsin-deficient smokers. A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism-, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings may point to new biologic pathways on which to expand diagnostic and therapeutic

  8. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index.

    PubMed

    Wen, Wanqing; Zheng, Wei; Okada, Yukinori; Takeuchi, Fumihiko; Tabara, Yasuharu; Hwang, Joo-Yeon; Dorajoo, Rajkumar; Li, Huaixing; Tsai, Fuu-Jen; Yang, Xiaobo; He, Jiang; Wu, Ying; He, Meian; Zhang, Yi; Liang, Jun; Guo, Xiuqing; Sheu, Wayne Huey-Herng; Delahanty, Ryan; Guo, Xingyi; Kubo, Michiaki; Yamamoto, Ken; Ohkubo, Takayoshi; Go, Min Jin; Liu, Jian Jun; Gan, Wei; Chen, Ching-Chu; Gao, Yong; Li, Shengxu; Lee, Nanette R; Wu, Chen; Zhou, Xueya; Song, Huaidong; Yao, Jie; Lee, I-Te; Long, Jirong; Tsunoda, Tatsuhiko; Akiyama, Koichi; Takashima, Naoyuki; Cho, Yoon Shin; Ong, Rick Th; Lu, Ling; Chen, Chien-Hsiun; Tan, Aihua; Rice, Treva K; Adair, Linda S; Gui, Lixuan; Allison, Matthew; Lee, Wen-Jane; Cai, Qiuyin; Isomura, Minoru; Umemura, Satoshi; Kim, Young Jin; Seielstad, Mark; Hixson, James; Xiang, Yong-Bing; Isono, Masato; Kim, Bong-Jo; Sim, Xueling; Lu, Wei; Nabika, Toru; Lee, Juyoung; Lim, Wei-Yen; Gao, Yu-Tang; Takayanagi, Ryoichi; Kang, Dae-Hee; Wong, Tien Yin; Hsiung, Chao Agnes; Wu, I-Chien; Juang, Jyh-Ming Jimmy; Shi, Jiajun; Choi, Bo Youl; Aung, Tin; Hu, Frank; Kim, Mi Kyung; Lim, Wei Yen; Wang, Tzung-Dao; Shin, Min-Ho; Lee, Jeannette; Ji, Bu-Tian; Lee, Young-Hoon; Young, Terri L; Shin, Dong Hoon; Chun, Byung-Yeol; Cho, Myeong-Chan; Han, Bok-Ghee; Hwu, Chii-Min; Assimes, Themistocles L; Absher, Devin; Yan, Xiaofei; Kim, Eric; Kuo, Jane Z; Kwon, Soonil; Taylor, Kent D; Chen, Yii-Der I; Rotter, Jerome I; Qi, Lu; Zhu, Dingliang; Wu, Tangchun; Mohlke, Karen L; Gu, Dongfeng; Mo, Zengnan; Wu, Jer-Yuarn; Lin, Xu; Miki, Tetsuro; Tai, E Shyong; Lee, Jong-Young; Kato, Norihiro; Shu, Xiao-Ou; Tanaka, Toshihiro

    2014-10-15

    Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index (BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a meta-analysis of associations between BMI and ∼2.5 million genotyped or imputed single nucleotide polymorphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among 7488-47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the KCNQ1 (rs2237892, P = 9.29 × 10(-13)), ALDH2/MYL2 (rs671, P = 3.40 × 10(-11); rs12229654, P = 4.56 × 10(-9)), ITIH4 (rs2535633, P = 1.77 × 10(-10)) and NT5C2 (rs11191580, P = 3.83 × 10(-8)) genes. The association of BMI with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51 BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at the genome-wide significance level (P < 5.0 × 10(-8)) and an additional 14 at P < 1.0 × 10(-3) with the same direction of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis of obesity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    PubMed Central

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  10. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    PubMed

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  11. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma

    PubMed Central

    Nongpiur, Monisha E; George, Ronnie; Chen, Li-Jia; Do, Tan; Abu-Amero, Khaled; Huang, Chor Kai; Low, Sancy; Tajudin, Liza-Sharmini A; Perera, Shamira A; Cheng, Ching-Yu; Xu, Liang; Jia, Hongyan; Ho, Ching-Lin; Sim, Kar Seng; Wu, Ren-Yi; Tham, Clement C Y; Chew, Paul T K; Su, Daniel H; Oen, Francis T; Sarangapani, Sripriya; Soumittra, Nagaswamy; Osman, Essam A; Wong, Hon-Tym; Tang, Guangxian; Fan, Sujie; Meng, Hailin; Huong, Dao T L; Wang, Hua; Feng, Bo; Baskaran, Mani; Shantha, Balekudaru; Ramprasad, Vedam L; Kumaramanickavel, Govindasamy; Iyengar, Sudha K; How, Alicia C; Lee, Kelvin Y; Sivakumaran, Theru A; Yong, Victor H K; Ting, Serena M L; Li, Yang; Wang, Ya-Xing; Tay, Wan-Ting; Sim, Xueling; Lavanya, Raghavan; Cornes, Belinda K; Zheng, Ying-Feng; Wong, Tina T; Loon, Seng-Chee; Yong, Vernon K Y; Waseem, Naushin; Yaakub, Azhany; Chia, Kee-Seng; Allingham, R Rand; Hauser, Michael A; Lam, Dennis S C; Hibberd, Martin L; Bhattacharya, Shomi S; Zhang, Mingzhi; Teo, Yik Ying; Tan, Donald T; Jonas, Jost B; Tai, E-Shyong; Saw, Seang-Mei; Hon, Do Nhu; Al-Obeidan, Saleh A; Liu, Jianjun; Chau, Tran Nguyen Bich; Simmons, Cameron P; Bei, Jin-Xin; Zeng, Yi-Xin; Foster, Paul J; Vijaya, Lingam; Wong, Tien-Yin; Pang, Chi-Pui

    2014-01-01

    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study including 1,854 PACG cases and 9,608 controls across 5 sample collections in Asia. Replication experiments were conducted in 1,917 PACG cases and 8,943 controls collected from a further 6 sample collections. We report significant associations at three new loci: rs11024102 in PLEKHA7 (per-allele odds ratio (OR) = 1.22; P = 5.33 × 10−12), rs3753841 in COL11A1 (per-allele OR = 1.20; P = 9.22 × 10−10) and rs1015213 located between PCMTD1 and ST18 on chromosome 8q (per-allele OR = 1.50; P = 3.29 × 10−9). Our findings, accumulated across these independent worldwide collections, suggest possible mechanisms explaining the pathogenesis of PACG. PMID:22922875

  12. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    PubMed Central

    Minster, Ryan L.; Sanders, Jason L.; Singh, Jatinder; Kammerer, Candace M.; Barmada, M. Michael; Matteini, Amy M.; Zhang, Qunyuan; Wojczynski, Mary K.; Daw, E. Warwick; Brody, Jennifer A.; Arnold, Alice M.; Lunetta, Kathryn L.; Murabito, Joanne M.; Christensen, Kaare; Perls, Thomas T.; Province, Michael A.

    2015-01-01

    Background. The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. Methods. We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts. Results. There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10− 6) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24–p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest. Conclusions. ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity. PMID:25758594

  13. A Genome-Wide Investigation of Autozygosity and Breast Cancer Risk

    DTIC Science & Technology

    2011-07-01

    cases than in controls, using logistic regression methods. Using genome-wide SNP data (525,000 SNPs) on 1,647 non-Hispanic white, early-onset...premenopausal breast cancer cases and 1,556 matched controls we identified over 65,000 individual RoHs and 423 genomic regions harbor RoHs for at least 10...we hypothesize that germline autozygosity is more common in breast cancer cases than in controls. More specifically, we hypothesize that there are

  14. Educational Attainment: A Genome Wide Association Study in 9538 Australians

    PubMed Central

    Martin, Nicolas W.; Medland, Sarah E.; Verweij, Karin J. H.; Lee, S. Hong; Nyholt, Dale R.; Madden, Pamela A.; Heath, Andrew C.; Montgomery, Grant W.; Wright, Margaret J.; Martin, Nicholas G.

    2011-01-01

    Background Correlations between Educational Attainment (EA) and measures of cognitive performance are as high as 0.8. This makes EA an attractive alternative phenotype for studies wishing to map genes affecting cognition due to the ease of collecting EA data compared to other cognitive phenotypes such as IQ. Methodology In an Australian family sample of 9538 individuals we performed a genome-wide association scan (GWAS) using the imputed genotypes of ∼2.4 million single nucleotide polymorphisms (SNP) for a 6-point scale measure of EA. Top hits were checked for replication in an independent sample of 968 individuals. A gene-based test of association was then applied to the GWAS results. Additionally we performed prediction analyses using the GWAS results from our discovery sample to assess the percentage of EA and full scale IQ variance explained by the predicted scores. Results The best SNP fell short of having a genome-wide significant p-value (p = 9.77×10−7). In our independent replication sample six SNPs among the top 50 hits pruned for linkage disequilibrium (r2<0.8) had a p-value<0.05 but only one of these SNPs survived correction for multiple testing - rs7106258 (p = 9.7*10−4) located in an intergenic region of chromosome 11q14.1. The gene based test results were non-significant and our prediction analyses show that the predicted scores explained little variance in EA in our replication sample. Conclusion While we have identified a polymorphism chromosome 11q14.1 associated with EA, further replication is warranted. Overall, the absence of genome-wide significant p-values in our large discovery sample confirmed the high polygenic architecture of EA. Only the assembly of large samples or meta-analytic efforts will be able to assess the implication of common DNA polymorphisms in the etiology of EA. PMID:21694764

  15. Genome-wide association analysis of pain severity in dysmenorrhea identifies association at chromosome 1p13.2, near the nerve growth factor locus.

    PubMed

    Jones, Amy V; Hockley, James R F; Hyde, Craig; Gorman, Donal; Sredic-Rhodes, Ana; Bilsland, James; McMurray, Gordon; Furlotte, Nicholas A; Hu, Youna; Hinds, David A; Cox, Peter J; Scollen, Serena

    2016-11-01

    Dysmenorrhea is a common chronic pelvic pain syndrome affecting women of childbearing potential. Family studies suggest that genetic background influences the severity of dysmenorrhea, but genetic predisposition and molecular mechanisms underlying dysmenorrhea are not understood. In this study, we conduct the first genome-wide association study to identify genetic factors associated with dysmenorrhea pain severity. A cohort of females of European descent (n = 11,891) aged 18 to 45 years rated their average dysmenorrhea pain severity. We used a linear regression model adjusting for age and body mass index, identifying one genome-wide significant (P < 5 × 10) association (rs7523086, P = 4.1 × 10, effect size 0.1 [95% confidence interval, 0.074-0.126]). This single nucleotide polymorphism is colocalising with NGF, encoding nerve growth factor. The presence of one risk allele corresponds to a predicted 0.1-point increase in pain intensity on a 4-point ordinal pain scale. The putative effects on NGF function and/or expression remain unknown. However, genetic variation colocalises with active epigenetic marks in fat and ovary tissues, and expression levels in aorta tissue of a noncoding RNA flanking NGF correlate. Participants reporting extreme dysmenorrhea pain were more likely to report being positive for endometriosis, polycystic ovarian syndrome, depression, and other psychiatric disorders. Our results indicate that dysmenorrhea pain severity is partly genetically determined. NGF already has an established role in chronic pain disorders, and our findings suggest that NGF may be an important mediator for gynaecological/pelvic pain in the viscera.

