Sample records for identified hydrothermal convection

  1. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  2. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits

  3. The hydrothermal-convection systems of Kilauea: An historical perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, R.B.; Kauahikaua, J.P.

    1993-08-01

    Kilauea is one of only two basaltic volcanoes in the world where geothermal power has been produced commercially. Little is known about the origin, size and longevity of its hydrothermal-convection systems. The authors review the history of scientific studies aimed at understanding these systems and describe their commercial development. Geothermal energy is a controversial issue in Hawaii, partly because of hydrogen sulfide emissions and concerns about protection of rain forests.

  4. Self-organization of hydrothermal outflow and recharge in young oceanic crust: Constraints from open-top porous convection analog experiments

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Olive, J. A. L.; Barreyre, T.

    2016-12-01

    Hydrothermal circulation at the axis of mid-ocean ridges has a profound effect on chemical and biological processes in the deep ocean, and influences the thermo-mechanical state of young oceanic lithosphere. Yet, the geometry of fluid pathways beneath the seafloor and its relation to spatial gradients in crustal permeability remain enigmatic. Here we present new laboratory models of hydrothermal circulation aimed at constraining the self-organization of porous convection cells in homogeneous as well as highly heterogeneous crust analogs. Oceanic crust analogs of known permeability are constructed using uniform glass spheres and 3-D printed plastics with a network of mutually perpendicular tubes. These materials are saturated with corn syrup-water mixtures and heated at their base by a resistive silicone strip heater to initiate thermal convection. A layer of pure fluid (i.e., an analog ocean) overlies the porous medium and allows an "open-top" boundary condition. Areas of fluid discharge from the crust into the ocean are identified by illuminating microscopic glass particles carried by the fluid, using laser sheets. Using particle image velocimetry, we estimate fluid discharge rates as well as the location and extent of fluid recharge. Thermo-couples distributed throughout the crust provide insights into the geometry of convection cells at depth, and enable estimates of convective heat flux, which can be compared to the heat supplied at the base of the system. Preliminary results indicate that in homogeneous crust, convection is largely confined to the narrow slot overlying the heat source. Regularly spaced discharge zones appear focused while recharge areas appear diffuse, and qualitatively resemble the along-axis distribution of hydrothermal fields at oceanic spreading centers. By varying the permeability of the crustal analogs, the viscosity of the convecting fluid, and the imposed basal temperature, our experiments span Rayleigh numbers between 10 and 10

  5. Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection

    NASA Astrophysics Data System (ADS)

    Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.

    2004-05-01

    Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.

  6. Physical factors determining the fraction of stored energy recoverable from hydrothermal convection systems and conduction-dominated areas

    USGS Publications Warehouse

    Nathenson, Manuel

    1975-01-01

    This report contains background analyses for the estimates of Nathenson and Muffler (1975) of geothermal resources in hydrothermal convection systems and conduction-dominated areas. The first section discusses heat and fluid recharge potential of geothermal reservoirs. The second section analyzes the physical factors that determine the fraction of stored energy obtainable at the surface from a geothermal reservoir. Conversion of heat to electricity and the use of geothermal energy for direct-heating applications are discussed in the last two sections. Nathenson, Manuel, and Muffler, L.J.P., 1975, Geothermal resources in hydrothermal convection systems and conduction dominated areas, in White, D.E., and Williams, D.L., eds., Assessment of the Geothermal Resources of the United States--1975: U.S. Geological Survey Circular 726, p. 104-121, available at http://pubs.er.usgs.gov/usgspubs/cir/cir726

  7. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges?

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Rabinowicz, M.; Cannat, M.

    2017-05-01

    We present numerical models to explore possible couplings along the axis of fast-spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end-member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt-rich lower crustal along-axis corridor and permeability k not exceeding ˜10-16 m2 in the upper crust, the hot, melt-rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic-hydrothermal interface settles at realistic depths for fast ridges, i.e., 1-2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer-wide hydrothermal upflows/plumes, spaced by 8-10 km, arise on top of the magmatic upflows. Such magmatic-hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South-East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt-rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ˜100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt-rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off-axis to produce the lower crust.

  8. Entropy production in a box: Analysis of instabilities in confined hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Börsing, N.; Wellmann, J. F.; Niederau, J.; Regenauer-Lieb, K.

    2017-09-01

    We evaluate if the concept of thermal entropy production can be used as a measure to characterize hydrothermal convection in a confined porous medium as a valuable, thermodynamically motivated addition to the standard Rayleigh number analysis. Entropy production has been used widely in the field of mechanical and chemical engineering as a way to characterize the thermodynamic state and irreversibility of an investigated system. Pioneering studies have since adapted these concepts to natural systems, and we apply this measure here to investigate the specific case of hydrothermal convection in a "box-shaped" confined porous medium, as a simplified analog for, e.g., hydrothermal convection in deep geothermal aquifers. We perform various detailed numerical experiments to assess the response of the convective system to changing boundary conditions or domain aspect ratios, and then determine the resulting entropy production for each experiment. In systems close to the critical Rayleigh number, we derive results that are in accordance to the analytically derived predictions. At higher Rayleigh numbers, however, we observe multiple possible convection modes, and the analysis of the integrated entropy production reveals distinct curves of entropy production that provide an insight into the hydrothermal behavior in the system, both for cases of homogeneous materials, as well as for heterogeneous spatial material distributions. We conclude that the average thermal entropy production characterizes the internal behavior of hydrothermal systems with a meaningful thermodynamic measure, and we expect that it can be useful for the investigation of convection systems in many similar hydrogeological and geophysical settings.

  9. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  10. YELLOWSTONE MAGMATIC-HYDROTHERMAL SYSTEM, U. S. A.

    USGS Publications Warehouse

    Fournier, R.O.; Pitt, A.M.; ,

    1985-01-01

    At Yellowstone National Park, the deep permeability and fluid circulation are probably controlled and maintained by repeated brittle fracture of rocks in response to local and regional stress. Focal depths of earthquakes beneath the Yellowstone caldera suggest that the transition from brittle fracture to quasi-plastic flow takes place at about 3 to 4 km. The maximum temperature likely to be attained by the hydrothermal system is 350 to 450 degree C, the convective thermal output is about 5. 5 multiplied by 10**9 watts, and the minimum average thermal flux is about 1800 mW/m**2 throughout 2,500 km**2. The average thermal gradient between the heat source and the convecting hydrothermal system must be at least 700 to 1000 degree C/km. Crystallization and partial cooling of about 0. 082 km**3 of basalt or 0. 10 km**3 of rhyolite annually could furnish the heat discharged in the hot-spring system. The Yellowstone magmatic-hydrothermal system as a whole appears to be cooling down, in spite of a relatively large rate of inflation of the Yellowstone caldera.

  11. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    USGS Publications Warehouse

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  12. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    USGS Publications Warehouse

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  13. Hydrothermal circulation at Mount St. Helens determined by self-potential measurements

    USGS Publications Warehouse

    Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.

    2007-01-01

    The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow hydrothermal convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the hydrothermal system is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.

  14. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  15. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  16. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  17. Control of Oscillatory Thermocapillary Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Skarda, Ray

    1998-01-01

    This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.

  18. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  19. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE PAGES

    Drager, Aryeh J.; van den Heever, Susan C.

    2017-05-09

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  20. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drager, Aryeh J.; van den Heever, Susan C.

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  1. Major off-axis hydrothermal activity on the northern Gorda Ridge

    USGS Publications Warehouse

    Rona, Peter A.; Denlinger, Roger P.; Fisk, M. R.; Howard, K. J.; Taghon, G. L.; Klitgord, Kim D.; McClain, James S.; McMurray, G. R.; Wiltshire, J. C.

    1990-01-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on the east wall. Preliminary mapping and sampling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of elastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinites. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  2. Synchronized chaotic targeting and acceleration of surface chemistry in prebiotic hydrothermal microenvironments

    PubMed Central

    Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.

    2017-01-01

    Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504

  3. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  4. Identifying Martian Hydrothermal Sites: Geological Investigation Utilizing Multiple Datasets

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Baker, V. R.; Anderson, R. C.; Scott, D. H.; Rice, J. W., Jr.; Hare, T. M.

    2000-01-01

    Comprehensive geological investigations of martian landscapes that may have been modified by magmatic-driven hydrothermal activity, utilizing multiple datasets, will yield prime target sites for future hydrological, mineralogical, and biological investigations.

  5. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  6. Modelling of a Convecting, Crystallizing, and Replenished Diopside-Anorthite Axial Magma Chamber beneath Mid Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Lata, C.

    2016-12-01

    The aim of this work is to model heat output from a cooling, convective, crystallizing, and replenished basaltic magma sill, representing an axial magma lens (AML) at mid oceanic ridges. As a simplified version of basaltic melt, we have assumed the melt to be a two-component eutectic system composed of diopside and anorthite. Convective vigor is expressed through the Rayleigh number and heat flux is scaled through a classical relationship between the Rayleigh number and Nusselt number, where the temperature difference driving the convective heat flux is derived from a "viscous" temperature scale reflecting the strong temperature dependent viscosity of the system. Viscosity is modeled as a function of melt composition and temperature using the Tammann-Vogel-Fulcher equation, with parameters fit to the values of observed viscosities along the diopside-anorthite liquidus. It was observed for the un-replenished case, in which crystals fall rapidly to the floor of the AML, model results show that the higher initial concentration of diopside, the more vigorous the convection and the faster the rate of crystallization and decay of heat output. Replenishment of the AML accompanied by modest thickening of the melt layer stabilizes the heat output at values similar to those observed at ridge-axis hydrothermal systems. This study is an important step forward in quantitative understanding of thermal evolution of the axial magma lens at a mid-ocean ridge and the corresponding effect on high-temperature hydrothermal systems. Future work could involve improved replenishment mechanisms, more complex melts, and direct coupling with hydrothermal circulation models.

  7. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  8. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal

  9. Three-dimensional oxygen isotope imaging of convective fluid flow around the Big Bonanza, Comstock lode mining district, Nevada

    USGS Publications Warehouse

    Criss, R.E.; Singleton, M.J.; Champion, D.E.

    2000-01-01

    Oxygen isotope analyses of propylitized andesites from the Con Virginia and California mines allow construction of a detailed, three-dimensional image of the isotopic surfaces produced by the convective fluid flows that deposited the famous Big Bonanza orebody. On a set of intersecting maps and sections, the δ18O isopleths clearly show the intricate and conformable relationship of the orebody to a deep, ~500 m gyre of meteoric-hydrothermal fluid that circulated along and above the Comstock fault, near the contact of the Davidson Granodiorite. The core of this gyre (δ18O = 0 to 3.8‰) encompasses the bonanza and is almost totally surrounded by rocks having much lower δ18O values (–1.0 to –4.4‰). This deep gyre may represent a convective longitudinal roll superimposed on a large unicellular meteoric-hydrothermal system, producing a complex flow field with both radial and longitudinal components that is consistent with experimentally observed patterns of fluid convection in permeable media.

  10. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE PAGES

    Bernstein, Diana N.; Neelin, J. David

    2016-04-28

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  11. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Diana N.; Neelin, J. David

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  12. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the

  13. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  14. An Automated Method to Identify Mesoscale Convective Complexes (MCCs) Implementing Graph Theory

    NASA Astrophysics Data System (ADS)

    Whitehall, K. D.; Mattmann, C. A.; Jenkins, G. S.; Waliser, D. E.; Rwebangira, R.; Demoz, B.; Kim, J.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Joyce, M. J.; Loikith, P.; Lee, H.; Khudikyan, S.; Boustani, M.; Goodman, A.; Zimdars, P. A.; Whittell, J.

    2013-12-01

    Mesoscale convective complexes (MCCs) are convectively-driven weather systems with a duration of ~10 - 12 hours and contributions of large amounts to the rainfall daily and monthly totals. More than 400 MCCs occur annually over various locations on the globe. In West Africa, ~170 MCCs occur annually during the 180 days representing the summer months (June - November), and contribute ~75% of the annual wet season rainfall. The main objective of this study is to improve automatic identification of MCC over West Africa. The spatial expanse of MCCs and the spatio-temporal variability in their convective characteristics make them difficult to characterize even in dense networks of radars and/or surface gauges. As such there exist criteria for identifying MCCs with satellite images - mostly using infrared (IR) data. Automated MCC identification methods are based on forward and/or backward in time spatial-temporal analysis of the IR satellite data and characteristically incorporate a manual component as these algorithms routinely falter with merging and splitting cloud systems between satellite images. However, these algorithms are not readily transferable to voluminous data or other satellite-derived datasets (e.g. TRMM), thus hindering comprehensive studies of these features both at weather and climate timescales. Recognizing the existing limitations of automated methods, this study explores the applicability of graph theory to creating a fully automated method for deriving a West African MCC dataset from hourly infrared satellite images between 2001- 2012. Graph theory, though not heavily implemented in the atmospheric sciences, has been used for the predicting (nowcasting) of thunderstorms from radar and satellite data by considering the relationship between atmospheric variables at a given time, or for the spatial-temporal analysis of cloud volumes. From these few studies, graph theory appears to be innately applicable to the complexity, non-linearity and inherent

  15. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  16. Modeling Hydrothermal Activity on Enceladus

    NASA Astrophysics Data System (ADS)

    Stamper, T., Jr.; Farough, A.

    2017-12-01

    Cassini's mass spectrometer data and gravitational field measurements imply water-rock interactions around the porous core of Enceladus. Using such data we characterize global heat and fluid transport properties of the core and model the ongoing hydrothermal activity on Enceladus. We assume that within the global ocean beneath the surface ice, seawater percolates downward into the core where it is heated and rises to the oceanfloor where it emanates in the form of diffuse discharge. We utilize the data from Hsu et al., [2015] with models of diffuse flow in seafloor hydrothermal systems by Lowell et al., [2015] to characterize the global heat transport properties of the Enceladus's core. Based on direct observations the gravitational acceleration (g) is calculated 0.123 m s-2. We assume fluid's density (ρ) is 10­3 kg m-3 and the specific heat of the fluid (cf) is 4000 Jkg-1 °C-1. From these values effective thermal diffusivity (a*) is calculated as 10­-6 m2 s-1. We also assume the coefficient of thermal expansion of fluid (αf) and the kinematic viscosity of fluid (ν) to be 10-4 °C-1 and 10­-6 m2 s-1 respectively. The estimated Rayleigh number (Ra) ranges between 0.11-2468.0, for core porosity (φ) of 5-15%, permeability (k) between 10-12-10-8 m2 and temperature between 90-200 °C and the depth of fluid circulation of 100 m. High values of Rayleigh number, cause vigorous convection within the core of Enceladus. Numerical modeling of reactive transport in multicomponent, multiphase systems is required to obtain a full understanding of the characteristics and evolution of the hydrothermal system on Enceladus, but simple scaling laws can provide insight into the physics of water-rock interactions.

  17. Passive, off-axis convection through the southern flank of the Costa Rica rift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A.T.; Becker, K.; Narasimhan, T.N.

    1990-06-10

    Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and strong lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. Although the forces which drive passive circulation are not well understood, it has generally been thought that the length scale of heat flow variations provides a good indication of the depth of hydrothermal circulation within the oceanic crust. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model which combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved.« less

  18. Ice patterns and hydrothermal plumes, Lake Baikal, Russia - Insights from Space Shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Helfert, Michael R.; Helms, David R.

    1992-01-01

    Earth photography from the Space Shuttle is used to examine the ice cover on Lake Baikal and correlate the patterns of weakened and melting ice with known hydrothermal areas in the Siberian lake. Particular zones of melted and broken ice may be surface expressions of elevated heat flow in Lake Baikal. The possibility is explored that hydrothermal vents can introduce local convective upwelling and disrupt a stable water column to the extent that the melt zones which are observed in the lake's ice cover are produced. A heat flow map and photographs of the lake are overlaid to compare specific areas of thinned or broken ice with the hot spots. The regions of known hydrothermal activity and high heat flow correlate extremely well with circular regions of thinned ice, and zones of broken and recrystallized ice. Local and regional climate data and other sources of warm water, such as river inlets, are considered.

  19. Biot number and thermos bottle effect: implications for magma-chamber convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, C.R.

    1988-09-01

    Thermal boundary conditions model the coupling between a convecting magmatic body and its host. Such conditions need to be considered in models of igneous systems that involve thermal histories, crystallization and fractionation of melt, formation of aureoles by contact metamorphism, and any other processes in which transport of heat plays a role. Usually, investigations of magmatic systems have tended to emphasize modeling the interior convective regime relative to treatment of the thermal coupling. Yet it is found that the thermal nature of an intrusion is likely to be influenced more by coupling to its host than by the details ofmore » internal convective flows. Evaluation of a parameter having the form of a Biot number (Bi) provides a basis for estimating which boundary conditions are most appropriate. It is found that Bi less than or equal to 0.1 (constant heat-flux limit) for models of several caldera systems. For such values of the Biot number, the host regime behaves somewhat like a thermos bottle by limiting the flow of heat through the magma-host system so that convective stirring of magma has little effect on the cooling rate of the intrusion. Because of this insulating effect, boundary temperatures assumed in convection models should approach magmatic values even if an active hydrothermal system is present. However, high boundary temperatures do not imply that melting and assimilation of host rock by magma must occur. Despite the thermos bottle effect, magmatic convection can still be quite vigorous.« less

  20. Analysis of 35 GHz Cloud Radar polarimetric variables to identify stratiform and convective precipitation.

    NASA Astrophysics Data System (ADS)

    Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald

    2017-04-01

    This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.

  1. Mantle convection pattern and subcrustal stress field under South America

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1980-01-01

    The tectonic, igneous and metallogenic features of South America are discussed in terms of the crustal deformation associated with stresses due to mantle convection as inferred from the high degree harmonics in the geopotential field. The application of Runcorn's model for the laminar viscous flows in the upper mantle to satellite and gravity data results in a convection pattern which reveals the ascending flows between the descending Nazca plate and the overlying South American plate as well as segments of the descending Nazca plate beneath South America. The arc volcanism in South America is shown apparently to be related to the upwelling of high-temperature material induced by the subduction of the Nazca plate, with the South American basin systems associated with downwelling mantle flows. The resulting tensional stress fields are shown to be regions of structural kinship characterized by major concentrations of ore deposits and related to the cordillera, shield and igneous systems and the upward Andean movements. It is suggested that the upwelling convection flows in the upper mantle, coupled with crustal tension, have provided an uplift mechanism which has forced the hydrothermal systems in the basement rocks to the surface.

  2. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  3. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    USGS Publications Warehouse

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  4. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    NASA Astrophysics Data System (ADS)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault

  5. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  6. Convection in deep vertically shaken particle beds. III. Convection mechanisms

    NASA Astrophysics Data System (ADS)

    Klongboonjit, Sakon; Campbell, Charles S.

    2008-10-01

    Convection in a deep vertically vibrated two-dimensional cell of granular material occurs in the form of counter-rotating cells that move material from the walls to the center of the channel and back again. At least for deep beds, where for much of the cycle, particles are in long duration contact with their neighbors, convection only appears for a short potion of every third vibrational period. That period is delimited by the interaction of three types of internal waves, a compression wave, and two types of expansion waves. Four mechanisms are identified that drive the four basic motions of convection: (1) particles move upward at the center as the result of compression wave, (2) downward at the wall as a combined effect of frictional holdback by the walls and the downward pull of gravity, (3) from the center to the walls along the free surface due to the heaping of the bed generated by the compression wave, and (4) toward the center in the interior of the box to form the bottom of convection rolls due to the relaxation of compressive stresses caused by an expansion wave. Convection only occurs when the conditions are right for all four mechanisms to be active simultaneously.

  7. Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya Volcano, Nicaragua

    USGS Publications Warehouse

    Sanford, Ward E.; Pearson, S.C.P.; Kiyosugi, K.; Lehto, H.L.; Saballos, J.A.; Connor, C.B.

    2012-01-01

    We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (~250 m), relatively impermeable normal faults dipping at ~60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3-4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 x 10-5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.

  8. Natural thermal convection in fractured porous media

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.

    2015-12-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50

  9. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions.more » Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.« less

  10. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  11. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  12. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  13. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  14. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas

  15. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece

    USGS Publications Warehouse

    Hein, J.R.; Stamatakis, G.; Dowling, J.S.

    2000-01-01

    The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and

  16. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  17. Controls on Martian Hydrothermal Systems: Application to Valley Network and Magnetic Anomaly Formation

    NASA Technical Reports Server (NTRS)

    Harrison, Keith P.; Grimm, Robert E.

    2002-01-01

    Models of hydrothermal groundwater circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during hydrothermal alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.

  18. Application of Ground Based Microwave Radiometry for Characterizing Tropical Convection

    NASA Astrophysics Data System (ADS)

    Renju, R.; Raju, C. S.

    2016-12-01

    The characterization of the microphysical and thermodynamical properties of convective events over the tropical coastal station Thiruvananthapuram (TVM, 8.5o N 76.9oE) has been carried out by utilizing multiyear Microwave Radiometer Profiler (MRP) observations. The analyses have been extended to develop a methodology to identify convective events, based on the radiometric brightness temperature (Tb) differences, at 30 GHz and 22.5 GHz channels and are compared using reflectivity and rainfall intensity deduced from concurrent and collocated disdrometer measurements. In all 84 such convections were identified using the above methodology over the station for a period of years, 2010-2013; both during pre- and post- Indian summer monsoon months and further evaluated by computing their stability indices. The occurrence of convection over this coastal station peaks in the afternoon and early morning hours with genesis, respectively, over the land and the sea. The number of occurrence of convective events are less during monsoon deficit year whereas strong and more during heavy monsoon rainfall year. These findings are further evaluated with the percentage occurrence of fractional convective clouds derived from microwave payload SAPHIR observations on Megha-Tropique satellite. Based on the analyses the frequency of occurrence of convection can be related to the monsoonal rainfall obtaining over the region. The analyses also indicate that the microwave radiometric brightness temperature of humidity channels depicts the type of convection and respond two hours prior to the occurrence of rainfall. In addition to that the multi-angle observations of microwave radiometer profiler have been utilized to study the propagation of convective systems. This study and the methodology developed for identifying convection have significance in microwave (Ka- and W-band) satellite propagation characterization since convection and precipitation are the major hindrance to satellite

  19. Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…

  20. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately

  1. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    NASA Astrophysics Data System (ADS)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  2. Mapping Hydrothermal Alterations in the Muteh Gold Mining Area in Iran by using ASTER satellite Imagery data

    NASA Astrophysics Data System (ADS)

    Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed

    2016-04-01

    Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.

  3. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadingsmore » differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.« less

  4. THM modelling of hydrothermal circulation in deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean; Genter, Albert

    2014-05-01

    Numerous models have been developped for describing deep geothermal reservoirs. Using the opensource finite element software ASTER developped by EDF R&D, we carried out 2D simulations of the hydrothermal circulation in the deep geothermal reservoir of Soultz-sous-Forêts. The model is based on the effective description of Thermo-Hydro-Mechanical (THM) coupling at large scale. Such a model has a fourfold interest: a) the physical integration of laboratory measurements (rock physics), well logging, well head parameters, geological description, and geophysics field measurements; b) the construction of a direct model mechanically based for geophysical inversion: fluid flow, fluid pressure, temperature profile, seismicity monitoring, deformation of the ground surface (INSAR/GPS) related to reservoir modification, gravity or electromagnetic geophysical measurements; c) the sensitivity analysis of the parameters involved in the hydrothermal circulation and identification of the dominant ones; d) the development of a decision tool for drilling planning, stimulation and exploitation. In our model, we introduced extended Thermo-Hydro-Mechanical coupling including not only poro-elastic behavior but also the sensitivity of the fluid density, viscosity, and heat capacity to temperature and pressure. The behavior of solid rock grains is assumed to be thermo-elastic and linear. Hydraulic and thermal phenomena are governed by Darcy and Fourier laws respectively, and most rock properties (like the specific heat at constant stress csσ(T), or the thermal conductivity Λ(T,φ)) are assumed to depend on the temperature T and/or porosity φ. The radioactivity of the rocks is taken into account through a heat source term appearing in the balance equation of enthalpy. To characterize as precisely as possible the convective movement of water and the associated heat flow, water properties (specific mass ρw(T,pw), specific enthalpy hmw(T,pw) dynamic viscosity μw(T), thermal dilation

  5. Rotating non-Boussinesq Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim Vladimir

    This thesis makes quantitative predictions about the formation and stability of hexagonal and roll patterns in convecting system unbounded in horizontal direction. Starting from the Navier-Stokes, heat and continuity equations, the convection problem is then reduced to normal form equations using equivariant bifurcation theory. The relative stabilities of patterns lying on a hexagonal lattice in Fourier space are then determined using appropriate amplitude equations, with coefficients obtained via asymptotic expansion of the governing partial differential equations, with the conducting state being the base state, and the control parameter and the non-Boussinesq effects being small. The software package Mathematica was used to calculate amplitude coefficients of the appropriate coupled Ginzburg-Landau equations for the rigid-rigid and free-free case. A Galerkin code (initial version of which was written by W. Pesch et al.) is used to determine pattern stability further from onset and for strongly non-Boussinesq fluids. Specific predictions about the stability of hexagon and roll patterns for realistic experimental conditions are made. The dependence of the stability of the convective patterns on the Rayleigh number, planform wavenumber and the rotation rate is studied. Long- and shortwave instabilities, both steady and oscillatory, are identified. For small Prandtl numbers oscillatory sideband instabilities are found already very close to onset. A resonant mode interaction in hexagonal patterns arising in non-Boussinesq Rayleigh-Benard convection is studied using symmetry group methods. The lowest-order coupling terms for interacting patterns are identified. A bifurcation analysis of the resulting system of equations shows that the bifurcation is transcritical. Stability properties of resulting patterns are discussed. It is found that for some fluid properties the traditional hexagon convection solution does not exist. Analytical results are supported by numerical

  6. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  7. Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California.

    USGS Publications Warehouse

    Evarts, R.C.; Schiffman, P.

    1983-01-01

    Metamorphic zonation overprinted on the volcanic member and overlying volcanogenic sediments of the ophiolite complex increases downward in grade and is characterized by the sequential appearance with depth of zeolites, ferric pumpellyite and pistacitic epidote. Metamorphic assemblages of the plutonic member of the complex are characterized by the presence of calcic amphibole. The overprinting represents the effects of hydrothermal metamorphism resulting from the massive interaction between hot igneous rocks and convecting sea-water in a submarine environment. A thermal gradient of 100oC/km is postulated to account for the zonal recrystallization effects in the volcanic member. The diversity and sporadic distribution of mineral assemblages in the amphibole zone are considered due to the limited availability of H2O in the deeper part of the complex. Details of the zonation and representative microprobe analyses are tabulated.-M.S.

  8. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge.

    PubMed

    Wang, Liping; Li, Aimin; Chang, Yuzhi

    2017-04-01

    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    NASA Technical Reports Server (NTRS)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  10. An Automated Method to Identify Mesoscale Convective Complexes in the Regional Climate Model Evaluation System

    NASA Astrophysics Data System (ADS)

    Whitehall, K. D.; Jenkins, G. S.; Mattmann, C. A.; Waliser, D. E.; Kim, J.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Whittell, J.; Zimdars, P. A.

    2012-12-01

    Mesoscale convective complexes (MCCs) are large (2 - 3 x 105 km2) nocturnal convectively-driven weather systems that are generally associated with high precipitation events in short durations (less than 12hrs) in various locations through out the tropics and midlatitudes (Maddox 1980). These systems are particularly important for climate in the West Sahel region, where the precipitation associated with them is a principal component of the rainfall season (Laing and Fritsch 1993). These systems occur on weather timescales and are historically identified from weather data analysis via manual and more recently automated processes (Miller and Fritsch 1991, Nesbett 2006, Balmey and Reason 2012). The Regional Climate Model Evaluation System (RCMES) is an open source tool designed for easy evaluation of climate and Earth system data through access to standardized datasets, and intrinsic tools that perform common analysis and visualization tasks (Hart et al. 2011). The RCMES toolkit also provides the flexibility of user-defined subroutines for further metrics, visualization and even dataset manipulation. The purpose of this study is to present a methodology for identifying MCCs in observation datasets using the RCMES framework. TRMM 3 hourly datasets will be used to demonstrate the methodology for 2005 boreal summer. This method promotes the use of open source software for scientific data systems to address a concern to multiple stakeholders in the earth sciences. A historical MCC dataset provides a platform with regards to further studies of the variability of frequency on various timescales of MCCs that is important for many including climate scientists, meteorologists, water resource managers, and agriculturalists. The methodology of using RCMES for searching and clipping datasets will engender a new realm of studies as users of the system will no longer be restricted to solely using the datasets as they reside in their own local systems; instead will be afforded rapid

  11. The Diagnosis and application of a convective vorticity vector associated with convective systems

    NASA Astrophysics Data System (ADS)

    Gao, S.; Zhou, Y.; Tao, W.

    2005-05-01

    Although dry/moist potential vorticity is a very useful and powerful physical quantity in the large scale dynamics, it is not a quite ideal dynamical tool for the study of convective systems or severe storms. A new convective vorticity vector (CVV) is introduced in this study to identify the development of convective systems or severe storms. The daily Aviation (AVN) Model Data is used to diagnose the distribution of the CVV associated with rain storms occurred in the period of Meiyu in 1998. The results have clearly demonstrated that the CVV is an effective vector for indicating the convective actions along the Meiyu front. The CVV also is used to diagnose a 2-D cloud-resolving simulation data associated with 2-D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the Tropical cean-Global tmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2-D x-z frame. Analysis of zonally averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  12. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  13. Hydrothermal systems on Mars: an assessment of present evidence

    NASA Technical Reports Server (NTRS)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  14. Hydrothermal systems on Mars: an assessment of present evidence.

    PubMed

    Farmer, J D

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  15. Manganese Oxidizing Bacteria in Guaymas Basin Hydrothermal Fluids, Sediments, and Plumes

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Tebo, B. M.

    2002-12-01

    The active seafloor hydrothermal system at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and hydrothermal fluids are injected into a semi-enclosed basin. This hydrothermal activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin hydrothermal plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin hydrothermal fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both hydrothermal sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in hydrothermal fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon

  16. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  17. Giant convecting mud balls of the early solar system

    PubMed Central

    Bland, Philip A.; Travis, Bryan J.

    2017-01-01

    Carbonaceous asteroids may have been the precursors to the terrestrial planets, yet despite their importance, numerous attempts to model their early solar system geological history have not converged on a solution. The assumption has been that hydrothermal alteration was occurring in rocky asteroids with material properties similar to meteorites. However, these bodies would have accreted as a high-porosity aggregate of igneous clasts (chondrules) and fine-grained primordial dust, with ice filling much of the pore space. Short-lived radionuclides melted the ice, and aqueous alteration of anhydrous minerals followed. However, at the moment when the ice melted, no geological process had acted to lithify this material. It would have been a mud, rather than a rock. We tested the effect of removing the assumption of lithification. We find that if the body accretes unsorted chondrules, then large-scale mud convection is capable of producing a size-sorted chondrule population (if the body accretes an aerodynamically sorted chondrule population, then no further sorting occurs). Mud convection both moderates internal temperature and reduces variation in temperature throughout the object. As the system is thoroughly mixed, soluble elements are not fractionated, preserving primitive chemistry. Isotopic and redox heterogeneity in secondary phases over short length scales is expected, as individual particles experience a range of temperature and water-rock histories until they are brought together in their final configuration at the end of convection. These results are consistent with observations from aqueously altered meteorites (CI and CM chondrites) and spectra of primitive asteroids. The “mudball” model appears to be a general solution: Bodies spanning a ×1000 mass range show similar behavior. PMID:28740862

  18. Internal Wave Generation by Convection

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel Michael

    internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water

  19. Dynamics of Compressible Convection and Thermochemical Mantle Convection

    NASA Astrophysics Data System (ADS)

    Liu, Xi

    The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.

  20. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  1. Life Cycle of Tropical Convection and Anvil in Observations and Models

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  2. Transport across the tropical tropopause layer and convection

    NASA Astrophysics Data System (ADS)

    Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra

    2015-04-01

    We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.

  3. Seeking Signs of Life on Mars: A Strategy for Selecting and Analyzing Returned Samples from Hydrothermal Deposits

    NASA Astrophysics Data System (ADS)

    iMOST Team; Campbell, K. A.; Farmer, J. D.; Van Kranendonk, M. J.; Fernandez-Remolar, D. C.; Czaja, A. D.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    The iMOST hydrothermal deposits sub-team has identified key samples and investigations required to delineate the character and preservational state of potential biosignatures in ancient hydrothermal deposits.

  4. Supergranular Convection

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-12-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni

  5. Nanogeochemistry of hydrothermal magnetite

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin

    2018-06-01

    Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.

  6. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  7. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    USGS Publications Warehouse

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  8. Observed and Simulated Radiative and Microphysical Properties of Tropical Convective Storms

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Increases in the ice content, albedo and cloud cover of tropical convective storms in a warmer climate produce a large negative contribution to cloud feedback in the GISS GCM. Unfortunately, the physics of convective upward water transport, detrainment, and ice sedimentation, and the relationship of microphysical to radiative properties, are all quite uncertain. We apply a clustering algorithm to TRMM satellite microwave rainfall retrievals to identify contiguous deep precipitating storms throughout the tropics. Each storm is characterized according to its size, albedo, OLR, rain rate, microphysical structure, and presence/absence of lightning. A similar analysis is applied to ISCCP data during the TOGA/COARE experiment to identify optically thick deep cloud systems and relate them to large-scale environmental conditions just before storm onset. We examine the statistics of these storms to understand the relative climatic roles of small and large storms and the factors that regulate convective storm size and albedo. The results are compared to GISS GCM simulated statistics of tropical convective storms to identify areas of agreement and disagreement.

  9. Archaeal Diversity and Distribution along Thermal and Geochemical Gradients in Hydrothermal Sediments at the Yonaguni Knoll IV Hydrothermal Field in the Southern Okinawa Trough▿ †

    PubMed Central

    Nunoura, Takuro; Oida, Hanako; Nakaseama, Miwako; Kosaka, Ayako; Ohkubo, Satoru B.; Kikuchi, Toru; Kazama, Hiromi; Hosoi-Tanabe, Shoko; Nakamura, Ko-ichi; Kinoshita, Masataka; Hirayama, Hisako; Inagaki, Fumio; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Takai, Ken

    2010-01-01

    A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts. PMID:20023079

  10. HYDROTHERMAL MINERALOGY OF RESEARCH DRILL HOLE Y-3, YELLOWSTONE NATIONAL PARK, WYOMING.

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1984-01-01

    The approximate paragenetic sequence of hydrothermal minerals in the Y-3 U. S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, is: hydrothermal chalcedony, hematite, pyrite, quartz, clay minerals (smectite and mixed-layer illite-smectite), calcite, chlorite, fluorite, pyrite, quartz, zeolite minerals (analcime, dachiardite, laumontite, stilbite, and yugawaralite), and clay minerals (smectite and mixed-layer illite-smectite). A few hydrothermal minerals that were identified in drill core Y-3 (lepidolite, aegirine, pectolite, and truscottite) are rarely found in modern geothermal areas. The alteration minerals occur primarily as vug and fracture fillings that were deposited from cooling thermal water. Refs.

  11. Microbiology of ancient and modern hydrothermal systems.

    PubMed

    Reysenbach, A L; Cady, S L

    2001-02-01

    Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.

  12. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  13. Seismological evidence for an along-axis hydrothermal flow at the Lucky Strike hydrothermal vents site

    NASA Astrophysics Data System (ADS)

    Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2010-12-01

    Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do

  14. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along, the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms. Copyright 2008 by the American Geophysical Union.

  15. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms.

  16. Penetrative convection at high Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  17. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    NASA Astrophysics Data System (ADS)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  18. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2017-06-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  19. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  20. Education: DNA replication using microscale natural convection.

    PubMed

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  1. Climatology of convective showers dynamics in a convection-permitting model

    NASA Astrophysics Data System (ADS)

    Brisson, Erwan; Brendel, Christoph; Ahrens, Bodo

    2017-04-01

    Convection-permitting simulations have proven their usefulness in improving both the representation of convective rain and the uncertainty range of climate projections. However, most studies have focused on temporal scales greater or equal to convection cell lifetime. A large knowledge gap remains on the model's performance in representing the temporal dynamic of convective showers and how could this temporal dynamic be altered in a warmer climate. In this study, we proposed to fill this gap by analyzing 5-minute convection-permitting model (CPM) outputs. In total, more than 1200 one-day cases are simulated at the resolution of 0.01° using the regional climate model COSMO-CLM over central Europe. The analysis follows a Lagrangian approach and consists of tracking showers characterized by five-minute intensities greater than 20 mm/hour. The different features of these showers (e.g., temporal evolution, horizontal speed, lifetime) are investigated. These features as modeled by an ERA-Interim forced simulation are evaluated using a radar dataset for the period 2004-2010. The model shows good performance in representing most features observed in the radar dataset. Besides, the observed relation between the temporal evolution of precipitation and temperature are well reproduced by the CPM. In a second modeling experiment, the impact of climate change on convective cell features are analyzed based on an EC-Earth RCP8.5 forced simulation for the period 2071-2100. First results show only minor changes in the temporal structure and size of showers. The increase in convective precipitation found in previous studies seems to be mainly due to an increase in the number of convective cells.

  2. Boundary-modulated Thermal Convection Model in the Mantle

    NASA Astrophysics Data System (ADS)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  3. Modeling free energy availability from Hadean hydrothermal systems to the first metabolism.

    PubMed

    Simoncini, E; Russell, M J; Kleidon, A

    2011-12-01

    Off-axis Hydrothermal Systems (HSs) are seen as the possible setting for the emergence of life. As the availability of free energy is a general requirement to drive any form of metabolism, we ask here under which conditions free energy generation by geologic processes is greatest and relate these to the conditions found at off-axis HSs. To do so, we present a conceptual model in which we explicitly capture the energetics of fluid motion and its interaction with exothermic reactions to maintain a state of chemical disequilibrium. Central to the interaction is the temperature at which the exothermic reactions take place. This temperature not only sets the equilibrium constant of the chemical reactions and thereby the distance of the actual state to chemical equilibrium, but these reactions also shape the temperature gradient that drives convection and thereby the advection of reactants to the reaction sites and the removal of the products that relate to geochemical free energy generation. What this conceptual model shows is that the positive feedback between convection and the chemical kinetics that is found at HSs favors a greater rate of free energy generation than in the absence of convection. Because of the lower temperatures and because the temperature of reactions is determined more strongly by these dynamics rather than an external heat flux, the conditions found at off-axis HSs should result in the greatest rates of geochemical free energy generation. Hence, we hypothesize from these thermodynamic considerations that off-axis HSs seem most conducive for the emergence of protometabolic pathways as these provide the greatest, abiotic generation rates of chemical free energy.

  4. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  5. The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2005-01-01

    A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

  6. Hydrothermal Circulation Within and Between Basement Outcrops on a Young Ridge Flank: Numerical Models and Thermal Constraints

    NASA Astrophysics Data System (ADS)

    Hutnak, M.; Fisher, A. T.; Stauffer, P.; Gable, C. W.

    2005-12-01

    We use two-dimensional, finite-element models of coupled heat and fluid flow to investigate local and large-scale heat and fluid transport around and between basement outcrops on a young ridge flank. System geometries and properties are based on observations and measurements on the 3.4-3.6 Ma eastern flank of the Juan de Fuca Ridge. A small area of basement exposure (Baby Bare outcrop) experiences focused hydrothermal discharge, whereas a much larger feature (Grizzly Bare outcrop) 50 km to the south is a site of hydrothermal recharge. Observations of seafloor heat flow, subseafloor pressures, and basement fluid geochemistry at and near these outcrops constrain acceptable model results. Single-outcrop simulations suggest that local convection alone (represented by a high Nusselt number proxy) cannot explain the near-outcrop heat flow patterns; rapid through-flow is required. Venting of at least 5 L/s through the smaller outcrop, a volumetric flow rate consistent with earlier estimates based on plume and outcrop measurements, is needed to match seafloor heat flow patterns. Heat flow patterns are more variable and complex near the larger, recharging outcrop. Simulations that include 5-20 L/s of recharge through this feature can replicate first-order trends in the data, but small-scale variations are likely to result from heterogeneous flow paths and vigorous, local convection. Two-outcrop simulations started with a warm hydrostatic initial condition, based on a conductive model, result in rapid fluid flow from the smaller outcrop to the larger outcrop, inconsistent with observations. Flow can be sustained in the opposite (correct) direction if it is initially forced, which generates a hydrothermal siphon between the two features. Free flow simulations maintain rapid circulation at rates consistent with observations (specific discharge of m/yr to tens of m/yr), provided basement permeability is on the order of 10-10 m2 or greater. Lateral flow rates scale inversely

  7. Hydrothermal systems are a sink for dissolved black carbon in the deep ocean

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.

    2016-02-01

    Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during hydrothermal circulation. Here, we hypothesize that hydrothermal circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in hydrothermal fluids than in surrounding deep ocean seawater, confirming that hydrothermal circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during hydrothermal circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in hydrothermally altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after hydrothermal circulation. Our study identified hydrothermal circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, hydrothermal processing increases the B6CA/B5CA ratio, introducing a characteristic hydrothermal DBC signature.

  8. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.

  9. Evaluation of microbial community in hydrothermal field by direct DNA sequencing

    NASA Astrophysics Data System (ADS)

    Kawarabayasi, Y.; Maruyama, A.

    2002-12-01

    Many extremophiles have been discovered from terrestrial and marine hydrothermal fields. Some thermophiles can grow beyond 90°C in culture, while direct microscopic analysis occasionally indicates that microbes may survive in much hotter hydrothermal fluids. However, it is very difficult to isolate and cultivate such microbes from the environments, i.e., over 99% of total microbes remains undiscovered. Based on experiences of entire microbial genome analysis (Y.K.) and microbial community analysis (A.M.), we started to find out unique microbes/genes in hydrothermal fields through direct sequencing of environmental DNA fragments. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected by an in situ filtration system from low-temperature fluids at RM24 in the Southern East Pacific Rise (S-EPR). A gene amplification (PCR) technique was not used for preventing mutation in the process. The nucleotide sequences of 285 clones indicated that no sequence had identical data in public databases. Among 27 clones determined entire sequences, no ORF was identified on 14 clones like intron in Eukaryote. On four clones, tetra-nucleotide-long multiple tandem repetitive sequences were identified. This type of sequence was identified in some familiar disease in human. The result indicates that living/dead materials with eukaryotic features may exist in this low temperature field. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. In randomly-selected 143 clones used for sequencing, no known sequence was identified. Unlike the clones in S-EPR library, clear ORFs were identified on all nine clones determined the entire sequence. It was found that one clone, H4052, contained the complete Aspartyl-tRNA synthetase. Phylogenetic analysis using amino acid sequences of this gene indicated that this gene was separated from other Euryarchaea before the

  10. A Generalized Simple Formulation of Convective Adjustment Timescale for Cumulus Convection Parameterizations

    EPA Science Inventory

    Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a pres...

  11. The Impact of Parameterized Convection on Climatological Precipitation in Atmospheric Global Climate Models

    NASA Astrophysics Data System (ADS)

    Maher, Penelope; Vallis, Geoffrey K.; Sherwood, Steven C.; Webb, Mark J.; Sansom, Philip G.

    2018-04-01

    Convective parameterizations are widely believed to be essential for realistic simulations of the atmosphere. However, their deficiencies also result in model biases. The role of convection schemes in modern atmospheric models is examined using Selected Process On/Off Klima Intercomparison Experiment simulations without parameterized convection and forced with observed sea surface temperatures. Convection schemes are not required for reasonable climatological precipitation. However, they are essential for reasonable daily precipitation and constraining extreme daily precipitation that otherwise develops. Systematic effects on lapse rate and humidity are likewise modest compared with the intermodel spread. Without parameterized convection Kelvin waves are more realistic. An unexpectedly large moist Southern Hemisphere storm track bias is identified. This storm track bias persists without convection schemes, as does the double Intertropical Convergence Zone and excessive ocean precipitation biases. This suggests that model biases originate from processes other than convection or that convection schemes are missing key processes.

