Sample records for identified kidney-related neurons

  1. Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology.

    PubMed

    Buchanan, J T

    2001-03-01

    Among the advantages offered by the lamprey brainstem and spinal cord for studies of the structure and function of the nervous system is the unique identifiability of several pairs of reticulospinal neurons in the brainstem. These neurons have been exploited in investigations of the patterns of sensory input to these cells and the patterns of their outputs to spinal neurons, but no doubt these cells could be used much more effectively in exploring their roles in descending control of the spinal cord. The variability of cell positions of neurons in the spinal cord has precluded the recognition of unique spinal neurons. However, classes of nerve cells can be readily defined and characterized within the lamprey spinal cord and this has led to progress in understanding the cellular and synaptic mechanisms of locomotor activity. In addition, both the identifiable reticulospinal cells and the various spinal nerve cell classes and their known synaptic interactions have been used to demonstrate the degree and specificity of regeneration within the lamprey nervous system. The lack of uniquely identifiable cells within the lamprey spinal cord has hampered progress in these areas, especially in gaining a full understanding of the locomotor network and how neuromodulation of the network is accomplished.

  2. Altered lipid metabolism in the aging kidney identified by three layered omic analysis

    PubMed Central

    Braun, Fabian; Rinschen, Markus M.; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H.J.; Schumacher, Björn; Dollé, Martijn E.T.; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E.

    2016-01-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165

  3. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    PubMed

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.

  4. Exploratory Cluster Analysis to Identify Patterns of Chronic Kidney Disease in the 500 Cities Project.

    PubMed

    Liu, Shelley H; Li, Yan; Liu, Bian

    2018-05-17

    Chronic kidney disease is a leading cause of death in the United States. We used cluster analysis to explore patterns of chronic kidney disease in 500 of the largest US cities. After adjusting for socio-demographic characteristics, we found that unhealthy behaviors, prevention measures, and health outcomes related to chronic kidney disease differ between cities in Utah and those in the rest of the United States. Cluster analysis can be useful for identifying geographic regions that may have important policy implications for preventing chronic kidney disease.

  5. HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening.

    PubMed

    Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying

    2013-01-01

    High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable

  6. RNA Sequencing Identifies Novel Translational Biomarkers of Kidney Fibrosis

    PubMed Central

    Craciun, Florin L.; Bijol, Vanesa; Ajay, Amrendra K.; Rao, Poornima; Kumar, Ramya K.; Hutchinson, John; Hofmann, Oliver; Joshi, Nikita; Luyendyk, James P.; Kusebauch, Ulrike; Moss, Christopher L.; Srivastava, Anand; Himmelfarb, Jonathan; Waikar, Sushrut S.; Moritz, Robert L.

    2016-01-01

    CKD is the gradual, asymptomatic loss of kidney function, but current tests only identify CKD when significant loss has already happened. Several potential biomarkers of CKD have been reported, but none have been approved for preclinical or clinical use. Using RNA sequencing in a mouse model of folic acid-induced nephropathy, we identified ten genes that track kidney fibrosis development, the common pathologic finding in patients with CKD. The gene expression of all ten candidates was confirmed to be significantly higher (approximately ten- to 150-fold) in three well established, mechanistically distinct mouse models of kidney fibrosis than in models of nonfibrotic AKI. Protein expression of these genes was also high in the folic acid model and in patients with biopsy-proven kidney fibrosis. mRNA expression of the ten genes increased with increasing severity of kidney fibrosis, decreased in response to therapeutic intervention, and increased only modestly (approximately two- to five-fold) with liver fibrosis in mice and humans, demonstrating specificity for kidney fibrosis. Using targeted selected reaction monitoring mass spectrometry, we detected three of the ten candidates in human urine: cadherin 11 (CDH11), macrophage mannose receptor C1 (MRC1), and phospholipid transfer protein (PLTP). Furthermore, urinary levels of each of these three proteins distinguished patients with CKD (n=53) from healthy individuals (n=53; P<0.05). In summary, we report the identification of urinary CDH11, MRC1, and PLTP as novel noninvasive biomarkers of CKD. PMID:26449608

  7. Identifying Potential Kidney Donors Using Social Networking Websites

    PubMed Central

    Chang, Alexander; Anderson, Emily E.; Turner, Hang T.; Shoham, David; Hou, Susan H.; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion, and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2–69); 88% were U.S. residents. Other posted information included the individual’s photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. PMID:23600791

  8. Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases.

    PubMed

    Degenhardt, Frauke; Niklowitz, Petra; Szymczak, Silke; Jacobs, Gunnar; Lieb, Wolfgang; Menke, Thomas; Laudes, Matthias; Esko, Tõnu; Weidinger, Stephan; Franke, Andre; Döring, Frank; Onur, Simone

    2016-07-01

    Coenzyme Q 10 (CoQ 10 ) is a lipophilic redox molecule that is present in membranes of almost all cells in human tissues. CoQ 10 is, amongst other functions, essential for the respiratory transport chain and is a modulator of inflammatory processes and gene expression. Rare monogenetic CoQ 10 deficiencies show noticeable symptoms in tissues (e.g. kidney) and cell types (e.g. neurons) with a high energy demand. To identify common genetic variants influencing serum CoQ 10 levels, we performed a fixed effects meta-analysis in two independent cross-sectional Northern German cohorts comprising 1300 individuals in total. We identified two genome-wide significant susceptibility loci. The best associated single nucleotide polymorphism (SNP) was rs9952641 (P value = 1.31 × 10 - 8 , β = 0.063, CI 0.95 [0.041, 0.085]) within the COLEC12 gene on chromosome 18. The SNP rs933585 within the NRXN-1 gene on chromosome 2 also showed genome wide significance (P value = 3.64 × 10 - 8 , β = -0.034, CI 0.95 [-0.046, -0.022]). Both genes have been previously linked to neuronal diseases like Alzheimer's disease, autism and schizophrenia. Among our 'top-10' associated variants, four additional loci with known neuronal connections showed suggestive associations with CoQ 10 levels. In summary, this study demonstrates that serum CoQ 10 levels are associated with common genetic loci that are linked to neuronal diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Identifying Risk for Acute Kidney Injury in Infants and Children Following Cardiac Arrest.

    PubMed

    Neumayr, Tara M; Gill, Jeff; Fitzgerald, Julie C; Gazit, Avihu Z; Pineda, Jose A; Berg, Robert A; Dean, J Michael; Moler, Frank W; Doctor, Allan

    2017-10-01

    Our goal was to identify risk factors for acute kidney injury in children surviving cardiac arrest. Retrospective analysis of a public access dataset. Fifteen children's hospitals associated with the Pediatric Emergency Care Applied Research Network. Two hundred ninety-six subjects between 1 day and 18 years old who experienced in-hospital or out-of-hospital cardiac arrest between July 1, 2003, and December 31, 2004. None. Our primary outcome was development of acute kidney injury as defined by the Acute Kidney Injury Network criteria. An ordinal probit model was developed. We found six critical explanatory variables, including total number of epinephrine doses, postcardiac arrest blood pressure, arrest location, presence of a chronic lung condition, pH, and presence of an abnormal baseline creatinine. Total number of epinephrine doses received as well as rate of epinephrine dosing impacted acute kidney injury risk and severity of acute kidney injury. This study is the first to identify risk factors for acute kidney injury in children after cardiac arrest. Our findings regarding the impact of epinephrine dosing are of particular interest and suggest potential for epinephrine toxicity with regard to acute kidney injury. The ability to identify and potentially modify risk factors for acute kidney injury after cardiac arrest may lead to improved morbidity and mortality in this population.

  10. Identifying potential kidney donors using social networking web sites.

    PubMed

    Chang, Alexander; Anderson, Emily E; Turner, Hang T; Shoham, David; Hou, Susan H; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2-69); 88% were US residents. Other posted information included the individual's photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live-donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. © 2013 John Wiley & Sons A/S.

  11. Onset dynamics of action potentials in rat neocortical neurons and identified snail neurons: quantification of the difference.

    PubMed

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-04-09

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.

  12. Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference

    PubMed Central

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-01-01

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics. PMID:18398478

  13. 42 CFR 409.18 - Services related to kidney transplantations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Services related to kidney transplantations. 409.18... Access Hospital Services § 409.18 Services related to kidney transplantations. (a) Kidney transplants. Medicare pays for kidney transplantation surgery only if performed in a renal transplantation center...

  14. 42 CFR 409.18 - Services related to kidney transplantations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Services related to kidney transplantations. 409.18... Access Hospital Services § 409.18 Services related to kidney transplantations. (a) Kidney transplants. Medicare pays for kidney transplantation surgery only if performed in a renal transplantation center...

  15. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    PubMed

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  16. Identifying Outcomes that Are Important to Living Kidney Donors: A Nominal Group Technique Study.

    PubMed

    Hanson, Camilla S; Chapman, Jeremy R; Gill, John S; Kanellis, John; Wong, Germaine; Craig, Jonathan C; Teixeira-Pinto, Armando; Chadban, Steve J; Garg, Amit X; Ralph, Angelique F; Pinter, Jule; Lewis, Joshua R; Tong, Allison

    2018-06-07

    Living kidney donor candidates accept a range of risks and benefits when they decide to proceed with nephrectomy. Informed consent around this decision assumes they receive reliable data about outcomes they regard as critical to their decision making. We identified the outcomes most important to living kidney donors and described the reasons for their choices. Previous donors were purposively sampled from three transplant units in Australia (Sydney and Melbourne) and Canada (Vancouver). In focus groups using the nominal group technique, participants identified outcomes of donation, ranked them in order of importance, and discussed the reasons for their preferences. An importance score was calculated for each outcome. Qualitative data were analyzed thematically. Across 14 groups, 123 donors aged 27-78 years identified 35 outcomes. Across all participants, the ten highest ranked outcomes were kidney function (importance=0.40, scale 0-1), time to recovery (0.27), surgical complications (0.24), effect on family (0.22), donor-recipient relationship (0.21), life satisfaction (0.18), lifestyle restrictions (0.18), kidney failure (0.14), mortality (0.13), and acute pain/discomfort (0.12). Kidney function and kidney failure were more important to Canadian participants, compared with Australian donors. The themes identified included worthwhile sacrifice, insignificance of risks and harms, confidence and empowerment, unfulfilled expectations, and heightened susceptibility. Living kidney donors prioritized a range of outcomes, with the most important being kidney health and the surgical, lifestyle, functional, and psychosocial effects of donation. Donors also valued improvements to their family life and donor-recipient relationship. There were clear regional differences in the rankings. Copyright © 2018 by the American Society of Nephrology.

  17. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a.

    PubMed

    Yelin-Bekerman, Laura; Elbaz, Idan; Diber, Alex; Dahary, Dvir; Gibbs-Bar, Liron; Alon, Shahar; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-10-01

    Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep\\wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a (kcnh4a(-/-)) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

  18. The Disruption of Celf6, a Gene Identified by Translational Profiling of Serotonergic Neurons, Results in Autism-Related Behaviors

    PubMed Central

    Dougherty, Joseph D.; Maloney, Susan E.; Wozniak, David F.; Rieger, Michael A.; Sonnenblick, Lisa; Coppola, Giovanni; Mahieu, Nathaniel G.; Zhang, Juliet; Cai, Jinlu; Patti, Gary J.; Abrahams, Brett S.; Geschwind, Daniel H.; Heintz, Nathaniel

    2013-01-01

    The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders. PMID:23407934

  19. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    PubMed

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  20. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    PubMed Central

    Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna

    2012-01-01

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313

  1. Relation between Kidney Length and Cardiovascular and Renal Risk in High-Risk Patients

    PubMed Central

    van der Sande, Nicolette G.C.; Visseren, Frank L.J.; van der Graaf, Yolanda; Nathoe, Hendrik M.; de Borst, Gert Jan; Leiner, Tim

    2017-01-01

    Background and objectives Kidney length is often measured during routine abdominal ultrasonography and may be of use to identify patients at high vascular and renal risk. We aimed to explore patient characteristics related to kidney length, from which reference values were derived, and evaluate the relationship between kidney length and the risk of cardiovascular events and ESRD in high-risk patients. Design, setting, participants, & measurements The study population consisted of 10,251 patients with clinical manifest arterial disease or vascular risk factors included in the Second Manifestations of ARTerial disease (SMART) Study cohort between 1996 and 2014. Linear regression was used to explore patient characteristics of kidney length. The relationship between kidney length and cardiovascular events (myocardial infarction, stroke, and cardiovascular mortality), all-cause mortality, and ESRD was analyzed using Cox regression. Kidney length was analyzed in tertiles, using the second tertile as the reference category. Results Kidney length was strongly correlated with body surface area (2.04 mm; 95% confidence interval [95% CI], 1.95 to 2.13 per 0.1 m2 increase) and eGFR (1.62 mm; 95% CI, 1.52 to 1.73 per 10 ml/min per 1.73 m2 increase). During the median follow-up of 6.3 years, 1317 patients experienced a cardiovascular event, including 711 myocardial infarctions, 369 strokes, and 735 vascular cause deaths. A total of 1462 patients died of any cause and 52 patients developed ESRD. Irrespective of eGFR, patients in the third tertile of kidney length (11.7–16.1 cm) were at higher risk of cardiovascular mortality (hazard ratio, 1.33; 95% CI, 1.05 to 1.67) and cardiovascular events (hazard ratio, 1.28; 95% CI, 1.09 to 1.50). Patients in the first tertile of kidney length (7.8–10.8 cm) were not at higher risk of cardiovascular adverse events. Conclusions Large kidney length is related to higher risk of cardiovascular events and mortality in high-risk patients

  2. Relation between Kidney Length and Cardiovascular and Renal Risk in High-Risk Patients.

    PubMed

    van der Sande, Nicolette G C; Visseren, Frank L J; van der Graaf, Yolanda; Nathoe, Hendrik M; de Borst, Gert Jan; Leiner, Tim; Blankestijn, Peter J

    2017-06-07

    Kidney length is often measured during routine abdominal ultrasonography and may be of use to identify patients at high vascular and renal risk. We aimed to explore patient characteristics related to kidney length, from which reference values were derived, and evaluate the relationship between kidney length and the risk of cardiovascular events and ESRD in high-risk patients. The study population consisted of 10,251 patients with clinical manifest arterial disease or vascular risk factors included in the Second Manifestations of ARTerial disease (SMART) Study cohort between 1996 and 2014. Linear regression was used to explore patient characteristics of kidney length. The relationship between kidney length and cardiovascular events (myocardial infarction, stroke, and cardiovascular mortality), all-cause mortality, and ESRD was analyzed using Cox regression. Kidney length was analyzed in tertiles, using the second tertile as the reference category. Kidney length was strongly correlated with body surface area (2.04 mm; 95% confidence interval [95% CI], 1.95 to 2.13 per 0.1 m 2 increase) and eGFR (1.62 mm; 95% CI, 1.52 to 1.73 per 10 ml/min per 1.73 m 2 increase). During the median follow-up of 6.3 years, 1317 patients experienced a cardiovascular event, including 711 myocardial infarctions, 369 strokes, and 735 vascular cause deaths. A total of 1462 patients died of any cause and 52 patients developed ESRD. Irrespective of eGFR, patients in the third tertile of kidney length (11.7-16.1 cm) were at higher risk of cardiovascular mortality (hazard ratio, 1.33; 95% CI, 1.05 to 1.67) and cardiovascular events (hazard ratio, 1.28; 95% CI, 1.09 to 1.50). Patients in the first tertile of kidney length (7.8-10.8 cm) were not at higher risk of cardiovascular adverse events. Large kidney length is related to higher risk of cardiovascular events and mortality in high-risk patients, irrespective of eGFR. Kidney length may serve as a clinical marker to further identify patients at

  3. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings

    PubMed Central

    Lien, Anthony D.; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948

  4. Kidney disease models: tools to identify mechanisms and potential therapeutic targets

    PubMed Central

    Bao, Yin-Wu; Yuan, Yuan; Chen, Jiang-Hua; Lin, Wei-Qiang

    2018-01-01

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored. PMID:29515089

  5. L-citrulline immunostaining identifies nitric oxide production sites within neurons

    NASA Technical Reports Server (NTRS)

    Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.

  6. Generalization of Associations of Kidney-Related Genetic Loci to American Indians

    PubMed Central

    Haack, Karin; Almasy, Laura; Laston, Sandra; Lee, Elisa T.; Best, Lyle G.; Fabsitz, Richard R.; MacCluer, Jean W.; Howard, Barbara V.; Umans, Jason G.; Cole, Shelley A.

    2014-01-01

    Summary Background and objectives CKD disproportionally affects American Indians, who similar to other populations, show genetic susceptibility to kidney outcomes. Recent studies have identified several loci associated with kidney traits, but their relevance in American Indians is unknown. Design, setting, participants, & measurements This study used data from a large, family-based genetic study of American Indians (the Strong Heart Family Study), which includes 94 multigenerational families enrolled from communities located in Oklahoma, the Dakotas, and Arizona. Individuals were recruited from the Strong Heart Study, a population-based study of cardiovascular disease in American Indians. This study selected 25 single nucleotide polymorphisms in 23 loci identified from recently published kidney-related genome-wide association studies in individuals of European ancestry to evaluate their associations with kidney function (estimated GFR; individuals 18 years or older, up to 3282 individuals) and albuminuria (urinary albumin to creatinine ratio; n=3552) in the Strong Heart Family Study. This study also examined the association of single nucleotide polymorphisms in the APOL1 region with estimated GFR in 1121 Strong Heart Family Study participants. GFR was estimated using the abbreviated Modification of Diet in Renal Disease Equation. Additive genetic models adjusted for age and sex were used. Results This study identified significant associations of single nucleotide polymorphisms with estimated GFR in or nearby PRKAG2, SLC6A13, UBE2Q2, PIP5K1B, and WDR72 (P<2.1 × 10-3 to account for multiple testing). Single nucleotide polymorphisms in these loci explained 2.2% of the estimated GFR total variance and 2.9% of its heritability. An intronic variant of BCAS3 was significantly associated with urinary albumin to creatinine ratio. APOL1 single nucleotide polymorphisms were not associated with estimated GFR in a single variant test or haplotype analyses, and the at

  7. Non-neuronal expression of choline acetyltransferase in the rat kidney.

    PubMed

    Maeda, Seishi; Jun, Jin Gon; Kuwahara-Otani, Sachi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2011-09-12

    Acetylcholine (ACh) has been shown to increase ion and water excretion in the kidneys, resulting in hypotension. However, no evidence of renal parasympathetic innervation has been shown, and the source of ACh acting on nephrons is still unknown. The aim of the present study was to identify ACh-producing cells in the rat kidney, by examining the expression of cholinergic agents and localization of an ACh-synthesizing enzyme, choline acetyltransferase (ChAT), in the kidney. Adult mail Sprague-Dawley rats were used in this study. Expression of mRNA of cholinergic agents, ChAT, vesicular ACh transporter (VAChT), and high-affinity choline transporter (CHT-1), in the kidney was examined by RT-PCR. Localization of ChAT mRNA and protein was examined by in situ hybridization and tyramide-enhanced immunohistochemistry, respectively. RT-PCR showed the expression of ChAT, VAChT, and CHT-1. In situ hybridization demonstrated that ChAT mRNA is localized to the renal cortical collecting ducts (CCD). Immunohistochemistry showed that the ChAT-positive cells were principal cells, and that they were unevenly distributed in the tubules, and constituted approximately 15.2% of CCD in the cortex, and 3.6% and 1.5% in the outer and inner medulla, respectively. ChAT-positive immunoreactivity was localized to the apical side of principal cells, suggesting that ACh synthesis may occur in the apical compartment of these cells. These results suggest that the cholinergic effects in the nephron may be mediated at least in part by ACh originating from CCD principal cells and its expression may be locally regulated in the rat kidney. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Liver fatty-acid-binding protein in heart and kidney allograft recipients in relation to kidney function.

    PubMed

    Przybylowski, P; Koc-Zorawska, E; Malyszko, J S; Kozlowska, S; Mysliwiec, M; Malyszko, J

    2011-10-01

    Mammalian intracellular fatty-acid-binding proteins (FABPs), a large multigene family, encode 14-kD proteins that are members of a superfamily of lipid-binding proteins. FABPs are tissue specific. Liver-type FABP (L-FABP) can be filtered through the glomerulus owing to its small molecular size, similar to cystatin C, but it is reabsorbed by proximal tubule epithelial cells like other small proteins. In the human kidney, L-FABP is expressed predominantly in proximal tubules. It had been suggested that the presence of L-FABP in urine reflects hypoxic conditions resulting from decreased peritubular capillary flow, serving as a marker of acute kidney injury. The aim of this study was to assess urinary L-FABP in 111 heart and 76 kidney transplant recipients in relation to kidney function. Complete blood count, urea, fasting glucose, creatinine, and the N-terminal fragment of brain natriuretic protein were studied by standard laboratory methods; L-FABP and cystatin C, by ELISA using commercially available kits. Kidney transplant recipients displayed significantly higher L-FABP than heart recipients. Upon univariate analysis, urinary L-FABP correlated, with serum creatinine, cystatin C and estimated glomerular filtration ratio (eGFR) in kidney allograft recipients. However, in heart transplant recipients it was not related to kidney function, as reflected by creatinine or eGFR; was strongly related to cystatin C (r=0.34; P<.001) and urinary creatinine (r=-0.29; P<.01), and NGAL (r=0.29; P<.01). Upon multiple regression analysis, the best predictor of urinary L-FABP in kidney allograft recipients, was eGFR whereas in heart recipients, no parameter independently predicted L-FABP. Successful heart transplantation is associated with kidney injury as reflected by a reduced eGFR; however, in this population, L-FABP did not serve as a marker of kidney function. In contrast, in kidney allograft recipients, L-FABP may be a potential early marker for impaired kidney function

  9. 42 CFR 410.55 - Services related to kidney donations: Conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Services related to kidney donations: Conditions... Services § 410.55 Services related to kidney donations: Conditions. Medicare Part B pays for medical and other health services covered under this subpart that are furnished in connection with a kidney donation...

  10. 42 CFR 410.55 - Services related to kidney donations: Conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Services related to kidney donations: Conditions... Services § 410.55 Services related to kidney donations: Conditions. Medicare Part B pays for medical and other health services covered under this subpart that are furnished in connection with a kidney donation...

  11. 42 CFR 410.55 - Services related to kidney donations: Conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Services related to kidney donations: Conditions... Services § 410.55 Services related to kidney donations: Conditions. Medicare Part B pays for medical and other health services covered under this subpart that are furnished in connection with a kidney donation...

  12. 42 CFR 410.55 - Services related to kidney donations: Conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Services related to kidney donations: Conditions... Services § 410.55 Services related to kidney donations: Conditions. Medicare Part B pays for medical and other health services covered under this subpart that are furnished in connection with a kidney donation...

  13. 42 CFR 410.55 - Services related to kidney donations: Conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Services related to kidney donations: Conditions... Services § 410.55 Services related to kidney donations: Conditions. Medicare Part B pays for medical and other health services covered under this subpart that are furnished in connection with a kidney donation...

  14. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration

    PubMed Central

    Valenzuela, Rita; Costa-Besada, Maria A; Iglesias-Gonzalez, Javier; Perez-Costas, Emma; Villar-Cheda, Begoña; Garrido-Gil, Pablo; Melendez-Ferro, Miguel; Soto-Otero, Ramon; Lanciego, Jose L; Henrion, Daniel; Franco, Rafael; Labandeira-Garcia, Jose L

    2016-01-01

    The renin–angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the ‘classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneration

  15. Coronary heart disease is not significantly linked to acute kidney injury identified using Acute Kidney Injury Group criteria.

    PubMed

    Yayan, Josef

    2012-01-01

    Patients with unstable angina or myocardial infarction are at risk of acute kidney injury, which may be aggravated by the iodine-containing contrast agent used during coronary angiography; however, the relationship between these two conditions remains unclear. The current study investigated the relationship between acute kidney injury and coronary heart disease prior to coronary angiography. All patients were evaluated after undergoing coronary angiography in the cardiac catheterization laboratory of the Vinzentius Hospital in Landau, Germany, in 2011. The study group included patients with both acute coronary heart disease and acute kidney injury (as defined according to the classification of the Acute Kidney Injury Group); the control group included patients without acute coronary heart disease. Serum creatinine profiles were evaluated in all patients, as were a variety of demographic and health characteristics. Of the 303 patients examined, 201 (66.34%) had coronary artery disease. Of these, 38 (18.91%) also had both acute kidney injury and acute coronary heart disease prior to and after coronary angiography, and of which in turn 34 (16.91%) had both acute kidney injury and acute coronary heart disease only prior to the coronary angiography. However, the occurrence of acute kidney injury was not significantly related to the presence of coronary heart disease (P = 0.95, Chi-square test). The results of this study indicate that acute kidney injury is not linked to acute coronary heart disease. However, physicians should be aware that many coronary heart patients may develop kidney injury while hospitalized for angiography.

  16. Convergent properties of vestibular-related brain stem neurons in the gerbil

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    2000-01-01

    be detected, the sampled cells generally had lower background discharge rates, on average one-third lower response gains, and convergent properties that differed from those found in the alert animals. On the basis of the dynamic response of identified cell types, we propose a pair of models in which inhibitory input from vestibular-related neurons converges on oculomotor neurons with excitatory inputs from the vestibular nuclei. Simple signal convergence and combinations of different types of vestibular labyrinth information can enrich the dynamic characteristics of the rotational and translational vestibuloocular responses.

  17. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

    PubMed Central

    Gorski, Mathias; van der Most, Peter J.; Teumer, Alexander; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Nolte, Ilja M.; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F.; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P.; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C.; Curhan, Gary C.; d’Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H.; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J.; Harris, Tamara B.; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G.; Homuth, Georg; Hu, Frank B.; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K.; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J.; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J. F.; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A.; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J.; Olden, Matthias; WJH Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P.; Probst-Hensch, Nicole; Raitakari, Olli T.; Rettig, Rainer; Ridker, Paul M.; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E.; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J.; Sedaghat, Sanaz; Smith, Albert V.; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G.; Ulivi, Sheila; Viikari, Jorma S.; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I.; Tromp, Gerard; Snieder, Harold; Heid, Iris M.; Fox, Caroline S.; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A.; Fuchsberger, Christian

    2017-01-01

    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10−8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples. PMID:28452372

  18. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

    PubMed

    Gorski, Mathias; van der Most, Peter J; Teumer, Alexander; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Nolte, Ilja M; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C; Curhan, Gary C; d'Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J; Harris, Tamara B; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G; Homuth, Georg; Hu, Frank B; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J F; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J; Olden, Matthias; Wjh Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P; Probst-Hensch, Nicole; Raitakari, Olli T; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J; Sedaghat, Sanaz; Smith, Albert V; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G; Ulivi, Sheila; Viikari, Jorma S; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I; Tromp, Gerard; Snieder, Harold; Heid, Iris M; Fox, Caroline S; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A; Fuchsberger, Christian

    2017-04-28

    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10 -8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.

  19. Methods to identify and analyze gene products involved in neuronal intracellular transport using Drosophila

    PubMed Central

    Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.

    2017-01-01

    Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520

  20. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.

    PubMed

    Pooryasin, Atefeh; Fiala, André

    2015-09-16

    Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect

  1. Wasp venom injected into the prey's brain modulates thoracic identified monoaminergic neurons.

    PubMed

    Rosenberg, Lior Ann; Pflüger, Hans-Joachim; Wegener, Gerhard; Libersat, Frederic

    2006-02-05

    The wasp Ampulex compressa injects a cocktail of neurotoxins into the brain of its cockroach prey to induce an enduring change in the execution of locomotory behaviors. Our hypothesis is that the venom injected into the brain indirectly alters the activity of monoaminergic neurons, thus changing the levels of monoamines that tune the central synapses of locomotory circuits. The purpose of the present investigation was to establish whether the venom alters the descending control, from the brain, of octopaminergic neurons in the thorax. This question was approached by recording the activity of specific identified octopaminergic neurons after removing the input from the brain or after a wasp sting into the brain. We show that the activity of these neurons is altered in stung and "brainless" animals. The spontaneous firing rate of these neurons in stung and brainless animals is approximately 20% that in control animals. Furthermore, we show that an identified octopamine neuron responds more weakly both to sensory stimuli and to direct injection of current in all treated groups. The alteration in the activity of octopamine neurons is likely to be part of the mechanism by which the wasp induces a change in the behavioral state of its prey and also affects its metabolism by reducing the potent glycolytic activator fructose 2,6-bisphosphate in leg muscle. To our knowledge, this is the first direct evidence of a change in electrical activity of specific monoaminergic neurons that can be so closely associated with a venom-induced change in behavioral state of a prey animal.

  2. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    PubMed

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  3. Heritability of Measures of Kidney Disease Among Zuni Indians: The Zuni Kidney Project

    PubMed Central

    MacCluer, Jean W.; Scavini, Marina; Shah, Vallabh O.; Cole, Shelley A.; Laston, Sandra L.; Voruganti, V. Saroja; Paine, Susan S.; Eaton, Alfred J.; Comuzzie, Anthony G.; Tentori, Francesca; Pathak, Dorothy R.; Bobelu, Arlene; Bobelu, Jeanette; Ghahate, Donica; Waikaniwa, Mildred; Zager, Philip G.

    2010-01-01

    Background The long-term goal of the GKDZI (Genetics of Kidney Disease in Zuni Indians) Study is to identify genes, environmental factors, and genetic-environmental interactions that modulate susceptibility to renal disease and intermediate phenotypes. Study Design A community-based participatory research approach was used to recruit family members of individuals with kidney disease. Setting & Participants The study was conducted in the Zuni Indians, a small endogamous tribe located in rural New Mexico. We recruited members of extended families, ascertained through a proband with kidney disease and at least 1 sibling with kidney disease. 821 participants were recruited, comprising 7,702 relative pairs. Predictor Outcomes & Measurements Urine albumin-creatinine ratio (UACR) and hematuria were determined in 3 urine samples and expressed as a true ratio. Glomerular filtration rate (GFR) was estimated using the Modification of Diet in Renal Disease (MDRD) Study equation modified for American Indians. Probands were considered to have kidney disease if UACR was ≥0.2 in 2 or more of 3 spot urine samples or estimated GFR was decreased according to the CRIC (Chronic Renal Insufficiency Cohort) Study criteria. Results Kidney disease was identified in 192 participants (23.4%). There were significant heritabilities for estimated GFR, UACR, serum creatinine, serum urea nitrogen, and uric acid and a variety of phenotypes related to obesity, diabetes, and cardiovascular disease. There were significant genetic correlations of some kidney-related phenotypes with these other phenotypes. Limitations Limitations include absence of renal biopsy, possible misclassification bias, lack of direct GFR measurements, and failure to include all possible environmental interactions. Conclusions Many phenotypes related to kidney disease showed significant heritabilities in Zuni Indians, and there were significant genetic correlations with phenotypes related to obesity, diabetes, and

  4. Neuronal Correlates of Functional Coupling between Reach- and Grasp-Related Components of Muscle Activity

    PubMed Central

    Geed, Shashwati; McCurdy, Martha L.; van Kan, Peter L. E.

    2017-01-01

    Coordinated reach-to-grasp movements require precise spatiotemporal synchrony between proximal forelimb muscles (shoulder, elbow) that transport the hand toward a target during reach, and distal muscles (wrist, digit) that simultaneously preshape and orient the hand for grasp. The precise mechanisms through which the redundant neuromuscular circuitry coordinates reach with grasp, however, remain unclear. Recently, Geed and Van Kan (2016) demonstrated, using exploratory factor analysis (EFA), that limited numbers of global, template-like transport/preshape- and grasp-related muscle components underlie the complexity and variability of intramuscular electromyograms (EMGs) of up to 21 distal and proximal muscles recorded while monkeys performed reach-to-grasp tasks. Importantly, transport/preshape- and grasp-related muscle components showed invariant spatiotemporal coupling, which provides a potential mechanism for coordinating forelimb muscles during reach-to-grasp movements. In the present study, we tested whether ensemble discharges of forelimb neurons in the cerebellar nucleus interpositus (NI) and its target, the magnocellular red nucleus (RNm), a source of rubrospinal fibers, function as neuronal correlates of the transport/preshape- and grasp-related muscle components we identified. EFA applied to single-unit discharges of populations of NI and RNm neurons recorded while the same monkeys that were used previously performed the same reach-to-grasp tasks, revealed neuronal components in the ensemble discharges of both NI and RNm neuronal populations with characteristics broadly similar to muscle components. Subsets of NI and RNm neuronal components were strongly and significantly crosscorrelated with subsets of muscle components, suggesting that similar functional units of reach-to-grasp behavior are expressed by NI and RNm neuronal populations and forelimb muscles. Importantly, like transport/preshape- and grasp-related muscle components, their NI and RNm

  5. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS

    PubMed Central

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  6. Rostral dorsolateral pontine neurons with sympathetic nerve-related activity.

    PubMed

    Barman, S M; Gebber, G L; Kitchens, H

    1999-02-01

    Spike-triggered averaging, arterial pulse-triggered analysis, and coherence analysis were used to classify rostral dorsolateral pontine (RDLP) neurons into groups whose naturally occurring discharges were correlated to only the 10-Hz rhythm (n = 29), to only the cardiac-related rhythm (n = 15), and to both rhythms (n = 15) in inferior cardiac sympathetic nerve discharge (SND) of urethan-anesthetized cats. Most of the neurons with activity correlated to only the cardiac-related rhythm were located medial to the other two groups of neurons. The firing rates of most RDLP neurons with activity correlated to only the 10-Hz rhythm (9 of 12) or both rhythms (7 of 8) were decreased during baroreceptor reflex-induced inhibition of SND produced by aortic obstruction; thus, they are presumed to be sympathoexcitatory. The firing rates of four of seven RDLP neurons with activity correlated to only the cardiac-related rhythm increased during baroreceptor reflex activation; thus, they may be sympathoinhibitory. We conclude that the RDLP contains a functionally heterogeneous population of neurons with sympathetic nerve-related activity. These neurons could not be antidromically activated by stimulation of the thoracic spinal cord.

  7. Overactivity of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus: Electrophysiological Findings in db/db Mice

    PubMed Central

    Gao, Hong; Molinas, Adrien J.R.; Qiao, Xin

    2017-01-01

    Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism. SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus

  8. Overactivity of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus: Electrophysiological Findings in db/db Mice.

    PubMed

    Gao, Hong; Molinas, Adrien J R; Miyata, Kayoko; Qiao, Xin; Zsombok, Andrea

    2017-11-15

    Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism. SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus

  9. Identified Serotonergic Modulatory Neurons Have Heterogeneous Synaptic Connectivity within the Olfactory System of Drosophila.

    PubMed

    Coates, Kaylynn E; Majot, Adam T; Zhang, Xiaonan; Michael, Cole T; Spitzer, Stacy L; Gaudry, Quentin; Dacks, Andrew M

    2017-08-02

    Modulatory neurons project widely throughout the brain, dynamically altering network processing based on an animal's physiological state. The connectivity of individual modulatory neurons can be complex, as they often receive input from a variety of sources and are diverse in their physiology, structure, and gene expression profiles. To establish basic principles about the connectivity of individual modulatory neurons, we examined a pair of identified neurons, the "contralaterally projecting, serotonin-immunoreactive deutocerebral neurons" (CSDns), within the olfactory system of Drosophila Specifically, we determined the neuronal classes providing synaptic input to the CSDns within the antennal lobe (AL), an olfactory network targeted by the CSDns, and the degree to which CSDn active zones are uniformly distributed across the AL. Using anatomical techniques, we found that the CSDns received glomerulus-specific input from olfactory receptor neurons (ORNs) and projection neurons (PNs), and networkwide input from local interneurons (LNs). Furthermore, we quantified the number of CSDn active zones in each glomerulus and found that CSDn output is not uniform, but rather heterogeneous, across glomeruli and stereotyped from animal to animal. Finally, we demonstrate that the CSDns synapse broadly onto LNs and PNs throughout the AL but do not synapse upon ORNs. Our results demonstrate that modulatory neurons do not necessarily provide purely top-down input but rather receive neuron class-specific input from the networks that they target, and that even a two cell modulatory network has highly heterogeneous, yet stereotyped, pattern of connectivity. SIGNIFICANCE STATEMENT Modulatory neurons often project broadly throughout the brain to alter processing based on physiological state. However, the connectivity of individual modulatory neurons to their target networks is not well understood, as modulatory neuron populations are heterogeneous in their physiology, morphology, and

  10. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    PubMed

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Identifying and integrating consumer perspectives in clinical practice guidelines on autosomal-dominant polycystic kidney disease.

    PubMed

    Tong, Allison; Tunnicliffe, David J; Lopez-Vargas, Pamela; Mallett, Andrew; Patel, Chirag; Savige, Judy; Campbell, Katrina; Patel, Manish; Tchan, Michel C; Alexander, Stephen I; Lee, Vincent; Craig, Jonathan C; Fassett, Robert; Rangan, Gopala K

    2016-02-01

    This study aimed to identify consumer perspectives on topics and outcomes to integrate in the Kidney Health Australia Caring for Australasians with Renal Impairment (KHA-CARI) clinical practice guidelines on autosomal-dominant polycystic kidney disease (ADPKD). A workshop involving three concurrent focus groups with 18 consumers (patients with ADPKD (n = 15), caregivers (n = 3)) was convened. Guideline topics, interventions and outcomes were identified, and integrated into guideline development. Thematic analysis was used to analyse the reasons for their choices. Twenty-two priority topics were identified, with most focussed on non-pharmacological management (diet, fluid intake, physical activity, complementary medicine), pain management and psychosocial care (mental health, counselling, cognitive and behavioural training, education, support groups). They also identified 26 outcomes including quality of life (QoL), progression of kidney disease, kidney function, cyst growth and nephrotoxity. Almost all topics and outcomes suggested were identified by health professionals with the exception of five topics/outcomes. Six themes reflected reasons for their choices: clarifying ambiguities, resolving debilitating pain, concern for family, preparedness for the future, taking control and significance of impact. Although there was considerable concordance between the priority topics and outcomes of health professionals and consumers for guidelines of ADPKD, there was also important discordance with consumers focused on fewer issues, but particularly on lifestyle, psychosocial support, pain, and QoL and renal outcomes. Active consumer engagement in guidelines development can help to ensure the inclusion of patient-centred recommendations, which may lead to better management of disease progression, symptoms, complications, and psychosocial impact. © 2015 Asian Pacific Society of Nephrology.

  12. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  13. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  14. Predicting kidney disease progression in patients with acute kidney injury after cardiac surgery.

    PubMed

    Mizuguchi, K Annette; Huang, Chuan-Chin; Shempp, Ian; Wang, Justin; Shekar, Prem; Frendl, Gyorgy

    2018-06-01

    The study objective was to identify patients who are likely to develop progressive kidney dysfunction (acute kidney disease) before their hospital discharge after cardiac surgery, allowing targeted monitoring of kidney function in this at-risk group with periodic serum creatinine measurements. Risks of progression to acute kidney disease (a state in between acute kidney injury and chronic kidney disease) were modeled from acute kidney injury stages (Kidney Disease: Improving Global Outcomes) in patients undergoing cardiac surgery. A modified Poisson regression with robust error variance was used to evaluate the association between acute kidney injury stages and the development of acute kidney disease (defined as doubling of creatinine 2-4 weeks after surgery) in this observational study. Acute kidney disease occurred in 4.4% of patients with no preexisting kidney disease and 4.8% of patients with preexisting chronic kidney disease. Acute kidney injury predicted development of acute kidney disease in a graded manner in which higher stages of acute kidney injury predicted higher relative risk of progressive kidney disease (area under the receiver operator characteristic curve = 0.82). This correlation persisted regardless of baseline kidney function (P < .001). Of note, development of acute kidney disease was associated with higher mortality and need for renal replacement therapy. The degree of acute kidney injury can identify patients who will have a higher risk of progression to acute kidney disease. These patients may benefit from close follow-up of renal function because they are at risk of progressing to chronic kidney disease or end-stage renal disease. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Age at Immigration and Kidney Function among Self-Identified Healthy Africans in the United States.

    PubMed

    Ali, Mana; Mwendwa, Denée T; Sims, Regina; Ricks, Madia; Sumner, Anne E

    2016-02-01

    Kidney disease disparately affects those of African descent. Age trends have generally been established for kidney function in the overall US population, but the contribution of age at the time of immigration for African immigrants is unknown. To examine the independent and joint effects of age and age at the time of immigration, and kidney function. Estimated glomerular filtration rate (eGFR) was calculated for 93 African immigrants (60 % male; mean age = 33.5). Hierarchical regression and post hoc analyses revealed a significant age × age at the time of immigration interaction after accounting for traditional risk factors among those who immigrated at age ≤21. Younger age at the time of immigration to the US may exacerbate an inverse relationship between age and kidney function in a self-identified healthy African immigrant sample. Investigation of biopsychosocial factors associated with kidney health among African immigrants is warranted.

  16. Polycystic kidneys and GM2 gangliosidosis-like disease in neonatal springboks (Antidorcas marsupialis).

    PubMed

    Herder, V; Kummrow, M; Leeb, T; Sewell, A C; Hansmann, F; Lehmbecker, A; Wohlsein, P; Baumgärtner, W

    2015-05-01

    Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 μm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 μm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies. © The Author(s) 2014.

  17. Increasing the Rate of Living Donor Kidney Transplantation in Ontario: Donor- and Recipient-Identified Barriers and Solutions

    PubMed Central

    Getchell, Leah E.; McKenzie, Susan Q.; Sontrop, Jessica M.; Hayward, Jade S.; McCallum, Megan K.; Garg, Amit X.

    2017-01-01

    Purpose of Review: To hear from living kidney donors and recipients about what they perceive are the barriers to living donor kidney transplantation, and how patients can develop and lead innovative solutions to increase the rate and enhance the experiences of living donor kidney transplantation in Ontario. Sources of Information: A one-day patient-led workshop on March 10th, 2016 in Toronto, Ontario. Methods: Participants who were previously engaged in priority-setting exercises were invited to the meeting by patient lead, Sue McKenzie. This included primarily past kidney donors, kidney transplant recipients, as well as researchers, and representatives from renal and transplant health care organizations across Ontario. Key Findings: Four main barriers were identified: lack of education for patients and families, lack of public awareness about living donor kidney transplantation, financial costs incurred by donors, and health care system-level inefficiencies. Several novel solutions were proposed, including the development of a peer network to support and educate patients and families with kidney failure to pursue living donor kidney transplantation; consistent reimbursement policies to cover donors’ out-of-pocket expenses; and partnering with the paramedical and insurance industry to improve the efficiency of the donor and recipient evaluation process. Limitations: While there was a diversity of experience in the room from both donors and recipients, it does not provide a complete picture of the living kidney donation process for all Ontario donors and recipients. The discussion was provincially focused, and as such, some of the solutions suggested may already be in practice or unfeasible in other provinces. Implications: The creation of a patient-led provincial council was suggested as an important next step to advance the development and implementation of solutions to overcome patient-identified barriers to living donor kidney transplantation. PMID:28491334

  18. [Identifying the specific causes of kidney allograft loss: A population-based study].

    PubMed

    Lohéac, Charlotte; Aubert, Olivier; Loupy, Alexandre; Legendre, Christophe

    2018-04-01

    Results of kidney transplantation have been improving but long-term allograft survival remains disappointing. The objective of the present study was to identify the specific causes of renal allograft loss, to assess their incidence and long-term outcomes. A total of 4783 patients from four French centres, transplanted between January 2004 and January 2014 were prospectively included. A total of 9959 kidney biopsies (protocol and for cause) performed between January 2004 and March 2015 were included. Donor and recipient clinical and biological parameters as well as anti-HLA antibody directed against the donor were included. The main outcome was the long-term kidney allograft survival, including the study of the associated causes of graft loss, the delay of graft loss according to their causes and the determinants of graft loss. There were 732 graft losses during the follow-up period (median time: 4.51 years) with an identified cause in 95.08 %. Kidney allograft survival at 9 years post-transplant was 78 %. The causes of allograft loss were: antibody-mediated rejection (31.69 %), thrombosis (25.55 %), medical intercurrent disease (14.62 %), recurrence of primary renal disease (7.1 %), BK- or CMV-associated nephropathy (n=35, 4.78 %), T cell-mediated rejection (4.78 %), urological disease (2.46 %) and calcineurin inhibitor nephrotoxicity (1.09 %). The main causes of allograft loss were antibody-mediated rejection and thrombosis. These results encourage efforts to prevent and detect these complications earlier in order to improve allograft survival. Copyright © 2018 Association Société de néphrologie. Published by Elsevier Masson SAS. All rights reserved.

  19. Neuroimaging and Neuromodulation: Complementary Approaches for Identifying the Neuronal Correlates of Tinnitus

    PubMed Central

    Langguth, Berthold; Schecklmann, Martin; Lehner, Astrid; Landgrebe, Michael; Poeppl, Timm Benjamin; Kreuzer, Peter Michal; Schlee, Winfried; Weisz, Nathan; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    An inherent limitation of functional imaging studies is their correlational approach. More information about critical contributions of specific brain regions can be gained by focal transient perturbation of neural activity in specific regions with non-invasive focal brain stimulation methods. Functional imaging studies have revealed that tinnitus is related to alterations in neuronal activity of central auditory pathways. Modulation of neuronal activity in auditory cortical areas by repetitive transcranial magnetic stimulation (rTMS) can reduce tinnitus loudness and, if applied repeatedly, exerts therapeutic effects, confirming the relevance of auditory cortex activation for tinnitus generation and persistence. Measurements of oscillatory brain activity before and after rTMS demonstrate that the same stimulation protocol has different effects on brain activity in different patients, presumably related to interindividual differences in baseline activity in the clinically heterogeneous study cohort. In addition to alterations in auditory pathways, imaging techniques also indicate the involvement of non-auditory brain areas, such as the fronto-parietal “awareness” network and the non-tinnitus-specific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdale. Involvement of the hippocampus and the parahippocampal region putatively reflects the relevance of memory mechanisms in the persistence of the phantom percept and the associated distress. Preliminary studies targeting the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the parietal cortex with rTMS and with transcranial direct current stimulation confirm the relevance of the mentioned non-auditory networks. Available data indicate the important value added by brain stimulation as a complementary approach to neuroimaging for identifying the neuronal correlates of the various clinical aspects of tinnitus. PMID:22509155

  20. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste

    PubMed Central

    Tauber, John M.; Li, Yuanyuan; Yurgel, Maria E.; Masek, Pavel

    2017-01-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants. PMID:29121639

  1. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

    PubMed

    Tauber, John M; Brown, Elizabeth B; Li, Yuanyuan; Yurgel, Maria E; Masek, Pavel; Keene, Alex C

    2017-11-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.