  16. Genome-wide association analysis of pain severity in dysmenorrhea identifies association at chromosome 1p13.2, near the nerve growth factor locus

    PubMed Central

    Jones, Amy V.; Hockley, James R.F.; Hyde, Craig; Gorman, Donal; Sredic-Rhodes, Ana; Bilsland, James; McMurray, Gordon; Furlotte, Nicholas A.; Hu, Youna; Hinds, David A.; Cox, Peter J.; Scollen, Serena

    2016-01-01

    Abstract Dysmenorrhea is a common chronic pelvic pain syndrome affecting women of childbearing potential. Family studies suggest that genetic background influences the severity of dysmenorrhea, but genetic predisposition and molecular mechanisms underlying dysmenorrhea are not understood. In this study, we conduct the first genome-wide association study to identify genetic factors associated with dysmenorrhea pain severity. A cohort of females of European descent (n = 11,891) aged 18 to 45 years rated their average dysmenorrhea pain severity. We used a linear regression model adjusting for age and body mass index, identifying one genome-wide significant (P < 5 × 10−8) association (rs7523086, P = 4.1 × 10−14, effect size 0.1 [95% confidence interval, 0.074–0.126]). This single nucleotide polymorphism is colocalising with NGF, encoding nerve growth factor. The presence of one risk allele corresponds to a predicted 0.1-point increase in pain intensity on a 4-point ordinal pain scale. The putative effects on NGF function and/or expression remain unknown. However, genetic variation colocalises with active epigenetic marks in fat and ovary tissues, and expression levels in aorta tissue of a noncoding RNA flanking NGF correlate. Participants reporting extreme dysmenorrhea pain were more likely to report being positive for endometriosis, polycystic ovarian syndrome, depression, and other psychiatric disorders. Our results indicate that dysmenorrhea pain severity is partly genetically determined. NGF already has an established role in chronic pain disorders, and our findings suggest that NGF may be an important mediator for gynaecological/pelvic pain in the viscera. PMID:27454463

  17. Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

    PubMed Central

    Nalls, Michael A.; Martinez, Maria; Schulte, Claudia; Holmans, Peter; Gasser, Thomas; Hardy, John; Singleton, Andrew B.; Wood, Nicholas W.; Brice, Alexis; Heutink, Peter; Williams, Nigel; Morris, Huw R.

    2012-01-01

    Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity. We carried out genome wide SNP genotyping to look for extended runs of homozygosity (ROHs) in 1,445 EOPD cases and 6,987 controls. Logistic regression analyses showed an increased level of genomic homozygosity in EOPD cases compared to controls. These differences are larger for ROH of 9 Mb and above, where there is a more than three-fold increase in the proportion of cases carrying a ROH. These differences are not explained by occult recessive mutations at existing loci. Controlling for genome wide homozygosity in logistic regression analyses increased the differences between cases and controls, indicating that in EOPD cases ROHs do not simply relate to genome wide measures of inbreeding. Homozygosity at a locus on chromosome19p13.3 was identified as being more common in EOPD cases as compared to controls. Sequencing analysis of genes and predicted transcripts within this locus failed to identify a novel mutation causing EOPD in our cohort. There is an increased rate of genome wide homozygosity in EOPD, as measured by an increase in ROHs. These ROHs are a signature of inbreeding and do not necessarily harbour disease-causing genetic variants. Although there might be other regions of interest apart from chromosome 19p13.3, we lack the power to detect them with this analysis. PMID:22427796

  18. SvABA: genome-wide detection of structural variants and indels by local assembly.

    PubMed

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah F; O'Rourke, Ryan; Sharpe, Ted; Stewart, Chip; Schumacher, Steve; Li, Yilong; Weischenfeldt, Joachim; Yao, Xiaotong; Nusbaum, Chad; Campbell, Peter; Getz, Gad; Meyerson, Matthew; Zhang, Cheng-Zhong; Imielinski, Marcin; Beroukhim, Rameen

    2018-04-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs. © 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction

    PubMed Central

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors’ broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency. PMID:26305933

  20. Detecting microsatellites within genomes: significant variation among algorithms.

    PubMed

    Leclercq, Sébastien; Rivals, Eric; Jarne, Philippe

    2007-04-18

    Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker). Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif. Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions.

  1. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    PubMed Central

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson LS; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances MK; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando

    2012-01-01

    Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility. PMID:22504420

  2. Exploiting the Proteome to Improve the Genome-Wide Genetic Analysis of Epistasis in Common Human Diseases

    PubMed Central

    Pattin, Kristine A.; Moore, Jason H.

    2009-01-01

    One of the central goals of human genetics is the identification of loci with alleles or genotypes that confer increased susceptibility. The availability of dense maps of single-nucleotide polymorphisms (SNPs) along with high-throughput genotyping technologies has set the stage for routine genome-wide association studies that are expected to significantly improve our ability to identify susceptibility loci. Before this promise can be realized, there are some significant challenges that need to be addressed. We address here the challenge of detecting epistasis or gene-gene interactions in genome-wide association studies. Discovering epistatic interactions in high dimensional datasets remains a challenge due to the computational complexity resulting from the analysis of all possible combinations of SNPs. One potential way to overcome the computational burden of a genome-wide epistasis analysis would be to devise a logical way to prioritize the many SNPs in a dataset so that the data may be analyzed more efficiently and yet still retain important biological information. One of the strongest demonstrations of the functional relationship between genes is protein-protein interaction. Thus, it is plausible that the expert knowledge extracted from protein interaction databases may allow for a more efficient analysis of genome-wide studies as well as facilitate the biological interpretation of the data. In this review we will discuss the challenges of detecting epistasis in genome-wide genetic studies and the means by which we propose to apply expert knowledge extracted from protein interaction databases to facilitate this process. We explore some of the fundamentals of protein interactions and the databases that are publicly available. PMID:18551320

  3. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    PubMed

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  4. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus.

    PubMed

    Müller, Bárbara S F; Neves, Leandro G; de Almeida Filho, Janeo E; Resende, Márcio F R; Muñoz, Patricio R; Dos Santos, Paulo E T; Filho, Estefano Paludzyszyn; Kirst, Matias; Grattapaglia, Dario

    2017-07-11

    The advent of high-throughput genotyping technologies coupled to genomic prediction methods established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the development of germplasm adapted to environmental stresses. Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the infinitesimal model. Genomic prediction models using ~5000-10,000 SNPs provided predictive abilities equivalent to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD) was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita, illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in this study. This study provides further experimental data supporting positive prospects of using genome-wide data to

  5. A Genome-Wide Association Study Identifies GRK5 and RASGRP1 as Type 2 Diabetes Loci in Chinese Hans

    PubMed Central

    Li, Huaixing; Gan, Wei; Lu, Ling; Dong, Xiao; Han, Xueyao; Hu, Cheng; Yang, Zhen; Sun, Liang; Bao, Wei; Li, Pengtao; He, Meian; Sun, Liangdan; Wang, Yiqin; Zhu, Jingwen; Ning, Qianqian; Tang, Yong; Zhang, Rong; Wen, Jie; Wang, Di; Zhu, Xilin; Guo, Kunquan; Zuo, Xianbo; Guo, Xiaohui; Yang, Handong; Zhou, Xianghai; Zhang, Xuejun; Qi, Lu; Loos, Ruth J.F.; Hu, Frank B.; Wu, Tangchun; Liu, Ying; Liu, Liegang; Yang, Ze; Hu, Renming; Jia, Weiping; Ji, Linong; Li, Yixue; Lin, Xu

    2013-01-01

    Substantial progress has been made in identification of type 2 diabetes (T2D) risk loci in the past few years, but our understanding of the genetic basis of T2D in ethnically diverse populations remains limited. We performed a genome-wide association study and a replication study in Chinese Hans comprising 8,569 T2D case subjects and 8,923 control subjects in total, from which 10 single nucleotide polymorphisms were selected for further follow-up in a de novo replication sample of 3,410 T2D case and 3,412 control subjects and an in silico replication sample of 6,952 T2D case and 11,865 control subjects. Besides confirming seven established T2D loci (CDKAL1, CDKN2A/B, KCNQ1, CDC123, GLIS3, HNF1B, and DUSP9) at genome-wide significance, we identified two novel T2D loci, including G-protein–coupled receptor kinase 5 (GRK5) (rs10886471: P = 7.1 × 10−9) and RASGRP1 (rs7403531: P = 3.9 × 10−9), of which the association signal at GRK5 seems to be specific to East Asians. In nondiabetic individuals, the T2D risk-increasing allele of RASGRP1-rs7403531 was also associated with higher HbA1c and lower homeostasis model assessment of β-cell function (P = 0.03 and 0.0209, respectively), whereas the T2D risk-increasing allele of GRK5-rs10886471 was also associated with higher fasting insulin (P = 0.0169) but not with fasting glucose. Our findings not only provide new insights into the pathophysiology of T2D, but may also shed light on the ethnic differences in T2D susceptibility. PMID:22961080

  6. Genome-Wide Association Analysis to Identify Loci for Milk Yield in Gyr Breed

    USDA-ARS?s Scientific Manuscript database

    A genome scan was conducted to identify QTL affecting milk yield in a Brazilian Gyr population of progeny test bulls (N=319). Data used in this study was derived from traditional genetic evaluation records computed by the Embrapa Dairy Cattleand released in May/2009 (http://www.cnpgl.embrapa.br/nova...