  12. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys

    PubMed Central

    Pjevac, Petra; Meier, Dimitri V.; Markert, Stephanie; Hentschker, Christian; Schweder, Thomas; Becher, Dörte; Gruber-Vodicka, Harald R.; Richter, Michael; Bach, Wolfgang; Amann, Rudolf; Meyerdierks, Anke

    2018-01-01

    At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys. PMID:29696004

  13. The Spatial Scale of Convective Aggregation in Cloud Resolving Simulations of Radiative Convective Equilibrium

    NASA Astrophysics Data System (ADS)

    Patrizio, Casey

    A three-dimensional cloud-resolving model (CRM) was used to investigate the preferred separation distance between humid, rainy regions formed by convective aggregation in radiative-convective equilibrium without rotation. We performed the simulations with doubly-periodic square domains of widths 768 km, 1536 km and 3072 km over a time period of about 200 days. The simulations in the larger domains were initialized using multiple copies of the results in the small domain at day 90, plus a small perturbation. With all three domain sizes, the simulations evolved to a single statistically steady convective cluster surrounded by a broader region of dry, subsiding air by about day 150. In the largest domain case, however, we found that an additional convective cluster formed when we the simulation was run for an extended period of time. Specifically, a smaller convective cluster formed at around day 185 at a maximum radial distance from the larger cluster and then re-merged with the larger cluster after about 10 days. We explored how the aggregated state was different in each domain case, before the smaller cluster formed in the large domain. In particular, we investigated changes in the radial structure of the aggregated state by calculating profiles for the water, dynamics and radiation as a function of distance from the center of the convective region. Changes in the vertical structure were also investigated by compositing on the convective region and dry, subsiding region at each height. We found that, with increasing domain size, the convective region boundary layer became more buoyant, the convective cores reached deeper into the troposphere, the mesoscale convective updraft became weaker, and the mesoscale convective region spread out. Additionally, as the domain size was increased, conditions in the remote environment became favorable for convection. We describe a physical mechanism for the weakening of the mesoscale convective updraft and associated broadening

  14. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Yu, Zenghui; Li, Huaiming; Li, Mengxing; Zhai, Shikui

    2018-04-01

    30 sediments grabbed from 24 sites between the equator and 10°N along the Carlsberg Ridge (CR) in the northwest Indian Ocean has been analyzed for bulk chemical compositions. Hydrothermal components in the sediments are identified and characterized. They mainly occur at 6.3°N as sulfide debris and at 3.6°N as both sulfide and high temperature water-rock interaction products. The enrichment of chalcophile elements such as Zn, Cu, Pb and the depletion of alkalis metals such as K and Rb are the typical features of hydrothermal components. High U/Fe, low (Nd/Yb)N and negative Ce anomaly infer the uptake of seawater in the hydrothermal deposits by oxidizing after deposition. However, the general enrichment of Mn in hydrothermal plumed-derived materials is not found in the sediments, which may indicate the limited diffusion of fluids or plumes, at least in the direction along the Carlsberg spreading center. The hydrothermal components show their similarity to the hydrothermal deposits from the Indian Ocean Ridge. At 3.6°N ultramafic rocks or gabbroic intrusions, may be involved in the hydrothermal system.

  15. Volcanic Centers in the East Africa Rift: Volcanic Processes with Seismic Stresses to Identify Potential Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.

    2015-12-01

    The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.

  16. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  17. The characteristics of hydrothermal plumes observed in the Precious Stone Mountain hydrothermal field, the Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.

    2014-12-01

    The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly

  18. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  19. Changing Characteristics of convective storms: Results from a continental-scale convection-permitting climate simulations

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.

    2016-12-01

    Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.

  20. Moist, Double-diffusive convection

    NASA Astrophysics Data System (ADS)

    Oishi, Jeffrey; Burns, Keaton; Brown, Ben; Lecoanet, Daniel; Vasil, Geoffrey

    2017-11-01

    Double-diffusive convection occurs when the competition between stabilizing and a destabilizing buoyancy source is mediated by a difference in the diffusivity of each source. Such convection is important in a wide variety of astrophysical and geophysical flows. However, in giant planets, double-diffusive convection occurs in regions where condensation of important components of the atmosphere occurs. Here, we present preliminary calculations of moist, double-diffusive convection using the Dedalus pseudospectral framework. Using a simple model for phase change, we verify growth rates for moist double diffusive convection from linear calculations and report on preliminary relationships between the ability to form liquid phase and the resulting Nusselt number in nonlinear simulations.

  1. Uncertainties related to the representation of momentum transport in shallow convection

    NASA Astrophysics Data System (ADS)

    Schlemmer, Linda; Bechtold, Peter; Sandu, Irina; Ahlgrimm, Maike

    2017-04-01

    The vertical transport of horizontal momentum by convection has an important impact on the general circulation of the atmosphere as well as on the life cycle and track of cyclones. So far convective momentum transport (CMT) has mostly been studied for deep convection, whereas little is known about its characteristics and importance in shallow convection. In this study CMT by shallow convection is investigated by analyzing both data from large-eddy simulations (LES) and simulations performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). In addition, the central terms underlying the bulk mass-flux parametrization of CMT are evaluated offline. Further, the uncertainties related to the representation of CMT are explored by running the stochastically perturbed parametrizations (SPP) approach of the IFS. The analyzed cases exhibit shallow convective clouds developing within considerable low-level wind shear. Analysis of the momentum fluxes in the LES data reveals significant momentum transport by the convection in both cases, which is directed down-gradient despite substantial organization of the cloud field. A detailed inspection of the convection parametrization reveals a very good representation of the entrainment and detrainment rates and an appropriate representation of the convective mass and momentum fluxes. To determine the correct values of mass-flux and in-cloud momentum at the cloud base in the parametrization yet remains challenging. The spread in convection-related quantities generated by the SPP is reasonable and addresses many of the identified uncertainties.

  2. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  3. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  4. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  5. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modeling

    NASA Astrophysics Data System (ADS)

    Yamaya, Y.; Alanis, P. K. B.; Takeuchi, A.; Cordon, J. M.; Mogi, T.; Hashimoto, T.; Sasai, Y.; Nagao, T.

    2013-07-01

    Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.

  6. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  7. Observing Convective Aggregation

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  8. A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme

    EPA Science Inventory

    Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...

  9. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  10. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  11. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    NASA Astrophysics Data System (ADS)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  12. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts

    DOE PAGES

    Gao, Feng; Szanyi, Janos

    2018-05-07

    Cu/SSZ-13 SCR catalysts have been extensively studied in the past decade or so. Hydrothermal stability of these catalysts has been identified as the most important criterion for application. In this perspective, we describe recent atomic-level understanding of their hydrothermal stability. In particular, electron paramagnetic resonance (EPR) is shown to rather accurately quantify isolated Cu(II) ions and CuO clusters in fresh and aged catalysts to demonstrate the remarkable hydrothermal stability for Cu 2+ ions located in 6-membered ring windows, and the conversion of [Cu(OH)] + ions in Chabazite cages to CuO clusters. The hydrothermal stability difference of the two isolated Cu(II)more » ions is confirmed with DFT simulations and the conversion of [Cu(OH)] + to CuO is proposed to involve formation, migration and condensation of Cu(OH) 2 intermediates. The structural destructive role of CuO clusters is attributed to mesopore formation from their migration, which more severely damages the catalysts than dealumination. Lastly, perspectives are given on new strategies for low-temperature NO x removal, rational design and refinement of Cu/SSZ-13, and development of new Cu/zeolite SCR catalysts with even better performance than the state-of-the-art Cu/SSZ-13.« less

  13. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Szanyi, Janos

    Cu/SSZ-13 SCR catalysts have been extensively studied in the past decade or so. Hydrothermal stability of these catalysts has been identified as the most important criterion for application. In this perspective, we describe recent atomic-level understanding of their hydrothermal stability. In particular, electron paramagnetic resonance (EPR) is shown to rather accurately quantify isolated Cu(II) ions and CuO clusters in fresh and aged catalysts to demonstrate the remarkable hydrothermal stability for Cu 2+ ions located in 6-membered ring windows, and the conversion of [Cu(OH)] + ions in Chabazite cages to CuO clusters. The hydrothermal stability difference of the two isolated Cu(II)more » ions is confirmed with DFT simulations and the conversion of [Cu(OH)] + to CuO is proposed to involve formation, migration and condensation of Cu(OH) 2 intermediates. The structural destructive role of CuO clusters is attributed to mesopore formation from their migration, which more severely damages the catalysts than dealumination. Lastly, perspectives are given on new strategies for low-temperature NO x removal, rational design and refinement of Cu/SSZ-13, and development of new Cu/zeolite SCR catalysts with even better performance than the state-of-the-art Cu/SSZ-13.« less

  14. Equatorially trapped convection in a rapidly rotating shallow shell

    NASA Astrophysics Data System (ADS)

    Miquel, Benjamin; Xie, Jin-Han; Featherstone, Nicholas; Julien, Keith; Knobloch, Edgar

    2018-05-01

    Motivated by the recent discovery of subsurface oceans on planetary moons and the interest they have generated, we explore convective flows in shallow spherical shells of dimensionless gap width ɛ2≪1 in the rapid rotation limit E ≪1 , where E is the Ekman number. We employ direct numerical simulation (DNS) of the Boussinesq equations to compute the local heat flux Nu (λ ) as a function of the latitude λ and use the results to characterize the trapping of convection at low latitudes, around the equator. We show that these results are quantitatively reproduced by an asymptotically exact nonhydrostatic equatorial β -plane convection model at a much more modest computational cost than DNS. We identify the trapping parameter β =ɛ E-1 as the key parameter that controls the vigor and latitudinal extent of convection for moderate thermal forcing when E ˜ɛ and ɛ ↓0 . This model provides a theoretical paradigm for nonlinear investigations.

  15. Turbulent convection in liquid metal with and without rotation

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional buoyancy forcing and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer . In general, we find that the convective behavior of liquid metal differs substantially from that of moderate fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of and fluids, respectively. PMID:23569262

  16. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  17. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  18. An examination of natural convection between two horizontal walls

    NASA Astrophysics Data System (ADS)

    Martine, J.-P.

    Measurements were made of the turbulence magnitudes and characteristics of natural convective air flow between plates. The thermal and kinematic properties of the flows were determined for comparison with theoretical predictions. Three horizontal layers were identified, as were the principle parameters for a law of variations. A viscous film with heat transferred mainly by conduction, a thermal boundary layer where strong convective changes occurred, and a central isothermal mean layer where the temperature was convected as a passive scalar were characterized. The velocity structures, both horizontal and vertical, were defined in each region. The thermal gradients were strongest near the wall, to the extent that new thermometric instruments are necessary for direct instantaneous measurement of the discrete layers that might form in that region.

  19. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  20. Testing particle filters on convective scale dynamics

    NASA Astrophysics Data System (ADS)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  1. Project "Convective Wind Gusts" (ConWinG)

    NASA Astrophysics Data System (ADS)

    Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo

    2017-04-01

    Convectively-driven strong winds usually associated with thunderstorms frequently cause substantial damage to buildings and other structures in many parts of the world. Decisive for the high damage potential are the short-term wind speed maxima with duration of a few seconds, termed as gusts. Several studies have shown that convectively-driven gusts can reach even higher wind speeds compared to turbulent gusts associated with synoptic-scale weather systems. Due to the small-scale and non-stationary nature of convective wind gusts, there is a considerable lack of knowledge regarding their characteristics and statistics. Furthermore, their interaction with urban structures and their influence on buildings is not yet fully understood. For these two reasons, convective wind events are not included in the present wind load standards of buildings and structures, which so far have been based solely on the characteristics of synoptically-driven wind gusts in the near-surface boundary layer (e. g., DIN EN 1991-1-4:2010-12; ASCE7). However, convective and turbulent gusts differ considerably, e.g. concerning vertical wind-speed profiles, gust factors (i.e., maximum to mean wind speed), or exceedance probability curves. In an effort to remedy this situation, the overarching objective of the DFG-project "Convective Wind Gusts" (ConWinG) is to investigate the characteristics and statistics of convective gusts as well as their interaction with urban structures. Based on a set of 110 climate stations of the German Weather Service (DWD) between 1992 and 2014, we analyzed the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. A relation between gust intensity/probability to orography or climate conditions cannot be identified. Rather, high wind speeds, e.g., above 30 m/s, can be expected everywhere in Germany with almost

  2. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Astrophysics Data System (ADS)

    Duh, J. C.; Yang, Wen-Jei

    1989-09-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  3. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Technical Reports Server (NTRS)

    Duh, J. C.; Yang, Wen-Jei

    1989-01-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  4. Investigation of Thermal Stress Convection in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1996-01-01

    Microgravity conditions offer an environment in which convection in a nonisothermal gas could be driven primarily by thermal stress. A direct examination of thermal stress flows would be invaluable in assessing the accuracy of the Burnett terms in the fluid stress tensor. We present a preliminary numerical investigation of the competing effects of thermal stress, thermal creep at the side walls, and buoyancy on gas convection in nonuniformly heated containers under normal and reduced gravity levels. Conditions in which thermal stress convection becomes dominant are identified, and issues regarding the experimental measurement of the flows are discussed.

  5. Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  6. Biogeochemical Cycling of Manganese at Hydrothermal Vents

    DTIC Science & Technology

    1990-01-01

    from an anoxic basin) contain the gene for the large subunit of Ribulose- 1,5-bisphosphate Carboxylase Oxygenase ( RubisCO ) suggestive of autotrophy... RubisCO gene probing on the bacterial isolates obtained from the hydrothermal vent environments as part of an ongoing ONR contract. In addition, we have...to test the feasibility of using gene probes for Ribulose-l,5- bisphosphate Carboxylase Oxygenase ( RubisCO ) for identifying autotrophic Mn(II

  7. New insights on the remarkable longevity of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Carazzo, G.

    2011-12-01

    Observations of the temporal variability of hydrothermal activity over the Juan de Fuca Ridge provide valuable clues for understanding the dynamics of hydrothermal plumes in the deep ocean. Analyses of hydrothermal temperature and light attenuation anomalies show that the structure of these plumes varies on an interannual rather than weekly or monthly time scale. This surprising stability is in complete disagreement with calculations of the residence time for the suspended particles, which suggest a complete particle sedimentation within a few days or weeks. In order to understand this difference, we performed analog experiments simulating particle-laden hydrothermal plumes. These experiments consist in injecting upwards at a fixed rate a hot mixture of fresh water and solid particles in a tank containing stratified salt water. Measurements of light attenuation, temperature and salinity anomalies are conducted during the experiments in order to decipher the causal links between real-time observations and venting conditions. Our results show that depending on the source conditions and the strength of density stratification in the tank, large-scale instabilities may develop due to the differential diffusion of heat and fine particles. Diffusive particle convection enhances the dispersion of fine particles and increases the longevity of the plume. We show that this process is a common phenomenon in natural submarine plumes, which not only increases the longevity of the plumes up to at least 5 years, but also permits dissolution processes to occur providing large amounts of dissolved chemical species far from the point of emission. A new model for particle sedimentation from hydrothermal plumes is presented and tested against natural data collected over the Cleft segment of the Juan de Fuca Ridge between 1987 and 1991. This model is found to be in good agreement with measurements of the rate of change of light attenuation within the chronic plume overlying the north

  8. Part II. Hydrothermal steel slag valorization: hydrogen and nano-magnetite production

    NASA Astrophysics Data System (ADS)

    Crouzet, Camille; Brunet, Fabrice; Recham, Nadir; Auzende, Anne-Line; Findling, Nathaniel; Magnin, Valérie; Ferrasse, Jean-Henry; Goffé, Bruno

    2017-10-01

    The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150 – 350°C range for acid acetic concentrations from 0 to 4M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 × 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 hours, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10 – 30 nm, 100 – 300 nm and 1 – 10 µm. The smallest fraction (10 – 30 nm) is comparable to the 10 – 20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.

  9. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents

    USGS Publications Warehouse

    Reysenbach, A.-L.; Liu, Yajing; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, Karen L.; Voytek, M.A.

    2006-01-01

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.

  10. Long-range transport of Xe-133 emissions under convective and non-convective conditions.

    PubMed

    Kuśmierczyk-Michulec, J; Krysta, M; Kalinowski, M; Hoffmann, E; Baré, J

    2017-09-01

    To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory ideally provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. This paper investigates the long-range transport of Xe-133 emissions under convective and non-convective conditions, with special emphasis on evaluating the changes in the simulated activity concentration values due to the inclusion of the convective transport in the ATM simulations. For that purpose a series of 14 day forward simulations, with and without convective transport, released daily in the period from 1 January 2011 to 30 June 2013, were analysed. The release point was at the ANSTO facility in Australia. The simulated activity concentrations for the period January 2011 to February 2012 were calculated using the daily emission values provided by the ANSTO facility; outside the aforementioned period, the median daily emission value was used. In the simulations the analysed meteorological input data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5°. It was found that the long-range transport of Xe-133 emissions under convective conditions, where convection was included in the ATM simulation, led to a small decrease in the activity concentration, as compared to transport without convection. In special cases related to deep convection, the opposite effect was observed. Availability of both daily emission values and measured Xe-133 activity concentration values was an opportunity to validate the simulations. Based on the paired t-test, a 95% confidence interval for the true mean difference between simulations without convective transport and measurements was constructed. It was estimated that the overall uncertainty lies between 0.08 and 0.25 mBq/m 3

  11. Convective penetration in stars

    NASA Astrophysics Data System (ADS)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; Constantino, Tom; Popov, M. V.; Walder, Rolf; Folini, Doris; TOFU Collaboration

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC, currently being developed at the University of Exeter. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework (FP7/2007-2013)/ERC Grant agreement no. 320478.

  12. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    NASA Astrophysics Data System (ADS)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  13. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  14. Thermocapillary Convection in Liquid Droplets

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this video is to understand the effects of surface tension on fluid convection. The fluid system chosen is the liquid sessile droplet to show the importance in single crystal growth, the spray drying and cooling of metal, and the advance droplet radiators of the space stations radiators. A cross sectional representation of a hemispherical liquid droplet under ideal conditions is used to show internal fluid motion. A direct simulation of buoyancy-dominant convection and surface tension-dominant convection is graphically displayed. The clear differences between two mechanisms of fluid transport, thermocapillary convection, and bouncy dominant convection is illustrated.

  15. Biogeochemistry of hydrothermally and adjacent non-altered soils

    USDA-ARS?s Scientific Manuscript database

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  16. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth

  17. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  18. Turbulent convection in liquid metal with and without rotation.

    PubMed

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr < 1. Most analog models of planetary dynamos, however, use moderate Pr fluids, and the systematic influence of reducing Pr is not well understood. We perform rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr < 1 and Pr > 1 fluids, respectively.

  19. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  20. Convective instabilities in a ternary alloy mushy layer

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel; Guba, Peter

    2014-11-01

    We investigate a mathematical model of convection, thermal and solutal diffusion in a primary mushy layer during the solidification of a ternary alloy. In particular, we explore the influence of phase-change effects, such as solute rejection, latent heat and background solidification, in a linear stability analysis of a non-convecting base state solution. We identify how different rates of diffusion (e.g. double diffusion) as well as how different rates of solute rejection (double solute rejection) play a role in this system. Novel modes of instability that can be present under statically stable conditions are identified. Parcel arguments are proposed to explain the physical mechanisms that give rise to the instabilities. This work was supported in part by the U.S. National Science Foundation, DMS-1107848 (D.M.A.) and by the Slovak Scientific Grant Agency, VEGA 1/0711/12 (P.G.).

  1. Natural convection in low-g environments

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Bannister, T. C.

    1974-01-01

    The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.

  2. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed

  3. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    NASA Astrophysics Data System (ADS)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  4. From convection rolls to finger convection in double-diffusive turbulence

    PubMed Central

    Verzicco, Roberto; Lohse, Detlef

    2016-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474

  5. Hydrothermal pretreatment of palm oil empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  6. The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations

    PubMed Central

    Heinold, B; Knippertz, P; Marsham, JH; Fiedler, S; Dixon, NS; Schepanski, K; Laurent, B; Tegen, I

    2013-01-01

    [1] Convective cold pools and the breakdown of nocturnal low-level jets (NLLJs) are key meteorological drivers of dust emission over summertime West Africa, the world’s largest dust source. This study is the first to quantify their relative contributions and physical interrelations using objective detection algorithms and an off-line dust emission model applied to convection-permitting simulations from the Met Office Unified Model. The study period covers 25 July to 02 September 2006. All estimates may therefore vary on an interannual basis. The main conclusions are as follows: (a) approximately 40% of the dust emissions are from NLLJs, 40% from cold pools, and 20% from unidentified processes (dry convection, land-sea and mountain circulations); (b) more than half of the cold-pool emissions are linked to a newly identified mechanism where aged cold pools form a jet above the nocturnal stable layer; (c) 50% of the dust emissions occur from 1500 to 0200 LT with a minimum around sunrise and after midday, and 60% of the morning-to-noon emissions occur under clear skies, but only 10% of the afternoon-to-nighttime emissions, suggesting large biases in satellite retrievals; (d) considering precipitation and soil moisture effects, cold-pool emissions are reduced by 15%; and (e) models with parameterized convection show substantially less cold-pool emissions but have larger NLLJ contributions. The results are much more sensitive to whether convection is parameterized or explicit than to the choice of the land-surface characterization, which generally is a large source of uncertainty. This study demonstrates the need of realistically representing moist convection and stable nighttime conditions for dust modeling. Citation: Heinold, B., P. Knippertz, J. H. Marsham, S. Fiedler, N. S. Dixon, K. Schepanski, B. Laurent, and I. Tegen (2013), The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection

  7. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  8. Southern Ocean Convection and tropical telleconnections

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  9. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  10. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  11. The Gondou hydrothermal field in the Ryukyu Arc: A huge hydrothermal system on the flank of a caldera volcano

    NASA Astrophysics Data System (ADS)

    Minami, H.; Ohara, Y.

    2017-09-01

    High-resolution geophysical mapping was conducted from an autonomous underwater vehicle on the flank of Daisan-Kume Knoll in the Ryukyu Arc, southwest of Japan. 1 m resolution bathymetry identified 264 spires, 173 large mounds and 268 small mounds within a depression that is up to 1600 m wide and up to 60 m deep, at water depths between 1330 and 1470 m. Hydrothermal venting is strongly inferred from the observation of plumes in sidescan sonar imagery and positive temperature anomalies over the spires and mounds. This field, named the Gondou Field, has a giant mound G1 with a diameter of 280 m and a height of 80 m. Mound G1 has distinctive summit ridges composed of multiple spires where acoustic plumes with temperature anomalies up to 1.12°C are observed, indicative of high-temperature venting. Other than mound G1, a number of active large mounds more than 30 m wide and spires over 10-22 m tall are common and they concentrate in the central and southern areas of the field, suggesting that these areas are the center of present hydrothermal activity. Acoustic plumes imaged by side-scan sonar at the Gondou Field are different in character from bubble plumes imaged in other hydrothermal fields in the Ryukyu Arc. The plumes are diffused and deflected as they rise through the water column and have a shape consistent with black smokers.

  12. Integrated model of the shallow and deep hydrothermal systems in the East Mesa area, Imperial Valley, California

    USGS Publications Warehouse

    Riney, T. David; Pritchett, J.W.; Rice, L.F.

    1982-01-01

    Geological, geophysical, thermal, petrophysical and hydrological data available for the East Mesa hydrothermal system that are pertinent to the construction of a computer model of the natural flow of heat and fluid mass within the system are assembled and correlated. A conceptual model of the full system is developed and a subregion selected for quantitative modeling. By invoking the .Boussinesq approximation, valid for describing the natural flow of heat and mass in a liquid hydrothermal system, it is found practical to carry computer simulations far enough in time to ensure that steady-state conditions are obtained. Initial calculations for an axisymmetric model approximating the system demonstrate that the vertical formation permeability of the deep East Mesa system must be very low (kv ~ 0.25 to 0.5 md). Since subsurface temperature and surface heat flow data exhibit major deviations from the axisymmetric approximation, exploratory three-dimensional calculations are performed to assess the effects of various mechanisms which might operate to produce such observed asymmetries. A three-dimensional model evolves from this iterative data synthesis and computer analysis which includes a hot fluid convective source distributed along a leaky fault radiating northward from the center of the hot spot and realistic variations in the reservoir formation properties.

  13. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying

    2018-03-01

    The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.

  14. Mining key elements for severe convection prediction based on CNN

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  15. Convective scale interaction: Arc cloud lines and the development and evolution of deep convection

    NASA Technical Reports Server (NTRS)

    Purdom, James Francis Whitehurst

    1986-01-01

    Information is used from satellite data and research aircraft data to provide new insights concerning the mesoscale development and evolution of deep convection in an atmosphere typified by weak synoptic-scale forcing. The importance of convective scale interaction in the development and evolution of deep convection is examined. This interaction is shown to manifest itself as the merger and intersection of thunderstorm outflow boundaries (arc cloud lines) with other convective lines, areas or boundaries. Using geostationary satellite visible and infrared data convective scale interaction is shown to be responsible for over 85 percent of the intense convection over the southeast U.S. by late afternoon, and a majority of that area's afternoon rainfall. The aircraft observations provided valuable information concerning critically important regions of the arc cloud line: (1) the cool outflow region, (2) the density surge line interface region; and (3) the sub-cloud region above the surge line. The observations when analyzed with rapid scan satellite data, helped in defining the arc cloud line's life cycle as 3 evolving stages.

  16. Observing microphysical structures and hydrometeor phase in convection with ARM active sensors

    NASA Astrophysics Data System (ADS)

    Riihimaki, L.; Comstock, J. M.; Luke, E. P.; Thorsen, T. J.; Fu, Q.

    2016-12-01

    The existence and distribution of super-cooled liquid water within convective clouds impacts the microphysical processes responsible for cloud radiative and lifetime effects. Yet few observations of cloud phase are available within convection and associated stratiform anvils. Here we identify super-cooled liquid layers within convection and associated stratiform clouds using measured radar Doppler spectra from vertically pointing Ka-band cloud radar and Raman Lidar, capitalizing on the strengths of both instruments. Observations from these sensors are used to show that liquid exists in patches within the cloud, rather than in uniform layers, impacting the growth and formation of ice. While a depolarization lidar like the Raman Lidar is a trusted measurement for identifying super-cooled liquid, the lidar attenuates at an optical depth of around three, limiting its ability to probe the full cloud. The use of the radar Doppler spectra is particularly valuable for this purpose because it allows observations within optically thicker clouds. We demonstrate a new method for identifying super-cooled liquid objectively from the radar Doppler spectra using machine-learning techniques.

  17. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    PubMed

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrothermal processes in the Edmond deposits, slow- to intermediate-spreading Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Cao, Hong; Sun, Zhilei; Zhai, Shikui; Cao, Zhimin; Jiang, Xuejun; Huang, Wei; Wang, Libo; Zhang, Xilin; He, Yongjun

    2018-04-01

    The Edmond hydrothermal field, located on the Central Indian Ridge (CIR), has a distinct mineralization history owing to its unique magmatic, tectonic, and alteration processes. Here, we report the detailed mineralogical and geochemical characteristics of hydrothermal metal sulfides recovered from this area. Based on the mineralogical investigations, the Edmond hydrothermal deposits comprise of high-temperature Fe-rich massive sulfides, medium-temperature Zn-rich sulfide chimney and low-temperature Ca-rich sulfate mineral assemblages. According to these compositions, three distinctive mineralization stages have been identified: (1) low-temperature consisting largely of anhydrite and pyrite/marcasite; (2) medium-high temperature distinguished by the mineral assemblage of pyrite, sphalerite and chalcopyrite; and (3) low-temperature stage characterized by the mineral assemblage of colloidal pyrite/marcasite, barite, quartz, anglesite. Several lines of evidence suggest that the sulfides were influenced by pervasive low-temperature diffuse flows in this area. The hydrothermal deposits are relatively enriched in Fe (5.99-18.93 wt%), Zn (2.10-10.00 wt%) and Ca (0.02-19.15 wt%), but display low Cu (0.28-0.81 wt%). The mineralogical varieties and low metal content of sulfides in the Edmond hydrothermal field both indicate that extensive water circulation is prevalent below the Edmond hydrothermal field. With regard to trace elements, the contents of Pb, Ba, Sr, As, Au, Ag, and Cd are significantly higher than those in other sediment-starved mid-ocean ridges, which is indicative of contribution from felsic rock sources. Furthermore, the multiphase hydrothermal activity and the pervasive water circulation underneath are speculated to play important roles in element remobilization and enrichment. Our findings deepen our understanding about the complex mineralization process in slow- to intermediate-spreading ridges globally.

  19. 2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material

    NASA Astrophysics Data System (ADS)

    Hassini, Lamine; Raja, Lamloumi; Lecompte-Nana, Gisèle Laure; Elcafsi, Mohamed Afif

    2017-04-01

    The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose-clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the 'COMSOL Multiphysics' software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.

  20. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  1. Convection in Extratropical Cyclones: Analysis of GPM, NexRAD, GCMs and Re-Analysis

    NASA Astrophysics Data System (ADS)

    Jeyaratnam, J.; Booth, J. F.; Naud, C. M.; Luo, J.

    2017-12-01

    Extratropical Cyclones (ETCs) are the most common cause of extreme precipitation in mid-latitudes and are important in the general atmospheric circulation as they redistribute moisture and heat. Isentropic lifting, upright convection, and slantwise convection are mechanisms of vertical motion within an ETC, which deliver different rain rates and might respond differently to global warming. In this study we compare different metrics for identifying convection within the ETC's and calculate the relative contribution of convection to total ETC precipitation. We determine if convection occurs preferentially in specific regions of the storm and decide how to best utilize GPM retrievals covering other parts of the mid-latitudes. Additionally, mid-latitude cyclones are tracked and composites of these tracked cyclones are compared amongst multiple versions of Global Circulation Models (GCMs) from Coupled Model Intercomparison Project Phase 6 (CMIP6) prototype models and re-analysis data; Model Diagnostic Task Force (MDTF) Geophysical Fluid Dynamics Laboratory (GFDL) using a two-plume convection scheme, MDTF GFDL using the Donner convection scheme, Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), and European Reanalysis produced by the European Center for Medium-Range Weather Forecasts (ECMWF).

  2. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    PubMed

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  3. Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon

    NASA Astrophysics Data System (ADS)

    Schiro, K. A.; Neelin, J. D.

    2017-12-01

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.

  4. Supergranulation, a convective phenomenon

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-08-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection ,Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J

  5. Convection and downbursts

    Treesearch

    Joseph J. Charney; Brian E. Potter

    2017-01-01

    Convection and downbursts are connected meteorological phenomena with the potential to affect fire behavior and thereby alter the evolution of a wildland fire. Meteorological phenomena related to convection and downbursts are often discussed in the context of fire behavior and smoke. The physical mechanisms that contribute to these phenomena are interrelated, but the...

  6. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

    NASA Astrophysics Data System (ADS)

    Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei

    2018-04-01

    Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.

  7. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    known thermophiles. Up until now, thermophiles and hyperthermophiles have been studied in cultured hydrothermal vent fluid samples, or have been identified from 16S rRNA taxonomic analyses. These recovered genes provide direct evidence for a pervasive subsurface hyperthermophilic biosphere in off-axis hydrothermal sediments.

  8. Interactions Between Convective Storms and Their Environment

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.

    1979-01-01

    The ways in which intense convective storms interact with their environment are considered for a number of specific severe storm situations. A physical model of subcloud wind fields and vertical wind profiles was developed to explain the often observed intensification of convective storms that move along or across thermal boundaries. A number of special, unusually dense, data sets were used to substantiate features of the model. GOES imagery was used in conjunction with objectively analyzed surface wind data to develop a nowcast technique that might be used to identify specific storm cells likely to become tornadic. It was shown that circulations associated with organized meso-alpha and meso-beta scale storm complexes may, on occasion, strongly modify tropospheric thermodynamic patterns and flow fields.

  9. Mineralized iron oxidizing bacteria from hydrothermal vents: targeting biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.

    2010-12-01

    Putative hydrothermal systems have been identified on Mars based on orbital imagery and rover-based analyses. Based on Earth analogs, hydrothermal systems on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures. For example, iron oxidizing bacteria are ubiquitous in marine and terrestrial hydrothermal systems, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Microfossils of iron oxidizing bacteria have been found in ancient Si-Fe deposits and iron oxidation may be an ancient and widespread metabolic pathway. In order to investigate mineralized iron oxidizing bacteria as a biosignature, we have examined samples collected from extinct hydrothermal vents along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic iron oxidizing bacteria, isolated from active Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and O2 concentration (5%) in a controlled bioreactor system. Samples and experimental products were examined with a combination of variable-pressure and field-emission scanning electron microscopy (SEM), in some cases by preparing samples with a focused ion beam (FIB) milling system. Light-toned seafloor samples display abundant filamentous forms resembling, in both size and shape (1-5 microns in diameter and up to several microns in length), the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Some samples consist entirely of low-density masses of silica (>90% Si) encrusted filamentous forms. The presence of unmineralized filamentous matter rich in C and Fe suggests that these are the remains of iron oxidizing bacteria. Mineralized filaments sectioned by FIB show variable internal material within semi-hollow, tubular-like features. Silica encrustations also show pseudo-concentric growth bands. In the bioreactor runs, abundant microbial growth and

  10. Formation and dynamics of hazardous convective weather events in Ukraine

    NASA Astrophysics Data System (ADS)

    Balabukh, Vera; Malytska, Liudmyla; Bazalieieva, Iuliana

    2013-04-01

    Atmospheric circulation change observed from the middle of the 70s of the twentieth century in the Northern Hemisphere resulted in changes of weather events formation conditions in different regions. The degree of influence of various factors on the formation of weather events also has changed. This eventually led to an increase in number and intensity of weather events and their variations in time and space. Destructions and damages associated with these events have increased recently and the biggest damages are mainly results of complex convective weather events: showers, hail, squall. Therefore, one of the main tasks of climatology is to study the mechanisms of change repeatability and intensity of these events. The paper considers the conditions of formation of hazardous convective weather phenomena (strong showers, hail, squalls, tornadoes) in Ukraine and their spatial and temporal variability during 1981 - 2010. Research of convection processes was based on daily radiosonde data for the warm season (May-September 1981 - 2010s), reanalysis ERA-Interim ECMWF data for 1989 - 2010 years , daily observations at 187 meteorological stations in Ukraine, as well as observations of the natural phenomena in other regions (different from the meteorological stations). Indices of atmospheric instability, the magnitude of the Convective Available Potential Energy (CAPE), the moisture, the height of the condensation and equilibrium level was used to quantify the intensity of convection. The criteria for the intensity of convection for Ukrainian territory were refined on the basis of these data. Features of the development of convection for various hazardous convective weather events were investigated and identified the necessary conditions for the occurrence of showers, hail, tornadoes and squall in Ukraine. Spatio-temporal variability of convection intensity in Ukraine, its regional characteristics and dynamics for the past 30 year was analyzed. Significant tendency to an

  11. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  12. The characteristics of hydrothermal plumes observed at the Zouyu-1 and Zouyu-2 hydrothermal fields in the Southern Mid-Atlantic Ridges

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Baker, E. T.; Li, H.

    2016-12-01

    The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) hydrothermal fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two hydrothermal fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 hydrothermal fields. And the highest turbidity anomalies were concentrated around Zouyu-2 hydrothermal field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of hydrothermal plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were hydrothermally induced. Keywords: hydrothermal plume, Zouyu-1 hydrothermal field, Zouyu-2 hydrothermal field

  13. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.

  14. Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data

    NASA Astrophysics Data System (ADS)

    Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.

    2018-01-01

    Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.

  15. Convective Electrokinetic Instability With Conductivity Gradients

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan

    2003-11-01

    Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.

  16. Observing convection with satellite, radar, and lightning measurements

    NASA Astrophysics Data System (ADS)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Mecikalski et al. (2010) are used to identify convectively active regions. Additionally, retrieved physical cloud properties of state-of-the-art cloud remote sensing algorithms such as the cloud top height, multilayer flags, cloud phase, optical depth and effective radius are employed. As soon as larger particles form, radar observations complement the satellite ones. Radar datasets are used in particular to observe the precipitation intensity and type, the vertical extension and structure of the convective cells. In the mature stage convective cells might start to produce lightning. The relation between the different observables and their suitability as predictors for the further convective development are discussed, e.g. strong updrafts in the developing phase are often followed by fast anvil spreading and intense precipitation in the mature phase. Threads and hazards due to heavy precipitation, hail, and wind gusts are estimated. Hering, A. M., Germann, U., Boscacci, M., Sénési, S., 2008: Operational nowcasting of thunderstorms in the Alps during MAP D-PHASE. In Proceedings of 5th European Conference on Radar in Meteorology and Hydrology (ERAD), 30 June - 4 July 2008, Helsinki, Finland. 1-5. Copernicus: Göttingen, Germany. Hilker, N., Badoux, A., Hegg, C., 2010: Unwetterschäden in der Schweiz im Jahre 2009. Wasser Energ. Luft 102: 1-6 (in German). Mecikalski, J. R., Mackenzie, W. M., König, M., Muller, S. 2010: Use of Meteosat Second Generation infrared data in 0-1 hour convective initiation nowcasting. Part 1. Infrared fields. J. Appl. Meteorol. 49: 521-534. Nisi, L., Ambrosetti, P., Clementi, L., 2014: Nowcasting severe convection in the Alpine region: the COALITION approach. QJRMT, 140, 682, 1684-1699, DOI: 10.1002/qj.2249

  17. Seismic Constraints on Interior Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.

    2010-01-01

    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.

  18. Chicxulub: testing for post-impact hydrothermal inputs into the Tertiary ocean

    NASA Astrophysics Data System (ADS)

    Rowe, A.; Wilkinson, J.; Morgan, J.

    2003-04-01

    wider significance of such hydrothermal circulation, if identified, include the potential formation of hydrothermal mineralization and vent-related ecosystems in the Chicxulub crater. The results will also have implications for the exploration of impact-related hydrothermal ecosystems on other planets.

  19. Heat flow in relation to hydrothermal activity in the southern Black Rock Desert, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass, J.H.; Zoback, M.L.; Galanis, S.P. Jr.

    1979-01-01

    As part of an investigation of the Gerlach NE KGRA (Known Geothermal Resource Area) a number of heat-flow measurements were made in playa sediments of the southern Black Rock Desert, northwestern Nevada. These data together with additional previously unpublished heat-flow values reveal a complex pattern of heat flow with values ranging between 1.0 to 5.0 HFU (40 to 100 mWm/sup -2/) outside of the hot springs area. The mean heat flow for the 13 reported sites in the southern Black Rock Desert is 1.8 +- 0.15 HFU (75 +- 6 mWm/sup -2/). The complexity of the pattern of heat flowmore » is believed to arise from hydrothermal circulation supporting the numerous hot springs throughout the region. The fact that the lowest observed heat flow occurs in the deepest part of the basin strongly suggests that fluid movement within the basin represents part of the recharge for the hydrothermal system. A thermal balance for the system incorporating both anomalous conductive heat loss and convective heat loss from the spring systems indicate a total energy loss of about 8.0 Mcal/sec or 34 megawatts over an estimated 1000 km/sup 2/ region. Consideration of this additional heat loss yields a mean regional heat flow of 2.5 + HFU (100 + mWm/sup -2/) and warrants inclusion of this region in the Battle Mountain heat-flow high (Lachenbruch and Sass, 1977, 1978).« less

  20. Convective dynamics - Panel report

    NASA Technical Reports Server (NTRS)

    Carbone, Richard; Foote, G. Brant; Moncrieff, Mitch; Gal-Chen, Tzvi; Cotton, William; Heymsfield, Gerald

    1990-01-01

    Aspects of highly organized forms of deep convection at midlatitudes are reviewed. Past emphasis in field work and cloud modeling has been directed toward severe weather as evidenced by research on tornadoes, hail, and strong surface winds. A number of specific issues concerning future thrusts, tactics, and techniques in convective dynamics are presented. These subjects include; convective modes and parameterization, global structure and scale interaction, convective energetics, transport studies, anvils and scale interaction, and scale selection. Also discussed are analysis workshops, four-dimensional data assimilation, matching models with observations, network Doppler analyses, mesoscale variability, and high-resolution/high-performance Doppler. It is also noted, that, classical surface measurements and soundings, flight-level research aircraft data, passive satellite data, and traditional photogrammetric studies are examples of datasets that require assimilation and integration.

  1. Concepts of magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Vasyliunas, V. M.

    1975-01-01

    The paper describes the basic theoretical notions of convection applicable to magnetospheres in general and discusses the relative importance of convective and corrotational motions, with particular reference to the comparison of the earth and Jupiter. The basic equations relating the E, B, and J fields and the bulk plasma velocity are given for the three principal regions in magnetosphere dynamics, namely, the central object and its magnetic field, the space surrounding the central object, and the external medium outside the magnetosphere. The notion of driving currents of magnetospheric convection and their closure is explained, while consideration of the added effects of the rotation of the central body completes the basic theoretical picture. Flow topology is examined for the two cases where convection dominates over corotation and vice versa.

  2. Solutal Convection in Porous Media

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Wen, B.; DiCarlo, D. A.; Hesse, M. A.

    2017-12-01

    Atmospheric CO2 is one important component of greenhouse gases, which can greatly affect the temperature of the Earth. There are four trapping mechanisms for CO2sequestration, including structural & stratigraphic trapping, residual trapping, dissolution trapping and mineral trapping. Leakage potential is a serious problem for its storage efficiency, and dissolution trapping is a method that can prevent such leakages effectively. Convective dissolution trapping process can be simplified to an interesting physical problem: in porous media, dissolution can initiate convection, and then its dynamics can be affected by the continuous convection conversely. However, it is difficult to detect whether the convective dissolution may take place, as well as how fast and in what pattern it may take place. Previous studies have established a model and related scaling (Rayleigh number and Sherwood number) to describe this physical problem. To testify this model with a large range of Rayleigh numbers, we conducted a series of convective dissolution experiments in porous media. In addition, this large experimental assembly can allow us to quantify relation between wavenumber of the convective motion and the controlling factors of the system for the first time. The result of our laboratory experiments are revolutionary: On one hand, it shows that previous scaling of the convective dissolution becomes invalid once the permeability is large enough; On the other hand, the relation between wavenumber and Rayleigh number demonstrates an opposite trend against the classic model. According to our experimental results, we propose a new model to describe the solutal convection in porous media, and our model can describe and explain our experimental observations. Also, simulation work has been conducted to confirm our model. In the future, our model and relevant knowledge can be unscaled to industrial applications which are relevant to convective dissolution process.

  3. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    NASA Astrophysics Data System (ADS)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  4. Introducing Convective Cloud Microphysics to a Deep Convection Parameterization Facilitating Aerosol Indirect Effects

    NASA Astrophysics Data System (ADS)

    Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.

    2012-12-01

    Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical

  5. Scaling rates of true polar wander in convecting planets and moons

    NASA Astrophysics Data System (ADS)

    Rose, Ian; Buffett, Bruce

    2017-12-01

    Mass redistribution in the convecting mantle of a planet causes perturbations in its moment of inertia tensor. Conservation of angular momentum dictates that these perturbations change the direction of the rotation vector of the planet, a process known as true polar wander (TPW). Although the existence of TPW on Earth is firmly established, its rate and magnitude over geologic time scales remain controversial. Here we present scaling analyses and numerical simulations of TPW due to mantle convection over a range of parameter space relevant to planetary interiors. For simple rotating convection, we identify a set of dimensionless parameters that fully characterize true polar wander. We use these parameters to define timescales for the growth of moment of inertia perturbations due to convection and for their relaxation due to true polar wander. These timescales, as well as the relative sizes of convective anomalies, control the rate and magnitude of TPW. This analysis also clarifies the nature of so called "inertial interchange" TPW events, and relates them to a broader class of events that enable large and often rapid TPW. We expect these events to have been more frequent in Earth's past.