  2. Factors associated with perceived donation-related financial burden among living kidney donors.

    PubMed

    Ruck, Jessica M; Holscher, Courtenay M; Purnell, Tanjala S; Massie, Allan B; Henderson, Macey L; Segev, Dorry L

    2018-03-01

    The perception of living kidney donation-related financial burden affects willingness to donate and the experience of donation, yet no existing tools identify donors who are at higher risk of perceived financial burden. We sought to identify characteristics that predicted higher risk of perceived financial burden. We surveyed 51 living kidney donors (LKDs) who donated from 01/2015 to 3/2016 about socioeconomic characteristics, predonation cost concerns, and perceived financial burden. We tested associations between both self-reported and ZIP code-level characteristics and perceived burden using Fisher's exact test and bivariate modified Poisson regression. Donors who perceived donation-related financial burden were less likely to have an income above their ZIP code median (14% vs. 72%, P = .006); however, they were more likely than donors who did not perceive burden to rent their home (57% vs. 16%, P = .03), have an income <$60 000 (86% vs. 20%, P = .002), or have had predonation cost concerns (43% vs. 7%, P = .03). Perceived financial burden was 3.6-fold as likely among those with predonation cost concerns and 10.6-fold as likely for those with incomes <$60 000. Collecting socioeconomic characteristics and asking about donation-related cost concerns prior to donation might allow transplant centers to target financial support interventions toward potential donors at higher risk of perceiving donation-related financial burden. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Novel β-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability

    PubMed Central

    2012-01-01

    Background LEF1/TCF transcription factors and their activator β-catenin are effectors of the canonical Wnt pathway. Although Wnt/β-catenin signaling has been implicated in neurodegenerative and psychiatric disorders, its possible role in the adult brain remains enigmatic. To address this issue, we sought to identify the genetic program activated by β-catenin in neurons. We recently showed that β-catenin accumulates specifically in thalamic neurons where it activates Cacna1g gene expression. In the present study, we combined bioinformatics and experimental approaches to find new β-catenin targets in the adult thalamus. Results We first selected the genes with at least two conserved LEF/TCF motifs within the regulatory elements. The resulting list of 428 putative LEF1/TCF targets was significantly enriched in known Wnt targets, validating our approach. Functional annotation of the presumed targets also revealed a group of 41 genes, heretofore not associated with Wnt pathway activity, that encode proteins involved in neuronal signal transmission. Using custom polymerase chain reaction arrays, we profiled the expression of these genes in the rat forebrain. We found that nine of the analyzed genes were highly expressed in the thalamus compared with the cortex and hippocampus. Removal of nuclear β-catenin from thalamic neurons in vitro by introducing its negative regulator Axin2 reduced the expression of six of the nine genes. Immunoprecipitation of chromatin from the brain tissues confirmed the interaction between β-catenin and some of the predicted LEF1/TCF motifs. The results of these experiments validated four genes as authentic and direct targets of β-catenin: Gabra3 for the receptor of GABA neurotransmitter, Calb2 for the Ca2+-binding protein calretinin, and the Cacna1g and Kcna6 genes for voltage-gated ion channels. Two other genes from the latter cluster, Cacna2d2 and Kcnh8, appeared to be regulated by β-catenin, although the binding of β-catenin to the

  4. Nurses' knowledge to identify early acute kidney injury.

    PubMed

    Nascimento, Roseli Aparecida Matheus do; Assunção, Murillo Santucci Cesar; Silva, João Manoel; Amendola, Cristina Prata; Carvalho, Taysa Martindo de; Lima, Emerson Quintino; Lobo, Suzana Margareth Ajeje

    2016-01-01

    To evaluate the knowledgeof nurses on early identification of acute kidney injury (AKI) in intensive care, emergency and hospitalization units. A prospective multi-center study was conducted with 216 nurses, using a questionnaire with 10 questions related to AKI prevention, diagnosis, and treatment. 57.2% of nurses were unable to identify AKI clinical manifestations, 54.6% did not have knowledge of AKI incidence in patients admitted to the ICU, 87.0% of the nurses did not know how to answer as regards the AKI mortality rate in patients admitted to the ICU, 67.1% answered incorrectly that slight increases in serum creatinine do not have an impact on mortality, 66.8% answered incorrectly to the question on AKI prevention measures, 60.4% answered correctly that loop diuretics for preventing AKI is not recommended, 77.6% answered correctly that AKI does not characterize the need for hemodialysis, and 92.5% said they had no knowledge of the Acute Kidney Injury Networkclassification. Nurses do not have enough knowledge to identify early AKI, demonstrating the importance of qualification programs in this field of knowledge. Avaliar o conhecimento do enfermeiro na identificação precoce da Injúria Renal Aguda (IRA) em Unidade de Terapia Intensiva, Unidade de Internação e Emergência. Estudo multicêntrico, prospectivo.Participaram do estudo 216 enfermeiros,por meio de questionário com 10 questões relacionadas à prevenção, ao diagnóstico e ao tratamento da IRA. 57,2% não souberam identificar as manifestações clínicas da IRA, 54,6% não têm conhecimento da incidência de IRA em pacientes internados na UTI, 87,0% dos enfermeiros não souberam responder ao índice de mortalidade de IRA em pacientes internados na UTI, 67,1% responderam incorretamente que aumentos discretos da creatinina sérica não têm impacto na mortalidade, 66,8% responderam incorretamente à questão sobre as medidas de prevenção da IRA, 60,4% acertaram quando responderam que não

  5. Imaging Flow Cytometry Analysis to Identify Differences of Survival Motor Neuron Protein Expression in Patients With Spinal Muscular Atrophy.

    PubMed

    Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko

    2016-08-01

    Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Predictors of liver donation without kidney recovery in a cohort of expanded criteria donors: identifying opportunities to improve expanded criteria donor kidney utilization.

    PubMed

    White, S L; Leichtman, A B; O'Connor, K; Lipkowitz, G; Pietroski, R; Stoff, J S; Luskin, R S; Belcher, J; Meyer, K; Merion, R M; Port, F K; Delmonico, F L

    2012-09-01

    To maximize deceased donation, it is necessary to facilitate organ recovery from expanded criteria donors (ECDs). Utilization of donors meeting the kidney definition for ECDs increases access to kidney transplantation and reduces waiting times; however, ECDs often do not proceed to kidney recovery. Based on a prospective study of three Organ Procurement Organizations in the United States, we describe the characteristics of donors meeting the Organ Procurement and Transplant Network (OPTN) ECD kidney definition (donor age 60+ or donor age 50-60 years with two of the following: final serum creatinine > 1.5 mg/dL, history of hypertension, or death from cerebral vascular accident) who donated a liver without kidney recovery. ECDs with organs recovered between February 2003 and September 2005 by New England Organ Bank, Gift of Life Michigan, and LifeChoice Donor Services were studied (n = 324). All donors were declared dead by neurological criteria. Data on a wide range of donor characteristics were collected, including donor demographics, medical history, cause of death, donor status during hospitalization, serological status, and donor kidney quality. Logistic regression models were used to identify donor characteristics predictive of liver-alone donation. Seventy-four of the 324 donors fulfilling the ECD definition for kidneys donated a liver alone (23%). History of diabetes, final serum creatinine > 1.5 mg/dL, age 70+, and presence of proteinuria were associated with liver-alone donation in univariate models. On multivariate analysis, only final serum creatinine > 1.5 mg/dL and age 70+ were independently predictive of liver donation alone. Older age and elevated serum creatinine may be perceived as stronger contraindications to kidney donation than the remaining elements of the ECD definition. It is likely that at least a proportion of these liver-alone donors represent missed opportunities for kidney transplantation. Copyright © 2012 Elsevier Inc. All rights

  7. Histone deacetylase-related protein inhibits AES-mediated neuronal cell death by direct interaction.

    PubMed

    Zhang, Xiaoguang; Chen, Hsin-Mei; Jaramillo, Eduardo; Wang, Lulu; D'Mello, Santosh R

    2008-08-15

    Histone deacetylase-related protein (HDRP), an alternatively spliced and truncated form of histone deacetylase-9 that lacks a C-terminal catalytic domain, protects neurons from death. In an effort to understand the mechanism by which HDRP mediates its neuroprotective effect, we screened for proteins in the brain that interact with HDRP by using a yeast two-hybrid assay. One of the HDRP-interacting proteins identified in this screen was amino enhancer of split (AES), a 197-amino acid protein belonging to the Groucho family. Interaction between HDRP and AES was verified by in vitro binding assays, coimmunoprecipitation, and colocalization studies. To investigate the significance of the HDRP-AES association to the regulation of neuronal survival, we used cultured cerebellar granule neurons, which undergo apoptosis when treated with low potassium (LK) medium. We found that in contrast to HDRP, whose expression is markedly reduced by LK treatment, AES expression was not appreciably altered. Forced expression of AES in healthy neurons results in cell death, an action that is blocked by the coexpression of HDRP. AES is a truncated version of larger Groucho-related proteins, one of which is transducin-like enhancer of split (TLE)-1. We found that the expression of TLE1 is reduced in LK-treated neurons and the forced expression of TLE1 blocks LK-induced neuronal death as well as death induced by AES. Our results show that AES has apoptotic activity in neurons and suggest that neuroprotection by HDRP is mediated by the inhibition of this activity through direct interaction.

  8. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro.more » Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.« less

  9. Caveolin1 Identifies a Specific Subpopulation of Cerebral Cortex Callosal Projection Neurons (CPN) Including Dual Projecting Cortical Callosal/Frontal Projection Neurons (CPN/FPN)

    PubMed Central

    2018-01-01

    Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878

  10. Graded Neuronal Modulations Related to Visual Spatial Attention.

    PubMed

    Mayo, J Patrick; Maunsell, John H R

    2016-05-11

    Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary "spotlight" of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused ("cued" vs "uncued"). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally cued blocks of trials. Behavioral

  11. Graded Neuronal Modulations Related to Visual Spatial Attention

    PubMed Central

    Maunsell, John H. R.

    2016-01-01

    Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary “spotlight” of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. SIGNIFICANCE STATEMENT Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused (“cued” vs “uncued”). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally

  12. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, Kathryn L.

    Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250 mg/kg i.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (> 2-fold, p < 0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibroticmore » injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl{sub 2}), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K{sub 2}Cr{sub 2}O{sub 7} and CdCl{sub 2} treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression. - Highlights: • We used small RNA sequencing to identify differentially expressed miRNAs in kidney. • Distinct patterns were found for acute injury and fibrotic stages in the kidney. • Upregulation of miR-18a, -132 and -146b was confirmed

  13. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  14. Secular Trends in Infection-Related Mortality after Kidney Transplantation.

    PubMed

    Kinnunen, Susanna; Karhapää, Pauli; Juutilainen, Auni; Finne, Patrik; Helanterä, Ilkka

    2018-05-07

    Infections are the most common noncardiovascular causes of death after kidney transplantation. We analyzed the current infection-related mortality among kidney transplant recipients in a nationwide cohort in Finland. Altogether, 3249 adult recipients of a first kidney transplant from 1990 to 2012 were included. Infectious causes of death were analyzed, and the mortality rates for infections were compared between two eras (1990-1999 and 2000-2012). Risk factors for infectious deaths were analyzed with Cox regression and competing risk analyses. Altogether, 953 patients (29%) died during the follow-up, with 204 infection-related deaths. Mortality rate (per 1000 patient-years) due to infections was lower in the more recent cohort (4.6; 95% confidence interval, 3.5 to 6.1) compared with the older cohort (9.1; 95% confidence interval, 7.6 to 10.7); the incidence rate ratio of infectious mortality was 0.51 (95% confidence interval, 0.30 to 0.68). The main causes of infectious deaths were common bacterial infections: septicemia in 38% and pulmonary infections in 45%. Viral and fungal infections caused only 2% and 3% of infectious deaths, respectively (such as individual patients with Cytomegalovirus pneumonia, Herpes simplex virus meningoencephalitis, Varicella zoster virus encephalitis, and Pneumocystis jirovecii infection). Similarly, opportunistic bacterial infections rarely caused death; only one death was caused by Listeria monocytogenes , and two were caused by Mycobacterium tuberculosis . Only 23 (11%) of infection-related deaths occurred during the first post-transplant year. Older recipient age, higher plasma creatinine concentration at the end of the first post-transplant year, diabetes as a cause of ESKD, longer pretransplant dialysis duration, acute rejection, low albumin level, and earlier era of transplantation were associated with increased risk of infectious death in multivariable analysis. The risk of death due to infectious causes after kidney

  15. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.

    PubMed

    Webb, Alexis B; Angelo, Nikhil; Huettner, James E; Herzog, Erik D

    2009-09-22

    Circadian rhythms are modeled as reliable and self-sustained oscillations generated by single cells. The mammalian suprachiasmatic nucleus (SCN) keeps near 24-h time in vivo and in vitro, but the identity of the individual cellular pacemakers is unknown. We tested the hypothesis that circadian cycling is intrinsic to a unique class of SCN neurons by measuring firing rate or Period2 gene expression in single neurons. We found that fully isolated SCN neurons can sustain circadian cycling for at least 1 week. Plating SCN neurons at <100 cells/mm(2) eliminated synaptic inputs and revealed circadian neurons that contained arginine vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) or neither. Surprisingly, arrhythmic neurons (nearly 80% of recorded neurons) also expressed these neuropeptides. Furthermore, neurons were observed to lose or gain circadian rhythmicity in these dispersed cell cultures, both spontaneously and in response to forskolin stimulation. In SCN explants treated with tetrodotoxin to block spike-dependent signaling, neurons gained or lost circadian cycling over many days. The rate of PERIOD2 protein accumulation on the previous cycle reliably predicted the spontaneous onset of arrhythmicity. We conclude that individual SCN neurons can generate circadian oscillations; however, there is no evidence for a specialized or anatomically localized class of cell-autonomous pacemakers. Instead, these results indicate that AVP, VIP, and other SCN neurons are intrinsic but unstable circadian oscillators that rely on network interactions to stabilize their otherwise noisy cycling.

  16. BARTERING FOR A COMPATIBLE KIDNEY USING YOUR INCOMPATIBLE, LIVE KIDNEY DONOR: LEGAL AND ETHICAL ISSUES RELATED TO KIDNEY CHAINS.

    PubMed

    Tenenbaum, Evelyn M

    2016-01-01

    Kidney chains are a recent and novel method of increasing the number of available kidneys for transplantation and have the potential to save thousands of lives. However, because they are novel, kidney chains do not fit neatly within existing legal and ethicalframeworks, raising potential barriers to their full implementation. Kidney chains are an extension of paired kidney donation, which began in the United States in 2000. Paired kidney donations allow kidney patients with willing, but incompatible, donors to swap donors to increase the number of donor/recipient pairs and consequently, the number of transplants. More recently, transplant centers have been using non-simultaneous, extended, altruistic donor ("NEAD") kidney chains--which consist of a sequence of donations by incompatible donors--to further expand the number of donations. This Article fully explains paired kidney donation and kidney chains and focuses on whether NEAD chains are more coercive than traditional kidney donation to a family member or close friend and whether NEAD chains violate the National Organ Transplant Act's prohibition on the transfer of organs for valuable consideration.

  17. ASIC1A in neurons is critical for fear-related behaviors.

    PubMed

    Taugher, R J; Lu, Y; Fan, R; Ghobbeh, A; Kreple, C J; Faraci, F M; Wemmie, J A

    2017-11-01

    Acid-sensing ion channels (ASICs) have been implicated in fear-, addiction- and depression-related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron-specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron-specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear-related behaviors including Pavlovian fear conditioning to cue and context, predator odor-evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression-related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear-related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. The Impact of Hepatitis C Virus Co-infection on HIV-Related Kidney Disease: A Systematic Review and Meta-analysis

    PubMed Central

    Malvestutto, Carlos; Coca, Steven G.; Klotman, Paul E.; Parikh, Chirag R.

    2009-01-01

    In the era of antiretroviral therapy, non-AIDS complications such as kidney disease are important contributors to morbidity and mortality. Objective To estimate the impact of hepatitis C co-infection on the risk of kidney disease in HIV patients. Design/ Methods Two investigators identified English-language citations in MEDLINE and Web of Science from 1989 through July 1, 2007. References of selected articles were reviewed. Observational studies and clinical trials of HIV-related kidney disease and antiretroviral nephrotoxicity were eligible if they included at least 50 participants and reported hepatitis C status. Data on study characteristics, population, and kidney disease outcomes were abstracted by two independent reviewers. Results After screening 2,516 articles, twenty-seven studies were eligible and 24 authors confirmed or provided data. Separate meta-analyses were performed for chronic kidney disease outcomes (n=10), proteinuria (n=4), acute renal failure (n=2), and indinavir toxicity (n=5). The pooled incidence of chronic kidney disease was higher in patients with hepatitis C co-infection (6.2% versus 4.0%; RR 1.49, 95% CI 1.08–2.06). In meta-regression, prevalence of black race and the proportion of patients with documented hepatitis C status were independently associated with the risk of chronic kidney disease. The relative risk associated with hepatitis C co-infection was significantly increased for proteinuria (1.15; 95% CI 1.02–1.30) and acute renal failure (1.64; 95% CI 1.21–2.23), with no significant statistical heterogeneity. The relative risk of indinavir toxicity was 1.59 (95% CI 0.99–2.54) with Hepatitis C co-infection. Conclusions Hepatitis C co-infection is associated with a significant increase in the risk of HIV-related kidney disease. PMID:18753863

  19. Nucleus Ambiguus Cholinergic Neurons Activated by Acupuncture: Relation to Enkephalin

    PubMed Central

    Guo, Zhi-Ling; Li, Min; Longhurst, John C.

    2012-01-01

    Acupuncture regulates autonomic function. Our previous studies have shown that electroacupuncture (EA) at the Jianshi–Neiguan acupoints (P5–P6, underlying the median nerve) inhibits central sympathetic outflow and attenuates excitatory cardiovascular reflexes, in part, through an opioid mechanism. It is unknown if EA at these acupoints influences the parasympathetic system. Thus, using c-Fos expression, we examined activation of nucleus ambiguus (NAmb) neurons by EA, their relation to cholinergic (preganglionic parasympathetic) neurons and those containing enkephalin. To enhance detection of cell bodies containing enkephalin, colchicine (90–100 μg/kg) was administered into the subarachnoid space of cats 30 hr prior to EA or sham-operated controls for EA. Following bilateral barodenervation and cervical vagotomy, either EA for 30 min at P5–P6 acupoints or control stimulation (needle placement at P5–P6 without stimulation) was applied. While perikarya containing enkephalin were observed in some medullary nuclei (e.g., râphe), only enkephalin-containing neuronal processes were found in the NAmb. Compared to controls (n=4), more c-Fos immunoreactivity, located principally in close proximity to fibers containing enkephalin was noted in the NAmb of EA-treated cats (n=5; P<0.01). Moreover, neurons double-labeled with c-Fos and choline acetyltransferase in the NAmb were identified in EA-treated, but not the control animals. These data demonstrate for the first time that EA activates preganglionic parasympathetic neurons in the NAmb. Because of their close proximity, these EA-activated neurons likely interact with nerve fibers containing enkephalin. These results suggest that EA at the P5–P6 acupoints has the potential to influence parasympathetic outflow and cardiovascular function, likely through an enkephalinergic mechanism. PMID:22306033

  20. PHYLOGENETIC ANALYSIS OF LEARNING-RELATED NEUROMODULATION IN MOLLUSCAN MECHANOSENSORY NEURONS.

    PubMed

    Wright, William G; Kirschman, David; Rozen, Danny; Maynard, Barbara

    1996-12-01

    In spite of significant advances in our understanding of mechanisms of learning and memory in a variety of organisms, little is known about how such mechanisms evolve. Even mechanisms of simple forms of learning, such as habituation and sensitization, have not been studied phylogenetically. Here we begin an evolutionary analysis of learning-related neuromodulation in species related to the well-studied opisthobranch gastropod, Aplysia californica. In Aplysia, increased spike duration and excitability in mechanosensory neurons contribute to several forms of learning-related changes to defensive withdrawal reflexes. The modulatory transmitter serotonin (5-hydroxytryptamine, or 5-HT), is thought to play a critical role in producing these firing property changes. In the present study, we tested mechanosensory homologs of the tail-withdrawal reflex in species related to Aplysia for 5-HT-mediated increases in spike duration and excitability. Criteria used to identify homologous tail-sensory neurons included position, relative size, resting electrical properties, expression of a sensory neuron-specific protein, neuroanatomy, and receptive field. The four ingroup species studied (Aplysia californica, Dolabella auricularia, Bursatella leachii, and Dolabrifera dolabrifera) belong to two clades (two species each) within the family Aplysiidae. In the first clade (Aplysia/Dolabella), we found that the tail-sensory neurons of A. californica and tail-sensory homologs of a closely related species, D. auricularia, responded to bath-applied serotonin in essentially similar fashion: significant increases in spike duration as well as excitability. In the other clade (Dolabrifera/Bursatella), more distantly related to Aplysia, one species (B. leachii) showed spike broadening and increased excitability. However, the other species (D. dolabrifera) showed neither spike broadening nor increased excitability. The firing properties of tail-sensory homologs of D. dolabrifera were insensitive

  1. Stressors and coping resources of Australian kidney transplant recipients related to medication taking: a qualitative study.

    PubMed

    Low, Jac Kee; Crawford, Kimberley; Manias, Elizabeth; Williams, Allison

    2017-06-01

    To understand the stressors related to life post kidney transplantation, with a focus on medication adherence, and the coping resources people use to deal with these stressors. Although kidney transplantation offers enhanced quality and years of life for patients, the management of a kidney transplant post surgery is a complex process. A descriptive exploratory study. Participants were recruited from five kidney transplant units in Victoria, Australia. From March-May 2014, patients who had either maintained their kidney transplant for ≥8 months or had experienced a kidney graft loss due to medication nonadherence were interviewed. All audio-recordings of interviews were transcribed verbatim and underwent Ritchie and Spencer's framework analysis. Participants consisted of 15 men and 10 women aged 26-72 years old. All identified themes were categorised into: (1) Causes of distress and (2) Coping resources. Post kidney transplantation, causes of distress included the regimented routine necessary for graft maintenance, and the everlasting fear of potential graft rejection, contracting infections and developing cancer. Coping resources used to manage the stressors were first, a shift in perspective about how easy it was to manage a kidney transplant than to be dialysis-dependent and second, receiving external help from fellow patients, family members and health care professionals in addition to using electronic reminders. An individual well-equipped with coping resources is able to deal with stressors better. It is recommended that changes, such as providing regular reminders about the lifestyle benefits of kidney transplantation, creating opportunities for patients to share their experiences and promoting the usage of a reminder alarm to take medications, will reduce the stress of managing a kidney transplant. Using these findings to make informed changes to the usual care of a kidney transplant recipient is likely to result in better patient outcomes. © 2016 John

  2. Postnatal maturation of mouse medullo-spinal cerebrospinal fluid-contacting neurons.

    PubMed

    Orts-Del'Immagine, Adeline; Trouslard, Jérôme; Airault, Coraline; Hugnot, Jean-Philippe; Cordier, Baptiste; Doan, Thierry; Kastner, Anne; Wanaverbecq, Nicolas

    2017-02-20

    The central canal along the spinal cord (SC.) and medulla is characterized by the presence of a specific population of neurons that contacts the cerebrospinal fluid (CSF). These medullo-spinal CSF-contacting neurons (CSF-cNs) are identified by the selective expression of the polycystin kidney disease 2-like 1 ionic channel (PKD2L1 or polycystin-L). In adult, they have been shown to express doublecortin (DCX) and Nkx6.1, two markers of juvenile neurons along with the neuron-specific nuclear protein (NeuN) typically expressed in mature neurons. They were therefore suggested to remain in a rather incomplete maturation state. The aim of this study was to assess whether such juvenile state is stable in postnatal animals or whether CSF-cNs may reach maturity at older stages than neurons in the parenchyma. We show, in the cervical SC. and the brainstem that, in relation to age, CSF-cN density declines and that their cell bodies become more distant from the cc, except in its ventral part. Moreover, in adults (from 1month) by comparison with neonatal mice, we show that CSF-cNs have evolved to a more mature state, as indicated by the increase in the percentage of cells positive for NeuN and of its level of expression. In parallel, CSF-cNs exhibit, in adult, lower DCX immunoreactivity and do not express PSA-NCAM and TUC4, two neurogenic markers. Nevertheless, CSF-cNs still share in adult characteristics of juvenile neurons such as the presence of phospho-CREB and DCX while NeuN expression remained low. This phenotype persists in 12-month-old animals. Thus, despite a pursuit of neuronal maturation during the postnatal period, CSF-cNs retain a durable low differentiated state. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons.

    PubMed

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-02-14

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.

  4. A Study on the Directed Living Non-Related Donor Kidney Transplantation Submitted to the Hospital Transplant Ethics Committee at the National Kidney and Transplant Institute.

    PubMed

    Suguitan, G; Arakama, M-H I; Danguilan, R

    2017-03-01

    In the latter part of 2009, the Department of Health of the Philippines prohibited kidney transplantation with non-related kidney donors. Hence, the National Kidney and Transplant Institute created a Hospital Transplant Ethics Committee. This study describes directed non-related kidney donation at the National Kidney and Transplant Institute. This retrospective study reviewed the profiles of recipients and directed living non-related kidney transplant donors submitted to the Hospital Transplant Ethics Committee. A total 74 recipients and donors were reviewed by the Hospital Transplant Ethics Committee in 2014. Donors initiated the talks about being a donor (75%) to repay the good deeds that were done by the recipient for them or their families; examples of which are: sometime in their lives they needed financial assistance for hospitalization for their relatives and it was the patient who paid the hospital bill; or because they pitied the recipient, whom they found to be a good person, thus they would want to give one of their kidneys. Seventy-four (100%) said that they were not expecting anything in return for this act but wanted to be of help to the recipient. Of these 74 cases, 70 cases (95%) were approved and the others were disapproved. With a Hospital Transplant Ethics Committee in place, directed kidney donation is a valuable tool as an additional source of kidney donor without violating any ethical issues. Copyright © 2016. Published by Elsevier Inc.

  5. Influence of CT-based depth correction of renal scintigraphy in evaluation of living kidney donors on side selection and postoperative renal function: is it necessary to know the relative renal function?

    PubMed

    Weinberger, Sarah; Klarholz-Pevere, Carola; Liefeldt, Lutz; Baeder, Michael; Steckhan, Nico; Friedersdorff, Frank

    2018-03-22

    To analyse the influence of CT-based depth correction in the assessment of split renal function in potential living kidney donors. In 116 consecutive living kidney donors preoperative split renal function was assessed using the CT-based depth correction. Influence on donor side selection and postoperative renal function of the living kidney donors were analyzed. Linear regression analysis was performed to identify predictors of postoperative renal function. A left versus right kidney depth variation of more than 1 cm was found in 40/114 donors (35%). 11 patients (10%) had a difference of more than 5% in relative renal function after depth correction. Kidney depth variation and changes in relative renal function after depth correction would have had influence on side selection in 30 of 114 living kidney donors. CT depth correction did not improve the predictability of postoperative renal function of the living kidney donor. In general, it was not possible to predict the postoperative renal function from preoperative total and relative renal function. In multivariate linear regression analysis, age and BMI were identified as most important predictors for postoperative renal function of the living kidney donors. Our results clearly indicate that concerning the postoperative renal function of living kidney donors, the relative renal function of the donated kidney seems to be less important than other factors. A multimodal assessment with consideration of all available results including kidney size, location of the kidney and split renal function remains necessary.

  6. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    PubMed

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na(+) and K(+) currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism.

  7. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na+ and K+ currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism. PMID:26074810

  8. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  9. SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

    PubMed

    Li, Man; Li, Yong; Weeks, Olivia; Mijatovic, Vladan; Teumer, Alexander; Huffman, Jennifer E; Tromp, Gerard; Fuchsberger, Christian; Gorski, Mathias; Lyytikäinen, Leo-Pekka; Nutile, Teresa; Sedaghat, Sanaz; Sorice, Rossella; Tin, Adrienne; Yang, Qiong; Ahluwalia, Tarunveer S; Arking, Dan E; Bihlmeyer, Nathan A; Böger, Carsten A; Carroll, Robert J; Chasman, Daniel I; Cornelis, Marilyn C; Dehghan, Abbas; Faul, Jessica D; Feitosa, Mary F; Gambaro, Giovanni; Gasparini, Paolo; Giulianini, Franco; Heid, Iris; Huang, Jinyan; Imboden, Medea; Jackson, Anne U; Jeff, Janina; Jhun, Min A; Katz, Ronit; Kifley, Annette; Kilpeläinen, Tuomas O; Kumar, Ashish; Laakso, Markku; Li-Gao, Ruifang; Lohman, Kurt; Lu, Yingchang; Mägi, Reedik; Malerba, Giovanni; Mihailov, Evelin; Mohlke, Karen L; Mook-Kanamori, Dennis O; Robino, Antonietta; Ruderfer, Douglas; Salvi, Erika; Schick, Ursula M; Schulz, Christina-Alexandra; Smith, Albert V; Smith, Jennifer A; Traglia, Michela; Yerges-Armstrong, Laura M; Zhao, Wei; Goodarzi, Mark O; Kraja, Aldi T; Liu, Chunyu; Wessel, Jennifer; Boerwinkle, Eric; Borecki, Ingrid B; Bork-Jensen, Jette; Bottinger, Erwin P; Braga, Daniele; Brandslund, Ivan; Brody, Jennifer A; Campbell, Archie; Carey, David J; Christensen, Cramer; Coresh, Josef; Crook, Errol; Curhan, Gary C; Cusi, Daniele; de Boer, Ian H; de Vries, Aiko P J; Denny, Joshua C; Devuyst, Olivier; Dreisbach, Albert W; Endlich, Karlhans; Esko, Tõnu; Franco, Oscar H; Fulop, Tibor; Gerhard, Glenn S; Glümer, Charlotte; Gottesman, Omri; Grarup, Niels; Gudnason, Vilmundur; Hansen, Torben; Harris, Tamara B; Hayward, Caroline; Hocking, Lynne; Hofman, Albert; Hu, Frank B; Husemoen, Lise Lotte N; Jackson, Rebecca D; Jørgensen, Torben; Jørgensen, Marit E; Kähönen, Mika; Kardia, Sharon L R; König, Wolfgang; Kooperberg, Charles; Kriebel, Jennifer; Launer, Lenore J; Lauritzen, Torsten; Lehtimäki, Terho; Levy, Daniel; Linksted, Pamela; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lupo, Antonio; Meisinger, Christine; Melander, Olle; Metspalu, Andres; Mitchell, Paul; Nauck, Matthias; Nürnberg, Peter; Orho-Melander, Marju; Parsa, Afshin; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Porteous, David; Probst-Hensch, Nicole M; Psaty, Bruce M; Qi, Lu; Raitakari, Olli T; Reiner, Alex P; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Rossouw, Jacques E; Schmidt, Frank; Siscovick, David; Soranzo, Nicole; Strauch, Konstantin; Toniolo, Daniela; Turner, Stephen T; Uitterlinden, André G; Ulivi, Sheila; Velayutham, Dinesh; Völker, Uwe; Völzke, Henry; Waldenberger, Melanie; Wang, Jie Jin; Weir, David R; Witte, Daniel; Kuivaniemi, Helena; Fox, Caroline S; Franceschini, Nora; Goessling, Wolfram; Köttgen, Anna; Chu, Audrey Y

    2017-03-01

    Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium ( n Stage1 : 111,666; n Stage2 : 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea ( PPM1J , EDEM3, ACP1, SPEG, EYA4, CYP1A1 , and ATXN2L ; P Stage1 <3.7×10 -7 ), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 ( P =5.4×10 -8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2 -knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation. Copyright © 2017 by the American Society of Nephrology.

  10. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility.

    PubMed

    Yuskaitis, Christopher J; Jones, Brandon M; Wolfson, Rachel L; Super, Chloe E; Dhamne, Sameer C; Rotenberg, Alexander; Sabatini, David M; Sahin, Mustafa; Poduri, Annapurna

    2018-03-01

    DEPDC5 is a newly identified epilepsy-related gene implicated in focal epilepsy, brain malformations, and Sudden Unexplained Death in Epilepsy (SUDEP). In vitro, DEPDC5 negatively regulates amino acid sensing by the mTOR complex 1 (mTORC1) pathway, but the role of DEPDC5 in neurodevelopment and epilepsy has not been described. No animal model of DEPDC5-related epilepsy has recapitulated the neurological phenotypes seen in patients, and germline knockout rodent models are embryonic lethal. Here, we establish a neuron-specific Depdc5 conditional knockout mouse by cre-recombination under the Synapsin1 promotor. Depdc5 flox/flox -Syn1 Cre (Depdc5cc+) mice survive to adulthood with a progressive neurologic phenotype that includes motor abnormalities (i.e., hind limb clasping) and reduced survival compared to littermate control mice. Depdc5cc+ mice have larger brains with increased cortical neuron size and dysplastic neurons throughout the cortex, comparable to the abnormal neurons seen in human focal cortical dysplasia specimens. Depdc5 results in constitutive mTORC1 hyperactivation exclusively in neurons as measured by the increased phosphorylation of the downstream ribosomal protein S6. Despite a lack of increased mTORC1 signaling within astrocytes, Depdc5cc+ brains show reactive astrogliosis. We observed two Depdc5cc+ mice to have spontaneous seizures, including a terminal seizure. We demonstrate that as a group Depdc5cc+ mice have lowered seizure thresholds, as evidenced by decreased latency to seizures after chemoconvulsant injection and increased mortality from pentylenetetrazole-induced seizures. In summary, our neuron-specific Depdc5 knockout mouse model recapitulates clinical, pathological, and biochemical features of human DEPDC5-related epilepsy and brain malformations. We thereby present an important model in which to study targeted therapeutic strategies for DEPDC5-related conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity

    PubMed Central

    Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2015-01-01

    Background Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. Results Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. Conclusion Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously. PMID:26474076

  12. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons

    PubMed Central

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-01-01

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation. PMID:28195208

  13. Respiratory-related activity in hypoglossal neurons across sleep-waking states in cats.

    PubMed

    Richard, C A; Harper, R M

    1991-02-22

    Activity of behaviorally identified neurons in the hypoglossal nuclei supplying the genioglossal muscles was assessed in intact, unanesthetized cats across sleep-wake states. Nineteen of 37 recorded cells discharged on a breath-by-breath or tonic basis with the respiratory cycle in at least one state. Most respiratory-related cells discharged more slowly during quiet sleep, whereas rates during rapid eye movement sleep were similar to those of waking.

  14. Predation risk modifies behaviour by shaping the response of identified brain neurons.

    PubMed

    Magani, Fiorella; Luppi, Tomas; Nuñez, Jesus; Tomsic, Daniel

    2016-04-15

    Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs ITALIC! Neohelice granulatafrom two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome. © 2016. Published by The Company of Biologists Ltd.

  15. Age-related Changes in Lateral Entorhinal and CA3 Neuron Allocation Predict Poor Performance on Object Discrimination

    PubMed Central

    Maurer, Andrew P.; Johnson, Sarah A.; Hernandez, Abbi R.; Reasor, Jordan; Cossio, Daniela M.; Fertal, Kaeli E.; Mizell, Jack M.; Lubke, Katelyn N.; Clark, Benjamin J.; Burke, Sara N.

    2017-01-01

    Age-related memory deficits correlate with dysfunction in the CA3 subregion of the hippocampus, which includes both hyperactivity and overly rigid activity patterns. While changes in intrinsic membrane currents and interneuron alterations are involved in this process, it is not known whether alterations in afferent input to CA3 also contribute. Neurons in layer II of the lateral entorhinal cortex (LEC) project directly to CA3 through the perforant path, but no data are available regarding the effects of advanced age on LEC activity and whether these activity patterns update in response to environmental change. Furthermore, it is not known the extent to which age-related deficits in sensory discrimination relate to the inability of aged CA3 neurons to update in response to new environments. Young and aged rats were pre-characterized on a LEGO© object discrimination task, comparable to behavioral tests in humans in which CA3 hyperactivity has been linked to impairments. The cellular compartment analysis of temporal activity with fluorescence in situ hybridization for the immediate-early gene Arc was then used to identify the principal cell populations that were active during two distinct epochs of random foraging in different environments. This approach enabled the extent to which rats could discriminate two similar objects to be related to the ability of CA3 neurons to update across different environments. In both young and aged rats, there were animals that performed poorly on the LEGO object discrimination task. In the aged rats only, however, the poor performers had a higher percent of CA3 neurons that were active during random foraging in a novel environment, but this is not related to the ability of CA3 neurons to remap when the environment changed. Afferent neurons to CA3 in LEC, as identified with the retrograde tracer choleratoxin B (CTB), also showed a higher percentage of cells that were positive for Arc mRNA in aged poor performing rats. This suggests

  16. Local television news reporting of kidney disease.

    PubMed

    Jaffery, Jonathan B; Jacobson, Lynn M; Goldstein, Kenneth M; Pribble, James M

    2006-12-01

    Local television is the primary news source for the majority of Americans. This study aims to describe how local news reports on kidney disease. Using our searchable database of health-related late local news segments from 2002, we identified stories with the key words kidney, hypertension, blood pressure, or diabetes. This database is a representative sample of the late local news on 122 stations in the 50 largest US media markets, comprising 60% of the population. The content of each identified story was reviewed to determine whether it mentioned: (1) chronic kidney disease (CKD), (2) screening for kidney disease, or (3) kidney disease as a potential complication (for blood pressure- or diabetes-related stories). Only 2 of 1,799 database news stories (0.11%) included "kidney" as a summary key word; neither referred to CKD, screening, or complications of other diseases. Of 19 stories about hypertension or blood pressure (1.06% of all stories) and the 14 stories about diabetes (0.78% of all stories), none mentioned these criteria. Despite efforts to increase public awareness of and screening for CKD, local television news (the most important news source for a majority of Americans) did little to help achieve these goals. Further work will be needed to confirm whether this paucity of coverage varies over time and determine why so little attention is given to CKD. Educating physicians and public relations personnel who advocate for kidney disease about journalists' needs may be an important step to help advance public awareness of CKD.

  17. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons.

    PubMed

    Ali, Yousuf O; Bradley, Gillian; Lu, Hui-Chen

    2017-03-07

    Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer's, Huntington's, Parkinson's diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.

  18. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons

    PubMed Central

    Ali, Yousuf O.; Bradley, Gillian; Lu, Hui-Chen

    2017-01-01

    Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons. PMID:28266613

  19. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus.

    PubMed

    Suntsova, Natalia; Guzman-Marin, Ruben; Kumar, Sunil; Alam, Md Noor; Szymusiak, Ronald; McGinty, Dennis

    2007-02-14

    The perifornical-lateral hypothalamic area (PF/LH) contains neuronal groups playing an important role in control of waking and sleep. Among the brain regions that regulate behavioral states, one of the strongest sources of projections to the PF/LH is the median preoptic nucleus (MnPN) containing a sleep-active neuronal population. To evaluate the role of MnPN afferents in the control of PF/LH neuronal activity, we studied the responses of PF/LH cells to electrical stimulation or local chemical manipulation of the MnPN in freely moving rats. Single-pulse electrical stimulation evoked responses in 79% of recorded PF/LH neurons. No cells were activated antidromically. Direct and indirect transsynaptic effects depended on sleep-wake discharge pattern of PF/LH cells. The majority of arousal-related neurons, that is, cells discharging at maximal rates during active waking (AW) or during AW and rapid eye movement (REM) sleep, exhibited exclusively or initially inhibitory responses to stimulation. Sleep-related neurons, the cells with elevated discharge during non-REM and REM sleep or selectively active in REM sleep, exhibited exclusively or initially excitatory responses. Activation of the MnPN via microdialytic application of L-glutamate or bicuculline resulted in reduced discharge of arousal-related and in excitation of sleep-related PF/LH neurons. Deactivation of the MnPN with muscimol caused opposite effects. The results indicate that the MnPN contains subset(s) of neurons, which exert inhibitory control over arousal-related and excitatory control over sleep-related PF/LH neurons. We hypothesize that MnPN sleep-active neuronal group has both inhibitory and excitatory outputs that participate in the inhibitory control of arousal-promoting PF/LH mechanisms.

  20. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  1. Kidney disease and obesity: epidemiology, mechanisms and treatment.

    PubMed

    Câmara, Niels Olsen Saraiva; Iseki, Kunitoshi; Kramer, Holly; Liu, Zhi-Hong; Sharma, Kumar

    2017-03-01

    The theme of World Kidney Day 2017 is 'kidney disease and obesity: healthy lifestyle for healthy kidneys'. To mark this event, Nature Reviews Nephrology invited five leading researchers to describe changes in the epidemiology of obesity-related kidney disease, advances in current understanding of the mechanisms and current approaches to the management of affected patients. The researchers also highlight new advances that could lead to the development of novel treatments and identify areas in which further basic and clinical studies are needed.

  2. Simple ectopic kidney in three dogs.

    PubMed

    Choi, Jiyoung; Lee, Heechun; Lee, Youngwon; Choi, Hojung

    2012-10-01

    Simple ectopic kidney was diagnosed in three dogs by means of radiography and ultrasonography. A 2-year-old castrated male Schnauzer, a 13-year-old female Schnauzer and a 9-year-old male Jindo were referred with vomiting, hematuria and ocular discharge, respectively. In all three dogs, oval-shaped masses with soft tissue density were observed in the mid to caudal abdomen bilaterally or unilaterally, and kidney silhouettes were not identified at the proper anatomic places on abdominal radiographs. Ultrasonography confirmed the masses were malpositioned kidney. The ectopic kidneys had relatively small size, irregular shape and short ureter but showed normal function on excretory urography.

  3. PIRCHE-II Is Related to Graft Failure after Kidney Transplantation

    PubMed Central

    Geneugelijk, Kirsten; Niemann, Matthias; Drylewicz, Julia; van Zuilen, Arjan D.; Joosten, Irma; Allebes, Wil A.; van der Meer, Arnold; Hilbrands, Luuk B.; Baas, Marije C.; Hack, C. Erik; van Reekum, Franka E.; Verhaar, Marianne C.; Kamburova, Elena G.; Bots, Michiel L.; Seelen, Marc A. J.; Sanders, Jan Stephan; Hepkema, Bouke G.; Lambeck, Annechien J.; Bungener, Laura B.; Roozendaal, Caroline; Tilanus, Marcel G. J.; Vanderlocht, Joris; Voorter, Christien E.; Wieten, Lotte; van Duijnhoven, Elly M.; Gelens, Mariëlle; Christiaans, Maarten H. L.; van Ittersum, Frans J.; Nurmohamed, Azam; Lardy, Junior N. M.; Swelsen, Wendy; van der Pant, Karlijn A.; van der Weerd, Neelke C.; ten Berge, Ineke J. M.; Bemelman, Fréderike J.; Hoitsma, Andries; van der Boog, Paul J. M.; de Fijter, Johan W.; Betjes, Michiel G. H.; Heidt, Sebastiaan; Roelen, Dave L.; Claas, Frans H.; Otten, Henny G.; Spierings, Eric

    2018-01-01

    Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor–recipient couples that were transplanted between 1995 and 2005. For these donors–recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04–1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10–1.34, p < 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival. PMID:29556227

  4. MUSIC-Expected maximization gaussian mixture methodology for clustering and detection of task-related neuronal firing rates.

    PubMed

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A

    2017-01-15

    Researchers often rely on simple methods to identify involvement of neurons in a particular motor task. The historical approach has been to inspect large groups of neurons and subjectively separate neurons into groups based on the expertise of the investigator. In cases where neuron populations are small it is reasonable to inspect these neuronal recordings and their firing rates carefully to avoid data omissions. In this paper, a new methodology is presented for automatic objective classification of neurons recorded in association with behavioral tasks into groups. By identifying characteristics of neurons in a particular group, the investigator can then identify functional classes of neurons based on their relationship to the task. The methodology is based on integration of a multiple signal classification (MUSIC) algorithm to extract relevant features from the firing rate and an expectation-maximization Gaussian mixture algorithm (EM-GMM) to cluster the extracted features. The methodology is capable of identifying and clustering similar firing rate profiles automatically based on specific signal features. An empirical wavelet transform (EWT) was used to validate the features found in the MUSIC pseudospectrum and the resulting signal features captured by the methodology. Additionally, this methodology was used to inspect behavioral elements of neurons to physiologically validate the model. This methodology was tested using a set of data collected from awake behaving non-human primates. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression.

    PubMed

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F; Buss, Eric W; Richter, Hannah; Oh, M Matthew; Nicholson, Daniel A; Disterhoft, John F

    2015-09-23

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29-32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K(+) channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. Significance statement: Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  6. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression

    PubMed Central

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew

    2015-01-01

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  7. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    PubMed Central

    Damico, J.P.; Ervolino, E.; Torres, K.R.; Batagello, D.S.; Cruz-Rizzolo, R.J.; Casatti, C.A.; Bauer, J.A.

    2012-01-01

    The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation. PMID:23027347

  8. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhir

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day formore » 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.« less

  9. [Kidney allotransplantation from alive related donor in patients with Alport syndrome].