  7. Polygenic risk score, genome-wide association, and gene set analyses of cognitive domain deficits in schizophrenia.

    PubMed

    Nakahara, Soichiro; Medland, Sarah; Turner, Jessica A; Calhoun, Vince D; Lim, Kelvin O; Mueller, Bryon A; Bustillo, Juan R; O'Leary, Daniel S; Vaidya, Jatin G; McEwen, Sarah; Voyvodic, James; Belger, Aysenil; Mathalon, Daniel H; Ford, Judith M; Guffanti, Guia; Macciardi, Fabio; Potkin, Steven G; van Erp, Theo G M

    2018-06-12

    This study assessed genetic contributions to six cognitive domains, identified by the MATRICS Cognitive Consensus Battery as relevant for schizophrenia, cognition-enhancing, clinical trials. Psychiatric Genomics Consortium Schizophrenia polygenic risk scores showed significant negative correlations with each cognitive domain. Genome-wide association analyses identified loci associated with attention/vigilance (rs830786 within HNF4G), verbal memory (rs67017972 near NDUFS4), and reasoning/problem solving (rs76872642 within HDAC9). Gene set analysis identified unique and shared genes across cognitive domains. These findings suggest involvement of common and unique mechanisms across cognitive domains and may contribute to the discovery of new therapeutic targets to treat cognitive deficits in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Genome-Wide Association Study of Depressive Symptoms

    PubMed Central

    Cornelis, Marilyn C.; Amin, Najaf; Bakshis, Erin; Baumert, Jens; Ding, Jingzhong; Liu, Yongmei; Marciante, Kristin; Meirelles, Osorio; Nalls, Michael A.; Sun, Yan V.; Vogelzangs, Nicole; Yu, Lei; Bandinelli, Stefania; Benjamin, Emelia J.; Bennett, David A.; Boomsma, Dorret; Cannas, Alessandra; Coker, Laura H.; de Geus, Eco; De Jager, Philip L.; Diez-Roux, Ana V.; Purcell, Shaun; Hu, Frank B.; Rimma, Eric B.; Hunter, David J.; Jensen, Majken K.; Curhan, Gary; Rice, Kenneth; Penman, Alan D.; Rotter, Jerome I.; Sotoodehnia, Nona; Emeny, Rebecca; Eriksson, Johan G.; Evans, Denis A.; Ferrucci, Luigi; Fornage, Myriam; Gudnason, Vilmundur; Hofman, Albert; Illig, Thomas; Kardia, Sharon; Kelly-Hayes, Margaret; Koenen, Karestan; Kraft, Peter; Kuningas, Maris; Massaro, Joseph M.; Melzer, David; Mulas, Antonella; Mulder, Cornelis L.; Murray, Anna; Oostra, Ben A.; Palotie, Aarno; Penninx, Brenda; Petersmann, Astrid; Pilling, Luke C.; Psaty, Bruce; Rawal, Rajesh; Reiman, Eric M.; Schulz, Andrea; Shulman, Joshua M.; Singleton, Andrew B.; Smith, Albert V.; Sutin, Angelina R.; Uitterlinden, André G.; Völzke, Henry; Widen, Elisabeth; Yaffe, Kristine; Zonderman, Alan B.; Cucca, Francesco; Harris, Tamara; Ladwig, Karl-Heinz; Llewellyn, David J.; Räikkönen, Katri; Tanaka, Toshiko

    2013-01-01

    Background Depression is a heritable trait that exists on a continuum of varying severity and duration. Yet, the search for genetic variants associated with depression has had few successes. We exploit the entire continuum of depression to find common variants for depressive symptoms. Methods In this genome-wide association study, we combined the results of 17 population-based studies assessing depressive symptoms with the Center for Epidemiological Studies Depression Scale. Replication of the independent top hits (p < 1 × 10−5) was performed in five studies assessing depressive symptoms with other instruments. In addition, we performed a combined meta-analysis of all 22 discovery and replication studies. Results The discovery sample comprised 34,549 individuals (mean age of 66.5) and no loci reached genome-wide significance (lowest p = 1.05 × 10−7). Seven independent single nucleotide polymorphisms were considered for replication. In the replication set (n = 16,709), we found suggestive association of one single nucleotide polymorphism with depressive symptoms (rs161645, 5q21, p = 9.19 × 10−3). This 5q21 region reached genome-wide significance (p = 4.78 × 10−8) in the overall meta-analysis combining discovery and replication studies (n = 51,258). Conclusions The results suggest that only a large sample comprising more than 50,000 subjects may be sufficiently powered to detect genes for depressive symptoms. PMID:23290196

  9. Alzheimer Disease Pathology in Cognitively Healthy Elderly:A Genome-wide Study

    PubMed Central

    Kramer, Patricia L; Xu, Haiyan; Woltjer, Randall L; Westaway, Shawn K; Clark, David; Erten-Lyons, Deniz; Kaye, Jeffrey A; Welsh-Bohmer, Kathleen A; Troncoso, Juan C; Markesbery, William R; Petersen, Ronald C; Turner, R Scott; Kukull, Walter A; Bennett, David A; DouglasGalasko; Morris, John C; Ott, Jurg

    2010-01-01

    Many elderly individuals remain dementia-free throughout their life. However, some of these individuals exhibit Alzheimer disease neuropathology on autopsy, evidenced by neurofibrillary tangles (NFTs) in AD-specific brain regions. We conducted a genome-wide association study to identify genetic mechanisms that distinguish non-demented elderly with a heavy NFT burden from those with a low NFT burden. The study included 344 non-demented subjects with autopsy (201 subjects with low and 143 with high NFT levels). Both a genotype test, using logistic regression, and an allele test provided genome-wide significant evidence that variants in the RELNgene are associated with neuropathology in the context of cognitive health. Immunohistochemical data for reelin expression in AD-related brain regions added support for these findings. Reelin signaling pathways modulate phosphorylation of tau, the major component of NFTs, either directly or through β-amyloid pathways that influence tau phosphorylation. Our findings suggest that up-regulation of reelin may be a compensatory response to tau-related or beta-amyloid stress associated with AD even prior to the onset of dementia. PMID:20452100

  10. Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren’s Disease

    PubMed Central

    Becker, Kerstin; Siegert, Sabine; Toliat, Mohammad Reza; Du, Juanjiangmeng; Casper, Ramona; Dolmans, Guido H.; Werker, Paul M.; Tinschert, Sigrid; Franke, Andre; Gieger, Christian; Strauch, Konstantin; Nothnagel, Michael; Nürnberg, Peter; Hennies, Hans Christian

    2016-01-01

    Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease. PMID:27467239

  11. A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets.

    PubMed

    Adamia, Sophia; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bar-Natan, Michal; Pevzner, Samuel; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Burke, John; Galinsky, Ilene; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Stone, Richard; Griffin, James D

    2014-03-01

    Despite new treatments, acute myeloid leukemia (AML) remains an incurable disease. More effective drug design requires an expanded view of the molecular complexity that underlies AML. Alternative splicing of RNA is used by normal cells to generate protein diversity. Growing evidence indicates that aberrant splicing of genes plays a key role in cancer. We investigated genome-wide splicing abnormalities in AML and based on these abnormalities, we aimed to identify novel potential biomarkers and therapeutic targets. We used genome-wide alternative splicing screening to investigate alternative splicing abnormalities in two independent AML patient cohorts [Dana-Farber Cancer Institute (DFCI) (Boston, MA) and University Hospital de Nantes (UHN) (Nantes, France)] and normal donors. Selected splicing events were confirmed through cloning and sequencing analysis, and than validated in 193 patients with AML. Our results show that approximately 29% of expressed genes genome-wide were differentially and recurrently spliced in patients with AML compared with normal donors bone marrow CD34(+) cells. Results were reproducible in two independent AML cohorts. In both cohorts, annotation analyses indicated similar proportions of differentially spliced genes encoding several oncogenes, tumor suppressor proteins, splicing factors, and heterogeneous-nuclear-ribonucleoproteins, proteins involved in apoptosis, cell proliferation, and spliceosome assembly. Our findings are consistent with reports for other malignances and indicate that AML-specific aberrations in splicing mechanisms are a hallmark of AML pathogenesis. Overall, our results suggest that aberrant splicing is a common characteristic for AML. Our findings also suggest that splice variant transcripts that are the result of splicing aberrations create novel disease markers and provide potential targets for small molecules or antibody therapeutics for this disease. ©2013 AACR

  12. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus

    PubMed Central

    Lipovsky, Alex; Popa, Andreea; Pimienta, Genaro; Wyler, Michael; Bhan, Ashima; Kuruvilla, Leena; Guie, Marie-Aude; Poffenberger, Adrian C.; Nelson, Christian D. S.; Atwood, Walter J.; DiMaio, Daniel

    2013-01-01

    Despite major advances in our understanding of many aspects of human papillomavirus (HPV) biology, HPV entry is poorly understood. To identify cellular genes required for HPV entry, we conducted a genome-wide screen for siRNAs that inhibited infection of HeLa cells by HPV16 pseudovirus. Many retrograde transport factors were required for efficient infection, including multiple subunits of the retromer, which initiates retrograde transport from the endosome to the trans-Golgi network (TGN). The retromer has not been previously implicated in virus entry. Furthermore, HPV16 capsid proteins arrive in the TGN/Golgi in a retromer-dependent fashion during entry, and incoming HPV proteins form a stable complex with retromer subunits. We propose that HPV16 directly engages the retromer at the early or late endosome and traffics to the TGN/Golgi via the retrograde pathway during cell entry. These results provide important insights into HPV entry, identify numerous potential antiviral targets, and suggest that the role of the retromer in infection by other viruses should be assessed. PMID:23569269

  13. Genome-wide linkage analysis of congenital heart defects using MOD score analysis identifies two novel loci

    PubMed Central

    2013-01-01

    Background Congenital heart defects (CHD) is the most common cause of death from a congenital structure abnormality in newborns and is often associated with fetal loss. There are many types of CHD. Human genetic studies have identified genes that are responsible for the inheritance of a particular type of CHD and for some types of CHD previously thought to be sporadic. However, occasionally different members of the same family might have anatomically distinct defects — for instance, one member with atrial septal defect, one with tetralogy of Fallot, and one with ventricular septal defect. Our objective is to identify susceptibility loci for CHD in families affected by distinct defects. The occurrence of these apparently discordant clinical phenotypes within one family might hint at a genetic framework common to most types of CHD. Results We performed a genome-wide linkage analysis using MOD score analysis in families with diverse CHD. Significant linkage was obtained in two regions, at chromosome 15 (15q26.3, Pempirical = 0.0004) and at chromosome 18 (18q21.2, Pempirical = 0.0005). Conclusions In these two novel regions four candidate genes are located: SELS, SNRPA1, and PCSK6 on 15q26.3, and TCF4 on 18q21.2. The new loci reported here have not previously been described in connection with CHD. Although further studies in other cohorts are needed to confirm these findings, the results presented here together with recent insight into how the heart normally develops will improve the understanding of CHD. PMID:23705960

  14. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer.