  6. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  7. Archetypal TRMM Radar Profiles Identified Through Cluster Analysis

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2003-01-01

    It is widely held that identifiable 'convective regimes' exist in nature, although precise definitions of these are elusive. Examples include land / Ocean distinctions, break / monsoon beahvior, seasonal differences in the Amazon (SON vs DJF), etc. These regimes are often described by differences in the realized local convective spectra, and measured by various metrics of convective intensity, depth, areal coverage and rainfall amount. Objective regime identification may be valuable in several ways: regimes may serve as natural 'branch points' in satellite retrieval algorithms or data assimilation efforts; one example might be objective identification of regions that 'should' share a similar 2-R relationship. Similarly, objectively defined regimes may provide guidance on optimal siting of ground validation efforts. Objectively defined regimes could also serve as natural (rather than arbitrary geographic) domain 'controls' in studies of convective response to environmental forcing. Quantification of convective vertical structure has traditionally involved parametric study of prescribed quantities thought to be important to convective dynamics: maximum radar reflectivity, cloud top height, 30-35 dBZ echo top height, rain rate, etc. Individually, these parameters are somewhat deficient as their interpretation is often nonunique (the same metric value may signify different physics in different storm realizations). Individual metrics also fail to capture the coherence and interrelationships between vertical levels available in full 3-D radar datasets. An alternative approach is discovery of natural partitions of vertical structure in a globally representative dataset, or 'archetypal' reflectivity profiles. In this study, this is accomplished through cluster analysis of a very large sample (0[107) of TRMM-PR reflectivity columns. Once achieved, the rainconditional and unconditional 'mix' of archetypal profile types in a given location and/or season provides a description

  8. Simulating North American mesoscale convective systems with a convection-permitting climate model

    NASA Astrophysics Data System (ADS)

    Prein, Andreas F.; Liu, Changhai; Ikeda, Kyoko; Bullock, Randy; Rasmussen, Roy M.; Holland, Greg J.; Clark, Martyn

    2017-10-01

    Deep convection is a key process in the climate system and the main source of precipitation in the tropics, subtropics, and mid-latitudes during summer. Furthermore, it is related to high impact weather causing floods, hail, tornadoes, landslides, and other hazards. State-of-the-art climate models have to parameterize deep convection due to their coarse grid spacing. These parameterizations are a major source of uncertainty and long-standing model biases. We present a North American scale convection-permitting climate simulation that is able to explicitly simulate deep convection due to its 4-km grid spacing. We apply a feature-tracking algorithm to detect hourly precipitation from Mesoscale Convective Systems (MCSs) in the model and compare it with radar-based precipitation estimates east of the US Continental Divide. The simulation is able to capture the main characteristics of the observed MCSs such as their size, precipitation rate, propagation speed, and lifetime within observational uncertainties. In particular, the model is able to produce realistically propagating MCSs, which was a long-standing challenge in climate modeling. However, the MCS frequency is significantly underestimated in the central US during late summer. We discuss the origin of this frequency biases and suggest strategies for model improvements.

  9. Hydrothermal systems as environments for the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  10. LANL - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  11. Convection in containerless processing.

    PubMed

    Hyers, Robert W; Matson, Douglas M; Kelton, Kenneth F; Rogers, Jan R

    2004-11-01

    Different containerless processing techniques have different strengths and weaknesses. Applying more than one technique allows various parts of a problem to be solved separately. For two research projects, one on phase selection in steels and the other on nucleation and growth of quasicrystals, a combination of experiments using electrostatic levitation (ESL) and electromagnetic levitation (EML) is appropriate. In both experiments, convection is an important variable. The convective conditions achievable with each method are compared for two very different materials: a low-viscosity, high-temperature stainless steel, and a high-viscosity, low-temperature quasicrystal-forming alloy. It is clear that the techniques are complementary when convection is a parameter to be explored in the experiments. For a number of reasons, including the sample size, temperature, and reactivity, direct measurement of the convective velocity is not feasible. Therefore, we must rely on computation techniques to estimate convection in these experiments. These models are an essential part of almost any microgravity investigation. The methods employed and results obtained for the projects levitation observation of dendrite evolution in steel ternary alloy rapid solidification (LODESTARS) and quasicrystalline undercooled alloys for space investigation (QUASI) are explained.