    PubMed

    Goriaĭnov, V A; Kaabak, M M; Babenko, N N; Morozova, M M; Aganesov, A P; Panin, V V; Platova, E N; Dymova, O V

    2016-01-01

    To evaluate the results of kidney transplantation from alive related donor in patients with Alport syndrome and to compare with those in patients with kidney hypoplasia. We have analyzed 8 and 27 medical records of patients with Alport syndrome and kidney hypoplasia respectively. Following parameters were used - Kaplan-Meier survival analysis, Wilcox overall risk, percentage of transplants loss and mortality (Fisher's exact test calculation). It is concluded that percentage of transplants loss and mortality rate as well as overall survival and risk were similar in both groups. Despite risk of anti-GBM nephritis development in patients with Alport syndrome results are comparable with those after transplatation for chronic renal failure caused by other reasons.

  10. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations.

    PubMed

    Sanna-Cherchi, Simone; Khan, Kamal; Westland, Rik; Krithivasan, Priya; Fievet, Lorraine; Rasouly, Hila Milo; Ionita-Laza, Iuliana; Capone, Valentina P; Fasel, David A; Kiryluk, Krzysztof; Kamalakaran, Sitharthan; Bodria, Monica; Otto, Edgar A; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Vukojevic, Katarina; Pediaditakis, Igor; Makar, Gabriel S; Mitrotti, Adele; Verbitsky, Miguel; Martino, Jeremiah; Liu, Qingxue; Na, Young-Ji; Goj, Vinicio; Ardissino, Gianluigi; Gigante, Maddalena; Gesualdo, Loreto; Janezcko, Magdalena; Zaniew, Marcin; Mendelsohn, Cathy Lee; Shril, Shirlee; Hildebrandt, Friedhelm; van Wijk, Joanna A E; Arapovic, Adela; Saraga, Marijan; Allegri, Landino; Izzi, Claudia; Scolari, Francesco; Tasic, Velibor; Ghiggeri, Gian Marco; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Mane, Shrikant; Goldstein, David B; Lifton, Richard P; Katsanis, Nicholas; Davis, Erica E; Gharavi, Ali G

    2017-11-02

    Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10 -5 for novel LOF, increased to p = 4.1 × 10 -6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10 -7 ). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations

    PubMed Central

    2017-01-01

    Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons. SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine

  12. Kidney stones: Composition, frequency and relation to metabolic diagnosis.

    PubMed

    Spivacow, Francisco R; Del Valle, Elisa E; Lores, Ernesto; Rey, Paula G

    Nephrolithiasis is one of the most frequent urologic diseases. The aim of this paper is to study the composition and frequency of 8854 patient kidney stones and in a subset of them their metabolic risk factors to be related to their type of calculi. Physicochemical and crystallographic methods were used to assess kidney stone composition. In a subset of 715 patients, we performed an ambulatory metabolic protocol with diagnostic purposes. From the total sample 79% of stones were made of calcium salts (oxalate and phosphate), followed by uric acid stones in 16.5%, calcium salts and uric acid in 2%, other salts in 1.9% and cystine in 0.6%. Male to female ratio was almost three times higher in calcium salts and other types of stones, reaching a marked male predominance in uric acid stones, M/F 18.8 /1.0. The major risk factors for calcium stones are idiopathic hypercalciuria, followed by unduly acidic urine pH and hyperuricosuria. In uric acid stones unduly acidic urine pH and less commonly hyperuricosuria are the most frequent biochemical diagnosis. Our results show that analysis of kidney stones composition and the corresponding metabolic diagnosis may provide a scientific basis for the best management and prevention of kidney stone formation, as well as it may help us to study the mechanisms of urine stone formation.

  13. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    NASA Technical Reports Server (NTRS)

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  14. Immunocytochemistry and fluorescence imaging efficiently identify individual neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures.

    PubMed

    Tsunematsu, Hiroto; Uyeda, Akiko; Yamamoto, Nobuhiko; Sugo, Noriyuki

    2017-08-01

    CRISPR/Cas9 system is a powerful method to investigate the role of genes by introducing a mutation selectively and efficiently to specific genome positions in cell and animal lines. However, in primary neuron cultures, this method is affected by the issue that the effectiveness of CRISPR/Cas9 is different in each neuron. Here, we report an easy, quick and reliable method to identify mutants induced by the CRISPR/Cas9 system at a single neuron level, using immunocytochemistry (ICC) and fluorescence imaging. Dissociated cortical cells were transfected with CRISPR/Cas9 plasmids targeting the transcription factor cAMP-response element binding protein (CREB). Fluorescence ICC with CREB antibody and quantitative analysis of fluorescence intensity demonstrated that CREB expression disappeared in a fraction of the transfected neurons. The downstream FOS expression was also decreased in accordance with suppressed CREB expression. Moreover, dendritic arborization was decreased in the transfected neurons which lacked CREB immunoreactivity. Detection of protein expression is efficient to identify individual postmitotic neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures. The present method composed of CRISPR/Cas9 system, ICC and fluorescence imaging is applicable to study the function of various genes at a single-neuron level.

  15. Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion

    PubMed Central

    Otopalik, Adriane G; Goeritz, Marie L; Sutton, Alexander C; Brookings, Ted; Guerini, Cosmo; Marder, Eve

    2017-01-01

    Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring. DOI: http://dx.doi.org/10.7554/eLife.22352.001 PMID:28177286

  16. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus).

    PubMed

    Yang, Lihua; Zha, Jinmiao; Li, Wei; Li, Zhaoli; Wang, Zijian

    2010-05-05

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333microg/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na(+),K(+)-ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10microg/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10microg/l. The expressions of Na(+),K(+)-ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100microg/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  17. Outcome Measures Used to Report Kidney Function in Studies Investigating Surgical Management of Kidney Tumours: A Systematic Review.

    PubMed

    Ellis, Robert J; Cho, Yeoungjee; Del Vecchio, Sharon J; McStea, Megan; Morais, Christudas; Coombes, Jeff S; Wood, Simon T; Gobe, Glenda C; Francis, Ross S

    2018-05-01

    Most practice decisions relevant to preserving kidney function in patients managed surgically for kidney tumours are driven by observational studies. A wide range of outcome measures are used in these studies, which reduces comparability and increases the risk of reporting bias. To comprehensively and succinctly describe the outcomes used to evaluate kidney function in studies evaluating surgical management of kidney tumours. Electronic search of the PubMed database was conducted to identify studies with at least one measure of kidney function in patients managed surgically for kidney tumours, published between January 2000 and September 2017. Abstracts were initially screened for eligibility. Full texts of articles were then evaluated in more detail for inclusion. A narrative synthesis of the evidence was conducted. A total of 312 studies, involving 127905 participants, were included in this review. Most were retrospective (n=274) studies and conducted in a single centre (n=264). Overall, 78 unique outcome measures were identified, which were grouped into six outcome categories. Absolute postoperative kidney function (n=187), relative kidney function (n=181), and postoperative chronic kidney disease (n=131) were most frequently reported. Kidney function was predominantly quantified using estimated glomerular filtration rate or creatinine clearance (n=255), most using the modification of diet in renal disease equation (n=182). Only 70 studies provided rationale for specific outcome measures used. There is significant variability in the reporting and quantification of kidney function in studies evaluating patients managed surgically for kidney tumours. A standardised approach to measuring and reporting kidney function will increase the effectiveness of outcomes reported and improve relevance of research findings within a clinical context. Although we know that the removal of a kidney can reduce kidney function, clinical significance of various approaches is a matter

  18. The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0364 TITLE: The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease...SUBTITLE The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease 5a. CONTRACT NUMBER 5b. GRANT NUMBER...synthetic multifunctional compounds as therapeutics for polycystic kidney disease (PKD). In collaboration with the Essigmann lab at MIT, we have

  19. Interviews of living kidney donors to assess donation-related concerns and information-gathering practices.

    PubMed

    Ruck, Jessica M; Van Pilsum Rasmussen, Sarah E; Henderson, Macey L; Massie, Allan B; Segev, Dorry L

    2018-06-08

    Efforts are underway to improve living kidney donor (LKD) education, but current LKD concerns and information-gathering preferences have not been ascertained to inform evidence-based resource development. As a result, prior studies have found that donors desire information that is not included in current informed consent and/or educational materials. We conducted semi-structured interviews with 50 LKDs who donated at our center to assess (1) concerns about donation that they either had personally before or after donation or heard from family members or friends, (2) information that they had desired before donation, and (3) where they sought information about donation. We used thematic analysis of verbatim interview transcriptions to identify donation-related concerns. We compared the demographic characteristics of participants reporting specific concerns using Fisher's exact test. We identified 19 unique concerns that participants had or heard about living kidney donation. 20% of participants reported having had no pre-donation concerns; 38% reported no post-donation concerns. The most common concern pre-donation was future kidney failure (22%), post-donation was the recovery process (24%), and from family was endangering their family unit (16%). 44% of participants reported being less concerned than family. 26% of participants wished they had had additional information prior to donating, including practical advice for recovery (10%) and information about specific complications (14%). Caucasian participants were more likely to hear at least one concern from family (76% vs. 33%, p = 0.02). The most commonly consulted educational resources were health care providers (100%) and websites (79% of donors since 2000). 26% of participants had had contact with other donors; an additional 20% desired contact with other LKDs. Potential donors not only have personal donation-related concerns but frequently hear donation-related concerns from family members and friends

  20. Chronic Kidney Disease in Kidney Stone Formers

    PubMed Central

    Krambeck, Amy E.; Lieske, John C.

    2011-01-01

    Summary Recent population studies have found symptomatic kidney stone formers to be at increased risk for chronic kidney disease (CKD). Although kidney stones are not commonly identified as the primary cause of ESRD, they still may be important contributing factors. Paradoxically, CKD can be protective against forming kidney stones because of the substantial reduction in urine calcium excretion. Among stone formers, those with rare hereditary diseases (cystinuria, primary hyperoxaluria, Dent disease, and 2,8 dihydroxyadenine stones), recurrent urinary tract infections, struvite stones, hypertension, and diabetes seem to be at highest risk for CKD. The primary mechanism for CKD from kidney stones is usually attributed to an obstructive uropathy or pyelonephritis, but crystal plugs at the ducts of Bellini and parenchymal injury from shockwave lithotripsy may also contribute. The historical shift to less invasive surgical management of kidney stones has likely had a beneficial impact on the risk for CKD. Among potential kidney donors, past symptomatic kidney stones but not radiographic stones found on computed tomography scans were associated with albuminuria. Kidney stones detected by ultrasound screening have also been associated with CKD in the general population. Further studies that better classify CKD, better characterize stone formers, more thoroughly address potential confounding by comorbidities, and have active instead of passive follow-up to avoid detection bias are needed. PMID:21784825

  1. Attention-related changes in correlated neuronal activity arise from normalization mechanisms

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John H.R.

    2017-01-01

    Attention is believed to enhance perception by altering the correlations between pairs of neurons. How attention changes neuronal correlations is unknown. Using multi-electrodes in primate visual cortex, we measured spike-count correlations when single or multiple stimuli were presented, and stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, non-preferred, stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly-tuned neurons, but decreased spike-count correlations between pairs of oppositely-tuned neurons. These changes are explained by a stochastic normalization model containing populations of oppositely-tuned, mutually-suppressive neurons. Importantly, this model also explains why attention decreased (attend preferred stimulus) or increased (attend non-preferred stimulus) correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms. PMID:28553943

  2. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  3. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability

    PubMed Central

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-01-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates. PMID:28401925

  4. Antibody-Mediated Rejection of the Kidney after Simultaneous Pancreas-Kidney Transplantation

    PubMed Central

    Pascual, Julio; Samaniego, Milagros D.; Torrealba, José R.; Odorico, Jon S.; Djamali, Arjang; Becker, Yolanda T.; Voss, Barbara; Leverson, Glen E.; Knechtle, Stuart J.; Sollinger, Hans W.; Pirsch, John D.

    2008-01-01

    The prevalence, risk factors, and outcome of antibody-mediated rejection (AMR) of the kidney after simultaneous pancreas-kidney transplantation are unknown. In 136 simultaneous pancreas-kidney recipients who were followed for an average of 3.1 yr, 21 episodes of AMR of the kidney allograft were identified. Eight episodes occurred early (≤90 d) after transplantation, and 13 occurred later. Histologic evidence of concomitant acute cellular rejection was noted in 12 cases; the other nine had evidence only of humoral rejection. In 13 cases, clinical rejection of the pancreas was diagnosed simultaneously, and two of these were biopsy proven and were positive for C4d immunostaining. Multivariate analysis identified only one significant risk factor: Female patients were three times more likely to experience AMR. Nearly all early episodes resolved with treatment and did not predict graft loss, but multivariate Cox models revealed that late AMR episodes more than tripled the risk for kidney and pancreas graft loss; therefore, new strategies are needed to prevent and to treat late AMR in simultaneous pancreas-kidney transplant recipients. PMID:18235091

  5. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  6. Attitudes toward kidney donation.

    PubMed Central

    Aghanwa, H. S.; Akinsola, A.; Akinola, D. O.; Makanjuola, R. O. A.

    2003-01-01

    The Renal Unit of Obafemi Awolowo University Teaching Hospital Ile-Ife in Southwest Nigeria intends commencing a kidney transplantation program. This cross-sectional study aimed at examining the willingness of Nigerians to be living-related kidney donors. Three hundred and sixteen Nigerians (96 first-degree relatives of end-stage renal disease patients, 69 rural dwellers and 151 health workers) were interviewed regarding their willingness to donate kidneys using an interview schedule designed to elicit socio-demographic information, knowledge about kidney transplantation and attitude toward kidney donation. Sixty-two percent of health workers, 52.1% of the patients' relatives and 27.1% of rural dwellers expressed willingness to donate. Higher proportions of health workers and patients' relatives--compared with the rural dwellers--were willing to donate a kidney to their children, full-siblings and parents (P<0.05). The level of awareness about kidney transplantation was highest among health workers and least among rural dwellers (P<0.001). Altruism was the primary motivation for those willing to donate a kidney. The most important reason for refusal to donate was fear of adverse health consequences. Among the rural dwellers, never-married persons were more willing than the married to donate (P<0.05). Programs aimed at increasing awareness about the safety of kidney donation, reducing adverse beliefs about kidney donation, and encouraging altruistic tendencies will increase the availability of kidney donors. PMID:12934871

  7. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis

    PubMed Central

    Davisson, Muriel T.; Cook, Susan A.; Akeson, Ellen C.; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather

    2015-01-01

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. PMID:25834070

  8. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons

    PubMed Central

    2012-01-01

    Background A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. Results Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. Conclusions Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD. PMID:22413862

  9. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons.

    PubMed

    Lejeune, François-Xavier; Mesrob, Lilia; Parmentier, Frédéric; Bicep, Cedric; Vazquez-Manrique, Rafael P; Parker, J Alex; Vert, Jean-Philippe; Tourette, Cendrine; Neri, Christian

    2012-03-13

    A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD. © 2012 Lejeune et al; licensee BioMed Central Ltd.

  10. USE OF qRTPCR TO IDENTIFY POTENTIAL BIOMARKERS OF BROMATE EXPOSURE IN F344 MALE RAT KIDNEYS

    EPA Science Inventory

    Potassium bromate (KBrO3) is a drinking water disinfection by-product that is nephrotoxic and carcinogenic. To identify potential biomarkers of carcinogenicity, male F344 rats were chronically exposed to a carcinogenic dose (400mg/l) of KBrO3 in their drinking water. Kidneys were...

  11. Barriers to kidney transplants in Indonesia: a literature review.

    PubMed

    Bennett, P N; Hany, A

    2009-03-01

    People living with chronic kidney disease will require renal dialysis or a kidney transplant to maintain life. Although Indonesia has a developing healthcare industry, Indonesia's kidney transplant rates are lower than comparable nations. To explore the healthcare literature to identify barriers to kidney transplants in particular in relation to Indonesia. Healthcare databases were searched (CINAHL, Medline, EBSCOhostEJS, Blackwell Synergy, Web of Science, PubMed, Google Scholar and Proquest 5000) using the search terms: transplant, kidney disease, renal, dialysis, haemodialysis, Indonesia and nursing. The search was limited to English and Indonesian language data sources from 1997 to 2007. Reference lists of salient academic articles were hand searched. The results of our search identified six articles that met our criteria. Costs are the major barrier to kidney transplant in Indonesia, followed by cultural beliefs, perception of the law, lack of information and lack of infrastructure. In addition, kidney disease prevention strategies are required. There are many complex socio-economic, geographical, legal, cultural and religious factors that contribute to low kidney transplant rates in Indonesia. Although an increase in transplantation rates will require strategies from various agencies, healthcare professionals, including nurses, can play a role in overcoming some barriers. Community education programmes, improving their own education levels and by increasing empowerment in nursing we may contribute to improved kidney transplant rates in Indonesia.

  12. History of kidney stones and risk of chronic kidney disease: a meta-analysis.

    PubMed

    Shang, Weifeng; Li, Lixi; Ren, Yali; Ge, Qiangqiang; Ku, Ming; Ge, Shuwang; Xu, Gang

    2017-01-01

    Although the relationship between a history of kidney stones and chronic kidney disease (CKD) has been explored in many studies, it is still far from being well understood. Thus, we conducted a meta-analysis of studies comparing rates of CKD in patients with a history of kidney stones. PubMed, EMBASE, and the reference lists of relevant articles were searched to identify observational studies related to the topic. A random-effects model was used to combine the study-specific risk estimates. We explored the potential heterogeneity by subgroup analyses and meta-regression analyses. Seven studies were included in this meta-analysis. Pooled results suggested that a history of kidney stones was associated with an increased adjusted risk estimate for CKD [risk ratio (RR), 1.47 95% confidence interval (CI) [1.23-1.76])], with significant heterogeneity among these studies ( I 2  = 93.6%, P  < 0.001). The observed positive association was observed in most of the subgroup analyses, whereas the association was not significant among studies from Asian countries, the mean age ≥50 years and male patients. A history of kidney stones is associated with increased risk of CKD. Future investigations are encouraged to reveal the underlying mechanisms in the connection between kidney stones and CKD, which may point the way to more effective preventive and therapeutic measures.

  13. Effects of glutamate, substance P and eledoisin-related peptide on solitary tract neurones involved in respiration and respiratory reflexes.

    PubMed

    Henry, J L; Sessle, B J

    1985-03-01

    Recent studies have implicated glutamate and substance P in synaptic transmission in the nuclei tractus solitarii and in central regulation of cardiorespiratory functions. Consequently, in chloralose-anaesthetized cats that were artificially ventilated, we examined the effects of the microiontophoretic application of both chemicals (and the substance P homologue, eledoisin-related peptide) on single neurones of the nuclei tractus solitarii implicated in the control of respiration and respiratory tract reflexes. These neurones were functionally identified as either respiratory neurones or presumed reflex interneurones, and showed functional properties comparable to those previously documented for each of these two types. The iontophoretic application of glutamate produced an excitation of rapid onset in 23 or 25 reflex interneurones tested, but the respiratory neurones showed a differential sensitivity: one type (n = 32) was "glutamate-sensitive" and showed rapid excitation with glutamate applications of less than 30 nA, the other type of respiratory neurone (n = 26) was termed "glutamate-insensitive" since it either showed excitation only with applications of 60 nA or more or showed no response even with currents up to 94 nA. Each neurone studied was clearly of one type or the other. Glutamate could increase the number of spikes per rhythmic burst and the burst duration of respiratory neurones, it facilitated evoked activity in the reflex interneurones and in those respiratory neurones having a superior laryngeal nerve or vagus nerve afferent input, and the magnitude of the excitatory responses to glutamate varied directly with the amount of ejecting current. Substance P and eledoisin-related peptide also had excitatory effects on respiratory neurones and reflex interneurones, but compared with glutamate-induced effects the excitation was slower in onset and more prolonged in after-discharge. Both rhythmic and evoked activity could be facilitated, and the magnitude

  14. Dispersion-relation phase spectroscopy of neuron transport

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha; Leigh, Joseph Robert; Sobh, Nahil; Levine, Alex; Popescu, Gabreil

    2012-02-01

    Molecular motors move materials along prescribed biopolymer tracks. This sort of active transport is required to rapidly move products over large distances within the cell, where passive diffusion is too slow. We examine intracellular traffic patterns using a new application of spatial light interference microscopy (SLIM) and measure the dispersion relation, i.e. decay rate vs. spatial mode, associated with mass transport in live cells. This approach applies equally well to both discrete and continuous mass distributions without the need for particle tracking. From the quadratic experimental curve specific to diffusion, we extracted the diffusion coefficient as the only fitting parameter. The linear portion of the dispersion relation reveals the deterministic component of the intracellular transport. Our data show a universal behavior where the intracellular transport is diffusive at small scales and deterministic at large scales. We further applied this method to studying transport in neurons and are able to use SLIM to map the changes in index of refraction across the neuron and its extended processes. We found that in dendrites and axons, the transport is mostly active, i.e., diffusion is subdominant.

  15. Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary Visual Cortex of Cre-Transgenic Mice

    PubMed Central

    Zariwala, Hatim A.; Madisen, Linda; Ahrens, Kurt F.; Bernard, Amy; Lein, Edward S.; Jones, Allan R.; Zeng, Hongkui

    2011-01-01

    The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies. PMID:21283555

  16. A Bioinformatics Approach Identifies Signal Transducer and Activator of Transcription-3 and Checkpoint Kinase 1 as Upstream Regulators of Kidney Injury Molecule-1 after Kidney Injury

    PubMed Central

    Ajay, Amrendra Kumar; Kim, Tae-Min; Ramirez-Gonzalez, Victoria; Park, Peter J.; Frank, David A.

    2014-01-01

    Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention. PMID:24158981

  17. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis.

    PubMed

    Davisson, Muriel T; Cook, Susan A; Akeson, Ellen C; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather; Murray, Stephen A

    2015-06-15

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. Copyright © 2015 the American Physiological Society.

  18. Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum

    PubMed Central

    Sommer, Marc A.

    2013-01-01

    The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182

  19. Diabetic kidney disease.

    PubMed

    Thomas, Merlin C; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A M; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E

    2015-07-30

    The kidney is arguably the most important target of microvascular damage in diabetes. A substantial proportion of individuals with diabetes will develop kidney disease owing to their disease and/or other co-morbidity, including hypertension and ageing-related nephron loss. The presence and severity of chronic kidney disease (CKD) identify individuals who are at increased risk of adverse health outcomes and premature mortality. Consequently, preventing and managing CKD in patients with diabetes is now a key aim of their overall management. Intensive management of patients with diabetes includes controlling blood glucose levels and blood pressure as well as blockade of the renin-angiotensin-aldosterone system; these approaches will reduce the incidence of diabetic kidney disease and slow its progression. Indeed, the major decline in the incidence of diabetic kidney disease (DKD) over the past 30 years and improved patient prognosis are largely attributable to improved diabetes care. However, there remains an unmet need for innovative treatment strategies to prevent, arrest, treat and reverse DKD. In this Primer, we summarize what is now known about the molecular pathogenesis of CKD in patients with diabetes and the key pathways and targets implicated in its progression. In addition, we discuss the current evidence for the prevention and management of DKD as well as the many controversies. Finally, we explore the opportunities to develop new interventions through urgently needed investment in dedicated and focused research. For an illustrated summary of this Primer, visit: http://go.nature.com/NKHDzg.

  20. Decoupled choice-driven and stimulus-related activity in parietal neurons may be misrepresented by choice probabilities.

    PubMed

    Zaidel, Adam; DeAngelis, Gregory C; Angelaki, Dora E

    2017-09-28

    Trial-by-trial correlations between neural responses and choices (choice probabilities) are often interpreted to reflect a causal contribution of neurons to task performance. However, choice probabilities may arise from top-down, rather than bottom-up, signals. We isolated distinct sensory and decision contributions to single-unit activity recorded from the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of monkeys during perception of self-motion. Superficially, neurons in both areas show similar tuning curves during task performance. However, tuning in MSTd neurons primarily reflects sensory inputs, whereas choice-related signals dominate tuning in VIP neurons. Importantly, the choice-related activity of VIP neurons is not predictable from their stimulus tuning, and these factors are often confounded in choice probability measurements. This finding was confirmed in a subset of neurons for which stimulus tuning was measured during passive fixation. Our findings reveal decoupled stimulus and choice signals in the VIP area, and challenge our understanding of choice signals in the brain.Choice-related signals in neuronal activity may reflect bottom-up sensory processes, top-down decision-related influences, or a combination of the two. Here the authors report that choice-related activity in VIP neurons is not predictable from their stimulus tuning, and that dominant choice signals can bias the standard metric of choice preference (choice probability).

  1. The kidney cancer research priority-setting partnership: Identifying the top 10 research priorities as defined by patients, caregivers, and expert clinicians.

    PubMed

    Jones, Jennifer; Bhatt, Jaimin; Avery, Jonathan; Laupacis, Andreas; Cowan, Katherine; Basappa, Naveen; Basiuk, Joan; Canil, Christina; Al-Asaaed, Sohaib; Heng, Daniel; Wood, Lori; Stacey, Dawn; Kollmannsberger, Christian; Jewett, Michael A S

    2017-12-01

    It is critically important to define disease-specific research priorities to better allocate limited resources. There is growing recognition of the value of involving patients and caregivers, as well as expert clinicians in this process. To our knowledge, this has not been done this way for kidney cancer. Using the transparent and inclusive process established by the James Lind Alliance, the Kidney Cancer Research Network of Canada (KCRNC) sponsored a collaborative consensus-based priority-setting partnership (PSP) to identify research priorities in the management of kidney cancer. The final result was identification of 10 research priorities for kidney cancer, which are discussed in the context of current initiatives and gaps in knowledge. This process provided a systematic and effective way to collaboratively establish research priorities with patients, caregivers, and clinicians, and provides a valuable resource for researchers and funding agencies.

  2. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: Relationship with spatial impairment

    PubMed Central

    Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.

    2013-01-01

    Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834

  3. Neuronal activity in somatosensory cortex related to tactile exploration

    PubMed Central

    Fortier-Poisson, Pascal

    2015-01-01

    The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction. PMID:26467519

  4. Relating normalization to neuronal populations across cortical areas

    PubMed Central

    Alberts, Joshua J.; Cohen, Marlene R.

    2016-01-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties. PMID:27358313

  5. Synchronized changes to relative neuron populations in postnatal human neocortical development

    PubMed Central

    Cooper, David L.; Gentle, James E.; Barreto, Ernest

    2010-01-01

    Mammalian prenatal neocortical development is dominated by the synchronized formation of the laminae and migration of neurons. Postnatal development likewise contains “sensitive periods” during which functions such as ocular dominance emerge. Here we introduce a novel neuroinformatics approach to identify and study these periods of active development. Although many aspects of the approach can be used in other studies, some specific techniques were chosen because of a legacy dataset of human histological data (Conel in The postnatal development of the human cerebral cortex, vol 1–8. Harvard University Press, Cambridge, 1939–1967). Our method calculates normalized change vectors from the raw histological data, and then employs k-means cluster analysis of the change vectors to explore the population dynamics of neurons from 37 neocortical areas across eight postnatal developmental stages from birth to 72 months in 54 subjects. We show that the cortical “address” (Brodmann area/sub-area and layer) provides the necessary resolution to segregate neuron population changes into seven correlated “k-clusters” in k-means cluster analysis. The members in each k-cluster share a single change interval where the relative share of the cortex by the members undergoes its maximum change. The maximum change occurs in a different change interval for each k-cluster. Each k-cluster has at least one totally connected maximal “clique” which appears to correspond to cortical function. Electronic supplementary material The online version of this article (doi:10.1007/s11571-010-9103-3) contains supplementary material, which is available to authorized users. PMID:21629587

  6. Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata

    PubMed Central

    Ungerer, Petra; Scholtz, Gerhard

    2007-01-01

    The complex spatio-temporal patterns of development and anatomy of nervous systems play a key role in our understanding of arthropod evolution. However, the degree of resolution of neural processes is not always detailed enough to claim homology between arthropod groups. One example is neural precursors and their progeny in crustaceans and insects. Pioneer neurons of crustaceans and insects show some similarities that indicate homology. In contrast, the differentiation of insect and crustacean neuroblasts (NBs) shows profound differences and their homology is controversial. For Drosophila and grasshoppers, the complete lineage of several NBs up to formation of pioneer neurons is known. Apart from data on median NBs no comparable results exist for Crustacea. Accordingly, it is not clear where the crustacean pioneer neurons come from and whether there are NBs lateral to the midline homologous to those of insects. To fill this gap, individual NBs in the ventral neuroectoderm of the crustacean Orchestia cavimana were labelled in vivo with a fluorescent dye. A partial neuroblast map was established and for the first time lineages from individual NBs to identified pioneer neurons were established in a crustacean. Our data strongly suggest homology of NBs and their lineages, providing further evidence for a close insect–crustacean relationship. PMID:18048285

  7. Income-related disparities in kidney transplant graft failures are eliminated by Medicare's immunosuppression coverage

    PubMed Central

    Woodward, Robert S.; Page, Timothy F.; Soares, Ricardo; Schnitzler, Mark A.; Lentine, Krista L.; Brennan, Daniel C.

    2011-01-01

    Beginning January 1, 2000, Medicare extended coverage of immunosuppression medications from 3-years to lifetime based on age >65 years or disability. Using USRDS data for Medicare-insured recipients of kidney transplants between July 1995 and December 2000, we identified four Cohorts of Medicare-insured kidney transplant recipients. Patients in Cohort 1 were individuals who were both eligible and received lifetime-coverage. Patients in Cohort 2 would have been eligible, but their three-year coverage expired before lifetime-coverage was available. Patients in Cohort 3 were ineligible for lifetime-coverage because of youth or lack of disability. Patients in Cohort 4 were transplanted 1996–1996 and were ineligible for lifetime-coverage. Incomes were categorized by ZIP-code median household income from census data. Lifetime-extension of Medicare immunosuppression was associated with improved allograft survival among low-income transplant recipients in the sense that the previously existing income-related disparities in graft survival in Cohort 2 were not apparent in Cohort 1. Ineligible individuals served as a control group; the income-related disparities in graft survival observed in the early Cohort 4 persisted in more recent Cohort 3. Multivariate proportional-hazards models confirmed these findings. Future work should evaluate the cost-effectiveness of these coverage increases, as well as that of benefits extensions to broader patient groups. PMID:19032227

  8. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi.

    PubMed

    Boonla, Chanchai; Tosukhowong, Piyaratana; Spittau, Björn; Schlosser, Andreas; Pimratana, Chaowat; Krieglstein, Kerstin

    2014-02-15

    To uncover whether urinary proteins are incorporated into stones, the proteomic profiles of kidney stones and urine collected from the same patients have to be explored. We employed 1D-PAGE and nanoHPLC-ESI-MS/MS to analyze the proteomes of kidney stone matrix (n=16), nephrolithiatic urine (n=14) and healthy urine (n=3). We identified 62, 66 and 22 proteins in stone matrix, nephrolithiatic urine and healthy urine, respectively. Inflammation- and fibrosis-associated proteins were frequently detected in the stone matrix and nephrolithiatic urine. Eighteen proteins were exclusively found in the stone matrix and nephrolithiatic urine, considered as candidate biomarkers for kidney stone formation. S100A8 and fibronectin, representatives of inflammation and fibrosis, respectively, were up-regulated in nephrolithiasis renal tissues. S100A8 was strongly expressed in infiltrated leukocytes. Fibronectin was over-expressed in renal tubular cells. S100A8 and fibronectin were immunologically confirmed to exist in nephrolithiatic urine and stone matrix, but in healthy urine they were undetectable. Conclusion, both kidney stones and urine obtained from the same patients greatly contained inflammatory and fibrotic proteins. S100A8 and fibronectin were up-regulated in stone-baring kidneys and nephrolithiatic urine. Therefore, inflammation and fibrosis are suggested to be involved in the formation of kidney calculi. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Relating normalization to neuronal populations across cortical areas.

    PubMed

    Ruff, Douglas A; Alberts, Joshua J; Cohen, Marlene R

    2016-09-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties. Copyright © 2016 the American Physiological Society.

  10. ESBL-producing enterobacteriaceae-related urinary tract infections in kidney transplant recipients: incidence and risk factors for recurrence.

    PubMed

    Pilmis, Benoît; Scemla, Anne; Join-Lambert, Olivier; Mamzer, Marie-France; Lortholary, Oliver; Legendre, Christophe; Zahar, Jean-Ralph

    2015-01-01

    Urinary tract infections (UTIs) represent the first cause of bacterial infections in renal transplant recipients. In a period of increasing resistance to antimicrobial agents, the factors leading to the development of UTI in previously urinary colonized renal transplant recipients as well as the factors associated with recurrence of UTIs have to be determined. The aims of this retrospective study were (1) to assess the incidence of extended-spectrum beta-lactamase-producing enterobacteriaceae (ESBL-PE)-related UTI in kidney transplant recipients, (2) to identify factors associated with ESBL-PE infection and (3) to determine the risk factors for recurrence. We included all kidney transplant recipients admitted in our hospital between January 2009 and January 2012 who had a monobacterial ESBL-PE UTI or bacteriuria. During the study period, 659 patients underwent kidney transplantation; 72 patients had ESBL-PE bacteriuria, representing a 10.9% prevalence, and among the latter 34 (47.2%) presented an ESBL-PE-related UTI. Fourteen patients (41.2%) experienced a UTI relapse associated with two factors: advanced age (p = 0.032) and persistent bacteriuria 48 h after appropriate antibiotic therapy (p = 0.04). No other risk factor for recurrence was found, including the presence and management of a ureteral stent during the first UTI, causative microorganisms, or diabetes mellitus. In this specific population, regarding the risk of relapse there is an urgent need for prospective studies to test the best treatment strategy.

  11. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons

    PubMed Central

    Machado, Carolina Barcellos; Kanning, Kevin C.; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-01-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations. PMID:24496616

  12. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    PubMed

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  13. Kidney Involvement of Patients with Waldenström Macroglobulinemia and Other IgM-Producing B Cell Lymphoproliferative Disorders.

    PubMed

    Higgins, Larissa; Nasr, Samih H; Said, Samar M; Kapoor, Prashant; Dingli, David; King, Rebecca L; Rajkumar, S Vincent; Kyle, Robert A; Kourelis, Taxiarchis; Gertz, Morie A; Dispenzieri, Angela; Lacy, Martha Q; Buadi, Francis K; Ansell, Stephen M; Gonsalves, Wilson I; Thompson, Carrie A; Fervenza, Fernando C; Zand, Ladan; Hwa, Yi L; Jevremovic, Dragan; Shi, Min; Leung, Nelson

    2018-05-30

    Kidney involvement in Waldenström macroglobulinemia is less well described compared with kidney manifestations in multiple myeloma. Of the 1363 patients seen with Waldenström macroglobulinemia and other IgM-secreting B cell lymphoproliferative disorders seen at the Mayo Clinic between 1996 and 2015, 57 kidney biopsies were retrospectively studied. The biopsy findings were correlated with clinical, kidney, and hematologic characteristics. Criteria for inclusion were evidence of a monoclonal IgM protein and availability of a kidney and a bone marrow biopsy for review. Glomerular and tubulointerstitial pathologies were categorized according to whether they were related to the monoclonal IgM. Of the 57 patients identified, monoclonal gammopathy-related kidney lesions were identified in 82% (47 of 57 biopsies), whereas nonmonoclonal gammopathy-related kidney lesions were seen in 18% (ten of 57). Monoclonal gammopathy-related kidney lesions included monoclonal Ig-related amyloidosis ( n =19; 33%), nonamyloid glomerulopathy ( n =20, 35%), and tubulointerstitial nephropathies ( n =8; 14%). The most common monoclonal gammopathy-related kidney lesion was monoclonal Ig-related amyloidosis ( n =19; 33%) followed by cryoglobulinemic GN ( n =13; 28%). Lymphoma infiltration was the most common tubulointerstitial lesion ( n =4; 9%). The hematologic diagnosis was Waldenström macroglobulinemia in 74% ( n =42), monoclonal gammopathy of renal significance in 16% ( n =9), and marginal zone lymphoma ( n =2), chronic lymphocytic leukemia ( n =2), and low-grade B cell lymphoma ( n =2) in 4% each. Our study confirms a diverse variety of kidney lesions in patients with monoclonal IgM gammopathy. Copyright © 2018 by the American Society of Nephrology.

  14. One-to-one neuron-electrode interfacing.

    PubMed

    Greenbaum, Alon; Anava, Sarit; Ayali, Amir; Shein, Mark; David-Pur, Moshe; Ben-Jacob, Eshel; Hanein, Yael

    2009-09-15

    The question of neuronal network development and organization is a principle one, which is closely related to aspects of neuronal and network form-function interactions. In-vitro two-dimensional neuronal cultures have proved to be an attractive and successful model for the study of these questions. Research is constraint however by the search for techniques aimed at culturing stable networks, whose electrical activity can be reliably and consistently monitored. A simple approach to form small interconnected neuronal circuits while achieving one-to-one neuron-electrode interfacing is presented. Locust neurons were cultured on a novel bio-chip consisting of carbon-nanotube multi-electrode-arrays. The cells self-organized to position themselves in close proximity to the bio-chip electrodes. The organization of the cells on the electrodes was analyzed using time lapse microscopy, fluorescence imaging and scanning electron microscopy. Electrical recordings from well identified cells is presented and discussed. The unique properties of the bio-chip and the specific neuron-nanotube interactions, together with the use of relatively large insect ganglion cells, allowed long-term stabilization (as long as 10 days) of predefined neural network topology as well as high fidelity electrical recording of individual neuron firing. This novel preparation opens ample opportunity for future investigation into key neurobiological questions and principles.

  15. Chronic kidney disease-related physical frailty and cognitive impairment: a systemic review.

    PubMed

    Shen, Zhiyuan; Ruan, Qingwei; Yu, Zhuowei; Sun, Zhongquan

    2017-04-01

    The objective of this review was to assess chronic kidney disease-related frailty and cognitive impairment, as well as their probable causes, mechanisms and the interventions. Studies from 1990 to 2015 were reviewed to evaluate the relationship between chronic kidney disease and physical frailty and cognitive impairment. Of the 1694 studies from the initial search, longitudinal studies (n = 22) with the keywords "Cognitive and CKD" and longitudinal or cross-sectional studies (n = 5) with the keywords "Frailty and CKD" were included in final analysis. By pooling current research, we show clear evidence for a relationship between chronic kidney disease and frailty and cognitive impairment in major studies. Vascular disease is likely an important mediator, particularly for cognitive impairment. However, non-vascular factors also play an important role. Many of the other mechanisms that contribute to impaired cognitive function and increased frailty in CKD remain to be elucidated. In limited studies, medication therapy did not obtain the ideal effect. There are limited data on treatment strategies, but addressing the vascular disease risk factors earlier in life might decrease the subsequent burden of frailty and cognitive impairment in this population. Multidimensional interventions, which address both microvascular health and other factors, may have substantial benefits for both the cognitive impairments and physical frailty in this vulnerable population. Chronic kidney disease is a potential cause of frailty and cognitive impairment. Vascular and non-vascular factors are the possible causes. The mechanism of chronic kidney disease-induced physical frailty and cognitive impairment suggests that multidimensional interventions may be effective therapeutic strategies in the early stage of chronic kidney disease. Geriatr Gerontol Int 2017; 17: 529-544. © 2016 Japan Geriatrics Society.

  16. Kidney Disease in Oman: a View of the Current and Future Landscapes.

    PubMed

    Al Alawi, Intisar Hamed; Al Salmi, Issa; Al Mawali, Adhra; Sayer, John A

    2017-07-01

    Oman is located in the southeast of Arabian Peninsula with a relatively young population of about 3 831 553 people. The Ministry of Health, which is the healthcare provider, is facing a challenge with the increased levels of noncommunicable diseases including chronic kidney disease. A growing number of patients progress to end-stage kidney disease (ESKD), demanding renal replacement therapy. In 2014, there were 1339 of ESKD patients receiving dialysis and almost 1400 patients received kidney transplants. The estimated annual incidence of ESKD is 120 patients per million population. Diabetes mellitus and hypertensive nephropathy are the commonly identified causes of ESKD. Many patients with glomerulonephritis, systemic lupus erythematosus, nephrolithiasis, and inherited kidney disease present with advanced chronic kidney disease. This article reviews the current status of kidney disease in Oman and addresses the present and future needs, through a systematic-review of all related papers.

  17. Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity.

    PubMed

    Kaufman, Alon; Dror, Gideon; Meilijson, Isaac; Ruppin, Eytan

    2006-12-08

    The claim that genetic properties of neurons significantly influence their synaptic network structure is a common notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The results presented and the genes identified provide a promising starting point for further, more detailed computational and experimental investigations.

  18. The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0365 TITLE: The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease...Molecules on Polycystic Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0365 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John Essigmann, Robert Croy, Bogdan...polycystic kidney disease (PKD). In collaboration with Somlo group at Yale University, we have already shown that two parent compounds, 11β-dichloro and 11β

  19. Unsupervised learning toward brain imaging data analysis: cigarette craving and resistance related neuronal activations from functional magnetic resonance imaging data analysis

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Youl; Lee, Jong-Hwan

    2014-05-01

    A data-driven unsupervised learning such as an independent component analysis was gainfully applied to bloodoxygenation- level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data compared to a model-based general linear model (GLM). This is due to an ability of this unsupervised learning method to extract a meaningful neuronal activity from BOLD signal that is a mixture of confounding non-neuronal artifacts such as head motions and physiological artifacts as well as neuronal signals. In this study, we support this claim by identifying neuronal underpinnings of cigarette craving and cigarette resistance. The fMRI data were acquired from heavy cigarette smokers (n = 14) while they alternatively watched images with and without cigarette smoking. During acquisition of two fMRI runs, they were asked to crave when they watched cigarette smoking images or to resist the urge to smoke. Data driven approaches of group independent component analysis (GICA) method based on temporal concatenation (TC) and TCGICA with an extension of iterative dual-regression (TC-GICA-iDR) were applied to the data. From the results, cigarette craving and cigarette resistance related neuronal activations were identified in the visual area and superior frontal areas, respectively with a greater statistical significance from the TC-GICA-iDR method than the TC-GICA method. On the other hand, the neuronal activity levels in many of these regions were not statistically different from the GLM method between the cigarette craving and cigarette resistance due to potentially aberrant BOLD signals.

  20. Synthetic marijuana and acute kidney injury: an unforeseen association.

    PubMed

    Kazory, Amir; Aiyer, Ravi

    2013-06-01

    Synthetic cannabinoids (SCs) have emerged as drugs of abuse with increasing popularity among young adults. The potential renal complication related to the abuse of SC was not recognized until recently. Here, we present a case of severe acute kidney injury (AKI) that developed after inhalation of SC in an otherwise healthy young patient. A kidney biopsy revealed severe acute tubular necrosis, and supportive management resulted in the recovery of the kidney function. Herein, we briefly summarize the only two previous reports (a total of 21 cases) on the association between SC abuse and renal dysfunction and identify the common aspects in all observations.

  1. Transient Receptor Potential Vanilloid Type 1–Dependent Regulation of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus Diminished in the Type 1 Diabetic Mouse

    PubMed Central

    Gao, Hong; Miyata, Kayoko; Bhaskaran, Muthu D.; Derbenev, Andrei V.; Zsombok, Andrea

    2012-01-01

    The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-related PVN neurons; however, the functional role of TRPV1 regarding liver-related PVN neurons has to be elucidated. A retrograde viral tracer was used to identify liver-related neurons within the brain-liver circuit in control, type 1 diabetic, and insulin-treated mice. Our data indicate that TRPV1 regulates liver-related PVN neurons. This TRPV1-dependent excitation diminished in type 1 diabetic mice. In vivo and in vitro insulin restored TRPV1 activity in a phosphatidylinositol 3-kinase/protein kinase C–dependent manner and stimulated TRPV1 receptor trafficking to the plasma membrane. There was no difference in total TRPV1 protein expression; however, increased phosphorylation of TRPV1 receptors was observed in type 1 diabetic mice. Our data demonstrate that TRPV1 plays a pivotal role in the regulation of liver-related PVN neurons. Moreover, TRPV1-dependent excitation of liver-related PVN neurons diminishes in type 1 diabetes, thus indicating that the brain-liver autonomic circuitry is altered in type 1 diabetes and may contribute to the autonomic dysfunction of HGP. PMID:22492526

  2. Taotie neurons regulate appetite in Drosophila

    PubMed Central

    Zhan, Yin Peng; Liu, Li; Zhu, Yan

    2016-01-01

    The brain has an essential role in maintaining a balance between energy intake and expenditure of the body. Deciphering the processes underlying the decision-making for timely feeding of appropriate amounts may improve our understanding of physiological and psychological disorders related to feeding control. Here, we identify a group of appetite-enhancing neurons in a behavioural screen for flies with increased appetite. Manipulating the activity of these neurons, which we name Taotie neurons, induces bidirectional changes in feeding motivation. Long-term stimulation of Taotie neurons results in flies with highly obese phenotypes. Furthermore, we show that the in vivo activity of Taotie neurons in the neuroendocrine region reflects the hunger/satiety states of un-manipulated animals, and that appetitive-enhancing Taotie neurons control the secretion of insulin, a known regulator of feeding behaviour. Thus, our study reveals a new set of neurons regulating feeding behaviour in the high brain regions that represents physiological hunger states and control feeding behaviour in Drosophila. PMID:27924813

  3. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity

    PubMed Central

    Lin, Ai-Ling; Coman, Daniel; Jiang, Lihong; Rothman, Douglas L; Hyder, Fahmeed

    2014-01-01

    Caloric restriction (CR) prolongs lifespan and retards many detrimental effects of aging, but its effect on brain mitochondrial function and neuronal activity—especially in healthy aging—remains unexplored. Here we measured rates of neuronal glucose oxidation and glutamate–glutamine neurotransmitter cycling in young control, old control (i.e., healthy aging), and old CR rats using in vivo nuclear magnetic resonance spectroscopy. We found that, compared with the young control, neuronal energy production and neurotransmission rates were significantly reduced in healthy aging, but were preserved in old CR rats. The results suggest that CR mitigated the age-related deceleration of brain physiology. PMID:24984898

  4. Acute Kidney Injury: Tubular Markers and Risk for Chronic Kidney Disease and End-Stage Kidney Failure.

    PubMed

    Tan, Hon Liang; Yap, John Q; Qian, Qi

    2016-01-01

    Acute kidney injury (AKI) is a common clinical syndrome directly related to patient short-term and long-term morbidity and mortality. Over the last decade, the occurrence rate of AKI has been increasing, and there has also been a growing epidemic of chronic kidney diseases (CKD) and end-stage kidney disease (ESRD) linked to severe and repeated episodes of AKIs. The detection and management of AKI are currently far from satisfactory. A large proportion of AKI patients, especially those with preexisting CKD, are at an increased risk of non-resolving AKI and progressing to CKD and ESRD. Proposed pathological processes that contribute to the transition of AKI to CKD and ESRD include severity and frequency of kidney injury, alterations of tubular cell phenotype with cells predominantly in the G2/M phase, interstitial fibrosis and microvascular rarification related to loss of endothelial-pericyte interactions and pericyte dedifferentiation. Innate immune responses, especially dendritic cell responses related to inadequate adenosine receptor (2a)-mediated signals, autophagic insufficiency and renin-angiotensin system activation have also been implicated in the progression of AKI and transitions from AKI to CKD and ESRD. Although promising advances have been made in understanding the pathophysiology of AKI and AKI consequences, much more work needs to be done in developing biomarkers for detecting early kidney injury, prognosticating kidney disease progression and developing strategies to effectively treat AKI and to minimize AKI progression to CKD and ESRD. © 2016 S. Karger AG, Basel.