    PubMed

    Wu, Lang; Shi, Wei; Long, Jirong; Guo, Xingyi; Michailidou, Kyriaki; Beesley, Jonathan; Bolla, Manjeet K; Shu, Xiao-Ou; Lu, Yingchang; Cai, Qiuyin; Al-Ejeh, Fares; Rozali, Esdy; Wang, Qin; Dennis, Joe; Li, Bingshan; Zeng, Chenjie; Feng, Helian; Gusev, Alexander; Barfield, Richard T; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Aronson, Kristan J; Auer, Paul L; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W; Benitez, Javier; Bermisheva, Marina; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Brauch, Hiltrud; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brucker, Sara Y; Burwinkel, Barbara; Caldés, Trinidad; Canzian, Federico; Carter, Brian D; Castelao, J Esteban; Chang-Claude, Jenny; Chen, Xiaoqing; Cheng, Ting-Yuan David; Christiansen, Hans; Clarke, Christine L; Collée, Margriet; Cornelissen, Sten; Couch, Fergus J; Cox, David; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Devilee, Peter; Doheny, Kimberly F; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Dwek, Miriam; Eccles, Diana M; Eilber, Ursula; Eliassen, A Heather; Engel, Christoph; Eriksson, Mikael; Fachal, Laura; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gabrielson, Marike; Gago-Dominguez, Manuela; Gapstur, Susan M; García-Closas, Montserrat; Gaudet, Mia M; Ghoussaini, Maya; Giles, Graham G; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Guénel, Pascal; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hall, Per; Hallberg, Emily; Hamann, Ute; Harrington, Patricia; Hein, Alexander; Hicks, Belynda; Hillemanns, Peter; Hollestelle, Antoinette; Hoover, Robert N; Hopper, John L; Huang, Guanmengqian; Humphreys, Keith; Hunter, David J; Jakubowska, Anna; Janni, Wolfgang; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael E; Jung, Audrey; Kaaks, Rudolf; Kerin, Michael J; Khusnutdinova, Elza; Kosma, Veli-Matti; Kristensen, Vessela N; Lambrechts, Diether; Le Marchand, Loic; Li, Jingmei; Lindström, Sara; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Lubinski, Jan; Luccarini, Craig; Lux, Michael P; MacInnis, Robert J; Maishman, Tom; Kostovska, Ivana Maleva; Mannermaa, Arto; Manson, JoAnn E; Margolin, Sara; Mavroudis, Dimitrios; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Meyer, Jeffery; Mulligan, Anna Marie; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F; Nordestgaard, Børge G; Olopade, Olufunmilayo I; Olson, Janet E; Olsson, Håkan; Peterlongo, Paolo; Peto, Julian; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gad; Rennert, Hedy S; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Rudolph, Anja; Saloustros, Emmanouil; Sandler, Dale P; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Schneeweiss, Andreas; Scott, Rodney J; Scott, Christopher G; Seal, Sheila; Shah, Mitul; Shrubsole, Martha J; Smeets, Ann; Southey, Melissa C; Spinelli, John J; Stone, Jennifer; Surowy, Harald; Swerdlow, Anthony J; Tamimi, Rulla M; Tapper, William; Taylor, Jack A; Terry, Mary Beth; Tessier, Daniel C; Thomas, Abigail; Thöne, Kathrin; Tollenaar, Rob A E M; Torres, Diana; Truong, Thérèse; Untch, Michael; Vachon, Celine; Van Den Berg, David; Vincent, Daniel; Waisfisz, Quinten; Weinberg, Clarice R; Wendt, Camilla; Whittemore, Alice S; Wildiers, Hans; Willett, Walter C; Winqvist, Robert; Wolk, Alicja; Xia, Lucy; Yang, Xiaohong R; Ziogas, Argyrios; Ziv, Elad; Dunning, Alison M; Pharoah, Paul D P; Simard, Jacques; Milne, Roger L; Edwards, Stacey L; Kraft, Peter; Easton, Douglas F; Chenevix-Trench, Georgia; Zheng, Wei

    2018-06-18

    The breast cancer risk variants identified in genome-wide association studies explain only a small fraction of the familial relative risk, and the genes responsible for these associations remain largely unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide association study evaluating associations of genetically predicted gene expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the Genotype-Tissue Expression Project to establish genetic models to predict gene expression in breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82 × 10 -6 , including 14 genes at loci not yet reported for breast cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony-forming efficiency. Our study provides new insights into breast cancer genetics and biology.

  15. Genome wide association mapping for grain shape traits in indica rice.

    PubMed

    Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2016-10-01

    Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.

  16. Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function

    PubMed Central

    Artigas, María Soler; Loth, Daan W; Wain, Louise V; Gharib, Sina A; Obeidat, Ma’en; Tang, Wenbo; Zhai, Guangju; Zhao, Jing Hua; Smith, Albert Vernon; Huffman, Jennifer E; Albrecht, Eva; Jackson, Catherine M; Evans, David M; Cadby, Gemma; Fornage, Myriam; Manichaikul, Ani; Lopez, Lorna M; Johnson, Toby; Aldrich, Melinda C; Aspelund, Thor; Barroso, Inês; Campbell, Harry; Cassano, Patricia A; Couper, David J; Eiriksdottir, Gudny; Franceschini, Nora; Garcia, Melissa; Gieger, Christian; Gislason, Gauti Kjartan; Grkovic, Ivica; Hammond, Christopher J; Hancock, Dana B; Harris, Tamara B; Ramasamy, Adaikalavan; Heckbert, Susan R; Heliövaara, Markku; Homuth, Georg; Hysi, Pirro G; James, Alan L; Jankovic, Stipan; Joubert, Bonnie R; Karrasch, Stefan; Klopp, Norman; Koch, Beate; Kritchevsky, Stephen B; Launer, Lenore J; Liu, Yongmei; Loehr, Laura R; Lohman, Kurt; Loos, Ruth JF; Lumley, Thomas; Al Balushi, Khalid A; Ang, Wei Q; Barr, R Graham; Beilby, John; Blakey, John D; Boban, Mladen; Boraska, Vesna; Brisman, Jonas; Britton, John R; Brusselle, Guy G; Cooper, Cyrus; Curjuric, Ivan; Dahgam, Santosh; Deary, Ian J; Ebrahim, Shah; Eijgelsheim, Mark; Francks, Clyde; Gaysina, Darya; Granell, Raquel; Gu, Xiangjun; Hankinson, John L; Hardy, Rebecca; Harris, Sarah E; Henderson, John; Henry, Amanda; Hingorani, Aroon D; Hofman, Albert; Holt, Patrick G; Hui, Jennie; Hunter, Michael L; Imboden, Medea; Jameson, Karen A; Kerr, Shona M; Kolcic, Ivana; Kronenberg, Florian; Liu, Jason Z; Marchini, Jonathan; McKeever, Tricia; Morris, Andrew D; Olin, Anna-Carin; Porteous, David J; Postma, Dirkje S; Rich, Stephen S; Ring, Susan M; Rivadeneira, Fernando; Rochat, Thierry; Sayer, Avan Aihie; Sayers, Ian; Sly, Peter D; Smith, George Davey; Sood, Akshay; Starr, John M; Uitterlinden, André G; Vonk, Judith M; Wannamethee, S Goya; Whincup, Peter H; Wijmenga, Cisca; Williams, O Dale; Wong, Andrew; Mangino, Massimo; Marciante, Kristin D; McArdle, Wendy L; Meibohm, Bernd; Morrison, Alanna C; North, Kari E; Omenaas, Ernst; Palmer, Lyle J; Pietiläinen, Kirsi H; Pin, Isabelle; Polašek, Ozren; Pouta, Anneli; Psaty, Bruce M; Hartikainen, Anna-Liisa; Rantanen, Taina; Ripatti, Samuli; Rotter, Jerome I; Rudan, Igor; Rudnicka, Alicja R; Schulz, Holger; Shin, So-Youn; Spector, Tim D; Surakka, Ida; Vitart, Veronique; Völzke, Henry; Wareham, Nicholas J; Warrington, Nicole M; Wichmann, H-Erich; Wild, Sarah H; Wilk, Jemma B; Wjst, Matthias; Wright, Alan F; Zgaga, Lina; Zemunik, Tatijana; Pennell, Craig E; Nyberg, Fredrik; Kuh, Diana; Holloway, John W; Boezen, H Marike; Lawlor, Debbie A; Morris, Richard W; Probst-Hensch, Nicole; Kaprio, Jaakko; Wilson, James F; Hayward, Caroline; Kähönen, Mika; Heinrich, Joachim; Musk, Arthur W; Jarvis, Deborah L; Gläser, Sven; Järvelin, Marjo-Riitta; Stricker, Bruno H Ch; Elliott, Paul; O’Connor, George T; Strachan, David P; London, Stephanie J; Hall, Ian P; Gudnason, Vilmundur; Tobin, Martin D

    2011-01-01

    Pulmonary function measures reflect respiratory health and predict mortality, and are used in the diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function. PMID:21946350

  17. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    PubMed

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  18. Genome-Wide Mapping of Virulence in Brown Planthopper Identifies Loci That Break Down Host Plant Resistance

    PubMed Central

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  19. Identifying novel biomarkers in sarcoidosis using genome-based approaches

    PubMed Central

    Knox, Kenneth S.; Garcia, Joe G.N.

    2015-01-01

    Synopsis We briefly review conventional biomarkers used clinically to 1) support a diagnosis and 2) monitor disease progression in patients with sarcoidosis. We describe potential new biomarkers identified by genome-wide screening and the approaches to discover these biomarkers. PMID:26593137

  20. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits.

    PubMed

    Varshney, Rajeev K; Saxena, Rachit K; Upadhyaya, Hari D; Khan, Aamir W; Yu, Yue; Kim, Changhoon; Rathore, Abhishek; Kim, Dongseon; Kim, Jihun; An, Shaun; Kumar, Vinay; Anuradha, Ghanta; Yamini, Kalinati Narasimhan; Zhang, Wei; Muniswamy, Sonnappa; Kim, Jong-So; Penmetsa, R Varma; von Wettberg, Eric; Datta, Swapan K

    2017-07-01

    Pigeonpea (Cajanus cajan), a tropical grain legume with low input requirements, is expected to continue to have an important role in supplying food and nutritional security in developing countries in Asia, Africa and the tropical Americas. From whole-genome resequencing of 292 Cajanus accessions encompassing breeding lines, landraces and wild species, we characterize genome-wide variation. On the basis of a scan for selective sweeps, we find several genomic regions that were likely targets of domestication and breeding. Using genome-wide association analysis, we identify associations between several candidate genes and agronomically important traits. Candidate genes for these traits in pigeonpea have sequence similarity to genes functionally characterized in other plants for flowering time control, seed development and pod dehiscence. Our findings will allow acceleration of genetic gains for key traits to improve yield and sustainability in pigeonpea.