  12. Convective aggregation in realistic convective-scale simulations

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmRe.134...87S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmRe.134...87S"><span>Spatio-temporal clustering and density estimation of lightning data for the tracking of <span class="hlt">convective</span> events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strauss, Cesar; Rosa, Marcelo Barbio; Stephany, Stephan</p> <p>2013-12-01</p> <p><span class="hlt">Convective</span> cells are cloud formations whose growth, maturation and dissipation are of great interest among meteorologists since they are associated with severe storms with large precipitation structures. Some works suggest a strong correlation between lightning occurrence and <span class="hlt">convective</span> cells. The current work proposes a new approach to analyze the correlation between precipitation and lightning, and to <span class="hlt">identify</span> electrically active cells. Such cells may be employed for tracking <span class="hlt">convective</span> events in the absence of weather radar coverage. This approach employs a new spatio-temporal clustering technique based on a temporal sliding-window and a standard kernel density estimation to process lightning data. Clustering allows the identification of the cells from lightning data and density estimation bounds the contours of the cells. The proposed approach was evaluated for two <span class="hlt">convective</span> events in Southeast Brazil. Image segmentation of radar data was performed to <span class="hlt">identify</span> <span class="hlt">convective</span> precipitation structures using the Steiner criteria. These structures were then compared and correlated to the electrically active cells in particular instants of time for both events. It was observed that most precipitation structures have associated cells, by comparing the ground tracks of their centroids. In addition, for one particular cell of each event, its temporal evolution was compared to that of the associated precipitation structure. Results show that the proposed approach may improve the use of lightning data for tracking <span class="hlt">convective</span> events in countries that lack weather radar coverage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28390235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28390235"><span><span class="hlt">Hydrothermal</span> and alkaline <span class="hlt">hydrothermal</span> pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin</p> <p>2017-06-15</p> <p>To test the feasibility and practicability of the process combing <span class="hlt">hydrothermal</span> pretreatment for dewatering with biogas production for full utilization of sewage sludge, <span class="hlt">hydrothermal</span>/alkaline <span class="hlt">hydrothermal</span> pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The <span class="hlt">hydrothermal</span> temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline <span class="hlt">hydrothermal</span> pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure <span class="hlt">hydrothermal</span> pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for <span class="hlt">hydrothermal</span> and alkaline <span class="hlt">hydrothermal</span> pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline <span class="hlt">hydrothermal</span> process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990010013','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990010013"><span>Characterization of Mesoscale <span class="hlt">Convective</span> Systems by Means of Composite Radar Reflectivity Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geerts, Bart</p> <p>1998-01-01</p> <p>A mesoscale <span class="hlt">convective</span> system (MCS) is broadly defined as a cloud and precipitation system of mesoscale dimensions (often too large for most aircraft to circumnavigate) with deep-<span class="hlt">convective</span> activity concentrated in at least part of the MCS, or present during part of its evolution. A large areal fraction of MCSs is stratiform in nature, yet estimates from MCSs over the Great Plains, the Southeast, and tropical waters indicate that at least half of the precipitation is of <span class="hlt">convective</span> origin. The presence of localized <span class="hlt">convection</span> is important, because within <span class="hlt">convective</span> towers cloud particles and hydrometeors are carried upward towards the cloud top. Ice crystals then move over more stratiform regions, either laterally, or through in situ settling over decaying and spreading <span class="hlt">convection</span>. These ice crystals then grow to precipitation-size particles in mid- to upper tropospheric mesoscale updrafts. The <span class="hlt">convective</span> portion of a MCS is often a more or less continuous line of thunderstorms, and may be either short-lived or long-lived. Geerts (1997) presents a preliminary climatology of MCSs in the southeastern USA, using just one year of composite digital radar reflectivity data. In this study MCSs are <span class="hlt">identified</span> and characterized by means of visual inspection of animated images. A total of 398 MCSs were <span class="hlt">identified</span>. In the warm season MCSs were found to be about twice as frequent as in the cold season. The average lifetime and maximum length of MCSs are 9 hours, and 350 km, respectively, but some MCSs are much larger and more persistent. In the summer months small and short-lived MCSs are relatively more common, whereas in winter larger and longer-lived systems occur more frequently. MCSs occur more commonly in the afternoon, in phase with thunderstorm activity, but the amplitude of the diurnal cycle is small compared to that of observed thunderstorms. It is estimated that in the Southeast more than half of all precipitation and severe weather results from MCSs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1390221','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1390221"><span>Combined <span class="hlt">hydrothermal</span> liquefaction and catalytic <span class="hlt">hydrothermal</span> gasification system and process for conversion of biomass feedstocks</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.</p> <p>2017-09-12</p> <p>A combined <span class="hlt">hydrothermal</span> liquefaction (HTL) and catalytic <span class="hlt">hydrothermal</span> gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812226T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812226T"><span>Anhydrite precipitation in seafloor <span class="hlt">hydrothermal</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Theissen-Krah, Sonja; Rüpke, Lars H.</p> <p>2016-04-01</p> <p>The composition and metal concentration of <span class="hlt">hydrothermal</span> fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming <span class="hlt">hydrothermal</span> systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising <span class="hlt">hydrothermal</span> fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with <span class="hlt">hydrothermal</span> fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of <span class="hlt">hydrothermal</span> circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the <span class="hlt">hydrothermal</span> flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 <span class="hlt">hydrothermal</span> field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20192971','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20192971"><span>Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea <span class="hlt">hydrothermal</span> plume.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dick, Gregory J; Tebo, Bradley M</p> <p>2010-05-01</p> <p><span class="hlt">Hydrothermal</span> plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) <span class="hlt">hydrothermal</span> plume is microbially mediated and suggests that the plume microbial community is distinct from deep-sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to <span class="hlt">identify</span> Mn(II)-oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over-represented in the plume. Eight Mn(II)-oxidizing bacteria were isolated, but none of these or previously <span class="hlt">identified</span> Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB <span class="hlt">hydrothermal</span> plume is mediated by genome-level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3144064','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3144064"><span>Concerns of <span class="hlt">Hydrothermal</span> Degradation in CAD/CAM Zirconia</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.</p> <p>2010-01-01</p> <p>Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to <span class="hlt">hydrothermal</span> degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the <span class="hlt">hydrothermal</span> degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior <span class="hlt">hydrothermal</span> degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated <span class="hlt">hydrothermal</span> degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of <span class="hlt">hydrothermal</span> and structural stabilities is addressed. PMID:19966039</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170389','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170389"><span><span class="hlt">Hydrothermal</span> systems and volcano geochemistry</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fournier, R.O.</p> <p>2007-01-01</p> <p>The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that <span class="hlt">hydrothermal</span> processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and <span class="hlt">hydrothermal</span> processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of <span class="hlt">hydrothermal</span> processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........96W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........96W"><span>CHORUS code for solar and planetary <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Junfeng</p> <p></p> <p>Turbulent, density stratified <span class="hlt">convection</span> is ubiquitous in stars and planets. Numerical simulation has become an indispensable tool for understanding it. A primary contribution of this dissertation work is the creation of the Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating the <span class="hlt">convection</span> and related fluid dynamics in the interiors of stars and planets. In this work, the CHORUS code is verified by using two newly defined benchmark cases and demonstrates excellent parallel performance. It has unique potential to simulate challenging physical phenomena such as multi-scale solar <span class="hlt">convection</span>, core <span class="hlt">convection</span>, and <span class="hlt">convection</span> in oblate, rapidly-rotating stars. In order to exploit its unique capabilities, the CHORUS code has been extended to perform the first 3D simulations of <span class="hlt">convection</span> in oblate, rapidly rotating solar-type stars. New insights are obtained with respect to the influence of oblateness on the <span class="hlt">convective</span> structure and heat flux transport. With the presence of oblateness resulting from the centrifugal force effect, the <span class="hlt">convective</span> structure in the polar regions decouples from the main <span class="hlt">convective</span> modes in the equatorial regions. Our <span class="hlt">convection</span> simulations predict that heat flux peaks in both the polar and equatorial regions, contrary to previous theoretical results that predict darker equators. High latitudinal zonal jets are also observed in the simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...568A..60L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...568A..60L"><span>Vigorous <span class="hlt">convection</span> in a sunspot granular light bridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lagg, Andreas; Solanki, Sami K.; van Noort, Michiel; Danilovic, Sanja</p> <p>2014-08-01</p> <p>Context. Light bridges are the most prominent manifestation of <span class="hlt">convection</span> in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. Aims: An in-depth study of the <span class="hlt">convective</span> motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of <span class="hlt">identifying</span> similarities and differences to typical quiet-Sun granules. Methods: Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Results: Central hot upflows surrounded by cooler fast downflows reaching 10 km s-1 clearly establish the <span class="hlt">convective</span> nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. Conclusions: The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying <span class="hlt">convection</span> zone. The fast, supersonic downflows are most likely a result of a combination of invigorated <span class="hlt">convection</span> in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression. The two movies are available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........53G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........53G"><span>Regional analysis of <span class="hlt">convective</span> systems during the West African monsoon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guy, Bradley Nicholas</p> <p></p> <p> characteristics (e.g. total precipitation and vertical reflectivity profiles) at the inland and maritime sites. The wave regime also resulted in an increased population of the largest observed mesoscale <span class="hlt">convective</span> systems observed near the coast, which led to an increase in stratiform precipitation. Despite this increase, differentiation of <span class="hlt">convective</span> strength characteristics was less obvious between wave and no-wave regimes at the coast. Due to the propagating nature of these advecting mesoscale <span class="hlt">convective</span> systems, interaction with the regional thermodynamic and dynamic environment appears to result in more variability than enhancements due to the wave regime, independent of location. A 13-year (1998-2010) climatology of mesoscale <span class="hlt">convective</span> characteristics associated with the West African monsoon are also investigated using precipitation radar and passive microwave data from the NASA Tropical Rainfall Measuring Mission satellite. Seven regions defined as continental northeast and northwest, southeast and southwest, coastal, and maritime north and south are compared to analyze zonal and meridional differences. Data are categorized according to <span class="hlt">identified</span> African easterly wave (AEW) phase and when no wave is present. While some enhancements are observed in association with AEW regimes, regional differences were generally more apparent than wave vs. no-wave differences. <span class="hlt">Convective</span> intensity metrics confirm that land-based systems exhibit stronger characteristics, such as higher storm top and maximum 30-dBZ heights and significant 85-GHz brightness temperature depressions. Continental systems also contain a lower fraction of points <span class="hlt">identified</span> as stratiform. Results suggest that precipitation processes also varied depending upon region and AEW regime, with warm-rain processes more apparent over the ocean and the southwest continental region and ice-based microphysics more dominant over land, including mixed-phase processes. AEW regimes did show variability in stratiform fraction and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010020499&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Danticipation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010020499&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Danticipation"><span>Impact Crater <span class="hlt">Hydrothermal</span> Niches for Life on Mars: Question of Scale</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.</p> <p>2000-01-01</p> <p>A major focus in the search for fossil life on Mars is on ancient <span class="hlt">hydrothermal</span> deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of <span class="hlt">hydrothermal</span> activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized <span class="hlt">hydrothermal</span> deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential <span class="hlt">hydrothermal</span> sites on Mars. Such a strategy is being developed for volcanogenic <span class="hlt">hydrothermal</span> systems, and a similar strategy is needed for impact <span class="hlt">hydrothermal</span> systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B12B..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B12B..08L"><span>Microbial processing of carbon in <span class="hlt">hydrothermal</span> systems (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LaRowe, D.; Amend, J. P.</p> <p>2013-12-01</p> <p>Microorganisms are known to be active in <span class="hlt">hydrothermal</span> systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in <span class="hlt">hydrothermal</span> environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that <span class="hlt">hydrothermal</span> conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow <span class="hlt">hydrothermal</span> fluids, <span class="hlt">hydrothermally</span> influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca <span class="hlt">hydrothermal</span> system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GApFD.110..317D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GApFD.110..317D"><span>Soret and Dufour effects on thermohaline <span class="hlt">convection</span> in rotating fluids</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duba, C. T.; Shekar, M.; Narayana, M.; Sibanda, P.</p> <p>2016-07-01</p> <p>Using linear and weakly nonlinear stability theory, the effects of Soret and Dufour parameters are investigated on thermohaline <span class="hlt">convection</span> in a horizontal layer of rotating fluid, specifically the ocean. Thermohaline circulation is important in mixing processes and contributes to heat and mass transports and hence the earth's climate. A general conception is that due to the smallness of the Soret and Dufour parameters their effect is negligible. However, it is shown here that the Soret parameter, salinity and rotation stabilise the system, whereas temperature destabilises it and the Dufour parameter has minimal effect on stationary <span class="hlt">convection</span>. For oscillatory <span class="hlt">convection</span>, the analysis is difficult as it shows that the Rayleigh number depends on six parameters, the Soret and Dufour parameters, the salinity Rayleigh number, the Lewis number, the Prandtl number, and the Taylor number. We demonstrate the interplay between these parameters and their effects on oscillatory <span class="hlt">convection</span> in a graphical manner. Furthermore, we find that the Soret parameter enhances oscillatory <span class="hlt">convection</span> whereas the Dufour parameter, salinity Rayleigh number, the Lewis number, and rotation delay instability. We believe that these results have not been elucidated in this way before for large-scale fluids. Furthermore, we investigate weakly nonlinear stability and the effect of cross diffusive terms on heat and mass transports. We show the existence of new solution bifurcations not previously <span class="hlt">identified</span> in literature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017098','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017098"><span><span class="hlt">Hydrothermal</span> alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil <span class="hlt">Hydrothermal</span> Field</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.</p> <p>1994-01-01</p> <p>The Galapagos Fossil <span class="hlt">Hydrothermal</span> Field is composed of altered oceanic crust and extinct <span class="hlt">hydrothermal</span> vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the <span class="hlt">hydrothermal</span> system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the <span class="hlt">hydrothermal</span> alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine <span class="hlt">hydrothermal</span> systems</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13E2127C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13E2127C"><span>Characterizing the degree of <span class="hlt">convective</span> clustering using radar reflectivity and its application to evaluating model simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.</p> <p>2017-12-01</p> <p>Despite the impact of mesoscale <span class="hlt">convective</span> organization on the properties of <span class="hlt">convection</span> (e.g., mixing between updrafts and environment), parameterizing the degree of <span class="hlt">convective</span> organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified <span class="hlt">Convection</span> Scheme UNICON). Additionally, challenges remain in determining the degree of <span class="hlt">convective</span> organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale <span class="hlt">convective</span> organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale <span class="hlt">convective</span> organization in radar data is the degree of <span class="hlt">convective</span> clustering, which can be characterized by the number and size distribution of <span class="hlt">convective</span> echoes and the distance between them. We propose a method of defining contiguous <span class="hlt">convective</span> echoes (CCEs) using precipitating <span class="hlt">convective</span> echoes <span class="hlt">identified</span> by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of <span class="hlt">convective</span> clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the <span class="hlt">convective</span> updrafts and thus provide the basis of a metric for <span class="hlt">convective</span> organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate <span class="hlt">convective</span> clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to <span class="hlt">convective</span> clustering, and the feedback to the <span class="hlt">convective</span> properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AtmRe..83..458R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AtmRe..83..458R"><span>Analysis of mesoscale <span class="hlt">convective</span> systems in Catalonia using meteorological radar for the period 1996 2000</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rigo, Tomeu; Llasat, Maria-Carmen</p> <p>2007-02-01</p> <p>The aim of this paper is to show a climatology of Mesoscale <span class="hlt">Convective</span> Systems (MCS) in the NE of the Iberian Peninsula, on the basis of meteorological radar observations. Special attention was paid to those cases that have produced heavy rainfalls during the period 1996-2000. Identification of the MCS was undertaken using two procedures. Firstly, the precipitation structures at the lowest level were recognised by means of a 2D algorithm that distinguishes between <span class="hlt">convective</span> and non-<span class="hlt">convective</span> contribution. Secondly, the <span class="hlt">convective</span> cells were <span class="hlt">identified</span> using a 3D procedure quite similar to the SCIT (Storm Cell Identification and Tracking) algorithm that looks for the reflectivity cores in each radar volume. Finally, the <span class="hlt">convective</span> cells (3D) were associated with the 2D structures (<span class="hlt">convective</span> rainfall areas), in order to characterize the complete MCS. Once this methodology was presented the paper offers a proposal for classifying the precipitation systems, and particularly the MCS. 57 MCS structures were classified: 49% of them were <span class="hlt">identified</span> as linearly well-organised systems, called TS (39%), LS (18%) and NS (43%). In addition to the classification, the following items were analysed for each MCS found: duration, season, time of day, area affected and direction of movement, and main radar parameters related with <span class="hlt">convection</span>. The average features of those MCS show an area of about 25000 km 2, Zmax values of 47 dBz, an echotop of 12 km, the maximum frequency at 12 UTC and early afternoon and a displacement towards E-NE. The study was completed by analysing the field at surface, the presence of a mesoscale low near the system and the quasi-stationary features of three cases related with heavy rainfalls. Maximum rainfall (more then 200 mm in 6 h) was related with the presence of a cyclone in combination with the production of a <span class="hlt">convective</span> train effect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PNAS..114.1827P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PNAS..114.1827P"><span>K isotopes as a tracer of seafloor <span class="hlt">hydrothermal</span> alteration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parendo, Christopher A.; Jacobsen, Stein B.; Wang, Kun</p> <p>2017-02-01</p> <p>At ocean spreading ridges, circulation of seawater through rock at elevated temperatures alters the chemical and isotopic composition of oceanic crust. Samples obtained from drilling into ocean floor and from ophiolites have demonstrated that certain isotope systems, such as 18O/16O and 87Sr/86Sr, are systematically modified in <span class="hlt">hydrothermally</span> altered oceanic crust. Although K is known to be mobile during <span class="hlt">hydrothermal</span> alteration, there have not yet been any K-isotope analyses of altered oceanic crustal materials. Moreover, the 41K/39K of seawater was recently found to be significantly higher than that of igneous rocks, so the addition of seawater K to oceanic crust would be expected to generate 41K/39K variations in affected rocks. Here, we report high-precision 41K/39K measurements for samples from the Bay of Islands ophiolite, and we document large variations in 41K/39K, covarying with previous determinations of 87Sr/86Sr. Our data indicate that analytically resolvable 41K/39K effects arise in oceanic crust as a result of <span class="hlt">hydrothermal</span> alteration. This finding raises the possibility that 41K/39K can be used as an effective tracer of oceanic crust recycled into the mantle, as a diagnostic criterion by which to <span class="hlt">identify</span> ancient fragments of oceanic crust, and as a constraint on the flux of K between oceanic crust and seawater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019807&hterms=modeling+reactions+chemical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Breactions%2Bchemical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019807&hterms=modeling+reactions+chemical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Breactions%2Bchemical"><span>Chemical reaction path modeling of <span class="hlt">hydrothermal</span> processes on Mars: Preliminary results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumlee, Geoffrey S.; Ridley, W. Ian</p> <p>1992-01-01</p> <p><span class="hlt">Hydrothermal</span> processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of <span class="hlt">hydrothermally</span> altered impact melt sheets. In this model, impact-driven, vapor-dominated <span class="hlt">hydrothermal</span> systems <span class="hlt">hydrothermally</span> altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven <span class="hlt">hydrothermal</span> alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) <span class="hlt">hydrothermal</span> fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven <span class="hlt">hydrothermal</span> systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian <span class="hlt">hydrothermal</span> systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70099756','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70099756"><span>The chemistry of <span class="hlt">hydrothermal</span> magnetite: a review</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John</p> <p>2014-01-01</p> <p>Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of <span class="hlt">hydrothermal</span> magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, <span class="hlt">hydrothermal</span> magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in <span class="hlt">hydrothermal</span> magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of <span class="hlt">hydrothermal</span> and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Chaos..23d3129K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Chaos..23d3129K"><span>Collective phase description of oscillatory <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawamura, Yoji; Nakao, Hiroya</p> <p>2013-12-01</p> <p>We formulate a theory for the collective phase description of oscillatory <span class="hlt">convection</span> in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory <span class="hlt">convection</span> by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory <span class="hlt">convection</span>. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory <span class="hlt">convection</span> to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory <span class="hlt">convection</span> on the basis of the derived phase equations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H33D1573S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H33D1573S"><span>Assessing changes in extreme <span class="hlt">convective</span> precipitation from a damage perspective</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schroeer, K.; Tye, M. R.</p> <p>2016-12-01</p> <p>Projected increases in high-intensity short-duration <span class="hlt">convective</span> precipitation are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to which, not only are extreme events rare, but such small scale events are likely to be underreported where they don't coincide with the observation network. Rather than focus solely on the <span class="hlt">convective</span> precipitation, understanding the characteristics of these extremes which drive damage may be more effective to assess future risks. Two sources of data are used in this study. First, sub-daily precipitation observations over the Southern Alps enable an examination of seasonal and regional patterns in high-intensity <span class="hlt">convective</span> precipitation and their relationship with weather types. Secondly, reports of private loss and damage on a household scale are used to <span class="hlt">identify</span> which events are most damaging, or what conditions potentially enhance the vulnerability to these extremes.This study explores the potential added value from including recorded loss and damage data to understand the risks from summertime <span class="hlt">convective</span> precipitation events. By relating precipitation generating weather types to the severity of damage we hope to develop a mechanism to assess future risks. A further benefit would be to <span class="hlt">identify</span> from damage reports the likely occurrence of precipitation extremes where no direct observations are available and use this information to validate remotely sensed observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17793659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17793659"><span>Catastrophic volcanic collapse: relation to <span class="hlt">hydrothermal</span> processes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>López, D L; Williams, S N</p> <p>1993-06-18</p> <p>Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of <span class="hlt">hydrothermal</span> discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between <span class="hlt">hydrothermal</span> fluids and the volcanic edifice. Rock dissolution and <span class="hlt">hydrothermal</span> mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31E2244L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31E2244L"><span>Investigation of tropical diurnal <span class="hlt">convection</span> biases in a climate model using TWP-ICE observations and <span class="hlt">convection</span>-permitting simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.</p> <p>2017-12-01</p> <p>Climate models are known to have difficulty in simulating tropical diurnal <span class="hlt">convections</span> that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in <span class="hlt">convective</span> parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, <span class="hlt">convective</span> organization, and propagation of <span class="hlt">convection</span>-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. <span class="hlt">Convective</span>-scale radar retrievals and observation-driven <span class="hlt">convection</span>-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal <span class="hlt">convective</span> properties and their contrast among inland, coastal and open ocean conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920052078&hterms=churchill&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dchurchill','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920052078&hterms=churchill&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dchurchill"><span><span class="hlt">Convective</span> and stratiform components of a Winter Monsoon Cloud Cluster determined from geosynchronous infrared satellite data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldenberg, Stanley B.; Houze, Robert A., Jr.; Churchill, Dean D.</p> <p>1990-01-01</p> <p>The horizontal precipitation structure of cloud clusters observed over the South China Sea during the Winter Monsoon Experiment (WMONEX) is analyzed using a <span class="hlt">convective</span>-stratiform technique (CST) developed by Adler and Negri (1988). The technique was modified by altering the method for <span class="hlt">identifying</span> <span class="hlt">convective</span> cells in the satellite data, accounting for the extremely cold cloud tops characteristic of the WMONEX region, and modifying the threshold infrared temperature for the boundary of the stratiform rain area. The precipitation analysis was extended to the entire history of the cloud cluster by applying the modified CST to IR imagery from geosynchronous-satellite observations. The ship and aircraft data from the later period of the cluster's lifetime make it possible to check the locations of <span class="hlt">convective</span> and stratiform precipitation <span class="hlt">identified</span> by the CST using in situ observations. The extended CST is considered to be effective for determining the climatology of the <span class="hlt">convective</span>-stratiform structure of tropical cloud clusters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.15203013L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.15203013L"><span>Core overshoot and <span class="hlt">convection</span> in δ Scuti and γ Doradus stars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lovekin, Catherine; Guzik, Joyce A.</p> <p>2017-09-01</p> <p>The effects of rotation on pulsation in δ Scuti and γ Doradus stars are poorly understood. Stars in this mass range span the transition from <span class="hlt">convective</span> envelopes to <span class="hlt">convective</span> cores, and realistic models of <span class="hlt">convection</span> are thus a key part of understanding these stars. In this work, we use 2D asteroseismic modelling of 5 stars observed with the Kepler spacecraft to provide constraints on the age, mass, rotation rate, and <span class="hlt">convective</span> core overshoot. We use Period04 to calculate the frequencies based on short cadence Kepler observations of five γ Doradus and δ Scuti stars. We fit these stars with rotating models calculated using MESA and adiabatic pulsation frequencies calculated with GYRE. Comparison of these models with the pulsation frequencies of three stars observed with Kepler allowed us to place constraints on the age, mass, and rotation rate of these stars. All frequencies not <span class="hlt">identified</span> as possible combinations were compared to theoretical frequencies calculated using models including the effects of rotation and overshoot. The best fitting models for all five stars are slowly rotating at the best fitting age and have moderate <span class="hlt">convective</span> core overshoot. In this work, we will discuss the results of the frequency extraction and fitting process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B13A0164P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B13A0164P"><span>Sulfate Reduction and Sulfide Biomineralization By Deep-Sea <span class="hlt">Hydrothermal</span> Vent Microorganisms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Picard, A.; Gartman, A.; Clarke, D. R.; Girguis, P. R.</p> <p>2014-12-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> vents are characterized by steep temperature and chemical gradients and moderate pressures. At these sites, mesophilic sulfate-reducing bacteria thrive, however their significance for the formation of sulfide minerals is unknown. In this study we investigated sulfate reduction and sulfide biomineralization by the deep-sea bacterium Desulfovibrio hydrothermalis isolated from a deep-sea vent chimney at the Grandbonum vent site (13°N, East Pacific Rise, 2600 m water depth) [1]. Sulfate reduction rates were determined as a function of pressure and temperature. Biomineralization of sulfide minerals in the presence of various metal concentrations was characterized using light and electron microscopy and optical spectroscopy. We seek to better understand the significance of biological sulfate reduction in deep-sea <span class="hlt">hydrothermal</span> environments, to characterize the steps in sulfide mineral nucleation and growth, and <span class="hlt">identify</span> the interactions between cells and minerals. [1] D. Alazard, S. Dukan, A. Urios, F. Verhe, N. Bouabida, F. Morel, P. Thomas, J.L. Garcia and B. Ollivier, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from <span class="hlt">hydrothermal</span> vents, Int. J. Syst. Evol. Microbiol., 53 (2003) 173-178.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010023092&hterms=sources+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsources%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010023092&hterms=sources+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsources%2Benergy"><span>Martian Magmatic-Driven <span class="hlt">Hydrothermal</span> Sites: Potential Sources of Energy, Water, and Life</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.</p> <p>2000-01-01</p> <p>Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that <span class="hlt">hydrothermal</span> environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven <span class="hlt">hydrothermal</span> environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven <span class="hlt">hydrothermal</span> activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around <span class="hlt">hydrothermal</span> vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to <span class="hlt">identify</span> prime target sites of <span class="hlt">hydrothermal</span> activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPD....4840305B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPD....4840305B"><span><span class="hlt">Convective</span> overshoot at the solar tachocline</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.</p> <p>2017-08-01</p> <p>At the base of the solar <span class="hlt">convection</span> zone lies the solar tachocline. This internal interface is where motions from the unstable <span class="hlt">convection</span> zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of <span class="hlt">convective</span> overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of <span class="hlt">convective</span> motions in the deep solar interior. We find that the depth of <span class="hlt">convective</span> overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting <span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrEaS...5...41C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrEaS...5...41C"><span>Learning about <span class="hlt">hydrothermal</span> volcanic activity by modeling induced geophysical changes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Currenti, Gilda M.; Napoli, Rosalba</p> <p>2017-05-01</p> <p>Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of <span class="hlt">hydrothermal</span> systems through computational experiments. <span class="hlt">Hydrothermal</span> areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to <span class="hlt">hydrothermal</span> activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to <span class="hlt">identify</span> the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the <span class="hlt">hydrothermal</span> system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3815P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3815P"><span>Characteristics of Moderately Deep Tropical <span class="hlt">Convection</span> Observed by Dual-Polarimetric Radar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, Scott</p> <p>2017-04-01</p> <p>Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of <span class="hlt">convection</span> into mesoscale <span class="hlt">convective</span> systems. Direct observational analysis of such <span class="hlt">convection</span> has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first <span class="hlt">identified</span> following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated <span class="hlt">convection</span>. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to <span class="hlt">convection</span> embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated <span class="hlt">convective</span> core (fringe) echoes. <span class="hlt">Convective</span> cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated <span class="hlt">convective</span> core and fringe respectively possess composite vertical profiles of ZDR that resemble <span class="hlt">convective</span> and stratiform echoes. The mode of the distribution of aspect ratios of isolated <span class="hlt">convection</span> is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......269T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......269T"><span>Simulating <span class="hlt">Convection</span> in Stellar Envelopes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanner, Joel</p> <p>2014-01-01</p> <p>Understanding <span class="hlt">convection</span> in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of <span class="hlt">convection</span> fail to account for many of the dynamical effects of <span class="hlt">convection</span>, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar <span class="hlt">convection</span>, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both <span class="hlt">convective</span> and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, <span class="hlt">convection</span> can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of <span class="hlt">convection</span> fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between <span class="hlt">convection</span> and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various <span class="hlt">convective</span> properties, such as velocity and the degree of superadiabaticity, are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4606B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4606B"><span>Asymmetrical <span class="hlt">hydrothermal</span> system below Merapi volcano imaged by geophysical data.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrdina, Svetlana; Friedel, Sven; Budi-Santoso, Agus; Suryanto, Wiwit; Suhari, Aldjarishy; Vandemeulebrouck, Jean; Rizal, Mohhamed H.; Grandis, Hendra</p> <p>2017-04-01</p> <p>A high-resolution image of the <span class="hlt">hydrothermal</span> system of Merapi volcano is obtained using electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT inversions <span class="hlt">identify</span> two distinct low-resistivity bodies, at the base of the south flank and in the summit area, that represent likely two parts of an interconnected <span class="hlt">hydrothermal</span> system. In the summit area, the extension of the <span class="hlt">hydrothermal</span> system is clearly limited by the main geological structures which are actual and ancient craters. A sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive <span class="hlt">hydrothermal</span> system (20 - 50 Ωm) from the resistive andesite lava flows and pyroclastic deposits (2000 - 50 000 Ωm). High diffuse CO2 degassing (with a median value of 400g m -2 d -1) is observed in a narrow vicinity of the active crater rim and close to the Pasar-Bubar. The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The total CO2 degassing across the accessible summit area with a surface of 1.4 · 10 5 m 2 is around 20 td -1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200 - 230 td -1). This drop in the diffuse degassing can be related to the decrease in the magmatic activity, to the change of the summit morphology or to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100 000 Ωm, resistivity as low as 10 Ωm has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the <span class="hlt">hydrothermal</span> system. We suggest that a sandwich-like structure of stratified pyroclastic deposits on the flanks of Merapi screen and separate the flow of <span class="hlt">hydrothermal</span> fluids with the degassing occurring mostly through the fractured crater rims</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9827V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9827V"><span>Land surface modeling in <span class="hlt">convection</span> permitting simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Heerwaarden, Chiel; Benedict, Imme</p> <p>2017-04-01</p> <p>The next generation of weather and climate models permits <span class="hlt">convection</span>, albeit at a grid spacing that is not sufficient to resolve all details of the clouds. Whereas much attention is being devoted to the correct simulation of <span class="hlt">convective</span> clouds and associated precipitation, the role of the land surface has received far less interest. In our view, <span class="hlt">convective</span> permitting simulations pose a set of problems that need to be solved before accurate weather and climate prediction is possible. The heart of the problem lies at the direct runoff and at the nonlinearity of the surface stress as a function of soil moisture. In coarse resolution simulations, where <span class="hlt">convection</span> is not permitted, precipitation that reaches the land surface is uniformly distributed over the grid cell. Subsequently, a fraction of this precipitation is intercepted by vegetation or leaves the grid cell via direct runoff, whereas the remainder infiltrates into the soil. As soon as we move to <span class="hlt">convection</span> permitting simulations, this precipitation falls often locally in large amounts. If the same land-surface model is used as in simulations with parameterized <span class="hlt">convection</span>, this leads to an increase in direct runoff. Furthermore, spatially non-uniform infiltration leads to a very different surface stress, when scaled up to the course resolution of simulations without <span class="hlt">convection</span>. Based on large-eddy simulation of realistic <span class="hlt">convection</span> events at a large domain, this study presents a quantification of the errors made at the land surface in <span class="hlt">convection</span> permitting simulation. It compares the magnitude of the errors to those made in the <span class="hlt">convection</span> itself due to the coarse resolution of the simulation. We find that, <span class="hlt">convection</span> permitting simulations have less evaporation than simulations with parameterized <span class="hlt">convection</span>, resulting in a non-realistic drying of the atmosphere. We present solutions to resolve this problem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10768471','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10768471"><span>Molecular ecology of <span class="hlt">hydrothermal</span> vent microbial communities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jeanthon, C</p> <p>2000-02-01</p> <p>The study of the structure and diversity of <span class="hlt">hydrothermal</span> vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the <span class="hlt">hydrothermal</span> ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea <span class="hlt">hydrothermal</span> ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea <span class="hlt">hydrothermal</span> vent microbiology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1893c0138Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1893c0138Z"><span>Dynamics of acoustic-<span class="hlt">convective</span> drying of sunflower cake</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhilin, A. A.</p> <p>2017-10-01</p> <p>The dynamics of drying sunflower cake by a new acoustic-<span class="hlt">convective</span> method has been studied. Unlike the conventional (thermal-<span class="hlt">convective</span>) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-<span class="hlt">convective</span> and acoustic-<span class="hlt">convective</span> methods were obtained and analyzed. The advantages of the acoustic-<span class="hlt">convective</span> extraction of moisture over the thermal-<span class="hlt">convective</span> method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-<span class="hlt">convective</span> extraction of moisture is considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22251770-collective-phase-description-oscillatory-convection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22251770-collective-phase-description-oscillatory-convection"><span>Collective phase description of oscillatory <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kawamura, Yoji, E-mail: ykawamura@jamstec.go.jp; Nakao, Hiroya</p> <p></p> <p>We formulate a theory for the collective phase description of oscillatory <span class="hlt">convection</span> in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory <span class="hlt">convection</span> by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory <span class="hlt">convection</span>. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory <span class="hlt">convection</span> to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shawmore » cells exhibiting oscillatory <span class="hlt">convection</span> on the basis of the derived phase equations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069527','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069527"><span>Impact of <span class="hlt">hydrothermalism</span> on the ocean iron cycle</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Resing, Joseph</p> <p>2016-01-01</p> <p>As the iron supplied from <span class="hlt">hydrothermalism</span> is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of <span class="hlt">hydrothermal</span> iron and the role of different ridge systems in governing the <span class="hlt">hydrothermal</span> impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of <span class="hlt">hydrothermal</span> iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which <span class="hlt">hydrothermal</span> Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how <span class="hlt">hydrothermalism</span> affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29035256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29035256"><span>Impact of <span class="hlt">hydrothermalism</span> on the ocean iron cycle.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tagliabue, Alessandro; Resing, Joseph</p> <p>2016-11-28</p> <p>As the iron supplied from <span class="hlt">hydrothermalism</span> is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of <span class="hlt">hydrothermal</span> iron and the role of different ridge systems in governing the <span class="hlt">hydrothermal</span> impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of <span class="hlt">hydrothermal</span> iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which <span class="hlt">hydrothermal</span> Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how <span class="hlt">hydrothermalism</span> affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13E2113Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13E2113Y"><span>Upscale Impact of Mesoscale Disturbances of Tropical <span class="hlt">Convection</span> on <span class="hlt">Convectively</span> Coupled Kelvin Waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Q.; Majda, A.</p> <p>2017-12-01</p> <p>Tropical <span class="hlt">convection</span> associated with <span class="hlt">convectively</span> coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale <span class="hlt">convective</span> envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow <span class="hlt">convection</span> in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow <span class="hlt">convection</span> in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..300O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..300O"><span>Increased risk of a shutdown of ocean <span class="hlt">convection</span> posed by warm North Atlantic summers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oltmanns, Marilena; Karstensen, Johannes; Fischer, Jürgen</p> <p>2018-04-01</p> <p>A shutdown of ocean <span class="hlt">convection</span> in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1-3. Noting that a key uncertainty for future <span class="hlt">convection</span> resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain <span class="hlt">convection</span> with a comprehensive dataset, including hydrographic records that are over a decade in length from the <span class="hlt">convection</span> regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying <span class="hlt">convection</span>. By shortening the time span for the <span class="hlt">convective</span> freshwater export, the <span class="hlt">identified</span> seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short <span class="hlt">convection</span> periods. We estimate that in the winter 2010-2011, after the warmest and freshest Irminger Sea summer on our record, 40% of the surface freshwater was retained.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000114109&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000114109&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dconvection%2Bcurrents"><span>Realistic Solar Surface <span class="hlt">Convection</span> Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stein, Robert F.; Nordlund, Ake</p> <p>2000-01-01</p> <p>We perform essentially parameter free simulations with realistic physics of <span class="hlt">convection</span> near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the <span class="hlt">convection</span> zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar <span class="hlt">convection</span> is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-<span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.U42A..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.U42A..07H"><span><span class="hlt">Convective</span> Differentiation of the Earth's Mantle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, U.; Schmalzl, J.; Stemmer, K.</p> <p>2007-05-01</p> <p>The differentiation of the Earth is likely to be influenced by <span class="hlt">convective</span> motions within the early mantle. Double- diffusive <span class="hlt">convection</span> (d.d.c), driven by thermally and compositionally induced density differences is considered as a vital mechanism behind the dynamic differentiation of the early mantle.. We demonstrate that d.d.c can lead to layer formation on a planetary scale in the diffusive regime where composition stabilizes the system whil heat provides the destabilizing force. Choosing initial conditions in which a stable compositional gradient overlies a hot reservoir we mimic the situation of a planet in a phase after core formation. Differently from earlier studies we fixed the temperature rather than the heat flux at the lower boundary, resembling a more realistic condition for the core-mantle boundary. We have carried out extended series of numerical experiments, ranging from 2D calculations in constant viscosity fluids to fully 3D experiments in spherical geometry with strongly temperature dependent viscosity. The buoyancy ratio R and the Lewis number Le are the important dynamical parameters. In all scenarios we could <span class="hlt">identify</span> a parameter regime where the non-layered initial structure developed into a state consisting of several, mostly two layers. Initially plumes from the bottom boundary homogenize a first layer which subsequently thickens. The bottom layer heats up and then <span class="hlt">convection</span> is initiated in the top layer. This creates dynamically (i.e. without jump in the material behavior) a stack of separately <span class="hlt">convecting</span> layers. The bottom layer is significantly thicker than the top layer. Strongly temperature dependent viscosity leads to a more complex evolution The formation of the bottom layer is followed by the generation of several layers on top. Finally the uppermost layer starts to <span class="hlt">convect</span>. In general, the multilayer structure collapses into a two layer system. We employed a numerical technique, allowing for a diffusion free treatment of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037638','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037638"><span><span class="hlt">Hydrothermal</span> heat discharge in the Cascade Range, northwestern United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ingebritsen, S.E.; Mariner, R.H.</p> <p>2010-01-01</p> <p><span class="hlt">Hydrothermal</span> heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge at Mount St. Helens (~80 MW as of 2004-5). Heat discharge from "slightly thermal" springs is based on the degree of geothermal warming (after correction for gravitational potential energy effects) and totals ~. 660. MW. Fumarolic heat discharge is calculated by a variety of indirect and direct methods and totals ~160 MW, excluding the transient mid-1970s discharge at Mount Baker (~80 MW) and transient post-1980 discharge at Mount St. Helens (>. 230. MW as of 2005). Other than the pronounced transients at Mount St. Helens and Mount Baker, <span class="hlt">hydrothermal</span> heat discharge in the Cascade Range appears to be fairly steady over a ~25-year period of measurement. Of the total of ~. 1050. MW of "steady" <span class="hlt">hydrothermal</span> heat discharge <span class="hlt">identified</span> in the U.S. part of the Cascade Range, less than 50. MW occurs north of latitude 45??15' N (~0.1 MW per km arc length from 45??15' to 49??N). Much greater rates of <span class="hlt">hydrothermal</span> heat discharge south of 45??15'N (~1.7 MW per km arc length from 40?? to 45??15'N) may reflect the influence of Basin and Range-style extensional tectonics (faulting) that impinges on the Cascades as far north as Mount Jefferson but is not evident farther north. ?? 2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17808181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17808181"><span>Granular <span class="hlt">convection</span> observed by magnetic resonance imaging.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ehrichs, E E; Jaeger, H M; Karczmar, G S; Knight, J B; Kuperman, V Y; Nagel, S R</p> <p>1995-03-17</p> <p>Vibrations in a granular material can spontaneously produce <span class="hlt">convection</span> rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these <span class="hlt">convection</span> currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of <span class="hlt">convection</span> in a column of poppy seeds yielded data about the detailed shape of the <span class="hlt">convection</span> rolls and the depth dependence of the <span class="hlt">convection</span> velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V14A..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V14A..01D"><span>Metal mobilisation in <span class="hlt">hydrothermal</span> sediments at the TAG <span class="hlt">Hydrothermal</span> Field (MAR, 26°N)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.</p> <p>2017-12-01</p> <p>Metalliferous sediments in the vicinity of <span class="hlt">hydrothermal</span> systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG <span class="hlt">Hydrothermal</span> Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to <span class="hlt">identify</span> the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (< 0.1%) and the main part of their primary Cu and Zn content has likely been mobilized. Cu concentrations increase at the edges of the mounds (up to wt. 20%) or in distal depositionary channels (up to wt.10%) where sulphide minerals (e.g. pyrite, chalcopyrite and sphalerite) are still present in the sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5299518','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5299518"><span>Coupling between lower‐tropospheric <span class="hlt">convective</span> mixing and low‐level clouds: Physical mechanisms and dependence on <span class="hlt">convection</span> scheme</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bony, Sandrine; Dufresne, Jean‐Louis; Roehrig, Romain</p> <p>2016-01-01</p> <p>Abstract Several studies have pointed out the dependence of low‐cloud feedbacks on the strength of the lower‐tropospheric <span class="hlt">convective</span> mixing. By analyzing a series of single‐column model experiments run by a climate model using two different <span class="hlt">convective</span> parametrizations, this study elucidates the physical mechanisms through which marine boundary‐layer clouds depend on this mixing in the present‐day climate and under surface warming. An increased lower‐tropospheric <span class="hlt">convective</span> mixing leads to a reduction of low‐cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the <span class="hlt">convective</span> mixing and to boundary‐layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower‐tropospheric drying induced by the <span class="hlt">convective</span> mixing, which damps the reduction of the low‐cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low‐cloud radiative cooling, which enhances the reduction of the low‐cloud fraction. The relative importance of these two different processes depends on the closure of the <span class="hlt">convective</span> parameterization. The <span class="hlt">convective</span> scheme that favors the coupling between latent heat flux and low‐cloud radiative cooling exhibits a stronger sensitivity of low‐clouds to <span class="hlt">convective</span> mixing in the present‐day climate, and a stronger low‐cloud feedback in response to surface warming. In this model, the low‐cloud feedback is stronger when the present‐day <span class="hlt">convective</span> mixing is weaker and when present‐day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low‐cloud feedbacks observationally is discussed. PMID:28239438</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28239438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28239438"><span>Coupling between lower-tropospheric <span class="hlt">convective</span> mixing and low-level clouds: Physical mechanisms and dependence on <span class="hlt">convection</span> scheme.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain</p> <p>2016-12-01</p> <p>Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric <span class="hlt">convective</span> mixing. By analyzing a series of single-column model experiments run by a climate model using two different <span class="hlt">convective</span> parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric <span class="hlt">convective</span> mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the <span class="hlt">convective</span> mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the <span class="hlt">convective</span> mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the <span class="hlt">convective</span> parameterization. The <span class="hlt">convective</span> scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to <span class="hlt">convective</span> mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day <span class="hlt">convective</span> mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22048028-convective-babcock-leighton-dynamo-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22048028-convective-babcock-leighton-dynamo-models"><span><span class="hlt">CONVECTIVE</span> BABCOCK-LEIGHTON DYNAMO MODELS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miesch, Mark S.; Brown, Benjamin P., E-mail: miesch@ucar.edu</p> <p></p> <p>We present the first global, three-dimensional simulations of solar/stellar <span class="hlt">convection</span> that take into account the influence of magnetic flux emergence by means of the Babcock-Leighton (BL) mechanism. We have shown that the inclusion of a BL poloidal source term in a <span class="hlt">convection</span> simulation can promote cyclic activity in an otherwise steady dynamo. Some cycle properties are reminiscent of solar observations, such as the equatorward propagation of toroidal flux near the base of the <span class="hlt">convection</span> zone. However, the cycle period in this young sun (rotating three times faster than the solar rate) is very short ({approx}6 months) and it is unclearmore » whether much longer cycles may be achieved within this modeling framework, given the high efficiency of field generation and transport by the <span class="hlt">convection</span>. Even so, the incorporation of mean-field parameterizations in three-dimensional <span class="hlt">convection</span> simulations to account for elusive processes such as flux emergence may well prove useful in the future modeling of solar and stellar activity cycles.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B21B0318B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B21B0318B"><span>Abundance and Distribution of Diagnostic Carbon Fixation Genes in a Deep-Sea <span class="hlt">Hydrothermal</span> Gradient Ecosystem</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.</p> <p>2010-12-01</p> <p>The walls of deep-sea <span class="hlt">hydrothermal</span> vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) <span class="hlt">hydrothermal</span> fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of <span class="hlt">hydrothermal</span> chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in <span class="hlt">hydrothermal</span> chimney walls provides an ideal setting to explore these relationships. <span class="hlt">Hydrothermal</span> chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes <span class="hlt">identified</span> in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663085-convection-condensible-rich-atmospheres','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663085-convection-condensible-rich-atmospheres"><span><span class="hlt">CONVECTION</span> IN CONDENSIBLE-RICH ATMOSPHERES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ding, F.; Pierrehumbert, R. T., E-mail: fding@uchicago.edu</p> <p>2016-05-01</p> <p>Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of <span class="hlt">convection</span> in climate models rely on several approximations appropriate only to the dilute limit, while nondilute <span class="hlt">convection</span> differs in fundamentalmore » ways from dilute <span class="hlt">convection</span>. In this paper, a simple parameterization of <span class="hlt">convection</span> valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute <span class="hlt">convection</span>. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-<span class="hlt">convective</span> simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23132604P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23132604P"><span><span class="hlt">Convective</span> penetration in a young sun</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group</p> <p>2018-01-01</p> <p>To interpret the high-quality data produced from recent space-missions it is necessary to study <span class="hlt">convection</span> under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study <span class="hlt">convection</span> during an early stage in the evolution of our sun where the <span class="hlt">convection</span> zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach <span class="hlt">convection</span> in a stellar context using extreme value theory and derive a new model for <span class="hlt">convective</span> penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..329...30B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..329...30B"><span>Geophysical image of the <span class="hlt">hydrothermal</span> system of Merapi volcano</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrdina, S.; Friedel, S.; Vandemeulebrouck, J.; Budi-Santoso, A.; Suhari; Suryanto, W.; Rizal, M. H.; Winata, E.; Kusdaryanto</p> <p>2017-01-01</p> <p>We present an image of the <span class="hlt">hydrothermal</span> system of Merapi volcano based on results from electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT models <span class="hlt">identify</span> two distinct low-resistivity bodies interpreted as two parts of a probably interconnected <span class="hlt">hydrothermal</span> system: at the base of the south flank and in the summit area. In the summit area, a sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive <span class="hlt">hydrothermal</span> system (20-50 Ω m) from the resistive andesite lava flows and pyroclastic deposits (2000-50,000 Ω m). The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The significative diffuse CO2 degassing (with a median value of 400 g m-2 d-1) is observed in a narrow vicinity of the active crater rim and close to the ancient rim of Pasar-Bubar. The total CO2 degassing across the accessible summital area with a surface of 1.4 ṡ 105 m2 is around 20 t d-1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200-230 t d-1). This drop in the diffuse degassing from the summit area can be related to the decrease in the magmatic activity, to the change of the summit morphology, to the approximations used by Toutain et al. (2009), or, more likely, to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100,000 Ω m, resistivity as low as 10 Ω m has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the <span class="hlt">hydrothermal</span> system. No evidence of the <span class="hlt">hydrothermal</span> system is found on the basis of the north flank at the same depth. This asymmetry might be caused by the asymmetry of the heat supply source of Merapi whose activity is moving south or/and to the asymmetry in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25810207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25810207"><span>Increases in tropical rainfall driven by changes in frequency of organized deep <span class="hlt">convection</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Jackson; Jakob, Christian; Rossow, William B; Tselioudis, George</p> <p>2015-03-26</p> <p>Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'. These changes in precipitation are largely located in the tropics and hence are probably associated with <span class="hlt">convection</span>. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep <span class="hlt">convection</span>. By assessing the contributions of various <span class="hlt">convective</span> regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep <span class="hlt">convection</span> are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep <span class="hlt">convection</span> or changes in precipitation within organized deep <span class="hlt">convection</span> contribute less to changes in precipitation. Our results <span class="hlt">identify</span> organized deep <span class="hlt">convection</span> as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of <span class="hlt">convection</span> in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950004811','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950004811"><span>Influence of <span class="hlt">convection</span> on microstructure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilcox, William R.; Regel, Liya L.</p> <p>1994-01-01</p> <p>The primary motivation for this research was to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Four primary hypotheses were to be tested under this current grant: (1) A fibrous microstructure is much more sensitive to <span class="hlt">convection</span> than a lamellar microstructure, which was assumed in our prior theoretical treatment. (2) An interface with one phase projecting out into the melt is much more sensitive to <span class="hlt">convection</span> than a planar interface, which was assumed in our prior theoretical treatment. (3) The Soret effect is much more important in the absence of <span class="hlt">convection</span> and has a sufficiently large influence on microstructure that its action can explain the flight results. (4) The microstructure is much more sensitive to <span class="hlt">convection</span> when the composition of the bulk melt is off eutectic. These hypotheses were tested. It was concluded that none of these can explain the Grumman flight results. Experiments also were performed on the influence of current pulses on MnBi-Bi microstructure. A thorough review was made of all experimental results on the influence of <span class="hlt">convection</span> on the fiber spacing in rod eutectics, including results from solidification in space or at high gravity, and use of mechanical stirring or a magnetic field. Contradictory results were noted. The predictions of models for <span class="hlt">convective</span> influences were compared with the experimental results. Vigorous mechanical stirring appears to coarsen the microstructure by altering the concentration field in front of the freezing interface. Gentle <span class="hlt">convection</span> is believed to alter the microstructure of a fibrous eutectic only when it causes a fluctuating freezing rate with a system for which the kinetics of fiber branching differs from that for fiber termination. These fluctuations may cause the microstructure to coarsen or to become finer, depending on the relative kinetics of these processes. The microstructure of lamellar eutectics is less sensitive to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMEP43A0663H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMEP43A0663H"><span>Two planets: Earth and Mars - One salt model: The <span class="hlt">Hydrothermal</span> SCRIW-Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.