  5. Factors That Condition the Attitude Toward Living Related Kidney Donation Among Santiago of Cuba's Population.

    PubMed

    Ríos, A; López-Navas, A I; Sánchez, Á; Martínez-Alarcón, L; Ayala, M A; Garrido, G; Sebastián, M J; Ramis, G; Hernández, A M; Ramírez, P; Parrilla, P

    2018-03-01

    Living kidney donation is currently the most important kidney donor source in Latin America, and it is necessary to further increase its rates. To analyze the attitude toward living kidney donation among the Santiago de Cuba's population and to determine the sociopersonal factors with which it is associated. The population over 15 years old residing in Santiago de Cuba, stratified by sex and age, was screened. The "PCID-LKD Ríos" attitude questionnaire toward living kidney donation was administered to a random selection of the people surveyed according to the stratification and the census data. The completion was anonymized and self-administered. Verbal consent was obtained. The study was completed by 445 people, of whom the 86% (n = 389) were in favor of living related kidney donation. This attitude is associated with the level of education (P < .001); previous experience with organ donation (P = .006); attitude toward cadaveric organ donation (P < .001); carrying out of prosocial activities (P = .010); discussion of the issue with the family (P < .001) and the significant other (P < .001); concern about mutilation after donation (P = .001); religious beliefs (P = .001); and assessment of the risk of living kidney donation (P < .001). In the multivariate study, the following variables persisted: (1) level of education; (2) attitude of cadaveric donation; (3) carrying out of prosocial activities; and (4) risk assessment of living donation. Living related donation is very well accepted among the Santiago de Cuba's population. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nigerian Immigrant Population in Spain Is Little Sensitized to Living-Related Kidney Donation.

    PubMed

    Ríos, A; Carrillo, J; López-Navas, A I; Ayala, M A; Garrido, G; Sebastián, M J; Martínez-Alarcón, L; Ramis, G; Hernández, A M; Ramírez, P; Parrilla, P

    2018-03-01

    The Nigerian population is an emerging group in Spain and in Europe, but their sensitization toward living kidney donation has not been studied. The aim of this work was to analyze the attitude toward related renal donation while alive among the population born in Nigeria resident in Spain. A population older than 15 years born in Nigeria and resident in Spain, stratified by age and sex, was studied with the use of the attitude questionnaire about living kidney donation, "PCID-DVR-Ríos." People were randomly selected based on stratification. African immigration support associations advised on the location of potential respondents. Completion of the questionnaire was anonymous and self-administered. Verbal consent was requested to assist in the study. Statistical methods included Student t test, χ 2 , Fisher exact test, and logistic regression analysis. A total of 179 respondents were included in the study: 70% (n = 125) were in favor of living-related kidney donation, and 30% (n = 54) remained against or undecided. This attitude was associated with different psychosocial factors: marital status (P = .001), having offspring (P = .029), risk assessment of live donation (P < .001), partner's opinion about donation (P < .001), previous relationship with donation and/or transplantation (P < .001), religion (P < .001), and fear of mutilation after donation (P < .001). In the multivariate analysis, the previous relationship with donation and/or transplantation (odds ratio, 8.064) persisted as the main related factor. The Nigerian immigrant population in Spain has a less favorable attitude toward living kidney donation than the native western European and Spanish population. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Usefulness of dual-energy computed tomography with and without dedicated software in identifying uric acid kidney stones.

    PubMed

    Salvador, R; Luque, M P; Ciudin, A; Paño, B; Buñesch, L; Sebastia, C; Nicolau, C

    2016-01-01

    To prospectively evaluate the usefulness of dual-energy computed tomography (DECT) with and without dedicated software in identifying uric acid kidney stones in vivo. We studied 65 kidney stones in 63 patients. All stones were analyzed in vivo by DECT and ex vivo by spectrophotometry. We evaluated the diagnostic performance in identifying uric acid stones with DECT by analyzing the radiologic densities with dedicated software and without using it (through manual measurements) as well as by analyzing the attenuation ratios of the stones in both energies with and without the dedicated software. The six uric acid stones included were correctly identified by evaluating the attenuation ratios with a cutoff of 1.21, both with the dedicated software and without it, yielding perfect diagnostic performance without false positives or false negatives. The study of the attenuations of the stones obtained the following values on the receiver operating characteristic curves in the classification of the uric acid stones: 0.92 for the measurements done with the software and 0.89 for the manual measurements; a cutoff of 538 HU yielded 84% (42/50) diagnostic accuracy for the software and 83.1% (54/65) for the manual measurements. DECT enabled the uric acid stones to be identified correctly through the calculation of the ratio of the attenuations in the two energies. The results obtained with the dedicated software were similar to those obtained manually. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  8. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats.

    PubMed

    Nakata, Hokuto; Nakayama, Shouta M M; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-10

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown ( Rattus norvegicus , n = 43) and black ( R. rattus , n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed.

  9. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats

    PubMed Central

    Nakata, Hokuto; Nakayama, Shouta M. M.; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B.; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-01

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown (Rattus norvegicus, n = 43) and black (R. rattus, n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed. PMID:28075384

  10. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.

    PubMed

    Mauelshagen, J

    1993-02-01

    1. Sensitization and classical odor conditioning of the proboscis extension reflex were functionally analyzed by repeated intracellular recordings from a single identified neuron (PE1-neuron) in the central bee brain. This neuron belongs to the class of "extrinsic cells" arising from the pedunculus of the mushroom bodies and has extensive arborizations in the median and lateral protocerebrum. The recordings were performed on isolated bee heads. 2. Two different series of physiological experiments were carried out with the use of a similar temporal succession of stimuli as in previous behavioral experiments. In the first series, one group of animals was used for a single conditioning trial [conditioned stimulus (CS), carnation; unconditioned stimulus (US), sucrose solution to the antennae and proboscis), a second group was used for sensitization (sensitizing stimulus, sucrose solution to the antennae and/or proboscis), and the third group served as control (no sucrose stimulation). In the second series, a differential conditioning paradigm (paired odor CS+, carnation; unpaired odor CS-, orange blossom) was applied to test the associative nature of the conditioning effect. 3. The PE1-neuron showed a characteristic burstlike odor response before the training procedures. The treatments resulted in different spike-frequency modulations of this response, which were specific for the nonassociative and associative stimulus paradigms applied. During differential conditioning, there are dynamic up and down modulations of spike frequencies and of the DC potentials underlying the responses to the CS+. Overall, only transient changes in the minute range were observed. 4. The results of the sensitization procedures suggest two qualitatively different US pathways. The comparison between sensitization and one-trial conditioning shows differential effects of nonassociative and associative stimulus paradigms on the response behavior of the PE1-neuron. The results of the differential

  11. Relation Between Firing Statistics of Spiking Neuron with Delayed Fast Inhibitory Feedback and Without Feedback

    NASA Astrophysics Data System (ADS)

    Vidybida, Alexander; Shchur, Olha

    We consider a class of spiking neuronal models, defined by a set of conditions typical for basic threshold-type models, such as the leaky integrate-and-fire or the binding neuron model and also for some artificial neurons. A neuron is fed with a Poisson process. Each output impulse is applied to the neuron itself after a finite delay Δ. This impulse acts as being delivered through a fast Cl-type inhibitory synapse. We derive a general relation which allows calculating exactly the probability density function (pdf) p(t) of output interspike intervals of a neuron with feedback based on known pdf p0(t) for the same neuron without feedback and on the properties of the feedback line (the Δ value). Similar relations between corresponding moments are derived. Furthermore, we prove that the initial segment of pdf p0(t) for a neuron with a fixed threshold level is the same for any neuron satisfying the imposed conditions and is completely determined by the input stream. For the Poisson input stream, we calculate that initial segment exactly and, based on it, obtain exactly the initial segment of pdf p(t) for a neuron with feedback. That is the initial segment of p(t) is model-independent as well. The obtained expressions are checked by means of Monte Carlo simulation. The course of p(t) has a pronounced peculiarity, which makes it impossible to approximate p(t) by Poisson or another simple stochastic process.

  12. Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    PubMed Central

    Brunskill, Eric W.; Georgas, Kylie; Rumballe, Bree; Little, Melissa H.; Potter, S. Steven

    2011-01-01

    Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells. PMID:21931791

  13. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity

    PubMed Central

    Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu

    2016-01-01

    Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752

  14. Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease: Utility and Limitations

    PubMed Central

    Zhao, Xiao; Paterson, Andrew D.; Zahirieh, Alireza; He, Ning; Wang, Kairong; Pei, York

    2008-01-01

    Background and objectives: Gene-based mutation screening is now available and has the potential to provide diagnostic confirmation or exclusion of autosomal dominant polycystic kidney disease. This study illustrates its utility and limitations in the clinical setting. Design, setting, participants, & measurements: Using a molecular diagnostic service, genomic DNA of one affected individual from each study family was screened for pathologic PKD1 and PKD2 mutations. Bidirectional sequencing was performed to identify sequence variants in all exons and splice junctions of both genes and to confirm the specific mutations in other family members. In two multiplex families, microsatellite markers were genotyped at both PDK1 and PKD2 loci, and pair-wise and multipoint linkage analysis was performed. Results: Three of five probands studied were referred for assessment of renal cystic disease without a family history of autosomal dominant polycystic kidney disease, and two others were younger at-risk members of families with autosomal dominant polycystic kidney disease being evaluated as living-related kidney donors. Gene-based mutation screening identified pathogenic mutations that provided confirmation or exclusion of disease in three probands, but in the other two, only unclassified variants were identified. In one proband in which mutation screening was indeterminate, DNA linkage studies provided strong evidence for disease exclusion. Conclusions: Gene-based mutation screening or DNA linkage analysis should be considered in individuals in whom the diagnosis of autosomal dominant polycystic kidney disease is uncertain because of a lack of family history or equivocal imaging results and in younger at-risk individuals who are being evaluated as living-related kidney donors. PMID:18077784

  15. World Kidney Day 2016 Averting The Legacy of Kidney Disease-Focus On Childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-03-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood. © 2016 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  16. [Neuroeffector connections of multimodal neurons in the African snail (Achatina fulica)].

    PubMed

    Bugaĭ, V V; Zhuravlev, V L; Safonova, T A

    2004-02-01

    Using a new method of animal preparation, the efferent connections of giant paired neurons on the dorsal surface of visceral and right parietal ganglia of snail, Achatina fulica, were examined. It was found that spikes in giant neurons d-VLN and d-RPLN evoke postjunctional potentials in different points of the snail body and viscerae (in the heart, in pericardium, in lung cavity and kidney walls, in mantle and body wall muscles, in tentacle retractors and in cephalic artery). The preliminary analysis of synaptic latency and facilitation suggests a direct connections between giant neurons and investigated efferents.

  17. Prion Protein Promotes Kidney Iron Uptake via Its Ferrireductase Activity*

    PubMed Central

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-01-01

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  18. Kidney Failure and ESRD in the Atherosclerosis Risk in Communities (ARIC) Study: Comparing Ascertainment of Treated and Untreated Kidney Failure in a Cohort Study.

    PubMed

    Rebholz, Casey M; Coresh, Josef; Ballew, Shoshana H; McMahon, Blaithin; Whelton, Seamus P; Selvin, Elizabeth; Grams, Morgan E

    2015-08-01

    Linkage to the US Renal Data System (USRDS) registry commonly is used to identify end-stage renal disease (ESRD) cases, or kidney failure treated with dialysis or transplantation, but it underestimates the total burden of kidney failure. This study validates a kidney failure definition that includes both kidney failure treated and not treated by dialysis or transplantation. It compares kidney failure risk factors and outcomes using this broader definition with USRDS-identified ESRD risk factors and outcomes. Diagnostic test study with stratified random sampling of hospitalizations for chart review. Atherosclerosis Risk in Communities Study (n=11,530; chart review, n=546). USRDS-identified ESRD; treated or untreated kidney failure defined by USRDS-identified ESRD or International Classification of Diseases, Ninth or Tenth Revision, Clinical Modification (ICD-9-CM/ICD-10-CM) code for hospitalization or death. For ESRD, determination of permanent dialysis therapy or transplantation; for kidney failure, determination of permanent dialysis therapy, transplantation, or estimated glomerular filtration rate < 15 mL/min/1.73 m(2). During 13 years' median follow-up, 508 kidney failure cases were identified, including 173 (34.1%) from the USRDS registry. ESRD and kidney failure incidence were 1.23 and 3.66 cases per 1,000 person-years in the overall population and 1.35 and 6.59 cases per 1,000 person-years among participants older than 70 years, respectively. Other risk-factor associations were similar between ESRD and kidney failure, except diabetes and albuminuria, which were stronger for ESRD. Survivals at 1 and 5 years were 74.0% and 24.0% for ESRD and 59.8% and 31.6% for kidney failure, respectively. Sensitivity and specificity were 88.0% and 97.3% comparing the kidney failure ICD-9-CM/ICD-10-CM code algorithm to chart review; for USRDS-identified ESRD, sensitivity and specificity were 94.9% and 100.0%. Some medical charts were incomplete. A kidney failure definition

  19. Solute carriers (SLCs) identified and characterized from kidney transcriptome of golden mahseer (Tor putitora) (Fam: Cyprinidae).

    PubMed

    Barat, Ashoktaru; Sahoo, Prabhati Kumari; Kumar, Rohit; Pande, Veena

    2016-10-01

    The solute carriers (SLC) are trans-membrane proteins, those regulate the transport of various substances (sugars, amino acids, nucleotides, inorganic cations/anions, metals, drugs etc.) across the cell membrane. There are more than 338 solute carriers (slc) reported in fishes that play crucial role in cellular influx and efflux. The study of solute carrier families may reveal many answers regarding the function of transporter genes in the species and their effect in the existing environment. Therefore, we performed RNA sequencing of kidney tissue of the golden mahseer (Tor putitora) using Illumina platform to identify the solute carrier families and characterized 24 putative functional genes under 15 solute carrier families. Out of 24 putative functional genes, 11 genes were differentially expressed in different tissues (head kidney, trunk kidney, spleen, liver, gill, muscle, intestine and brain) using qRT-PCR assay. The slc5a1, slc5a12, slc12a3, slc13a3, slc22a13 and slc26a6 were highly expressed in kidney. The slc15a2, slc25a47, slc33a1 and slc38a2 were highly expressed in brain and slc30a5 was over-expressed in gill. The unrooted phylogenetic trees of slc2, slc5, slc13 and slc33 were constructed using amino acid sequences of Homo sapiens, Salmo salar, Danio rerio, Cyprinus carpio and Tor putitora. It appears that all the putative solute carrier families are very much conserved in human and fish species including the present fish, golden mahseer. This study provides the first hand database of solute carrier families particularly transporter encoding proteins in the species. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Subgroup-Elimination Transcriptomics Identifies Signaling Proteins that Define Subclasses of TRPV1-Positive Neurons and a Novel Paracrine Circuit

    PubMed Central

    Isensee, Jörg; Wenzel, Carsten; Buschow, Rene; Weissmann, Robert; Kuss, Andreas W.; Hucho, Tim

    2014-01-01

    Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based

  1. Kidney Failure and ESRD in the Atherosclerosis Risk in Communities (ARIC) Study: Comparing Ascertainment of Treated and Untreated Kidney Failure in a Cohort Study

    PubMed Central

    Rebholz, Casey M.; Coresh, Josef; Ballew, Shoshana H.; McMahon, Blaithin; Whelton, Seamus P.; Selvin, Elizabeth; Grams, Morgan E.

    2015-01-01

    Background Linkage to the US Renal Data System (USRDS) registry is commonly used to identify end-stage renal disease (ESRD) cases, or kidney failure treated with dialysis or transplantation, but it underestimates the total burden of kidney failure. This study validates a kidney failure definition that includes both kidney failure treated and not treated by dialysis or transplantation. It compares kidney failure risk factors and outcomes using this broader definition to USRDS-identified ESRD risk factors and outcomes. Study Design Diagnostic test study with stratified random sampling of hospitalizations for chart review. Setting & Participants Atherosclerosis Risk in Communities Study (N=11,530; chart review n=546). Index Test USRDS-identified ESRD; treated or untreated kidney failure defined by USRDS-identified ESRD or International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)/ICD-10-CM code from hospitalization or death. Reference Test For ESRD, determination of permanent dialysis or transplantation; for kidney failure, determination of permanent dialysis, transplantation, or eGFR <15 mL/min/1.73 m2. Results Over 13 years' median follow-up, 508 kidney failure cases were identified, including 173 (34.1%) from the USRDS registry. ESRD and kidney failure incidence were 1.23 and 3.66 cases per 1,000 person-years in the overall population, and 1.35 and 6.59 cases per 1,000 person-years among participants older than 70 years, respectively. Other risk factor associations were similar between ESRD and kidney failure, except diabetes and albuminuria which were stronger for ESRD. Survival at 1 and 5 years were 74.0% and 24.0% for ESRD and 59.8% and 31.6% for kidney failure, respectively. Sensitivity and specificity were 88.0% and 97.3% comparing the kidney failure ICD-9-CM/ICD-10-CM code algorithm to chart review; for USRDS-identified ESRD, sensitivity and specificity were 94.9% and 100.0%. Limitations Some medical charts were incomplete

  2. Pericytes in kidney fibrosis.

    PubMed

    Ren, Shuyu; Duffield, Jeremy S

    2013-07-01

    Pericytes and perivascular fibroblasts have emerged as poorly appreciated yet extensive populations of mesenchymal cells in the kidney that play important roles in homeostasis and responses to injury. This review will update readers on the evolving understanding of the biology of these cells. Fate mapping has identified pericytes and perivascular fibroblasts as the major source of pathological fibrillar matrix-forming cells in interstitial kidney disease. In other organs similar cells have been described and independent fate mapping indicates that pericytes or perivascular cells are myofibroblast progenitors in multiple organs. Over the last year, new insights into the function of pericytes in kidney homeostasis has been uncovered and new molecular pathways that regulate detachment and their transdifferentiation into pathological myofibroblasts, including Wingless/Int, ephrin, transforming growth factor β, platelet derived growth factor, and Hedgehog signaling pathways, have been reported. In addition provocative studies indicate that microRNAs, which regulate posttranscriptional gene expression, may also play important roles in their transdifferentiation. Pericytes and perivascular fibroblasts are the major source of pathological collagen fiber-forming cells in interstitial kidney diseases. New avenues of research into their activation and differentiation has identified new drug candidates for the treatment of interstitial kidney disease.

  3. [Case report of rhabdoid tumor of the kidney occurring in own kidney following kidney transplantation from the living relative].

    PubMed

    Sato, Yasuyuki; Iizuka, Jyunpei; Imai, Kenji; Sawada, Yugo; Komatsu, Tomonori; Yago, Rie; Kondo, Tsunenori; Ishida, Hideki; Tanabe, Kazunari

    2010-07-01

    The patient was a 30-year-old man who had undergone living-donor kidney transplantation for renal failure caused by IgA nephropathy at age 29. On post-transplantation day 83, he visited our department with a chief complaint of asymptomatic hematuria. CT performed on post-transplantation day 95 revealed a tumor (size, 4 cm) in the right native kidney that had not been observed at the time of transplantation. CT performed on post-transplantation day 153 showed that the tumor had enlarged to 6 cm, while retrograde pyelogram performed on post-transplantation day 171 was negative for renal pelvic tumor. On post-transplantation day 193, radical right nephrectomy was performed. The tumor had directly invaded the diaphragm and the lower surface of the liver, and was histopathologically diagnosed as rhabdoid tumor of the kidney. As the pathological tissue was extremely malignant, hepatic posterior segmentectomy, right adrenalectomy, and lymph node dissection were further performed for metastases on post-transplantation day 200. On the 23rd day after radical right nephrectomy (post-transplantation day 216), the patient developed dyspnea. Chest CT showed pleural effusion, hemothorax in right lung and metastases in both lungs. The patient's general status gradually worsened thereafter, and he died on the 53rd day after radical right nephrectomy (post-transplantation day 246). Rhabdoid tumor of the kidney is a rare renal tumor that affects children, and only four adult cases have been reported to date. We report our experience with this rare case.

  4. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    PubMed Central

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  5. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    PubMed

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  6. A Subpopulation of Neurochemically-Identified Ventral Tegmental Area Dopamine Neurons Is Excited by Intravenous Cocaine

    PubMed Central

    Mejias-Aponte, Carlos A.; Ye, Changquan; Bonci, Antonello; Kiyatkin, Eugene A.

    2015-01-01

    Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was determined by their juxtacellular labeling and immunohistochemical detection of tyrosine hydroxylase (TH), a DA marker. We found that intravenous cocaine altered firing rates in the majority of recorded VTA neurons. Within the cocaine-responsive neurons, half of the population was excited and the other half was inhibited. Both populations had similar discharge rates and firing regularities, and most neurons did not exhibit changes in burst firing. Inhibited neurons were more abundant in the posterior VTA, whereas excited neurons were distributed evenly throughout the VTA. Cocaine-excited neurons were more likely to be excited by footshock. Within the subpopulation of TH-positive neurons, 36% were excited by cocaine and 64% were inhibited. Within the subpopulation of TH-negative neurons, 44% were excited and 28% were inhibited. Contrary to the prevailing view that all DA neurons are inhibited by cocaine, we found a subset of confirmed VTA DA neurons that is excited by systemic administration of cocaine. We provide evidence indicating that DA neurons are heterogeneous in their response to cocaine and that VTA non-DA neurons play an active role in processing systemic cocaine. PMID:25653355

  7. World Kidney Day 2016: averting the legacy of kidney disease-focus on childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-04-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood. Sociedad Argentina de Pediatría.

  8. World Kidney Day 2016: Averting the legacy of kidney disease-focus on childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-03-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early, or who are small-for-date newborns, have a relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy-makers, and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  9. Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone.

    PubMed

    Buckingham, Steven D; Higashino, Yoshiaki; Sattelle, David B

    2009-11-01

    The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (D(f)) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the D(f) motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.

  10. Identification of neuron-related genes for cell therapy of neurological disorders by network analysis.

    PubMed

    Su, Li-Ning; Song, Xiao-Qing; Wei, Hui-Ping; Yin, Hai-Feng

    Bone mesenchymal stem cells (BMSCs) differentiated into neurons have been widely proposed for use in cell therapy of many neurological disorders. It is therefore important to understand the molecular mechanisms underlying this differentiation. We screened differentially expressed genes between immature neural tissues and untreated BMSCs to identify the genes responsible for neuronal differentiation from BMSCs. GSE68243 gene microarray data of rat BMSCs and GSE18860 gene microarray data of rat neurons were received from the Gene Expression Omnibus database. Transcriptome Analysis Console software showed that 1248 genes were up-regulated and 1273 were down-regulated in neurons compared with BMSCs. Gene Ontology functional enrichment, protein-protein interaction networks, functional modules, and hub genes were analyzed using DAVID, STRING 10, BiNGO tool, and Network Analyzer software, revealing that nine hub genes, Nrcam, Sema3a, Mapk8, Dlg4, Slit1, Creb1, Ntrk2, Cntn2, and Pax6, may play a pivotal role in neuronal differentiation from BMSCs. Seven genes, Dcx, Nrcam, sema3a, Cntn2, Slit1, Ephb1, and Pax6, were shown to be hub nodes within the neuronal development network, while six genes, Fgf2, Tgfβ1, Vegfa, Serpine1, Il6, and Stat1, appeared to play an important role in suppressing neuronal differentiation. However, additional studies are required to confirm these results.

  11. Autophagy and kidney inflammation.

    PubMed

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-06-03

    Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.

  12. Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection

    PubMed Central

    Bráz, João M.; Wang, Fan; Basbaum, Allan I.

    2015-01-01

    Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat. PMID:26470056

  13. Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.

    PubMed

    Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas

    2017-01-01

    The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.

  14. Epigenetics of kidney disease.

    PubMed

    Wanner, Nicola; Bechtel-Walz, Wibke

    2017-07-01

    DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.

  15. Sport activity and health-related quality of life after kidney transplantation.

    PubMed

    Mazzoni, D; Cicognani, E; Mosconi, G; Totti, V; Roi, G S; Trerotola, M; Nanni Costa, A

    2014-09-01

    Considering the importance of sport activity for enhancing quality of life, the aim of this study was to investigate the effects of regular sport activity on quality of life of kidney transplant recipients. Health-related quality of life (HRQoL) was assessed with the use of the SF-36 questionnaire on a group of 118 active kidney transplant patients (AKTPs) practicing different sports at low to moderate intensity (5±4 h/wk). Scores were compared with those of 79 sedentary kidney transplant patients (SKTPs) and with 120 active healthy control subjects (AHCs). AKTPs reported higher scores than SKTPs in the SF-36 scales of Physical Functioning (P<.05), Role Limitations due to Physical Problems (P<.05), General Health (P<.01), Vitality (P<.05), Social Functioning (P<.05), Role Limitations due to Emotional Problems (P<.05), and Mental Health (P<.01). AKTPs obtained higher scores than AHCs on the Mental Health (P<.01) and Social Functioning scales (P<.01) and similar scores (P>.05) on all the other scales. The effect of quantity of sport activity was significant on the General Health (P<.01; η2=0.05), and Role Physical scales (P=.04; η2=0.03), with higher sport activity associated with higher HRQoL. The effect of sex was significant for Bodily Pain (P=.05; η2=0.02), Vitality (P=.08; η2=0.06), Social Functioning (P=.08; η2=0.05), and Mental Health (P=.05; η2=0.02), with male participants scoring higher than female participants. This study indicates that regular sport activity significantly improves different dimensions of HRQoL among kidney transplant recipients. The benefits of sport activity go beyond its impact on physical health to involve psychologic and social components of quality of life. Spontaneous and low to moderate sport activity may play an important role after kidney transplantation that has been largely underestimated in the literature. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Impact of cold ischemia time on the outcomes of kidneys with Kidney Donor Profile Index ≥85%: mate kidney analysis - a retrospective study.

    PubMed

    Sampaio, Marcelo S; Chopra, Bhavna; Tang, Amy; Sureshkumar, Kalathil K

    2018-07-01

    The new kidney allocation system recommends local and regional sharing of deceased donor kidneys (DDK) with 86-100% Kidney Donor Profile Index (KDPI) to minimize discard. Regional sharing can increase cold ischemia time (CIT) which may negatively impact transplant outcomes. Using a same donor mate kidney model, we aimed to define a CIT that should be targeted to optimize outcomes. Using Organ Procurement and Transplant Network/United Network for Organ Sharing database, we identified recipients of DDK from 2000 to 2013 with ≥85% KDPI. From this cohort, three groups of mate kidney recipients were identified based on CIT: group 1 (≥24 vs. ≥12 to <24 h), group 2 (≥24 vs. <12 h), and group 3 (≥12 to <24 vs. <12 h). Adjusted delayed graft function (DGF), and graft and patient survivals were compared for mate kidneys. DGF risk was significantly lower for patients with CIT <12 vs. ≥24 h in group 2 (adjusted OR: 0.25, 95% CI: 0.12-0.57, P < 0.001) while trending lower for CIT ≥12 to <24 vs. ≥24 h in group 1 (adjusted OR: 0.78, 95% CI: 0.59-1.03, P = 0.08) and CIT <12 vs. ≥12 to <24 h in group 3 (adjusted OR: 0.74, 95% CI: 0.55-1.0, P = 0.05). Adjusted graft and patient survivals were similar between mate kidneys in all groups. Minimizing CIT improves outcomes with regional sharing of marginal kidneys. © 2018 Steunstichting ESOT.

  17. Exploring sleep disorders in patients with chronic kidney disease.

    PubMed

    Nigam, Gaurav; Camacho, Macario; Chang, Edward T; Riaz, Muhammad

    2018-01-01

    Kidney disorders have been associated with a variety of sleep-related disorders. Therefore, researchers are placing greater emphasis on finding the role of chronic kidney disease (CKD) in the development of obstructive sleep apnea and restless legs syndrome. Unfortunately, the presence of other sleep-related disorders with CKDs and non-CKDs has not been investigated with the same clinical rigor. Recent studies have revealed that myriad of sleep disorders are associated with CKDs. Furthermore, there are a few non-CKD-related disorders that are associated with sleep disorders. In this narrative review, we provide a balanced view of the spectrum of sleep disorders (as identified in International Classification of Sleep disorders-3) related to different types of renal disorders prominently including but not exclusively limited to CKD.

  18. Voltage-gated currents in identified rat olfactory receptor neurons.

    PubMed

    Trombley, P Q; Westbrook, G L

    1991-02-01

    Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act

  19. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.

    PubMed

    Costa, Marta; Manton, James D; Ostrovsky, Aaron D; Prohaska, Steffen; Jefferis, Gregory S X E

    2016-07-20

    Neural circuit mapping is generating datasets of tens of thousands of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1,052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types, including searching neurons against transgene expression patterns. Finally, we show that NBLAST is effective with data from other invertebrates and zebrafish. VIDEO ABSTRACT. Copyright © 2016 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  20. odd skipped related1 reveals a novel role for endoderm in regulating kidney vs. vascular cell fate

    PubMed Central

    Mudumana, Sudha P.; Hentschel, Dirk; Liu, Yan; Vasilyev, Aleksandr; Drummond, Iain A.

    2009-01-01

    Summary The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, enlarged cardinal vein, and expansion of the posterior venous plexus. Altered kidney vs. vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm and, in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney toward vascular development. PMID:18787069

  1. Invisible Brain: Knowledge in Research Works and Neuron Activity.

    PubMed

    Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an "invisible brain"? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an "invisible brain" or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism.

  2. Invisible Brain: Knowledge in Research Works and Neuron Activity

    PubMed Central

    Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an “invisible brain” or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199

  3. [Chronic kidney disease and kidney transplantation].

    PubMed

    Thuret, R; Timsit, M O; Kleinclauss, F

    2016-11-01

    To report epidemiology and characteristics of end-stage renal disease (ESRD) patients and renal transplant candidates, and to evaluate access to waiting list and results of renal transplantation. An exhaustive systematic review of the scientific literature was performed in the Medline database (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) using different associations of the following keywords: "chronic kidney disease, epidemiology, kidney transplantation, cost, survival, graft, brain death, cardiac arrest, access, allocation". French legal documents have been reviewed using the government portal (http://www.legifrance.gouv.fr). Articles were selected according to methods, language of publication and relevance. The reference lists were used to identify additional historical studies of interest. Both prospective and retrospective series, in French and English, as well as review articles and recommendations were selected. In addition, French national transplant and health agencies (http://www.agence-biomedecine.fr and http://www.has-sante.fr) databases were screened using identical keywords. A total of 3234 articles, 6 official reports and 3 newspaper articles were identified; after careful selection 99 publications were eligible for our review. The increasing prevalence of chronic kidney disease (CKD) leads to worsen organ shortage. Renal transplantation remains the best treatment option for ESRD, providing recipients with an increased survival and quality of life, at lower costs than other renal replacement therapies. The never-ending lengthening of the waiting list raises issues regarding treatment strategies and candidates' selection, and underlines the limits of organ sharing without additional source of kidneys available for transplantation. Allocation policies aim to reduce medical or geographical disparities regarding enrollment on a waiting list or access to an allotransplant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Autophagy and kidney inflammation

    PubMed Central

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-01-01

    ABSTRACT Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases. PMID:28441075

  5. Environmental pollution and kidney diseases.

    PubMed

    Xu, Xin; Nie, Sheng; Ding, Hanying; Hou, Fan Fan

    2018-05-01

    The burden of disease and death attributable to environmental pollution is becoming a public health challenge worldwide, especially in developing countries. The kidney is vulnerable to environmental pollutants because most environmental toxins are concentrated by the kidney during filtration. Given the high mortality and morbidity of kidney disease, environmental risk factors and their effect on kidney disease need to be identified. In this Review, we highlight epidemiological evidence for the association between kidney disease and environmental pollutants, including air pollution, heavy metal pollution and other environmental risk factors. We discuss the potential biological mechanisms that link exposure to environmental pollutants to kidney damage and emphasize the contribution of environmental pollution to kidney disease. Regulatory efforts should be made to control environmental pollution and limit individual exposure to preventable or avoidable environmental risk. Population studies with accurate quantification of environmental exposure in polluted regions, particularly in developing countries, might aid our understanding of the dose-response relationship between pollutants and kidney diseases.

  6. Urea and impairment of the Gut-Kidney axis in Chronic Kidney Disease.

    PubMed

    Di Iorio, Biagio Raffaele; Marzocco, Stefania; Nardone, Luca; Sirico, Marilisa; De Simone, Emanuele; Di Natale, Gabriella; Di Micco, Lucia

    2017-12-05

    Gut microbiota can be considered a real organ coordinating health and wellness of our body. It is made of more than 100 trillions of microorganisms, thus about 3 times higher than the number of human body cells and more than 150 times than human genes containing 1000 different microbe species. It has been described a symbiotic relationship between gut and kidney, confirmed by several observations. This is a bi-directional relation with a mutual influence, even when kidney disease occurs, and consequent alterations of intestinal microbiota and production of uremic toxins, that in turn worsens kidney disease and its progression. Our review analyzes the components of gut-kidney axis and relative clinical consequences. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  7. Magnocellular Neurons and Posterior Pituitary Function.

    PubMed

    Brown, Colin H

    2016-09-15

    The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  8. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    PubMed Central

    2010-01-01

    Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation

  9. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    PubMed

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  10. The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients.

    PubMed

    Massart, Annick; Pallier, Annaïck; Pascual, Julio; Viklicky, Ondrej; Budde, Klemens; Spasovski, Goce; Klinger, Marian; Sever, Mehmet Sukru; Sørensen, Søren Schwartz; Hadaya, Karine; Oberbauer, Rainer; Dudley, Christopher; De Fijter, Johan W; Yussim, Alexander; Hazzan, Marc; Wekerle, Thomas; Berglund, David; De Biase, Consuelo; Pérez-Sáez, María José; Mühlfeld, Anja; Orlando, Giuseppe; Clemente, Katia; Lai, Quirino; Pisani, Francesco; Kandus, Aljosa; Baas, Marije; Bemelman, Frederike; Ponikvar, Jadranka Buturovic; Mazouz, Hakim; Stratta, Piero; Subra, Jean-François; Villemain, Florence; Hoitsma, Andries; Braun, Laura; Cantarell, Maria Carmen; Colak, Hulya; Courtney, Aisling; Frasca, Giovanni Maria; Howse, Matthew; Naesens, Maarten; Reischig, Tomas; Serón, Daniel; Seyahi, Nurhan; Tugmen, Cem; Alonso Hernandez, Angel; Beňa, Luboslav; Biancone, Luigi; Cuna, Vania; Díaz-Corte, Carmen; Dufay, Alexandre; Gaasbeek, André; Garnier, Arnaud; Gatault, Philippe; Gentil Govantes, Miguel Angel; Glowacki, François; Gross, Oliver; Hurault de Ligny, Bruno; Huynh-Do, Uyen; Janbon, Bénédicte; Jiménez Del Cerro, Luis Antonio; Keller, Frieder; La Manna, Gaetano; Lauzurica, Ricardo; Le Monies De Sagazan, Hervé; Thaiss, Friedrich; Legendre, Christophe; Martin, Séverine; Moal, Marie-Christine; Noël, Christian; Pillebout, Evangeline; Piredda, Gian Benedetto; Puga, Ana Ramírez; Sulowicz, Wladyslaw; Tuglular, Serhan; Prokopova, Michaela; Chesneau, Mélanie; Le Moine, Alain; Guérif, Pierrick; Soulillou, Jean-Paul; Abramowicz, Marc; Giral, Magali; Racapé, Judith; Maggiore, Umberto; Brouard, Sophie; Abramowicz, Daniel

    2016-06-01

    Kidney recipients maintaining a prolonged allograft survival in the absence of immunosuppressive drugs and without evidence of rejection are supposed to be exceptional. The ERA-EDTA-DESCARTES working group together with Nantes University launched a European-wide survey to identify new patients, describe them and estimate their frequency for the first time. Seventeen coordinators distributed a questionnaire in 256 transplant centres and 28 countries in order to report as many 'operationally tolerant' patients (TOL; defined as having a serum creatinine <1.7 mg/dL and proteinuria <1 g/day or g/g creatinine despite at least 1 year without any immunosuppressive drug) and 'almost tolerant' patients (minimally immunosuppressed patients (MIS) receiving low-dose steroids) as possible. We reported their number and the total number of kidney transplants performed at each centre to calculate their frequency. One hundred and forty-seven questionnaires were returned and we identified 66 TOL (61 with complete data) and 34 MIS patients. Of the 61 TOL patients, 26 were previously described by the Nantes group and 35 new patients are presented here. Most of them were noncompliant patients. At data collection, 31/35 patients were alive and 22/31 still operationally tolerant. For the remaining 9/31, 2 were restarted on immunosuppressive drugs and 7 had rising creatinine of whom 3 resumed dialysis. Considering all patients, 10-year death-censored graft survival post-immunosuppression weaning reached 85% in TOL patients and 100% in MIS patients. With 218 913 kidney recipients surveyed, cumulative incidences of operational tolerance and almost tolerance were estimated at 3 and 1.5 per 10 000 kidney recipients, respectively. In kidney transplantation, operational tolerance and almost tolerance are infrequent findings associated with excellent long-term death-censored graft survival. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  11. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.

    PubMed

    Xu, Xiang; Huang, Enping; Luo, Baoying; Cai, Dunpeng; Zhao, Xu; Luo, Qin; Jin, Yili; Chen, Ling; Wang, Qi; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2018-06-25

    Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q

  12. Dual-energy precursor and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species.

    PubMed

    Ghosh, Debolina; LeVault, Kelsey R; Brewer, Gregory J

    2014-01-01

    To determine whether glutathione (GSH) loss or increased reactive oxygen species (ROS) are more important to neuron loss, aging, and Alzheimer's disease (AD), we stressed or boosted GSH levels in neurons isolated from aging 3xTg-AD neurons compared with those from age-matched nontransgenic (non-Tg) neurons. Here, using titrating with buthionine sulfoximine, an inhibitor of γ-glutamyl cysteine synthetase (GCL), we observed that GSH depletion increased neuronal death of 3xTg-AD cultured neurons at increasing rates across the age span, whereas non-Tg neurons were resistant to GSH depletion until old age. Remarkably, the rate of neuron loss with ROS did not increase in old age and was the same for both genotypes, which indicates that cognitive deficits in the AD model were not caused by ROS. Therefore, we targeted for neuroprotection activation of the redox sensitive transcription factor, nuclear erythroid-related factor 2 (Nrf2) by 18 alpha glycyrrhetinic acid to stimulate GSH synthesis through GCL. This balanced stimulation of a number of redox enzymes restored the lower levels of Nrf2 and GCL seen in 3xTg-AD neurons compared with those of non-Tg neurons and promoted translocation of Nrf2 to the nucleus. By combining the Nrf2 activator together with the NADH precursor, nicotinamide, we increased neuron survival against amyloid beta stress in an additive manner. These stress tests and neuroprotective treatments suggest that the redox environment is more important for neuron survival than ROS. The dual neuroprotective treatment with nicotinamide and an Nrf2 inducer indicates that these age-related and AD-related changes are reversible. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  14. Editorial: World Kidney Day 2016: Averting the Legacy of Kidney Disease--Focus on Childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-01-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for-date newborns have a relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults if they receive kidney replacement therapy including dialysis and transplantation, although only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers, and caregivers about the needs and possibilities surrounding kidney disease in childhood. Copyright © 2016. Published by Elsevier Inc.

  15. Neurons identified by NeuN/Fox-3 immunoreactivity have a novel distribution in the hamster and mouse suprachiasmatic nucleus.

    PubMed

    Morin, Lawrence P; Hefton, Sara; Studholme, Keith M

    2011-11-03

    The suprachiasmatic nucleus (SCN) has several structural characteristics and cell phenotypes shared across species. Here, we describe a novel feature of SCN anatomy that is seen in both hamster and mouse. Frozen sections through the SCN were obtained from fixed brains and stained for the presence of immunoreactivity to neuronal nuclear protein (NeuN-IR) using a mouse monoclonal antibody which is known to exclusively identify neurons. NeuN-IR did not identify all SCN neurons as medial NeuN-IR neurons were generally not present. In the hamster, NeuN-IR cells are present rostrally, scattered in the dorsal half of the nucleus. More caudally, the NeuN-IR cells are largely, but not exclusively, scattered inside the lateral and dorsolateral border. At mid- to mid-caudal SCN levels, a dense group of NeuN-IR cells extends from the dorsolateral border ventromedially to encompass the central subnucleus of the SCN (SCNce). The pattern is similar in the mouse SCN. NeuN-IR does not co-localize with either cholecystokinin- or vasoactive intestinal polypeptide, but does with vasopressin-IR in the caudal SCN. In the hamster SCNce, numerous cells contain both calbindin- and NeuN-IR. The distribution of NeuN-IR cells in the SCN is unique, especially with regard to its generally lateral location through the length of the nucleus. The distribution of NeuN-IR cells is not consistent with most schemas representing SCN organization or with terminology referring to its widely accepted subdivisions. NeuN has recently been identified as Fox-3 protein. Its function in the SCN is not known, nor is it known why a large proportion of SCN cells do not contain NeuN-IR. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Mononuclear phagocyte subpopulations in the mouse kidney.

    PubMed

    George, James F; Lever, Jeremie M; Agarwal, Anupam

    2017-04-01

    Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases.

  17. Force-related neuronal activity in two regions of the primate ventral premotor cortex.

    PubMed

    Hepp-Reymond, M C; Hüsler, E J; Maier, M A; Ql, H X

    1994-05-01

    Neuronal activity was recorded in the ventral premotor cortex of one monkey (Macaca fascicularis) trained to exert finely graded forces with thumb and index finger on a force sensor in a visuomotor step-tracking paradigm. Trials with two or three consecutive ramp-and-hold force steps were presented randomly. Most neurons displayed similar discharge patterns in the two- and three-step trials and were assigned to one of the following classes: phasic, phasic-tonic, tonic, decreasing, and mixed. For more than 50% of the neurons with tonic activity, positive or negative correlations between firing rate and force were statistically significant. The indices of force sensitivity were on average higher for the two-step than for the three-step trials, indicating that the correlations yielded linearity over only a limited force range. The force-related cells were located in two regions of the ventral premotor cortex. One group was ying rostrally within the inferior limb of the arcuate sulcus, from which microstimulation elicited movements of fingers and hand. In the other more caudal region, adjacent to the finger region of primary motor cortex, microstimulation was rarely effective, but all neurons had clear peripheral receptive fields on finger and hand. The data indicate that two populations of neurons, located in the ventral premotor cortex, are related to movement execution. Effective microstimulation also suggests that one of the populations has fairly direct access to the spinal motor apparatus.