  1. [Genome-wide association study for adolescent idiopathic scoliosis].

    PubMed

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  2. Genome-wide Association Studies from the Cancer Genetic Markers of Susceptibility (CGEMS) Initiative | Office of Cancer Genomics

    Cancer.gov

    CGEMS identifies common inherited genetic variations associated with a number of cancers, including breast and prostate. Data from these genome-wide association studies (GWAS) are available through the Division of Cancer Epidemiology & Genetics website.

  3. A data-driven investigation of relationships between bipolar psychotic symptoms and schizophrenia genome-wide significant genetic loci.

    PubMed

    Leonenko, Ganna; Di Florio, Arianna; Allardyce, Judith; Forty, Liz; Knott, Sarah; Jones, Lisa; Gordon-Smith, Katherine; Owen, Michael J; Jones, Ian; Walters, James; Craddock, Nick; O'Donovan, Michael C; Escott-Price, Valentina

    2018-06-01

    The etiologies of bipolar disorder (BD) and schizophrenia include a large number of common risk alleles, many of which are shared across the disorders. BD is clinically heterogeneous and it has been postulated that the pattern of symptoms is in part determined by the particular risk alleles carried, and in particular, that risk alleles also confer liability to schizophrenia influence psychotic symptoms in those with BD. To investigate links between psychotic symptoms in BD and schizophrenia risk alleles we employed a data-driven approach in a genotyped and deeply phenotyped sample of subjects with BD. We used sparse canonical correlation analysis (sCCA) (Witten, Tibshirani, & Hastie, ) to analyze 30 psychotic symptoms, assessed with the OPerational CRITeria checklist, and 82 independent genome-wide significant single nucleotide polymorphisms (SNPs) identified by the Schizophrenia Working group of the Psychiatric Genomics Consortium for which we had data in our BD sample (3,903 subjects). As a secondary analysis, we applied sCCA to larger groups of SNPs, and also to groups of symptoms defined according to a published factor analyses of schizophrenia. sCCA analysis based on individual psychotic symptoms revealed a significant association (p = .033), with the largest weights attributed to a variant on chromosome 3 (rs11411529), chr3:180594593, build 37) and delusions of influence, bizarre behavior and grandiose delusions. sCCA analysis using the same set of SNPs supported association with the same SNP and the group of symptoms defined "factor 3" (p = .012). A significant association was also observed to the "factor 3" phenotype group when we included a greater number of SNPs that were less stringently associated with schizophrenia; although other SNPs contributed to the significant multivariate association result, the greatest weight remained assigned to rs11411529. Our results suggest that the canonical correlation is a useful tool to explore phenotype

  4. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium.

    PubMed

    Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng

    2014-06-04

    Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases

  5. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.

    PubMed

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    2013-05-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.

  6. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    PubMed Central

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  7. Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease.

    PubMed

    Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie

    2017-01-06

    Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.

  8. Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    PubMed Central

    Gustafsson, Stefan; Rybin, Denis; Stančáková, Alena; Chen, Han; Liu, Ching-Ti; Hong, Jaeyoung; Jensen, Richard A.; Rice, Ken; Morris, Andrew P.; Mägi, Reedik; Tönjes, Anke; Prokopenko, Inga; Kleber, Marcus E.; Delgado, Graciela; Silbernagel, Günther; Jackson, Anne U.; Appel, Emil V.; Grarup, Niels; Lewis, Joshua P.; Montasser, May E.; Landenvall, Claes; Staiger, Harald; Luan, Jian’an; Frayling, Timothy M.; Weedon, Michael N.; Xie, Weijia; Morcillo, Sonsoles; Martínez-Larrad, María Teresa; Biggs, Mary L.; Chen, Yii-Der Ida; Corbaton-Anchuelo, Arturo; Færch, Kristine; Gómez-Zumaquero, Juan Miguel; Goodarzi, Mark O.; Kizer, Jorge R.; Koistinen, Heikki A.; Leong, Aaron; Lind, Lars; Lindgren, Cecilia; Machicao, Fausto; Manning, Alisa K.; Martín-Núñez, Gracia María; Rojo-Martínez, Gemma; Rotter, Jerome I.; Siscovick, David S.; Zmuda, Joseph M.; Zhang, Zhongyang; Serrano-Rios, Manuel; Smith, Ulf; Soriguer, Federico; Hansen, Torben; Jørgensen, Torben J.; Linnenberg, Allan; Pedersen, Oluf; Walker, Mark; Langenberg, Claudia; Scott, Robert A.; Wareham, Nicholas J.; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert; Groop, Leif; O’Connell, Jeff R.; Boehnke, Michael; Bergman, Richard N.; Collins, Francis S.; Mohlke, Karen L.; Tuomilehto, Jaakko; März, Winfried; Kovacs, Peter; Stumvoll, Michael; Psaty, Bruce M.; Kuusisto, Johanna; Laakso, Markku; Meigs, James B.; Dupuis, Josée; Ingelsson, Erik; Florez, Jose C.

    2016-01-01

    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10−11), rs12454712 (BCL2; P = 2.7 × 10−8), and rs10506418 (FAM19A2; P = 1.9 × 10−8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci. PMID:27416945

  9. Genome-wide comparisons of phylogenetic similarities between partial genomic regions and the full-length genome in Hepatitis E virus genotyping.

    PubMed

    Wang, Shuai; Wei, Wei; Luo, Xuenong; Cai, Xuepeng

    2014-01-01

    Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.

  10. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    PubMed

    Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E

    2011-04-04

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  11. A genome-wide association study on photic sneeze syndrome in a Japanese population.

    PubMed

    Sasayama, Daimei; Asano, Shinya; Nogawa, Shun; Takahashi, Shoko; Saito, Kenji; Kunugi, Hiroshi

    2018-03-20

    Photic sneeze syndrome (PSS) is characterized by a tendency to sneeze when the eye is exposed to bright light. Recent genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) associated with PSS in Caucasian populations. We performed a GWAS on PSS in Japanese individuals who responded to a web-based survey and provided saliva samples. After quality control, genotype data of 210,086 SNPs in 11,409 individuals were analyzed. The overall prevalence of PSS was 3.2%. Consistent with previous reports, SNPs at 3p12.1 were associated with PSS at genome-wide significance (p < 5.0 × 10 -8 ). Furthermore, two novel loci at 9q34.2 and 4q35.2 reached suggestive significance (p < 5.0 × 10 -6 ). Our data also provided evidence supporting the two additional SNPs on 2q22.3 and 9q33.2 reportedly associated with PSS. Our study reproduced previous findings in Caucasian populations and further suggested novel PSS loci in the Japanese population.

  12. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index.

    PubMed

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder; Kammerer, Candace M; Barmada, M Michael; Matteini, Amy M; Zhang, Qunyuan; Wojczynski, Mary K; Daw, E Warwick; Brody, Jennifer A; Arnold, Alice M; Lunetta, Kathryn L; Murabito, Joanne M; Christensen, Kaare; Perls, Thomas T; Province, Michael A; Newman, Anne B

    2015-08-01

    The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts. There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10(-) (6)) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24-p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest. ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A genome-wide loss-of-function screen identifies SLC26A2 as a novel mediator of TRAIL resistance

    PubMed Central

    Dimberg, Lina Y.; Towers, Christina G.; Behbakht, Kian; Hotz, Taylor J.; Kim, Jihye; Fosmire, Susan; Porter, Christopher C.; Tan, Aik-Choon; Thorburn, Andrew; Ford, Heide L.

    2017-01-01

    TNF-related apoptosis inducing ligand (TRAIL) is a potent death-inducing ligand that mediates apoptosis through the extrinsic pathway and serves as an important endogenous tumor suppressor mechanism. Because tumor cells are often killed by TRAIL and normal cells are not, drugs that activate the TRAIL pathway have been thought to have potential clinical value. However, to date, most TRAIL-related clinical trials have largely failed due to the tumor cells having intrinsic or acquired resistance to TRAIL-induced apoptosis. Previous studies to identify resistance mechanisms have focused on targeted analysis of the canonical apoptosis pathway and other known regulators of TRAIL receptor signaling. To identify novel mechanisms of TRAIL resistance in an unbiased way, we performed a genome wide shRNA screen for genes that regulate TRAIL sensitivity in sub-lines that had been selected for acquired TRAIL resistance. This screen identified previously unknown mediators of TRAIL resistance including Angiotensin II Receptor 2, Crk-like protein, T-Box Transcription Factor 2 and solute carrier family 26 member 2 (SLC26A2). SLC26A2 downregulates the TRAIL receptors, DR4 and DR5, and this downregulation is associated with resistance to TRAIL. Its expression is high in numerous tumor types compared to normal cells, and in breast cancer, SLC26A2 is associated with a significant decrease in relapse free survival. PMID:28108622

  14. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens.

    PubMed

    Liao, R; Zhang, X; Chen, Q; Wang, Z; Wang, Q; Yang, C; Pan, Y

    2016-10-01

    This study was designed to investigate the genetic basis of growth and egg traits in Dongxiang blue-shelled chickens and White Leghorn chickens. In this study, we employed a reduced representation sequencing approach called genotyping by genome reducing and sequencing to detect genome-wide SNPs in 252 Dongxiang blue-shelled chickens and 252 White Leghorn chickens. The Dongxiang blue-shelled chicken breed has many specific traits and is characterized by blue-shelled eggs, black plumage, black skin, black bone and black organs. The White Leghorn chicken is an egg-type breed with high productivity. As multibreed genome-wide association studies (GWASs) can improve precision due to less linkage disequilibrium across breeds, a multibreed GWAS was performed with 156 575 SNPs to identify the associated variants underlying growth and egg traits within the two chicken breeds. The analysis revealed 32 SNPs exhibiting a significant genome-wide association with growth and egg traits. Some of the significant SNPs are located in genes that are known to impact growth and egg traits, but nearly half of the significant SNPs are located in genes with unclear functions in chickens. To our knowledge, this is the first multibreed genome-wide report for the genetics of growth and egg traits in the Dongxiang blue-shelled and White Leghorn chickens. © 2016 Stichting International Foundation for Animal Genetics.