</p> <p>2011-12-01</p> <p> Red Sea indicates that a shallow magma-chamber causes a sufficiently high heat-flow to drive a <span class="hlt">convection</span> cell of seawater. The model shows that salt precipitates along the flow lines within the SCRIW-region (Hovland et al., 2006). During the various stages of planet Mars' development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a <span class="hlt">convective</span> manner and would pass into the SCRIW-zone during the down-going leg (the recharge leg) of the <span class="hlt">convective</span> cell. The zones with SCRIW out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal '<span class="hlt">hydrothermal</span> salt model', which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3759R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3759R"><span>Measuring <span class="hlt">Convective</span> Mass Fluxes Over Tropical Oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raymond, David</p> <p>2017-04-01</p> <p>Deep <span class="hlt">convection</span> forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical <span class="hlt">convective</span> mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong <span class="hlt">convection</span> in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist <span class="hlt">convective</span> instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) <span class="hlt">convective</span> instability produces more precipitation as well as more bottom-heavy <span class="hlt">convective</span> mass flux profiles. Furthermore, the column humidity and the <span class="hlt">convective</span> instability are anti-correlated, at least in the presence of strong <span class="hlt">convection</span>. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than <span class="hlt">convection</span>, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average <span class="hlt">convective</span> properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18163874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18163874"><span><span class="hlt">Hydrothermal</span> systems in small ocean planets.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael</p> <p>2007-12-01</p> <p>We examine means for driving <span class="hlt">hydrothermal</span> activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of <span class="hlt">hydrothermal</span> system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of <span class="hlt">hydrothermal</span> activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive <span class="hlt">hydrothermal</span> fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive <span class="hlt">hydrothermal</span> circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28267660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28267660"><span>Coupling <span class="hlt">hydrothermal</span> liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T</p> <p>2017-06-01</p> <p><span class="hlt">Hydrothermal</span> liquefaction converts food waste into oil and a carbon-rich <span class="hlt">hydrothermal</span> aqueous phase. The <span class="hlt">hydrothermal</span> aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling <span class="hlt">hydrothermal</span> liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent <span class="hlt">hydrothermal</span> processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the <span class="hlt">hydrothermal</span> aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the <span class="hlt">hydrothermal</span> aqueous phase was lower when the temperature of <span class="hlt">hydrothermal</span> processing increased. The chemical composition of the <span class="hlt">hydrothermal</span> aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining <span class="hlt">hydrothermal</span> and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1044h/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1044h/report.pdf"><span>Reconnaissance of the <span class="hlt">hydrothermal</span> resources of Utah</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rush, F. Eugene</p> <p>1983-01-01</p> <p>Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intru­sive rocks of Quaternary age can be used to locate <span class="hlt">hydrothermal</span> <span class="hlt">convection</span> systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilome­ters from them probably have the best potential for geothermal devel­opment for generation of electricity. Other areas with estimated res­ervoir temperatures greater than 150°C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150°C. Ad­ditional exploration is needed to define the potential in three ad­ditional areas in the Escalante Desert.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.P11E..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.P11E..04P"><span>Deep <span class="hlt">Hydrothermal</span> Circulation and Implications for the Early Crustal Compositional and Thermal Evolution of Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.</p> <p>2007-12-01</p> <p>Both orbital remote sensing and geophysical observations indicate an important role for <span class="hlt">hydrothermal</span> crustal cooling during the Noachian epoch. Orbital remote sensing shows that phyllosilicate minerals are common in Noachian-aged terrains but have not been observed in younger terrains (<3.8 Ga). Throughout the Noachian highlands, phyllosilicates are observed in deeply eroded terrains as well as in association with impact craters, in their walls, rims, ejecta, and in central peaks of craters as large as 45 km, corresponding to excavation depths of 4-5 km. CRISM and OMEGA mapping typically show phyllosilicate-bearing rocks occupy the lowest observable stratigraphic unit, and the most common alteration minerals are iron magnesium smectites which typically form at low pressures and temperatures <200°C. Widespread occurrences of phyllosilicates to depths of at least 4-5 km may provide evidence for deep crustal <span class="hlt">hydrothermal</span> circulation during the Noachian. Geophysical evidence from surface deformation associated with faulting and from the analysis of the relationship of gravity and topography suggest elastic lithosphere thicknesses a large as ~30 km near the end of the Noachian, corresponding to surface heatflux of 20-40 mW/m2. Relaxation of elastic stresses due to thermally activated creep results in elastic lithosphere thicknesses sensitive to crustal temperatures. Plausible planetary thermal evolution models with chondritic abundances of heat producing elements predict a surface heat flux of 50-60 mW/m2 near the end of the Noachian. The difference in the heat flux required for planetary cooling and that inferred from elastic lithospheric thickness, suggests that a significant fraction of heatflow reaching the surface may be transported by <span class="hlt">hydrothermal</span> <span class="hlt">convection</span> rather than by conduction alone. Relaxation of crustal thickness variations due to lower crustal flow is sensitive to both the temperature and geothermal gradient at the crust-mantle boundary. In the presence</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS11B1471L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS11B1471L"><span>Zones of life in the subsurface of <span class="hlt">hydrothermal</span> vents: A synthesis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larson, B. I.; Houghton, J.; Meile, C. D.</p> <p>2011-12-01</p> <p>Subsurface microbial communities in Mid-ocean Ridge (MOR) <span class="hlt">hydrothermal</span> systems host a wide array of unique metabolic strategies, but the spatial distribution of biogeochemical transformations is poorly constrained. Here we present an approach that reexamines chemical measurements from diffuse fluids with models of <span class="hlt">convective</span> transport to delineate likely reaction zones. Chemical data have been compiled from bare basalt surfaces at a wide array of mid-ocean ridge systems, including 9°N, East Pacific Rise, Axial Seamount, Juan de Fuca, and Lucky Strike, Mid-Atlantic Ridge. Co-sampled end-member fluid from Ty (EPR) was used to constrain reaction path models that define diffuse fluid compositions as a function of temperature. The degree of mixing between hot vent fluid (350 deg. C) and seawater (2 deg. C) governs fluid temperature, Fe-oxide mineral precipitation is suppressed, and aqueous redox reactions are prevented from equilibrating, consistent with sluggish kinetics. Quartz and pyrite are predicted to precipitate, consistent with field observations. Most reported samples of diffuse fluids from EPR and Axial Seamount fall along the same predicted mixing line only when pyrite precipitation is suppressed, but Lucky Strike fluids do not follow the same trend. The predicted fluid composition as a function of temperature is then used to calculate the free energy available to autotrophic microorganisms for a variety of catabolic strategies in the subsurface. Finally, the relationships between temperature and free energy is combined with modeled temperature fields (Lowell et al., 2007 Geochem. Geophys., Geosys.) over a 500 m x 500 m region extending downward from the seafloor and outward from the high temperature focused <span class="hlt">hydrothermal</span> flow to define areas that are energetically most favorable for a given metabolic process as well as below the upper temperature limit for life (~120 deg. C). In this way, we can expand the relevance of geochemical model predictions of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...180..152Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...180..152Y"><span>The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated <span class="hlt">hydrothermal</span> activities in the South Yellow Sea Basin, the Western Pacific continental margin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen</p> <p>2018-04-01</p> <p>Various igneous complexes were <span class="hlt">identified</span> in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and <span class="hlt">hydrothermal</span> activities. Some intrusion-related <span class="hlt">hydrothermal</span> vent complexes have been <span class="hlt">identified</span> and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of <span class="hlt">hydrothermal</span> vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. <span class="hlt">Hydrothermal</span> vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related <span class="hlt">hydrothermal</span> vent complexes, which will have implications for the future study of this area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA218651','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA218651"><span>Fluid Flow and Sound Generation at <span class="hlt">Hydrothermal</span> Vent Fields</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-04-01</p> <p>Pacific Rise The first evidence of vent sound generation came from data collected near <span class="hlt">hydrothermal</span> vents at 21 N on the EPR where an array of ocean...associated with <span class="hlt">hydrothermal</span> centers, one at 21 N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on the Juan de Fuca Ridge (Bibee and Jacobson... East Pacific Rise at 210 N : the volcanic, tectonic and <span class="hlt">hydrothermal</span> processes at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007387','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007387"><span>Covariability in the Monthly Mean <span class="hlt">Convective</span> and Radiative Diurnal Cycles in the Amazon</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dodson, Jason B.; Taylor, Patrick C.</p> <p>2015-01-01</p> <p>The diurnal cycle of <span class="hlt">convective</span> clouds greatly influences the radiative energy balance in <span class="hlt">convectively</span> active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of <span class="hlt">convective</span> clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in <span class="hlt">convectively</span> active regions also varies by up to 7 Wm-2 in <span class="hlt">convectively</span> active regions. These facts suggest that <span class="hlt">convective</span> clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has <span class="hlt">identified</span> monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep <span class="hlt">convection</span>, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep <span class="hlt">convective</span> cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of <span class="hlt">convective</span> cloud properties and the radiative diurnal cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007404','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007404"><span>Anomalously Weak Solar <span class="hlt">Convection</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.</p> <p>2012-01-01</p> <p><span class="hlt">Convection</span> in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar <span class="hlt">convection</span>. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound <span class="hlt">convective</span> velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, <span class="hlt">convective</span> velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale <span class="hlt">convection</span> may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22665774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22665774"><span>Anomalously weak solar <span class="hlt">convection</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hanasoge, Shravan M; Duvall, Thomas L; Sreenivasan, Katepalli R</p> <p>2012-07-24</p> <p><span class="hlt">Convection</span> in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar <span class="hlt">convection</span>. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound <span class="hlt">convective</span> velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, <span class="hlt">convective</span> velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10(-2) at r/R([symbol: see text]) = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale <span class="hlt">convection</span> may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM...U61A04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM...U61A04M"><span>Models for <span class="hlt">Convectively</span> Coupled Tropical Waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majda, A. J.</p> <p>2001-05-01</p> <p>\\small{The tropical Western Pacific is a key area with large input on short-term climate. There are many recent observations of <span class="hlt">convective</span> complexes feeding into equatorially trapped planetary waves [5], [6] which need a theoretical explanation and also are poorly treated in contemporary General Circulation Models (GCM's). This area presents wonderful new research opportunities for applied mathematicians interested in nonlinear waves interacting over many spatio-temporal scales. This talk describes some ongoing recent activities of the speaker related to these important issues. A simplified intermediate model for analyzing and parametrizing <span class="hlt">convectively</span> coupled tropical waves is introduced in [2]. This model has two baroclinic modes of vertical structure, a direct heating mode and a stratiform mode. The key essential parameter in these models is the area fraction occupied by deep <span class="hlt">convection</span>, σ c. The unstable <span class="hlt">convectively</span> coupled waves that emerge from perturbation of a radiative <span class="hlt">convective</span> equilibrium are discussed in detail through linearized stability analysis. Without any mean flow, for an overall cooling rate of 1 K/day as the area fraction parameter increases from σ c=0.001 to σ c=0.0014 the waves pass from a regime with stable moist <span class="hlt">convective</span> damping (MCD) to a regime of ``stratiform'' instability with <span class="hlt">convectively</span> coupled waves propagating at speeds of roughly 15~m~s-1,instabilities for a band wavelengths in the super-cluster regime, O(1000) to O(2000) km, and a vertical structure in the upper troposphere lags behind that in the lower troposphere - thus, these <span class="hlt">convectively</span> coupled waves in the model reproduce several key features of <span class="hlt">convectively</span> coupled waves in the troposphere processed from recent observational data by Wheeler and Kiladis ([5], [6]). As the parameter σ c is increased further to values such as σ c=0.01, the band of unstable waves increase and spreads toward mesoscale wavelengths of O(100) km while the same wave structure and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917780F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917780F"><span>Impact of different <span class="hlt">convection</span> permitting resolutions on the representation of heavy rainfall over the UK</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fosser, Giorgia; Kendon, Elizabeth; Chan, Steven</p> <p>2017-04-01</p> <p>Previous studies (e.g. Ban et al, 2015; Fosser et al, 2015 and 2016; Kendon et al, 2015) have shown that <span class="hlt">convection</span> permitting models are able to give a much more realistic representation of <span class="hlt">convection</span>, and are needed to provide reliable projections of future changes in hourly precipitation extremes. In this context, the UKCP18 project aims to provide policy makers with new UK climate change projections at hourly and local scales, thanks to the first ensemble of runs at <span class="hlt">convection</span> permitting resolution. As a first step, we need to <span class="hlt">identify</span> a suitable UK domain, resolution and experimental design for the <span class="hlt">convective</span>-scale ensemble. Thus, a set of 12-years long simulations driven by ERA Interim reanalysis data has been carried out over the UK using the Met Office Unified Model (UM) at different <span class="hlt">convection</span> permitting resolutions, namely 1.5 km, 2.2 km and 4km. Different nesting strategy and physical adjustments are also tested. Two observational gridded datasets, based on rain gauges and radar, are used for validation. The analysis aims to <span class="hlt">identify</span> the impacts of the different <span class="hlt">convection</span> permitting resolutions (as well as domain size and physical settings) on the representation of precipitation, especially when <span class="hlt">convection</span> is a predominant feature. Moreover, this study tries to determine the physical reasons behind the found differences and hence to determine if there are any benefits of increasing the horizontal resolution within the <span class="hlt">convection</span> permitting regime in a climatological context. First results show that the 4km model realises many of the benefits of <span class="hlt">convection</span>-permitting resolution, namely the rainfall fields are much more realistic and the daily timing of rainfall is better captured compared to <span class="hlt">convection</span>-parameterised models. For mean precipitation metrics, including precipitation conditioned on circulation type, there is little benefit in moving to resolutions finer than 4km. However, there are some key deficiencies at <span class="hlt">convection</span>-permitting resolution</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880008400','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880008400"><span>Influence of <span class="hlt">convection</span> on microstructure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen</p> <p>1988-01-01</p> <p>The influence was studied of <span class="hlt">convection</span> during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of <span class="hlt">convection</span> on the microstructure of lamellar and fibrous eutectics, through the effect of <span class="hlt">convection</span> on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak <span class="hlt">convection</span> expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by <span class="hlt">convection</span>. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010091026&hterms=Sulfur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DSulfur','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010091026&hterms=Sulfur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DSulfur"><span>The Biogeochemistry of Sulfur in <span class="hlt">Hydrothermal</span> Systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)</p> <p>2001-01-01</p> <p>The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in <span class="hlt">hydrothermal</span> systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in <span class="hlt">hydrothermal</span> systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in <span class="hlt">hydrothermal</span> environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth <span class="hlt">hydrothermal</span> environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth <span class="hlt">hydrothermal</span> fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020060502','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020060502"><span>Tropical <span class="hlt">Convection</span>'s Roles in Tropical Tropopause Cirrus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung</p> <p>2002-01-01</p> <p>The results presented here show that tropical <span class="hlt">convection</span> plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical <span class="hlt">convection</span> transports moisture from the surface into the upper troposphere. Second, tropical <span class="hlt">convection</span> excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from <span class="hlt">convection</span> to the cold-point tropopause. Finally, tropical <span class="hlt">convection</span> excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930043230&hterms=tins&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtins','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930043230&hterms=tins&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtins"><span><span class="hlt">Convection</span> of tin in a Bridgman system. I - Flow characterization by effective diffusivity measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sears, B.; Narayanan, R.; Anderson, T. J.; Fripp, A. L.</p> <p>1992-01-01</p> <p>An electrochemical titration method was used to investigate the dynamic states in a cylindrical layer of <span class="hlt">convecting</span> tin. The liquid tin was contained in a cell, with curved boundaries made of quartz and flat boundaries made of a solid state electrolyte - yttria-stabilized zirconia (YSZ). The electrolyte acted as a window through which a trace amount of oxygen could be pumped in or out by the application of a constant voltage. The concentration at the YSZ interface was monitored by operating the electrochemical cell in the galvanic mode. Experimentally determined effective diffusivities of oxygen were compared with the molecular diffusivity. Dynamic states in the <span class="hlt">convective</span> flow were thus inferred. Temperature measurements were simultaneously made in order to <span class="hlt">identify</span> the onset of oscillations from a steady <span class="hlt">convective</span> regime. The experiments were conducted for two different aspect ratios for various imposed temperature gradients and two different orientations with respect to gravity. Transcritical states were <span class="hlt">identified</span> and comparison to two-dimensional numerical models were made.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AIPC..833...75S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AIPC..833...75S"><span>Useful Ingredients Recovery from Sewage Sludge by using <span class="hlt">Hydrothermal</span> Reaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Koichi; Moriyama, Mika; Yamasaki, Yuki; Takahashi, Yui; Inoue, Chihiro</p> <p>2006-05-01</p> <p><span class="hlt">Hydrothermal</span> treatment of sludge from a sewage treatment plant was conducted to obtain useful ingredients for culture of specific microbes which can reduce polysulfide ion into sulfide ion and/or hydrogen sulfide. Several additives such as acid, base, and oxidizer were added to the <span class="hlt">hydrothermal</span> reaction of excess sludge to promote the production of useful materials. After <span class="hlt">hydrothermal</span> treatment, reaction solution and precipitation were qualitatively and quantitatively analyzed and estimated the availability as nutrition in cultural medium. From the results of product analysis, most of organic solid in sewage was basically decomposed by <span class="hlt">hydrothermal</span> hydrolysis and transformed into oily or water-soluble compounds. Bacterial culture of sulfate-reducing bacteria (SRB) showed the good results in multiplication with medium which was obtained from <span class="hlt">hydrothermal</span> treatment of sewage sludge with magnesium or calcium hydroxide and hydrogen peroxide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990gwic.rept.....H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990gwic.rept.....H"><span>Gravity wave initiated <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hung, R. J.</p> <p>1990-09-01</p> <p>The vertical velocity of <span class="hlt">convection</span> initiated by gravity waves was investigated. In one particular case, the <span class="hlt">convective</span> motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe <span class="hlt">convective</span> storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1419773','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1419773"><span>Rare Earth Element Concentrations in Submarine <span class="hlt">Hydrothermal</span> Fluids</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fowler, Andrew; Zierenberg, Robert</p> <p></p> <p>Rare earth element concentrations in submarine <span class="hlt">hydrothermal</span> fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine <span class="hlt">hydrothermal</span> fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27773246','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27773246"><span>Rapid-synthesis of zeolite T via sonochemical-assisted <span class="hlt">hydrothermal</span> growth method.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jusoh, Norwahyu; Yeong, Yin Fong; Mohamad, Maisarah; Lau, Kok Keong; M Shariff, Azmi</p> <p>2017-01-01</p> <p>Sonochemical-assisted method has been <span class="hlt">identified</span> as one of the potential pre-treatment methods which could reduce the formation duration of zeolite as well as other microporous and mesoporous materials. In the present work, zeolite T was synthesized via sonochemical-assisted pre-treatment prior to <span class="hlt">hydrothermal</span> growth. The durations for sonochemical-assisted pre-treatment were varied from 30min to 90min. Meanwhile, the <span class="hlt">hydrothermal</span> growth durations were ranged from 0.5 to 3days. The physicochemical properties of the resulting samples were characterized using XRD, FESEM, FTIR and BET. As verified by XRD, the samples synthesized via <span class="hlt">hydrothermal</span> growth durations of 1, 2 and 3days and sonochemical-assisted pre-treatment durations of 60min and 90min demonstrated zeolite T structure. The samples which underwent sonochemical-assisted pre-treatment duration of 60min yielded higher crystallinity with negligible change of zeolite T morphology. Overall, the lengthy synthesis duration of zeolite T has been successfully reduced from 7days to 1day by applying sonochemical-assisted pre-treatment of 60min, while synthesis duration of 0.5days via sonochemical-assisted pre-treatment of 60min was not sufficient to produce zeolite T structure. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25244359','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25244359"><span>Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea <span class="hlt">hydrothermal</span> systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc</p> <p>2014-12-01</p> <p>Diffuse <span class="hlt">hydrothermal</span> fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at <span class="hlt">hydrothermal</span> sites are so far only known from cultivation-dependent studies. To <span class="hlt">identify</span> potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct <span class="hlt">hydrothermal</span> systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen <span class="hlt">hydrothermal</span> system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc <span class="hlt">hydrothermal</span> system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at <span class="hlt">hydrothermal</span> vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1239226','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1239226"><span><span class="hlt">Identifying</span> High Potential Well Targets with 3D Seismic and Mineralogy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mellors, R. J.</p> <p>2015-10-30</p> <p>Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in <span class="hlt">identifying</span> the highly-permeable zones essential for economic <span class="hlt">hydrothermal</span> systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, <span class="hlt">identifying</span> permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to <span class="hlt">identify</span> and mapmore » permeable zones in a <span class="hlt">hydrothermal</span> area.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DokES.477.1301R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DokES.477.1301R"><span>Specific mineral associations of <span class="hlt">hydrothermal</span> shale (South Kamchatka)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.</p> <p>2017-11-01</p> <p>The sequence of <span class="hlt">hydrothermal</span> shale from the East Pauzhet thermal field within the Pauzhet <span class="hlt">hydrothermal</span> system (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in <span class="hlt">hydrothermal</span> shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the <span class="hlt">hydrothermal</span> system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P11D..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P11D..03P"><span>Refractory Organic Compounds in Enceladus' Ice Grains and <span class="hlt">Hydrothermal</span> Activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.</p> <p>2015-12-01</p> <p>Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at <span class="hlt">hydrothermal</span> activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline <span class="hlt">hydrothermal</span> vents on Earth like the Lost City <span class="hlt">Hydrothermal</span> Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been <span class="hlt">identified</span> in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of <span class="hlt">hydrothermal</span> activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004IJAsB...3...81G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004IJAsB...3...81G"><span><span class="hlt">Hydrothermal</span> exploration and astrobiology: oases for life in distant oceans?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>German, Christopher R.</p> <p>2004-04-01</p> <p>High-temperature submarine <span class="hlt">hydrothermal</span> fields on Earth's mid-ocean ridges play host to exotic ecosystems with fauna previously unknown to science. Because these systems draw significant energy from chemosynthesis rather than photosynthesis, it has been postulated that the study of such systems could have relevance to the origins of life and, hence, astrobiology. A major flaw to that argument, however, is that modern basalt-hosted submarine vents are too oxidizing and lack the abundant free hydrogen required to drive abiotic organic synthesis and/or the energy yielding reactions that the most primitive anaerobic thermophiles isolated from submarine vent-sites apparently require. Here, however, the progress over the past decade in which systematic search strategies have been used to <span class="hlt">identify</span> previously overlooked venting on the slow-spreading Mid-Atlantic Ridge and the ultra-slow spreading Arctic and SW Indian Ridges is described. Preliminary identification of fault-controlled venting in a number of these sites has led to the discovery of at least two high-temperature <span class="hlt">hydrothermal</span> fields hosted in ultramafic rocks which emit complex organic molecules in their greater than 360 °C vent-fluids. Whether these concentrations represent de novo organic synthesis within the <span class="hlt">hydrothermal</span> cell remains open to debate but it is probable that many more such sites exist throughout the Atlantic, Arctic and SW Indian Oceans. One particularly intriguing example is the Gakkel Ridge, which crosses the floor of the Arctic Ocean. On-going collaborations between oceanographers and astrobiologists are actively seeking to develop a new class of free-swimming autonomous underwater vehicle, equipped with appropriate chemical sensors, to conduct long-range missions that will seek out, locate and investigate new sites of <span class="hlt">hydrothermal</span> venting at the bottom of this, and other, ice-covered oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1405277-strengths-challenges-opportunities-hydrothermal-pretreatment-lignocellulosic-biorefineries','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1405277-strengths-challenges-opportunities-hydrothermal-pretreatment-lignocellulosic-biorefineries"><span>Strengths, challenges, and opportunities for <span class="hlt">hydrothermal</span> pretreatment in lignocellulosic biorefineries</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Bin; Tao, Ling; Wyman, Charles E.</p> <p></p> <p>Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of <span class="hlt">hydrothermal</span> pretreatment with just hot water offers the potential to greatly improve the cost of themore » entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from <span class="hlt">hydrothermally</span> pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced <span class="hlt">hydrothermal</span> pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Furthermore, improving our understanding of <span class="hlt">hydrothermal</span> pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help <span class="hlt">identify</span> novel configurations that lower capital and operating costs and achieve</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1405277-strengths-challenges-opportunities-hydrothermal-pretreatment-lignocellulosic-biorefineries','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1405277-strengths-challenges-opportunities-hydrothermal-pretreatment-lignocellulosic-biorefineries"><span>Strengths, challenges, and opportunities for <span class="hlt">hydrothermal</span> pretreatment in lignocellulosic biorefineries</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yang, Bin; Tao, Ling; Wyman, Charles E.</p> <p>2017-10-11</p> <p>Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of <span class="hlt">hydrothermal</span> pretreatment with just hot water offers the potential to greatly improve the cost of themore » entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from <span class="hlt">hydrothermally</span> pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced <span class="hlt">hydrothermal</span> pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Furthermore, improving our understanding of <span class="hlt">hydrothermal</span> pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help <span class="hlt">identify</span> novel configurations that lower capital and operating costs and achieve</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.3197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.3197M"><span>ADOPT: A tool for automatic detection of tectonic plates at the surface of <span class="hlt">convection</span> models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mallard, C.; Jacquet, B.; Coltice, N.</p> <p>2017-08-01</p> <p>Mantle <span class="hlt">convection</span> models with plate-like behavior produce surface structures comparable to Earth's plate boundaries. However, analyzing those structures is a difficult task, since <span class="hlt">convection</span> models produce, as on Earth, diffuse deformation and elusive plate boundaries. Therefore we present here and share a quantitative tool to <span class="hlt">identify</span> plate boundaries and produce plate polygon layouts from results of numerical models of <span class="hlt">convection</span>: Automatic Detection Of Plate Tectonics (ADOPT). This digital tool operates within the free open-source visualization software Paraview. It is based on image segmentation techniques to detect objects. The fundamental algorithm used in ADOPT is the watershed transform. We transform the output of <span class="hlt">convection</span> models into a topographic map, the crest lines being the regions of deformation (plate boundaries) and the catchment basins being the plate interiors. We propose two generic protocols (the field and the distance methods) that we test against an independent visual detection of plate polygons. We show that ADOPT is effective to <span class="hlt">identify</span> the smaller plates and to close plate polygons in areas where boundaries are diffuse or elusive. ADOPT allows the export of plate polygons in the standard OGR-GMT format for visualization, modification, and analysis under generic softwares like GMT or GPlates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518490-dynamics-turbulent-convection-convective-overshoot-moderate-mass-star','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518490-dynamics-turbulent-convection-convective-overshoot-moderate-mass-star"><span>DYNAMICS OF TURBULENT <span class="hlt">CONVECTION</span> AND <span class="hlt">CONVECTIVE</span> OVERSHOOT IN A MODERATE-MASS STAR</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A.</p> <p></p> <p>We present results of realistic three-dimensional (3D) radiative hydrodynamic simulations of the outer layers of a moderate-mass star (1.47 M {sub ⊙}), including the full <span class="hlt">convection</span> zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding one-dimensional (1D) standard stellar model shows an increase of the stellar radius by ∼800 km, as well as significantmore » changes in the thermodynamic structure and turbulent properties of the ionization zones. <span class="hlt">Convective</span> downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km s{sup −1}, penetrate through the whole <span class="hlt">convection</span> zone, hit the radiative zone, and form an 8 Mm thick overshoot layer. Contrary to semi-empirical overshooting models, our results show that the 3D dynamic overshoot region consists of two layers: a nearly adiabatic extension of the <span class="hlt">convection</span> zone and a deeper layer of enhanced subadiabatic stratification. This layer is formed because of heating caused by the braking of the overshooting <span class="hlt">convective</span> plumes. This effect has to be taken into account in stellar modeling and the interpretation of asteroseismology data. In particular, we demonstrate that the deviations of the mean structure of the 3D model from the 1D standard model of the same mass and composition are qualitatively similar to the deviations for the Sun found by helioseismology.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2369P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2369P"><span>Convergence behavior of idealized <span class="hlt">convection</span>-resolving simulations of summertime deep moist <span class="hlt">convection</span> over land</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panosetti, Davide; Schlemmer, Linda; Schär, Christoph</p> <p>2018-05-01</p> <p><span class="hlt">Convection</span>-resolving models (CRMs) can explicitly simulate deep <span class="hlt">convection</span> and resolve interactions between <span class="hlt">convective</span> updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated <span class="hlt">convective</span> cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist <span class="hlt">convection</span> over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and <span class="hlt">convective</span> mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.T22A1138L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.T22A1138L"><span>Using CO2 and He Concentrations in <span class="hlt">Hydrothermal</span> Fluids to Constrain Along-Axis Magma Chamber Dimensions at 9°N, EPR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lilley, M. D.; Lupton, J. E.; Olson, E. J.</p> <p>2002-12-01</p> <p>Magmatic degassing is a common occurrence in subaerial volcanoes and has been reported in shallow submarine volcanoes. It has been speculated that mid-ocean ridge magma chambers may exhibit degassing behavior but to date there has been no direct documentation of its occurrence. Based on very high CO2 and He concentrations, we believe that we now have evidence for a degassing magma chamber at 9°N, East Pacific Rise. M Vent, in the immediate vicinity of the 1991 eruption, exhibited high and relatively stable CO2 concentrations in excess of 150 mmol/kg for at least eight years post-eruption. Such high values are many times the value that can be extracted from basalt by <span class="hlt">hydrothermal</span> fluid and have previously been seen only at Axial and Loihi Seamounts. Two vents about one km south (Bio 9 and P Vents) had CO2 concentrations around 50 mmol/kg in 1991 which increased to maxima near 200 mmol/kg in 1993. We believe this represents a southward movement of the magma body in this area. He concentrations were also elevated at all the vents but showed different temporal trends from CO2 and reached maximum values in 1994. 3He/heat ratios are significantly different between M and Bio 9 and P Vents implying that separate magma bodies with differing degrees of degassing underlie the two areas. We have seen similarly high concentrations of CO2 and He at 31.8°S on the East Pacific Rise (Lupton et al., 1999) and suggest that magmatic degassing into the <span class="hlt">hydrothermal</span> <span class="hlt">convection</span> cell is occurring there as well. This work indicates that the concentrations of magmatic gases in <span class="hlt">hydrothermal</span> fluids may provide fine scale data bearing on the locations and along-axis dimensions of magma chambers. Reference: Lupton, J., D. Butterfield, M. Lilley, J. Ishibashi, D. Hey and L. Evans, Gas chemistry of <span class="hlt">hydrothermal</span> fluids along the East Pacific Rise, 5°S to 32°S, EOS, 80, F1099, 1999.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..273a2025P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..273a2025P"><span>Affective design identification on the development of batik <span class="hlt">convection</span> product</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prastawa, H.; Purwaningsih, R.</p> <p>2017-11-01</p> <p>The affective design is increasingly applied to product development in order to meet the desires and preferences of customers. Batik is a traditional Indonesian culture containing historical and cultural values. The development of batik design is one of the efforts to strengthen the identity and superiority of Indonesia’s creative industries as well as to preserve batik as the cultural heritage of the nation. Batik product designs offered by the manufacturers do not necessarily correspond with the wishes of consumers, especially the affective values involved. Therefore it is necessary to <span class="hlt">identify</span> consumer perceptions of <span class="hlt">convection</span>- based batik product in the form of clothing and fabrics, especially the affective value as the consideration for the designer or manufacturer to develop design alternatives to batik <span class="hlt">convection</span> products. This research aims to obtain information on consumer affective value, to <span class="hlt">identify</span> the affective value perception differences among X and Y Generation and to classify affective value in the corresponding cluster of the batik products <span class="hlt">convection</span>. This study uses Kansei engineering to determine the perception of affective design in the form of Kansei word. Cluster Analysis was used to form clusters that classify affective value of the same class. The results showed that there were 16 pairs of Kansei word which was worth as an affective consumer desire, the 3 indicators that had significant differences among X and Y Generation and 4 clusters with different characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P33A1917S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P33A1917S"><span>Experimental constraints on <span class="hlt">hydrothermal</span> activities in Enceladus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.</p> <p>2012-12-01</p> <p>One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) <span class="hlt">hydrothermal</span> activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of <span class="hlt">hydrothermal</span> activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of <span class="hlt">hydrothermal</span> activities, whether NH3 dissociation proceeds strongly depends on the kinetics of <span class="hlt">hydrothermal</span> reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in <span class="hlt">hydrothermal</span> fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating <span class="hlt">hydrothermal</span> systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016HydJ...24.1245E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016HydJ...24.1245E"><span>Temperature-driven groundwater <span class="hlt">convection</span> in cold climates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engström, Maria; Nordell, Bo</p> <p>2016-08-01</p> <p>The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven <span class="hlt">convection</span> in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was <4 °C. The effects of soil permeability and groundwater temperature (i.e. viscosity and density) were determined. The influence of impermeable obstacles in otherwise homogeneous ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the <span class="hlt">convection</span>. Transient solutions describe the development of <span class="hlt">convective</span> cells in the groundwater and it took 22 days before fully developed <span class="hlt">convection</span> patterns were formed. The thermal <span class="hlt">convection</span> reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the <span class="hlt">convection</span> cells was reduced. Small stones or frost lenses in the ground slightly affect the <span class="hlt">convective</span> flow, while larger obstacles change the size and shape of the <span class="hlt">convection</span> cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3409726','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3409726"><span>Anomalously weak solar <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hanasoge, Shravan M.; Duvall, Thomas L.</p> <p>2012-01-01</p> <p><span class="hlt">Convection</span> in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar <span class="hlt">convection</span>. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound <span class="hlt">convective</span> velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, <span class="hlt">convective</span> velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale <span class="hlt">convection</span> may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcASn..56..410Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcASn..56..410Z"><span><span class="hlt">Convective</span> Overshoot in Stellar Interior</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Q. S.</p> <p>2015-07-01</p> <p>In stellar interiors, the turbulent thermal <span class="hlt">convection</span> transports matters and energy, and dominates the structure and evolution of stars. The <span class="hlt">convective</span> overshoot, which results from the non-local <span class="hlt">convective</span> transport from the <span class="hlt">convection</span> zone to the radiative zone, is one of the most uncertain and difficult factors in stellar physics at present. The classical method for studying the <span class="hlt">convective</span> overshoot is the non-local mixing-length theory (NMLT). However, the NMLT bases on phenomenological assumptions, and leads to contradictions, thus the NMLT was criticized in literature. At present, the helioseismic studies have shown that the NMLT cannot satisfy the helioseismic requirements, and have pointed out that only the turbulent <span class="hlt">convection</span> models (TCMs) can be accepted. In the first part of this thesis, models and derivations of both the NMLT and the TCM were introduced. In the second part, i.e., the work part, the studies on the TCM (theoretical analysis and applications), and the development of a new model of the <span class="hlt">convective</span> overshoot mixing were described in detail. In the work of theoretical analysis on the TCM, the approximate solution and the asymptotic solution were obtained based on some assumptions. The structure of the overshoot region was discussed. In a large space of the free parameters, the approximate/asymptotic solutions are in good agreement with the numerical results. We found an important result that the scale of the overshoot region in which the thermal energy transport is effective is 1 HK (HK is the scale height of turbulence kinetic energy), which does not depend on the free parameters of the TCM. We applied the TCM and a simple overshoot mixing model in three cases. In the solar case, it was found that the temperature gradient in the overshoot region is in agreement with the helioseismic requirements, and the profiles of the solar lithium abundance, sound speed, and density of the solar models are also improved. In the low-mass stars of open</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511300W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511300W"><span>Global aerosol effects on <span class="hlt">convective</span> clouds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Till; Stier, Philip</p> <p>2013-04-01</p> <p>Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep <span class="hlt">convective</span> clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on <span class="hlt">convective</span> clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard <span class="hlt">convection</span> parameterisation, which uses one mean <span class="hlt">convective</span> cloud for each grid column, with the <span class="hlt">convective</span> cloud field model (CCFM), which simulates a spectrum of <span class="hlt">convective</span> clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in <span class="hlt">convective</span> updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the <span class="hlt">convective</span> microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983SvPhU..26..906A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983SvPhU..26..906A"><span>REVIEWS OF TOPICAL PROBLEMS: Free <span class="hlt">convection</span> in geophysical processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alekseev, V. V.; Gusev, A. M.</p> <p>1983-10-01</p> <p>A highly significant geophysical process, free <span class="hlt">convection</span>, is examined. Thermal <span class="hlt">convection</span> often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe <span class="hlt">convection</span> in a compressible or incompressible fluid, thermochemical <span class="hlt">convection</span>, and <span class="hlt">convection</span> in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal <span class="hlt">convection</span> and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for <span class="hlt">convective</span> motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by <span class="hlt">convection</span> in a centrifugal force field is considered. Section 4 deals with medium- and small-scale <span class="hlt">convective</span> processes, including hurricane systems with phase transitions, cellular cloud structure, and <span class="hlt">convection</span> penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving <span class="hlt">convection</span> in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030061414&hterms=hydrate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhydrate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030061414&hterms=hydrate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhydrate"><span>Magnetic Control of Solutal Buoyancy Driven <span class="hlt">Convection</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ramachandran, N.; Leslie, F. W.</p> <p>2003-01-01</p> <p>Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced <span class="hlt">convective</span> motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then <span class="hlt">convection</span> control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced <span class="hlt">convection</span> in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven <span class="hlt">convection</span> of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven <span class="hlt">convection</span> and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce <span class="hlt">convection</span> and to heat exchanger devices for enhancing <span class="hlt">convection</span>. The method can also be applied to impose a desired g-level in reduced gravity applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDR41010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDR41010S"><span>Seismic sounding of <span class="hlt">convection</span> in the Sun</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sreenivasan, Katepalli R.</p> <p>2015-11-01</p> <p>Thermal <span class="hlt">convection</span> is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. <span class="hlt">Convection</span> excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar <span class="hlt">convection</span>, especially that obtained through seismic inference. Several characteristics of solar <span class="hlt">convection</span>, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on <span class="hlt">convection</span> and supergranulation, are considered. On larger scales, several inferences suggest that <span class="hlt">convective</span> velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on <span class="hlt">convective</span> stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760003104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760003104"><span><span class="hlt">Convection</span> measurement package for space processing sounding rocket flights. [low gravity manufacturing - fluid dynamics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spradley, L. W.</p> <p>1975-01-01</p> <p>The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the <span class="hlt">convective</span> effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of <span class="hlt">convection</span> in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation <span class="hlt">identify</span> the configurations, fluids and boundary values which are most suitable for measuring the <span class="hlt">convective</span> environment of sounding rockets. A short description of fabricated fluid cells and the <span class="hlt">convection</span> measurement package is given. Photographs are included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1139/of2013-1139.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1139/of2013-1139.pdf"><span><span class="hlt">Hydrothermal</span> alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mars, John L.</p> <p>2013-01-01</p> <p>Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map <span class="hlt">hydrothermally</span> altered rocks in the central and southern parts of the Basin and Range province of the United States. The <span class="hlt">hydrothermally</span> altered rocks mapped in this study include (1) <span class="hlt">hydrothermal</span> silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of <span class="hlt">hydrothermal</span> alteration maps, which <span class="hlt">identify</span> the potential locations of <span class="hlt">hydrothermal</span> silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of <span class="hlt">hydrothermal</span> alteration units are provided in this study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710153W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710153W"><span>Mantle <span class="hlt">convection</span> on modern supercomputers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter</p> <p>2015-04-01</p> <p>Mantle <span class="hlt">convection</span> is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The <span class="hlt">convection</span> process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle <span class="hlt">convection</span> simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle <span class="hlt">convection</span> models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle <span class="hlt">convection</span> assessing the impact of small scale processes on global mantle flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985RpESc....Q.101K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985RpESc....Q.101K"><span>Thermohydrodynamic model: <span class="hlt">Hydrothermal</span> system, shallowly seated magma chamber</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiryukhin, A. V.</p> <p>1985-02-01</p> <p>The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a <span class="hlt">hydrothermal</span> system over a magma chamber. This matter was investigated in <span class="hlt">hydrothermal</span> system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the <span class="hlt">hydrothermal</span> system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the <span class="hlt">hydrothermal</span> system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020992','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020992"><span>The potential for free and mixed <span class="hlt">convection</span> in sedimentary basins</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Raffensperger, Jeff P.; Vlassopoulos, D.</p> <p>1999-01-01</p> <p>Free thermal <span class="hlt">convection</span> and mixed <span class="hlt">convection</span> are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed <span class="hlt">convection</span> occurs when horizontal flows (forced <span class="hlt">convection</span>) are superimposed on thermally driven flows. In cross section, mixed <span class="hlt">convection</span> is characterized by <span class="hlt">convection</span> cells that migrate laterally in the direction of forced <span class="hlt">convective</span> flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free <span class="hlt">convection</span>, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-<span class="hlt">convection</span> pattern. Results from these experiments indicate that forced <span class="hlt">convection</span> becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-<span class="hlt">convection</span> fluid flux exceeds the total flux possible due to free <span class="hlt">convection</span>. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free <span class="hlt">convection</span> produces a distinct pattern of alternating positive and negative RAIs, whereas mixed <span class="hlt">convection</span> produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28484442','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28484442"><span>Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow <span class="hlt">Hydrothermal</span> System.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gomez-Saez, Gonzalo V; Pop Ristova, Petra; Sievert, Stefan M; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I</p> <p>2017-01-01</p> <p>The unique geochemistry of marine shallow-water <span class="hlt">hydrothermal</span> systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to <span class="hlt">identify</span> the key players. The study was carried out at a marine shallow-water <span class="hlt">hydrothermal</span> system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm <span class="hlt">hydrothermal</span> fluids that contain high amounts of dissolved Fe 2+ . Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea <span class="hlt">hydrothermal</span> vents (e.g., Zetaproteobacteria and Geothermobacter ), supported the importance of iron-driven redox processes in this <span class="hlt">hydrothermal</span> system. Uptake of 13 C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13 C-incorporation in the dark allowed the classification of ai C 15:0 , C 15:0 , and i C 16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13 C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5399606','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5399606"><span>Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow <span class="hlt">Hydrothermal</span> System</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gomez-Saez, Gonzalo V.; Pop Ristova, Petra; Sievert, Stefan M.; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I.</p> <p>2017-01-01</p> <p>The unique geochemistry of marine shallow-water <span class="hlt">hydrothermal</span> systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to <span class="hlt">identify</span> the key players. The study was carried out at a marine shallow-water <span class="hlt">hydrothermal</span> system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm <span class="hlt">hydrothermal</span> fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea <span class="hlt">hydrothermal</span> vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this <span class="hlt">hydrothermal</span> system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......241L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......241L"><span>Deep <span class="hlt">Convection</span>, Magnetism and Solar Supergranulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lord, J. W.</p> <p></p> <p>We examine the effect of deep <span class="hlt">convection</span> and magnetic fields on solar supergranulation. While supergranulation was originally <span class="hlt">identified</span> as a <span class="hlt">convective</span> flow from relatively great depth below the solar surface, recent work suggests that supergranules may originate near the surface. We use the MURaM code to simulate solar-like surface <span class="hlt">convection</span> with a realistic photosphere and domain size up to 197 x 197 x 49 Mm3. This yields nearly five orders of magnitude of density contrast between the bottom of the domain and the photosphere which is the most stratified solar-like <span class="hlt">convection</span> simulations that we are aware of. Magnetic fields were thought to be a passive tracer in the photosphere, but recent work suggests that magnetism could provide a mechanism that enhances the supergranular scale flows at the surface. In particular, the enhanced radiative losses through long lived magnetic network elements may increase the lifetime of photospheric downflows and help organize low wavenumber flows. Since our simulation does not have sufficient resolution to resolve increased cooling by magnetic bright points, we artificially increase the radiative cooling in elements with strong magnetic flux. These simulations increase the cooling by 10% for magnetic field strength greater than 100 G. We find no statistically significant difference in the velocity or magnetic field spectrum by enhancing the radiative cooling. We also find no differences in the time scale of the flows or the length scales of the magnetic energy spectrum. This suggests that the magnetic field is determined by the flows and is largely a passive tracer. We use these simulations to construct a two-component model of the flows: for scales smaller than the driving (integral) scale (which is four times the local density scale height) the flows follow a Kolmogorov (k-5/3) spectrum, while larger scale modes decay with height from their driving depth (i.e. the depth where the wavelength of the mode is equal to the driving</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P42A..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P42A..07K"><span>Stirring up a storm: <span class="hlt">convective</span> climate variability on tidally locked exoplanets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koll, D. D. B.; Cronin, T.</p> <p>2017-12-01</p> <p>Earth-sized exoplanets are extremely common in the galaxy and many of them are likely tidally locked, such that they have permanent day- and nightsides. Astronomers have started to probe the atmospheres of such planets, which raises the question: can tidally locked planets support habitable climates and life?Several studies have explored this question using global circulation models (GCMs). Not only did these studies find that tidally locked Earth analogs can indeed sustain habitable climates, their large day-night contrast should also create a distinct cloud structure that could help astronomers <span class="hlt">identify</span> such planets. These studies, however, relied on GCMs which do not explicitly resolve <span class="hlt">convection</span>, raising the question of how robust their results are.Here we consider the dynamics of clouds and <span class="hlt">convection</span> on a tidally locked planet using the System for Atmospheric Modeling (SAM) cloud-resolving model. We simulate a 3d `channel', representing an equatorial strip that covers both day- and nightside of a tidally locked planet. We use interactive radiation and an interactive slab ocean surface and investigate the response to changes in the stellar constant. We find mean climates that are broadly comparable to those produced by a GCM. However, when the slab ocean is shallow, we also find internal variability that is far bigger than in a GCM. <span class="hlt">Convection</span> in a tidally locked domain can self-organize in a dramatic fashion, with large outbursts of <span class="hlt">convection</span> followed by periods of relative calm. We show that one of the timescales for this behavior is set by the time it takes for a dry gravity wave to travel between day- and nightside. The quasi-periodic self-organization of clouds can vary the planetary albedo by up to 50%. Changes this large are potentially detectable with future space telescopes, which raises the prospect of using <span class="hlt">convectively</span> driven variability to <span class="hlt">identify</span> high priority targets in the search for life around other stars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..353..114M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..353..114M"><span>The <span class="hlt">hydrothermal</span> evolution of the Kawerau geothermal system, New Zealand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.</p> <p>2018-03-01</p> <p><span class="hlt">Hydrothermal</span> alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with <span class="hlt">hydrothermal</span> alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in <span class="hlt">hydrothermal</span> processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two <span class="hlt">hydrothermal</span> events that can be coupled with chronological data. The earlier period of <span class="hlt">hydrothermal</span> activity was initiated at 400 ka, with the heat driving the <span class="hlt">hydrothermal</span> system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with <span class="hlt">hydrothermal</span> eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of <span class="hlt">hydrothermal</span> calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..122...41J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..122...41J"><span>Geochemistry of <span class="hlt">hydrothermal</span> vent fluids and its implications for subsurface processes at the active Longqi <span class="hlt">hydrothermal</span> field, Southwest Indian Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.</p> <p>2017-04-01</p> <p>The Longqi <span class="hlt">hydrothermal</span> field at 49.6°E on the Southwest Indian Ridge was the first active <span class="hlt">hydrothermal</span> field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the <span class="hlt">hydrothermal</span> fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi <span class="hlt">Hydrothermal</span> field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor <span class="hlt">hydrothermal</span> fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls <span class="hlt">hydrothermal</span> fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28682665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28682665"><span>Can Life Begin on Enceladus? A Perspective from <span class="hlt">Hydrothermal</span> Chemistry.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deamer, David; Damer, Bruce</p> <p>2017-09-01</p> <p>Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth-<span class="hlt">hydrothermal</span> vents on the ocean floor and <span class="hlt">hydrothermal</span> volcanic fields at the surface-and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A <span class="hlt">hydrothermal</span> vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater <span class="hlt">hydrothermal</span> pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus-<span class="hlt">Hydrothermal</span> vents-<span class="hlt">Hydrothermal</span> fields-Origin of life. Astrobiology 17, 834-839.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5610390','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5610390"><span>Can Life Begin on Enceladus? A Perspective from <span class="hlt">Hydrothermal</span> Chemistry</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Damer, Bruce</p> <p>2017-01-01</p> <p>Abstract Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth—<span class="hlt">hydrothermal</span> vents on the ocean floor and <span class="hlt">hydrothermal</span> volcanic fields at the surface—and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A <span class="hlt">hydrothermal</span> vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater <span class="hlt">hydrothermal</span> pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus—<span class="hlt">Hydrothermal</span> vents—<span class="hlt">Hydrothermal</span> fields—Origin of life. Astrobiology 17, 834–839. PMID:28682665</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010972','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010972"><span>Influence of <span class="hlt">convection</span> on microstructure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilcox, William R.; Regel, Liya L.</p> <p>1992-01-01</p> <p>The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven <span class="hlt">convection</span> on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to <span class="hlt">convection</span> than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to <span class="hlt">convection</span> than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of <span class="hlt">convection</span> and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to <span class="hlt">convection</span> when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to <span class="hlt">convection</span> than a lamellar microstructure with a planar interface, the influence of <span class="hlt">convection</span> remains too small to explain the flight and magnetic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H33B0791M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H33B0791M"><span>Comparative Simulations of 2D and 3D Mixed <span class="hlt">Convection</span> Flow in a Faulted Basin: an Example from the Yarmouk Gorge, Israel and Jordan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.</p> <p>2014-12-01</p> <p>Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D <span class="hlt">convective</span> patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed <span class="hlt">convection</span>, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered <span class="hlt">convection</span> in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed <span class="hlt">convection</span> as the main mechanism for the thermal anomalies. However, in 3D the <span class="hlt">convective</span> structures are more complex allowing for longer flow paths and residence times. In the fault planes, <span class="hlt">hydrothermal</span> <span class="hlt">convection</span> develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of <span class="hlt">convective</span> flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23F0287D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23F0287D"><span>A Multi-Variable Approach to Diagnosing the Monthly Covariability of the Amazonian Radiative and <span class="hlt">Convective</span> Diurnal Cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dodson, J. B.; Taylor, P. C.