  18. Dermatoglyphics in kidney diseases: a review.

    PubMed

    Wijerathne, Buddhika T B; Meier, Robert J; Salgado, Sujatha S; Agampodi, Suneth B

    2016-01-01

    Kidney diseases are becoming a major cause of global burden with high mortality and morbidity. The origins of most kidney diseases are known, but for some the exact aetiology is not yet understood. Dermatoglyphics is the scientific study of epidermal ridge patterns and it has been used as a non-invasive diagnostic tool to detect or predict different medical conditions that have foetal origin. However, there have been a limited number of studies that have evaluated a dermatoglyphic relationship in different kidney diseases. The aim of this review was to systematically identify, review and appraise available literature that evaluated an association of different dermatoglyphic variables with kidney diseases. This review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. The PubMed(®) (Medline), POPLINE, Cochrane Library and Trip Database and grey literature sources such as OpenGrey, Google Scholar, and Google were searched to earliest date to 17 April 2014. Of the 36 relevant publications, 15 were included in the review. Of these studies, there are five case reports, seven case series and three comparative studies. Possible association of dermatoglyphics with Wilms tumor (WT) had been evaluated in two comparative studies and one case series that found fewer whorls and a lower mean total ridge count (TRC). Another study evaluated adult polycystic kidney disease (APCD) type III that revealed lower TRC means in all cases. All other case series and case reports describe dermatoglyphics in various kidney disease such as acro-renal-ocular syndrome, potter syndrome, kabuki makeup syndrome, neurofaciodigitorenal syndrome, syndactyly type V, ring chromosome 13 syndrome, trisomy 13 syndrome and sirenomelia. It is evident that whorl pattern frequency and TRC have been used widely to investigate the uncertainty related to the origin of several kidney diseases such as WT and APCD type III. However, small sample sizes

  19. RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney

    PubMed Central

    Park, Daeui; Kim, Byoung-Chul; Kim, Chul-Hong; Choi, Yeon Ja; Jeong, Hyoung Oh; Kim, Mi Eun; Lee, Jun Sik; Park, Min Hi; Chung, Ki Wung; Kim, Dae Hyun; Lee, Jaewon; Im, Dong-Soon; Yoon, Seokjoo; Lee, Sunghoon; Yu, Byung Pal; Bhak, Jong; Chung, Hae Young

    2016-01-01

    Age-related dysregulated inflammation plays an essential role as a major risk factor underlying the pathophysiological aging process. To better understand how inflammatory processes are related to aging at the molecular level, we sequenced the transcriptome of young and aged rat kidney using RNA-Seq to detect known genes, novel genes, and alternative splicing events that are differentially expressed. By comparing young (6 months of age) and old (25 months of age) rats, we detected 722 up-regulated genes and 111 down-regulated genes. In the aged rats, we found 32 novel genes and 107 alternatively spliced genes. Notably, 6.6% of the up-regulated genes were related to inflammation (P < 2.2 × 10−16, Fisher exact t-test); 15.6% were novel genes with functional protein domains (P = 1.4 × 10−5); and 6.5% were genes showing alternative splicing events (P = 3.3 × 10−4). Based on the results of pathway analysis, we detected the involvement of inflammation-related pathways such as cytokines (P = 4.4 × 10−16), which were found up-regulated in the aged rats. Furthermore, an up-regulated inflammatory gene analysis identified the involvement of transcription factors, such as STAT4, EGR1, and FOSL1, which regulate cancer as well as inflammation in aging processes. Thus, RNA changes in these pathways support their involvement in the pro-inflammatory status during aging. We propose that whole RNA-Seq is a useful tool to identify novel genes and alternative splicing events by documenting broadly implicated inflammation-related genes involved in aging processes. PMID:27153548

  20. Dopamine neurons learn relative chosen value from probabilistic rewards

    PubMed Central

    Lak, Armin; Stauffer, William R; Schultz, Wolfram

    2016-01-01

    Economic theories posit reward probability as one of the factors defining reward value. Individuals learn the value of cues that predict probabilistic rewards from experienced reward frequencies. Building on the notion that responses of dopamine neurons increase with reward probability and expected value, we asked how dopamine neurons in monkeys acquire this value signal that may represent an economic decision variable. We found in a Pavlovian learning task that reward probability-dependent value signals arose from experienced reward frequencies. We then assessed neuronal response acquisition during choices among probabilistic rewards. Here, dopamine responses became sensitive to the value of both chosen and unchosen options. Both experiments showed also the novelty responses of dopamine neurones that decreased as learning advanced. These results show that dopamine neurons acquire predictive value signals from the frequency of experienced rewards. This flexible and fast signal reflects a specific decision variable and could update neuronal decision mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18044.001 PMID:27787196

  1. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos.

    PubMed

    Houl, Jerry H; Ng, Fanny; Taylor, Pete; Hardin, Paul E

    2008-12-18

    The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.

  2. MicroRNA profiling of human kidney cancer subtypes.

    PubMed

    Petillo, David; Kort, Eric J; Anema, John; Furge, Kyle A; Yang, Ximing J; Teh, Bin Tean

    2009-07-01

    Although the functions of most of the identified microRNAs (miRNAs) have yet to be determined, their use as potential biomarkers has been considered in several human diseases and cancers. In order to understand their role in renal tumorigenesis, we screened the expression levels of miRNAs in four subtypes of human renal neoplasms: clear cell, papillary, and chromophobe renal cell carcinomas (RCC) as well as benign renal oncocytomas. We found a unique miRNA signature for each subtype of renal tumor. Furthermore, we identified unique patterns of miRNA expression distinguishing clear cell RCC cases with favorable vs. unfavorable outcome. Specifically, we documented the overexpression of miRs 424 and 203 in clear cell RCC relative to papillary RCC, as well as the inversion of expression of miR-203 in the benign oncocytomas (where it is underexpressed relative to normal kidney) as compared to the malignant chromophobe RCC (where it is overexpressed relative to normal kidney). Our results further suggest that overexpression of S-has-miR-32 is associated with poor outcome. While previous studies have identified unique miRNA expression pattern distinguishing tumors from different anatomical locations, here we extend this principle to demonstrate the utility of miRNA expression profiling to identify a signature unique to various tumor subtypes at a single anatomic locus.

  3. Necroinflammation in Kidney Disease.

    PubMed

    Mulay, Shrikant R; Linkermann, Andreas; Anders, Hans-Joachim

    2016-01-01

    The bidirectional causality between kidney injury and inflammation remains an area of unexpected discoveries. The last decade unraveled the molecular mechanisms of sterile inflammation, which established danger signaling via pattern recognition receptors as a new concept of kidney injury-related inflammation. In contrast, renal cell necrosis remained considered a passive process executed either by the complement-related membrane attack complex, exotoxins, or cytotoxic T cells. Accumulating data now suggest that renal cell necrosis is a genetically determined and regulated process involving specific outside-in signaling pathways. These findings support a unifying theory in which kidney injury and inflammation are reciprocally enhanced in an autoamplification loop, referred to here as necroinflammation. This integrated concept is of potential clinical importance because it offers numerous innovative molecular targets for limiting kidney injury by blocking cell death, inflammation, or both. Here, the contribution of necroinflammation to AKI is discussed in thrombotic microangiopathies, necrotizing and crescentic GN, acute tubular necrosis, and infective pyelonephritis or sepsis. Potential new avenues are further discussed for abrogating necroinflammation-related kidney injury, and questions and strategies are listed for further exploration in this evolving field. Copyright © 2016 by the American Society of Nephrology.

  4. Mononuclear phagocyte subpopulations in the mouse kidney

    PubMed Central

    George, James F.; Lever, Jeremie M.

    2017-01-01

    Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases. PMID:28100500

  5. Evolution and Determinants of Health-Related Quality-of-Life in Kidney Transplant Patients Over the First 3 Years After Transplantation.

    PubMed

    Villeneuve, Claire; Laroche, Marie-Laure; Essig, Marie; Merville, Pierre; Kamar, Nassim; Coubret, Anne; Lacroix, Isabelle; Bouchet, Stéphane; Fruit, Dorothée; Marquet, Pierre; Rousseau, Annick

    2016-03-01

    Health-related quality of life (HRQOL) usually improved after kidney transplantation; however, a non-negligible number of patients did not benefit from transplantation in HRQOL. The aims of this cohort study were to describe the evolution of HRQOL in kidney transplant recipients to search for subgroups with distinct time profiles and to investigate these determinants. Three hundred thirty-seven adult patients were followed up from 1 to 36 months after kidney transplantation. Each patient completed repeated HRQOL assessments (median, 5; range, 2-9). K-means for longitudinal data was used to identify homogeneous clusters of HRQOL time profiles obtained for the mental and physical composite scores (MCS and PCS) and for the 8 dimensions of the short-form 36 scale. Covariates associated with these clusters were investigated using random forest analysis. Magnitude and shape of the HRQOL variations over time were investigated using linear regression mixed models. Two longitudinal clusters were identified for the time profiles of PCS and MCS. Patients classified in the higher cluster (ie, 60% of the population) exhibited a steady-state HRQOL, similar on average to the general population, whereas in the lower cluster, PCS and MCS scores were significantly lower than in the general population. Muscular weakness in the first year after transplantation explained 19% of the interpatient variability of PCS 3 months after transplantation, whereas associated with anxiety, it explained 24% of interpatient MCS variability. This work suggests to promote (i) physical rehabilitation programs after transplantation to curb the muscular loss and (ii) systematic attention to the patient's anxiety.

  6. Periodontitis associated with chronic kidney disease among Mexican Americans.

    PubMed

    Ioannidou, Effie; Hall, Yoshio; Swede, Helen; Himmelfarb, Jonathan

    2013-01-01

    In comparison to non-Hispanic whites, a number of health-care disparities, including poor oral health, have been identified among Hispanics in general and Mexican Americans in particular. We hypothesized that Mexican Americans with chronic kidney disease (CKD) would have higher prevalence of chronic periodontitis compared with Mexican Americans with normal kidney function, and that the level of kidney function would be inversely related to the prevalence of periodontal disease. We examined this hypothesis using the National Health and Nutrition Examination Survey 1988-1994 (NHANES III) data set. We followed the American Academy of Periodontology/Center for Disease Control and Prevention case definition for periodontitis. Glomerular filtration rate was estimated using the CKD-Epidemiology equation for Hispanic populations. The classification to CKD stages was based on the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Periodontitis prevalence increased across the kidney function groups showing a statistically significant dose-response association (P<0.001). Mexican Americans with reduced kidney function were twofold more likely to have periodontitis compared with Mexican Americans with normal kidney function after adjusting for potential confounders such as smoking, diabetes, and socioeconomic status. Multivariate adjusted odds ratio for periodontitis significantly increased with 1, 5, and 10 mL/minute estimated glomerular filtration rate reduction from the mean. This is the first report, to the best our knowledge, that showed an increase of periodontitis prevalence with decreased kidney function in this population. © 2012 American Association of Public Health Dentistry.

  7. Periodontitis associated with Chronic Kidney Disease among Mexican Americans

    PubMed Central

    Ioannidou, Effie; Hall, Yoshio; Swede, Helen; Himmelfarb, Jonathan

    2012-01-01

    Objective In comparison to non-Hispanic whites, a number of healthcare disparities, including poor oral health, have been identified among Hispanics in general and Mexican-Americans in particular. We hypothesized that Mexican-Americans with Chronic Kidney disease (CKD) would have higher prevalence of chronic periodontitis compared to Mexican Americans with normal kidney function, and that the level of kidney function would be inversely related to the prevalence of periodontal disease. Method We examined this hypothesis using the National Health and Nutrition Examination Survey 1988–1994 (NHANES III) dataset. We followed the American Academy of Periodontology (AAP)/Center for Disease Control and Prevention (CDC) case definition for periodontitis. Glomerular filtration rate was estimated using the CKD-Epidemiology (EPI) equation for Hispanic populations. The classification to CKD stages was based on the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Results Periodontitis prevalence increased across the kidney function groups showing a statistically significant dose-response association (p<0.001). Mexican Americans with reduced kidney function were 2-fold more likely to have periodontitis compared to Mexican Americans with normal kidney function after adjusting for potential confounders such as smoking, diabetes and socioeconomic status. Multivariate adjusted Odds Ratio for periodontitis significantly increased with 1, 5 and 10 mL/minute eGFR reduction from the mean. Conclusion This is the first report, to the best our knowledge, that showed an increase of periodontitis prevalence with decreased kidney function in this population. PMID:22775287

  8. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing

    PubMed Central

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H. Sophie; Wahis, Jérôme; Gouveia, Miriam da Silva; Tang, Yan; Ciobanu, Alexandru Cristian; del Rio, Rodrigo Triana; Roth, Lena C.; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L.; Mitre, Mariela; Froemke, Robert C.; Chao, Moses V.; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H.; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2017-01-01

    SUMMARY Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. PMID:26948889

  9. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    PubMed

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    PubMed

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.

  11. Diabetic Kidney Disease: A Syndrome Rather Than a Single Disease

    PubMed Central

    Piccoli, Giorgina B.; Grassi, Giorgio; Cabiddu, Gianfranca; Nazha, Marta; Roggero, Simona; Capizzi, Irene; De Pascale, Agostino; Priola, Adriano M.; Di Vico, Cristina; Maxia, Stefania; Loi, Valentina; Asunis, Anna M.; Pani, Antonello; Veltri, Andrea

    2015-01-01

    The term "diabetic kidney" has recently been proposed to encompass the various lesions, involving all kidney structures that characterize protean kidney damage in patients with diabetes. While glomerular diseases may follow the stepwise progression that was described several decades ago, the tenet that proteinuria identifies diabetic nephropathy is disputed today and should be limited to glomerular lesions. Improvements in glycemic control may have contributed to a decrease in the prevalence of glomerular lesions, initially described as hallmarks of diabetic nephropathy, and revealed other types of renal damage, mainly related to vasculature and interstitium, and these types usually present with little or no proteinuria. Whilst glomerular damage is the hallmark of microvascular lesions, ischemic nephropathies, renal infarction, and cholesterol emboli syndrome are the result of macrovascular involvement, and the presence of underlying renal damage sets the stage for acute infections and drug-induced kidney injuries. Impairment of the phagocytic response can cause severe and unusual forms of acute and chronic pyelonephritis. It is thus concluded that screening for albuminuria, which is useful for detecting "glomerular diabetic nephropathy", does not identify all potential nephropathies in diabetes patients. As diabetes is a risk factor for all forms of kidney disease, diagnosis in diabetic patients should include the same combination of biochemical, clinical, and imaging tests as employed in non-diabetic subjects, but with the specific consideration that chronic kidney disease (CKD) may develop more rapidly and severely in diabetic patients. PMID:26676663

  12. Living Donor Kidney Transplantation: Overcoming Disparities in Live Kidney Donation in the US—Recommendations from a Consensus Conference

    PubMed Central

    Rodrigue, James R.; Kazley, Abby Swanson; Mandelbrot, Didier A.; Hays, Rebecca; LaPointe Rudow, Dianne

    2015-01-01

    Despite its superior outcomes relative to chronic dialysis and deceased donor kidney transplantation, live donor kidney transplantation (LDKT) is less likely to occur in minorities, older adults, and poor patients than in those who are white, younger, and have higher household income. In addition, there is considerable geographic variability in LDKT rates. Concomitantly, in recent years, the rate of living kidney donation (LKD) has stopped increasing and is declining, after decades of consistent growth. Particularly noteworthy is the decline in LKD among black, younger, male, and lower-income adults. The Live Donor Community of Practice within the American Society of Transplantation, with financial support from 10 other organizations, held a Consensus Conference on Best Practices in Live Kidney Donation in June 2014. The purpose of this meeting was to identify LKD best practices and knowledge gaps that might influence LDKT, with a focus on patient and donor education, evaluation efficiencies, disparities, and systemic barriers to LKD. In this article, we discuss trends in LDKT/LKD and emerging novel strategies for attenuating disparities, and we offer specific recommendations for future clinical practice, education, research, and policy from the Consensus Conference Workgroup focused on disparities. PMID:25883072

  13. Apolipoprotein L1 and Chronic Kidney Disease Risk in Young Potential Living Kidney Donors.

    PubMed

    Locke, Jayme E; Sawinski, Deirdre; Reed, Rhiannon D; Shelton, Brittany; MacLennan, Paul A; Kumar, Vineeta; Mehta, Shikha; Mannon, Roslyn B; Gaston, Robert; Julian, Bruce A; Carr, John J; Terry, James G; Kilgore, Meredith; Massie, Allan B; Segev, Dorry L; Lewis, Cora E

    2018-06-01

    The aim of this study was to develop a novel chronic kidney disease (CKD) risk prediction tool for young potential living kidney donors. Living kidney donor selection practices have evolved from examining individual risk factors to a risk calculator incorporating multiple characteristics. Owing to limited long-term data and lack of genetic information, current risk tools lack precision among young potential living kidney donors, particularly African Americans (AAs). We identified a cohort of young adults (18-30 years) with no absolute contraindication to kidney donation from the longitudinal cohort study Coronary Artery Risk Development in Young Adults. Risk associations for CKD (estimated glomerular filtration rate <60 mL/min/1.73 m) were identified and assigned weighted points to calculate risk scores. A total of 3438 healthy adults were identified [mean age 24.8 years; 48.3% AA; median follow-up 24.9 years (interquartile range: 24.5-25.2)]. For 18-year olds, 25-year projected CKD risk varied by ethnicity and sex even without baseline clinical and genetic abnormalities; risk was 0.30% for European American (EA) women, 0.52% for EA men, 0.52% for AA women, 0.90% for AA men. Among 18-year-old AAs with apolipoprotein L1 gene (APOL1) renal-risk variants without baseline abnormalities, 25-year risk significantly increased: 1.46% for women and 2.53% for men; among those with 2 APOL1 renal-risk variants and baseline abnormalities, 25-year risk was higher: 2.53% to 6.23% for women and 4.35% to 10.58% for men. Young AAs were at highest risk for CKD, and APOL1 renal-risk variants drove some of this risk. Understanding the genetic profile of young AA potential living kidney donors in the context of baseline health characteristics may help to inform candidate selection and counseling.

  14. Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose.

    PubMed

    Morisset, M; Richard, C; Astier, C; Jacquenet, S; Croizier, A; Beaudouin, E; Cordebar, V; Morel-Codreanu, F; Petit, N; Moneret-Vautrin, D A; Kanny, G

    2012-05-01

    Carbohydrate-specific IgE antibodies present on nonprimate mammalian proteins were incriminated recently in delayed meat anaphylaxis. The aim of this study was to explore whether anaphylaxis to mammalian kidney is also associated with galactose-α-1,3-galactose (αGal)-specific IgE. Fourteen patients with anaphylaxis to pork or beef kidney underwent prick tests to meat and kidney. Some patients also underwent skin tests to Erbitux(®) (cetuximab). IgE antibodies to αGal, swine urine proteins, beef and pork meat, serum albumin proteins, cat, and rFel d 1 were measured by ImmunoCAP(®). The αGal levels were estimated in meats and kidney by ELISA inhibition assay. Cross-reactivity between αGal and pork kidney was studied with the ImmunoCAP(®) inhibition assay. Among the 14 patients, 12 presented with anaphylactic shock. Reactions occurred within 2 h from exposure in 67% of patients. Associated risk factors were observed in 10 cases, and alcohol was the main cofactor. Three patients underwent an oral challenge to pork kidney, and anaphylaxis occurred after ingestion of small quantities (1-2 g). Prick tests to kidney were positive in 54% of patients. All tested patients showed positive skin tests to Erbitux(®). All patients tested positive for IgE to αGal, with levels ranging from 0.4 to 294 kU/l. IgE binding to αGal was inhibited by raw pork kidney extract (mean, 77%; range, 55-87%), which showed a high amount of αGal determinants. Pork or beef kidney anaphylaxis is related to αGal IgE. Its peculiar severity could be due to an elevated content of αGal epitopes in kidney. © 2012 John Wiley & Sons A/S.

  15. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons

    PubMed Central

    Morsci, Natalia S.; Hall, David H.

    2016-01-01

    Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial

  16. Temporal Coupling with Cortex Distinguishes Spontaneous Neuronal Activities in Identified Basal Ganglia-Recipient and Cerebellar-Recipient Zones of the Motor Thalamus

    PubMed Central

    Nakamura, Kouichi C.; Sharott, Andrew; Magill, Peter J.

    2014-01-01

    Neurons of the motor thalamus mediate basal ganglia and cerebellar influences on cortical activity. To elucidate the net result of γ-aminobutyric acid-releasing or glutamatergic bombardment of the motor thalamus by basal ganglia or cerebellar afferents, respectively, we recorded the spontaneous activities of thalamocortical neurons in distinct identified “input zones” in anesthetized rats during defined cortical activity states. Unexpectedly, the mean rates and brain state dependencies of the firing of neurons in basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) were matched during slow-wave activity (SWA) and cortical activation. However, neurons were distinguished during SWA by their firing regularities, low-threshold spike bursts and, more strikingly, by the temporal coupling of their activities to ongoing cortical oscillations. The firing of neurons across the BZ was stronger and more precisely phase-locked to cortical slow (∼1 Hz) oscillations, although both neuron groups preferentially fired at the same phase. In contrast, neurons in BZ and CZ fired at different phases of cortical spindles (7–12 Hz), but with similar strengths of coupled firing. Thus, firing rates do not reflect the predicted inhibitory–excitatory imbalance across the motor thalamus, and input zone-specific temporal coding through oscillatory synchronization with the cortex could partly mediate the different roles of basal ganglia and cerebellum in behavior. PMID:23042738

  17. Effects of glutamic acid analogues on identifiable giant neurones, sensitive to beta-hydroxy-L-glutamic acid, of an African giant snail (Achatina fulica Férussac).

    PubMed Central

    Nakajima, T.; Nomoto, K.; Ohfune, Y.; Shiratori, Y.; Takemoto, T.; Takeuchi, H.; Watanabe, K.

    1985-01-01

    The effects of the seven glutamic acid analogues, alpha-kainic acid, alpha-allo-kainic acid, domoic acid, erythro-L-tricholomic acid, DL-ibotenic acid, L-quisqualic acid and allo-gamma-hydroxy-L-glutamic acid were examined on six identifiable giant neurones of an African giant snail (Achatina fulica Férussac). The neurones studied were: PON (periodically oscillating neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone), RAPN (right anterior pallial neurone), FAN (frequently autoactive neurone) and v-RCDN (ventral-right cerebral distinct neurone). Of these, d-RPLN and RAPN were excited by the two isomers (erythro- and threo-) of beta-hydroxy-L-glutamic acid (L-BHGA), whereas PON, VIN, FAN and v-RCDN were inhibited. L-Glutamic acid (L-Glu) had virtually no effect on these neurones. alpha-Kainic acid and domoic acid showed marked excitatory effects, similar to those of L-BHGA, on d-RPLN and RAPN. Their effective potency quotients (EPQs), relative to the more effective isomer of L-BHGA were: 0.3 for both substances on d-RPLN, and 1 for alpha-kainic acid and 3-1 for domoic acid on RAPN. alpha-Kainic acid also had excitatory effects on FAN and v-RCDN (EPQ for both: 0.3), which were inhibited by L-BHGA but excited by gamma-aminobutyric acid (GABA). Erythro-L-tricholomic acid showed marked effects, similar to those of L-BHGA, on VIN (EPQ: 0.3) and RAPN (EPQ: 3-1), but produced weaker effects on PON and d-RPLN (EPQ: 0.1). DL-Ibotenic acid produced marked effects, similar to those of L-BHGA, on PON, VIN (EPQ for both: 1) and RAPN (EPQ: 1-0.3), but had weak effects on d-RPLN (EPQ: less than 0.1) and FAN (EPQ: 0.1). It had excitatory effects on v-RCDN (EPQ: 0.1). This neurone was inhibited by L-BHGA but excited by GABA. L-Quisqualic acid showed the same effects as L-BHGA on all of the neurones examined (EPQ range 30-0.1). It was the most potent of the compounds tested on RAPN (EPQ: 30-10), FAN (EPQ: 30) and v-RCDN (EPQ: 3). alpha

  18. Biomarkers and surrogate endpoints in kidney disease.

    PubMed

    Hartung, Erum A

    2016-03-01

    Kidney disease and its related comorbidities impose a large public health burden. Despite this, the number of clinical trials in nephrology lags behind many other fields. An important factor contributing to the relatively slow pace of nephrology trials is that existing clinical endpoints have significant limitations. "Hard" endpoints for chronic kidney disease, such as progression to end-stage renal disease, may not be reached for decades. Traditional biomarkers, such as serum creatinine in acute kidney injury, may lack sensitivity and predictive value. Finding new biomarkers to serve as surrogate endpoints is therefore an important priority in kidney disease research and may help to accelerate nephrology clinical trials. In this paper, I first review key concepts related to the selection of clinical trial endpoints and discuss statistical and regulatory considerations related to the evaluation of biomarkers as surrogate endpoints. This is followed by a discussion of the challenges and opportunities in developing novel biomarkers and surrogate endpoints in three major areas of nephrology research: acute kidney injury, chronic kidney disease, and autosomal dominant polycystic kidney disease.

  19. Biomarkers and surrogate endpoints in kidney disease

    PubMed Central

    2015-01-01

    Kidney disease and its related comorbidities impose a large public health burden. Despite this, the number of clinical trials in nephrology lags behind many other fields. An important factor contributing to the relatively slow pace of nephrology trials is that existing clinical endpoints have significant limitations. “Hard” endpoints for chronic kidney disease, such as progression to end-stage renal disease, may not be reached for decades. Traditional biomarkers, such as serum creatinine in acute kidney injury, may lack sensitivity and predictive value. Finding new biomarkers to serve as surrogate endpoints is therefore an important priority in kidney disease research and may help to accelerate nephrology clinical trials. In this paper, I first review key concepts related to the selection of clinical trial endpoints and discuss statistical and regulatory considerations related to the evaluation of biomarkers as surrogate endpoints. This is followed by a discussion of the challenges and opportunities in developing novel biomarkers and surrogate endpoints in three major areas of nephrology research: acute kidney injury, chronic kidney disease, and autosomal dominant polycystic kidney disease. PMID:25980469

  20. Overcoming Barriers in Kidney Health-Forging a Platform for Innovation.

    PubMed

    Linde, Peter G; Archdeacon, Patrick; Breyer, Matthew D; Ibrahim, Tod; Inrig, Jula K; Kewalramani, Reshma; Lee, Celeste Castillo; Neuland, Carolyn Y; Roy-Chaudhury, Prabir; Sloand, James A; Meyer, Rachel; Smith, Kimberly A; Snook, Jennifer; West, Melissa; Falk, Ronald J

    2016-07-01

    Innovation in kidney diseases is not commensurate with the effect of these diseases on human health and mortality or innovation in other key therapeutic areas. A primary cause of the dearth in innovation is that kidney diseases disproportionately affect a demographic that is largely disenfranchised, lacking sufficient advocacy, public attention, and funding. A secondary and likely consequent cause is that the existing infrastructure supporting nephrology research pales in comparison with those for other internal medicine specialties, especially cardiology and oncology. Citing such inequities, however, is not enough. Changing the status quo will require a coordinated effort to identify and redress the existing deficits. Specifically, these deficits relate to the need to further develop and improve the following: understanding of the disease mechanisms and pathophysiology, patient engagement and activism, clinical trial infrastructure, and investigational clinical trial designs as well as coordinated efforts among critical stakeholders. This paper identifies potential solutions to these barriers, some of which are already underway through the Kidney Health Initiative. The Kidney Health Initiative is unique and will serve as a current and future platform from which to overcome these barriers to innovation in nephrology. Copyright © 2016 by the American Society of Nephrology.

  1. Novel animal model defines genetic contributions for neuron-to-neuron transfer of α-synuclein.

    PubMed

    Tyson, Trevor; Senchuk, Megan; Cooper, Jason F; George, Sonia; Van Raamsdonk, Jeremy M; Brundin, Patrik

    2017-08-08

    Cell-to-cell spreading of misfolded α-synuclein (α-syn) is suggested to contribute to the progression of neuropathology in Parkinson's disease (PD). Compelling evidence supports the hypothesis that misfolded α-syn transmits from neuron-to-neuron and seeds aggregation of the protein in the recipient cells. Furthermore, α-syn frequently appears to propagate in the brains of PD patients following a stereotypic pattern consistent with progressive spreading along anatomical pathways. We have generated a C. elegans model that mirrors this progression and allows us to monitor α-syn neuron-to-neuron transmission in a live animal over its lifespan. We found that modulation of autophagy or exo/endocytosis, affects α-syn transfer. Furthermore, we demonstrate that silencing C. elegans orthologs of PD-related genes also increases the accumulation of α-syn. This novel worm model is ideal for screening molecules and genes to identify those that modulate prion-like spreading of α-syn in order to target novel strategies for disease modification in PD and other synucleinopathies.

  2. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    USDA-ARS?s Scientific Manuscript database

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  3. The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats

    PubMed Central

    Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald

    2003-01-01

    Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729

  4. Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory.

    PubMed

    Shih, Y-H; Tsai, S-F; Huang, S-H; Chiang, Y-T; Hughes, M W; Wu, S-Y; Lee, C-W; Yang, T-T; Kuo, Y-M

    2016-05-13

    Hypertension is associated with neurodegenerative diseases and cognitive impairment. Several studies using spontaneous hypertensive rats to study the effect of hypertension on memory performance and adult hippocampal neurogenesis have reached inconsistent conclusions. The contradictory findings may be related to the genetic variability of spontaneous hypertensive rats due to the conventional breeding practices. The objective of this study is to examine the effect of hypertension on hippocampal structure and function in isogenic mice. Hypertension was induced by the '2 kidneys, 1 clip' method (2K1C) which constricted one of the two renal arteries. The blood pressures of 2K1C mice were higher than the sham group on post-operation day 7 and remained high up to day 28. Mice with 2K1C-induced hypertension had impaired long-term, but not short-term, memory. Dendritic complexity of CA1 neurons and hippocampal neurogenesis were reduced by 2K1C-induced hypertension on post-operation day 28. Furthermore, 2K1C decreased the levels of hippocampal brain-derived neurotrophic factor, while blood vessel density and activation status of astrocytes and microglia were not affected. In conclusion, hypertension impairs hippocampus-associated long-term memory, dendritic arborization and neurogenesis, which may be caused by down-regulation of brain-derived neurotrophic factor signaling pathways. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Loss of neuronal 3D chromatin organization causes transcriptional and behavioural deficits related to serotonergic dysfunction.

    PubMed

    Ito, Satomi; Magalska, Adriana; Alcaraz-Iborra, Manuel; Lopez-Atalaya, Jose P; Rovira, Victor; Contreras-Moreira, Bruno; Lipinski, Michal; Olivares, Roman; Martinez-Hernandez, Jose; Ruszczycki, Blazej; Lujan, Rafael; Geijo-Barrientos, Emilio; Wilczynski, Grzegorz M; Barco, Angel

    2014-07-18

    The interior of the neuronal cell nucleus is a highly organized three-dimensional (3D) structure where regions of the genome that are linearly millions of bases apart establish sub-structures with specialized functions. To investigate neuronal chromatin organization and dynamics in vivo, we generated bitransgenic mice expressing GFP-tagged histone H2B in principal neurons of the forebrain. Surprisingly, the expression of this chimeric histone in mature neurons caused chromocenter declustering and disrupted the association of heterochromatin with the nuclear lamina. The loss of these structures did not affect neuronal viability but was associated with specific transcriptional and behavioural deficits related to serotonergic dysfunction. Overall, our results demonstrate that the 3D organization of chromatin within neuronal cells provides an additional level of epigenetic regulation of gene expression that critically impacts neuronal function. This in turn suggests that some loci associated with neuropsychiatric disorders may be particularly sensitive to changes in chromatin architecture.

  6. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS.

    PubMed

    Turlejski, Kris; Djavadian, Ruzanna

    2002-01-01

    In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.

  7. Relating the "mirrorness" of mirror neurons to their origins.

    PubMed

    Kilner, James M; Friston, Karl J

    2014-04-01

    Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.

  8. A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium.

    PubMed

    Leffler, Andreas; Linte, Ramona Madalina; Nau, Carla; Reeh, Peter; Babes, Alexandru

    2007-07-01

    Heat-activated ion channels from the vanilloid-type TRP group (TRPV1-4) seem to be central for heat-sensitivity of nociceptive sensory neurons. Displaying a high-threshold (> 52 degrees C) for activation, TRPV2 was proposed to act as a sensor for intense noxious heat in mammalian sensory neurons. However, although TRPV2 is expressed in a distinct population of thinly myelinated primary afferents, a widespread expression in a variety of neuronal and non-neuronal tissues suggests a more diverse physiological role of TRPV2. In its role as a heat-sensor, TRPV2 has not been thoroughly characterized in terms of biophysical and pharmacological properties. In the present study, we demonstrate that the features of heterologously expressed rat TRPV2 closely resemble those of high-threshold heat-evoked currents in medium- and large-sized capsaicin-insensitive rat dorsal root ganglion (DRG) neurons. Both in TRPV2-expressing human embryonic kidney (HEK)293t cells and in DRGs, high-threshold heat-currents were sensitized by repeated activation and by the TRPV1-3 agonist, 2-aminoethoxydiphenyl borate (2-APB). In addition to a previously described block by ruthenium red, we identified the trivalent cations, lanthanum (La(3+)) and gadolinium (Gd(3+)) as potent blockers of TRPV2. Thus, we present a new pharmacological tool to distinguish between heat responses of TRPV2 and the closely related capsaicin-receptor, TRPV1, which is strongly sensitized by trivalent cations. We demonstrate that self-sensitization of heat-evoked currents through TRPV2 does not require extracellular calcium and that TRPV2 can be activated in cell-free membrane patches in the outside-out configuration. Taken together our results provide new evidence for a role of TRPV2 in mediating high-threshold heat responses in a subpopulation of mammalian sensory neurons.

  9. Superior Cervical Ganglia Neurons Induce Foxp3+ Regulatory T Cells via Calcitonin Gene-Related Peptide.

    PubMed

    Szklany, Kirsten; Ruiter, Evelyn; Mian, Firoz; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Karimi, Khalil

    2016-01-01

    The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body's internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.

  10. Identification of polypeptides with selective affinity to intact mouse cerebellar granule neurons from a random peptide-presenting phage library.

    PubMed

    Hou, Sheng T; Dove, Mike; Anderson, Erica; Zhang, Jiangbing; MacKenzie, C Roger

    2004-09-30

    Targeting of postmitotic neurons selectively for gene delivery poses a challenge. One way to achieve such a selective targeting is to link the gene delivery vector with small ligand-binding polypeptides which have selective affinity to intact neurons. In order to identify such novel neuron selective polypeptides, we screened a phage-display library displaying random 12-mer polypeptides and subtractively bio-panned for clones having selectivity towards cultured mouse cerebellar granule neurons. The selected phage clones were amplified and sequenced. Affinities of these clones to neurons were determined by the visible presence or absence of fluorescence of phage particles as detected by immunocytochemistry using an antibody to M-13 phage. This affinity was further qualified by how much phage was bound, and where in or on the cell it tended to accumulate. The selectivity of binding to neurons was determined by the negative binding of these clones to several cultured non-neuronal cells, including, primary glial cells, NT2 cells, human embryonic kidney 293 cells, neuroblastoma cells, and mouse 3T3 cells. Among the 46 clones that we have sequenced and characterized, four clones appeared to have excellent selectivity in binding to neurons. Homology comparison of these polypeptides revealed that three of them contained a consensus D(E)-W(F)-I(N)-D-W motif. This motif was also present in the Bdm1 gene product which was predominantly expressed in postnatal brains. Further characterizations of these polypeptides are required to reveal the utilities of these peptides to function as an effective linker to facilitate gene transfer selectively to neurons.

  11. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    PubMed

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Influence of age-related changes in nitric oxide synthase-expressing neurons in the rat supraoptic nucleus on inhibition of salivary secretion.

    PubMed

    Tanaka, Takehiko; Tamada, Yoshitaka; Suwa, Fumihiko

    2008-02-01

    Age-related inhibition of salivary secretion has been demonstrated in rats, and the nitric oxide (NO) present in the supraoptic nucleus (SON) and the medial septal area has been reported to play an inhibitory role in the regulation of salivary secretion. In the present study, we investigated the age-related changes occurring in the NO synthase (NOS)-expressing neurons in the SON, which is related to the production of NO, and discussed the interrelation between the age-related changes in the NOS-expressing neurons and the age-related inhibition of salivary secretion. Nissl staining and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were performed for young adult and aged rats. Quantitative analysis was also performed using the Nissl-stained and NADPH-d-positive neurons. Although the numbers of the Nissl-stained neurons did not change, significant age-related increases were detected in cell number, cell size and reactive density of the NADPH-d-positive neurons. Therefore, the production of NO in the SON neurons increased with age. We concluded that the age-related increase in the NO in the SON might be a factor that contributes to the age-related inhibition of salivary secretion.

  13. Multiple New Loci Associated with Kidney Function and Chronic Kidney Disease: The CKDGen consortium

    PubMed Central

    Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A.; Fuchsberger, Christian; Olden, Matthias; Glazer, Nicole L.; Parsa, Afshin; Gao, Xiaoyi; Yang, Qiong; Smith, Albert V.; O’Connell, Jeffrey R.; Li, Man; Schmidt, Helena; Tanaka, Toshiko; Isaacs, Aaron; Ketkar, Shamika; Hwang, Shih-Jen; Johnson, Andrew D.; Dehghan, Abbas; Teumer, Alexander; Paré, Guillaume; Atkinson, Elizabeth J.; Zeller, Tanja; Lohman, Kurt; Cornelis, Marilyn C.; Probst-Hensch, Nicole M.; Kronenberg, Florian; Tönjes, Anke; Hayward, Caroline; Aspelund, Thor; Eiriksdottir, Gudny; Launer, Lenore; Harris, Tamara B.; Rapmersaud, Evadnie; Mitchell, Braxton D.; Boerwinkle, Eric; Struchalin, Maksim; Cavalieri, Margherita; Singleton, Andrew; Giallauria, Francesco; Metter, Jeffery; de Boer, Ian; Haritunians, Talin; Lumley, Thomas; Siscovick, David; Psaty, Bruce M.; Zillikens, M. Carola; Oostra, Ben A.; Feitosa, Mary; Province, Michael; Levy, Daniel; de Andrade, Mariza; Turner, Stephen T.; Schillert, Arne; Ziegler, Andreas; Wild, Philipp S.; Schnabel, Renate B.; Wilde, Sandra; Muenzel, Thomas F.; Leak, Tennille S; Illig, Thomas; Klopp, Norman; Meisinger, Christa; Wichmann, H.-Erich; Koenig, Wolfgang; Zgaga, Lina; Zemunik, Tatijana; Kolcic, Ivana; Minelli, Cosetta; Hu, Frank B.; Johansson, Åsa; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Schreiber, Stefan; Aulchenko, Yurii S; Rivadeneira, Fernando; Uitterlinden, Andre G; Hofman, Albert; Imboden, Medea; Nitsch, Dorothea; Brandstätter, Anita; Kollerits, Barbara; Kedenko, Lyudmyla; Mägi, Reedik; Stumvoll, Michael; Kovacs, Peter; Boban, Mladen; Campbell, Susan; Endlich, Karlhans; Völzke, Henry; Kroemer, Heyo K.; Nauck, Matthias; Völker, Uwe; Polasek, Ozren; Vitart, Veronique; Badola, Sunita; Parker, Alexander N.; Ridker, Paul M.; Kardia, Sharon L. R.; Blankenberg, Stefan; Liu, Yongmei; Curhan, Gary C.; Franke, Andre; Rochat, Thierry; Paulweber, Bernhard; Prokopenko, Inga; Wang, Wei; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Shlipak, Michael G.; van Duijn, Cornelia M.; Borecki, Ingrid; Krämer, Bernhard K.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Witteman, Jacqueline C.; Pramstaller, Peter P.; Rettig, Rainer; Hastie, Nick; Chasman, Daniel I.; Kao, W. H.; Heid, Iris M.; Fox, Caroline S.

    2010-01-01

    Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 Caucasian individuals from 20 population-based studies to identify new susceptibility loci for reduced renal function, estimated by serum creatinine (eGFRcrea), cystatin C (eGFRcys), and CKD (eGFRcrea <60 ml/min/1.73m2; n = 5,807 CKD cases). Follow-up of the 23 genome-wide significant loci (p<5×10−8) in 22,982 replication samples identified 13 novel loci for renal function and CKD (in or near LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2, and SLC7A9) and 7 creatinine production and secretion loci (CPS1, SLC22A2, TMEM60, WDR37, SLC6A13, WDR72, BCAS3). These results further our understanding of biologic mechanisms of kidney function by identifying loci potentially influencing nephrogenesis, podocyte function, angiogenesis, solute transport, and metabolic functions of the kidney. PMID:20383146

  14. Is there a differential strength of specific HLA mismatches in kidney transplants?

    PubMed

    Sasaki, N; Idica, A; Terasaki, P

    2008-05-01

    In this article we attempted to identify whether there is a specific mismatched antigen that might be detrimental to kidney transplant outcome. The frequency of function versus failure of transplant cases was tallied within subpopulations among a subset of the 2006 United Network for Organ Sharing transplant dataset. We examined 7998 cadaveric and 11,420 living donor kidney transplants that were mismatched for a single class I antigen. When tested by five different criteria, the results were relatively similar for the HLA class I, A- and B-locus mismatches. HLA A1 was identified as the single most dominant immunogenic mismatch. However, when the P values were multiplied by 68, the number of comparisons, A1 was only marginally significant. We concluded that at least for class I specificities, the 68 specificities were about equal immunogenicity in kidney transplantation.

  15. Herbal and dietary supplements related to diarrhea and acute kidney injury: a case report.

    PubMed

    Wanitsriphinyo, Suphamat; Tangkiatkumjai, Mayuree

    2017-03-01

    Background There is very little evidence relating to the association of herbal medicine with diarrhea and the development of acute kidney injury (AKI). This study reports a case of diarrhea-induced AKI, possibly related to an individual ingesting copious amounts of homemade mixed fruit and herb puree. Case presentation A 45-year-old Thai man with diabetes had diarrhea for 2 days, as a result of taking high amounts of a puree made up of eight mixed fruits and herbs over a 3-day period. He developed dehydration and stage 2 AKI, with a doubling of his serum creatinine. He had been receiving enalapril, as a prescribed medication, over one year. After he stopped taking both the puree and enalapril, and received fluid replacement therapy, within a week his serum creatinine had gradually decreased. The combination of puree, enalapril and AKI may also have induced hyperkalemia in this patient. Furthermore, the patient developed hyperphosphatemia due to his worsening kidney function, exacerbated by regularly taking some dietary supplements containing high levels of phosphate. His serum levels of potassium and phosphate returned to normal within a week, once the patient stopped both the puree and all dietary supplements, and had begun receiving treatment for hyperkalemia. Results The mixed fruit and herb puree taken by this man may have led to his diarrhea due to its effect; particularly if the patient was taking a high concentration of such a drink. Both the puree and enalapril are likely to attenuate the progression of kidney function. The causal relationship between the puree and AKI was probable (5 scores) assessed by the modified Naranjo algorithm. This is the first case report, as far as the authors are aware, relating the drinking of a mixed fruit and herbal puree to diarrhea and AKI in a patient with diabetes. Conclusions This case can alert health care providers to the possibility that herbal medicine could induce diarrhea and develop acute kidney injury.

  16. No relative expansion of the number of prefrontal neurons in primate and human evolution.

    PubMed

    Gabi, Mariana; Neves, Kleber; Masseron, Carolinne; Ribeiro, Pedro F M; Ventura-Antunes, Lissa; Torres, Laila; Mota, Bruno; Kaas, Jon H; Herculano-Houzel, Suzana

    2016-08-23

    Human evolution is widely thought to have involved a particular expansion of prefrontal cortex. This popular notion has recently been challenged, although controversies remain. Here we show that the prefrontal region of both human and nonhuman primates holds about 8% of cortical neurons, with no clear difference across humans and other primates in the distribution of cortical neurons or white matter cells along the anteroposterior axis. Further, we find that the volumes of human prefrontal gray and white matter match the expected volumes for the number of neurons in the gray matter and for the number of other cells in the white matter compared with other primate species. These results indicate that prefrontal cortical expansion in human evolution happened along the same allometric trajectory as for other primate species, without modification of the distribution of neurons across its surface or of the volume of the underlying white matter. We thus propose that the most distinctive feature of the human prefrontal cortex is its absolute number of neurons, not its relative volume.

  17. Functional analysis of neuronal microRNAs in Caenorhabditis elegans dauer formation by combinational genetics and Neuronal miRISC immunoprecipitation.

    PubMed

    Than, Minh T; Kudlow, Brian A; Han, Min

    2013-06-01

    Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic "enhancer" approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It

  18. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons.

    PubMed

    Wainger, Brian J; Kiskinis, Evangelos; Mellin, Cassidy; Wiskow, Ole; Han, Steve S W; Sandoe, Jackson; Perez, Numa P; Williams, Luis A; Lee, Seungkyu; Boulting, Gabriella; Berry, James D; Brown, Robert H; Cudkowicz, Merit E; Bean, Bruce P; Eggan, Kevin; Woolf, Clifford J

    2014-04-10

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1(+/+) stem cell line do not display the hyperexcitability phenotype. SOD1(A4V/+) ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.

    PubMed

    Ghosh, Debolina; Levault, Kelsey R; Brewer, Gregory J

    2014-08-01

    Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Kidney biomimicry--a rediscovered scientific field that could provide hope to patients with kidney disease.

    PubMed

    Stenvinkel, Peter; Johnson, Richard J

    2013-11-01

    Most studies on kidney disease have relied on classic experimental studies in mice and rats or clinical studies in humans. From such studies much understanding of the physiology and pathophysiology of kidney disease has been obtained. However, breakthroughs in the prevention and treatment of kidney diseases have been relatively few, and new approaches to fight kidney disease are needed. Here we discuss kidney biomimicry as a new approach to understand kidney disease. Examples are given of how various animals have developed ways to prevent or respond to kidney failure, how to protect themselves from hypoxia or oxidative stress and from the scourge of hyperglycemia. We suggest that investigation of evolutionary biology and comparative physiology might provide new insights for the prevention and treatment of kidney disease. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Bioengineering Kidneys for Transplantation

    PubMed Central

    Madariaga, Maria Lucia L.; Ott, Harald C.