  15. Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes

    PubMed Central

    Tin, Adrienne; Sorice, Rossella; Gorski, Mathias; Yeo, Nan Cher; Chu, Audrey Y.; Li, Man; Li, Yong; Mijatovic, Vladan; Ko, Yi-An; Taliun, Daniel; Luciani, Alessandro; Chen, Ming-Huei; Yang, Qiong; Foster, Meredith C.; Olden, Matthias; Hiraki, Linda T.; Tayo, Bamidele O.; Fuchsberger, Christian; Dieffenbach, Aida Karina; Shuldiner, Alan R.; Smith, Albert V.; Zappa, Allison M.; Lupo, Antonio; Kollerits, Barbara; Ponte, Belen; Stengel, Bénédicte; Krämer, Bernhard K.; Paulweber, Bernhard; Mitchell, Braxton D.; Hayward, Caroline; Helmer, Catherine; Meisinger, Christa; Gieger, Christian; Shaffer, Christian M.; Müller, Christian; Langenberg, Claudia; Ackermann, Daniel; Siscovick, David; Boerwinkle, Eric; Kronenberg, Florian; Ehret, Georg B.; Homuth, Georg; Waeber, Gerard; Navis, Gerjan; Gambaro, Giovanni; Malerba, Giovanni; Eiriksdottir, Gudny; Li, Guo; Wichmann, H. Erich; Grallert, Harald; Wallaschofski, Henri; Völzke, Henry; Brenner, Herrmann; Kramer, Holly; Leach, I. Mateo; Rudan, Igor; Hillege, Hans L.; Beckmann, Jacques S.; Lambert, Jean Charles; Luan, Jian'an; Zhao, Jing Hua; Chalmers, John; Coresh, Josef; Denny, Joshua C.; Butterbach, Katja; Launer, Lenore J.; Ferrucci, Luigi; Kedenko, Lyudmyla; Haun, Margot; Metzger, Marie; Woodward, Mark; Hoffman, Matthew J.; Nauck, Matthias; Waldenberger, Melanie; Pruijm, Menno; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Wareham, Nicholas J.; Endlich, Nicole; Soranzo, Nicole; Polasek, Ozren; van der Harst, Pim; Pramstaller, Peter Paul; Vollenweider, Peter; Wild, Philipp S.; Gansevoort, Ron T.; Rettig, Rainer; Biffar, Reiner; Carroll, Robert J.; Katz, Ronit; Loos, Ruth J.F.; Hwang, Shih-Jen; Coassin, Stefan; Bergmann, Sven; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Corre, Tanguy; Zeller, Tanja; Illig, Thomas; Aspelund, Thor; Tanaka, Toshiko; Lendeckel, Uwe; Völker, Uwe; Gudnason, Vilmundur; Chouraki, Vincent; Koenig, Wolfgang; Kutalik, Zoltan; O'Connell, Jeffrey R.; Parsa, Afshin; Heid, Iris M.; Paterson, Andrew D.; de Boer, Ian H.; Devuyst, Olivier; Lazar, Jozef; Endlich, Karlhans; Susztak, Katalin; Tremblay, Johanne; Hamet, Pavel; Jacob, Howard J.; Böger, Carsten A.

    2016-01-01

    Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and are associated with an increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (P = 2.4 × 10−10). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. Single nucleotide polymorphisms at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in the average UACR per minor allele was 21% for HS6ST1 (P = 6.3 × 10–7) and 13% for RAB38/CTSC (P = 5.8 × 10−7). Experiments using streptozotocin-induced diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout versus control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared with control subjects. The loci identified here confirm known pathways and highlight novel pathways influencing albuminuria. PMID:26631737

  16. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits.

    PubMed

    Xie, Liang; Luo, Chenglong; Zhang, Chengguang; Zhang, Rong; Tang, Jun; Nie, Qinghua; Ma, Li; Hu, Xiaoxiang; Li, Ning; Da, Yang; Zhang, Xiquan

    2012-01-01

    Chicken growth traits are important economic traits in broilers. A large number of studies are available on finding genetic factors affecting chicken growth. However, most of these studies identified chromosome regions containing putative quantitative trait loci and finding causal mutations is still a challenge. In this genome-wide association study (GWAS), we identified a narrow 1.5 Mb region (173.5-175 Mb) of chicken (Gallus gallus) chromosome (GGA) 1 to be strongly associated with chicken growth using 47,678 SNPs and 489 F2 chickens. The growth traits included aggregate body weight (BW) at 0-90 d of age measured weekly, biweekly average daily gains (ADG) derived from weekly body weight, and breast muscle weight (BMW), leg muscle weight (LMW) and wing weight (WW) at 90 d of age. Five SNPs in the 1.5 Mb KPNA3-FOXO1A region at GGA1 had the highest significant effects for all growth traits in this study, including a SNP at 8.9 Kb upstream of FOXO1A for BW at 22-48 d and 70 d, a SNP at 1.9 Kb downstream of FOXO1A for WW, a SNP at 20.9 Kb downstream of ENSGALG00000022732 for ADG at 29-42 d, a SNP in INTS6 for BW at 90 d, and a SNP in KPNA3 for BMW and LMW. The 1.5 Mb KPNA3-FOXO1A region contained two microRNA genes that could bind to messenger ribonucleic acid (mRNA) of IGF1, FOXO1A and KPNA3. It was further indicated that the 1.5 Mb GGA1 region had the strongest effects on chicken growth during 22-42 d.

  17. PREST-plus identifies pedigree errors and cryptic relatedness in the GAW18 sample using genome-wide SNP data.

    PubMed

    Sun, Lei; Dimitromanolakis, Apostolos

    2014-01-01

    Pedigree errors and cryptic relatedness often appear in families or population samples collected for genetic studies. If not identified, these issues can lead to either increased false negatives or false positives in both linkage and association analyses. To identify pedigree errors and cryptic relatedness among individuals from the 20 San Antonio Family Studies (SAFS) families and cryptic relatedness among the 157 putatively unrelated individuals, we apply PREST-plus to the genome-wide single-nucleotide polymorphism (SNP) data and analyze estimated identity-by-descent (IBD) distributions for all pairs of genotyped individuals. Based on the given pedigrees alone, PREST-plus identifies the following putative pairs: 1091 full-sib, 162 half-sib, 360 grandparent-grandchild, 2269 avuncular, 2717 first cousin, 402 half-avuncular, 559 half-first cousin, 2 half-sib+first cousin, 957 parent-offspring and 440,546 unrelated. Using the genotype data, PREST-plus detects 7 mis-specified relative pairs, with their IBD estimates clearly deviating from the null expectations, and it identifies 4 cryptic related pairs involving 7 individuals from 6 families.

  18. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  19. Detecting microsatellites within genomes: significant variation among algorithms

    PubMed Central

    Leclercq, Sébastien; Rivals, Eric; Jarne, Philippe

    2007-01-01

    Background Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker). Results Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif. Conclusion Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions. PMID:17442102

  20. Genome-wide interaction study identifies RCBTB1 as a modifier for smoking effect on carotid intima-media thickness.

    PubMed

    Wang, Liyong; Rundek, Tatjana; Beecham, Ashley; Hudson, Barry; Blanton, Susan H; Zhao, Hongyu; Sacco, Ralph L; Dong, Chuanhui

    2014-01-01

    Carotid intima-media thickness (cIMT), a marker for atherosclerosis, is affected by smoking and has substantial interindividual variation. We sought to identify the genetic moderators influencing the effect of smoking on cIMT. With a multistage design using 722 379 single nucleotide polymorphisms (SNP), a genome-wide interaction study was performed in a discovery sample of 669 Hispanics, followed by replication in 589 subjects (264 Hispanics, 172 non-Hispanic blacks, 153 non-Hispanic whites). Assuming an additive genetic model, regression analysis was performed to test for smoking-SNP interaction on cIMT while controlling for age, sex, and the top 3 principal components of ancestry. The strongest interaction in Hispanics was found with a synonymous splicing SNP (rs3751383) in exon 9 of RCBTB1 (P=2.5e(-6) in discovery sample; P=0.01 in the Hispanic replication sample; P<8.8e(-9) in the combined Hispanic sample). Stratification analysis in the combined Hispanic sample showed that smoking had no effect on cIMT among rs3751383 G homozygote (P=0.15), a moderate effect among rs3751383 heterozygote (P=0.01), and a strong effect among rs3751383 A homozygote (P=2.1e(-7)). A consistent trend was observed in the non-Hispanic white and black data sets, leading to an interaction effect of P<2.9e(-9) in the meta-analysis of all 1258 subjects. Our study represents the first genome-wide smoking-SNP interaction study of cIMT and identifies RCBTB1 as a modifier of the smoking effect on cIMT. Testing for gene-environment interactions can help uncover genetic factors that contribute to the interindividual variation in response to the same environmental exposure.

  1. Dissecting Vancomycin-Intermediate Resistance in Staphylococcus aureus Using Genome-Wide Association

    PubMed Central

    Alam, Md Tauqeer; Petit, Robert A.; Crispell, Emily K.; Thornton, Timothy A.; Conneely, Karen N.; Jiang, Yunxuan; Satola, Sarah W.; Read, Timothy D.

    2014-01-01

    Vancomycin-intermediate Staphylococcus aureus (VISA) is currently defined as having minimal inhibitory concentration (MIC) of 4–8 µg/ml. VISA evolves through changes in multiple genetic loci with at least 16 candidate genes identified in clinical and in vitro-selected VISA strains. We report a whole-genome comparative analysis of 49 vancomycin-sensitive S. aureus and 26 VISA strains. Resistance to vancomycin was determined by broth microdilution, Etest, and population analysis profile-area under the curve (PAP-AUC). Genome-wide association studies (GWAS) of 55,977 single-nucleotide polymorphisms identified in one or more strains found one highly significant association (P = 8.78E-08) between a nonsynonymous mutation at codon 481 (H481) of the rpoB gene and increased vancomycin MIC. Additionally, we used a database of public S. aureus genome sequences to identify rare mutations in candidate genes associated with VISA. On the basis of these data, we proposed a preliminary model called ECM+RMCG for the VISA phenotype as a benchmark for future efforts. The model predicted VISA based on the presence of a rare mutation in a set of candidate genes (walKR, vraSR, graSR, and agrA) and/or three previously experimentally verified mutations (including the rpoB H481 locus) with an accuracy of 81% and a sensitivity of 73%. Further, the level of resistance measured by both Etest and PAP-AUC regressed positively with the number of mutations present in a strain. This study demonstrated 1) the power of GWAS for identifying common genetic variants associated with antibiotic resistance in bacteria and 2) that rare mutations in candidate gene, identified using large genomic data sets, can also be associated with resistance phenotypes. PMID:24787619

  2. Genome-wide association study of age at menarche in African-American women

    PubMed Central

    Demerath, Ellen W.; Liu, Ching-Ti; Franceschini, Nora; Chen, Gary; Palmer, Julie R.; Smith, Erin N.; Chen, Christina T.L.; Ambrosone, Christine B.; Arnold, Alice M.; Bandera, Elisa V.; Berenson, Gerald S.; Bernstein, Leslie; Britton, Angela; Cappola, Anne R.; Carlson, Christopher S.; Chanock, Stephen J.; Chen, Wei; Chen, Zhao; Deming, Sandra L.; Elks, Cathy E.; Evans, Michelle K.; Gajdos, Zofia; Henderson, Brian E.; Hu, Jennifer J.; Ingles, Sue; John, Esther M.; Kerr, Kathleen F.; Kolonel, Laurence N.; Le Marchand, Loic; Lu, Xiaoning; Millikan, Robert C.; Musani, Solomon K.; Nock, Nora L.; North, Kari; Nyante, Sarah; Press, Michael F.; Rodriquez-Gil, Jorge L.; Ruiz-Narvaez, Edward A.; Schork, Nicholas J.; Srinivasan, Sathanur R.; Woods, Nancy F.; Zheng, Wei; Ziegler, Regina G.; Zonderman, Alan; Heiss, Gerardo; Gwen Windham, B.; Wellons, Melissa; Murray, Sarah S.; Nalls, Michael; Pastinen, Tomi; Rajkovic, Aleksandar; Hirschhorn, Joel; Adrienne Cupples, L.; Kooperberg, Charles; Murabito, Joanne M.; Haiman, Christopher A.