</p> <p>2016-12-01</p> <p>The diurnal cycle of <span class="hlt">convection</span> (CDC) greatly influences the water, radiative, and energy budgets in <span class="hlt">convectively</span> active regions. For example, previous research of the Amazonian CDC has <span class="hlt">identified</span> significant monthly covariability between the satellite-observed radiative and precipitation diurnal and multiple reanalysis-derived atmospheric state variables (ASVs) representing <span class="hlt">convective</span> instability. However, disagreements between retrospective analysis products (reanalyses) over monthly ASV anomalies create significant uncertainty in the resulting covariability. Satellite observations of <span class="hlt">convective</span> clouds can be used to characterize monthly anomalies in <span class="hlt">convective</span> activity. CloudSat observes multiple properties of both deep <span class="hlt">convective</span> cores and the associated anvils, and so is useful as an alternative to the use of reanalyses. CloudSat cannot observe the full diurnal cycle, but it can detect differences between daytime and nighttime <span class="hlt">convection</span>. Initial efforts to use CloudSat data to characterize <span class="hlt">convective</span> activity showed that the results are highly dependent on the choice of variable used to characterize the cloud. This is caused by a series of inverse relationships between <span class="hlt">convective</span> frequency, cloud top height, radar reflectivity vertical profile, and other variables. A single, multi-variable index for <span class="hlt">convective</span> activity based on CloudSat data may be useful to clarify the results. Principal component analysis (PCA) provides a method to create a multivariable index, where the first principal component (PC1) corresponds with <span class="hlt">convective</span> instability. The time series of PC1 can then be used as a proxy for monthly variability in <span class="hlt">convective</span> activity. The primary challenge presented involves determining the utility of PCA for creating a robust index for <span class="hlt">convective</span> activity that accounts for the complex relationships of multiple <span class="hlt">convective</span> cloud variables, and yields information about the interactions between <span class="hlt">convection</span>, the <span class="hlt">convective</span> environment, and radiation beyond</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT.......230P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT.......230P"><span>Nonhydrostatic thermohaline <span class="hlt">convection</span> in the polar oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Potts, Mark Allen</p> <p></p> <p>Sea ice cover in the polar and sub-polar seas is an important and sensitive component of the Earth's climate system. It mediates the transfer of heat and momentum between the ocean and the atmosphere in high latitude oceans. Where open patches occur in the ice cover a large transfer of heat from the ocean to the atmosphere occurs that accounts for a large fraction of energy exchange between the wintertime polar ocean and atmosphere. Although the circumstances under which leads and polynyas form are considerably different, similar brine driven <span class="hlt">convection</span> occurs under both. <span class="hlt">Convection</span> beneath freezing ice in leads and polynyas can be modeled using either the hydrostatic or nonhydrostatic form of the governing equations. One important question is the degree of nonhydrostaticity, which depends on the vertical accelerations present. This issue is addressed through the application of a nonhydrostatic model, with accurate treatment of the turbulent mixing. The results suggest that mixing and re-freezing considerably modify the fluid dynamical processes underneath, such as the periodic shedding of saline plumes. It also appears that overall, the magnitude of the nonhydrostaticity is small, and hydrostatic models are generally adequate to deal with the problem of <span class="hlt">convection</span> under leads. Strong wintertime cooling drives deep <span class="hlt">convection</span> in sub-polar seas and in the coastal waters surrounding Antarctica. Deep <span class="hlt">convection</span> results in formation of deep water in the global oceans, which is of great importance to the maintenance of the stratification of its deep interior, and the resulting meridional circulation is central to the Earth's climatic state. Deep <span class="hlt">convection</span> falls into two general categories: open ocean deep <span class="hlt">convection</span>, which occurs in deep stretches of the high latitude seas far from topographical influences, and <span class="hlt">convection</span> on or near the continental shelves, where topography exerts a considerable influence. Nonhydrostatic models are central to the study of deep</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920042562&hterms=structures+cellular&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dstructures%2Bcellular','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920042562&hterms=structures+cellular&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dstructures%2Bcellular"><span>Cellular <span class="hlt">convection</span> in the atmosphere of Venus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, R. D., II; Schubert, Gerald</p> <p>1992-01-01</p> <p>Among the most intriguing feature of the atmosphere of Venus is the presence of cellular structures near and downwind of the subpolar point. It has been suggested that the structures are atmospheric <span class="hlt">convection</span> cells, but their breadth and thinness would pose a severe challenge to the dynamics of <span class="hlt">convection</span>. It is proposed here that strongly penetrative <span class="hlt">convection</span> into the stable regions above and below the neutrally stable cloud layer coupled with penetrative <span class="hlt">convection</span> from the surface increases the vertical dimensions of the cells, thereby helping to explain their large horizontal extent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GeoRL..3722404N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GeoRL..3722404N"><span><span class="hlt">Convective</span> dissolution of carbon dioxide in saline aquifers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.</p> <p>2010-11-01</p> <p>Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by <span class="hlt">convection</span> in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the <span class="hlt">convective</span> behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the <span class="hlt">convective</span> flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the <span class="hlt">convective</span> flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the <span class="hlt">convective</span> flux, provides a physical picture of high Rayleigh number <span class="hlt">convection</span> in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that <span class="hlt">convective</span> dissolution can play an important role in enhancing storage security.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008TellA..60..688R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008TellA..60..688R"><span>A thermodynamically general theory for <span class="hlt">convective</span> vortices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renno, Nilton O.</p> <p>2008-08-01</p> <p><span class="hlt">Convective</span> vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for <span class="hlt">convective</span> vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying <span class="hlt">convective</span> vortices. However, current theories assume that <span class="hlt">convective</span> vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for <span class="hlt">convective</span> vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to <span class="hlt">convective</span> circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of <span class="hlt">convective</span> vortices such as their physical appearance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....5310173P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....5310173P"><span>Interpretation of Ground Temperature Anomalies in <span class="hlt">Hydrothermal</span> Discharge Areas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, Adam N.; Lindsey, Cary R.; Fairley, Jerry P.</p> <p>2017-12-01</p> <p>Researchers have long noted the potential for shallow <span class="hlt">hydrothermal</span> fluids to perturb near-surface temperatures. Several investigators have made qualitative or semiquantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, ID, USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which <span class="hlt">convection</span> carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70094692','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70094692"><span><span class="hlt">Hydrothermal</span> contamination of public supply wells in Napa and Sonoma Valleys, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.</p> <p>2013-01-01</p> <p>Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper <span class="hlt">hydrothermal</span> fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these <span class="hlt">hydrothermal</span> systems, and investigate <span class="hlt">hydrothermal</span> contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, <span class="hlt">hydrothermal</span> fluids, or mixed <span class="hlt">hydrothermal</span> fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of <span class="hlt">hydrothermal</span> fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the <span class="hlt">hydrothermal</span> fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as <span class="hlt">hydrothermal</span>, 28 as fresh groundwater, two as saline water, and nine as mixed <span class="hlt">hydrothermal</span> fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% <span class="hlt">hydrothermal</span> fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by <span class="hlt">hydrothermal</span> fluids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.U33A..08K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.U33A..08K"><span>Impact-generated <span class="hlt">Hydrothermal</span> Activity at the Chicxulub Crater</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kring, D. A.; Zurcher, L.; Abramov, O.</p> <p>2007-05-01</p> <p>Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated <span class="hlt">hydrothermal</span> alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of <span class="hlt">hydrothermal</span> alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the <span class="hlt">hydrothermal</span> system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the <span class="hlt">hydrothermal</span> system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of <span class="hlt">hydrothermal</span> alteration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9825E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9825E"><span><span class="hlt">Hydrothermal</span> activity at slow-spreading ridges: variability and importance of magmatic controls</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escartin, Javier</p> <p>2016-04-01</p> <p><span class="hlt">Hydrothermal</span> activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with <span class="hlt">hydrothermal</span> fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of <span class="hlt">hydrothermal</span> fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived <span class="hlt">hydrothermal</span> activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past <span class="hlt">hydrothermal</span> activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of <span class="hlt">hydrothermal</span> activity along the remaining of the ridge segment, suggests that long-lived <span class="hlt">hydrothermal</span> activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, <span class="hlt">hydrothermal</span> outflow zones at the seafloor are systematically controlled by faults, indicating that <span class="hlt">hydrothermal</span> fluids in the shallow crust exploit permeable fault zones to circulate. While</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017417','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017417"><span>Geology of kilauea volcano</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, R.B.; Trusdell, F.A.</p> <p>1993-01-01</p> <p>This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate <span class="hlt">hydrothermal-convection</span> systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these <span class="hlt">hydrothermal-convection</span> systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local <span class="hlt">hydrothermal-convection</span> systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the <span class="hlt">hydrothermal-convection</span> systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of <span class="hlt">hydrothermal</span> alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040050343&hterms=rate+evaporation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drate%2Bevaporation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040050343&hterms=rate+evaporation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drate%2Bevaporation"><span>Marangoni <span class="hlt">Convection</span> and Deviations from Maxwells' Evaporation Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Segre, P. N.; Snell, E. H.; Adamek, D. H.</p> <p>2003-01-01</p> <p>We investigate the <span class="hlt">convective</span> dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant <span class="hlt">convective</span> flows inside the liquid due to Marangoni forces. We find that Marangoni <span class="hlt">convection</span> during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the <span class="hlt">convective</span> velocities and temperature gradients to the evaporation rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53D3147H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53D3147H"><span>Microstructural Indicators Of <span class="hlt">Convection</span> In Sills And Dykes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holness, M. B.; Neufeld, J. A.; Gilbert, A. J.; Macdonald, R.</p> <p>2016-12-01</p> <p>The question of whether or not <span class="hlt">convection</span> occurs in crustal magma chambers is a vexed one, with some advocating vigorous <span class="hlt">convection</span> while others argue that <span class="hlt">convection</span> is weak and short-lived. We argue that microstructural analysis is key to determining whether crystallization took place in solidification fronts or whether crystals grew suspended in a <span class="hlt">convecting</span> magma before settling. The 168m, composite, Shiant Isles Main Sill is dominated by a 140m unit, of which the lower 45m contains olivine phenocrysts. The phenocrysts first fine upwards, then coarsen upwards. The coarsening-upwards sequence contains clustered olivines. Both the extent of sintering and average cluster size increase upwards. The coarsening-upwards sequence is mirrored at the roof. The fining-upwards sequence formed by rapid settling of incoming cargo crystals, while the coarsening-upwards sequence represents post-emplacement growth and clustering of grains suspended in a <span class="hlt">convecting</span> magma. <span class="hlt">Convection</span> is also recorded by plagioclase grain shape. Well-facetted and compact plagioclase grains are platy in rapidly-cooled rocks and blocky in slowly-cooled rocks. Plagioclase grain shape varies smoothly across mafic sills, consistent with growth in solidification fronts. In contrast, grain shape is invariant across mafic dykes, consistent with growth as individual grains and clusters suspended in a <span class="hlt">convecting</span> magma. <span class="hlt">Convection</span> in sills occurs when the critical Rayleigh number is exceeded, but cooling at vertical walls always results in <span class="hlt">convective</span> instabilities. That the Shiant Isles Main Sill records prolonged and vigorous <span class="hlt">convection</span>, while other sills of comparable thickness record grain growth predominantly in solidification fronts, is most likely due to the composite nature of the Shiant. The 140m unit is underlain by 23m of picrite which intruded shortly before - the strongly asymmetric cooling and absence of a cold, stagnant basal thermal boundary layer make <span class="hlt">convection</span> throughout the sill more</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870053913&hterms=convection+currents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870053913&hterms=convection+currents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dconvection%2Bcurrents"><span>Ionospheric <span class="hlt">convection</span> driven by NBZ currents</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rasmussen, C. E.; Schunk, R. W.</p> <p>1987-01-01</p> <p>Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric <span class="hlt">convection</span>, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, <span class="hlt">convection</span> in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell <span class="hlt">convection</span> with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric <span class="hlt">convection</span>. Day-night asymmetries in conductivity change <span class="hlt">convection</span> in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric <span class="hlt">convection</span> is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T33E2976W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T33E2976W"><span>Mantle <span class="hlt">Convection</span> on Modern Supercomputers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.</p> <p>2015-12-01</p> <p>Mantle <span class="hlt">convection</span> is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The <span class="hlt">convection</span> process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle <span class="hlt">convection</span> simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle <span class="hlt">convection</span> models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle <span class="hlt">convection</span> and assess the impact of small scale processes on global mantle flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeCoA.223..107Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeCoA.223..107Y"><span>Effects of iron-containing minerals on <span class="hlt">hydrothermal</span> reactions of ketones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.</p> <p>2018-02-01</p> <p><span class="hlt">Hydrothermal</span> organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental <span class="hlt">hydrothermal</span> system. Ketones play a central role in many <span class="hlt">hydrothermal</span> organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the <span class="hlt">hydrothermal</span> chemistry of ketones is poorly understood. Under the <span class="hlt">hydrothermal</span> conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the <span class="hlt">hydrothermal</span> reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in <span class="hlt">hydrothermal</span> solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated <span class="hlt">hydrothermal</span> organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1224512','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1224512"><span><span class="hlt">Hydrothermal</span> Liquefaction Treatment Preliminary Hazard Analysis Report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lowry, Peter P.; Wagner, Katie A.</p> <p></p> <p>A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular <span class="hlt">hydrothermal</span> liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques <span class="hlt">identified</span> areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affectingmore » the public.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.tmp...83S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.tmp...83S"><span>Organized <span class="hlt">convection</span> over southwest peninsular India during the pre-monsoon season</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sreelekha, P. N.; Babu, C. A.</p> <p>2018-03-01</p> <p>The paper addresses observational aspects of widespread rain associated with the organized <span class="hlt">convection</span> that forms over the southwest peninsular India during the pre-monsoon season. The evolution of the cloud band over the equatorial region, its northward propagation, development of cross equatorial flow near the Somalia coast, and appearance of equatorial westerly wind resemble closely to that of the monsoon organized <span class="hlt">convection</span>. Low-level convergence, cyclonic vorticity, and ascending motion are other major characteristics of the cloud bands associated with the pre-monsoon organized <span class="hlt">convection</span> which exhibits similarity with that of monsoon. The ascending motion plays vital role on the formation of cloud band that produces widespread rainfall persisting for more than a week. The vertical shear of meridional winds is found to co-exist with precipitation over the Arabian Sea off the southwest peninsular India. The velocity potential values derived from the winds at 850 and 200 hPa levels confirm the rising motion on the basis of low-level convergence and upper level divergence. Also, shifting of ascending limb of the local Hadley circulation to the north of the equator is observed during the days of the presence of organized <span class="hlt">convection</span> over the southwest peninsular region. Noticeable shift in the Walker circulation rising limb is also <span class="hlt">identified</span> during the same time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950024444','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950024444"><span>Laboratory simulated <span class="hlt">hydrothermal</span> alteration of sedimentary organic matter from Guaymas Basin, Gulf of California. Ph.D. Thesis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leif, Roald N.</p> <p>1993-01-01</p> <p>High temperature alteration of sedimentary organic matter associated with marine <span class="hlt">hydrothermal</span> systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the <span class="hlt">hydrothermal</span> system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the <span class="hlt">hydrothermal</span> system in the Guaymas Basin, Gulf of California. A general survey of <span class="hlt">hydrothermal</span> oils and extractable organic matter (bitumen) in <span class="hlt">hydrothermally</span> altered sediments <span class="hlt">identified</span> several homologous series of alkanones associated with a high temperature <span class="hlt">hydrothermal</span> origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme <span class="hlt">hydrothermal</span> conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied <span class="hlt">hydrothermal</span> fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme <span class="hlt">hydrothermal</span> conditions. Short duration pyrolysis experiments revealed that a portion of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1342301-hydrothermal-aging-effects-fe-ssz-fe-beta-nh3scr-catalysts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1342301-hydrothermal-aging-effects-fe-ssz-fe-beta-nh3scr-catalysts"><span><span class="hlt">Hydrothermal</span> Aging Effects on Fe/SSZ-13 and Fe/Beta NH3–SCR Catalysts</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gao, Feng; Szanyi, János; Wang, Yilin</p> <p></p> <p>Cu/SSZ-13 has been successfully commercialized as a diesel engine exhaust aftertreatment SCR catalyst in the past few years. This catalyst, however, displays undesirable NH3-SCR selectivity at elevated reaction temperature (≥ 350 C) after <span class="hlt">hydrothermal</span> aging. Fe/zeolites, despite the fact that most of them degrade beyond tolerance after <span class="hlt">hydrothermal</span> aging at temperatures ≥ 650 C, typically maintain good SCR selectivities. In recent years, Fe/beta has been <span class="hlt">identified</span> as one of the more robust Fe/zeolites for use in NH3-SCR, where activity maintains even after <span class="hlt">hydrothermal</span> aging at 750 C. Very recently, we, for the first time, synthesized and tested NH3-SCR performance formore » fresh and <span class="hlt">hydrothermally</span> aged Fe/SSZ-13 catalysts. This study demonstrated that Fe/SSZ-13 is also a promising robust SCR catalyst, especially for high-temperature applications. In the present study, we compare catalytic performance between Fe/SSZ-13 and Fe/beta with similar Fe loadings and Si/Al ratios. Special attention is paid to effects from <span class="hlt">hydrothermal</span> aging, aiming to understanding similarities and differences between these two catalysts. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMEP31A..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMEP31A..03C"><span>Geothermic Potential Assessment of <span class="hlt">hydrothermal</span> vents of Township Barranca De Upia - Meta - Colombia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chica, J.; Chicangana, G.; Eco Energy Research Group</p> <p>2013-05-01</p> <p><span class="hlt">Hydrothermal</span> vents have been traditionally exploited in Colombia as a source of tourism revenue such as pools and saunas. Leaving aside its high potential for geothermal power generation in applications like heating, drying, cooling, extensive use in crops, livestock, electricity generation and more. Currently the use given to this natural resource in the town of Barranca de Upia in Meta department, central Colombia, is like Wellness Centre. However, the geothermal gradient for the area where <span class="hlt">hydrothermal</span> vents occur, indicates that the water emerges at temperatures above 70 ° C (Alfaro et al., 2003), which opens a window of opportunity to assess their geothermal potential, in order to know the actual energy potential of the region as an option of augmenting their development. this research is the analysis of information gathered from databases in gravimetry and magnetometry of the study area and the temperatures measured in wells derived from the oil industry. Based on that information, a numerical analysis of the data will be performed in order to establish a model to parameterize the energy potential of the study area and <span class="hlt">identify</span> possible uses of the energy contained by the <span class="hlt">hydrothermal</span> vents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5445829','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5445829"><span><span class="hlt">Hydrothermal</span> Synthesis of Nanostructured Vanadium Oxides</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Livage, Jacques</p> <p>2010-01-01</p> <p>A wide range of vanadium oxides have been obtained via the <span class="hlt">hydrothermal</span> treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by <span class="hlt">hydrothermal</span> treatment. PMID:28883325</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790049504&hterms=convection+currents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790049504&hterms=convection+currents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dconvection%2Bcurrents"><span>Field-aligned currents, <span class="hlt">convection</span> electric fields, and ULF-ELF waves in the cusp</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.</p> <p>1979-01-01</p> <p>Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), <span class="hlt">convection</span> electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and <span class="hlt">identified</span> as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) <span class="hlt">convection</span>; (2) the observations are consistent with a two-cell <span class="hlt">convection</span> pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong <span class="hlt">convection</span> on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860056287&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860056287&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DOpen%2BField"><span>Ionospheric <span class="hlt">convection</span> signatures observed by DE 2 during northward interplanetary magnetic field</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heelis, R. A.; Hanson, W. B.; Reiff, P. H.; Winningham, J. D.</p> <p>1986-01-01</p> <p>Observations of the ionospheric <span class="hlt">convection</span> signature at high latitudes are examined during periods of prolonged northward interplanetary magnetic field (IMF). The data from Dynamics Explorer 2 show that a four-cell <span class="hlt">convection</span> pattern can frequently be observed in a region that is displaced to the sunward side of the dawn-dusk meridian regardless of season. In the eclipsed ionosphere, extremely structured or turbulent flow exists with no <span class="hlt">identifiable</span> connection to a more coherent pattern that may simultaneously exist in the dayside region. The two highest-latitude <span class="hlt">convection</span> cells that form part of the coherent dayside pattern show a dependence on the y component of the IMF. This dependence is such that a clockwise circulating cell displaced toward dawn dominates the high-latitude region when B(Y) is positive. Anti-clockwise circulation displaced toward dusk dominates the highest latitudes when B(Y) is negative. Examination of the simultaneously observed energetic particle environment suggests that both open and closed field lines may be associated with the high-latitude <span class="hlt">convection</span> cells. On occasions these entire cells can exist on open field lines. The existence of closed field lines in regions of sunward flow is also apparent in the data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920034442&hterms=poirier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dpoirier','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920034442&hterms=poirier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dpoirier"><span>Segregation and <span class="hlt">convection</span> in dendritic alloys</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poirier, D. R.</p> <p>1990-01-01</p> <p>Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the <span class="hlt">convection</span> of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal <span class="hlt">convection</span> are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P51A2011A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P51A2011A"><span><span class="hlt">Convection</span> Models for Ice-Water System: Dynamical Investigation of Phase Transition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allu Peddinti, D.; McNamara, A. K.</p> <p>2012-12-01</p> <p>Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of <span class="hlt">convection</span> in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study <span class="hlt">convection</span>. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of <span class="hlt">convection</span> within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We <span class="hlt">identify</span> upper bounds on the viscosity of the proxy liquid such that <span class="hlt">convective</span> dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-<span class="hlt">convection</span> transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice <span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11214315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11214315"><span>Aerogeophysical measurements of collapse-prone <span class="hlt">hydrothermally</span> altered zones at Mount Rainier volcano.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Finn, C A; Sisson, T W; Deszcz-Pan, M</p> <p>2001-02-01</p> <p><span class="hlt">Hydrothermally</span> altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of <span class="hlt">hydrothermally</span> altered edifice flanks have generated numerous extensive debris flows and future collapses could threaten areas that are now densely populated. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried <span class="hlt">hydrothermally</span> altered rock lie mainly in the upper west flank of Mount Rainier. We <span class="hlt">identify</span> this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0135L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0135L"><span>Internal Wave-<span class="hlt">Convection</span>-Mean Flow Interactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lecoanet, D.; Couston, L. A.; Favier, B.; Le Bars, M.</p> <p>2017-12-01</p> <p>We present a series of simulations of Boussinesq fluid with a nonlinear equation of state which in thermal equilibrium is <span class="hlt">convective</span> in the bottom part of the domain, but stably stratified in the upper part of the domain. The stably stratified region supports internal gravity waves, which are excited by the <span class="hlt">convection</span>. The <span class="hlt">convection</span> can significantly affected by the stably stratified region. Furthermore, the waves in the stable region can interact nonlinearly to drive coherent mean flows which exhibit regular oscillations, similar to the QBO in the Earth's atmosphere. We will describe the dependence of the mean flow oscillations on the properties of the <span class="hlt">convection</span> which generate the internal waves. This provides a novel framework for understanding mean flow oscillations in the Earth's atmosphere, as well as the atmospheres of giant planets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V41B1394K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V41B1394K"><span>Microbial Community in the <span class="hlt">Hydrothermal</span> System at Southern Mariana Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kato, S.; Itahashi, S.; Kakegawa, T.; Utsumi, M.; Maruyama, A.; Ishibashi, J.; Marumo, K.; Urabe, T.; Yamagishi, A.</p> <p>2004-12-01</p> <p>There is unique ecosystem around deep-sea <span class="hlt">hydrothermal</span> area. Living organisms are supported by chemical free energy provided by the <span class="hlt">hydrothermal</span> water. The ecosystem is expected to be similar to those in early stage of life history on the earth, when photosynthetic organisms have not emerged. In this study, we have analyzed the microbial diversity in the <span class="hlt">hydrothermal</span> area at southern Mariana trough. In the "Archaean Park Project" supported by special Coordination Fund, four holes were bored and cased by titanium pipes near <span class="hlt">hydrothermal</span> vents in the southern Mariana trough in 2004. <span class="hlt">Hydrothermal</span> fluids were collected from these cased holes and natural vents in this area. Microbial cells were collected by filtering the <span class="hlt">hydrothermal</span> fluid in situ or in the mother sip. Filters were stored at -80C and used for DNA extraction. Chimneys at this area was also collected and stored at -80C. The filters and chimney samples were crushed and DNA was extracted. DNA samples were used for amplification of 16S rDNA fragments by PCR using archaea specific primers and universal primers. The PCR fragments were cloned and sequenced. These PCR clones of different samples will be compared. We will extend our knowledge about microbiological diversity at Southern Mariana trough to compare the results obtained at other area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS51E..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS51E..02C"><span>Near-Seafloor Magnetic Exploration of Submarine <span class="hlt">Hydrothermal</span> Systems in the Kermadec Arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.</p> <p>2014-12-01</p> <p>Magnetic data can provide important information about <span class="hlt">hydrothermal</span> systems because <span class="hlt">hydrothermal</span> alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map <span class="hlt">hydrothermal</span> systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of <span class="hlt">hydrothermal</span> upflow zones and the structural control on the development of seafloor <span class="hlt">hydrothermal</span> vent sites as well as being a tool for the discovery of previously unknown <span class="hlt">hydrothermal</span> sites. Significant differences exist between the magnetic expressions of <span class="hlt">hydrothermal</span> sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040172574&hterms=protein+synthesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dprotein%2Bsynthesis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040172574&hterms=protein+synthesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dprotein%2Bsynthesis"><span>Energetics of amino acid synthesis in <span class="hlt">hydrothermal</span> ecosystems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Amend, J. P.; Shock, E. L.</p> <p>1998-01-01</p> <p>Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine <span class="hlt">hydrothermal</span> solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the <span class="hlt">hydrothermal</span> solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC <span class="hlt">hydrothermal</span> solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA42A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA42A..07B"><span>Influence of Solar Irradiance on Polar Ionospheric <span class="hlt">Convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burrell, A. G.; Yeoman, T. K.; Stephen, M.; Lester, M.</p> <p>2016-12-01</p> <p>Plasma <span class="hlt">convection</span> over the poles shows the result of direct interactions between the terrestrial atmosphere, magnetosphere, and the sun. The paths that the ionospheric plasma takes in the polar cap form a variety of patterns, which have been shown to depend strongly on the direction of the Interplanetary Magnetic Field (IMF) and the reconnection rate. While the IMF and level of geomagnetic activity clearly alter the plasma <span class="hlt">convection</span> patterns, the influence of changing solar irradiance is also important. The solar irradiance and magnetospheric particle precipitation regulate the rate of plasma production, and thus the ionospheric conductivity. Previous work has demonstrated how season alters the <span class="hlt">convection</span> patterns observed over the poles, demonstrating the importance that solar photoionisation has on plasma <span class="hlt">convection</span>. This study investigates the role of solar photoionisation on <span class="hlt">convection</span> more directly, using measurements of ionospheric <span class="hlt">convection</span> made by the Super Dual Auroral Radar Network (SuperDARN) and solar irradiance observations made by the Solar EUV Experiment (SEE) to explore the influence of the solar cycle on ionospheric <span class="hlt">convection</span>, and the implications this may have on magnetosphere-ionosphere coupling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRI..116..127K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRI..116..127K"><span>Extensive <span class="hlt">hydrothermal</span> activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konn, C.; Fourré, E.; Jean-Baptiste, P.; Donval, J. P.; Guyader, V.; Birot, D.; Alix, A. S.; Gaillot, A.; Perez, F.; Dapoigny, A.; Pelleter, E.; Resing, J. A.; Charlou, J. L.; Fouquet, Y.</p> <p>2016-10-01</p> <p>The study area is close to the Wallis and Futuna Islands in the French EEZ. It exists on the western boundary of the fastest tectonic area in the world at the junction of the Lau and North-Fiji basins. At this place, the unstable back-arc accommodates the plate motion in three ways: (i) the north Fiji transform fault, (ii) numerous unstable spreading ridges, and (iii) large areas of recent volcanic activity. This instability creates bountiful opportunity for <span class="hlt">hydrothermal</span> discharge to occur. Based on geochemical (CH4, TDM, 3He) and geophysical (nephelometry) tracer surveys: (1) no <span class="hlt">hydrothermal</span> activity could be found on the Futuna Spreading Centre (FSC) which sets the western limit of <span class="hlt">hydrothermal</span> activity; (2) four distinct <span class="hlt">hydrothermal</span> active areas were <span class="hlt">identified</span>: Kulo Lasi Caldera, Amanaki Volcano, Fatu Kapa and Tasi Tulo areas; (3) extensive and diverse <span class="hlt">hydrothermal</span> manifestations were observed and especially a 2D distribution of the sources. At Kulo Lasi, our data and especially tracer ratios (CH4/3He 50×106 and CH4/TDM 4.5) reveal a transient CH4 input, with elevated levels of CH4 measured in 2010, that had vanished in 2011, most likely caused by an eruptive magmatic event. By contrast at Amanaki, vertical tracer profiles and tracer ratios point to typical seawater/basalt interactions. Fatu Kapa is characterised by a substantial spatial variability of the <span class="hlt">hydrothermal</span> water column anomalies, most likely due to widespread focused and diffuse <span class="hlt">hydrothermal</span> discharge in the area. In the Tasi Tulo zone, the <span class="hlt">hydrothermal</span> signal is characterised by a total lack of turbidity, although other tracer anomalies are in the same range as in nearby Fatu Kapa. The background data set revealed the presence of a Mn and 3He chronic plume due to the extensive and cumulative venting over the entire area. To that respect, we believe that the joined domain composed of our active area and the nearby active area discovered in the East by Lupton et al. (2012) highly contribute to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930094656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930094656"><span>Gliding in <span class="hlt">convection</span> currents</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Georgii, W</p> <p>1935-01-01</p> <p>A survey of the possibilities of gliding in <span class="hlt">convection</span> currents reveals that heretofore only the most simple kind of ascending <span class="hlt">convection</span> currents, that is, the "thermic" of insolation, has been utilized to any extent. With the increasing experience in gliding, the utilization of the peculiar nature of the "wind thermic" and increased glider speed promises further advances. Evening, ocean, and height "thermic" are still in the exploration stage, and therefore not amenable to survey in their effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/175482','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/175482"><span>Active control of <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bau, H.H.</p> <p></p> <p>Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent <span class="hlt">convection</span> to time-dependent, oscillatory <span class="hlt">convection</span> in the thermal <span class="hlt">convection</span> loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such amore » way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25745204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25745204"><span>Influence of <span class="hlt">hydrothermal</span> processing on functional properties and grain morphology of finger millet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G</p> <p>2015-03-01</p> <p>Finger millet was <span class="hlt">hydrothermally</span> processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after <span class="hlt">hydrothermal</span> processing and decortication were studied. It was observed that, the millet turned dark after <span class="hlt">hydrothermal</span> processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. <span class="hlt">Hydrothermal</span> processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on <span class="hlt">hydrothermal</span> processing and both <span class="hlt">hydrothermally</span> processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for <span class="hlt">hydrothermally</span> processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after <span class="hlt">hydrothermal</span> processing and the different layers of seed coat get fused with the endosperm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3946481','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3946481"><span>Three-Dimensional Mixed <span class="hlt">Convection</span> Flow of Viscoelastic Fluid with Thermal Radiation and <span class="hlt">Convective</span> Conditions</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab</p> <p>2014-01-01</p> <p>The objective of present research is to examine the thermal radiation effect in three-dimensional mixed <span class="hlt">convection</span> flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with <span class="hlt">convective</span> conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed <span class="hlt">convection</span> parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed <span class="hlt">convection</span> parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24608594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24608594"><span>Three-dimensional mixed <span class="hlt">convection</span> flow of viscoelastic fluid with thermal radiation and <span class="hlt">convective</span> conditions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab</p> <p>2014-01-01</p> <p>The objective of present research is to examine the thermal radiation effect in three-dimensional mixed <span class="hlt">convection</span> flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with <span class="hlt">convective</span> conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed <span class="hlt">convection</span> parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed <span class="hlt">convection</span> parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..12111319B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..12111319B"><span><span class="hlt">Convectively</span> coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-<span class="hlt">convective</span> coupling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.</p> <p>2016-10-01</p> <p>This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of <span class="hlt">convectively</span> coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized <span class="hlt">convective</span> activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized <span class="hlt">convection</span> or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between <span class="hlt">convection</span> and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7301N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7301N"><span>On the impact of spatial heterogeneous permeability distributions on the development of free <span class="hlt">convection</span> cells in the Perth Basin, Australia.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niederau, Jan; Ebigbo, Anozie; Freitag, Sebastian; Marquart, Gabriele; Clauser, Christoph</p> <p>2014-05-01</p> <p> therefore temperature. The heterogeneous distribution of permeability seems to control the <span class="hlt">convection</span> pattern on a smaller scale. References [1] Schilling, O., Sheldon, H.A., Reid, L.B., Corbel, S. 2013. <span class="hlt">Hydrothermal</span> models of the Perth metropolitan area, Western Australia: implications for geothermal energy. Hydrogeology Journal, Vol. 21, 605-621.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDR28008Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDR28008Y"><span>From <span class="hlt">convection</span> rolls to finger <span class="hlt">convection</span> in double-diffusive turbulence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Yantao; Verzicco, Roberto; Lohse, Detlef</p> <p>2015-11-01</p> <p>The double diffusive <span class="hlt">convection</span> (DDC), where the fluid density depends on two scalar components with very different molecular diffusivities, is frequently encountered in oceanography, astrophysics, and electrochemistry. In this talk we report a systematic study of vertically bounded DDC for various control parameters. The flow is driven by an unstable salinity difference between two plates and stabilized by a temperature difference. As the relative strength of temperature difference becomes stronger, the flow transits from a state with large-scale <span class="hlt">convection</span> rolls, which is similar to the Rayleigh-Bénard (RB) flow, to a state with well-organised salt fingers. When the temperature difference increases further, the flow breaks down to a purely conductive state. During this transit the velocity decreases monotonically. Counterintuitively, the salinity transfer can be enhanced when a stabilising temperature field is applied to the system. This happens when <span class="hlt">convection</span> rolls are replaced by salt fingers. In addition, we show that the Grossmann-Lohse theory originally developed for RB flow can be directly applied to the current problem and accurately predicts the salinity transfer rate for a wide range of control parameters. Supported by Stichting FOM and the National Computing Facilities (NCF), both sponsored by NWO. The simulations were conducted on the Dutch supercomputer Cartesius at SURFsara.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A12C..06Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A12C..06Z"><span>What Determines Upscale Growth of Oceanic <span class="hlt">Convection</span> into MCSs?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zipser, E. J.</p> <p>2017-12-01</p> <p>Over tropical oceans, widely scattered <span class="hlt">convection</span> of various depths may or may not grow upscale into mesoscale <span class="hlt">convective</span> systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered <span class="hlt">convection</span>? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered <span class="hlt">convection</span> are small. The main positive results from this work (already published) demonstrate that the strength of <span class="hlt">convection</span> is well correlated with the size and perhaps "organization" of <span class="hlt">convective</span> features over tropical oceans, in contrast to tropical land, where strong <span class="hlt">convection</span> is common for large or small <span class="hlt">convective</span> features. So, important questions remain: Over tropical oceans, how should we define "organized" <span class="hlt">convection</span>? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A24F..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A24F..04S"><span>Simulating the <span class="hlt">convective</span> precipitation diurnal cycle in a North American scale <span class="hlt">convection</span>-permitting model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.</p> <p>2017-12-01</p> <p>A better representation of the diurnal cycle of <span class="hlt">convective</span> precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. <span class="hlt">Convection</span>-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in <span class="hlt">convective</span> precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the <span class="hlt">convective</span> available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and <span class="hlt">convective</span> energy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995OLEB...25..141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995OLEB...25..141S"><span>Geochemical constraints on chemolithoautotrophic reactions in <span class="hlt">hydrothermal</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.</p> <p>1995-06-01</p> <p>Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced <span class="hlt">hydrothermal</span> fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of <span class="hlt">hydrothermal</span> fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from <span class="hlt">hydrothermal</span> fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of <span class="hlt">hydrothermal</span> fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of <span class="hlt">hydrothermal</span> systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950057137&hterms=Geochemistry+Biosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGeochemistry%2BBiosphere','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950057137&hterms=Geochemistry+Biosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGeochemistry%2BBiosphere"><span>Geochemical constraints on chemolithoautotrophic reactions in <span class="hlt">hydrothermal</span> systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shock, Everett L.; Mccollom, Thomas; Schulte, Mithell D.</p> <p>1995-01-01</p> <p>Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of reduced <span class="hlt">hydrothermal</span> fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of <span class="hlt">hydrothermal</span> fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from <span class="hlt">hydrothermal</span> fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of <span class="hlt">hydrothermal</span> fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of <span class="hlt">hydrothermal</span> systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJNMF..76..699A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJNMF..76..699A"><span>Topology optimisation for natural <span class="hlt">convection</span> problems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe; Sigmund, Ole</p> <p>2014-12-01</p> <p>This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural <span class="hlt">convection</span> effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the <span class="hlt">convection</span>-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach for designing heat sink geometries cooled by natural <span class="hlt">convection</span> and micropumps powered by natural <span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1242988','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1242988"><span><span class="hlt">Convective</span> Radio Occultations Final Campaign Summary</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Biondi, R.</p> <p>2016-03-01</p> <p>Deep <span class="hlt">convective</span> systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. <span class="hlt">Convection</span> over land is usually stronger and deeper than over the ocean and some <span class="hlt">convective</span> systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecastmore » and monitoring of <span class="hlt">convective</span> systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770011716','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770011716"><span>Vorticity imbalance and stability in relation to <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Read, W. L.; Scoggins, J. R.</p> <p>1977-01-01</p> <p>A complete synoptic-scale vorticity budget was related to <span class="hlt">convection</span> storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of <span class="hlt">convective</span> storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of <span class="hlt">convection</span> indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of <span class="hlt">convective</span> activity. Instability was related to areas of <span class="hlt">convection</span>; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of <span class="hlt">convection</span> better than any one item separately.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..108b2010Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..108b2010Z"><span>Direct catalytic <span class="hlt">hydrothermal</span> liquefaction of spirulina to biofuels with hydrogen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li</p> <p>2018-01-01</p> <p>We report herein on acquiring biofuels from direct catalytic <span class="hlt">hydrothermal</span> liquefaction of spirulina. The component of bio-oil from direct catalytic <span class="hlt">hydrothermal</span> liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with <span class="hlt">hydrothermal</span> condition is higher than that from two independent processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681857','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681857"><span>Metagenomic resolution of microbial functions in deep-sea <span class="hlt">hydrothermal</span> plumes across the Eastern Lau Spreading Center</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Anantharaman, Karthik; Breier, John A; Dick, Gregory J</p> <p>2016-01-01</p> <p>Microbial processes within deep-sea <span class="hlt">hydrothermal</span> plumes affect ocean biogeochemistry on global scales. In rising <span class="hlt">hydrothermal</span> plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in <span class="hlt">hydrothermal</span> vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different <span class="hlt">hydrothermal</span> plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic ‘bins' were <span class="hlt">identified</span>, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the <span class="hlt">hydrothermal</span> plumes. We conclude that the energy metabolism of microbial communities inhabiting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26046257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26046257"><span>Metagenomic resolution of microbial functions in deep-sea <span class="hlt">hydrothermal</span> plumes across the Eastern Lau Spreading Center.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anantharaman, Karthik; Breier, John A; Dick, Gregory J</p> <p>2016-01-01</p> <p>Microbial processes within deep-sea <span class="hlt">hydrothermal</span> plumes affect ocean biogeochemistry on global scales. In rising <span class="hlt">hydrothermal</span> plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in <span class="hlt">hydrothermal</span> vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different <span class="hlt">hydrothermal</span> plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic 'bins' were <span class="hlt">identified</span>, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the <span class="hlt">hydrothermal</span> plumes. We conclude that the energy metabolism of microbial communities inhabiting rising</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981IJHMT..24.1513V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981IJHMT..24.1513V"><span>Free surface <span class="hlt">convection</span> in a bounded cylindrical geometry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vrentas, J. S.; Narayanan, R.; Agrawal, S. S.</p> <p>1981-09-01</p> <p>Surface tension-driven <span class="hlt">convection</span> and buoyancy-driven <span class="hlt">convection</span> in a bounded cylindrical geometry with a free surface are studied for a range of aspect ratios and Nusselt numbers. The thermal <span class="hlt">convection</span> is in a liquid layer contained in a vertical circular cylinder with a single free boundary, the top surface, which is in contact with an inviscid gas phase. A different method is also developed for analyzing free <span class="hlt">convection</span> problems using Green's functions, reducing the problem to the solution of an integral equation. Linear theory and some aspects of a nonlinear analysis are utilized to determine the critical Marangoni and Rayleigh numbers, the structure of the <span class="hlt">convective</span> motion, the direction of flow, and the nature of the bifurcation branching.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5394654','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5394654"><span>Astronomical and atmospheric impacts on deep-sea <span class="hlt">hydrothermal</span> vent invertebrates</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée</p> <p>2017-01-01</p> <p>Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and <span class="hlt">hydrothermal</span> vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between <span class="hlt">hydrothermal</span> community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic <span class="hlt">hydrothermal</span> species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between <span class="hlt">hydrothermal</span> fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that <span class="hlt">hydrothermal</span> species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950057138&hterms=Aldehydes+ketones&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DAldehydes%2Bketones','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950057138&hterms=Aldehydes+ketones&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DAldehydes%2Bketones"><span>Thermodynamics of Strecker synthesis in <span class="hlt">hydrothermal</span> systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schulte, Mitchell; Shock, Everett</p> <p>1995-01-01</p> <p>Submarine <span class="hlt">hydrothermal</span> systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at <span class="hlt">hydrothermal</span> conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by <span class="hlt">hydrothermal</span> systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23447978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23447978"><span>Experimental investigation on thermo-magnetic <span class="hlt">convection</span> inside cavities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gontijo, R G; Cunha, F R</p> <p>2012-12-01</p> <p>This paper presents experimental results on thermo-magnetic <span class="hlt">convection</span> inside cavities. We examine the flow induced by <span class="hlt">convective</span> currents inside a cavity with aspect ratio near the unity and the heat transfer rates measurements inside a thin cavity with aspect ratio equal to twelve. The <span class="hlt">convective</span> unstable currents are formed when a magnetic suspension is subjected to a temperature gradient combined with a gradient of an externally imposed magnetic field. Under these conditions, stratifications in the suspension density and susceptibility are both important effects to the <span class="hlt">convective</span> motion. We show a comparison between flow patterns of magnetic and gravitational <span class="hlt">convections</span>. The impact of the presence of a magnetic field on the amount of heat extracted from the system when magnetic and gravitational effects are combined inside the test cell is evaluated. The <span class="hlt">convection</span> state is largely affected by new instability modes produced by stratification in susceptibility. The experiments reveal that magnetic field enhances the instability in the <span class="hlt">convective</span> flow leading to a more effective mixing and consequently to a more statistically homogenous temperature distribution inside the test cell. The experimental results allow the validation of the scaling law proposed in a previous theoretical work that has predicted that the Nusselt number scales with the magnetic Rayleigh number to the power of 1/3, in the limit in which magnetic force balances viscous force in the <span class="hlt">convective</span> flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080045748&hterms=chemistry+chemicals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dchemistry%2Bchemicals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080045748&hterms=chemistry+chemicals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dchemistry%2Bchemicals"><span>Effects of Deep <span class="hlt">Convection</span> on Atmospheric Chemistry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pickering, Kenneth E.</p> <p>2007-01-01</p> <p>This presentation will trace the important research developments of the last 20+ years in defining the roles of deep <span class="hlt">convection</span> in tropospheric chemistry. The role of deep <span class="hlt">convection</span> in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep <span class="hlt">convection</span> have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep <span class="hlt">convection</span> occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-<span class="hlt">convective</span> enhancements of ozone production were estimated for <span class="hlt">convection</span> occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that <span class="hlt">convective</span> transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that <span class="hlt">convective</span> downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep <span class="hlt">convection</span> are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in <span class="hlt">convective</span> outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within <span class="hlt">convective</span> clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of <span class="hlt">convective</span> transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B13C0630H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B13C0630H"><span>Community Structure Comparisons of <span class="hlt">Hydrothermal</span> Vent Microbial Mats Along the Mariana Arc and Back-arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hager, K. W.; Fullerton, H.; Moyer, C. L.</p> <p>2015-12-01</p> <p><span class="hlt">Hydrothermal</span> vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain <span class="hlt">hydrothermal</span> vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these <span class="hlt">hydrothermal</span> vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and <span class="hlt">identify</span> samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these <span class="hlt">hydrothermal</span> vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4561M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4561M"><span>3D <span class="hlt">convection</span> in a fractured porous medium : influence of fracture network parameters and comparison to homogeneous approach.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mezon, Cécile; Mourzenko, Valeri; François Thovert, Jean; Antoine, Raphael; Fontaine, Fabrice; Finizola, Anthony; Adler, Pierre Michel</p> <p>2016-04-01</p> <p>In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In <span class="hlt">hydrothermal</span> systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal <span class="hlt">convection</span> is numerically computed in 3D fluid satured isotropically fractured porous media. Fractures are inserted as 2D convex polygons, which are randomly located. The fluid is assumed to satisfy 2D and 3D Darcy's law in the fractures and in the porous medium, respectively; exchanges take place between these two structures. First, checks were performed on an unfractured porous medium and the <span class="hlt">convection</span> cells do start for the theoretical value of Ra, namely 4pi². 2D <span class="hlt">convection</span> was verified up to Ra=800. Second, all fractured simulations were made for Rayleigh numbers (Ra) < 150, cubic boxes and closed-top conditions. The influence of parameters such as fracture aperture (or fracture transmissivity) and fracture density on the heat released by the whole system is studied. Then, the effective permeability of each fractured system is calculated. This last calculation enables the comparison between all fractured models and models of homogeneous medium with the same macroscopic properties. First, the heat increase released by the system as a function of fracture transmissivity and fracture density is determined. Second, results show that the effective approach is valid for low Ra (< 70), and that the mismatch between the full calculations and the effective medium approach for Ra higher than 70 depends on the fracture density in a crucial way. Third, the study also reveals that equivalent properties could be deduced from these computations in order to estimate the heat released by a fractured system from an homogeneous approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SSCom.148..516L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SSCom.148..516L"><span>Versatile <span class="hlt">hydrothermal</span> synthesis of one-dimensional composite structures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Yonglan</p> <p>2008-12-01</p> <p>In this paper we report on a versatile <span class="hlt">hydrothermal</span> approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this <span class="hlt">hydrothermal</span> strategy and the growth mechanism was also discussed. This <span class="hlt">hydrothermal</span> strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1406834','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1406834"><span><span class="hlt">Hydrothermal</span> Liquefaction Treatment Hazard Analysis Report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lowry, Peter P.; Wagner, Katie A.</p> <p></p> <p>Hazard analyses were performed to evaluate the modular <span class="hlt">hydrothermal</span> liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques <span class="hlt">identified</span> areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios receivedmore » increased attention: •Scenarios involving a release of hazardous material or energy, controls were <span class="hlt">identified</span> in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were <span class="hlt">identified</span> for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1455025','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1455025"><span>PNNL - WRF-LES - <span class="hlt">Convective</span> - TTU</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kosovic, Branko</p> <p></p> <p>This dataset includes large-eddy simulation (LES) output from a <span class="hlt">convective</span> atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical <span class="hlt">convective</span> ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1455026','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1455026"><span>ANL - WRF-LES - <span class="hlt">Convective</span> - TTU</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kosovic, Branko</p> <p></p> <p>This dataset includes large-eddy simulation (LES) output from a <span class="hlt">convective</span> atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical <span class="hlt">convective</span> ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1455027','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1455027"><span>LANL - WRF-LES - <span class="hlt">Convective</span> - TTU</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kosovic, Branko</p> <p></p> <p>This dataset includes large-eddy simulation (LES) output from a <span class="hlt">convective</span> atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical <span class="hlt">convective</span> ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P31A1239H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P31A1239H"><span>Towards high-resolution mantle <span class="hlt">convection</span> simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Höink, T.; Richards, M. A.; Lenardic, A.</p> <p>2009-12-01</p> <p>The motion of tectonic plates at the Earth’s surface, earthquakes, most forms of volcanism, the growth and evolution of continents, and the volatile fluxes that govern the composition and evolution of the oceans and atmosphere are all controlled by the process of solid-state thermal <span class="hlt">convection</span> in the Earth’s rocky mantle, with perhaps a minor contribution from <span class="hlt">convection</span> in the iron core. Similar processes govern the evolution of other planetary objects such as Mars, Venus, Titan, and Europa, all of which might conceivably shed light on the origin and evolution of life on Earth. Modeling and understanding this complicated dynamical system is one of the true “grand challenges” of Earth and planetary science. In the past three decades much progress towards understanding the dynamics of mantle <span class="hlt">convection</span> has been made, with the increasing aid of computational modeling. Numerical sophistication has evolved significantly, and a small number of independent codes have been successfully employed. Computational power continues to increase dramatically, and with it the ability to resolve increasingly finer fluid mechanical structures. Yet, the perhaps most often cited limitation in numerical modeling based publications is still the limitation of computing power, because the ability to resolve thermal boundary layers within the <span class="hlt">convecting</span> mantle (e.g., lithospheric plates), requires a spatial resolution of ~ 10 km. At present, the largest supercomputing facilities still barely approach the power to resolve this length scale in mantle <span class="hlt">convection</span> simulations that include the physics necessary to model plate-like behavior. Our goal is to use supercomputing facilities to perform 3D spherical mantle <span class="hlt">convection</span> simulations that include the ingredients for plate-like behavior, i.e. strongly temperature- and stress-dependent viscosity, at Earth-like <span class="hlt">convective</span> vigor with a global resolution of order 10 km. In order to qualify to use such facilities, it is also necessary to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002mfpt....2..585Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002mfpt....2..585Z"><span>Thermal <span class="hlt">Convection</span> in Two-Dimensional Soap Films</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Jie; Wu, X. L.</p> <p>2002-11-01</p> <p>Thermal <span class="hlt">convection</span> in a fluid is a common phenomenon. Due to thermal expansion, the light warm fluid at the bottom tends to rise and the cold, heavier fluid at the top tends to fall. This so-called thermal <span class="hlt">convection</span> exists in earth atmosphere and in oceans. It is also an important mechanism by which energy is transported in stars. In this study we investigate thermal <span class="hlt">convection</span> in a vertical soap film.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21I2271S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21I2271S"><span><span class="hlt">Convective</span> Hydration and Dehydration in the Tropical Upper Troposphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schoeberl, M. R.; Pfister, L.; Ueyama, R.; Jensen, E. J.; Avery, M. A.; Dessler, A. E.</p> <p>2017-12-01</p> <p>As air moves up through the tropical tropopause layer (TTL), water vapor condenses and ice falls out irreversibly dehydrating the air. <span class="hlt">Convection</span> penetrates the TTL changing the concentration of water vapor. Using a Lagrangian model, we find that <span class="hlt">convection</span> hydrates the local TTL if the air is sub-saturated, and dehydrates the air if the layer is super-saturated. We analyze the frequency and location of both types of <span class="hlt">convective</span> events using our forward domain filling trajectory model with satellite observed <span class="hlt">convection</span>. We find that hydration events exceed dehydration events at all levels above 360K although because few <span class="hlt">convective</span> events penetrate to the upper TTL, the net water vapor impact weakens with altitude. Maps of hydration and dehydration events show that both types of events occur where <span class="hlt">convection</span> is strongest The average, <span class="hlt">convection</span> above 360K adds about 0.5 ppmv of water to the stratosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatCo...5E3173R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatCo...5E3173R"><span>Understanding and controlling plasmon-induced <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.