    2014-01-01

    One in ten Americans suffer from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the reach of transplantation is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need. PMID:25217267

  2. Living-Donor Kidney Transplantation: Reducing Financial Barriers to Live Kidney Donation—Recommendations from a Consensus Conference

    PubMed Central

    Rudow, Dianne LaPointe; Milton, Jennifer; Rodrigue, James R.; Schold, Jesse D.; Hays, Rebecca

    2015-01-01

    Live-donor kidney transplantation (LDKT) is the best treatment for eligible people with late-stage kidney disease. Despite this, living kidney donation rates have declined in the United States in recent years. A potential source of this decline is the financial impact on potential and actual living kidney donors (LKDs). Recent evidence indicates that the economic climate may be associated with the decline in LDKT and that there are nontrivial financial ramifications for some LKDs. In June 2014, the American Society of Transplantation’s Live Donor Community of Practice convened a Consensus Conference on Best Practices in Live Kidney Donation. The conference included transplant professionals, patients, and other key stakeholders (with the financial support of 10 other organizations) and sought to identify best practices, knowledge gaps, and opportunities pertaining to living kidney donation. This workgroup was tasked with exploring systemic and financial barriers to living kidney donation. The workgroup reviewed literature that assessed the financial effect of living kidney donation, analyzed employment and insurance factors, discussed international models for addressing direct and indirect costs faced by LKDs, and summarized current available resources. The workgroup developed the following series of recommendations to reduce financial and systemic barriers and achieve financial neutrality for LKDs: (1) allocate resources for standardized reimbursement of LKDs' lost wages and incidental costs; (2) pass legislation to offer employment and insurability protections to LKDs; (3) create an LKD financial toolkit to provide standardized, vetted education to donors and providers about options to maximize donor coverage and minimize financial effect within the current climate; and (4) promote further research to identify systemic barriers to living donation and LDKT to ensure the creation of mitigation strategies. PMID:26002904

  3. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    PubMed

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  4. Health-related quality of life in Hispanics with chronic kidney disease

    PubMed Central

    Porter, Anna C.; Vijil, Julio C.; Unruh, Mark; Lora, Claudia; Lash, James P.

    2012-01-01

    Health-related quality of life (HRQOL) is an important patient-reported outcome that has gained attention in research and clinical practice. In recent years, reports of chronic kidney disease (CKD) have increased. However, not much information is available for Hispanics with CKD, a group whose rates of incidents are on the rise. This review discusses the measurement of HRQOL in CKD, with a particular focus on issues pertaining to Hispanics. Future research directions also are discussed. PMID:20303462

  5. Dual Kidney Transplantation Offers a Valuable Source for Kidneys With Good Functional Outcome.

    PubMed

    Khalid, U; Asderakis, A; Rana, T; Szabo, L; Chavez, R; Ilham, M A; Ablorsu, E

    2016-01-01

    Reasons for declining kidney donors are older age, with or without, hypertension, kidney dysfunction, and diabetes. Implantation of both kidneys into a single recipient from such donors may improve their acceptability and outcome. Patients who underwent dual kidney transplantation (DKT) between June 2010 and May 2014 were identified from a prospectively maintained database. Single kidney transplantations (SKT) with matching donor criteria were also identified. Donors considered for DKT were the following: DBDs >70 years of age with diabetes and/or hypertension; DCDs >65 years of age with diabetes and/or hypertension; and DCDs >70 years of age. Over a 4-year period, 34 patients underwent adult DKT, and 51, with matching donor criteria, underwent SKT. The median estimated glomerular filtration rate (eGFR) at 12 and 36 months of DKT was 49 (range, 5-79) and 42 (range, 15-85) mL/min compared with SKT of 35 (range, 10-65) and 32 (range, 6-65), respectively. The 1-year graft survival for DKT and SKT was 88% and 96% (P = .52), and patient survival was 94% and 98%, respectively (P = .12). Median hospital stay, intensive care unit admission, and wound complications were more frequent in the DKT group. Graft function following DKT is significantly better compared with matched criteria SKT; graft and patient survival are similar. There is an increased rate of complications following DKT, with longer hospital stay and ICU admission. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Kidney toxicity related to herbs and dietary supplements: Online table of case reports. Part 3 of 5 series.

    PubMed

    Brown, Amy Christine

    2017-09-01

    No tabular summary of potentially life-threatening, kidney-toxic dietary supplements (DS; includes herbs) based on PubMed case reports is currently available online and continually updated to forewarn United States consumers, clinicians, and companies manufacturing DS. The purpose of this review was to create an online research summary table of kidney toxicity case reports related to DS. Documented PubMed case reports (1966 to May 2016, and cross-referencing) of DS appearing to contribute to kidney toxicity were listed in "DS Toxic Tables." Keywords included "herb" or "dietary supplement" combined with "kidney" to generate an overview list, and possibly "toxicity" to narrow the selection. Case reports were excluded if they involved herb combinations (some exceptions), Chinese herb mixtures, teas of mixed herb contents, mushrooms, poisonous plants, self-harm, excessive doses (except vitamins/minerals), legal or illegal drugs, drug-herbal interactions, and confounders of drugs or diseases. Since commercial DS often include a combination of ingredients, they were treated separately; so were foods. A few foods with kidney-toxic effects were listed in a fourth table. The spectrum of herbal or DS-induced kidney injuries included kidney stones, nephritis, nephrotic syndrome, necrosis, acute kidney injury (AKI; previously known as acute renal failure [ARF]), chronic kidney disease, kidney transplant, and death. Approximately 7 herbs (minus 4 no longer for sale) and 10 dietary supplements (minus 3 excluded due to excessive doses + germanium that is no longer sold) have been related to kidney injury case reports published in PubMed (+crosslisting) in the last 50 + years (1966 to May 2016). The implicated herbs include Chinese yew (Taxus celbica) extract, impila (Callilepis laureola), morning cypress (Cupressus funebris Endl), St. John's wort (Hypericum perforatum), thundergod vine (Tripterygium wilfordii hook F), tribulus (Tribulus terrestris) and wormwood (Artemisia

  7. Perioperative Acute Kidney Injury: Prevention, Early Recognition, and Supportive Measures.

    PubMed

    Romagnoli, Stefano; Ricci, Zaccaria; Ronco, Claudio

    2018-06-26

    Acute kidney injury (AKI) is a frequent complication of both cardiac and major non-cardiac surgery. AKI is independently associated with morbidity, mortality, and long-term adverse events including chronic kidney disease in postsurgical patients. Since specific treatment options for kidney failure are very limited, early identification, diagnosis, and renal support strategies are key steps to improve patients' outcome. According to current Kidney Disease: Improving Global Outcomes (KDIGO) guidelines, AKI diagnosis is based on 2 functional markers, serum creatinine increase and urine output decrease, that are not renal-specific and have important limitations. However, preoperative risk stratification for postoperative AKI and/or early diagnosis after surgery could be the best way to apply preventive or timely supportive therapeutic measures. Clinical prediction scores, renal functional reserve assessment, and new biomarkers of kidney stress (suppression of tumorigenicity-2, insulin-like growth factor binding protein-7, tissue inhibitor metalloproteinase-2) may help the clinicians to identify patients at risk of AKI and that could benefit from the application of nephroprotective bundles suggested by the KDIGO guidelines. In severe AKI patients with oligoanuria and fluid accumulation, renal replacement therapy is the only supportive measure even if mode and timing remain open to investigation. Key messages: Perioperative AKI is an important and underdiagnosed complication. Identifying patients at high risk of AKI and diagnosing AKI early are major goals. Preventive interventions are mainly based on the KDIGO guidelines and bundles. Furthermore, a personalized multidisciplinary approach should always be considered to minimize the progression of disease and the complications related to kidney damage. © 2018 S. Karger AG, Basel.

  8. N-Oleoylglycine-Induced Hyperphagia Is Associated with the Activation of Agouti-Related Protein (AgRP) Neuron by Cannabinoid Receptor Type 1 (CB1R).

    PubMed

    Wu, Junguo; Zhu, Canjun; Yang, Liusong; Wang, Zhonggang; Wang, Lina; Wang, Songbo; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Zhu, Xiaotong; Shu, Gang

    2017-02-08

    N-Acyl amino acids (NAAAs) are conjugate products of fatty acids and amino acids, which are available in animal-derived food. We compared the effects of N-arachidonoylglycine (NAGly), N-arachidonoylserine (NASer), and N-oleoylglycine (OLGly) on in vivo food intake and in vitro [Ca 2+ ] i of Agouti-related protein (AgRP) neurons to identify the role of these compounds in energy homeostasis. Hypothalamic neuropeptide expression and anxiety behavior in response to OLGly were also tested. To further identify the underlying mechanism of OLGly on food intake, we first detected the expression level of potential OLGly receptors. The cannabinoid receptor type 1 (CB1R) antagonist was cotreated with OLGly to analyze the activation of AgRP neuron, including [Ca 2+ ] i , expression levels of PKA, CREB, and c-Fos, and neuropeptide secretion. Results demonstrated that only OLGly (intrapertioneal injection of 6 mg/kg) can induce hyperphagia without changing the expression of hypothalamic neuropeptides and anxiety-like behavior. Moreover, 20 μM OLGly robustly enhances [Ca 2+ ] i , c-Fos protein expression in AgRP neuron, and AgRP content in the culture medium. OLGly-induced activation of AgRP neuron was completely abolished by the CB1R-specific antagonist, AM251. In summary, this study is the first to demonstrate the association of OLGly-induced hyperphagia with activation of the AgRP neuron by CB1R. These findings open avenues for investigation and application of OLGly to modulate energy homeostasis.

  9. Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.

    PubMed

    Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig

    2014-03-11

    Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.

  10. Intrinsically Active and Pacemaker Neurons in Pluripotent Stem Cell-Derived Neuronal Populations

    PubMed Central

    Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig

    2014-01-01

    Summary Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks. PMID:24672755

  11. Neuronal Activation in the Central Nervous System of Rats in the Initial Stage of Chronic Kidney Disease-Modulatory Effects of Losartan and Moxonidine

    PubMed Central

    Palkovits, Miklós; Šebeková, Katarína; Klenovics, Kristina Simon; Kebis, Anton; Fazeli, Gholamreza; Bahner, Udo; Heidland, August

    2013-01-01

    The effect of mild chronic renal failure (CRF) induced by 4/6-nephrectomy (4/6NX) on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus). Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons) and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow) did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances. PMID:23818940

  12. Urinary Virome Perturbations in Kidney Transplantation.

    PubMed

    Sigdel, Tara K; Mercer, Neil; Nandoe, Sharvin; Nicora, Carrie D; Burnum-Johnson, Kristin; Qian, Wei-Jun; Sarwal, Minnie M

    2018-01-01

    The human microbiome is important for health and plays a role in essential metabolic functions and protection from certain pathogens. Conversely, dysbiosis of the microbiome is seen in the context of various diseases. Recent studies have highlighted that a complex microbial community containing hundreds of bacteria colonizes the healthy urinary tract, but little is known about the human urinary viruses in health and disease. To evaluate the human urinary virome in the context of kidney transplantation (tx), variations in the composition of the urinary virome were evaluated in urine samples from normal healthy volunteers as well as patients with kidney disease after they had undergone kidney tx. Liquid chromatography-mass spectrometry/mass spectrometry analysis was undertaken on a selected cohort of 142 kidney tx patients and normal healthy controls, from a larger biobank of 770 kidney biopsy matched urine samples. In addition to analysis of normal healthy control urine, the cohort of kidney tx patients had biopsy confirmed phenotype classification, coincident with the urine sample analyzed, of stable grafts (STA), acute rejection, BK virus nephritis, and chronic allograft nephropathy. We identified 37 unique viruses, 29 of which are being identified for the first time in human urine samples. The composition of the human urinary virome differs in health and kidney injury, and the distribution of viral proteins in the urinary tract may be further impacted by IS exposure, diet and environmental, dietary, or cutaneous exposure to various insecticides and pesticides.

  13. Baseline kidney function as predictor of mortality and kidney disease progression in HIV-positive patients.

    PubMed

    Ibrahim, Fowzia; Hamzah, Lisa; Jones, Rachael; Nitsch, Dorothea; Sabin, Caroline; Post, Frank A

    2012-10-01

    Chronic kidney disease (CKD) is associated with increased all-cause mortality and kidney disease progression. Decreased kidney function at baseline may identify human immunodeficiency virus (HIV)-positive patients at increased risk of death and kidney disease progression. Observational cohort study. 7 large HIV cohorts in the United Kingdom with kidney function data available for 20,132 patients. Baseline estimated glomerular filtration rate (eGFR). Death and progression to stages 4-5 CKD (eGFR <30 mL/min/1.73 m(2) for >3 months) in Cox proportional hazards and competing-risk regression models. Median age at baseline was 34 (25th-75th percentile, 30-40) years, median CD4 cell count was 350 (25th-75th percentile, 208-520) cells/μL, and median eGFR was 100 (25th-75th percentile, 87-112) mL/min/1.73 m(2). Patients were followed up for a median of 5.3 (25th-75th percentile, 2.0-8.9) years, during which 1,820 died and 56 progressed to stages 4-5 CKD. A U-shaped relationship between baseline eGFR and mortality was observed. After adjustment for potential confounders, eGFRs <45 and >105 mL/min/1.73 m(2) remained associated significantly with increased risk of death. Baseline eGFR <90 mL/min/1.73 m(2) was associated with increased risk of kidney disease progression, with the highest incidence rates of stages 4-5 CKD (>3 events/100 person-years) observed in black patients with eGFR of 30-59 mL/min/1.73 m(2) and those of white/other ethnicity with eGFR of 30-44 mL/min/1.73 m(2). The relatively small numbers of patients with decreased eGFR at baseline and low rates of progression to stages 4-5 CKD and lack of data for diabetes, hypertension, and proteinuria. Although stages 4-5 CKD were uncommon in this cohort, baseline eGFR allowed the identification of patients at increased risk of death and at greatest risk of kidney disease progression. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory.

    PubMed

    Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min

    2018-05-07

    Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.

  15. Kidney Dysplasia

    MedlinePlus

    ... Disease Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Kidney Dysplasia What is kidney dysplasia? Kidney dysplasia is a condition in which ... Kidney dysplasia in one kidney What are the kidneys and what do they do? The kidneys are ...

  16. Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi

    2013-06-01

    Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.

  17. Age-related incidence of sclerotic glomeruli in human kidneys.

    PubMed Central

    Kaplan, C.; Pasternack, B.; Shah, H.; Gallo, G.

    1975-01-01

    The incidence of sclerotic glomeruli as a function of age in kidneys from 122 patients without clinical evidence of renal disease or hypertension was estimated by histologic quantitation. Based on statistical analysis of data from this sample, 95% of the normal population up to 40 years of age would be expected to have less than 10% sclerotic glomeruli. After the age of 40 years, the upper limit containing 95% of the normal population exceeds 10% sclerosis, and after the age of 50, there is a broad scatter of observed percentage of sclerotic glomeruli. These findings suggest that, in patients 40 years of age and younger, sclerosis of glomeruli at an incidence greater than 10% is disease-related, while in patients older than 40 years (and particularly those older than 50), there is a transition, and the distinction between abiotrophic involutional sclerosis and disease-related sclerosis becomes less clear. PMID:51591

  18. Catheter-based renal denervation as therapy for chronic severe kidney-related pain.

    PubMed

    de Jager, Rosa L; Casteleijn, Niek F; de Beus, Esther; Bots, Michiel L; Vonken, Evert-Jan E; Gansevoort, Ron T; Blankestijn, Peter J

    2017-06-22

    Loin pain haematuria syndrome (LPHS) and autosomal dominant polycystic kidney disease (ADPKD) are the most important non-urological conditions to cause chronic severe kidney-related pain. Multidisciplinary programmes and surgical methods have shown inconsistent results with respect to pain reduction. Percutaneous catheter-based renal denervation (RDN) could be a less invasive treatment option for these patients. Our aim was to explore the change in perceived pain and use of analgesic medication from baseline to 3, 6 and 12 months after RDN. Patients with LPHS or ADPKD, who experienced kidney-related pain ≥3 months with a visual analogue scale (VAS) score ≥ 50/100 could be included. Percutaneous RDN was performed with a single-electrode radiofrequency ablation catheter. RDN was performed in 11 patients (6 with LPHS and 5 with ADPKD). Perceived pain declined in the whole group by 23 mm (P = 0.012 for the total group). In patients with LPHS and ADPKD, the median daily defined dosage of analgesic medication decreased from 1.6 [interquartile range (IQR) 0.7-2.3] and 1.4 (IQR 0.0-7.4) at baseline to 0.3 (IQR 0.0-1.9; P = 0.138) and 0.0 (IQR 0.0-0.8; P = 0.285) at 12 months, respectively. Mean estimated glomerular filtration rate decreased in the whole group by 5.4 mL/min/1.73 m 2 at 6 months compared with baseline (P = 0.163). These results suggest that percutaneous catheter-based RDN reduces pain complaints and the use of analgesic medication in patients with LPHS or ADPKD. The present results can serve as the rationale for a larger, preferably randomized (sham) controlled study. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  19. Ectopic Kidney

    MedlinePlus

    ... Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Ectopic Kidney What is an ectopic kidney? An ectopic kidney is a birth defect in ... has an ectopic kidney. 1 What are the kidneys and what do they do? The kidneys are ...

  20. Arc expression identifies the lateral amygdala fear memory trace

    PubMed Central

    Gouty-Colomer, L A; Hosseini, B; Marcelo, I M; Schreiber, J; Slump, D E; Yamaguchi, S; Houweling, A R; Jaarsma, D; Elgersma, Y; Kushner, S A

    2016-01-01

    Memories are encoded within sparsely distributed neuronal ensembles. However, the defining cellular properties of neurons within a memory trace remain incompletely understood. Using a fluorescence-based Arc reporter, we were able to visually identify the distinct subset of lateral amygdala (LA) neurons activated during auditory fear conditioning. We found that Arc-expressing neurons have enhanced intrinsic excitability and are preferentially recruited into newly encoded memory traces. Furthermore, synaptic potentiation of thalamic inputs to the LA during fear conditioning is learning-specific, postsynaptically mediated and highly localized to Arc-expressing neurons. Taken together, our findings validate the immediate-early gene Arc as a molecular marker for the LA neuronal ensemble recruited during fear learning. Moreover, these results establish a model of fear memory formation in which intrinsic excitability determines neuronal selection, whereas learning-related encoding is governed by synaptic plasticity. PMID:25802982

  1. Epidemiology of kidney cancer.

    PubMed

    Dayal, H; Kinman, J

    1983-12-01

    Renal-cell carcinoma usually affects those over 40 years old, and, in any age group, the disease occurs about twice as frequently among men as it does among women. The incidence of the disease has been steadily increasing over the years. In the United States, the probability of surviving after diagnosis of renal cancer has been improving since 1940 regardless of race, sex, and age at diagnosis. The relationship between SES and the chance of developing the disease is sporadic with an indication of a slightly higher risk in the upper socioeconomic classes. Urbanrural comparisons consistently suggest that a higher risk is associated with urban residence. Tobacco use is probably the only environmental factor that could be considered to be etiologically related to cancer of the kidney. A variety of studies point to a moderate but consistent association with tobacco use in the form of cigarette, cigar, or pipe smoking. The excess of the disease in males compared to females and the lower incidence in Mormons may partly be due to the confounding effect of smoking. Dietary vitamin A or vitamin A supplements may have an antipromoting effect in the development of kidney cancer. Hypotheses implicating fat and/or cholesterol intake in the etiology of cancer of the kidney appear to be too tenuous. The evidence of a relationship between concentrations of certain trace metals in drinking water and incidence of renal cancer is weak. Similarly, there is no strong indication of an increased risk among individuals exposed to radiation. In general, with the exception of the observation of an unusually high risk among coke-oven workers, occupational studies have not identified any high-risk groups. Familial aggregation, though rare, occurs with peculiar disease characteristics that may predict similar cancers in the proband's relatives with a high degree of accuracy. In conclusion, the etiology of cancer of the kidney is poorly understood. The descriptive epidemiology of the disease

  2. Regulatory role of calpain in neuronal death

    PubMed Central

    Cheng, Si-ying; Wang, Shu-chao; Lei, Ming; Wang, Zhen; Xiong, Kun

    2018-01-01

    Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases. PMID:29623944

  3. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium

    PubMed Central

    Hoover, Donald B.; Shepherd, Angela V.; Southerland, E. Marie; Armour, J. Andrew; Ardell, Jeffrey L.

    2008-01-01

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30–40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters. PMID:18558516

  4. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium.

    PubMed

    Hoover, Donald B; Shepherd, Angela V; Southerland, E Marie; Armour, J Andrew; Ardell, Jeffrey L

    2008-08-18

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T(3) DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T(3) DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T(3) DRG). About 30% of the ventricular afferent neurons in T(2) DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB(4). Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.

  5. Living-Donor Kidney Transplantation: Reducing Financial Barriers to Live Kidney Donation--Recommendations from a Consensus Conference.

    PubMed

    Tushla, Lara; Rudow, Dianne LaPointe; Milton, Jennifer; Rodrigue, James R; Schold, Jesse D; Hays, Rebecca

    2015-09-04

    Live-donor kidney transplantation (LDKT) is the best treatment for eligible people with late-stage kidney disease. Despite this, living kidney donation rates have declined in the United States in recent years. A potential source of this decline is the financial impact on potential and actual living kidney donors (LKDs). Recent evidence indicates that the economic climate may be associated with the decline in LDKT and that there are nontrivial financial ramifications for some LKDs. In June 2014, the American Society of Transplantation's Live Donor Community of Practice convened a Consensus Conference on Best Practices in Live Kidney Donation. The conference included transplant professionals, patients, and other key stakeholders (with the financial support of 10 other organizations) and sought to identify best practices, knowledge gaps, and opportunities pertaining to living kidney donation. This workgroup was tasked with exploring systemic and financial barriers to living kidney donation. The workgroup reviewed literature that assessed the financial effect of living kidney donation, analyzed employment and insurance factors, discussed international models for addressing direct and indirect costs faced by LKDs, and summarized current available resources. The workgroup developed the following series of recommendations to reduce financial and systemic barriers and achieve financial neutrality for LKDs: (1) allocate resources for standardized reimbursement of LKDs' lost wages and incidental costs; (2) pass legislation to offer employment and insurability protections to LKDs; (3) create an LKD financial toolkit to provide standardized, vetted education to donors and providers about options to maximize donor coverage and minimize financial effect within the current climate; and (4) promote further research to identify systemic barriers to living donation and LDKT to ensure the creation of mitigation strategies. Copyright © 2015 by the American Society of Nephrology.

  6. Anemia in Chronic Kidney Disease

    MedlinePlus

    ... Heart Disease Mineral & Bone Disorder Anemia in Chronic Kidney Disease What is anemia? Anemia is a condition ... they should. How is anemia related to chronic kidney disease? Anemia commonly occurs in people with chronic ...

  7. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds

    PubMed Central

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-01-01

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells. PMID:24830447

  8. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    PubMed

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  9. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remainmore » unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.« less

  10. Evidence suggesting a genetic contribution to kidney stone in northeastern Thai population.

    PubMed

    Sritippayawan, Suchai; Borvornpadungkitti, Sombat; Paemanee, Atchara; Predanon, Chagkrapan; Susaengrat, Wattanachai; Chuawattana, Duangporn; Sawasdee, Nunghathai; Nakjang, Sirintra; Pongtepaditep, Suttikarn; Nettuwakul, Choochai; Rungroj, Nanyawan; Vasuvattakul, Somkiat; Malasit, Prida; Yenchitsomanus, Pa-thai

    2009-06-01

    Genetic factor may play a role in the pathogenesis of kidney stone that is found in the northeastern (NE) Thai population. Herein, we report initial evidence suggesting genetic contribution to the disease in this population. We examined 1,034 subjects including 135 patients with kidney stone, 551 family members, and 348 villagers by radiography of kidney-ureter-bladder (KUB) and other methods, and also analyzed stones removed by surgical operations. One hundred and sixteen of 551 family members (21.05%) and 23 of the 348 villagers (6.61%) were affected with kidney stone. The relative risk (lambda(R)) of the disease among family members was 3.18. Calcium stones (whewellite, dahllite, and weddellite) were observed in about 88% of stones analyzed. Our data indicate familial aggregation of kidney stone in this population supporting that genetic factor should play some role in its pathogenesis. Genetic and genomic studies will be conducted to identify the genes associated with the disease.

  11. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    PubMed

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons

    PubMed Central

    Vong, Linh; Ye, Chianping; Yang, Zongfang; Choi, Brian; Chua, Streamson; Lowell, Bradford B.

    2011-01-01

    SUMMARY Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part due to incomplete knowledge regarding first order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first order neurons. While functionally relevant neurons have been identified, the observed effects have been small suggesting that most first order neurons remain unidentified. Here we take an alternative approach and test whether first order neurons are inhibitory (GABAergic, VGAT+) or excitatory (glutamatergic, VGLUT2+). Remarkably, the vast majority of leptin’s anti-obesity effects are mediated by GABAergic neurons; glutamatergic neurons play only a minor role. Leptin, working directly on presynaptic GABAergic neurons, many of which appear not to express AgRP, reduces inhibitory tone to postsynaptic POMC neurons. As POMC neurons prevent obesity, their disinhibition by leptin action on presynaptic GABAergic neurons likely mediates, at least in part, leptin’s anti-obesity effects. PMID:21745644

  13. Transcriptomic Profiling Discloses Molecular and Cellular Events Related to Neuronal Differentiation in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Pezzini, Francesco; Bettinetti, Laura; Di Leva, Francesca; Bianchi, Marzia; Zoratti, Elisa; Carrozzo, Rosalba; Santorelli, Filippo M; Delledonne, Massimo; Lalowski, Maciej; Simonati, Alessandro

    2017-05-01

    Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.

  14. African American kidney transplant patients’ perspectives on challenges in the living donation process

    PubMed Central

    Sieverdes, John C.; Nemeth, Lynne S.; Magwood, Gayenell S.; Baliga, Prabhakar K.; Chavin, Kenneth D.; Ruggiero, Ken J.; Treiber, Frank A.

    2015-01-01

    Context The increasing shortage of deceased donor kidneys suitable for African Americans highlights the critical need to increase living donations among African Americans. Little research has addressed African American transplant recipients’ perspectives on challenges and barriers related to the living donation process. Objective To understand the perspectives of African American recipients of deceased and living donor kidney transplants on challenges, barriers, and educational needs related to pursuing such transplants. Participants and Design A mixed-method design involved 27 African American kidney recipients (13 male) in 4 focus groups (2 per recipient type: 16 African American deceased donor and 11 living donor recipients) and questionnaires. Focus group transcripts were evaluated with NVivo 10.0 (QSR, International) by using inductive and deductive qualitative methods along with crystallization to develop themes of underlying barriers to the living donor kidney transplant process and were compared with the questionnaires. Results Four main themes were identified from groups: concerns, knowledge and learning, expectations of support, and communication. Many concerns for the donor were identified (eg, process too difficult, financial burden, effect on relationships). A general lack of knowledge about the donor process and lack of behavioral skills on how to approach others was noted. The latter was especially evident among deceased donor recipients. Findings from the questionnaires on myths and perceptions supported the lack of knowledge in a variety of domains, including donors’ surgical outcomes risks, costs of surgery, and impact on future health. Participants thought that an educational program led by an African American recipient of a living donor kidney transplant, including practice in approaching others, would increase the likelihood of transplant-eligible patients pursuing living donor kidney transplant. PMID:26107278

  15. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    PubMed

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  16. The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.

    PubMed

    Wilson, J A

    1979-01-01

    Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.

  17. Rapid communication between neurons and astrocytes in primary cortical cultures.

    PubMed

    Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M

    1993-06-01

    The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.

  18. [Dynamics of the dominance of identified cardioregulatory neurons in the snail Achatina fulica] .

    PubMed

    Zhuravlev, V L; Bugaĭ, V V; Safronova, T A

    2000-08-01

    9 cardioregulating neurones belonging to 5 different functional groups were studied in visceral and right parietal ganglia of the Giant African snail Achatina fulica. The neuronal network included multimodal and multifunctional cells exerting short- or long-lasting chronoionotropic effects on the cardiac electro- and mechanograms. Mechanisms of the differences in the cardioregulating effectiveness of these groups were discussed.

  19. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

    PubMed Central

    Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan

    2015-01-01

    Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446

  20. Self-other relations in social development and autism: multiple roles for mirror neurons and other brain bases.

    PubMed

    Williams, Justin H G

    2008-04-01

    Mirror neuron system dysfunction may underlie a self-other matching impairment, which has previously been suggested to account for autism. Embodied Cognition Theory, which proposes that action provides a foundation for cognition has lent further credence to these ideas. The hypotheses of a self-other matching deficit and impaired mirror neuron function in autism have now been well supported by studies employing a range of methodologies. However, underlying mechanisms require further exploration to explain how mirror neurons may be involved in attentional and mentalizing processes. Impairments in self-other matching and mirror neuron function are not necessarily inextricably linked and it seems possible that different sub-populations of mirror neurons, located in several regions, contribute differentially to social cognitive functions. It is hypothesized that mirror neuron coding for action-direction may be required for developing attentional sensitivity to self-directed actions, and consequently for person-oriented, stimulus-driven attention. Mirror neuron networks may vary for different types of social learning such as "automatic" imitation and imitation learning. Imitation learning may be more reliant on self-other comparison processes (based on mirror neurons) that identify differences as well as similarities between actions. Differential connectivity with the amygdala-orbitofrontal system may also be important. This could have implications for developing "theory of mind," with intentional self-other comparison being relevant to meta-representational abilities, and "automatic" imitation being more relevant to empathy. While it seems clear that autism is associated with impaired development of embodied aspects of cognition, the ways that mirror neurons contribute to these brain-behavior links are likely to be complex.

  1. Distribution and components of interstitial inflammation and fibrosis in IgG4-related kidney disease: analysis of autopsy specimens.

    PubMed

    Hara, Satoshi; Kawano, Mitsuhiro; Mizushima, Ichiro; Harada, Kenichi; Takata, Takuma; Saeki, Takako; Ubara, Yoshifumi; Sato, Yasuharu; Nagata, Michio

    2016-09-01

    IgG4-related kidney disease (IgG4-RKD) occasionally progresses to chronic renal failure and is pathologically characterized by IgG4-positive lymphoplasmacyte-rich tubulointerstitial nephritis with storiform fibrosis (bird's-eye pattern fibrosis). Although radiology reveals a heterogeneous distribution of affected areas in this disease, their true distribution within the whole kidney is still unknown because of difficulty in estimating this from needle biopsy samples. Using 5 autopsy specimens, the present study histologically characterized the distribution and components of interstitial inflammation and fibrosis in IgG4-RKD. Interstitial lymphoplasmacytic infiltration or fibrosis was observed in a variety of anatomical locations such as intracapsular, subcapsular, cortical, perivascular, and perineural regions heterogeneously in a patchy distribution. They tended to be more markedly accumulated around medium- and small-sized vessels. Storiform fibrosis was limited to the cortex. Immunostaining revealed nonfibrillar collagens (collagen IV and VI) and fibronectin predominance in the cortical lesion, including storiform fibrosis. In contrast, fibril-forming collagens (collagen I and III), collagen VI, and fibronectin were the main components in the perivascular lesion. In addition, α-smooth muscle actin-positive myofibroblasts were prominently accumulated in the early lesion and decreased with progression, suggesting that myofibroblasts produce extracellular matrices forming a peculiar fibrosis. In conclusion, perivascular inflammation or fibrosis of medium- and small-sized vessels is a newly identified pathologic feature of IgG4-RKD. Because storiform fibrosis contains mainly nonfibrillar collagens, "interstitial fibrosclerosis" would be a suitable term to reflect this. The relation between the location and components of fibrosis determined in whole kidney samples provides new clues to the pathophysiology underlying IgG4-RKD. Copyright © 2016 The Authors. Published

  2. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Zhou, Jing-Jing; Pradhan, Geetali; Sun, Yuxiang; Pan, Hui-Lin; Li, De-Pei

    2017-08-01

    Ghrelin increases food intake and body weight by stimulating orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons and inhibiting anorexic pro-opiomelanocortin (POMC) neurons in the hypothalamus. Growth hormone secretagogue receptor (Ghsr) mediates the effect of ghrelin on feeding behavior and energy homeostasis. However, the role of Ghsr in the ghrelin effect on these two populations of neurons is unclear. We hypothesized that Ghsr mediates the effect of ghrelin on AgRP and POMC neurons. In this study, we determined whether Ghsr similarly mediates the effects of ghrelin on AgRP/NPY and POMC neurons using cell type-specific Ghsr-knockout mice. Perforated whole-cell recordings were performed on green fluorescent protein-tagged AgRP/NPY and POMC neurons in the arcuate nucleus in hypothalamic slices. In Ghsr +/+ mice, ghrelin (100 nM) significantly increased the firing activity of AgRP/NPY neurons but inhibited the firing activity of POMC neurons. In Ghsr -/- mice, the excitatory effect of ghrelin on AgRP/NPY neurons was abolished. Ablation of Ghsr also eliminated ghrelin-induced increases in the frequency of GABAergic inhibitory postsynaptic currents of POMC neurons. Strikingly, ablation of Ghsr converted the ghrelin effect on POMC neurons from inhibition to excitation. Des-acylated ghrelin had no such effect on POMC neurons in Ghsr -/- mice. In both Ghsr +/+ and Ghsr -/- mice, blocking GABA A receptors with gabazine increased the basal firing activity of POMC neurons, and ghrelin further increased the firing activity of POMC neurons in the presence of gabazine. Our findings provide unequivocal evidence that Ghsr is essential for ghrelin-induced excitation of AgRP/NPY neurons. However, ghrelin excites POMC neurons through an unidentified mechanism that is distinct from conventional Ghsr. © 2017 International Society for Neurochemistry.

  3. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    PubMed Central

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  4. Induction of parkinsonism-related proteins in the spinal motor neurons of transgenic mouse carrying a mutant SOD1 gene.

    PubMed

    Morimoto, Nobutoshi; Nagai, Makiko; Miyazaki, Kazunori; Ohta, Yasuyuki; Kurata, Tomoko; Takehisa, Yasushi; Ikeda, Yoshio; Matsuura, Tohru; Asanuma, Masato; Abe, Koji

    2010-06-01

    Amyotrophic lateral sclerosis is a progressive and fatal disease caused by selective death of motor neurons, and a number of these patients carry mutations in the superoxide dismutase 1 (SOD1) gene involved in ameliorating oxidative stress. Recent studies indicate that oxidative stress and disruption of mitochondrial homeostasis is a common mechanism for motor neuron degeneration in amyotrophic lateral sclerosis and the loss of midbrain dopamine neurons in Parkinson's disease. Therefore, the present study investigated the presence and alterations of familial Parkinson's disease-related proteins, PINK1 and DJ-1, in spinal motor neurons of G93ASOD1 transgenic mouse model of amyotrophic lateral sclerosis. Following onset of disease, PINK1 and DJ-1 protein expression increased in the spinal motor neurons. The activated form of p53 also increased and translocated to the nuclei of spinal motor neurons, followed by increased expression of p53-activated gene 608 (PAG608). This is the first report demonstrating that increased expression of PAG608 correlates with activation of phosphorylated p53 in spinal motor neurons of an amyotrophic lateral sclerosis model. These results provide further evidence of the profound correlations between spinal motor neurons of amyotrophic lateral sclerosis and parkinsonism-related proteins.

  5. Kidney Facts

    MedlinePlus

    ... Page Transplant Living > Kidney KIDNEY TRANSPLANT LEARNING CENTER Kidney The kidneys are a vital organ in the ... your body. Location of the kidneys How the kidney works Your kidneys play a vital role in ...

  6. Hydration Status, Kidney Function, and Kidney Injury in Florida Agricultural Workers.

    PubMed

    Mix, Jacqueline; Elon, Lisa; Vi Thien Mac, Valerie; Flocks, Joan; Economos, Eugenia; Tovar-Aguilar, Antonio J; Stover Hertzberg, Vicki; McCauley, Linda A

    2018-05-01

    Recent findings suggest that laboring in hot occupational environments is related to kidney damage in agricultural workers. We examined hydration status and kidney function in 192 Florida agricultural workers. Blood and urine samples were collected over 555 workdays during the summers of 2015 and 2016. Urine-specific gravity (USG), serum creatinine, and other kidney function markers were examined pre- and post-shift on each workday. Multivariable mixed modeling was used to examine the association of risk factors with hydration status and acute kidney injury (AKI). Approximately 53% of workers were dehydrated (USG ≥1.020) pre-shift and 81% post-shift; 33% of participants had AKI on at least one workday. The odds of AKI increased 47% for each 5-degree (°F) increase in heat index. A strikingly high prevalence of dehydration and AKI exists in Florida agricultural workers.

  7. Identifying the dynamics of actin and tubulin polymerization in iPSCs and in iPSC-derived neurons

    PubMed Central

    Magliocca, Valentina; Petrini, Stefania; Franchin, Tiziana; Borghi, Rossella; Niceforo, Alessia; Abbaszadeh, Zeinab; Bertini, Enrico; Compagnucci, Claudia

    2017-01-01

    The development of the nervous system requires cytoskeleton-mediated processes coordinating self-renewal, migration, and differentiation of neurons. It is not surprising that many neurodevelopmental problems and neurodegenerative disorders are caused by deficiencies in cytoskeleton-related genes. For this reason, we focus on the cytoskeletal dynamics in proliferating iPSCs and in iPSC-derived neurons to better characterize the underpinnings of cytoskeletal organization looking at actin and tubulin repolymerization studies using the cell permeable probes SiR-Actin and SiR-Tubulin. During neurogenesis, each neuron extends an axon in a complex and changing environment to reach its final target. The dynamic behavior of the growth cone and its capacity to respond to multiple spatial information allows it to find its correct target. We decided to characterize various parameters of the actin filaments and microtubules. Our results suggest that a rapid re-organization of the cytoskeleton occurs 45 minutes after treatments with de-polymerizing agents in iPSCs and 60 minutes in iPSC-derived neurons in both actin filaments and microtubules. The quantitative data confirm that the actin filaments have a primary role in the re-organization of the cytoskeleton soon after de-polymerization, while microtubules have a major function following cytoskeletal stabilization. In conclusion, we investigate the possibility that de-polymerization of the actin filaments may have an impact on microtubules organization and that de-polymerization of the microtubules may affect the stability of the actin filaments. Our results suggest that a reciprocal influence of the actin filaments occurs over the microtubules and vice versa in both in iPSCs and iPSC-derived neurons. PMID:29340040

  8. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose

    PubMed Central

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H.

    2016-01-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24 hours and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24 hour time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus. PMID:27473896

  9. Common and rare variants associated with kidney stones and biochemical traits.

    PubMed

    Oddsson, Asmundur; Sulem, Patrick; Helgason, Hannes; Edvardsson, Vidar O; Thorleifsson, Gudmar; Sveinbjörnsson, Gardar; Haraldsdottir, Eik; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Masson, Gisli; Holm, Hilma; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Indridason, Olafur S; Palsson, Runolfur; Stefansson, Kari

    2015-08-14

    Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10(-10)) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10(-8)). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10(-5)) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10(-5)) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism.

  10. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    PubMed

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  11. How many neurons can we see with current spike sorting algorithms?

    PubMed Central

    Pedreira, Carlos; Martinez, Juan; Ison, Matias J.; Quian Quiroga, Rodrigo

    2012-01-01

    Recent studies highlighted the disagreement between the typical number of neurons observed with extracellular recordings and the ones to be expected based on anatomical and physiological considerations. This disagreement has been mainly attributed to the presence of sparsely firing neurons. However, it is also possible that this is due to limitations of the spike sorting algorithms used to process the data. To address this issue, we used realistic simulations of extracellular recordings and found a relatively poor spike sorting performance for simulations containing a large number of neurons. In fact, the number of correctly identified neurons for single-channel recordings showed an asymptotic behavior saturating at about 8–10 units, when up to 20 units were present in the data. This performance was significantly poorer for neurons with low firing rates, as these units were twice more likely to be missed than the ones with high firing rates in simulations containing many neurons. These results uncover one of the main reasons for the relatively low number of neurons found in extracellular recording and also stress the importance of further developments of spike sorting algorithms. PMID:22841630

  12. How many neurons can we see with current spike sorting algorithms?

    PubMed

    Pedreira, Carlos; Martinez, Juan; Ison, Matias J; Quian Quiroga, Rodrigo

    2012-10-15

    Recent studies highlighted the disagreement between the typical number of neurons observed with extracellular recordings and the ones to be expected based on anatomical and physiological considerations. This disagreement has been mainly attributed to the presence of sparsely firing neurons. However, it is also possible that this is due to limitations of the spike sorting algorithms used to process the data. To address this issue, we used realistic simulations of extracellular recordings and found a relatively poor spike sorting performance for simulations containing a large number of neurons. In fact, the number of correctly identified neurons for single-channel recordings showed an asymptotic behavior saturating at about 8-10 units, when up to 20 units were present in the data. This performance was significantly poorer for neurons with low firing rates, as these units were twice more likely to be missed than the ones with high firing rates in simulations containing many neurons. These results uncover one of the main reasons for the relatively low number of neurons found in extracellular recording and also stress the importance of further developments of spike sorting algorithms. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. PKD2-Related Autosomal Dominant Polycystic Kidney Disease: Prevalence, Clinical Presentation, Mutation Spectrum, and Prognosis.

    PubMed

    Cornec-Le Gall, Emilie; Audrézet, Marie-Pierre; Renaudineau, Eric; Hourmant, Maryvonne; Charasse, Christophe; Michez, Eric; Frouget, Thierry; Vigneau, Cécile; Dantal, Jacques; Siohan, Pascale; Longuet, Hélène; Gatault, Philippe; Ecotière, Laure; Bridoux, Frank; Mandart, Lise; Hanrotel-Saliou, Catherine; Stanescu, Corina; Depraetre, Pascale; Gie, Sophie; Massad, Michiel; Kersalé, Aude; Séret, Guillaume; Augusto, Jean-François; Saliou, Philippe; Maestri, Sandrine; Chen, Jian-Min; Harris, Peter C; Férec, Claude; Le Meur, Yannick

    2017-10-01

    PKD2-related autosomal dominant polycystic kidney disease (ADPKD) is widely acknowledged to be of milder severity than PKD1-related disease, but population-based studies depicting the exact burden of the disease are lacking. We aimed to revisit PKD2 prevalence, clinical presentation, mutation spectrum, and prognosis through the Genkyst cohort. Case series, January 2010 to March 2016. Genkyst study participants are individuals older than 18 years from 22 nephrology centers from western France with a diagnosis of ADPKD based on Pei criteria or at least 10 bilateral kidney cysts in the absence of a familial history. Publicly available whole-exome sequencing data from the ExAC database were used to provide an estimate of the genetic prevalence of the disease. Molecular analysis of PKD1 and PKD2 genes. Renal survival, age- and sex-adjusted estimated glomerular filtration rate. The Genkyst cohort included 293 patients with PKD2 mutations (203 pedigrees). PKD2 patients with a nephrology follow-up corresponded to 0.63 (95% CI, 0.54-0.72)/10,000 in Brittany, while PKD2 genetic prevalence was calculated at 1.64 (95% CI, 1.10-3.51)/10,000 inhabitants in the European population. Median age at diagnosis was 42 years. Flank pain was reported in 38.9%; macroscopic hematuria, in 31.1%; and cyst infections, in 15.3% of patients. At age 60 years, the cumulative probability of end-stage renal disease (ESRD) was 9.8% (95% CI, 5.2%-14.4%), whereas the probability of hypertension was 75.2% (95% CI, 68.5%-81.9%). Although there was no sex influence on renal survival, men had lower kidney function than women. Nontruncating mutations (n=36) were associated with higher age-adjusted estimated glomerular filtration rates. Among the 18 patients with more severe outcomes (ESRD before age 60), 44% had associated conditions or nephropathies likely to account for the early progression to ESRD. Younger patients and patients presenting with milder forms of PKD2-related disease may not be diagnosed

  14. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    PubMed

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry. © 2014 Society for the Study of Addiction.

  15. Solitary Kidney

    MedlinePlus

    ... Solitary Kidney Your Kidneys & How They Work Solitary Kidney What is a solitary kidney? When a person has only one kidney or ... ureter are removed (bottom right). What are the kidneys and what do they do? The kidneys are ...

  16. Urinary sodium excretion and kidney failure in non-diabetic chronic kidney disease

    PubMed Central

    Fan, Li; Tighiouart, Hocine; Levey, Andrew S.; Beck, Gerald J.; Sarnak, Mark J.

    2014-01-01

    Current guidelines recommend under 2g/day sodium intake in chronic kidney disease, but there are few studies relating sodium intake to long-term outcomes. Here we evaluated the association of mean baseline 24-hour urinary sodium excretion with kidney failure and a composite outcome of kidney failure or all-cause mortality using Cox regression in 840 participants enrolled in the Modification of Diet in Renal Disease Study. Mean 24-hour urinary sodium excretion was 3.46 g/day. Kidney failure developed in 617 and the composite outcome was reached in 723. In the primary analyses there was no association between 24-hour urine sodium and kidney failure [HR 0.99 (95% CI 0.91–1.08)] nor on the composite outcome [HR 1.01 (95% CI 0.93–1.09),] each per 1g/day higher urine sodium. In exploratory analyses there was a significant interaction of baseline proteinuria and sodium excretion with kidney failure. Using a 2-slope model, when urine sodium was under 3g/day, higher urine sodium was associated with increased risk of kidney failure in those with baseline proteinuria under 1g/day, and lower risk of kidney failure in those with baseline proteinuria of 1g/day or more. There was no association between urine sodium and kidney failure when urine sodium was 3g/day or more. Results were consistent using first baseline and time-dependent urine sodium. Thus, we noted no association of urine sodium with kidney failure. Results of the exploratory analyses need to be verified in additional studies and the mechanism explored. PMID:24646858

  17. Lung-Kidney Cross-Talk in the Critically Ill Patient.

    PubMed

    Husain-Syed, Faeq; Slutsky, Arthur S; Ronco, Claudio

    2016-08-15

    Discoveries have emerged highlighting the complex nature of the interorgan cross-talk between the kidney and the lung. Vascular rigidity, neurohormonal activation, tissue hypoxia, and abnormal immune cell signaling have been identified as common pathways leading to the development and progression of chronic kidney disease. However, our understanding of the causal relationships between lung injury and kidney injury is not precise. This review discusses a number of features and mechanisms of renal dysfunction in pulmonary disorders in relation to respiratory acidosis, impaired gas exchange, systemic congestion, respiratory support/replacement therapies, and other issues relevant to the clinical care of these patients. Biotrauma due to injurious ventilatory strategies can lead to the release of mediators into the lung, which may then translocate into the systemic circulation and cause end-organ dysfunction, including renal dysfunction. Right ventricular dysfunction and congestive states may contribute to alterations of renal perfusion and oxygenation, leading to diuretic resistance and recurrent hospitalization. In patients with concomitant respiratory failure, noninvasive ventilation represents a promising treatment option for the correction of impaired renal microcirculation and endothelial dysfunction. In patients requiring extracorporeal membrane oxygenation, short- and long-term monitoring of kidney function is warranted, as they are at highest risk of developing acute kidney injury and fluid overload.