    2013-01-01

    African-American (AA) women have earlier menarche on average than women of European ancestry (EA), and earlier menarche is a risk factor for obesity and type 2 diabetes among other chronic diseases. Identification of common genetic variants associated with age at menarche has a potential value in pointing to the genetic pathways underlying chronic disease risk, yet comprehensive genome-wide studies of age at menarche are lacking for AA women. In this study, we tested the genome-wide association of self-reported age at menarche with common single-nucleotide polymorphisms (SNPs) in a total of 18 089 AA women in 15 studies using an additive genetic linear regression model, adjusting for year of birth and population stratification, followed by inverse-variance weighted meta-analysis (Stage 1). Top meta-analysis results were then tested in an independent sample of 2850 women (Stage 2). First, while no SNP passed the pre-specified P < 5 × 10−8 threshold for significance in Stage 1, suggestive associations were found for variants near FLRT2 and PIK3R1, and conditional analysis identified two independent SNPs (rs339978 and rs980000) in or near RORA, strengthening the support for this suggestive locus identified in EA women. Secondly, an investigation of SNPs in 42 previously identified menarche loci in EA women demonstrated that 25 (60%) of them contained variants significantly associated with menarche in AA women. The findings provide the first evidence of cross-ethnic generalization of menarche loci identified to date, and suggest a number of novel biological links to menarche timing in AA women. PMID:23599027

  3. Genome-wide analysis of alternative splicing in medulloblastoma identifies splicing patterns characteristic of normal cerebellar development

    PubMed Central

    Menghi, Francesca; Jacques, Thomas S.; Barenco, Martino; Schwalbe, Ed C.; Clifford, Steven C.; Hubank, Mike; Ham, Jonathan

    2011-01-01

    Alternative splicing is an important mechanism for the generation of protein diversity at a post-transcriptional level. Modifications in the splicing patterns of several genes have been shown to contribute to the malignant transformation of different tissue types. In this study, we used the Affymetrix Exon arrays to investigate patterns of differential splicing between paediatric medulloblastomas and normal cerebellum on a genome-wide scale. Of the 1262 genes identified as potentially generating tumour-associated splice forms, we selected 14 examples of differential splicing of known cassette exons and successfully validated 11 of them by RT-PCR. The pattern of differential splicing of three validated events was characteristic for the molecular subset of Sonic Hedgehog (Shh)-driven medulloblastomas, suggesting that their unique gene signature includes the expression of distinctive transcript variants. Generally, we observed that tumour and normal fetal cerebellar samples shared significantly lower exon inclusion rates compared to normal adult cerebellum. We investigated whether tumour-associated splice forms were expressed in primary cultures of Shh-dependent mouse cerebellar granule cell precursors (GCPs) and found that Shh caused a decrease in the cassette exon inclusion rate of five out of the seven tested genes. Furthermore, we observed a significant increase in exon inclusion between post-natal days 7 and 14 of mouse cerebellar development, at the time when GCPs mature into post-mitotic neurons. We conclude that inappropriate splicing frequently occurs in human medulloblastomas and may be linked to the activation of developmental signalling pathways and a failure of cerebellar precursor cells to differentiate. PMID:21248070

  4. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    USDA-ARS?s Scientific Manuscript database

    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted ...

  5. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists.

    PubMed

    Sanitá Lima, Matheus; Smith, David Roy

    2017-11-06

    Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb), indicating that most of the organelle DNA-coding and noncoding-is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb) and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells. Copyright © 2017 Sanitá Lima and Smith.

  6. A 2-Stage Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms Associated With Development of Erectile Dysfunction Following Radiation Therapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, Sarah L.; Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, New York; Stock, Richard

    2013-01-01

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with development of erectile dysfunction (ED) among prostate cancer patients treated with radiation therapy. Methods and Materials: A 2-stage genome-wide association study was performed. Patients were split randomly into a stage I discovery cohort (132 cases, 103 controls) and a stage II replication cohort (128 cases, 102 controls). The discovery cohort was genotyped using Affymetrix 6.0 genome-wide arrays. The 940 top ranking SNPs selected from the discovery cohort were genotyped in the replication cohort using Illumina iSelect custom SNP arrays. Results: Twelve SNPs identified in the discovery cohort and validated in themore » replication cohort were associated with development of ED following radiation therapy (Fisher combined P values 2.1 Multiplication-Sign 10{sup -5} to 6.2 Multiplication-Sign 10{sup -4}). Notably, these 12 SNPs lie in or near genes involved in erectile function or other normal cellular functions (adhesion and signaling) rather than DNA damage repair. In a multivariable model including nongenetic risk factors, the odds ratios for these SNPs ranged from 1.6 to 5.6 in the pooled cohort. There was a striking relationship between the cumulative number of SNP risk alleles an individual possessed and ED status (Sommers' D P value = 1.7 Multiplication-Sign 10{sup -29}). A 1-allele increase in cumulative SNP score increased the odds for developing ED by a factor of 2.2 (P value = 2.1 Multiplication-Sign 10{sup -19}). The cumulative SNP score model had a sensitivity of 84% and specificity of 75% for prediction of developing ED at the radiation therapy planning stage. Conclusions: This genome-wide association study identified a set of SNPs that are associated with development of ED following radiation therapy. These candidate genetic predictors warrant more definitive validation in an independent cohort.« less

  7. Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We identified 82489 high-quality genome-wide SNPs from 93 wild and cultivated Cicer accessions through integrated reference genome- and de novo-based GBS assays. High intra- and inter-specific polymorphic potential (66–85%) and broader natural allelic diversity (6–64%) detected by genome-wide SNPs among accessions signify their efficacy for monitoring introgression and transferring target trait-regulating genomic (gene) regions/allelic variants from wild to cultivated Cicer gene pools for genetic improvement. The population-specific assignment of wild Cicer accessions pertaining to the primary gene pool are more influenced by geographical origin/phenotypic characteristics than species/gene-pools of origination. The functional significance of allelic variants (non-synonymous and regulatory SNPs) scanned from transcription factors and stress-responsive genes in differentiating wild accessions (with potential known sources of yield-contributing and stress tolerance traits) from cultivated desi and kabuli accessions, fine-mapping/map-based cloning of QTLs and determination of LD patterns across wild and cultivated gene-pools are suitably elucidated. The correlation between phenotypic (agromorphological traits) and molecular diversity-based admixed domestication patterns within six structured populations of wild and cultivated accessions via genome-wide SNPs was apparent. This suggests utility of whole genome SNPs as a potential resource for identifying naturally selected trait-regulating genomic targets/functional allelic variants adaptive to diverse agroclimatic regions for genetic enhancement of cultivated gene-pools. PMID:26208313

  8. A review of genome-wide approaches to study the genetic basis for spermatogenic defects.

    PubMed

    Aston, Kenneth I; Conrad, Donald F

    2013-01-01

    Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.

  9. Microbial genome-wide association studies: lessons from human GWAS.

    PubMed

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  10. Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introduction

    USDA-ARS?s Scientific Manuscript database

    The genome-wide association study (GWAS) is a useful tool for detecting and characterizing traits of interest including those associated with disease resistance in soybean. The availability of 50,000 single nucleotide polymorphism (SNP) markers (SoySNP50K iSelect BeadChip; www.soybase.org) on 19,652...

  11. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer)

    PubMed Central

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili

    2017-01-01

    Abstract Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. PMID:28922794

  12. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Lin, Yu-Da

    2017-08-01

    Detecting epistatic interactions in genome-wide association studies (GWAS) is a computational challenge. Such huge numbers of single-nucleotide polymorphism (SNP) combinations limit the some of the powerful algorithms to be applied to detect the potential epistasis in large-scale SNP datasets. We propose a new algorithm which combines the differential evolution (DE) algorithm with a classification based multifactor-dimensionality reduction (CMDR), termed DECMDR. DECMDR uses the CMDR as a fitness measure to evaluate values of solutions in DE process for scanning the potential statistical epistasis in GWAS. The results indicated that DECMDR outperforms the existing algorithms in terms of detection success rate by the large simulation and real data obtained from the Wellcome Trust Case Control Consortium. For running time comparison, DECMDR can efficient to apply the CMDR to detect the significant association between cases and controls amongst all possible SNP combinations in GWAS. DECMDR is freely available at https://goo.gl/p9sLuJ . chuang@isu.edu.tw or e0955767257@yahoo.com.tw. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Genome-wide association study of a nicotine metabolism biomarker in African American smokers: impact of chromosome 19 genetic influences.