</p> <p>2014-01-01</p> <p>The heat generation and fluid <span class="hlt">convection</span> induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid <span class="hlt">convection</span>. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in <span class="hlt">convection</span> velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of <span class="hlt">convection</span> in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDF33005K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDF33005K"><span>Simulations of thermal Rayleigh-Marangoni <span class="hlt">convection</span> in a three-layer liquid-metal-battery model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg</p> <p>2017-11-01</p> <p>Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal <span class="hlt">convection</span> since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are <span class="hlt">identified</span>, which are partly coupled to each other: buoyant <span class="hlt">convection</span> in the upper electrode, buoyant <span class="hlt">convection</span> in the molten salt layer, and Marangoni <span class="hlt">convection</span> at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant <span class="hlt">convection</span>. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25063134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25063134"><span>Enhancement of valve metal osteoconductivity by one-step <span class="hlt">hydrothermal</span> treatment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi</p> <p>2014-09-01</p> <p>In this study, we produced super-hydrophilic surfaces of valve metals (Ti, Nb, Ta and Zr) by one-step <span class="hlt">hydrothermal</span> treatment. Their surface characteristics and osteoconductivity using an in vivo test were then assessed. These data were compared with that of as-polished, as-anodized and both anodized+<span class="hlt">hydrothermally</span> treated samples. Changes in surface chemistry, surface morphology and structure were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffractometry. The results revealed that the water contact angles of valve metals were decreased by <span class="hlt">hydrothermal</span> treatment and continued to reduce dramatically until lower than 10° after being immersed in phosphate buffered solution. By producing super-hydrophilic surfaces, the osteoconductivity of these <span class="hlt">hydrothermally</span> treated valve metals was enhanced by up to 55%. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020059546','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020059546"><span>Thiols in <span class="hlt">Hydrothermal</span> Solution: Standard Partial Molal Properties and Their Role in the Organic Geochemistry of <span class="hlt">Hydrothermal</span> Environments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schulte, Mitchell D.; Rogers, Karyn L.; DeVincenzi, D. (Technical Monitor)</p> <p>2001-01-01</p> <p>Modern seafloor <span class="hlt">hydrothermal</span> systems are locations where great varieties of geochemistry occur due to the enormous disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Despite the incomplete understanding of the carbon budget in <span class="hlt">hydrothermal</span> systems, the organic geochemistry of these sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols, thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in <span class="hlt">hydrothermal</span> environments, as well as in a variety of biological processes and other abiotic reactions. The reduction of CO2 to thesis, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power. We have used recent advances in theoretical geochemistry to estimate the standard partial moral thermodynamic properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for aqueous straight-chain alkyl thesis. With these data and parameters we have evaluated the role that organic sulfur compounds may play as reaction intermediates during organic compound synthesis. We conclude that organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life in <span class="hlt">hydrothermal</span> settings. These results may also explain the presence of sulfur in a number of biomolecules present in ancient thermophilic microorganisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1249376','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1249376"><span>Probing the transition from shallow to deep <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kuang, Zhiming; Gentine, Pierre</p> <p>2016-05-01</p> <p>In this funded project we highlighted the components necessary for the transition from shallow to deep <span class="hlt">convection</span>. In particular we defined a prototype of shallow to deep <span class="hlt">convection</span>, which is currently being implemented in the NASA GISS model. We also tried to highlight differences between land and oceanic <span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120t4502H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120t4502H"><span>Regimes of Coriolis-Centrifugal <span class="hlt">Convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horn, Susanne; Aurnou, Jonathan M.</p> <p>2018-05-01</p> <p>Centrifugal buoyancy affects all rotating turbulent <span class="hlt">convection</span> phenomena, but is conventionally ignored in rotating <span class="hlt">convection</span> studies. Here, we include centrifugal buoyancy to investigate what we call Coriolis-centrifugal <span class="hlt">convection</span> (C3 ), characterizing two so far unexplored regimes, one where the flow is in quasicyclostrophic balance (QC regime) and another where the flow is in a triple balance between pressure gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to centrifugally dominated dynamics occurs when the Froude number Fr equals the radius-to-height aspect ratio γ . Hence, turbulent <span class="hlt">convection</span> experiments with small γ may encounter centrifugal effects at lower Fr than traditionally expected. Further, we show analytically that the direct effect of centrifugal buoyancy yields a reduction of the Nusselt number Nu. However, indirectly, it can cause a simultaneous increase of the viscous dissipation and thereby Nu through a change of the flow morphology. These direct and indirect effects yield a net Nu suppression in the CC regime and a net Nu enhancement in the QC regime. In addition, we demonstrate that C3 may provide a simplified, yet self-consistent, model system for tornadoes, hurricanes, and typhoons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29864299','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29864299"><span>Regimes of Coriolis-Centrifugal <span class="hlt">Convection</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Horn, Susanne; Aurnou, Jonathan M</p> <p>2018-05-18</p> <p>Centrifugal buoyancy affects all rotating turbulent <span class="hlt">convection</span> phenomena, but is conventionally ignored in rotating <span class="hlt">convection</span> studies. Here, we include centrifugal buoyancy to investigate what we call Coriolis-centrifugal <span class="hlt">convection</span> (C^{3}), characterizing two so far unexplored regimes, one where the flow is in quasicyclostrophic balance (QC regime) and another where the flow is in a triple balance between pressure gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to centrifugally dominated dynamics occurs when the Froude number Fr equals the radius-to-height aspect ratio γ. Hence, turbulent <span class="hlt">convection</span> experiments with small γ may encounter centrifugal effects at lower Fr than traditionally expected. Further, we show analytically that the direct effect of centrifugal buoyancy yields a reduction of the Nusselt number Nu. However, indirectly, it can cause a simultaneous increase of the viscous dissipation and thereby Nu through a change of the flow morphology. These direct and indirect effects yield a net Nu suppression in the CC regime and a net Nu enhancement in the QC regime. In addition, we demonstrate that C^{3} may provide a simplified, yet self-consistent, model system for tornadoes, hurricanes, and typhoons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030032199','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030032199"><span>Directional Solidification and <span class="hlt">Convection</span> in Small Diameter Crucibles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, J.; Sung, P. K.; Tewari, S. N.; Poirier, D. R.; DeGroh, H. C., III</p> <p>2003-01-01</p> <p>Pb-2.2 wt% Sb alloy was directionally solidified in 1, 2, 3 and 7 mm diameter crucibles. Pb-Sb alloy presents a solutally unstable case. Under plane-front conditions, the resulting macrosegregation along the solidified length indicates that <span class="hlt">convection</span> persists even in the 1 mm diameter crucible. Al-2 wt% Cu alloy was directionally solidified because this alloy was expected to be stable with respect to <span class="hlt">convection</span>. Nevertheless, the resulting macrosegregation pattern and the microstructure in solidified examples indicated the presence of <span class="hlt">convection</span>. Simulations performed for both alloys show that <span class="hlt">convection</span> persists for crucibles as small as 0.6 mm of diameter. For the solutally stable alloy, Al-2 wt% Cu, the simulations indicate that the <span class="hlt">convection</span> arises from a lateral temperature gradient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031516','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031516"><span><span class="hlt">Hydrothermal</span> nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dekov, V.M.; Kamenov, George D.; Stummeyer, Jens; Thiry, M.; Savelli, C.; Shanks, Wayne C.; Fortin, D.; Kuzmann, E.; Vertes, A.</p> <p>2007-01-01</p> <p>A sediment core containing a yellowish-green clay bed was recovered from an area of extensive <span class="hlt">hydrothermal</span> deposition at the SE slope of the Eolo Seamount, Tyrrhenian Sea. The clay bed is composed of pure nontronite (described for the first time in the Tyrrhenian Sea), which appears to be the most aluminous nontronite ever found among the seafloor <span class="hlt">hydrothermal</span> deposits. The high Al content suggests precipitation from Al-containing <span class="hlt">hydrothermal</span> solutions. The REE distribution of the Eolo nontronite has a V-shape pattern. The heavy REE enrichment is in part due to their preferential partitioning in the nontronite structure. This enrichment was possibly further enhanced by the HREE preferential sorption on bacterial cell walls. The light REE enrichment is the result of scavenging uptake by one of the nontronite precursors, i.e., poorly-ordered Fe-oxyhydroxides, from the <span class="hlt">hydrothermal</span> fluids. Oxygen isotopic composition of the nontronite yields a formation temperature of 30????C, consistent with a low-temperature <span class="hlt">hydrothermal</span> origin. The relatively radiogenic Nd isotopic signature of the nontronite compared to the present-day Mediterranean seawater indicates that approximately half of Nd, and presumably the rest of the LREE, are derived from local volcanic sources. On the other hand, 87Sr/86Sr is dominated by present-day seawater Sr. Scanning electron microscopy investigation revealed that the nontronite is composed of aggregates of lepispheres and tube-like filaments, which are indicative of bacteria assisted precipitation. Bacteria inhabiting this <span class="hlt">hydrothermal</span> site likely acted as reactive geochemical surfaces on which poorly-ordered <span class="hlt">hydrothermal</span> Fe-oxyhydroxides and silica precipitated. Upon aging, the interactions of these primary <span class="hlt">hydrothermal</span> precipitates coating bacterial filaments and cell walls likely led to the formation of nontronite. Finally, the well-balanced interlayer and layer charges of the crystal lattice of seafloor <span class="hlt">hydrothermal</span> nontronite decrease its</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890004472','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890004472"><span>Driving forces: Slab subduction and mantle <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hager, Bradford H.</p> <p>1988-01-01</p> <p>Mantle <span class="hlt">convection</span> is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the <span class="hlt">convecting</span> mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle <span class="hlt">convection</span> and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar <span class="hlt">convecting</span> systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple <span class="hlt">convection</span> experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle <span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS43A2019F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS43A2019F"><span>Three-dimensional Models of <span class="hlt">Hydrothermal</span> Circulation through a Seamount Network in Fast-spreading Crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, A. T.; Lauer, R. M.; Winslow, D. M.</p> <p>2015-12-01</p> <p>There is a region of 20-24 M.y. old seafloor on the eastern flank of the East Pacific Rise, offshore of Costa Rica, where the advective heat loss from the crust is 60-85% of lithospheric. Much of this advective flux occurs through basement outcrops that penetrate regionally thick sediments, but rates and patterns of <span class="hlt">hydrothermal</span> circulation in this area are poorly understood. We have run a series of numerical simulations of coupled fluid-heat transport to assess how crustal aquifer and outcrop properties and the distance(s) between outcrops control ridge-flank <span class="hlt">hydrothermal</span> flows in this setting. Extracting a large fraction of lithospheric heat through this process requires crustal aquifer permeability on the order of 10-10 to 10-9 m2, values considerably higher than seen on other ridge flanks (where advective heat extraction is less efficient). In simulations using two crustal outcrops having a different size, vigorous discharge of outcrop-to-outcrop flow is favored through the smaller and/or less permeable outcrop. In addition, simulations with a larger grid (40 km square versus 20 km square) result in higher fluid flow rates, apparently because there is more heat to be mined by flow between the outcrops. For simulations matching regional heat extraction observations, the outcrop-to-outcrop flow rates from the smaller outcrops are 1,000-3,000 kg/s (for the smaller grids) and 2,000-10,000 kg/s (for larger grids), values consistent with predictions made on the basis of a regional heat flux budget. In many simulations, local <span class="hlt">convection</span> in and out of individual, large outcrops also removes a significant fraction of lithospheric heat. Additional simulations were conducted with three or four outcrops per simulation grid, to further explore relationships between the geometry, properties, and advective heat extraction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17..375D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17..375D"><span>Geologic evolution of the Lost City <span class="hlt">Hydrothermal</span> Field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.</p> <p>2016-02-01</p> <p>The Lost City <span class="hlt">Hydrothermal</span> Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. <span class="hlt">Hydrothermal</span> activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. <span class="hlt">Hydrothermal</span> activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of <span class="hlt">hydrothermal</span> flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current <span class="hlt">hydrothermal</span> activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51F3097C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51F3097C"><span><span class="hlt">Convectively</span> Coupled Equatorial Waves in Reanalysis and CMIP5 Simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castanheira, J. M.; Marques, C. A. F.</p> <p>2014-12-01</p> <p><span class="hlt">Convectively</span> coupled equatorial waves (CCEWs) are a result of the interplay between the physics and dynamics in the tropical atmosphere. As a result of such interplay, tropical <span class="hlt">convection</span> appears often organized into synoptic to planetary-scale disturbances with time scales matching those of equatorial shallow water waves. CCEWs have broad impacts within the tropics, and their simulation in general circulation models is still problematic. Several studies showed that dispersion of those waves characteristics fit the dispersion curves derived from the Matsuno's (1966) solutions of the shallow water equations on the equatorial beta plane, namely, Kelvin, equatorial Rossby, mixed Rossby-gravity, and inertio-gravity waves. However, the more common methodology used to <span class="hlt">identify</span> those waves is yet controversial. In this communication a new methodology for the diagnosis of CCEWs will be presented. It is based on a pre-filtering of the geopotential and horizontal wind, using 3--D normal modes functions of the adiabatic linearized equations of a resting atmosphere, followed by a space--time spectral analysis to <span class="hlt">identify</span> the spectral regions of coherence. The methodology permits a direct detection of various types of equatorial waves, compares the dispersion characteristics of the coupled waves with the theoretical dispersion curves and allows an identification of which vertical modes are more involved in the <span class="hlt">convection</span>. Moreover, the proposed methodology is able to show the existence of free dry waves and moist coupled waves with a common vertical structure, which is in conformity with the effect of <span class="hlt">convective</span> heating/cooling on the effective static stability, as traduced in the gross moist stability concept. The methodology is also sensible to Doppler shifting effects. The methodology has been applied to the ERA-Interim horizontal wind and geopotential height fields and to the interpolated Outgoing Longwave Radiation (OLR) data produced by the National Oceanic and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667348-convection-oblate-solar-type-stars','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667348-convection-oblate-solar-type-stars"><span><span class="hlt">CONVECTION</span> IN OBLATE SOLAR-TYPE STARS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.</p> <p>2016-10-10</p> <p>We present the first global 3D simulations of thermal <span class="hlt">convection</span> in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of <span class="hlt">convection</span>. We find that the <span class="hlt">convection</span> redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with <span class="hlt">convective</span> envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude <span class="hlt">convection</span> also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5698251-geology-kilauea-volcano','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5698251-geology-kilauea-volcano"><span>Geology of Kilauea volcano</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, R.B.; Trusdell, F.A.</p> <p>1993-08-01</p> <p>This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate <span class="hlt">hydrothermal-convection</span> systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these <span class="hlt">hydrothermal-convection</span> systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local <span class="hlt">hydrothermal-convection</span> systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the <span class="hlt">hydrothermal-convection</span> systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of <span class="hlt">hydrothermal</span> alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19334569','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19334569"><span>[Study on <span class="hlt">hydrothermal</span> stability of the collagen].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yajuan; Chen, Hui; Shan, Zhihua</p> <p>2009-02-01</p> <p>The low <span class="hlt">hydrothermal</span> stability of the raw collagen restricts its usage. To improve the <span class="hlt">hydrothermal</span> stability of collagen, two kinds of materials with weak astringency were used by experts. The research proved that the synergistic effect was formed during the process. In this study, by using UV, FT-IR, 13CNMR spectra and elemental analysis on the salicylic acid and metal-salicylic complexes, we could get the structural formula of every compound. And then, the hide powder was treated with the compounds. At last, the treated hide powder was tested by DSC. It could be presumed that the Rigid Matrix formed between the collagen doses can increase the <span class="hlt">hydrothermal</span> stability of raw collagen, The result indicated that salicylic-chrome with large stable constant was better than others in improving the heat resistance of raw collagen, and the denaturalization temperature of hide powder treated with salicylic-chrome was 146.7 degrees C. Salicylic-aluminum was in the second place, the relevant temperature being 145.7 degrees C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53A1947H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53A1947H"><span>Electrochemistry of Prebiotic Early Earth <span class="hlt">Hydrothermal</span> Chimney Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.</p> <p>2017-12-01</p> <p><span class="hlt">Hydrothermal</span> chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of <span class="hlt">hydrothermal</span> chimneys in early Earth vent systems by using different <span class="hlt">hydrothermal</span> simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / <span class="hlt">hydrothermal</span> fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of <span class="hlt">hydrothermal</span> chimneys in natural systems persist due to the disequilibria maintained between the ocean and <span class="hlt">hydrothermal</span> fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913220H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913220H"><span>Heating-insensitive scale increase caused by <span class="hlt">convective</span> precipitation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haerter, Jan; Moseley, Christopher; Berg, Peter</p> <p>2017-04-01</p> <p>The origin of intense <span class="hlt">convective</span> extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of <span class="hlt">convective</span>-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating <span class="hlt">convective</span> cloud? One-phase, non-precipitating Rayleigh-Bénard <span class="hlt">convection</span> is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, <span class="hlt">convective</span> rolls spontaneously form. In shallow, non-precipitating atmospheric <span class="hlt">convection</span>, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of <span class="hlt">convection</span> is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of <span class="hlt">convection</span>. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of <span class="hlt">convective</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT........65J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT........65J"><span>Geometric effects on bilayer <span class="hlt">convection</span> in cylindrical containers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Duane Thomas</p> <p></p> <p>The study of <span class="hlt">convection</span> in two immiscible fluid layers is of interest for reasons both theoretical as well as applied. Recently, bilayer <span class="hlt">convection</span> has been used as a model of <span class="hlt">convection</span> in the earth's mantle. It is also an interesting system to use in the study of pattern formation. Bilayer <span class="hlt">convection</span> also occurs in a process known as liquid encapsulated crystal growth, which is used to grow compound semiconductors. It is the last application which motivates this study. To analyze bilayer <span class="hlt">convection</span>, theoretical models, numerical calculations and experiments were used. One theoretical model involves the derivation of the Navier- Stokes and energy equation for two immiscible fluid layers, using the Boussinesq approximation. A weakly nonlinear analysis was also performed to study the behavior of the system slightly beyond the onset of <span class="hlt">convection</span>. Numerical calculations were necessary to solve both models. The experiments involved a single liquid layer of silicone oil, superposed by a layer of air. The radius and height of each fluid layer were changed to observe different flow patterns at the onset of <span class="hlt">convection</span>. From the experiments and theory, two major discoveries were made as well as several interesting observations. The first discovery is the existence of codimension-two points-particular aspect ratios where two flow patterns coexist-in cylindrical containers. At these points, dynamic switching between different flow patterns was observed. The second discovery was the effect of air <span class="hlt">convection</span> on the flow pattern in silicone oil. Historically, air has been considered a passive medium that has no effect on the lower fluid. However, experiments were done to show that for large air heights, <span class="hlt">convection</span> in the air can cause radial temperature gradients at the liquid interface. These temperature gradients then cause surface tension gradient-driven flows. It was also shown that changing the radius of the container can change the driving force of <span class="hlt">convection</span> from a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940005645&hterms=doi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddoi%253A','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940005645&hterms=doi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddoi%253A"><span>Benard and Marangoni <span class="hlt">convection</span> in multiple liquid layers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koster, Jean N.; Prakash, A.; Fujita, D.; Doi, T.</p> <p>1992-01-01</p> <p><span class="hlt">Convective</span> fluid dynamics of immiscible double and triple liquid layers are considered. First results on multilayer <span class="hlt">convective</span> flow, in preparation for spaceflight experiment aboard IML-2 (International Microgravity Laboratory), are discussed. <span class="hlt">Convective</span> flow in liquid layers with one or two horizontal interfaces with heat flow applied parallel to them is one of the systems investigated. The second system comprises two horizontally layered immiscible liquids heated from below and cooled from above, that is, heat flow orthogonal to the interface. In this system <span class="hlt">convection</span> results due to the classical Benard instability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1907c0031G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1907c0031G"><span>Numerical simulation of two-dimensional Rayleigh-Benard <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grigoriev, Vasiliy V.; Zakharov, Petr E.</p> <p>2017-11-01</p> <p>This paper considered Rayleigh-Benard <span class="hlt">convection</span> (natural <span class="hlt">convection</span>). This is a flow, which is formed in a viscous medium when heated from below and cooled from above. As a result, are formed vortices (<span class="hlt">convective</span> cells). This process is described by a system of nonlinear differential equations in Oberbeck-Boussinesq approximation. As the governing parameters characterizing <span class="hlt">convection</span> states Rayleigh number, Prandtl number are picked. The problem is solved by using finite element method with computational package FEniCS. Numerical results for different Rayleigh numbers are obtained. Studied integral characteristic (Nusselt number) depending on the Rayleigh number.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1945b0052P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1945b0052P"><span>Fabrication of mesoporous silica nanoparticles by sol gel method followed various <span class="hlt">hydrothermal</span> temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah</p> <p>2018-04-01</p> <p>Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of <span class="hlt">hydrothermal</span> temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by <span class="hlt">hydrothermal</span> treatment; several of <span class="hlt">hydrothermal</span> temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was <span class="hlt">identified</span> of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA491636','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA491636"><span><span class="hlt">Hydrothermal</span> Processing of Base Camp Solid Wastes To Allow Onsite Recycling</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-09-01</p> <p>ER D C/ CE R L TR -0 8 -1 3 <span class="hlt">Hydrothermal</span> Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 <span class="hlt">Hydrothermal</span> Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique <span class="hlt">hydrothermal</span> system. The process was successfully demonstrated at Forts Benning and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28618570','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28618570"><span>Thermal Rayleigh-Marangoni <span class="hlt">convection</span> in a three-layer liquid-metal-battery model.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg</p> <p>2017-05-01</p> <p>The combined effects of buoyancy-driven Rayleigh-Bénard <span class="hlt">convection</span> (RC) and surface tension-driven Marangoni <span class="hlt">convection</span> (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. <span class="hlt">Convection</span> is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of <span class="hlt">convection</span> are <span class="hlt">identified</span> in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of <span class="hlt">convection</span> are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent <span class="hlt">convection</span> in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..95e3114K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..95e3114K"><span>Thermal Rayleigh-Marangoni <span class="hlt">convection</span> in a three-layer liquid-metal-battery model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg</p> <p>2017-05-01</p> <p>The combined effects of buoyancy-driven Rayleigh-Bénard <span class="hlt">convection</span> (RC) and surface tension-driven Marangoni <span class="hlt">convection</span> (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. <span class="hlt">Convection</span> is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of <span class="hlt">convection</span> are <span class="hlt">identified</span> in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of <span class="hlt">convection</span> are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent <span class="hlt">convection</span> in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5247/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5247/"><span>Influence of In-Well <span class="hlt">Convection</span> on Well Sampling</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vroblesky, Don A.; Casey, Clifton C.; Lowery, Mark A.</p> <p>2006-01-01</p> <p><span class="hlt">Convective</span> transport of dissolved oxygen (DO) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced <span class="hlt">convection</span> than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for <span class="hlt">convective</span> transport of DO to maintain oxygenated conditions in a well was diminished as ground-water exchange through the well screen increased and as oxygen demand increased. <span class="hlt">Convective</span> flow did not transport oxygen to the screened interval when the screened interval was deeper than the range of the <span class="hlt">convective</span> cell. The <span class="hlt">convective</span> movement of water in wells has potential implications for passive, or no-purge, and low-flow sampling approaches. Transport of DO to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes, such as iron. Other potential consequences include mixing the screened-interval water with casing water and potentially allowing volatilization loss at the water surface. A field test of diffusion samplers in a <span class="hlt">convecting</span> well during the winter, however, showed good agreement of chlorinated solvent concentrations with pumped samples, indicating that there was no negative impact of the <span class="hlt">convection</span> on the utility of the samplers to collect volatile organic compound concentrations in that well. In the cases of low-flow sampling, <span class="hlt">convective</span> circulation can cause the pumped sample to be a mixture of casing water and aquifer water. This can substantially increase the equilibration time of oxygen as an indicator parameter and can give false indications of the redox state. Data from this investigation show that simple in-well devices can effectively mitigate <span class="hlt">convective</span> transport of oxygen. The devices can range from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1073032','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1073032"><span>ARM - Midlatitude Continental <span class="hlt">Convective</span> Clouds</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos</p> <p>2012-01-19</p> <p><span class="hlt">Convective</span> processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of <span class="hlt">convective</span> processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to <span class="hlt">convective</span> processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1963T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1963T"><span>The <span class="hlt">hydrothermal</span> exploration system on the 'Qianlong2' AUV</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.</p> <p>2016-12-01</p> <p>ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored <span class="hlt">hydrothermal</span> vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of <span class="hlt">hydrothermal</span> exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of <span class="hlt">hydrothermal</span> vents. Taking one dive as an example, we systemically showed the process about how to analyse <span class="hlt">hydrothermal</span> survey data and acquire the location results of <span class="hlt">hydrothermal</span> vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034244','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034244"><span>Numerical simulation of magmatic <span class="hlt">hydrothermal</span> systems</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.</p> <p>2010-01-01</p> <p>The dynamic behavior of magmatic <span class="hlt">hydrothermal</span> systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of <span class="hlt">hydrothermal</span> plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant <span class="hlt">hydrothermally</span> driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.5626M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.5626M"><span>What favors <span class="hlt">convective</span> aggregation and why?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muller, Caroline; Bony, Sandrine</p> <p>2015-07-01</p> <p>The organization of <span class="hlt">convection</span> is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of <span class="hlt">convection</span>, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-<span class="hlt">convective</span> instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. <span class="hlt">Convective</span> aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MarGR..38...61S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MarGR..38...61S"><span>The potential <span class="hlt">hydrothermal</span> systems unexplored in the Southwest Indian Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suo, Yanhui; Li, Sanzhong; Li, Xiyao; Zhang, Zhen; Ding, Dong</p> <p>2017-06-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, <span class="hlt">hydrothermal</span> vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°-16°E Section B and 16°-25°E Section C) and three at the eastern end (49°-52°E Section D, 52°-61°E Section E and 61°-70°E Section F). <span class="hlt">Hydrothermal</span> vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and <span class="hlt">hydrothermal</span> vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°-47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no <span class="hlt">hydrothermal</span> vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of <span class="hlt">hydrothermal</span> systems along these two sections. An off-axial <span class="hlt">hydrothermal</span> system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS51B1867F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS51B1867F"><span>Characterization of Magma-Driven <span class="hlt">Hydrothermal</span> Systems at Oceanic Spreading Centers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farough, A.; Lowell, R. P.; Corrigan, R.</p> <p>2012-12-01</p> <p>Fluid circulation in high-temperature <span class="hlt">hydrothermal</span> systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of <span class="hlt">hydrothermal</span> vent systems. We use a single-pass parameterized model of high-temperature <span class="hlt">hydrothermal</span> circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental <span class="hlt">hydrothermal</span> parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known <span class="hlt">hydrothermal</span> systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the <span class="hlt">hydrothermal</span> heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow <span class="hlt">hydrothermal</span> field where</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/967268-mechanisms-initiating-deep-convection-over-complex-terrain-during-cops','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/967268-mechanisms-initiating-deep-convection-over-complex-terrain-during-cops"><span>Mechanisms initiating deep <span class="hlt">convection</span> over complex terrain during COPS.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kottmeier, C.; Kalthoff, N.; Barthlott, C.</p> <p>2008-12-01</p> <p>Precipitating <span class="hlt">convection</span> in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (<span class="hlt">Convective</span> and Orographically-induced Precipitation Study) that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating <span class="hlt">convection</span> can be roughly classified as being due to either: (i) surface heating and low-level flow convergence; (ii) surface heating and moisture supply overcoming <span class="hlt">convective</span> inhibition during latent and/or potential instability; or (iii) mid-tropospheric dynamical processes duemore » to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analyzed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data) are used here, it is shown that <span class="hlt">convective</span> systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep <span class="hlt">convection</span> is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of <span class="hlt">convection</span>. Further on, forecasting of the initiation of <span class="hlt">convection</span> is significantly complicated if advection of potentially <span class="hlt">convective</span> air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of <span class="hlt">convection</span> over the wide Rhine valley. Further downstream, an intensification of <span class="hlt">convection</span> was observed over the Black Forest due to differential surface heating, a convergence line, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023645','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023645"><span>Aerogeophysical measurements of collapse-prone <span class="hlt">hydrothermally</span> altered zones at Mount Rainier volcano</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.</p> <p>2001-01-01</p> <p><span class="hlt">Hydrothermally</span> altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of <span class="hlt">hydrothermally</span> altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried <span class="hlt">hydrothermally</span> altered rock lie mainly in the upper west flank of Mount Rainier. We <span class="hlt">identify</span> this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113059G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113059G"><span>On the Influence of Surface Heterogeneities onto Roll <span class="hlt">Convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gryschka, M.; Drüe, C.; Raasch, S.; Etling, D.</p> <p>2009-04-01</p> <p>Roll <span class="hlt">convection</span> is a common phenomenon in atmospheric <span class="hlt">convective</span> boundary layers (CBL) with background wind. Roll <span class="hlt">convection</span> is observed both over land and over sea for different synoptic situations. There is still some debate about the different types of roll <span class="hlt">convection</span> and their causes or rather the necessary conditions for their appearance. The stability parameter ζ = -zi•L (zi: boundary layer height, L: Monin-Obukhov stability length) is widely used as a predictor for roll <span class="hlt">convection</span>, since numerous studies suggest that <span class="hlt">convective</span> rolls only appear when 0 < ζ < 20. In other words, roll development becomes unlikely for strong surface heating and weak vertical wind shear. In contrast to those studies the presence of roll <span class="hlt">convection</span> in almost any polar cold air outbreak (as can be seen in numerous satellite images as cloud streets) reveals that even for large ζ roll <span class="hlt">convection</span> can develop. Some studies report roll <span class="hlt">convection</span> in cold air outbreaks for ζ = 250. Our large eddy simulations (LES) on roll <span class="hlt">convection</span> suggests that the contrasting results concerning the dependency of roll <span class="hlt">convection</span> on ζ are due to two different types of roll <span class="hlt">convection</span>: One type which develops purely by self organization if ζ < 20 ("free rolls") and another type which is triggered by heterogeneities in surface temperature and develops also for large ζ ("forced rolls"). We think that most of the cloud streets observed in polar cold air outbreaks over open water are due to rolls of forced type which are tied to upstream located heterogeneities in the sea-ice distribution. The results of this study suggests that the omission of surface inhomogeneities in previous LES is the reason for the absence of rolls in all LES with strong surface heating and weak vertical wind shear so far. In this contribution we will present a large eddy simulation which successfully represents forced rolls under such conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..455B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..455B"><span>Estimating Bulk Entrainment With Unaggregated and Aggregated <span class="hlt">Convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, Tobias; Bretherton, Christopher S.; Hohenegger, Cathy; Stevens, Bjorn</p> <p>2018-01-01</p> <p>To investigate how entrainment is influenced by <span class="hlt">convective</span> organization, we use the ICON (ICOsahedral Nonhydrostatic) model in a radiative-<span class="hlt">convective</span> equilibrium framework, with a 1 km spatial grid mesh covering a 600 by 520 km2 domain. We analyze two simulations, with unaggregated and aggregated <span class="hlt">convection</span>, and find that, in the lower free troposphere, the bulk entrainment rate increases when <span class="hlt">convection</span> aggregates. The increase of entrainment rate with aggregation is caused by a strong increase of turbulence in the close environment of updrafts, masking other effects like the increase of updraft size and of static stability with aggregation. Even though entrainment rate increases with aggregation, updraft buoyancy reduction through entrainment decreases because aggregated updrafts are protected by a moist shell. Parameterizations that wish to represent mesoscale <span class="hlt">convective</span> organization would need to model this moist shell.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770012769','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770012769"><span>The moisture budget in relation to <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scott, R. W.; Scoggins, J. R.</p> <p>1977-01-01</p> <p>An evaluation of the moisture budget in the environment of <span class="hlt">convective</span> storms is presented by using the unique 3- to 6-h rawinsonde data. Net horizontal and vertical boundary fluxes accounted for most of the large amounts of moisture which were concentrated into <span class="hlt">convective</span> regions associated with two squall lines that moved through the area during the experiment. The largest values of moisture accumulations were located slightly downwind of the most intense <span class="hlt">convective</span> activity. Relationships between computed moisture quantities of the moisture budget and radar-observed <span class="hlt">convection</span> improved when lagging the radar data by 3 h. The residual of moisture which represents all sources and sinks of moisture in the budget equation was largely accounted for by measurements of precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43B2882B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43B2882B"><span>Simulating Electrochemistry of <span class="hlt">Hydrothermal</span> Vents on Enceladus and Other Ocean Worlds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.</p> <p>2017-12-01</p> <p>Gradients generated in <span class="hlt">hydrothermal</span> systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host <span class="hlt">hydrothermal</span> activity. <span class="hlt">Hydrothermal</span> vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and <span class="hlt">hydrothermal</span> fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in <span class="hlt">hydrothermal</span> chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other <span class="hlt">hydrothermal</span> systems, including putative vent systems on other worlds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1197087-improving-representation-convective-transport-scale-aware-parameterization-part-convection-cloud-properties-simulated-spectral-bin-bulk-microphysics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1197087-improving-representation-convective-transport-scale-aware-parameterization-part-convection-cloud-properties-simulated-spectral-bin-bulk-microphysics"><span>Improving Representation of <span class="hlt">Convective</span> Transport for Scale-Aware Parameterization – Part I: <span class="hlt">Convection</span> and Cloud Properties Simulated with Spectral Bin and Bulk Microphysics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fan, Jiwen; Liu, Yi-Chin; Xu, Kuan-Man</p> <p>2015-04-27</p> <p>The ultimate goal of this study is to improve representation of <span class="hlt">convective</span> transport by cumulus parameterization for meso-scale and climate models. As Part I of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale <span class="hlt">convective</span> complexes in mid-latitude continent and tropical regions using the Weather Research and Forecasting (WRF) model with spectral-bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation, vertical velocity of <span class="hlt">convective</span> cores, and the vertically decreasing trend of radar reflectivitymore » than MOR and MY2, and therefore will be used for analysis of scale-dependence of eddy transport in Part II. The common features of the simulations for all <span class="hlt">convective</span> systems are (1) the model tends to overestimate <span class="hlt">convection</span> intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed <span class="hlt">convection</span> intensity well; (2) the model greatly overestimates radar reflectivity in <span class="hlt">convective</span> cores (SBM predicts smaller radar reflectivity but does not remove the large overestimation); and (3) the model performs better for mid-latitude <span class="hlt">convective</span> systems than tropical system. The modeled mass fluxes of the mid latitude systems are not sensitive to microphysics schemes, but are very sensitive for the tropical case indicating strong microphysics modification to <span class="hlt">convection</span>. Cloud microphysical measurements of rain, snow and graupel in <span class="hlt">convective</span> cores will be critically important to further elucidate issues within cloud microphysics schemes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014074','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014074"><span>EVALUATION OF LOW-SUN ILLUMINATED LANDSAT-4 THEMATIC MAPPER DATA FOR MAPPING <span class="hlt">HYDROTHERMALLY</span> ALTERED ROCKS IN SOUTHERN NEVADA.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.</p> <p>1984-01-01</p> <p>Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to <span class="hlt">identify</span> hydroxyl-bearing minerals commonly associated with <span class="hlt">hydrothermal</span> alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map <span class="hlt">hydrothermally</span> altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NRL.....6..222O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NRL.....6..222O"><span>Heterogeneous nanofluids: natural <span class="hlt">convection</span> heat transfer enhancement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oueslati, Fakhreddine Segni; Bennacer, Rachid</p> <p>2011-12-01</p> <p><span class="hlt">Convective</span> heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal <span class="hlt">convection</span>. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting <span class="hlt">convective</span> flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural <span class="hlt">convection</span> increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced <span class="hlt">convection</span> case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3211280','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3211280"><span>Heterogeneous nanofluids: natural <span class="hlt">convection</span> heat transfer enhancement</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p><span class="hlt">Convective</span> heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal <span class="hlt">convection</span>. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting <span class="hlt">convective</span> flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural <span class="hlt">convection</span> increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced <span class="hlt">convection</span> case. PMID:21711755</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA155214','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA155214"><span>Solar <span class="hlt">Convection</span>.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-04-30</p> <p>multimode <span class="hlt">convection</span> equations ByJ U RI TOOMR E, .fii14’tiri’ Si~ww- riVn~iNtt, of ( ’’I’’rotifui l~ iider . (’’I’rotou S0304ii V’ S D. 0. GOUGH . i rr of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3d3502B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3d3502B"><span>Numerical simulations of thermal <span class="hlt">convection</span> on a hemisphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruneau, C.-H.; Fischer, P.; Xiong, Y.-L.; Kellay, H.; Cyclobulle Collaboration</p> <p>2018-04-01</p> <p>In this paper we present numerical simulations of two-dimensional turbulent <span class="hlt">convection</span> on a hemisphere. Recent experiments on a half soap bubble located on a heated plate have shown that such a configuration is ideal for studying thermal <span class="hlt">convection</span> on a curved surface. Thermal <span class="hlt">convection</span> and fluid flows on curved surfaces are relevant to a variety of situations, notably for simulating atmospheric and geophysical flows. As in experiments, our simulations show that the gradient of temperature between the base and the top of the hemisphere generates thermal plumes at the base that move up from near the equator to the pole. The movement of these plumes gives rise to a two-dimensional turbulent thermal <span class="hlt">convective</span> flow. Our simulations turn out to be in qualitative and quantitative agreement with experiments and show strong similarities with Rayleigh-Bénard <span class="hlt">convection</span> in classical cells where a fluid is heated from below and cooled from above. To compare to results obtained in classical Rayleigh-Bénard <span class="hlt">convection</span> in standard three-dimensional cells (rectangular or cylindrical), a Nusselt number adapted to our geometry and a Reynolds number are calculated as a function of the Rayleigh number. We find that the Nusselt and Reynolds numbers verify scaling laws consistent with turbulent Rayleigh-Bénard <span class="hlt">convection</span>: Nu∝Ra0.31 and Re∝Ra1/2 . Further, a Bolgiano regime is found with the Bolgiano scale scaling as Ra-1/4. All these elements show that despite the significant differences in geometry between our simulations and classical 3D cells, the scaling laws of thermal <span class="hlt">convection</span> are robust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336619&keyword=water&subject=water%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=03/04/2012&dateendpublishedpresented=03/04/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336619&keyword=water&subject=water%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=03/04/2012&dateendpublishedpresented=03/04/2017&sortby=pubdateyear"><span>A Generalized Simple Formulation of <span class="hlt">Convective</span> Adjustment ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p><span class="hlt">Convective</span> adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized <span class="hlt">convective</span> precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep <span class="hlt">convection</span>, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in <span class="hlt">convective</span> precipitation simulations. In this work, a generalized simple formulation of τ for use in any <span class="hlt">convection</span> parameterization for shallow and deep clouds is developed to reduce <span class="hlt">convective</span> precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...593A.121P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...593A.121P"><span>Spherical-shell boundaries for two-dimensional compressible <span class="hlt">convection</span> in a star</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.</p> <p>2016-10-01</p> <p>Context. Studies of stellar <span class="hlt">convection</span> typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible <span class="hlt">convection</span>. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar <span class="hlt">convection</span> zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the <span class="hlt">convective</span> dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale <span class="hlt">convection</span> develops from the profiles of temperature and density. A central radiative zone below the <span class="hlt">convection</span> zone provides a lower boundary on the <span class="hlt">convection</span> zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep <span class="hlt">convection</span>. Methods: We perform hydrodynamic implicit large eddy simulations of compressible <span class="hlt">convection</span> using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of <span class="hlt">convective</span> turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the <span class="hlt">convective</span> turnover time, the <span class="hlt">convective</span> velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp....5G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp....5G"><span>Hazard Avoidance Products for <span class="hlt">Convectively</span>-Induced Turbulence in Support of High-Altitude Global Hawk Aircraft Missions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffin, Sarah M.; Velden, Christopher S.</p> <p>2018-01-01</p> <p>A combination of satellite-based and ground-based information is used to <span class="hlt">identify</span> regions of intense <span class="hlt">convection</span> that may act as a hazard to high-altitude aircraft. Motivated by concerns that Global Hawk pilotless aircraft, flying near 60,000 feet, might encounter significant <span class="hlt">convectively</span>-induced turbulence during research overflights of tropical cyclones, strict rules were put in place to avoid such hazards. However, these rules put constraints on science missions focused on sampling <span class="hlt">convection</span> with onboard sensors. To address these concerns, three hazard avoidance tools to aid in real-time mission decision support are used to more precisely <span class="hlt">identify</span> areas of potential turbulence: Satellite-derived Cloud-top height and tropical overshooting tops, and ground-based global network lightning flashes. These tools are used to compare an ER-2 aircraft overflight of tropical cyclone Emily in 2005, which experienced severe turbulence, to Global Hawk overflights of tropical cyclones Karl and Matthew in 2010 that experienced no turbulence. It is found that the ER-2 overflew the lowest cloud tops and had the largest vertical separation from them compared to the Global Hawk flights. Therefore, cold cloud tops alone cannot predict turbulence. Unlike the overflights of Matthew and Karl, Emily exhibited multiple lightning flashes and a distinct overshooting top coincident with the observed turbulence. Therefore, these tools in tandem can better assist in <span class="hlt">identifying</span> likely regions/periods of intense active <span class="hlt">convection</span>. The primary outcome of this study is an altering of the Global Hawk overflight rules to be more flexible based on the analyzed conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=cell+AND+theory&pg=7&id=EJ829061','ERIC'); return false;" href="https://eric.ed.gov/?q=cell+AND+theory&pg=7&id=EJ829061"><span>Introductory Analysis of Benard-Marangoni <span class="hlt">Convection</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Maroto, J. A.; Perez-Munuzuri, V.; Romero-Cano, M. S.</p> <p>2007-01-01</p> <p>We describe experiments on Benard-Marangoni <span class="hlt">convection</span> which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of <span class="hlt">convection</span> theory, we carry out a simple and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021065','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021065"><span>The deep structure of a sea-floor <span class="hlt">hydrothermal</span> deposit</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zierenberg, R.A.; Fouquet, Y.; Miller, D.J.; Bahr, J.M.; Baker, P.A.; Bjerkgard, T.; Brunner, C.A.; Duckworth, R.C.; Gable, R.; Gieskes, J.; Goodfellow, W.D.; Groschel-Becker, H. M.; Guerin, G.; Ishibashi, J.; Iturrino, G.; James, R.H.; Lackschewitz, K.S.; Marquez, L.L.; Nehlig, P.; Peter, J.M.; Rigsby, C.A.; Schultheiss, P.; Shanks, Wayne C.; Simoneit, B.R.T.; Summit, M.; Teagle, D.A.H.; Urbat, M.; Zuffa, G.G.</p> <p>1998-01-01</p> <p><span class="hlt">Hydrothermal</span> circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth. A consequence of this <span class="hlt">hydrothermal</span> circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc). Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the <span class="hlt">hydrothermal</span> feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the <span class="hlt">hydrothermal</span> fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011331','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011331"><span>HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN <span class="hlt">HYDROTHERMAL</span> <span class="hlt">CONVECTION</span> SYSTEMS IN THE UNITED STATES.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nathenson, Manuel</p> <p>1983-01-01</p> <p>The calculation of high-temperature geothermal resources ( greater than 150 degree C) in the United States has been done by estimating the temperature, area, and thickness of each <span class="hlt">identified</span> system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yielded an estimate of 23,000 MW//e for 30 years. The undiscovered component was estimated based on multipliers of the <span class="hlt">identified</span> resource as either 72,000 or 127,000 MW//e for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A41F0116R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A41F0116R"><span>Thermodynamic Environments Supporting Extreme <span class="hlt">Convection</span> in Subtropical South America</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasmussen, K. L.; Trier, S. B.</p> <p>2015-12-01</p> <p>Extreme <span class="hlt">convection</span> tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense <span class="hlt">convection</span> in the world. Subsequent to initiation, the <span class="hlt">convection</span> often evolves into propagating mesoscale <span class="hlt">convective</span> systems (MCSs) similar to those seen over the U.S. Great Plains and produces damaging tornadoes, hail, and floods across a wide agricultural region. In recent years, studies on the nature of <span class="hlt">convection</span> in subtropical South America using spaceborne radar data have elucidated key processes responsible for their extreme characteristics, including a strong relationship between the Andes topography and <span class="hlt">convective</span> initiation. Building on previous work, an investigation of the thermodynamic environment supporting some of the deepest <span class="hlt">convection</span> in the world will be presented. In particular, an analysis of the thermodynamic destabilization in subtropical South America, which considers the parcel buoyancy minimum for conditionally unstable air parcels, will be presented. Additional comparisons between the nocturnal nature and related diurnal cycle of MCSs in subtropical South America the U.S. Great Plains will provide insights into the processes controlling MCS initiation and upscale growth.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..304..324D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..304..324D"><span>A study of the <span class="hlt">hydrothermal</span> alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri</p> <p>2015-10-01</p> <p>Hypogene <span class="hlt">hydrothermal</span> minerals have been <span class="hlt">identified</span> by short-wave infrared spectroscopy in <span class="hlt">hydrothermally</span> altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are <span class="hlt">hydrothermal</span> products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of <span class="hlt">hydrothermally</span> altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712395H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712395H"><span><span class="hlt">Hydrothermal</span> Synthesis of Analcime from Kutingkeng Formation Mudstone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong</p> <p>2015-04-01</p> <p>In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by <span class="hlt">hydrothermal</span> synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave <span class="hlt">hydrothermal</span> reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by <span class="hlt">hydrothermal</span> reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The <span class="hlt">hydrothermal</span> reaction almost was completed after 4 hours.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......198L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......198L"><span>Modeling condensation with a noncondensable gas for mixed <span class="hlt">convection</span> flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Yehong</p> <p>2007-05-01</p> <p>This research theoretically developed a novel mixed <span class="hlt">convection</span> model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a <span class="hlt">convection</span> regime map; a mixed <span class="hlt">convection</span> correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed <span class="hlt">convection</span> model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the <span class="hlt">convection</span> regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural <span class="hlt">convection</span> condensation process and setup conditions to distinguish natural <span class="hlt">convection</span> from mixed <span class="hlt">convection</span>. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced <span class="hlt">convection</span> condensation process and setup conditions to distinguish forced <span class="hlt">convection</span> from mixed <span class="hlt">convection</span>. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed <span class="hlt">convection</span> correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three <span class="hlt">convection</span> regimes and used to fit a curve for the Nusselt number of the mixed <span class="hlt">convection</span> regime as a function of the Nusselt numbers of the natural and forced <span class="hlt">convection</span> regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780013626','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780013626"><span>Evaluation of LANDSAT MSS vs TM simulated data for distinguishing <span class="hlt">hydrothermal</span> alteration</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abrams, M. J.; Kahle, A. B.; Madura, D. P.; Soha, J. M.</p> <p>1978-01-01</p> <p>The LANDSAT Follow-On (LFO) data was simulated to demonstrate the mineral exploration capability of this system for segregating different types of <span class="hlt">hydrothermal</span> alteration and to compare this capability with that of the existing LANDSAT system. Multispectral data were acquired for several test sites with the Bendix 24-channel MSDS scanner. Contrast enhancements, band ratioing, and principal component transformations were used to process the simulated LFO data for analysis. For Red Mountain, Arizona, the LFO data allowed identification of silicified areas, not <span class="hlt">identifiable</span> with LANDSAT 1 and 2 data. The improved LFO resolution allowed detection of small silicic outcrops and of a narrow silicified dike. For Cuprite - Ralston, Nevada, the LFO spectral bands allowed discrimination of argillic and opalized altered areas; these could not be spectrally discriminated using LANDSAT 1 and 2 data. Addition of data from the 1.3- and 2.2- micrometer regions allowed better discriminations of <span class="hlt">hydrothermal</span> alteration types.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25679711','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25679711"><span>Intermittent flow regimes near the <span class="hlt">convection</span> threshold in ferromagnetic nanofluids.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krauzina, Marina T; Bozhko, Alexandra A; Putin, Gennady F; Suslov, Sergey A</p> <p>2015-01-01</p> <p>The onset and decay of <span class="hlt">convection</span> in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary <span class="hlt">convection</span> sets in as a result of supercritical bifurcation and where <span class="hlt">convection</span> intensity increases continuously with the degree of supercriticality, <span class="hlt">convection</span> in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and <span class="hlt">convection</span> states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary <span class="hlt">convection</span>. The observed oscillations are shown to result from the precession of the axis of a <span class="hlt">convection</span> vortex in the equatorial plane. When the vertical temperature difference exceeds the <span class="hlt">convection</span> onset value by a factor of 2.5, the initially oscillatory <span class="hlt">convection</span> settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020071067&hterms=FitzGerald&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFitzGerald','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020071067&hterms=FitzGerald&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFitzGerald"><span>Observations of Overshooting <span class="hlt">Convective</span> Tops and Dynamical Implications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heymsfield, Gerald M.; Halverson, Jeffrey; Fitzgerald, Mike; Dominquez, Rose; Starr, David OC. (Technical Monitor)</p> <p>2002-01-01</p> <p><span class="hlt">Convective</span> tops overshooting the tropopause have been suggested in the literature to play an important role in modifying the tropical tropopause. The structure of thunderstorm tops overshooting the tropopause have been difficult to measure due to the intensity of the <span class="hlt">convection</span> and aircraft safety. This paper presents remote observations of overshooting <span class="hlt">convective</span> tops with the high-altitude ER-2 aircraft during several of the Tropical Rain Measuring Mission (TRMM) and (<span class="hlt">Convection</span> and Moisture Experiment) CAMEX campaigns. The ER-2 was instrumented with the down-looking ER-2 Doppler Radar (EDOP), a new dropsonde system (ER-2 High Altitude Dropsonde, EHAD), and an IR radiometer (Modis Airborne Simulator, MAS). Measurements were collected in Florida and Amazonia (Brazil). In this study, we utilize the radar cloud top information and cloud top infrared temperatures to document the amount of overshoot and temperature difference relative to the soundings provided by dropsondes and conventional upsondes. The radar measurements provide the details of the updraft structure near cloud top, and it is found that tops of stronger <span class="hlt">convective</span> cells can overshoot by 1-2 km and with temperatures 5C colder than the tropopause minimum temperature. The negatively buoyant cloud tops are also evidenced in the Doppler measurements by strong subsiding flow along the sides of the <span class="hlt">convective</span> tops . These findings support some of the conceptual and modeling studies of deep <span class="hlt">convection</span> penetrating the tropopause.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089178&hterms=petroleum&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpetroleum','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089178&hterms=petroleum&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpetroleum"><span>Phenols in <span class="hlt">hydrothermal</span> petroleums and sediment bitumen from Guaymas Basin, Gulf of California</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.</p> <p>1996-01-01</p> <p>The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin <span class="hlt">hydrothermal</span> system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature <span class="hlt">hydrothermal</span> vents and represent <span class="hlt">hydrothermal</span> pyrolyzates that have migrated to the seafloor by <span class="hlt">hydrothermal</span> fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the <span class="hlt">hydrothermal</span> alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under <span class="hlt">hydrothermal</span> conditions, but the isoprenoidyl phenols are probably <span class="hlt">hydrothermal</span> alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature <span class="hlt">hydrothermal</span> processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28273951','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28273951"><span>Vein networks in <span class="hlt">hydrothermal</span> systems provide constraints for the monitoring of active volcanoes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido</p> <p>2017-03-10</p> <p>Vein networks affect the <span class="hlt">hydrothermal</span> systems of many volcanoes, and variations in their arrangement may precede <span class="hlt">hydrothermal</span> and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the <span class="hlt">hydrothermal</span> field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the <span class="hlt">hydrothermal</span> processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 <span class="hlt">hydrothermal</span> sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the <span class="hlt">hydrothermal</span> source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in <span class="hlt">hydrothermal</span> fields may reflect pressurization at depth potentially preceding <span class="hlt">hydrothermal</span> explosions. This has significant implications for the long-term monitoring strategy of volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800002733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800002733"><span>Stellar <span class="hlt">convection</span> 2: A multi-mode numerical solution for <span class="hlt">convection</span> in spheres</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marcus, P. S.