  18. Analysis of the Results of ABO-Incompatible Kidney Transplantation: In Comparison with ABO-Compatible Kidney Transplantation

    PubMed Central

    Jeon, Byung Joo; Seong, Youl Keun; Han, Bo Hyun

    2010-01-01

    Purpose The number of patients waiting for kidney transplantation is incessantly increasing, but the number of cadaveric kidney transplantations or ABO-compatible donors is so insufficient that ABO-incompatible kidney transplantation is being performed as an alternative. There are overseas studies and research showing that the 5-year survival rate and 5-year graft survival rate of ABO-incompatible kidney transplantation are not much different from those of ABO-compatible kidney transplantation. However, domestic research on the subject is rare. Therefore, we report the results of 22 ABO-incompatible kidney transplantation cases performed in our hospital. Materials and Methods This research was from 22 patients in our hospital who underwent ABO-incompatible kidney transplantation from 15 February 2007 to 20 May 2010. Results As yet, there have been no donor graft losses and no deaths after transplantation. The results of the two groups were analyzed by analysis of covariance of the creatinine value of the recipients at 6 months after the operation, corrected for the preoperative value in order to statistically identify whether there were differences in renal function after the operation between ABO-compatible and ABO-incompatible kidney transplantation. The results of the analysis of covariance showed no statistical difference in renal function after the operation between the two groups. Conclusions Even though there were not many cases, our initial results for ABO-incompatible kidney transplantation were positive. Considering the increasing number of patients waiting for kidney transplantation, longer-term domestic research studies of ABO-incompatible kidney transplantation are necessary. PMID:21221208

  19. Encoding of head acceleration in vestibular neurons. I. Spatiotemporal response properties to linear acceleration

    NASA Technical Reports Server (NTRS)

    Bush, G. A.; Perachio, A. A.; Angelaki, D. E.

    1993-01-01

    1. Extracellular recordings were made in and around the medial vestibular nuclei in decerebrated rats. Neurons were functionally identified according to their semicircular canal input on the basis of their responses to angular head rotations around the yaw, pitch, and roll head axes. Those cells responding to angular acceleration were classified as either horizontal semicircular canal-related (HC) or vertical semicircular canal-related (VC) neurons. The HC neurons were further characterized as either type I or type II, depending on the direction of rotation producing excitation. Cells that lacked a response to angular head acceleration, but exhibited sensitivity to a change in head position, were classified as purely otolith organ-related (OTO) neurons. All vestibular neurons were then tested for their response to sinusoidal linear translation in the horizontal head plane. 2. Convergence of macular and canal inputs onto central vestibular nuclei neurons occurred in 73% of the type I HC, 79% of the type II HC, and 86% of the VC neurons. Out of the 223 neurons identified as receiving macular input, 94 neurons were further studied, and their spatiotemporal response properties to sinusoidal stimulation with pure linear acceleration were quantified. Data were obtained from 33 type I HC, 22 type II HC, 22 VC, and 17 OTO neurons. 3. For each neuron the angle of the translational stimulus vector was varied by 15, 30, or 45 degrees increments in the horizontal head plane. In all tested neurons, a direction of maximum sensitivity was identified. An interesting difference among neurons was their response to translation along the direction perpendicular to that that produced the maximum response ("null" direction). For the majority of neurons tested, it was possible to evoke a nonzero response during stimulation along the null direction always had response phases that varied as a function of stimulus direction. 4. These spatiotemporal response properties were quantified in two

  20. Baseline Kidney Function as Predictor of Mortality and Kidney Disease Progression in HIV-Positive Patients

    PubMed Central

    Ibrahim, Fowzia; Hamzah, Lisa; Jones, Rachael; Nitsch, Dorothea; Sabin, Caroline; Post, Frank A.

    2012-01-01

    Background Chronic kidney disease (CKD) is associated with increased all-cause mortality and kidney disease progression. Decreased kidney function at baseline may identify human immunodeficiency virus (HIV)-positive patients at increased risk of death and kidney disease progression. Study Design Observational cohort study. Setting & Participants 7 large HIV cohorts in the United Kingdom with kidney function data available for 20,132 patients. Predictor Baseline estimated glomerular filtration rate (eGFR). Outcomes Death and progression to stages 4-5 CKD (eGFR <30 mL/min/1.73 m2 for >3 months) in Cox proportional hazards and competing-risk regression models. Results Median age at baseline was 34 (25th-75th percentile, 30-40) years, median CD4 cell count was 350 (25th-75th percentile, 208-520) cells/μL, and median eGFR was 100 (25th-75th percentile, 87-112) mL/min/1.73 m2. Patients were followed up for a median of 5.3 (25th-75th percentile, 2.0-8.9) years, during which 1,820 died and 56 progressed to stages 4-5 CKD. A U-shaped relationship between baseline eGFR and mortality was observed. After adjustment for potential confounders, eGFRs <45 and >105 mL/min/1.73 m2 remained associated significantly with increased risk of death. Baseline eGFR <90 mL/min/1.73 m2 was associated with increased risk of kidney disease progression, with the highest incidence rates of stages 4-5 CKD (>3 events/100 person-years) observed in black patients with eGFR of 30-59 mL/min/1.73 m2 and those of white/other ethnicity with eGFR of 30-44 mL/min/1.73 m2. Limitations The relatively small numbers of patients with decreased eGFR at baseline and low rates of progression to stages 4-5 CKD and lack of data for diabetes, hypertension, and proteinuria. Conclusions Although stages 4-5 CKD were uncommon in this cohort, baseline eGFR allowed the identification of patients at increased risk of death and at greatest risk of kidney disease progression. PMID:22521282

  1. Birthdating of myenteric neuron subtypes in the small intestine of the mouse.

    PubMed

    Bergner, Annette J; Stamp, Lincon A; Gonsalvez, David G; Allison, Margaret B; Olson, David P; Myers, Martin G; Anderson, Colin R; Young, Heather M

    2014-02-15

    There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype. Copyright © 2013 Wiley Periodicals, Inc.

  2. Protein Kinase C-Related Kinase (PKN/PRK). Potential Key-Role for PKN1 in Protection of Hypoxic Neurons.

    PubMed

    Thauerer, Bettina; Zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2014-05-01

    Serine/threonine protein kinase C-related kinase (PKN/PRK) is a family of three isoenzymes (PKN1, PKN2, PKN3), which are widely distributed in eukaryotic organisms and share the same overall domain structure. The Nterminal region encompasses a conserved repeated domain, termed HR1a-c as well as a HR2/C2 domain. The serine/threonine kinase domain is found in the C-terminal region of the protein and shows high sequence homology to other members of the PKC superfamily. In neurons, PKN1 is the most abundant isoform and has been implicated in a variety of functions including cytoskeletal organization and neuronal differentiation and its deregulation may contribute to neuropathological processes such as amyotrophic lateral sclerosis and Alzheimer's disease. We have recently identified a candidate role of PKN1 in the regulation of neuroprotective processes during hypoxic stress. Our key findings were that: 1) the activity of PKN1 was significantly increased by hypoxia (1% O2) and neurotrophins (nerve growth factor and purine nucleosides); 2) Neuronal cells, deficient of PKN1 showed a decrease of cell viability and neurite formation along with a disturbance of the F-actinassociated cytoskeleton; 3) Purine nucleoside-mediated neuroprotection during hypoxia was severely hampered in PKN1 deficient neuronal cells, altogether suggesting a potentially critical role of PKN1 in neuroprotective processes. This review gives an up-to-date overview of the PKN family with a special focus on the neuroprotective role of PKN1 in hypoxia.

  3. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    PubMed

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  4. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons

    PubMed Central

    Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  5. Kidney stones: pathophysiology, diagnosis and management.

    PubMed

    Cunningham, Priscilla; Noble, Helen; Al-Modhefer, Abdul-Kadhum; Walsh, Ian

    2016-11-10

    The prevalence of kidney stones is increasing, and approximately 12 000 hospital admissions every year are due to this condition. This article will use a case study to focus on a patient diagnosed with a calcium oxalate kidney stone. It will discuss the affected structures in relation to kidney stones and describe the pathology of the condition. Investigations for kidney stones, differential diagnosis and diagnosis, possible complications and prognosis, will be discussed. Finally, a detailed account of management strategies for the patient with kidney stones will be given, looking at pain management, medical procedures and dietary interventions.

  6. Setting Research Priorities for Kidney Cancer.

    PubMed

    Jones, Jennifer M; Bhatt, Jaimin; Avery, Jonathan; Laupacis, Andreas; Cowan, Katherine; Basappa, Naveen S; Basiuk, Joan; Canil, Christina; Al-Asaaed, Sohaib; Heng, Daniel Y C; Wood, Lori; Stacey, Dawn; Kollmannsberger, Christian; Jewett, Michael A S

    2017-12-01

    Defining disease-specific research priorities in cancer can facilitate better allocation of limited resources. Involving patients and caregivers as well as expert clinicians in this process is of value. We undertook this approach for kidney cancer as an example. The Kidney Cancer Research Network of Canada sponsored a collaborative consensus-based priority-setting partnership that identified ten research priorities in the management of kidney cancer. These are discussed in the context of current initiatives and gaps in knowledge. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. Large Renal Corpuscle: Clinical Significance of Evaluation of the Largest Renal Corpuscle in Kidney Biopsy Specimens.

    PubMed

    Kataoka, Hiroshi; Mochizuki, Toshio; Nitta, Kosaku

    2018-01-01

    Renal prognostic factors of chronic kidney disease are important concerns for patients. Kidney biopsy can be used to evaluate not only the activity of the original disease but also various risk factors related to the lifestyle of patients. Considering that lifestyle-related factors, including obesity and metabolic syndrome, are crucial prognostic risk factors of kidney disease progression and all-cause mortality, evaluation of lifestyle-related prognostic factors in kidney biopsy of all kidney diseases is important. Renal corpuscle size (glomerular size) is an easily measured parameter and potentially acts as a predictor of long-term renal function. Large renal corpuscle found on kidney biopsy is a classic and simple indicator, and has merit owing to its quantitative nature, but it has yet to be used to its full potential in clinical settings. Large renal corpuscle is an index that includes not only the activity of the original disease but also the damage of various metabolic risk states as represented by obesity, diabetes, and metabolic syndrome. Large renal corpuscles could be used to guide therapy. In this review, after identifying the pitfalls regarding the assessment of mean values in medical research, we propose that measurement of the maximum renal corpuscle profile (glomerular profile) in renal biopsies would provide valuable insights into the diagnosis, prognosis, and management of kidney diseases. © 2018 S. Karger AG, Basel.

  8. Morphological Characteristics of Motor Neurons Do Not Determine Their Relative Susceptibility to Degeneration in a Mouse Model of Severe Spinal Muscular Atrophy

    PubMed Central

    Mutsaers, Chantal A.; Thomson, Derek; Hamilton, Gillian; Parson, Simon H.; Gillingwater, Thomas H.

    2012-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA. PMID:23285108

  9. Associations between lower urinary tract dysfunction and health-related quality of life in children with chronic kidney disease.

    PubMed

    Öborn, Helena; Wettergren, Lena; Herthelius, Maria; Forinder, Ulla

    2016-08-01

    Little is known about the health-related quality of life (HRQoL) of children with lower urinary tract dysfunction (LUTD) and chronic kidney disease (CKD). We investigated LUTD and other possible predictors of impaired HRQoL in children with conservatively treated moderate-to-severe CKD or with a kidney transplant. All 64 children with CKD or a kidney transplant treated at Karolinska University Hospital, Stockholm, Sweden, between June 2011 and December 2012 were approached and 59 children aged 8-18 were enrolled in the study. Lower urinary tract function was evaluated with voiding history, frequency and volume chart, uroflowmetry and postvoid ultrasound measurements. Self-reported HRQoL was assessed with validated generic instruments. The HRQoL of the study cohort was as good as the general paediatric population, apart from the physical and psychological well-being dimensions, and was no different to children with other chronic conditions. Urinary incontinence, but not LUTD in general, was associated with impaired HRQoL, as was having a kidney transplant and being female in some dimensions. LUTD was common in children with CKD or a kidney transplant but did not affect their general HRQoL. Predictors of impaired HRQoL included incontinence, having had a kidney transplant and being female. ©2016 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  10. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    PubMed Central

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  11. Striatal action-value neurons reconsidered.

    PubMed

    Elber-Dorozko, Lotem; Loewenstein, Yonatan

    2018-05-31

    It is generally believed that during economic decisions, striatal neurons represent the values associated with different actions. This hypothesis is based on studies, in which the activity of striatal neurons was measured while the subject was learning to prefer the more rewarding action. Here we show that these publications are subject to at least one of two critical confounds. First, we show that even weak temporal correlations in the neuronal data may result in an erroneous identification of action-value representations. Second, we show that experiments and analyses designed to dissociate action-value representation from the representation of other decision variables cannot do so. We suggest solutions to identifying action-value representation that are not subject to these confounds. Applying one solution to previously identified action-value neurons in the basal ganglia we fail to detect action-value representations. We conclude that the claim that striatal neurons encode action-values must await new experiments and analyses. © 2018, Elber-Dorozko et al.

  12. Chronic kidney disease of unknown etiology in Sri Lanka.

    PubMed

    Rajapakse, Senaka; Shivanthan, Mitrakrishnan Chrishan; Selvarajah, Mathu

    2016-07-01

    In the last two decades, chronic kidney disease of unknown etiology (CKDu) has emerged as a significant contributor to the burden of chronic kidney disease (CKD) in rural Sri Lanka. It is characterized by the absence of identified causes for CKD. The prevalence of CKDu is 15.1-22.9% in some Sri Lankan districts, and previous research has found an association with farming occupations. A systematic literature review in Pubmed, Embase, Scopus, and Lilacs databases identified 46 eligible peer-reviewed articles and one conference abstract. Geographical mapping indicates a relationship between CKDu and agricultural irrigation water sources. Health mapping studies, human biological studies, and environment-based studies have explored possible causative agents. Most studies focused on likely causative agents related to agricultural practices, geographical distribution based on the prevalence and incidence of CKDu, and contaminants identified in drinking water. Nonetheless, the link between agrochemicals or heavy metals and CKDu remains to be established. No definitive cause for CKDu has been identified. Evidence to date suggests that the disease is related to one or more environmental agents, however pinpointing a definite cause for CKDu is challenging. It is plausible that CKDu is multifactorial. No specific guidelines or recommendations exist for treatment of CKDu, and standard management protocols for CKD apply. Changes in agricultural practices, provision of safe drinking water, and occupational safety precautions are recommended by the World Health Organization.

  13. Prevalence of kidney stones in the United States.

    PubMed

    Scales, Charles D; Smith, Alexandria C; Hanley, Janet M; Saigal, Christopher S

    2012-07-01

    The last nationally representative assessment of kidney stone prevalence in the United States occurred in 1994. After a 13-yr hiatus, the National Health and Nutrition Examination Survey (NHANES) reinitiated data collection regarding kidney stone history. Describe the current prevalence of stone disease in the United States, and identify factors associated with a history of kidney stones. A cross-sectional analysis of responses to the 2007-2010 NHANES (n=12 110). Self-reported history of kidney stones. Percent prevalence was calculated and multivariable models were used to identify factors associated with a history of kidney stones. The prevalence of kidney stones was 8.8% (95% confidence interval [CI], 8.1-9.5). Among men, the prevalence of stones was 10.6% (95% CI, 9.4-11.9), compared with 7.1% (95% CI, 6.4-7.8) among women. Kidney stones were more common among obese than normal-weight individuals (11.2% [95% CI, 10.0-12.3] compared with 6.1% [95% CI, 4.8-7.4], respectively; p<0.001). Black, non-Hispanic and Hispanic individuals were less likely to report a history of stone disease than were white, non-Hispanic individuals (black, non-Hispanic: odds ratio [OR]: 0.37 [95% CI, 0.28-0.49], p<0.001; Hispanic: OR: 0.60 [95% CI, 0.49-0.73], p<0.001). Obesity and diabetes were strongly associated with a history of kidney stones in multivariable models. The cross-sectional survey design limits causal inference regarding potential risk factors for kidney stones. Kidney stones affect approximately 1 in 11 people in the United States. These data represent a marked increase in stone disease compared with the NHANES III cohort, particularly in black, non-Hispanic and Hispanic individuals. Diet and lifestyle factors likely play an important role in the changing epidemiology of kidney stones. Published by Elsevier B.V.

  14. Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease

    PubMed Central

    Sharma, Kanishka; Caroli, Anna; Quach, Le Van; Petzold, Katja; Bozzetto, Michela; Serra, Andreas L.; Remuzzi, Giuseppe; Remuzzi, Andrea

    2017-01-01

    Background In autosomal dominant polycystic kidney disease (ADPKD), total kidney volume (TKV) is regarded as an important biomarker of disease progression and different methods are available to assess kidney volume. The purpose of this study was to identify the most efficient kidney volume computation method to be used in clinical studies evaluating the effectiveness of treatments on ADPKD progression. Methods and findings We measured single kidney volume (SKV) on two series of MR and CT images from clinical studies on ADPKD (experimental dataset) by two independent operators (expert and beginner), twice, using all of the available methods: polyline manual tracing (reference method), free-hand manual tracing, semi-automatic tracing, Stereology, Mid-slice and Ellipsoid method. Additionally, the expert operator also measured the kidney length. We compared different methods for reproducibility, accuracy, precision, and time required. In addition, we performed a validation study to evaluate the sensitivity of these methods to detect the between-treatment group difference in TKV change over one year, using MR images from a previous clinical study. Reproducibility was higher on CT than MR for all methods, being highest for manual and semiautomatic contouring methods (planimetry). On MR, planimetry showed highest accuracy and precision, while on CT accuracy and precision of both planimetry and Stereology methods were comparable. Mid-slice and Ellipsoid method, as well as kidney length were fast but provided only a rough estimate of kidney volume. The results of the validation study indicated that planimetry and Stereology allow using an importantly lower number of patients to detect changes in kidney volume induced by drug treatment as compared to other methods. Conclusions Planimetry should be preferred over fast and simplified methods for accurately monitoring ADPKD progression and assessing drug treatment effects. Expert operators, especially on MR images, are required

  15. Prevalence and related risk factors of chronic kidney disease among adults in Luxembourg: evidence from the observation of cardiovascular risk factors (ORISCAV-LUX) study.

    PubMed

    Alkerwi, Ala'a; Sauvageot, Nicolas; El Bahi, Illiasse; Delagardelle, Charles; Beissel, Jean; Noppe, Stephanie; Roderick, Paul J; Mindell, Jennifer S; Stranges, Saverio

    2017-12-08

    Evidence on stages of renal impairment and related risk factors in Luxembourg is lacking. This study aimed to assess the prevalence of chronic kidney disease (CKD) and identify potential correlates among the general population, using the recent definition suggested by the Kidney Disease Improving Global Outcomes guidelines. Data analysed from 1361 participants aged 18-69 years, enrolled in the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study, 2007-08. Descriptive and multivariable logistic regression analyses were performed to identify demographic, socio-economic, behavioural, and clinical factors associated with CKD, defined as a single estimated glomerular filtration rate (eGFR) measure <60 ml/min/1.73m 2 and/or urinary albumin: creatinine ratio (ACR) > 30 mg/g. Overall, 6.3% had CKD, including 4.4% and 0.7% with moderate and severe macroalbuminuria respectively. 0.1% had kidney failure (eGFR < 15 ml/min/1.73 m 2 ). CKD was higher among subjects with primary education and risk increased significantly with age; the odd ratio was more than 2-fold higher among participants aged 50-69 years. Hypertension and diabetes were associated with more than 3-fold and 4-fold higher risks of CKD [adjusted odd ratio (AOR 3.46 (95%CI 1.92, 6.24), P < 0.001] and [AOR 4.45 (2.18, 9.07), P < 0.001] respectively. Increased physical activity measured as total MET-hour/week was independently associated with a lower odds of CKD (P = 0.035). The national baseline prevalence estimate of CKD, a neglected public health problem, stresses the benefit of early detection particularly in high-risk subjects with associated cardiovascular pathologies (e.g. hypertension, diabetes), to prevent and defray costs related to eventual complications.

  16. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  17. Common and rare variants associated with kidney stones and biochemical traits

    PubMed Central

    Oddsson, Asmundur; Sulem, Patrick; Helgason, Hannes; Edvardsson, Vidar O.; Thorleifsson, Gudmar; Sveinbjörnsson, Gardar; Haraldsdottir, Eik; Eyjolfsson, Gudmundur I.; Sigurdardottir, Olof; Olafsson, Isleifur; Masson, Gisli; Holm, Hilma; Gudbjartsson, Daniel F.; Thorsteinsdottir, Unnur; Indridason, Olafur S.; Palsson, Runolfur; Stefansson, Kari

    2015-01-01

    Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10−10) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10−8). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10−5) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10−5) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism. PMID:26272126

  18. Survival of Kidney Retransplant Compared With First Kidney Transplant: A Report From Southern Iran.

    PubMed

    Roozbeh, Jamshid; Malekmakan, Leila; Monavarian, Mehri; Daneshian, Arghavan; Karimi, Zeynab

    2016-11-18

    Kidney retransplant is increasingly performed, but patient survival is controversial. The aim of this study was to evaluate the outcomes of patients with second kidney grafts and compare survival rates of recipients with first and second kidney transplant procedures. This was a retrospective study analyzing records from the Shiraz University of Medical Sciences transplant ward. Survival rates of retrans?lanted patients were compared with a randomly selected group of first kidney recipients. Factors related to retransplant survival were evaluated. Data were analyzed by SPSS version 16.0, and P < .05 was consi?ered as significant. This study included 200 patients with first kidney transplants and 68 patients with kidney retransplants. We found that 1-, 3-, 5-, and 7-year graft survival rates were 91.9%, 87.2% ,86.3%, and 86.3% among retransplanted patients versus 98.3%, 95.4%, 90.2%, and 88.7% among the first transplant group (P = .130). Hospital stay duration after transplant, kidney rejection rate during hospitalization, delayed graft function, and creatinine levels at discharge were significantly associated with survival in retransplanted patients (P < .05). Kidney retransplants can yield desirable outcomes and is the treatment of choice in patients who have lost their graft. Careful screening for risk factors should be consider for obtaining better results in second kidney transplant procedures.

  19. Histopathologic Findings of Potential Kidney Donors With Asymptomatic Microscopic Hematuria: Impact on Donation.

    PubMed

    Hassan, E A; Ali, T Z; Abdulbaki, A; Ibrahim, I A; Almanae, H M; Aleid, H A

    2017-10-01

    Isolated microscopic hematuria (IMH) is not uncommon in potential kidney donors. The aim was to study the kidney biopsy findings of potential kidney donors with IMH and the impact of the histopathologic diagnoses on the decision to accept or decline such donors from kidney donation. In this retrospective study, all the potential kidney donors with IMH were identified from the medical records of patients who underwent kidney biopsies between January 2010 and December 2016. Forty-five such individuals were identified. The mean age of these potential donors was 32.6 years and 76% were male. All of them had normal blood pressure and no significant proteinuria. Seventeen (38%) biopsies showed histopathologic abnormalities; thin basement membrane disease (n = 13; 28%) was the most common cause followed by immunoglobulin (Ig)A nephropathy (n = 4; 9%). Donors with abnormal biopsy findings were excluded from donation. However, 62% of the potential donors had normal kidney biopsy findings and were accepted for kidney donation. IMH justifies extensive work-up including kidney biopsy to identify donors who may have underlying significant glomerular pathology excluding them from kidney donation. On the other hand, kidney biopsy also helps in accepting the donors if it does not show significant abnormality. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose.

    PubMed

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H

    2016-10-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Risk factors associated with post-kidney transplant malignancies: an article from the Cancer-Kidney International Network.

    PubMed

    Sprangers, Ben; Nair, Vinay; Launay-Vacher, Vincent; Riella, Leonardo V; Jhaveri, Kenar D

    2018-06-01

    In kidney transplant recipients, cancer is one of the leading causes of death with a functioning graft beyond the first year of kidney transplantation, and malignancies account for 8-10% of all deaths in the USA (2.6 deaths/1000 patient-years) and exceed 30% of deaths in Australia (5/1000 patient-years) in kidney transplant recipients. Patient-, transplant- and medication-related factors contribute to the increased cancer risk following kidney transplantation. While it is well established that the overall immunosuppressive dose is associated with an increased risk for cancer following transplantation, the contributive effect of different immunosuppressive agents is not well established. In this review we will discuss the different risk factors for malignancies after kidney transplantation.

  2. Development of a Targeted Urine Proteome Assay for kidney diseases.

    PubMed

    Cantley, Lloyd G; Colangelo, Christopher M; Stone, Kathryn L; Chung, Lisa; Belcher, Justin; Abbott, Thomas; Cantley, Jennifer L; Williams, Kenneth R; Parikh, Chirag R

    2016-01-01

    Since human urine is the most readily available biofluid whose proteome changes in response to disease, it is a logical sample for identifying protein biomarkers for kidney diseases. Potential biomarkers were identified by using a multiproteomics workflow to compare urine proteomes of kidney transplant patients with immediate and delayed graft function. Differentially expressed proteins were identified, and corresponding stable isotope labeled internal peptide standards were synthesized for scheduled MRM. The Targeted Urine Proteome Assay (TUPA) was then developed by identifying those peptides for which there were at least two transitions for which interference in a urine matrix across 156 MRM runs was <30%. This resulted in an assay that monitors 224 peptides from 167 quantifiable proteins. TUPA opens the way for using a robust mass spectrometric technology, MRM, for quantifying and validating biomarkers from among 167 urinary proteins. This approach, while developed using differentially expressed urinary proteins from patients with delayed versus immediate graft function after kidney transplant, can be expanded to include differentially expressed urinary proteins in multiple kidney diseases. Thus, TUPA could provide a single assay to help diagnose, prognose, and manage many kidney diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease.

    PubMed

    Llorens-Martín, Maria; Blazquez-Llorca, Lidia; Benavides-Piccione, Ruth; Rabano, Alberto; Hernandez, Felix; Avila, Jesus; DeFelipe, Javier

    2014-01-01

    A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer's disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits.

  4. The attitude toward living kidney donation among personnel from units related to donation and transplantation in Spain, Mexico and Cuba.

    PubMed

    Ríos, Antonio; López-Navas, Ana; Ayala-García, Marco Antonio; Sebastián, María José; Abdo-Cuza, Anselmo; Martínez-Alarcón, Laura; Ramírez, Ector Jaime; Muñoz, Gerardo; Palacios, Gerardo; Suárez-López, Juliette; Castellanos, Ricardo; González, Beatriz; Martínez, Miguel Angel; Díaz, Ernesto; Ramírez, Pablo; Parrilla, Pascual

    2014-05-01

    Living kidney donation (LKD) is becoming increasingly necessary as a treatment option for reducing the deficit in transplant organs. Hospital personnel in services related to donation and transplantation play a key role in promoting this kind of donation. To analyze the attitude toward LKD among hospital workers in services related to donation and transplantation in Spain and Latin America. Eight hospitals in the "International Collaborative Donor Project" were selected (Spain-Mexico-Cuba). A random sample was taken which was stratified according to the type of service and job category, in transplant-related services. Of the 878 respondents, 90% were in favor of related LKD, and 28% were in favor if the LKD was not related. Attitude was more favorable among Latin Americans workers compared to the Spanish (p=0.014). Other factors associated to attitude included: age (p=0.004); an attitude in favor of deceased donation and living liver donation (p<0.001); and acceptance of a kidney from a donor (p<0.001). The attitude toward related LKD was very favorable among hospital personnel in units related to the donation and transplantation process in Spain and Latin America, which means that they could contribute to its promotion particularly at the current time when living kidney donation needs to be expanded.

  5. Incidental kidney stones: a single center experience with kidney donor selection

    PubMed Central

    Kim, Irene K.; Tan, Jane C.; Lapasia, Jessica; Elihu, Arvand; Busque, Stephan; Melcher, Marc L.

    2014-01-01

    The presence of kidney stones has been a relative contraindication for living donation. With the widespread use of more sensitive imaging techniques as part of the routine living donor workup, kidney stones are more frequently detected, and their clinical significance in this setting is largely unknown. Records from 325 potential kidney donors who underwent MRA or CT-angiography were reviewed; 294 proceeded to donation. The prevalence of kidney stones found incidentally during donor evaluation was 7.4% (24 of 325). Sixteen donors with stones proceeded with kidney donation. All incidental calculi were nonobstructing and small (median 2 mm; range 1–9 mm). Eleven recipients were transplanted with allografts containing stones. One recipient developed symptomatic nephrolithasis after transplantation. This recipient was found to have newly formed stones secondary to hyperoxaluria, suggesting a recipient-driven propensity for stone formation. The remaining ten recipients have stable graft function, postoperative ultrasound negative for nephrolithiasis, and no sequelae from stones. No donor developed symptomatic nephrolithiasis following donation. Judicious use of allografts with small stones in donors with normal metabolic studies may be acceptable, and careful follow-up in recipients of such allografts is warranted. PMID:22168332

  6. Weighing the Evidence in Peters' Rule: Does Neuronal Morphology Predict Connectivity?

    PubMed

    Rees, Christopher L; Moradi, Keivan; Ascoli, Giorgio A

    2017-02-01

    Although the importance of network connectivity is increasingly recognized, identifying synapses remains challenging relative to the routine characterization of neuronal morphology. Thus, researchers frequently employ axon-dendrite colocations as proxies of potential connections. This putative equivalence, commonly referred to as Peters' rule, has been recently studied at multiple levels and scales, fueling passionate debates regarding its validity. Our critical literature review identifies three conceptually distinct but often confused applications: inferring neuron type circuitry, predicting synaptic contacts among individual cells, and estimating synapse numbers within neuron pairs. Paradoxically, at the originally proposed cell-type level, Peters' rule remains largely untested. Leveraging Hippocampome.org, we validate and refine the relationship between axonal-dendritic colocations and synaptic circuits, clarifying the interpretation of existing and forthcoming data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Living kidney donation].

    PubMed

    Timsit, M-O; Kleinclauss, F; Mamzer Bruneel, M F; Thuret, R

    2016-11-01

    To review ethical, legal and technical aspects of living kidney donor surgery. An exhaustive systematic review of the scientific literature was performed in the Medline database (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) using different associations of the following keywords: Donor nephrectomy; Kidney paired donation; Kidney transplantation; Laparoscopic nephrectomy; Living donor; Organs trafficking; Robotic assisted nephrectomy; Vaginal extraction. French legal documents have been reviewed using the government portal (http://www.legifrance.gouv.fr). Articles were selected according to methods, language of publication and relevance. A total of 6421 articles were identified; after careful selection, 161 publications were considered of interest and were eligible for our review. The ethical debate focuses on organ shortage, financial incentive, organ trafficking and the recent data suggesting a small but significant increase risk for late renal disease in donor population. Legal decisions aim to increase the number of kidneys available for donation, such as kidney-paired donation that faces several obstacles in France. Laparoscopic approach became widely used, while robotic-assisted donor nephrectomy failed to demonstrate improved outcome as compared with other minimal invasive techniques. Minimally invasive living donor nephrectomy aims to limit side effects in the donor without increasing the morbidity in this specific population of healthy persons; long term surveillance to prevent the onset of renal disease in mandatory. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. [The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study: To better understand chronic kidney disease].

    PubMed

    Stengel, Bénédicte; Combe, Christian; Jacquelinet, Christian; Briançon, Serge; Fouque, Denis; Laville, Maurice; Frimat, Luc; Pascal, Christophe; Herpe, Yves-Édouard; Morel, Pascal; Deleuze, Jean-François; Schanstra, Joost P; Pisoni, Ron L; Robinson, Bruce M; Massy, Ziad A

    2016-04-01

    Preserving kidney function and improving the transition from chronic kidney disease to end stage is a research and healthcare challenge. The national Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort was established to identify the determinants, biomarkers and practice patterns associated with chronic kidney disease outcomes. The study will include more than 3000 adult patients with moderate to advanced chronic kidney disease from a representative sample of 40 nephrology clinics with respect to regions and legal status, public or private. Patients are recruited during a routine visit and followed for 5 years, before and after starting renal replacement therapy. Patient-level clinical, biological, and lifestyle data are collected annually, as well as provider-level data on clinical practices, coordinated with the International Chronic Kidney Disease Outcomes and Practice Pattern Study. Blood and urine samples are stored in a biobank. Major studied outcomes include survival, patient-reported outcomes, disease progression and hospitalizations. More than 13,000 eligible patients with chronic kidney disease were identified, 60% with stage 3 and 40% with stage 4. Their median age is 72 years [interquartile range, 62-80 years], 60% are men and 38% have diabetes. By the end of December 2015, 2885 patients were included. The CKD-REIN cohort will serve to improve our understanding of chronic kidney disease and provide evidence to improve patient survival and quality of life as well as health care system performances. Copyright © 2016 Association Société de néphrologie. All rights reserved.

  9. Morphological patterns in children with ganglion related enteric neuronal abnormalities.

    PubMed

    Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood

    2011-01-01

    Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.

  10. An Observational Cohort Feasibility Study to Identify Microvesicle and Micro-RNA Biomarkers of Acute Kidney Injury Following Pediatric Cardiac Surgery.

    PubMed

    Sullo, Nikol; Mariani, Silvia; JnTala, Maria; Kumar, Tracy; Woźniak, Marcin J; Smallwood, Dawn; Pais, Paolo; Westrope, Claire; Lotto, Attilio; Murphy, Gavin J

    2018-06-15

    Micro-RNA, small noncoding RNA fragments involved in gene regulation, and microvesicles, membrane-bound particles less than 1 μm known to regulate cellular processes including responses to injury, may serve as disease-specific biomarkers of acute kidney injury. We evaluated the feasibility of measuring these signals as well as other known acute kidney injury biomarkers in a mixed pediatric cardiac surgery population. Single center prospective cohort feasibility study. PICU. Twenty-four children (≤ 17 yr) undergoing cardiac surgery with cardiopulmonary bypass without preexisting inflammatory state, acute kidney injury, or extracorporeal life support. None. Acute kidney injury was defined according to modified Kidney Diseases Improving Global Outcomes criteria. Blood and urine samples were collected preoperatively and at 6-12 and 24 hours. Microvesicles derivation was assessed using flow cytometry and NanoSight analysis. Micro-RNAs were isolated from plasma and analyzed by microarray and quantitative real-time polymerase chain reaction. Data completeness for the primary outcomes was 100%. Patients with acute kidney injury (n = 14/24) were younger, underwent longer cardiopulmonary bypass, and required greater inotrope support. Acute kidney injury subjects had different fractional content of platelets and endothelial-derived microvesicles before surgery. Platelets and endothelial microvesicles levels were higher in acute kidney injury patients. A number of micro-RNA species were differentially expressed in acute kidney injury patients. Pathway analysis of candidate target genes in the kidney suggested that the most often affected pathways were phosphatase and tensin homolog and signal transducer and activator of transcription 3 signaling. Microvesicles and micro-RNAs expression patterns in pediatric cardiac surgery patients can be measured in children and potentially serve as tools for stratification of patients at risk of acute kidney injury.

  11. Living kidney donation: considerations and decision-making.

    PubMed

    Agerskov, Hanne; Bistrup, Claus; Ludvigsen, Mette Spliid; Pedersen, Birthe D

    2014-06-01

    When possible, renal transplantation is the treatment of choice for patients with end-stage kidney disease. Technological developments in immunology have made it possible to perform kidney transplants between donors and recipients despite antibodies against the donor organ. This allows for a wider range of relationships between recipient and donor. We investigated experiences of, and reflections on, kidney donation among genetic and non-genetic living donors before first consultation at the transplant centre. The aim was to investigate early experiences in the process of becoming a living kidney donor (LKD). The study was conducted within a phenomenological-hermeneutic theoretical framework. Data were generated through semi-structured interviews with 18 potential donors. Data were interpreted and discussed in accordance with the Ricoeur's text interpretation theory on the three levels of naïve reading, structural analysis and critical interpretation and discussion. Two themes emerged: the decision-making process and dilemmas in decision-making. The study identifies that the decision about donation was made in relation to one's own life, family situation and in relation to the recipient-considerations that demonstrate that a range of dilemmas can occur during the decision-making process. The desire to help was prominent and was of significance in decision-making. The study provides insight and knowledge for the health care professionals to meet and involve donors' narratives in reflections about and modifications to clinical nursing practice. It is essential that health care professionals have an understanding and appreciation of the experiences and concerns among LKDs, and this can help in planning and providing individual nursing care and support to donors. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  12. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development.

    PubMed

    Le Berre-Scoul, Catherine; Chevalier, Julien; Oleynikova, Elena; Cossais, François; Talon, Sophie; Neunlist, Michel; Boudin, Hélène

    2017-01-15

    Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were

  13. Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations.

    PubMed Central

    Bouldin, T. W.; Goines, N. D.; Bagnell, R. C.; Krigman, M. R.

    1981-01-01

    The ultrastructural cytopathologic and cytochemical effects of trimethyltin (TMT) neurotoxicity were delineated in hippocampal and pyriform neurons of acutely intoxicated adult rats. TMT produced neuronal necrosis that preferentially involved hippocampal formation pyriform cortex. The first subcellular alterations were multifocal collection of dense-cored vesicles and tubules and membrane-delimited vacuoles in the cytoplasm of the perikaryon and proximal dendrite. Ultrastructural cytochemical examination revealed that the vesicles and tubules had acid phosphatase activity analagous to Golgi-associated endoplasmic reticulum (GERL). Shortly after the appearance of the GERL-like vesicles and tubules, autophagic vacuoles and polymorphic dense bodies accumulated in the neuronal cytoplasm. Some dense bodies appeared to arise from the dense-cored tubules. Neuronal necrosis was characterized by increased electron density of the cytoplasm and large, electron-dense intranuclear masses. Alterations of mitochondria and other organelles were not observed in the early stages of cell injury. No light- or electron-microscopic alterations were found in liver or kidney. Comparable subcellular alterations were observed in adult and neonatal rats chronically intoxicated with TMT. A series of other trialkyl and tricyclic tins and dimethyltin did not produce similar pathologic findings. The GERL-like accumulations are unique in neuronal cytopathology. These findings suggests that GERL and autophagy play an important role in the pathogenesis of TMT-induced neuronal injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7294153

  14. Identifying Candidate Genes that Underlie Cellular pH Sensitivity in Serotonin Neurons Using Transcriptomics: A Potential Role for Kir5.1 Channels

    PubMed Central

    Puissant, Madeleine M.; Mouradian, Gary C.; Liu, Pengyuan; Hodges, Matthew R.

    2017-01-01

    Ventilation is continuously adjusted by a neural network to maintain blood gases and pH. Acute CO2 and/or pH regulation requires neural feedback from brainstem cells that encode CO2/pH to modulate ventilation, including but not limited to brainstem serotonin (5-HT) neurons. Brainstem 5-HT neurons modulate ventilation and are stimulated by hypercapnic acidosis, the sensitivity of which increases with increasing postnatal age. The proper function of brainstem 5-HT neurons, particularly during post-natal development is critical given that multiple abnormalities in the 5-HT system have been identified in victims of Sudden Infant Death Syndrome. Here, we tested the hypothesis that there are age-dependent increases in expression of pH-sensitive ion channels in brainstem 5-HT neurons, which may underlie their cellular CO2/pH sensitivity. Midline raphe neurons were acutely dissociated from neonatal and mature transgenic SSePet-eGFP rats [which have enhanced green fluorescent protein (eGFP) expression in all 5-HT neurons] and sorted with fluorescence-activated cell sorting (FACS) into 5-HT-enriched and non-5-HT cell pools for subsequent RNA extraction, cDNA library preparation and RNA sequencing. Overlapping differential expression analyses pointed to age-dependent shifts in multiple ion channels, including but not limited to the pH-sensitive potassium ion (K+) channel genes kcnj10 (Kir4.1), kcnj16 (Kir5.1), kcnk1 (TWIK-1), kcnk3 (TASK-1) and kcnk9 (TASK-3). Intracellular contents isolated from single adult eGFP+ 5-HT neurons confirmed gene expression of Kir4.1, Kir5.1 and other K+ channels, but also showed heterogeneity in the expression of multiple genes. 5-HT neuron-enriched cell pools from selected post-natal ages showed increases in Kir4.1, Kir5.1, and TWIK-1, fitting with age-dependent increases in Kir4.1 and Kir5.1 protein expression in raphe tissue samples. Immunofluorescence imaging confirmed Kir5.1 protein was co-localized to brainstem neurons and glia including 5

  15. Attitude of kidney patients on the transplant waiting list toward related-living donation. A reason for the scarce development of living donation in Spain.

    PubMed

    Martínez-Alarcón, L; Ríos, A; Conesa, C; Alcaraz, J; González, M J; Ramírez, P; Parrilla, P

    2006-01-01

    Most Spanish transplant centers have on-going living kidney transplant programs. However, such transplants are not increasing as a proportion of the total number of kidney transplants. The objective of this study is to analyze the attitude of kidney patients on the kidney transplant waiting list toward living kidney donation. The patients studied were selected from those included on the kidney transplant waiting list from November 2003 until September 2005 (n = 221). Attitude toward living donation was evaluated using a psychosocial questionnaire. It was completed in a direct personal interview with an independent health-care worker from the Transplant Unit. Student's t-test and the chi-squared test were applied. Two hundred and fourteen patients completed the questionnaire (97%), of which 35% would accept a related living kidney if it were offered to them, 60% would prefer to wait on the waiting list and the remaining 5% are undecided. Up to 66% (n = 134) of patients report that a member of their family or a friend have offered them an organ for donation. Eighty-nine percentage believe that there is some risk involved in living kidney donation, although it is not a factor that affects whether an organ would be accepted or not (p = 0.767). The psychosocial variables that affect attitude toward accepting a related living kidney are: (i) age: the youngest are those who are most likely to accept (40 vs. 45-yr-old; p = 0.010); (ii) descendents: patients without descendents are more likely to accept a living organ (56% vs. 27%; p < 0.000); (iii) marital status: a greater percentage of single respondents would be prepared to receive this type of transplant compared to the group of married respondents (55% vs. 30%. p = 0.007); and (iv) level of education: those with a higher level of education are more likely to accept a living organ (43% have secondary or university studies vs. 28% who only have primary education; p = 0.040). Patients on the waiting list for a kidney

  16. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse.

    PubMed

    Yip, Siew Hoong; Boehm, Ulrich; Herbison, Allan E; Campbell, Rebecca E

    2015-07-01

    Kisspeptin neurons play an essential role in the regulation of fertility through direct regulation of the GnRH neurons. However, the relative contributions of the two functionally distinct kisspeptin neuron subpopulations to this critical regulation are not fully understood. Here we analyzed the specific projection patterns of kisspeptin neurons originating from either the rostral periventricular nucleus of the third ventricle (RP3V) or the arcuate nucleus (ARN) using a cell-specific, viral-mediated tract-tracing approach. We stereotaxically injected a Cre-dependent recombinant adenovirus encoding farnesylated enhanced green fluorescent protein into the ARN or RP3V of adult male and female mice expressing Cre recombinase in kisspeptin neurons. Fibers from ARN kisspeptin neurons projected widely; however, we did not find any evidence for direct contact with GnRH neuron somata or proximal dendrites in either sex. In contrast, we identified RP3V kisspeptin fibers in close contact with GnRH neuron somata and dendrites in both sexes. Fibers originating from both the RP3V and ARN were observed in close contact with distal GnRH neuron processes in the ARN and in the lateral and internal aspects of the median eminence. Furthermore, GnRH nerve terminals were found in close contact with the proximal dendrites of ARN kisspeptin neurons in the ARN, and ARN kisspeptin fibers were found contacting RP3V kisspeptin neurons in both sexes. Together these data delineate selective zones of kisspeptin neuron inputs to GnRH neurons and demonstrate complex interconnections between the distinct kisspeptin populations and GnRH neurons.