    PubMed

    Chenoweth, Meghan J; Ware, Jennifer J; Zhu, Andy Z X; Cole, Christopher B; Cox, Lisa Sanderson; Nollen, Nikki; Ahluwalia, Jasjit S; Benowitz, Neal L; Schnoll, Robert A; Hawk, Larry W; Cinciripini, Paul M; George, Tony P; Lerman, Caryn; Knight, Joanne; Tyndale, Rachel F

    2018-03-01

    The activity of CYP2A6, the major nicotine-inactivating enzyme, is measurable in smokers using the nicotine metabolite ratio (NMR; 3'hydroxycotinine/cotinine). Due to its role in nicotine clearance, the NMR is associated with smoking behaviours and response to pharmacotherapies. The NMR is highly heritable (~80%), and on average lower in African Americans (AA) versus whites. We previously identified several reduce and loss-of-function CYP2A6 variants common in individuals of African descent. Our current aim was to identify novel genetic influences on the NMR in AA smokers using genome-wide approaches. Genome-wide association study (GWAS). Multiple sites within Canada and the United States. AA smokers from two clinical trials: Pharmacogenetics of Nicotine Addiction Treatment (PNAT)-2 (NCT01314001; n = 504) and Kick-it-at-Swope (KIS)-3 (NCT00666978; n = 450). Genome-wide SNP genotyping, the NMR (phenotype) and population substructure and NMR covariates. Meta-analysis revealed three independent chromosome 19 signals (rs12459249, rs111645190 and rs185430475) associated with the NMR. The top overall hit, rs12459249 (P = 1.47e-39; beta = 0.59 per C (versus T) allele, SE = 0.045), located ~9.5 kb 3' of CYP2A6, remained genome-wide significant after controlling for the common (~10% in AA) non-functional CYP2A6*17 allele. In contrast, rs111645190 and rs185430475 were not genome-wide significant when controlling for CYP2A6*17. In total, 96 signals associated with the NMR were identified; many were not found in prior NMR GWASs in individuals of European descent. The top hits were also associated with the NMR in a third cohort of AA (KIS2; n = 480). None of the hits were in UGT or OCT2 genes. Three independent chromosome 19 signals account for ~20% of the variability in the nicotine metabolite ratio in African American smokers. The hits identified may contribute to inter-ethnic variability in nicotine metabolism, smoking behaviours and tobacco-related disease risk

  14. Genome-wide association study in Asia-adapted tropical maize reveals novel and explored genomic regions for sorghum downy mildew resistance.

    PubMed

    Rashid, Zerka; Singh, Pradeep Kumar; Vemuri, Hindu; Zaidi, Pervez Haider; Prasanna, Boddupalli Maruthi; Nair, Sudha Krishnan

    2018-01-10

    Globally, downy mildews are among the important foliar diseases of maize that cause significant yield losses. We conducted a genome-wide association study for sorghum downy mildew (SDM; Peronosclerospora sorghi) resistance in a panel of 368 inbred lines adapted to the Asian tropics. High density SNPs from Genotyping-by-sequencing were used in GWAS after controlling for population structure and kinship in the panel using a single locus mixed model. The study identified a set of 26 SNPs that were significantly associated with SDM resistance, with Bonferroni corrected P values ≤ 0.05. Among all the identified SNPs, the minor alleles were found to be favorable to SDM resistance in the mapping panel. Trend regression analysis with 16 independent genetic variants including 12 SNPs and four haplotype blocks identified SNP S2_6154311 on chromosome 2 with P value 2.61E-24 and contributing 26.7% of the phenotypic variation. Six of the SNPs/haplotypes were within the same chromosomal bins as the QTLs for SDM resistance mapped in previous studies. Apart from this, eight novel genomic regions for SDM resistance were identified in this study; they need further validation before being applied in the breeding pipeline. Ten SNPs identified in this study were co-located in reported mildew resistance genes.

  15. Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy

    PubMed Central

    Roos, Thomas R.; Roos, Andrew K.; Kleimeyer, John P.; Ahmed, Marwa A.; Goodlin, Gabrielle T.; Fredericson, Michael; Ioannidis, John P. A.; Avins, Andrew L.; Dragoo, Jason L.

    2017-01-01

    Achilles tendinopathy or rupture and anterior cruciate ligament (ACL) rupture are substantial injuries affecting athletes, associated with delayed recovery or inability to return to competition. To identify genetic markers that might be used to predict risk for these injuries, we performed genome-wide association screens for these injuries using data from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort consisting of 102,979 individuals. We did not find any single nucleotide polymorphisms (SNPs) associated with either of these injuries with a p-value that was genome-wide significant (p<5x10-8). We found, however, four and three polymorphisms with p-values that were borderline significant (p<10−6) for Achilles tendon injury and ACL rupture, respectively. We then tested SNPs previously reported to be associated with either Achilles tendon injury or ACL rupture. None showed an association in our cohort with a false discovery rate of less than 5%. We obtained, however, moderate to weak evidence for replication in one case; specifically, rs4919510 in MIR608 had a p-value of 5.1x10-3 for association with Achilles tendon injury, corresponding to a 7% chance of false replication. Finally, we tested 2855 SNPs in 90 candidate genes for musculoskeletal injury, but did not find any that showed a significant association below a false discovery rate of 5%. We provide data containing summary statistics for the entire genome, which will be useful for future genetic studies on these injuries. PMID:28358823

  16. Systemic analysis of genome-wide expression profiles identified potential therapeutic targets of demethylation drugs for glioblastoma.

    PubMed

    Ning, Tongbo; Cui, Hao; Sun, Feng; Zou, Jidian

    2017-09-05

    Glioblastoma represents one of the most aggressive malignant brain tumors with high morbidity and motility. Demethylation drugs have been developed for its treatment with little efficacy has been observed. The purpose of this study was to screen therapeutic targets of demethylation drugs or bioactive molecules for glioblastoma through systemic bioinformatics analysis. We firstly downloaded genome-wide expression profiles from the Gene Expression Omnibus (GEO) and conducted the primary analysis through R software, mainly including preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differential expression genes (DEGs). Secondly, functional enrichment analysis was conducted via the Database for Annotation, Visualization and Integrated Discovery (DAVID) to explore biological processes involved in the development of glioblastoma. Thirdly, we constructed protein-protein interaction (PPI) network of interested genes and conducted cross analysis for multi datasets to obtain potential therapeutic targets for glioblastoma. Finally, we further confirmed the therapeutic targets through real-time RT-PCR. As a result, biological processes that related to cancer development, amino metabolism, immune response and etc. were found to be significantly enriched in genes that differential expression in glioblastoma and regulated by 5'aza-dC. Besides, network and cross analysis identified ACAT2, UFC1 and CYB5R1 as novel therapeutic targets of demethylation drugs which also confirmed by real time RT-PCR. In conclusions, our study identified several biological processes and genes that involved in the development of glioblastoma and regulated by 5'aza-dC, which would be helpful for the treatment of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genome-wide association studies for multiple diseases of the German Shepherd Dog

    PubMed Central

    Tsai, Kate L.; Noorai, Rooksana E.; Starr-Moss, Alison N.; Quignon, Pascale; Rinz, Caitlin J.; Ostrander, Elaine A.; Steiner, Jörg M.; Murphy, Keith E.

    2012-01-01

    The German Shepherd Dog (GSD) is a popular working and companion breed for which over 50 hereditary diseases have been documented. Herein, SNP profiles for 197 GSDs were generated using the Affymetrix v2 canine SNP array for a genome-wide association study to identify loci associated with four diseases: pituitary dwarfism, degenerative myelopathy (DM), congenital megaesophagus (ME), and pancreatic acinar atrophy (PAA). A locus on Chr 9 is strongly associated with pituitary dwarfism and is proximal to a plausible candidate gene, LHX3. Results for DM confirm a major locus encompassing SOD1, in which an associated point mutation was previously identified, but do not suggest modifier loci. Several SNPs on Chr 12 are associated with ME and a 4.7 Mb haplotype block is present in affected dogs. Analysis of additional ME cases for a SNP within the haplotype provides further support for this association. Results for PAA indicate more complex genetic underpinnings. Several regions on multiple chromosomes reach genome-wide significance. However, no major locus is apparent and only two associated haplotype blocks, on Chrs 7 and 12 are observed. These data suggest that PAA may be governed by multiple loci with small effects, or it may be a heterogeneous disorder. PMID:22105877

  18. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    PubMed Central

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38–0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (<0.2) in all soluble solid content and vigor of tree. Results suggest the potential of GWAS and GS for use in future breeding programs in Japanese pear. PMID:23641189

  19. Genome-wide association study reveals genetic architecture of coleoptile length in wheat.

    PubMed

    Li, Genqiao; Bai, Guihua; Carver, Brett F; Elliott, Norman C; Bennett, Rebecca S; Wu, Yanqi; Hunger, Robert; Bonman, J Michael; Xu, Xiangyang

    2017-02-01

    Eight QTL for coleoptile length were identified in a genome-wide association study on a set of 893 wheat accessions, four of which are novel loci. Wheat cultivars with long coleoptiles are preferred in wheat-growing regions where deep planting is practiced. However, the wide use of gibberellic acid (GA)-insensitive dwarfing genes, Rht-B1b and Rht-D1b, makes it challenging to breed dwarf wheat cultivars with long coleoptiles. To understand the genetic basis of coleoptile length, we performed a genome-wide association study on a set of 893 landraces and historical cultivars using 5011 single nucleotide polymorphism (SNP) markers. Structure analysis revealed four subgroups in the association panel. Association analysis results suggested that Rht-B1b and Rht-D1b genes significantly reduced coleoptile length, and eight additional quantitative trait loci (QTL) for coleoptile length were also identified. These QTL explained 1.45-3.18 and 1.36-3.11% of the phenotypic variation in 2015 and 2016, respectively, and their allelic substitution effects ranged from 0.31 to 1.75 cm in 2015, and 0.63-1.55 cm in 2016. Of the eight QTL, QCL.stars-1BS1, QCL.stars-2DS1, QCL.stars-4BS2, and QCL.stars-5BL1 are likely novel loci for coleoptile length. The favorable alleles in each accession ranged from two to eight with an average of 5.8 at eight loci in the panel, and more favorable alleles were significantly associated with longer coleoptile, suggesting that QTL pyramiding is an effective approach to increase wheat coleoptile length.

  20. A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Paediatric Cohorts

    PubMed Central

    Groen-Blokhuis, Maria M.; Pourcain, Beate St.; Greven, Corina U.; Pappa, Irene; Tiesler, Carla M.T.; Ang, Wei; Nolte, Ilja M.; Vilor-Tejedor, Natalia; Bacelis, Jonas; Ebejer, Jane L.; Zhao, Huiying; Davies, Gareth E.; Ehli, Erik A.; Evans, David M.; Fedko, Iryna O.; Guxens, Mònica; Hottenga, Jouke-Jan; Hudziak, James J.; Jugessur, Astanand; Kemp, John P.; Krapohl, Eva; Martin, Nicholas G.; Murcia, Mario; Myhre, Ronny; Ormel, Johan; Ring, Susan M.; Standl, Marie; Stergiakouli, Evie; Stoltenberg, Camilla; Thiering, Elisabeth; Timpson, Nicholas J.; Trzaskowski, Maciej; van der Most, Peter J.; Wang, Carol; Nyholt, Dale R.; Medland, Sarah E.; Neale, Benjamin; Jacobsson, Bo; Sunyer, Jordi; Hartman, Catharina A.; Whitehouse, Andrew J.O.; Pennell, Craig E.; Heinrich, Joachim; Plomin, Robert; Smith, George Davey; Tiemeier, Henning; Posthuma, Danielle; Boomsma, Dorret I.

    2016-01-01

    Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. PMID:27663945