</p> <p>1979-01-01</p> <p>The <span class="hlt">convective</span> flow of a self gravitating sphere of Boussinesq fluid for small Reynolds and Peclet numbers is numerically determined. The decomposition of the equations of motion into modes is reviewed and a relaxation method is developed and presented to compute the solutions to these equations. The stable equilibrium flow for a Rayleigh number of 10 to the 4th power and a Prandtl number of 10 is determined. The 2 and 3 dimensional spectra of the kinetic and thermal energies and the <span class="hlt">convective</span> flux as a function of wavelengths are calculated in terms of modes. The anisotropy of the flow as a function of wavelength is defined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5627351-hydrothermal-activity-lau-back-arc-basin-sulfides-water-chemistry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5627351-hydrothermal-activity-lau-back-arc-basin-sulfides-water-chemistry"><span><span class="hlt">Hydrothermal</span> activity in the Lau back-arc basin: Sulfides and water chemistry</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fouquet, Y.; Charlou, J.L.; Donval, J.P.</p> <p>1991-04-01</p> <p>The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with <span class="hlt">hydrothermal</span> circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of <span class="hlt">hydrothermal</span> activity-in all formore » areas, over more than 100 km-as indicated by the widespread occurence of <span class="hlt">hydrothermal</span> deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. <span class="hlt">Hydrothermal</span> water chemistry and sulfide composition data presented here indicate that this <span class="hlt">hydrothermal</span> field is very different from the <span class="hlt">hydrothermal</span> fields in oceanic ridges. This difference is seen in water chemistry of the <span class="hlt">hydrothermal</span> fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.B12A0776L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.B12A0776L"><span>Chemistry of a serpentinization-controlled <span class="hlt">hydrothermal</span> system at the Lost City <span class="hlt">hydrothermal</span> vent field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.</p> <p>2003-12-01</p> <p>The Lost City <span class="hlt">Hydrothermal</span> Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of <span class="hlt">hydrothermal</span> solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-<span class="hlt">hydrothermal</span> fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4649M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4649M"><span>Large-scale thermal <span class="hlt">convection</span> of viscous fluids in a faulted system: 3D test case for numerical codes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro</p> <p>2017-04-01</p> <p> Earth Sciences, 67(2), 589-599. Diersch, H. J, 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-38738-8. Gaston D., Newman C., Hansen G., Lebrun-Grandie D, 2009. MOOSE: A parallel solution framework for coupled systems of nonlinear equations. Nucl. Engrg. Design, 239, 1,768-1778 Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M., Rödiger, T., Rosenthal, E., Siebert, C., 2016. 2D and 3D coexisting modes of thermal <span class="hlt">convection</span> in fractured <span class="hlt">hydrothermal</span> systems - Implications for transboundary flow in the Lower Yarmouk Gorge. Marine and Petroleum Geology 78, 750-758, DOI: /10.1016/j.marpetgeo.2016.10.002 Malkovsky, V. I., Magri, F., 2016. Thermal <span class="hlt">convection</span> of temperature-dependent viscous fluids within three-dimensional faulted geothermal systems: estimation from linear and numerical analyses, Water Resour. Res., 52, 2855-2867, DOI:10.1002/2015WR018001.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRB..107.2130B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRB..107.2130B"><span><span class="hlt">Hydrothermal</span> venting along Earth's fastest spreading center: East Pacific Rise, 27.5°-32.3°</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, E. T.; Hey, R. N.; Lupton, J. E.; Resing, J. A.; Feely, R. A.; Gharib, J. J.; Massoth, G. J.; Sansone, F. J.; Kleinrock, M.; Martinez, F.; Naar, D. F.; Rodrigo, C.; Bohnenstiehl, D.; Pardee, D.</p> <p>2002-07-01</p> <p>During March/April 1998 we conducted detailed mapping and sampling of <span class="hlt">hydrothermal</span> plumes along six segments of Earth's fasting spreading mid-ocean ridge, 27.5°-32.3°S on the East Pacific Rise. We compared the distribution and chemistry of <span class="hlt">hydrothermal</span> plumes to geological indicators of long-term (spreading rate) and moderate-term (ridge inflation) variations in magmatic budget. In this large-offset, propagating rift setting, these geological indices span virtually the entire range found along fast spreading ridges worldwide. <span class="hlt">Hydrothermal</span> plumes overlaid ~60% of the length of superfast (>130 km/Myr) spreading axis surveyed and defined at least 14 separate vent fields. We observed no plumes over the slower spreading propagating segments. Finer-scale variations in the magmatic budget also correlated with <span class="hlt">hydrothermal</span> activity, as the location of the five most intense plumes corresponded to subsegment peaks in ridge inflation. Along the entire ridge crest, the more inflated a ridge location the more likely it was to be overlain by a <span class="hlt">hydrothermal</span> plume. Plume chemistry mostly reflected discharge from mature vent fields apparently unperturbed by magmatic activity within the last few years. Plume samples with high volatile/metal ratios, generally indicating recent seafloor volcanism, were scarce. Along-axis trends in both volatile (3He; CH4; ΔpH, a proxy for CO2; and particulate S) and nonvolatile (Fe, Mn) species showed a first-order agreement with the trend of ridge inflation. Nevertheless, a broad correspondence between the concentration of volatile species in plumes and geological proxies of magma supply <span class="hlt">identifies</span> a pervasive magmatic imprint on this superfast spreading group of ridge segments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.486..108N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.486..108N"><span>Molybdenum isotope behaviour in groundwaters and terrestrial <span class="hlt">hydrothermal</span> systems, Iceland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.</p> <p>2018-03-01</p> <p>Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and <span class="hlt">hydrothermal</span> fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of <span class="hlt">hydrothermal</span> waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by <span class="hlt">hydrothermal</span> processes. Relative to NIST 3134 = +0.25‰, the cold (<10 °C) groundwaters (δ98/95MoGROUNDWATER = -0.15‰ to +0.47‰; n = 13) show little, if any, fractionation from the host basalt (δ 98 / 95MoBASALT = +0.16‰ to -0.12‰) and are, on average, lighter than both global and Icelandic rivers. In contrast, waters that are <span class="hlt">hydrothermally</span> influenced (>10 °C) possess isotopically heavy δ98/95Mo<span class="hlt">HYDROTHERMAL</span> values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and <span class="hlt">hydrothermal</span> waters have the potential to modify ocean budget calculations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MinDe..52..945C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MinDe..52..945C"><span>Multistage crack seal vein and <span class="hlt">hydrothermal</span> Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cathelineau, Michel; Myagkiy, Andrey; Quesnel, Benoit; Boiron, Marie-Christine; Gautier, Pierre; Boulvais, Philippe; Ulrich, Marc; Truche, Laurent; Golfier, Fabrice; Drouillet, Maxime</p> <p>2017-10-01</p> <p>Sets of fractures and breccia sealed by Ni-rich silicates and quartz occur within saprock of the New Caledonian regolith developed over ultramafic rocks. The crystallization sequence in fractures is as follows: (1) serpentine stage: lizardite > polygonal serpentine > white lizardite; (2) Ni stage: Ni-Mg kerolite followed by red-brown microcrystalline quartz; and (3) supergene stages. The red-brown microcrystalline quartz corresponds to the very last stage of the Ni sequence and is inferred to have precipitated within the 50-95 °C temperature range. It constitutes also the main cement of breccia that has all the typical features of hydraulic fracturing. The whole sequence is therefore interpreted as the result of <span class="hlt">hydrothermal</span> fluid circulation under medium to low temperature and fluctuating fluid pressure. Although frequently described as the result of a single downward redistribution of Ni and Mg leached in the upper part of the regolith under ambient temperature, the Ni silicate veins thus appear as the result of recurrent crack and seal process, corresponding to upward medium temperature fluid <span class="hlt">convection</span>, hydraulic fracturing and subsequent fluid mixing, and mineral deposition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3294471','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3294471"><span>Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in <span class="hlt">Hydrothermal</span> Environments</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken</p> <p>2012-01-01</p> <p>Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea <span class="hlt">hydrothermal</span> microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine <span class="hlt">hydrothermal</span> environments (mixing waters between <span class="hlt">hydrothermal</span> fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of <span class="hlt">hydrothermal</span> microbial habitats, with the exception of the interior parts of <span class="hlt">hydrothermal</span> chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of <span class="hlt">hydrothermal</span> fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding <span class="hlt">hydrothermal</span> waters. This is the first report to show VLP abundance in the attached microbial communities of submarine <span class="hlt">hydrothermal</span> environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine <span class="hlt">hydrothermal</span> environments. PMID:22210205</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.137..480P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.137..480P"><span>Beyond the vent: New perspectives on <span class="hlt">hydrothermal</span> plumes and pelagic biology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, Brennan T.</p> <p>2017-03-01</p> <p>Submarine <span class="hlt">hydrothermal</span> vent fields introduce buoyant plumes of chemically altered seawater to the deep-sea water column. Chemoautotrophic microbes exploit this energy source, facilitating seafloor-based primary production that evidence suggests may transfer to pelagic consumers. While most <span class="hlt">hydrothermal</span> plumes have relatively small volumes, there are recent examples of large-scale plume events associated with periods of eruptive activity, which have had a pronounced effect on water-column biology. This correlation suggests that <span class="hlt">hydrothermal</span> plumes may have influenced basin-scale ocean chemistry during periods of increased submarine volcanism during the Phanerozoic eon. This paper synthesizes a growing body of scientific evidence supporting the hypothesis that <span class="hlt">hydrothermal</span> plumes are the energetic basis of unique deep-sea pelagic food webs. While many important questions remain concerning the biology of <span class="hlt">hydrothermal</span> plumes, this discussion is not present in ongoing management efforts related to seafloor massive sulfide (SMS) mining. Increased research efforts, focused on high-resolution surveys of midwater biology relative to plume structures, are recommended to establish baseline conditions and monitor the impact of future mining-based disturbances to the pelagic biosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4152H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4152H"><span>Microstructural indicators of <span class="hlt">convection</span> in sills and dykes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holness, Marian; Neufeld, Jerome; Gilbert, Andrew</p> <p>2016-04-01</p> <p>The question of whether or not magma <span class="hlt">convects</span> is a vexed one, with some advocating vigorous <span class="hlt">convection</span> in crustal magma chambers while others suggest that <span class="hlt">convection</span> is weak and short-lived. From a detailed microstructural study of a range of tabular mafic intrusions, we argue that it is possible to determine whether crystallization took place predominantly in solidification fronts (i.e. the magma was essentially crystal-free) or whether crystals grew suspended in a <span class="hlt">convecting</span> magma. The 168m thick Shiant Isles Main Sill is a composite body, dominated by a 140m thick unit with a 45m thick base rich in olivine phenocrysts (picrodolerite). The remainder of the unit contains only interstitial olivine. The average olivine grain size in the picrodolerite decreases upwards in the lowermost 10m, but then increases upwards. The coarsening-upwards sequence is marked by the onset of clustering of olivine grains. The extent to which these clusters are sintered, and the average cluster size, increase upwards. The coarsening-upwards sequence and the clustering are mirrored in a thinner (<10m) sequence at the roof. The fining-upwards sequence of non-clustered olivine formed by the rapid settling of incoming cargo crystals, while the coarsening-upwards sequence of clustered olivine represents post-emplacement growth of grains suspended in a <span class="hlt">convecting</span> magma. The clusters grew by synneusis, with the extensive sintering pointing to the retention of the clusters in the <span class="hlt">convecting</span> magma for a considerable time. The presence of large clusters at the intrusion roof can be reconciled with their high Stokes settling velocity if they were brought up in rapidly moving <span class="hlt">convective</span> currents and entangled in the downwards-propagating solidification front. A further indication of <span class="hlt">convection</span> is provided by plagioclase grain shape. During interface-controlled growth, plagioclase grows as well-facetted compact grains: these grains are platy in rapidly-cooled rocks and blocky in slowly-cooled rocks</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/990539-frequency-morphology-tropical-tropopause-layer-cirrus-from-calipso-observations-isolated-cirrus-different-from-those-connected-deep-convection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/990539-frequency-morphology-tropical-tropopause-layer-cirrus-from-calipso-observations-isolated-cirrus-different-from-those-connected-deep-convection"><span>Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep <span class="hlt">convection</span>?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Riihimaki, Laura D.; McFarlane, Sally A.</p> <p>2010-09-16</p> <p>Tropical Tropopause Layer cirrus (TTLC) profiles <span class="hlt">identified</span> from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to deep <span class="hlt">convection</span>. TTLC objects connected to deep <span class="hlt">convection</span> are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from <span class="hlt">convective</span> detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to deep <span class="hlt">convection</span>, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of deep convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to deep <span class="hlt">convection</span>. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above deep <span class="hlt">convection</span> or above clear sky, though both cloud base and top heights are higher over deep <span class="hlt">convection</span> than over clear sky.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6323636','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6323636"><span><span class="hlt">Convection</span> and thermal radiation analytical models applicable to a nuclear waste repository room</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Davis, B.W.</p> <p>1979-01-17</p> <p>Time-dependent temperature distributions in a deep geologic nuclear waste repository have a direct impact on the physical integrity of the emplaced canisters and on the design of retrievability options. This report (1) <span class="hlt">identifies</span> the thermodynamic properties and physical parameters of three <span class="hlt">convection</span> regimes - forced, natural, and mixed; (2) defines the <span class="hlt">convection</span> correlations applicable to calculating heat flow in a ventilated (forced-air) and in a nonventilated nuclear waste repository room; and (3) delineates a computer code that (a) computes and compares the floor-to-ceiling heat flow by <span class="hlt">convection</span> and radiation, and (b) determines the nonlinear equivalent conductivity table for a repositorymore » room. (The tables permit the use of the ADINAT code to model surface-to-surface radiation and the TRUMP code to employ two different emissivity properties when modeling radiation exchange between the surface of two different materials.) The analysis shows that thermal radiation dominates heat flow modes in a nuclear waste repository room.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A33O..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A33O..04R"><span><span class="hlt">Convective</span> initiation in the vicinity of the subtropical Andes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasmussen, K. L.; Houze, R.</p> <p>2014-12-01</p> <p>Extreme <span class="hlt">convection</span> tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense <span class="hlt">convection</span> in the world. An investigation of the most intense storms for 11 years of TRMM Precipitation Radar (PR) data shows a tendency for squall lines to initiate and develop in this region with the canonical leading <span class="hlt">convective</span> line/trailing stratiform structure. The synoptic environment and structures of the extreme <span class="hlt">convection</span> and MCSs in subtropical South America are similar to those found in other regions of the world, especially the United States. In subtropical South America, however, the topographical influence on the <span class="hlt">convective</span> initiation and maintenance of the MCSs is unique. A capping inversion in the lee of the Andes is important in preventing premature triggering. The Andes and other mountainous terrain of Argentina focus deep <span class="hlt">convective</span> initiation in a narrow region. Subsequent to initiation, the <span class="hlt">convection</span> often evolves into propagating mesoscale <span class="hlt">convective</span> systems similar to those seen over the Great Plains of the U. S. and produces damaging tornadoes, hail, and floods across a wide agricultural region. Numerical simulations conducted with the NCAR Weather Research and Forecasting (WRF) Model extend the observational analysis and provide an objective evaluation of storm initiation, terrain effects, and development mechanisms. The simulated mesoscale systems closely resemble the storm structures seen by the TRMM Precipitation Radar as well as the overall shape and character of the storms shown in GOES satellite data. A sensitivity experiment with different configurations of topography, including both decreasing and increasing the height of the Andes Mountains, provides insight into the significant influence of orography in focusing <span class="hlt">convective</span> initiation in this region. Lee cyclogenesis and a strong low-level jet are modulated by the height of the Andes Mountains and directly affect the character</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAMES..10..842S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAMES..10..842S"><span>The Roles of <span class="hlt">Convection</span> Parameterization in the Formation of Double ITCZ Syndrome in the NCAR CESM: I. Atmospheric Processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Xiaoliang; Zhang, Guang J.</p> <p>2018-03-01</p> <p>Several improvements are implemented in the Zhang-McFarlane (ZM) <span class="hlt">convection</span> scheme to investigate the roles of <span class="hlt">convection</span> parameterization in the formation of double intertropical convergence zone (ITCZ) bias in the NCAR CESM1.2.1. It is shown that the prominent double ITCZ biases of precipitation, sea surface temperature (SST), and wind stress in the standard CESM1.2.1 are largely eliminated in all seasons with the use of these improvements in <span class="hlt">convection</span> scheme. This study for the first time demonstrates that the modifications of <span class="hlt">convection</span> scheme can eliminate the double ITCZ biases in all seasons, including boreal winter and spring. Further analysis shows that the elimination of the double ITCZ bias is achieved not by improving other possible contributors, such as stratus cloud bias off the west coast of South America and cloud/radiation biases over the Southern Ocean, but by modifying the <span class="hlt">convection</span> scheme itself. This study demonstrates that <span class="hlt">convection</span> scheme is the primary contributor to the double ITCZ bias in the CESM1.2.1, and provides a possible solution to the long-standing double ITCZ problem. The atmospheric model simulations forced by observed SST show that the original ZM <span class="hlt">convection</span> scheme tends to produce double ITCZ bias in high SST scenario, while the modified <span class="hlt">convection</span> scheme does not. The impact of changes in each core component of <span class="hlt">convection</span> scheme on the double ITCZ bias in atmospheric model is <span class="hlt">identified</span> and further investigated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS42E..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS42E..06G"><span><span class="hlt">Hydrothermal</span> Activity Along the Central Indian Ridge: Ridges, Hotspots and Philately.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>German, C. R.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Curewitz, D.; Okino, K.; Statham, P. J.; Parson, L. M.</p> <p>2001-12-01</p> <p>The global mid-ocean ridge crest extends 50-60,000km and the majority remains unexplored for <span class="hlt">hydrothermal</span> activity. Even those areas which are reasonably familiar continue to spring surprises (e.g. the "Lost City" site found in late 2000). Within the confines of conceivable research budgets, therefore, choosing new areas for investigation and exploration demands an intelligent approach, beyond flicking through holiday brochures or <span class="hlt">identifying</span> missing entries for the John Edmond Memorial Stamp Collection. With that caveat, the Southampton Oceanography Centre led a 10-week expedition to the Central Indian Ridge, earlier this year, based in and around Mauritius. During cruise CD127 (23 April-23 May) we conducted a systematic investigation of the ridge crest (seafloor and overlying water column) between 18 deg 16 min and 20 deg 49 min South. We chose this area to investigate the distribution of <span class="hlt">hydrothermal</span> activity both close to, and away from, that section of the ridge crest which continues to reflect past influence of the migrating Rodrigues hot-spot. Our hypothesis was that the high incidence of <span class="hlt">hydrothermal</span> activity we had located previously, near the Azores Triple Junction, may result from waning influence of the Azores Hot-Spot nearby and that similar effects might be found resulting from interaction of the CIR with the Rodrigues hot-spot. The primary scientific package we employed was the SOC's TOBI deep-tow sidescan vehicle, now up-graded with an extra Light Scattering Sensor string. In concert, this instrumentation allowed us to prospect for particle-laden <span class="hlt">hydrothermal</span> plumes in the water column overlying the ridge-crest, in real-time, whilst simultaneously acquiring high-resolution sidescan images of the underlying seafloor. Using this approach, particle-rich anomalies were observed at 5 locations along ca. 300km of surveyed ridge-crest, including 4 sites all within the extended (hot-spot influenced) segment 15, which stretches from 18 deg 45 to 20 deg 14</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000482','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000482"><span>Effect of Spacecraft Rotation on Fluid <span class="hlt">Convection</span> Under Microgravity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuferev, Valentin S.; Kolesnikova, Elvira N.; Polovko, Yuri A.; Zhmakin, Alexander I.</p> <p>1996-01-01</p> <p>The influence of the rotational effects on two-dimensional fluid <span class="hlt">convection</span> in a rectangular enclosure with rigid walls during the orbital flight is considered. It is shown that the Coriolis force influence both on steady and oscillatory <span class="hlt">convection</span> becomes significant at Ekman numbers which are quite attainable in the space orbital conditions. In the case of harmonic oscillations of the gravity force appearance of the resonance phenomena is demonstrated. Dependence of the height and shape of the resonance peak on aspect ratio of a rectangular domain and orientation of vectors of the gravity force and the angular rotation velocity is studied. Special attention is given to non-linear effects caused by <span class="hlt">convective</span> terms of Navier-Stokes equations. The <span class="hlt">convection</span> produced by variations of the angular rotation velocity of a spacecraft is also discussed. It is shown that in some cases the latter <span class="hlt">convection</span> can be comparable with another kinds of <span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC14E2102M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC14E2102M"><span>Global decadal climate variability driven by Southern Ocean <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marinov, I.; Cabre, A.</p> <p>2016-02-01</p> <p>Here we suggest a set of new "teleconnections" by which the Southern Ocean (SO) can induce anomalies in the tropical oceans and atmosphere. A 5000-year long control simulation in a coupled atmosphere-ocean model (CM2Mc, a low-resolution GFDL model) shows a natural, highly regular multi-decadal oscillation between periods of SO open sea <span class="hlt">convection</span> and non-<span class="hlt">convective</span> periods. This process happens naturally, with different frequencies and durations of <span class="hlt">convection</span> across the majority of CMIP5 under preindustrial forcing (deLavergne et al., 2014). In our model, oscillations in Weddell Sea <span class="hlt">convection</span> drive multidecadal variability in SO and global SSTs, as well as SO heat storage, with <span class="hlt">convective</span> decades warm due to the heat released from the Circumpolar Deep Water and non-<span class="hlt">convective</span> decades cold due to subsurface heat storage. <span class="hlt">Convective</span> pulses drive local SST and sea ice variations south of 60S, immediately triggering changes in the Ferrell and Hadley cells, atmospheric energy budget and cross-equatorial heat exchange, ultimately influencing the position of the Intertropical Convergence Zone and rain patterns in the tropics. Additionally, the SO <span class="hlt">convection</span> pulse is propagated to the tropics and the North Atlantic MOC via oceanic pathways on relatively fast (decadal) timescales, in agreement with recent observational constraints. Open sea <span class="hlt">convection</span> is the major mode of Antarctic Bottom Water (AABW) formation in the CMIP5 models. Future improvements in the representation of shelf <span class="hlt">convection</span> and sea-ice interaction in the SO are a clear necessity. These model improvements should render the AABW representation more realistic, and might influence (a) the connectivity of the SO with the rest of the planet, as described above and (b) the oceanic and global carbon cycle, of which the AABW is a fundamental conduit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17559786','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17559786"><span>Electro-<span class="hlt">convective</span> versus electroosmotic instability in concentration polarization.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rubinstein, Isaak; Zaltzman, Boris</p> <p>2007-10-31</p> <p>Electro-<span class="hlt">convection</span> is reviewed as a mechanism of mixing in the diffusion layer of a strong electrolyte adjacent to a charge-selective solid, such as an ion exchange (electrodialysis) membrane or an electrode. Two types of electro-<span class="hlt">convection</span> in strong electrolytes may be distinguished: bulk electro-<span class="hlt">convection</span>, due to the action of the electric field upon the residual space charge of a quasi-electro-neutral bulk solution, and <span class="hlt">convection</span> induced by electroosmotic slip, due to electric forces acting in the thin electric double layer of either quasi-equilibrium or non-equilibrium type near the solid/liquid interface. According to recent studies, the latter appears to be the likely source of mixing in the diffusion layer, leading to 'over-limiting' conductance in electrodialysis. Electro-<span class="hlt">convection</span> near a planar uniform charge selective solid/liquid interface sets on as a result of hydrodynamic instability of one-dimensional steady state electric conduction through such an interface. We compare the results of linear stability analysis obtained for instabilities of this kind appearing in the full electro-<span class="hlt">convective</span> and limiting non-equilibrium electroosmotic formulations. The short- and long-wave aspects of these instabilities are discussed along with the wave number selection principles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFD.E5008G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFD.E5008G"><span>Quantifying near-wall coherent structures in turbulent <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gunasegarane, G. S.; A Puthenveettil, Baburaj; K Agrawal, Yogesh; Schmeling, Daniel; Bosbach, Johannes; Arakeri, Jaywant; IIT Madras-DLR-IISc Collaboration</p> <p>2011-11-01</p> <p>We present planforms of line plumes formed on horizontal surfaces in turbulent <span class="hlt">convection</span>, along with the length of near- wall line plumes measured from these planforms, in a six decade range of Rayleigh numbers (105 < Ra <1011) and at three Prandtl numbers (Pr = 0 . 7 , 6 , 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of these near-wall plumes in turbulent <span class="hlt">convection</span>. The plume length per unit area (Lp / A), made dimensionless by the near-wall length scale in turbulent <span class="hlt">convection</span> (Zw) remains a constant for a given fluid. The Nusselt number is shown to be directly proportional to Lp H / A for a given fluid layer of height H. Increase in Pr has a weak influence in decreasing Lp / A . These expressions match the measurements, thereby showing that the assumption of laminar natural <span class="hlt">convection</span> boundary layers in turbulent <span class="hlt">convection</span> is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural <span class="hlt">convection</span> boundary layers on the horizontal surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28386410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28386410"><span>Magnetic fields in non-<span class="hlt">convective</span> regions of stars.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Braithwaite, Jonathan; Spruit, Henk C</p> <p>2017-02-01</p> <p>We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out <span class="hlt">convective</span> dynamo theories and observations of <span class="hlt">convective</span> envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with <span class="hlt">convective</span> envelopes. Most stars contain both radiative and <span class="hlt">convective</span> zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various <span class="hlt">convective</span> and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than <span class="hlt">convection</span>. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5367293','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5367293"><span>Magnetic fields in non-<span class="hlt">convective</span> regions of stars</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Braithwaite, Jonathan</p> <p>2017-01-01</p> <p>We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out <span class="hlt">convective</span> dynamo theories and observations of <span class="hlt">convective</span> envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with <span class="hlt">convective</span> envelopes. Most stars contain both radiative and <span class="hlt">convective</span> zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various <span class="hlt">convective</span> and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than <span class="hlt">convection</span>. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields. PMID:28386410</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22210146-sic-dopped-mcm-materials-enhanced-thermal-hydrothermal-stabilities','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22210146-sic-dopped-mcm-materials-enhanced-thermal-hydrothermal-stabilities"><span>SiC-dopped MCM-41 materials with enhanced thermal and <span class="hlt">hydrothermal</span> stabilities</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Yingyong; Jin, Guoqiang; Tong, Xili</p> <p>2011-11-15</p> <p>Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ <span class="hlt">hydrothermal</span> synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and <span class="hlt">hydrothermal</span> stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ <span class="hlt">hydrothermal</span> synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The <span class="hlt">hydrothermal</span> stability of the dopped materials is also bettermore » than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ <span class="hlt">hydrothermal</span> synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the <span class="hlt">hydrothermal</span> treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and <span class="hlt">hydrothermal</span> stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. <span class="hlt">Hydrothermal</span> treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26156374','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26156374"><span>Basin-scale transport of <span class="hlt">hydrothermal</span> dissolved metals across the South Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Resing, Joseph A; Sedwick, Peter N; German, Christopher R; Jenkins, William J; Moffett, James W; Sohst, Bettina M; Tagliabue, Alessandro</p> <p>2015-07-09</p> <p><span class="hlt">Hydrothermal</span> venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by <span class="hlt">hydrothermal</span> vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of <span class="hlt">hydrothermal</span> dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of <span class="hlt">hydrothermal</span> dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this <span class="hlt">hydrothermal</span> plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global <span class="hlt">hydrothermal</span> dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of <span class="hlt">hydrothermal</span> dissolved iron requires some means of physicochemical stabilization and indicate that <span class="hlt">hydrothermally</span> derived iron sustains a large fraction of Southern Ocean export production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...93a2002H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...93a2002H"><span>Study on <span class="hlt">convection</span> improvement of standard vacuum tube</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, J. H.; Du, W. P.; Qi, R. R.; He, J. X.</p> <p>2017-11-01</p> <p>For the standard all-glass vacuum tube collector, enhancing the vacuum tube axial natural <span class="hlt">convection</span> can improve its thermal efficiency. According to the study of the standard all-glass vacuum tube, three kinds of guide plates which can inhibit the radial <span class="hlt">convection</span> and increase axial natural <span class="hlt">convection</span> are designed, and theory model is established. Experiments were carried out on vacuum tubes with three types of baffles and standard vacuum tubes without the improvement. The results show that T-type guide plate is better than that of Y-type guide plate on restraining <span class="hlt">convection</span> and increasing axial radial <span class="hlt">convection</span> effect, Y type is better than that of flat plate type, all guide plates are better than no change; the thermal efficiency of the tube was 2.6% higher than that of the unmodified standard vacuum tube. The efficiency of the system in the experiment can be increased by 3.1%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54.2834W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54.2834W"><span>Optimization of Large-Scale Daily <span class="hlt">Hydrothermal</span> System Operations With Multiple Objectives</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jian; Cheng, Chuntian; Shen, Jianjian; Cao, Rui; Yeh, William W.-G.</p> <p>2018-04-01</p> <p>This paper proposes a practical procedure for optimizing the daily operation of a large-scale <span class="hlt">hydrothermal</span> system. The overall procedure optimizes a monthly model over a period of 1 year and a daily model over a period of up to 1 month. The outputs from the monthly model are used as inputs and boundary conditions for the daily model. The models iterate and update when new information becomes available. The monthly <span class="hlt">hydrothermal</span> model uses nonlinear programing (NLP) to minimize fuel costs, while maximizing hydropower production. The daily model consists of a hydro model, a thermal model, and a combined <span class="hlt">hydrothermal</span> model. The hydro model and thermal model generate the initial feasible solutions for the <span class="hlt">hydrothermal</span> model. The two competing objectives considered in the daily <span class="hlt">hydrothermal</span> model are minimizing fuel costs and minimizing thermal emissions. We use the constraint method to develop the trade-off curve (Pareto front) between these two objectives. We apply the proposed methodology on the Yunnan <span class="hlt">hydrothermal</span> system in China. The system consists of 163 individual hydropower plants with an installed capacity of 48,477 MW and 11 individual thermal plants with an installed capacity of 12,400 MW. We use historical operational records to verify the correctness of the model and to test the robustness of the methodology. The results demonstrate the practicability and validity of the proposed procedure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998DSRI...45.2105H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998DSRI...45.2105H"><span>Extensive deep-sea dispersal of postlarval shrimp from a <span class="hlt">hydrothermal</span> vent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herring, P. J.; Dixon, D. R.</p> <p>1998-12-01</p> <p><span class="hlt">Hydrothermal</span> vent fields on the Mid-Atlantic Ridge (MAR) are small (no more than 0.1-1.0 km 2) and widely spaced (a reported average of one field per 175 km between 11°N and 40°N). Their faunas are similar and usually dominated by shrimp of the family Bresiliidae. Little is known about the way these animals (and other members of the vent fauna) disperse and colonize new vents. Vent shrimp juveniles have been taken close to certain vent sites, and in midwater, but their larvae and postlarvae have not been captured. We report here that bresiliid shrimp postlarvae are very widely dispersed around the Broken Spur vent field and extend into the next MAR segment and the Atlantis Fracture Zone beyond. The populations show density gradients declining both vertically and horizontally from the vent site, in contrast to the overall pelagic biomass. This is the furthest recorded dispersal (>100 km) of <span class="hlt">identified</span> larvae from a <span class="hlt">hydrothermal</span> vent and is sufficient to give them access to adjacent vent fields and thus the scope for colonising new sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20676720','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20676720"><span><span class="hlt">Convection</span> in colloidal suspensions with particle-concentration-dependent viscosity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Glässl, M; Hilt, M; Zimmermann, W</p> <p>2010-07-01</p> <p>The onset of thermal <span class="hlt">convection</span> in a horizontal layer of a colloidal suspension is investigated in terms of a continuum model for binary-fluid mixtures where the viscosity depends on the local concentration of colloidal particles. With an increasing difference between the viscosity at the warmer and the colder boundary the threshold of <span class="hlt">convection</span> is reduced in the range of positive values of the separation ratio psi with the onset of stationary <span class="hlt">convection</span> as well as in the range of negative values of psi with an oscillatory Hopf bifurcation. Additionally the <span class="hlt">convection</span> rolls are shifted downwards with respect to the center of the horizontal layer for stationary <span class="hlt">convection</span> psi>0 and upwards for the Hopf bifurcation (psi<0.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..12210241M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..12210241M"><span>Seismic Signatures of <span class="hlt">Hydrothermal</span> Pathways Along the East Pacific Rise Between 9°16' and 9°56'N</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marjanović, Milena; Fuji, Nobuaki; Singh, Satish C.; Belahi, Thomas; Escartín, Javier</p> <p>2017-12-01</p> <p>We apply wave equation-based techniques to 2-D seismic data to characterize the nature of zero-age upper crust at the East Pacific Rise from 9°16' to 9°56'N. The final velocity model reveals a number of low-velocity anomalies, complex in shape, extending down to 1 km below the seafloor. We attribute them to the presence of <span class="hlt">hydrothermal</span> flow. Depending on their spatial correlation with the previously <span class="hlt">identified</span> tectonic discontinuities in bathymetry and presence of venting, we classify them as downgoing and upgoing pathways, respectively. This distinction is not always clear; within the third-order discontinuities at 9°20' and 9°37'N, both pathways may be present. The region north of 9°44'N, known for its magmatic robustness and volcanic activity, is represented by five low-velocity perturbations. Three of these anomalies are spatially correlated with the fourth-order discontinuities and attributed to the presence of the on-axis recharge zones. The remaining two anomalies underlie two vent clusters, marked as <span class="hlt">hydrothermally</span> active sites after the last documented eruption event. These velocity anomalies can be thus <span class="hlt">identified</span> as the up-flow pathways or at least their remnants. By comparing our results to the available interdisciplinary data sets, we show that the interaction between the tectono-magmatic and <span class="hlt">hydrothermal</span> processes is not straightforward due to different timescales at which they operate. However, for developing, maintaining, and driving vigorous, high-temperature <span class="hlt">hydrothermal</span> flow, the high crustal permeability and high thermal regime must coexist in time and space.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940035206&hterms=VALLADARES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVALLADARES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940035206&hterms=VALLADARES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVALLADARES"><span>Modeling polar cap F-region patches using time varying <span class="hlt">convection</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sojka, J. J.; Bowline, M. D.; Schunk, R. W.; Decker, D. T.; Valladares, C. E.; Sheehan, R.; Anderson, D. N.; Heelis, R. A.</p> <p>1993-01-01</p> <p>Creation of polar cap F-region patches are simulated for the first time using two independent physical models of the high latitude ionosphere. The patch formation is achieved by temporally varying the magnetospheric electric field (ionospheric <span class="hlt">convection</span>) input to the models. The imposed <span class="hlt">convection</span> variations are comparable to changes in the <span class="hlt">convection</span> that result from changes in the B(y) IMF component for southward IMF. Solar maximum-winter simulations show that simple changes in the <span class="hlt">convection</span> pattern lead to significant changes in the polar cap plasma structuring. Specifically, in winter, as enhanced dayside plasma <span class="hlt">convects</span> into the polar cap to form the classic tongue-of-ionization the <span class="hlt">convection</span> changes produce density structures that are indistinguishable from the observed patches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1011064','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1011064"><span>Gregarious <span class="hlt">Convection</span> and Radiative Feedbacks in Idealized Worlds</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-08-29</p> <p>exist neither on the globe nor within the cloud model. Since mesoscales impose great computational costs on atmosphere models, as well as inconven...Atmospheric Science, University of Miami, Miami, Florida, USA Abstract What role does <span class="hlt">convection</span> play in cloud feedbacks? What role does <span class="hlt">convective</span>... cloud fields depends systematically on global temperature, then <span class="hlt">convective</span> organization could be a climate system feedback. How reconcilable and how</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AnGeo..19..773X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AnGeo..19..773X"><span>SuperDARN <span class="hlt">convection</span> and Sondrestrom plasma drift</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, L.; Koustov, A. V.; Thayer, J.; McCready, M. A.</p> <p>2001-07-01</p> <p>Plasma <span class="hlt">convection</span> measurements by the Goose Bay and Stokkseyri SuperDARN radar pair and the Sondrestrom incoherent scatter radar are compared in three different ways, by looking at the line-of-sight (l-o-s) velocities, by comparing the SuperDARN vectors and corresponding Sondrestrom l-o-s velocities and by comparing the end products of the instruments, the <span class="hlt">convection</span> maps. All three comparisons show overall reasonable agreement of the <span class="hlt">convection</span> measurements though the data spread is significant and for some points a strong disagreement is obvious. The <span class="hlt">convection</span> map comparison shows a tendency for the SuperDARN velocities to be often less than the Sondrestrom drifts for strong flows (velocities > 1000 m/s) and larger for weak flows (velocities < 500 m/s). On average, both effects do not exceed 35%. Data indicate that inconsistencies between the two data sets occur largely at times of fast temporal variations of the plasma drift and for strongly irregular flow ac-cording to the SuperDARN <span class="hlt">convection</span> maps. These facts indicate that the observed discrepancies are in many cases a result of the different spatial and temporal resolutions of the instruments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP14A..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP14A..06R"><span>A Paleomagnetic and Diagenetic Study of the Woodford Shale, Oklahoma, U.S.A.: The Timing of <span class="hlt">Hydrothermal</span> Alteration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, J.; Elmore, R. D.</p> <p>2017-12-01</p> <p>An oriented Woodford Shale core from the Ardmore Basin near the Ouachita thrust zone (Core B) was sampled to <span class="hlt">identify</span> diagenetic events and interpret their origin, and to test if a magnetization was present that can be used to date the altering event(s). The shale is extensively altered, exhibiting a complex paragenesis with multiple fractures and brecciated intervals. Multiple <span class="hlt">hydrothermal</span> minerals, including biotite, magnesite, norsethite, witherite, gorceixite, potassium feldspar, sphalerite, chalcopyrite, and saddle dolomite, are present in and around fractures and in the matrix. Vitrinite and bitumen reflectance measurements indicate VRo values of 1.82% ( 230°C). Two other Woodford Shale cores (A and C) from the Anadarko Basin also contain <span class="hlt">hydrothermal</span> minerals. Vitrinite and bitumen reflectance data reveal trends between thermal maturity and the level of <span class="hlt">hydrothermal</span> alteration, with Core A (0.80% VRo ( 125°C) displaying the lowest alteration, and Core C ( 1.5% VRo ( 210°C) displaying intermediate alteration compared to core B. Paleomagnetic analysis of Core B reveals the presence of a characteristic remanent magnetization (ChRM) with south-southeasterly declinations and shallow inclinations that is unblocked by 450°C and is interpreted to reside in magnetite. This ChRM is interpreted to be either a chemical remanent magnetization (CRM) or a thermochemical remanent magnetization (TCRM) acquired during the Late Permian based on the pole position. The presence of specimens with the CRM/TCRM in altered rock and high thermal maturities suggests that this CRM/TCRM originated from alteration by <span class="hlt">hydrothermal</span> fluids. These results suggest that the Woodford Shale evolved into an open diagenetic system. In addition to causing heightened thermal maturities, these <span class="hlt">hydrothermal</span> fluids both increased porosity through dissolution and decreased porosity through precipitation of minerals. The Late Permian timing agrees with the dating of <span class="hlt">hydrothermal</span> alteration found</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003DPS....35.4504H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003DPS....35.4504H"><span>Moist <span class="hlt">convective</span> storms in the atmosphere of Saturn</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hueso, R.; Sánchez-Lavega, A.</p> <p>2003-05-01</p> <p>Moist <span class="hlt">convective</span> storms might be a key aspect in the global energy budget of the atmospheres of the Giant Planets. In spite of its dull appearance, Saturn is known to develop the largest scale <span class="hlt">convective</span> storms in the Solar System, the Great White Spots, the last of them arising in 1990 triggered a planetary scale disturbance that encircled the whole Equatorial region. However, Saturn seems to be very much less <span class="hlt">convective</span> than Jupiter, being <span class="hlt">convective</span> storms rare and small for the most part of the cases. Here we present simulations of moist <span class="hlt">convective</span> storms in the atmosphere of Saturn at different latitudes, the Equator and 42 deg S, the regions where most of the <span class="hlt">convective</span> activity of the planet has been observed. We use a 3D anelastic model of the atmosphere with parameterized microphysics (Hueso and Sánchez-Lavega, 2001) and we study the onset and evolution of moist <span class="hlt">convective</span> storms. Ammonia storms are able to develop only if the static stability of the upper atmosphere is slightly decreased. Water storms are difficult to develop requiring very specific atmospheric conditions. However, when they develop they can be very energetic arriving at least to the 150 mbar level. The Coriolis forces play a mayor role in the characteristics of water based storms in the atmosphere of Saturn. The 3-D Coriolis forces at the Equator transfer upward momentum to westward motions acting to diminish the strength of the equatorial jet. The GWS of 1990 could have been a mayor force in reducing the intensity of the equatorial jet stream as revealed recently (Sánchez-Lavega et al. Nature, 2003). The Cassini spacecraft will arrive to Saturn in a year. Its observations of the atmosphere will allow to measure the amount of <span class="hlt">convective</span> activity on the planet, its characteristics and it will clarify the role of moist <span class="hlt">convection</span> in the atmospheric dynamics of the Giant Planets. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. RH acknowledges a Post</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......181H"><span>Free and forced <span class="hlt">convection</span> in Earth's upper mantle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, Paul S.</p> <p></p> <p><span class="hlt">Convective</span> motion within Earth's upper mantle occurs as a combination of two primary modes: (1) buoyant upwelling due to the formation of gravitational instabilities at thermochemical boundary layers, and (2) passive flow associated with the divergence of lithospheric plates at mid-ocean ridges and their re-entry into the mantle at subduction zones. The first mode is driven by variations in density and is therefore classified as 'free' <span class="hlt">convection</span>. Examples of free <span class="hlt">convection</span> within the Earth include the diapiric flow of hydrous and/or partially molten mantle at subduction zones and mantle plumes. The second mode, while ultimately driven by density on a global scale, can be treated kinematically on the scale of the upper mantle. This type of flow is designated 'forced' <span class="hlt">convection</span>. On the scale of individual buoyant upwellings in the upper mantle, the forced <span class="hlt">convection</span> associated with plate tectonics acts to modify the morphology of the flow associated with free <span class="hlt">convection</span>. Regions in which such interactions occur are typically associated with transfer of significant quantities of both mass and energy (i.e., heat) between the deep interior and the surface of the Earth and thus afford a window into the dynamics of the Earth's interior. The dynamics and the consequences of the interaction between these two modes of <span class="hlt">convection</span> is the focus of this dissertation. I have employed both laboratory and numerical modeling techniques to investigate the interaction between free and forced <span class="hlt">convection</span> in this study. Each of these approaches has its own inherent strengths and weaknesses. These approaches are therefore complementary, and their use in combination is particularly powerful. I have focused on two examples interaction between free and forced <span class="hlt">convection</span> in the upper mantle in this study. Chapter I considers the interaction between ascending diapirs of hydrous and/or partially molten mantle and flow in the mantle wedge at subduction zones using laboratory models. Chapter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvL.109z4503H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvL.109z4503H"><span>Scaling of <span class="hlt">Convective</span> Mixing in Porous Media</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hidalgo, Juan J.; Fe, Jaime; Cueto-Felgueroso, Luis; Juanes, Ruben</p> <p>2012-12-01</p> <p><span class="hlt">Convective</span> mixing in porous media is triggered by a Rayleigh-Bénard-type hydrodynamic instability as a result of an unstable density stratification of fluids. While <span class="hlt">convective</span> mixing has been studied extensively, the fundamental behavior of the dissolution flux and its dependence on the system parameters are not yet well understood. Here, we show that the dissolution flux and the rate of fluid mixing are determined by the mean scalar dissipation rate. We use this theoretical result to provide computational evidence that the classical model of <span class="hlt">convective</span> mixing in porous media exhibits, in the regime of high Rayleigh number, a dissolution flux that is constant and independent of the Rayleigh number. Our findings support the universal character of <span class="hlt">convective</span> mixing and point to the need for alternative explanations for nonlinear scalings of the dissolution flux with the Rayleigh number, recently observed experimentally.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010045108&hterms=Xxxii&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DXxxii','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010045108&hterms=Xxxii&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DXxxii"><span>A <span class="hlt">Hydrothermal</span> Origin for the Sulfate-rich Ocean of Europa</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zolotov, M. Yu.; Shock, E. L.</p> <p>2001-01-01</p> <p>Thermodynamic calculations show that formation of a sulfate-rich ocean on Europa might require high-temperature alkaline <span class="hlt">hydrothermal</span> processes in the oxidized silicate mantle. The ocean on Europa could be thought of as a cooled <span class="hlt">hydrothermal</span> fluid. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4820407L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4820407L"><span>Equatorial cloud level <span class="hlt">convection</span> on Venus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu</p> <p>2016-10-01</p> <p>In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and <span class="hlt">convective</span>-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep <span class="hlt">convective</span> motions in the low-to-middle cloud layers at the 40-60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as <span class="hlt">convection</span> in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal <span class="hlt">convection</span> (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud <span class="hlt">convection</span> is consistent with Imamura et al.'s result, and suggest a possible cloud top level <span class="hlt">convection</span> caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28252057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28252057"><span>Evidence for early life in Earth's oldest <span class="hlt">hydrothermal</span> vent precipitates.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dodd, Matthew S; Papineau, Dominic; Grenne, Tor; Slack, John F; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T S</p> <p>2017-03-01</p> <p>Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-<span class="hlt">hydrothermal</span> vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-<span class="hlt">hydrothermal</span> vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern <span class="hlt">hydrothermal</span> vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite-haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-<span class="hlt">hydrothermal</span> environments more than 3,770 million years ago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70160647','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70160647"><span><span class="hlt">Hydrothermal</span> response to a volcano-tectonic earthquake swarm, Lassen, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.</p> <p>2015-01-01</p> <p>The increasing capability of seismic, geodetic, and <span class="hlt">hydrothermal</span> observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of <span class="hlt">hydrothermal</span> fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of <span class="hlt">hydrothermal</span> fluids already present and equilibrated in a local <span class="hlt">hydrothermal</span> aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17819229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17819229"><span><span class="hlt">Hydrothermal</span> germanium over the southern East pacific rise.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mortlock, R A; Froelich, P N</p> <p>1986-01-03</p> <p>Germanium enrichment in the oceanic water column above the southern axis of the East Pacific Rise results from <span class="hlt">hydrothermal</span> solutions emanating from hot springs along the rise crest. This plume signature provides a new oceanic tracer of reactions between seawater and sea floor basalts during <span class="hlt">hydrothermal</span> alteration. In contrast to the sharp plumes of (3)He and manganese, the germanium plume is broad and diffuse, suggesting the existence of pervasive venting of low-temperature solutions off the ridge axis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.479..120C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.479..120C"><span><span class="hlt">Hydrothermal</span> deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, Kassandra M.; McManus, Jerry F.; Middleton, Jennifer L.; Langmuir, Charles H.; Huybers, Peter J.; Winckler, Gisela; Mukhopadhyay, Sujoy</p> <p>2017-12-01</p> <p><span class="hlt">Hydrothermal</span> systems play an important role in modern marine chemistry, but little is known about how they may have varied on 100,000 year timescales. Here we present high-resolution records of non-lithogenic metal fluxes within sediment cores covering the last 500,000 years of <span class="hlt">hydrothermal</span> deposition on the flanks of the Juan de Fuca Ridge. Six adjacent, gridded cores were analyzed by x-ray fluorescence for Fe, Mn, and Cu concentrations, corrected for lithogenic inputs with Ti, and normalized to excess initial 230Th to generate non-lithogenic metal flux records that provide the longest orbitally resolved reconstructions of <span class="hlt">hydrothermal</span> activity currently available. Fe fluxes vary with global sea level over the last two glacial cycles, suggesting higher <span class="hlt">hydrothermal</span> deposition during interglacial periods. The observed negative relationship between Fe and Mn indicates variable sediment redox conditions and diagenetic remobilization of sedimentary Mn over time. Thus, Mn fluxes may not be a reliable indicator for <span class="hlt">hydrothermal</span> activity in the Juan de Fuca Ridge sediment cores. Cu fluxes show substantial high-frequency variability that may be linked to changes in vent temperature related to increased magmatic production during glacial periods. Deglacial <span class="hlt">hydrothermal</span> peaks on the Juan de Fuca Ridge are consistent with previously published records from the Mid-Atlantic Ridge and the East Pacific Rise. Moreover, on the Juan de Fuca Ridge, the deglacial peaks in <span class="hlt">hydrothermal</span> activity are followed by relatively high <span class="hlt">hydrothermal</span> fluxes throughout the ensuing interglacial periods relative to the previous glacial period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V31D2831S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V31D2831S"><span>The influence of magma viscosity on <span class="hlt">convection</span> within a magma chamber</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schubert, M.; Driesner, T.; Ulmer, P.</p> <p>2012-12-01</p> <p>Magmatic-<span class="hlt">hydrothermal</span> ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if <span class="hlt">convection</span> is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a <span class="hlt">convection</span> model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect <span class="hlt">convection</span> within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of <span class="hlt">convection</span> velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. <span class="hlt">Convection</span> continues in the inner part of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V12D1009Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V12D1009Z"><span>Decline of a <span class="hlt">Hydrothermal</span> Vent Field - Escanaba Trough 12 Years Later</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.</p> <p>2001-12-01</p> <p><span class="hlt">Hydrothermal</span> venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known <span class="hlt">hydrothermal</span> venting is the NESCA site along the ridge axis at 41\\deg N. <span class="hlt">Hydrothermal</span> fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The <span class="hlt">hydrothermal</span> vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse <span class="hlt">hydrothermal</span> fluids could not be sampled with the equipment available. The walls of the drill hole were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3303786','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3303786"><span>Discovery of New <span class="hlt">Hydrothermal</span> Activity and Chemosynthetic Fauna on the Central Indian Ridge at 18°–20°S</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku</p> <p>2012-01-01</p> <p>Indian Ocean <span class="hlt">hydrothermal</span> vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean <span class="hlt">hydrothermal</span> systems. In particular, since its discovery in 2001, much attention has been paid to a so-called ‘scaly-foot’ gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean <span class="hlt">hydrothermal</span> vents, only two <span class="hlt">hydrothermal</span> vent fields have been investigated in the Indian Ocean. Here we report two newly discovered <span class="hlt">hydrothermal</span> vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR <span class="hlt">hydrothermal</span> environments to date, and even <span class="hlt">identified</span> previously unreported taxa. Moreover, a new morphotype of ‘scaly-foot’ gastropod has been found at the Solitaire field. The newly discovered ‘scaly-foot’ gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of ‘scaly-foot’ gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to ‘scaly-foot’ gastropods. Our new findings at the two newly discovered <span class="hlt">hydrothermal</span> vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean. PMID:22431990</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGP11A..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGP11A..07F"><span>Absolute Magnetization Distribution on Back-arc Spreading Axis Hosting <span class="hlt">Hydrothermal</span> Vents; Insight from Shinkai 6500 Magnetic Survey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.</p> <p>2013-12-01</p> <p>Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or <span class="hlt">hydrothermal</span> alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active <span class="hlt">hydrothermal</span> vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from <span class="hlt">hydrothermally</span> altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five <span class="hlt">hydrothermal</span> vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with <span class="hlt">hydrothermal</span> deposits <span class="hlt">identified</span> in video records. These results suggest that low magnetic signals are due to <span class="hlt">hydrothermal</span> alteration zones where host rocks are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A41E..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A41E..05R"><span>A Thermodynamically General Theory for <span class="hlt">Convective</span> Circulations and Vortices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renno, N. O.</p> <p>2007-12-01</p> <p><span class="hlt">Convective</span> circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for <span class="hlt">convective</span> phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for <span class="hlt">convective</span> circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a <span class="hlt">convective</span> updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to <span class="hlt">convective</span> circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of <span class="hlt">convective</span> circulations and vortices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27005472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27005472"><span>Using Jupiter's gravitational field to probe the Jovian <span class="hlt">convective</span> dynamo.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kong, Dali; Zhang, Keke; Schubert, Gerald</p> <p>2016-03-23</p> <p><span class="hlt">Convective</span> motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the <span class="hlt">convective</span> motion are unknown. A promising way of probing the Jovian <span class="hlt">convective</span> dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric <span class="hlt">convective</span> motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep <span class="hlt">convection</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195075','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195075"><span>Boiling-induced formation of colloidal gold in black smoker <span class="hlt">hydrothermal</span> fluids</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom</p> <p>2017-01-01</p> <p>Gold colloids occur in black smoker fluids from the Niua South <span class="hlt">hydrothermal</span> vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in <span class="hlt">hydrothermal</span> fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were <span class="hlt">identified</span> in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor <span class="hlt">hydrothermal</span> systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4208755','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4208755"><span>Double Diffusive Magnetohydrodynamic (MHD) Mixed <span class="hlt">Convective</span> Slip Flow along a Radiating Moving Vertical Flat Plate with <span class="hlt">Convective</span> Boundary Condition</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid</p> <p>2014-01-01</p> <p>In this study combined heat and mass transfer by mixed <span class="hlt">convective</span> flow along a moving vertical flat plate with hydrodynamic slip and thermal <span class="hlt">convective</span> boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including <span class="hlt">convective</span> heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed <span class="hlt">convective</span>, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26438278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26438278"><span>The impact of parametrized <span class="hlt">convection</span> on cloud feedback.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming</p> <p>2015-11-13</p> <p>We investigate the sensitivity of cloud feedbacks to the use of <span class="hlt">convective</span> parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their <span class="hlt">convective</span> parametrizations turned off. Previous studies have suggested that differences between parametrized <span class="hlt">convection</span> schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with <span class="hlt">convection</span> switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized <span class="hlt">convection</span> in the individual models. We conclude that, while parametrized <span class="hlt">convection</span> influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of <span class="hlt">convective</span> parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-<span class="hlt">convective</span> processes in contributing to inter-model spread in cloud feedback</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4608036','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4608036"><span>The impact of parametrized <span class="hlt">convection</span> on cloud feedback</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming</p> <p>2015-01-01</p> <p>We investigate the sensitivity of cloud feedbacks to the use of <span class="hlt">convective</span> parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their <span class="hlt">convective</span> parametrizations turned off. Previous studies have suggested that differences between parametrized <span class="hlt">convection</span> schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with <span class="hlt">convection</span> switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized <span class="hlt">convection</span> in the individual models. We conclude that, while parametrized <span class="hlt">convection</span> influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of <span class="hlt">convective</span> parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-<span class="hlt">convective</span> processes in contributing to inter-model spread in cloud</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010068894','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010068894"><span>Environmental Characteristics of <span class="hlt">Convective</span> Systems During TRMM-LBA</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halverson, Jeffrey B.; Rickenbach, Thomas; Roy, Biswadev; Pierce, Harold; Williams, Earle; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season <span class="hlt">convection</span> over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted <span class="hlt">convective</span> systems that featured a relatively large fraction of stratiform rainfall and weak <span class="hlt">convection</span> nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon <span class="hlt">convective</span> regime. In contrast, easterly regime <span class="hlt">convective</span> systems were more strongly electrified and featured larger <span class="hlt">convective</span> rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (< 80% RH) and a wind shear layer that was both stronger (10(exp -3)/s) and deeper (700 mb). The larger CAPE resulted from strong insolation under relatively cloud-free skies (owing to reduced column humidity) and was also weakly capped in the lowest 1-2 km, thus contributing to a more explosive growth of <span class="hlt">convection</span>. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>