  17. The respiratory drive to thoracic motoneurones in the cat and its relation to the connections from expiratory bulbospinal neurones

    PubMed Central

    Saywell, S A; Anissimova, N P; Ford, T W; Meehan, C F; Kirkwood, P A

    2007-01-01

    The descending control of respiratory-related motoneurones in the thoracic spinal cord remains the subject of some debate. In this study, direct connections from expiratory bulbospinal neurones to identified motoneurones were investigated using spike-triggered averaging and the strengths of connection revealed were related to the presence and size of central respiratory drive potentials in the same motoneurones. Intracellular recordings were made from motoneurones in segments T5–T9 of the spinal cord of anaesthetized cats. Spike-triggered averaging from expiratory bulbospinal neurones in the caudal medulla revealed monosynaptic EPSPs in all groups of motoneurones, with the strongest connections to expiratory motoneurones with axons in the internal intercostal nerve. In the latter, connection strength was similar irrespective of the target muscle (e.g. external abdominal oblique or internal intercostal) and the EPSP amplitude was positively correlated with the amplitude of the central respiratory drive potential of the motoneurone. For this group, EPSPs were found in 45/83 bulbospinal neurone/motoneurone pairs, with a mean amplitude of 40.5 μV. The overall strength of the connection supports previous measurements made by cross-correlation, but is about 10 times stronger than that reported in the only previous similar survey to use spike-triggered averaging. Calculations are presented to suggest that this input alone is sufficient to account for all the expiratory depolarization seen in the recorded motoneurones. However, extra sources of input, or amplification of this one, are likely to be necessary to produce a useful motoneurone output. PMID:17204500

  18. Isozyme-specific comprehensive characterization of transglutaminase-crosslinked substrates in kidney fibrosis.

    PubMed

    Tatsukawa, Hideki; Otsu, Risa; Tani, Yuji; Wakita, Ryosuke; Hitomi, Kiyotaka

    2018-05-09

    Chronic kidney disease is characterized by prolonged decline in renal function, excessive accumulation of ECM, and progressive tissue fibrosis. Transglutaminase (TG) is a crosslinking enzyme that catalyzes the formation of covalent bonds between glutamine and lysine residues, and is involved in the induction of renal fibrosis via the stabilization of ECM and the activation of TGF-β1. Despite the accumulating evidences indicating that TG2 is a key enzyme in fibrosis, genetic knockout of TG2 reduced by only 50% the elevated protein crosslinking and fibrous protein in renal fibrosis model, whereas treatment with TG inhibitor almost completely reduced these levels. Here, we also clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific crosslinked substrates for both TG1 and TG2 in fibrotic kidney. We found that TG1 activity was markedly enhanced in renal tubular epithelium and interstitial areas, whereas TG2 activity increased only in the extracellular space. In total, 47 and 67 possible candidates were identified as TG1 and TG2 substrates, respectively, only in fibrotic kidney. Among them, several possible substrates related to renal disease and fibrosis were identified. These findings provide novel insights into the mechanisms of renal fibrosis through the targeting of isozyme-specific TG substrates.

  19. Association between First Nations ethnicity and progression to kidney failure by presence and severity of albuminuria.

    PubMed

    Samuel, Susan M; Palacios-Derflingher, Luz; Tonelli, Marcello; Manns, Braden; Crowshoe, Lynden; Ahmed, Sofia B; Jun, Min; Saad, Nathalie; Hemmelgarn, Brenda R

    2014-02-04

    Despite a low prevalence of chronic kidney disease (estimated glomerular filtration rate [GFR]<60 mL/min per 1.73 m2), First Nations people have high rates of kidney failure requiring chronic dialysis or kidney transplantation. We sought to examine whether the presence and severity of albuminuria contributes to the progression of chronic kidney disease to kidney failure among First Nations people. We identified all adult residents of Alberta (age≥18 yr) for whom an outpatient serum creatinine measurement was available from May 1, 2002, to Mar. 31, 2008. We determined albuminuria using urine dipsticks and categorized results as normal (i.e., no albuminuria), mild, heavy or unmeasured. Our primary outcome was progression to kidney failure (defined as the need for chronic dialysis or kidney transplantation, or a sustained doubling of serum creatinine levels). We calculated rates of progression to kidney failure by First Nations status, by estimated GFR and by albuminuria category. We determined the relative hazard of progression to kidney failure for First Nations compared with non-First Nations participants by level of albuminuria and estimated GFR. Of the 1 816 824 participants we identified, 48 669 (2.7%) were First Nations. First Nations people were less likely to have normal albuminuria compared with non-First Nations people (38.7% v. 56.4%). Rates of progression to kidney failure were consistently 2- to 3-fold higher among First Nations people than among non-First Nations people, across all levels of albuminuria and estimated GFRs. Compared with non-First Nations people, First Nations people with an estimated GFR of 15.0-29.9 mL/min per 1.73 m2 had the highest risk of progression to kidney failure, with similar hazard ratios for those with normal and heavy albuminuria. Albuminuria confers a similar risk of progression to kidney failure for First Nations and non-First Nations people.

  20. Developmental Programming of Branching Morphogenesis in the Kidney

    PubMed Central

    Schneider, Laura; Al-Awqati, Qais

    2015-01-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110

  1. Klotho and activin A in kidney injury: plasma Klotho is maintained in unilateral obstruction despite no upregulation of Klotho biosynthesis in the contralateral kidney.

    PubMed

    Nordholm, Anders; Mace, Maria L; Gravesen, Eva; Hofman-Bang, Jacob; Morevati, Marya; Olgaard, Klaus; Lewin, Ewa

    2018-05-01

    In a new paradigm of etiology related to chronic kidney disease-mineral and bone disorder (CKD-MBD), kidney injury may cause induction of factors in the injured kidney that are released into the circulation and thereby initiate and maintain renal fibrosis and CKD-MBD. Klotho is believed to ameliorate renal fibrosis and CKD-MBD, while activin A might have detrimental effects. The unilateral ureter obstruction (UUO) model is used here to examine this concept by investigating early changes related to renal fibrosis in the obstructed kidney, untouched contralateral kidney, and vasculature which might be affected by secreted factors from the obstructed kidney, and comparing with unilateral nephrectomized controls (UNX). Obstructed kidneys showed early Klotho gene and protein depletion, whereas plasma Klotho increased in both UUO and UNX rats, indicating an altered metabolism of Klotho. Contralateral kidneys had no compensatory upregulation of Klotho and maintained normal expression of the examined fibrosis-related genes, as did remnant UNX kidneys. UUO caused upregulation of transforming growth factor-β and induction of periostin and activin A in obstructed kidneys without changes in the contralateral kidneys. Plasma activin A doubled in UUO rats after 10 days while no changes were seen in UNX rats, suggesting secretion of activin A from the obstructed kidney with potentially systemic effects on CKD-MBD. As such, increased aortic sclerostin was observed in UUO rats compared with UNX and normal controls. The present results are in line with the new paradigm and show very early vascular effects of unilateral kidney fibrosis, supporting the existence of a new kidney-vasculature axis.

  2. Risk factors associated with post–kidney transplant malignancies: an article from the Cancer-Kidney International Network

    PubMed Central

    Nair, Vinay; Riella, Leonardo V; Jhaveri, Kenar D

    2018-01-01

    ABSTRACT In kidney transplant recipients, cancer is one of the leading causes of death with a functioning graft beyond the first year of kidney transplantation, and malignancies account for 8–10% of all deaths in the USA (2.6 deaths/1000 patient-years) and exceed 30% of deaths in Australia (5/1000 patient-years) in kidney transplant recipients. Patient-, transplant- and medication-related factors contribute to the increased cancer risk following kidney transplantation. While it is well established that the overall immunosuppressive dose is associated with an increased risk for cancer following transplantation, the contributive effect of different immunosuppressive agents is not well established. In this review we will discuss the different risk factors for malignancies after kidney transplantation. PMID:29942495

  3. An ATF4-ATG5 signaling in hypothalamic POMC neurons regulates obesity.

    PubMed

    Xiao, Yuzhong; Deng, Yalan; Yuan, Feixiang; Xia, Tingting; Liu, Hao; Li, Zhigang; Chen, Shanghai; Liu, Zhixue; Ying, Hao; Liu, Yi; Zhai, Qiwei; Guo, Feifan

    2017-06-03

    ATF4 (activating transcription factor 4) is an important transcription factor that has many biological functions, while its role in hypothalamic POMC (pro-opiomelanocortin-α) neurons in the regulation of energy homeostasis has not been explored. We recently discovered that mice with an Atf4 deletion specific to POMC neurons (PAKO mice) are lean and have higher energy expenditure. Furthermore, these mice are resistant to high-fat diet (HFD)-induced obesity and obesity-related metabolic disorders. Mechanistically, we found the expression of ATG5 (autophagy-related 5) is upregulated in POMC neurons of PAKO mice, and ATF4 regulates ATG5 expression by binding directly to its promoter. Mice with Atf4 and Atg5 double knockout in POMC neurons have reduced energy expenditure and gain more fat mass compared with PAKO mice under a HFD. Finally, the effect of Atf4 knockout in POMC neurons is possibly mediated by enhanced ATG5-dependent macroautophagy/autophagy and α-melanocyte-stimulating hormone (α-MSH) production in the hypothalamus. Together, this work not only identifies a beneficial role for ATF4 in hypothalamic POMC neurons in the regulation of obesity, but also provides a new potential therapeutic target for obesity and obesity-related metabolic diseases.

  4. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves

    PubMed Central

    Bierer, Julie Arenberg; Faulkner, Kathleen F.

    2010-01-01

    Objectives The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar electrode configuration are predictive of wide or tip-shifted psychophysical tuning curves. Design Data were collected from five cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked psychophysical tuning curves were obtained for channels with the highest, lowest, and median tripolar (σ=1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (σ=0) or a more focused partial tripolar (σ ≥ 0.55) configuration. The masker channel and level were varied while the configuration was fixed to σ = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Results Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, σ, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single

  5. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    PubMed

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a

  6. Common variants in Mendelian kidney disease genes and their association with renal function.

    PubMed

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  7. Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function

    PubMed Central

    Fuchsberger, Christian; Köttgen, Anna; O’Seaghdha, Conall M.; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I.; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J.; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V.; O’Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M.; Bochud, Murielle; Heid, Iris M.; Siscovick, David S.; Fox, Caroline S.; Kao, W. Linda; Böger, Carsten A.

    2013-01-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research. PMID:24029420

  8. Neurons other than motor neurons in motor neuron disease.

    PubMed

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  9. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila.

    PubMed

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-06-17

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY.

  10. Obesity and kidney protection

    PubMed Central

    Chandra, Aravind; Biersmith, Michael; Tolouian, Ramin

    2014-01-01

    Context: Obesity, both directly and indirectly, increases the risk for a variety of disease conditions including diabetes, hypertension, liver disease, and certain cancers, which in turn, decreases the overall lifespan in both men and women. Though the cardiovascular risks of obesity are widely acknowledged, less often identified is the relationship between obesity and renal function. Evidence Acquisitions: Directory of Open Access Journals (DOAJ), Google Scholar, PubMed, EBSCO and Web of Science has been searched. Results: The concept of the “Metabolic Syndrome“ helps us to understand this close link between obesity, diabetes, hypertension, and renal dysfunction. An elevated body mass index has shown to be one of the major determinants of glomerular hyperfiltration that lead to the development of chronic kidney disease. Interestingly, weight loss can lead to attenuation of hyperfiltration in severely obese patients suggesting a possible therapeutic option to combat obesity-related hyperfiltration. Conclusions: Various treatment strategies had been suggested to decrease impact of obesity on kidneys. These are blood pressure controling, inhibition of the renin-angiotensinaldosterone axis, improving glycemic control, improving dyslipidemia, improving protein uriaand lifestyle modifications. Regardless of the numerous pharmacotherapies, the focus should be on the root cause: obesity. PMID:25093156

  11. Obesity and kidney protection.

    PubMed

    Chandra, Aravind; Biersmith, Michael; Tolouian, Ramin

    2014-07-01

    Obesity, both directly and indirectly, increases the risk for a variety of disease conditions including diabetes, hypertension, liver disease, and certain cancers, which in turn, decreases the overall lifespan in both men and women. Though the cardiovascular risks of obesity are widely acknowledged, less often identified is the relationship between obesity and renal function. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed, EBSCO and Web of Science has been searched. The concept of the "Metabolic Syndrome" helps us to understand this close link between obesity, diabetes, hypertension, and renal dysfunction. An elevated body mass index has shown to be one of the major determinants of glomerular hyperfiltration that lead to the development of chronic kidney disease. Interestingly, weight loss can lead to attenuation of hyperfiltration in severely obese patients suggesting a possible therapeutic option to combat obesity-related hyperfiltration. Various treatment strategies had been suggested to decrease impact of obesity on kidneys. These are blood pressure controling, inhibition of the renin-angiotensinaldosterone axis, improving glycemic control, improving dyslipidemia, improving protein uriaand lifestyle modifications. Regardless of the numerous pharmacotherapies, the focus should be on the root cause: obesity.

  12. Urine protein profiling identified alpha-1-microglobulin and haptoglobin as biomarkers for early diagnosis of acute allograft rejection following kidney transplantation.

    PubMed

    Stubendorff, Beatrice; Finke, Stephanie; Walter, Martina; Kniemeyer, Olaf; von Eggeling, Ferdinand; Gruschwitz, Torsten; Steiner, Thomas; Ott, Undine; Wolf, Gunter; Wunderlich, Heiko; Junker, Kerstin

    2014-12-01

    Early diagnosis of acute rejection and effective immunosuppressive therapy lead to improvement in graft survival following kidney transplantation. In this study, we aimed to establish a urinary protein profile suitable to distinguish between patients with rejection and stable graft function and to predict acute rejection based on postoperatively collected urine samples. A further objective was to identify candidate proteins for the use as biomarkers in clinical practice. Urine samples of 116 kidney recipients were included. Rejection was proven by biopsy (n = 58), and stable transplant function was monitored for at least 2 years (n = 58). Postoperative urine samples were collected between 3rd and 10th day following transplantation. Urinary protein profiles were obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Protein identification and validation were performed using multiplex fluorescence 2DE, peptide mass fingerprinting and enzyme-linked immunosorbent assay. A protein profile including four mass peaks differentiated acute rejection from stable transplants at the time point of rejection and at the postoperative state with 73 % sensitivity and 88 % specificity. Alpha-1-microglobulin (A1MG) and Haptoglobin (Hp) were identified as putative rejection biomarkers. Protein levels were significantly higher in postoperative urine from patients with rejection (A1MG 29.13 vs. 22.06 μg/ml, p = 0.001; Hp 628.34 vs. 248.57 ng/ml, p = 0.003). The combination of both proteins enabled the diagnosis of early rejection with 85 % sensitivity and 80 % specificity. Protein profiling using mass spectrometry is suitable for noninvasive detection of rejection-specific changes following kidney transplantation. A specific protein profile enables the prediction of early acute allograft rejection in the immediate postoperative period. A1MG and Hp appear to be reliable rejection biomarkers.

  13. Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death.

    PubMed

    Bhatraju, Pavan K; Mukherjee, Paramita; Robinson-Cohen, Cassianne; O'Keefe, Grant E; Frank, Angela J; Christie, Jason D; Meyer, Nuala J; Liu, Kathleen D; Matthay, Michael A; Calfee, Carolyn S; Christiani, David C; Himmelfarb, Jonathan; Wurfel, Mark M

    2016-11-17

    Acute kidney injury (AKI) is common among intensive care unit (ICU) patients. AKI is highly heterogeneous, with variable links to poor outcomes. Current approaches to classify AKI severity and identify patients at highest risk for poor outcomes focus on the maximum change in serum creatinine (SCr) values. However, these scores are hampered by the need for a reliable baseline SCr value and the absence of a component differentiating transient from persistent rises in SCr. We hypothesized that identification of resolving or nonresolving AKI subphenotypes based on the early trajectory of SCr values in the ICU would better differentiate patients at risk of hospital mortality. We performed a secondary analysis of two prospective studies of ICU patients admitted to a trauma ICU (group 1; n = 1914) or general medical-surgical ICUs (group 2; n = 1867). In group 1, we tested definitions for resolving and nonresolving AKI subphenotypes and selected the definitions resulting in subphenotypes with the greatest separation in risk of death relative to non-AKI controls. We applied this definition to group 2 and tested whether the subphenotypes were independently associated with hospital mortality after adjustment for AKI severity. AKI occurred in 46% and 69% of patients in groups 1 and 2, respectively. In group 1, a resolving AKI subphenotype (defined as a decrease in SCr of 0.3 mg/dl or 25% from maximum in the first 72 h of study enrollment) was associated with a low risk of death. A nonresolving AKI subphenotype (defined as all AKI cases not meeting the "resolving" definition) was associated with a high risk of death. In group 2, the resolving AKI subphenotype was not associated with increased mortality (relative risk [RR] 0.86, 95% CI 0.63-1.17), whereas the nonresolving AKI subphenotype was associated with higher mortality (RR 1.68, 95% CI 1.15-2.44) even after adjustment for AKI severity stage. The trajectory of SCr levels identifies AKI subphenotypes with different

  14. Adaptation of orientation vectors of otolith-related central vestibular neurons to gravity.

    PubMed

    Eron, Julia N; Cohen, Bernard; Raphan, Theodore; Yakushin, Sergei B

    2008-09-01

    Behavioral experiments indicate that central pathways that process otolith-ocular and perceptual information have adaptive capabilities. Because polarization vectors of otolith afferents are directly related to the electro-mechanical properties of the hair cell bundle, it is unlikely that they change their direction of excitation. This indicates that the adaptation must take place in central pathways. Here we demonstrate for the first time that otolith polarization vectors of canal-otolith convergent neurons in the vestibular nuclei have adaptive capability. A total of 10 vestibular-only and vestibular-plus-saccade neurons were recorded extracellularly in two monkeys before and after they were in side-down positions for 2 h. The spatial characteristics of the otolith input were determined from the response vector orientation (RVO), which is the projection of the otolith polarization vector, onto the head horizontal plane. The RVOs had no specific orientation before animals were in side-down positions but moved toward the gravitational axis after the animals were tilted for extended periods. Vector reorientations varied from 0 to 109 degrees and were linearly related to the original deviation of the RVOs from gravity in the position of adaptation. Such reorientation of central polarization vectors could provide the basis for changes in perception and eye movements related to prolonged head tilts relative to gravity or in microgravity.

  15. Understanding Kidney Disease: Toward the Integration of Regulatory Networks Across Species

    PubMed Central

    Ju, Wenjun; Brosius, Frank C.

    2010-01-01

    Animal models have long been useful in investigating both normal and abnormal human physiology. Systems biology provides a relatively new set of approaches to identify similarities and differences between animal models and humans that may lead to a more comprehensive understanding of human kidney pathophysiology. In this review, we briefly describe how genome-wide analyses of mouse models have helped elucidate features of human kidney diseases, discuss strategies to achieve effective network integration, and summarize currently available web-based tools that may facilitate integration of data across species. The rapid progress in systems biology and orthology, as well as the advent of web-based tools to facilitate these processes, now make it possible to take advantage of knowledge from distant animal species in targeted identification of regulatory networks that may have clinical relevance for human kidney diseases. PMID:21044762

  16. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations

    PubMed Central

    Kim, Seungil; Barry, Devin M.; Liu, Xian-Yu; Yin, Shijin; Munanairi, Admire; Meng, Qing-Tao; Cheng, Wei; Mo, Ping; Wan, Li; Liu, Shen-Bin; Ratnayake, Kasun; Zhao, Zhong-Qiu; Gautam, Narasimhan; Zheng, Jie; Ajith Karunarathne, W. K.; Chen, Zhou-Feng

    2017-01-01

    The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine-and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca2+ response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca2+ responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons. PMID:27436359

  17. Can value for money be improved by changing the sequence of our donor work-up in the living kidney donor programme?

    PubMed

    Larsen, Jesper; Sørensen, Søren Schwartz; Feldt-Rasmussen, Bo

    2009-08-01

    The aim of the study was to identify procedures of maximum importance for acceptance or rejection of kidney donation from a living donor as well as making the process more cost-effective. We identified all potential living related donors who were examined during the period between January 2002 and December 2006 at our department. The cost in euro (euro) for the programme was estimated using the Danish diagnosis-related group-system (DRG). The donor work-up programme was described. One hundred and thirty-three potential donors were identified; 66 male- and 67 female subjects, median age of 52 years (range 22-69). Sixty-four participants were rejected as donors. Abdominal CT-scan with angiography and urography ruled out 22 of the above 64 potential organ donors; thus, 48% of the volunteers for living kidney donation were unsuited for donation. Abdominal CT-scan with angiography and urography was the procedure identifying most subjects who were unsuited for kidney donation. A rearrangement of the present donor work-up programme could potentially reduce the costs from euro6911 to euro5292 per donor--saving 23% of the costs. By changing the sequence of examinations, it might be possible to cut down on time spent and number of tests needed for approving or rejecting subjects for living kidney donation.

  18. Age and treatment of kidney failure.

    PubMed

    Elliott, Meghan J; Tam-Tham, Helen; Hemmelgarn, Brenda R

    2013-05-01

    This review discusses issues related to treatment of chronic kidney disease, and kidney failure in particular, among older adults. A substantial proportion of older adults have chronic kidney disease and progress to kidney failure. There is considerable variability in treatment practices for advanced kidney disease among older adults, and evidence that treatment decisions such as dialysis initiation may be made without adequate preparation. When initiated, survival among older adults on chronic dialysis remains poor, and is associated with a significant decline in functional status. There is also evidence to suggest that dialysis initiation may not reflect overall treatment goals of elderly patients, but rather a lack of clear communication between patients and health practitioners, and underdeveloped conservative care programs in many centers. Kidney failure is common among older adults. When considering treatment options for kidney failure, patient priorities, preferences, and symptoms should be taken into account, using a shared decision-making approach.

  19. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    PubMed

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-01

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers

  20. [Ascites and acute kidney injury].

    PubMed

    Piano, Salvatore; Tonon, Marta; Angeli, Paolo

    2016-07-01

    Ascites is the most common complication of cirrhosis. Ascites develops as a consequence of an abnormal splanchnic vasodilation with reduction of effecting circulating volume and activation of endogenous vasoconstrictors system causing salt and water retention. Patients with ascites have a high risk to develop further complications of cirrhosis such as hyponatremia, spontaneous bacterial peritonitis and acute kidney injury resulting in a poor survival. In recent years, new studies helped a better understanding of the pathophysiology of ascites and acute kidney injury in cirrhosis. Furthermore, new diagnostic criteria have been proposed for acute kidney injury and hepatorenal syndrome and a new algorithm for their management has been recommended with the aim of an early diagnosis and treatment. Herein we will review the current knowledge on the pathophysiology, diagnosis and treatment of ascites and acute kidney injury in patients with cirrhosis and we will identify the unmet needs that should be clarified in the next years.

  1. Changes in the Response Properties of Inferior Colliculus Neurons Relating to Tinnitus

    PubMed Central

    Berger, Joel I.; Coomber, Ben; Wells, Tobias T.; Wallace, Mark N.; Palmer, Alan R.

    2014-01-01

    Tinnitus is often identified in animal models by using the gap prepulse inhibition of acoustic startle. Impaired gap detection following acoustic over-exposure (AOE) is thought to be caused by tinnitus “filling in” the gap, thus, reducing its salience. This presumably involves altered perception, and could conceivably be caused by changes at the level of the neocortex, i.e., cortical reorganization. Alternatively, reduced gap detection ability might reflect poorer temporal processing in the brainstem, caused by AOE; in which case, impaired gap detection would not be a reliable indicator of tinnitus. We tested the latter hypothesis by examining gap detection in inferior colliculus (IC) neurons following AOE. Seven of nine unilaterally noise-exposed guinea pigs exhibited behavioral evidence of tinnitus. In these tinnitus animals, neural gap detection thresholds (GDTs) in the IC significantly increased in response to broadband noise stimuli, but not to pure tones or narrow-band noise. In addition, when IC neurons were sub-divided according to temporal response profile (onset vs. sustained firing patterns), we found a significant increase in the proportion of onset-type responses after AOE. Importantly, however, GDTs were still considerably shorter than gap durations commonly used in objective behavioral tests for tinnitus. These data indicate that the neural changes observed in the IC are insufficient to explain deficits in behavioral gap detection that are commonly attributed to tinnitus. The subtle changes in IC neuron response profiles following AOE warrant further investigation. PMID:25346722

  2. Simple Kidney Cysts

    MedlinePlus

    ... Solitary Kidney Your Kidneys & How They Work Simple Kidney Cysts What are simple kidney cysts? Simple kidney cysts are abnormal, fluid-filled ... that form in the kidneys. What are the kidneys and what do they do? The kidneys are ...

  3. Relay kidney transplantation in Korea--legal, ethical and medical aspects.

    PubMed

    Park, Jong-Hyun; Park, Joong-Won; Koo, Young-Mo; Kim, Jang Han

    2004-07-01

    Living kidney transplantations constitute the majority of kidney transplantations in Korea. Recently, relay kidney transplantation, which is a modified form of both 'exchange transplantation' and 'living anonymous donation', has become at issue. After a living anonymous donor makes the initial donation, the next donor, who is related to the first recipient, makes the second donation; the third donor, who is related to the second recipient, makes the third donation; and so on. In relay kidney transplantation, organ trafficking, coercion of donation, assessment order, breach of agreement, and recipient burden should be evaluated with respect to ethical, legal and medical considerations. Despite these problems, a non-governmental body, the Korean Organ and Tissue Donor Program, has been promoting relay kidney transplantations to address the shortage of cadaveric kidney donations. Acceptance of the method of relay kidney transplantation requires the institution of supplementary measures to minimize the related problems.

  4. Coexistence of Acute Crescent Glomerulonephritis and IgG4-Related Kidney Disease.

    PubMed

    Lu, Zeyuan; Yin, Jianyong; Bao, Hongda; Jiao, Qiong; Wu, Huijuan; Wu, Rui; Xue, Qin; Wang, Niansong; Zhang, Zhigang; Wang, Feng

    2016-01-01

    IgG4-related disease (IgG4-RD) is a fibroinflammatory disorder that may involve almost each organ or system. IgG4-related kidney disease (IgG4-RKD) refers to renal lesions associated with IgG4-RD. The most frequent morphological type of renal lesions is IgG4-related tubulointerstitial nephritis (IgG4-TIN) which is associated with increased IgG4-positive plasma cell infiltration and interstitial fibrosis. Herein, we present a rare case with coexisting IgG4-RKD and acute crescent glomerulonephritis with concomitant severe tubulointerstitial lesions instead of classic IgG4-TIN. IgG4-RKD and acute crescent glomerulonephritis can occur in the same patient. This case may give us a clearer viewpoint of the disease.

  5. Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion

    PubMed Central

    Shaw, Albert C.; Jackson, Adam W.; Holmes, Tamra; Thurman, Suzie; Davis, G.R.; McClellan, Andrew D.

    2010-01-01

    In larval lamprey, partial lesions were made in the rostral spinal cord to determine which spinal tracts are important for descending activation of locomotion and to identify descending brain neurons that project in these tracts. In whole animals and in vitro brain/spinal cord preparations, brain-initiated spinal locomotor activity was present when the lateral or intermediate spinal tracts were spared but usually was abolished when the medial tracts were spared. We previously showed that descending brain neurons are located in eleven cell groups, including reticulospinal (RS) neurons in the mesenecephalic reticular nucleus (MRN) as well as the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei. Other descending brain neurons are located in the diencephalic (Di) as well as the anterolateral (ALV), dorsolateral (DLV), and posterolateral (PLV) vagal groups. In the present study, the Mauthner and auxillary Mauthner cells, most neurons in the Di, ALV, DLV, and PLV cell groups, and some neurons in the ARRN and PRRN had crossed descending axons. The majority of neurons projecting in medial spinal tracts included large identified Müller cells and neurons in the Di, MRN, ALV, and DLV. Axons of individual descending brain neurons usually did not switch spinal tracts, have branches in multiple tracts, or cross the midline within the rostral cord. Most neurons that projected in the lateral/intermediate spinal tracts were in the ARRN, MRRN, and PRRN. Thus, output neurons of the locomotor command system are distributed in several reticular nuclei, whose neurons project in relatively wide areas of the cord. PMID:20510243

  6. Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs)

    PubMed Central

    Herculano-Houzel, Suzana; Ribeiro, Pedro; Campos, Leandro; Valotta da Silva, Alexandre; Torres, Laila B.; Catania, Kenneth C.; Kaas, Jon H.

    2011-01-01

    Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138–12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32–44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum. PMID:21985803

  7. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    PubMed

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  8. Preformed Frequencies of Cytomegalovirus (CMV)–Specific Memory T and B Cells Identify Protected CMV-Sensitized Individuals Among Seronegative Kidney Transplant Recipients

    PubMed Central

    Lúcia, Marc; Crespo, Elena; Melilli, Edoardo; Cruzado, Josep M.; Luque, Sergi; Llaudó, Inés; Niubó, Jordi; Torras, Joan; Fernandez, Núria; Grinyó, Josep M.; Bestard, Oriol

    2014-01-01

    Background. Cytomegalovirus (CMV) infection remains a major complication after kidney transplantation. Baseline CMV risk is typically determined by the serological presence of preformed CMV-specific immunoglobulin (Ig) G antibodies, even though T-cell responses to major viral antigens are crucial when controlling viral replication. Some IgG-seronegative patients who receive an IgG-seropositive allograft do not develop CMV infection despite not receiving prophylaxis. We hypothesized that a more precise evaluation of pretransplant CMV-specific immune-sensitization using the B and T-cell enzyme-linked immunospot assays may identify CMV-sensitized individuals more accurately, regardless of serological evidence of CMV-specific IgG titers. Methods. We compared the presence of preformed CMV-specific memory B and T cells in kidney transplant recipients between 43 CMV IgG–seronegative (sR−) and 86 CMV IgG–seropositive (sR+) patients. Clinical outcome was evaluated in both groups. Results. All sR+ patients showed a wide range of CMV-specific memory T- and B-cell responses. High memory T- and B-cell frequencies were also clearly detected in 30% of sR− patients, and those with high CMV-specific T-cell frequencies had a significantly lower incidence of late CMV infection after prophylactic therapy. Receiver operating characteristic curve analysis for predicting CMV viremia and disease showed a high area under the receiver operating characteristic curve (>0.8), which translated into a high sensitivity and negative predictive value of the test. Conclusions. Assessment of CMV-specific memory T- and B-cell responses before kidney transplantation among sR− recipients may help identify immunized individuals more precisely, being ultimately at lower risk for CMV infection. PMID:25048845

  9. Medical student attitudes toward kidney physiology and nephrology: a qualitative study.

    PubMed

    Roberts, John K; Sparks, Matthew A; Lehrich, Ruediger W

    2016-11-01

    Interest in nephrology among trainees is waning in the USA. Early perceptions and attitudes to subject matter can be linked to the quality of pre-clinical curricula. We wanted to explore these attitudes in the setting of modern curriculum redesign. We utilized Q methodology to understand first-year medical student attitudes after an innovative kidney physiology curriculum redesign that focuses on blending multiple learning methods. First-year medical students were invited to take a Q sort survey at the conclusion of a kidney physiology course. Students prioritized statements related to their understanding of kidney physiology, learning preferences, preferred course characteristics, perceived clinical relevance of kidney physiology, and interest in nephrology as a career. Factor analysis was performed to identify different student viewpoints. At the conclusion of our modified course, all students (n = 108) were invited to take the survey and 44 (41%) Q sorts were returned. Two dominant viewpoints were defined according to interest in nephrology. The Potentials are students who understand kidney physiology, perceive kidney physiology as clinically relevant, attend class sessions, utilize videos, and are willing to shadow a nephrologist. The Uninterested are students who are less satisfied with their kidney physiology knowledge, prefer to study alone with a textbook, avoid lectures, and are not interested in learning about nephrology. In an updated renal physiology course, students that use multiple learning methods also have favorable attitudes toward learning kidney physiology. Thus, modern curriculum changes that accommodate a variety of learning styles may promote positive attitudes toward nephrology.

  10. Genetics Home Reference: uromodulin-associated kidney disease

    MedlinePlus

    ... of uromodulin-associated kidney disease is unknown. It accounts for fewer than 1 percent of cases of kidney disease. Related Information What information about a genetic condition can statistics ...

  11. Health Literacy of Living Kidney Donors and Kidney Transplant Recipients

    PubMed Central

    Dageforde, Leigh Anne; Petersen, Alec W.; Feurer, Irene D.; Cavanaugh, Kerri L.; Harms, Kelly A.; Ehrenfeld, Jesse M.; Moore, Derek E.

    2015-01-01

    Background Health literacy (HL) may be a mediator for known socioeconomic and racial disparities in living kidney donation. Methods We evaluated the associations of patient and demographic characteristics with HL in living kidney donors (LD), living donor kidney transplant recipients (LDR), and deceased donor recipients (DDR) in a single center retrospective review of patients undergoing kidney donation or transplantation from September 2010 to July 2012. HL and demographic data were collected. HL was assessed via the Short Literacy Survey (SLS) comprising three self-reported screening questions scored using the 5-point Likert scale [low (3-8), moderate (9-14), high (15)]. Chi-square and logistic regression were used to test factors associated with lower HL. Results The sample included 360 adults (105 LD, 103 LDR, 152 DDR; 46±14 years; 70% white; 56% male; 14±3 years of education). HL scores were skewed (49% high, 41% moderate, 10% low). The distribution of HL categories differed significantly among groups (p=0.019). After controlling for age, race, gender, education and a race-education interaction term, DDR were more likely to have moderate or low HL than LDR (OR 1.911; 95%CI 1.096, 3.332; p=0.022) Conclusions Overall, living donors had high HL. The distribution of low, moderate and high HL differed significantly between LD, DDR and LDR. DDR had a higher likelihood of having low HL than LDR. Screening kidney transplant candidates and donors for lower HL may identify barriers to living donation. Future interventions addressing HL may be important to increase living donation and reduce disparities. PMID:24573114

  12. Chronic kidney disease of unknown etiology in Sri Lanka

    PubMed Central

    2016-01-01

    Introduction In the last two decades, chronic kidney disease of unknown etiology (CKDu) has emerged as a significant contributor to the burden of chronic kidney disease (CKD) in rural Sri Lanka. It is characterized by the absence of identified causes for CKD. The prevalence of CKDu is 15.1–22.9% in some Sri Lankan districts, and previous research has found an association with farming occupations. Methods A systematic literature review in Pubmed, Embase, Scopus, and Lilacs databases identified 46 eligible peer-reviewed articles and one conference abstract. Results Geographical mapping indicates a relationship between CKDu and agricultural irrigation water sources. Health mapping studies, human biological studies, and environment-based studies have explored possible causative agents. Most studies focused on likely causative agents related to agricultural practices, geographical distribution based on the prevalence and incidence of CKDu, and contaminants identified in drinking water. Nonetheless, the link between agrochemicals or heavy metals and CKDu remains to be established. No definitive cause for CKDu has been identified. Discussion Evidence to date suggests that the disease is related to one or more environmental agents, however pinpointing a definite cause for CKDu is challenging. It is plausible that CKDu is multifactorial. No specific guidelines or recommendations exist for treatment of CKDu, and standard management protocols for CKD apply. Changes in agricultural practices, provision of safe drinking water, and occupational safety precautions are recommended by the World Health Organization. PMID:27399161

  13. Cardiac surgery-associated acute kidney injury.

    PubMed

    Vives, Marc; Wijeysundera, Duminda; Marczin, Nandor; Monedero, Pablo; Rao, Vivek

    2014-05-01

    Acute kidney injury develops in up to 30% of patients who undergo cardiac surgery, with up to 3% of patients requiring dialysis. The requirement for dialysis after cardiac surgery is associated with an increased risk of infection, prolonged stay in critical care units and long-term need for dialysis. The development of acute kidney injury is independently associated with substantial short- and long-term morbidity and mortality. Its pathogenesis involves multiple pathways. Haemodynamic, inflammatory, metabolic and nephrotoxic factors are involved and overlap each other leading to kidney injury. Clinical studies have identified predictors for cardiac surgery-associated acute kidney injury that can be used effectively to determine the risk for acute kidney injury in patients undergoing cardiac surgery. High-risk patients can be targeted for renal protective strategies. Nonetheless, there is little compelling evidence from randomized trials supporting specific interventions to protect or prevent acute kidney injury in cardiac surgery patients. Several strategies have shown some promise, including less invasive procedures in those at greatest risk, natriuretic peptide, fenoldopam, preoperative hydration, preoperative optimization of anaemia and postoperative early use of renal replacement therapy. The efficacy of larger-scale trials remains to be confirmed.

  14. Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery.

    PubMed

    Lei, Chong; Berra, Lorenzo; Rezoagli, Emanuele; Yu, Binglan; Dong, Hailong; Yu, Shiqiang; Hou, Lihong; Chen, Min; Chen, Wensheng; Wang, Hongbing; Zheng, Qijun; Shen, Jie; Jin, Zhenxiao; Chen, Tao; Zhao, Rong; Christie, Emily; Sabbisetti, Venkata S; Nordio, Francesco; Bonventre, Joseph V; Xiong, Lize; Zapol, Warren M

    2018-06-22

    No medical intervention has been identified that decreases acute kidney injury and improves renal outcome at 1-year after cardiac surgery. To determine whether administration of nitric oxide reduces the incidence of post-operative acute kidney injury and improves long-term kidney outcomes after multiple cardiac valve replacement requiring prolonged cardiopulmonary bypass. 244 Patients undergoing elective, multiple valve replacement surgery mostly due to rheumatic fever were randomized to receive either nitric oxide (treatment) or nitrogen (control). Nitric oxide and nitrogen were administered via the gas exchanger during cardiopulmonary bypass and by inhalation for 24h post-operatively. Primary outcome: Oxidation of ferrous plasma oxyhemoglobin to ferric methemoglobin was associated to a reduced post-operative acute kidney injury from 64% (control group) to 50% (nitric oxide) (RR, 95% CI; 0.78, 0.62-0.97;P=0.014). At 90-days, transition to stage 3 chronic kidney disease was reduced from 33% in the controls to 21% in the treatment group (RR, 95%CI; 0.64, 0.41 - 0.99;P=0.024); and at 1-year, from 31% to 18% (RR, 95% CI; 0.59, 0.36 - 0.96;P=0.017). Nitric oxide treatment reduced the overall major adverse kidney events at 30-days (RR, 95% CI; 0.40, 0.18 - 0.92;P=0.016, 90-days (RR, 95% CI; 0.40, 0.17 - 0.92;P=0.015 and 1-year (RR, 95% CI; 0.47, 0.20-1.10;P=0.041). In patients undergoing multiple valve replacement and prolonged cardiopulmonary bypass, administration of nitric oxide decreased the incidence of acute kidney injury, transition to stage 3 chronic kidney disease and major adverse kidney events at 30-days, 90-days, and 1-year. Clinical trial registered with ClinicalTrials.gov (NCT01802619).

  15. Endoplasmic reticulum stress in wake-active neurons progresses with aging.

    PubMed

    Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid

    2011-08-01

    Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  16. Neurons immunoreactive for vasoactive intestinal polypeptide in the rat primary somatosensory cortex: morphology and spatial relationship to barrel-related columns.

    PubMed

    Bayraktar, T; Welker, E; Freund, T F; Zilles, K; Staiger, J F

    2000-05-08

    Vasoactive intestinal polypeptide (VIP) in neocortex affects neuronal excitability as well as cortical blood flow and metabolism. Interneurons immunoreactive for VIP (VIP-IR neurons) are characterized by their predominantly bipolar appearance and the radial orientation of their main dendrites. In order to determine whether the morphology of VIP-IR neurons is related to the functional organization of the cortex into vertical columns, we combined both immunostaining of neurons containing VIP and cytochrome oxidase histochemistry for visualizing barrels, morphological layer IV correlates of functional columns, in the primary somatosensory (barrel) cortex of rats. VIP-IR neurons were localized in supragranular (48%), granular (16%), and infragranular layers (36%) as well as in the white matter. In the granular layer, a clear trend that more neurons were located in interbarrel septa rather than in barrels could be observed, resulting in a neuronal density which was about one-third higher in the septal area. VIP-IR neurons from the different cortical layers were three-dimensionally reconstructed from serial sections by using a computer microscope system. The neurons were mostly bipolar. Striking morphological differences in both axonal and dendritic trees were found between neurons whose cell bodies were located in supragranular, granular, and the upper part of infragranular layers, and those whose cell bodies were located in the area below. The former had dendrites which often reached layer I, where they bifurcated several times, and axonal trees which were particularly oriented vertically, with a tangential extent smaller than the width of barrels. Therefore, these neurons were mostly confined to either a barrel- or septum-related column. By contrast, the dendrites of neurons of the latter group did not reach the granular layer. Furthermore, these neurons had axons with sometimes very long horizontal collaterals, which often spanned two, in one case three, barrel

  17. Key cytokines of adaptive immunity are differentially induced in rainbow trout kidney by a group of structurally related geranyl aromatic derivatives.

    PubMed

    Valenzuela, Beatriz; Obreque, Javiera; Soto-Aguilera, Sarita; Maisey, Kevin; Imarai, Mónica; Modak, Brenda

    2016-02-01

    Filifolinone is a semi-synthetic terpenoid derivative obtained from Heliotropium filifolium that increases the expression level of pro-inflammatory and anti-inflammatory cytokines in kidney cells of salmon. Because cytokines are produced in response to a foreign organism and by distinct other signals modulating immune responses, we further studied the potential immunomodulatory effects of a group of structural related terpenoid derivatives from H. filifolium on salmonids to determine the relationship between the chemical structure of the derivatives and their ability to modify cytokine expression and the lymphoid content. The resin and four 3H-spiro 1-benzofuran-2,1'-cyclohexane derivatives were tested in vivo in rainbow trout (Oncorhynchus mykiss) by quantifying the transcript levels of antiviral and T helper-type cytokines and T and B cells in the kidney. Three of the four terpenoids differ only in the C-7'substituent of the cyclohexane and the presence of the ketone group at this position in Filifolinone appeared responsible of an important up-regulation of IFN-α1, IFN-γ, IL-4/13A and IL-17D in the kidney of the treated trout. In addition, the absence of a methoxy group in carbon 7 of the benzene ring, found in all compounds but not in Folifolinoic acid, produced a significant reduction of IFN-γ, IL-12 and IL-4/13A transcripts. B cells were not affected by the compound treatment but Filifolinoic acid and the resin induced a significant reduction of T cells. Altogether, results showed that immunomodulating responses observed in the trout by effect of 3H-spiro 1-benzofuran-2,1'-cyclohexane derivatives is related to the presence of the ketone group in the carbon 7' and the methoxy group in carbon 7 of the benzene ring, being Filifolinone the most active immunostimulatory compound identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The construction of a panel of serum amino acids for the identification of early chronic kidney disease patients.

    PubMed

    Li, Rui; Dai, Jinna; Kang, Hui

    2018-03-01

    Serum creatinine, urea, and cystatin-c are standardly used for the evaluation of renal function in the clinic. However, some patients have chronic kidney disease but still retain kidney function; a conventional serum index in these patients can be completely normal. Serum amino acid levels can reflect subtle changes in metabolism and are closely related to renal function. Here, we investigated how amino acids change as renal impairment increases. Subjects were divided into three groups by renal function glomerular filtration rate: healthy controls, patients with chronic kidney disease with normal kidney function, and patients with chronic kidney disease with decreased kidney function group. We identified 11 amino acids of interest using LC-MS/MS on MRM (+) mode. Statistical analysis indicated that alanine (ALA), valine (VAL), and tyrosine (TYR) decrease with renal function impairment, whereas phenylalanine (PHE) and citrulline (CIT) increase. We tried to construct a diagnostic model utilizing a combination of amino acids capable of identifying early chronic kidney disease patients. The accuracy, specificity, and sensitivity of the combining predictors were 86.9%, 84.6%, and 90.9%, respectively, which is superior to the reported values for serum creatinine, urea, and cystatin-c. Our data suggest that serum amino acid levels may supply important information for the early detection of chronic kidney disease. We are the first to establish a diagnostic model utilizing serum levels of multiple amino acids for the diagnosis of patients with early-stage chronic kidney disease. © 2017 Wiley Periodicals, Inc.

  19. Tear drops of kidney: a historical overview of Polycystic Kidney Disease.

    PubMed

    Balat, Ayse

    2016-02-01

    Polycystic kidneydisease (PKD) is one of the most common inheritedkidneydiseases causing end stage renal disease. Although it has been in existence with humanity, it was defined in 18th century. The most detailed observations on PKD have been written after the disease of Stephen Bathory, the King of Poland. He had fatigue and chest pain accompanied by unconsciousness within a few days after a hunting trip, and died within 9 days, at the age of 53 years in 1586. Surgeon Jan Zigulitz described the cysts in his kidneys as large like those of a bull, with an uneven and bumpy surface during the mummification. Based on available information, 347 years later, a group of physicians and historians in Krakow concluded that the probable cause of Kings death was PKD and uremia. Unfortunately, PKD did not attracted the interest of physicians until the 18th century. In late 18th century, Matthew Baillie noted that these vesicular cysts in kidney were different from hydatid cysts, and described them as "false hydatids of kidney". In 1888, Flix Lejars used the term of "polycystic kidney" for the first time, and stressed that these cysts were bilateral, and causing clinically identifiable symptoms. At the end of 19th century, the basic clinical signs, and genetic basis of the disease have been better defined. However, the inheritance pattern could only be understood long years later. In this study, the history of PKD, i.e., the tear drops (cysts) of kidney will try to be explained by the light of old and current knowledge.

  20. Neuronal plasticity in the hedgehog supraoptic nucleus during hibernation.

    PubMed

    Sanchez-Toscano, F; Caminero, A A; Machin, C; Abella, G

    1989-01-01

    The purpose of the present study was to identify processes of plasticity in the receptive field of neurosecretory neurons of the supraoptic nucleus during hibernation in the hedgehog, in order to correlate them with the increased neurosecretory activity observed in this nucleus during this annual period. Using the Rapid Golgi method, a quantitative study was conducted in the receptive field of bipolar and multipolar neurons (the main components of the nucleus). Results indicate a generalized increase in the following characteristics: (1) number of dendritic spines per millimeter along the dendritic shafts; (2) degree of branching in the dendritic field; and (3) dendritic density around the neuronal soma. These data demonstrate modification of the dendritic field in the supraoptic nucleus during hibernation, a change undoubtedly related to functional conditions. Since the observed changes affect structures such as dendritic spines which are directly related to the arrival of neural afferences, the discussion is centered on the types of stimuli which may be responsible for the observed processes.

  1. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    PubMed

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Distribution of glycinergic neuronal somata in the rat spinal cord.

    PubMed

    Hossaini, Mehdi; French, Pim J; Holstege, Jan C

    2007-04-20

    Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.

  3. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  4. Automated Segmentation of Kidneys from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B; Torres, Vicente E; Yu, Alan S L; Mrug, Michal; Bennett, William M; Flessner, Michael F; Landsittel, Doug P; Bae, Kyongtae T

    2016-04-07

    Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2-weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. We have developed a fully automated method for segmentation of kidneys from abdominal

  5. IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease

    PubMed Central

    Baek, Jea-Hyun; Zeng, Rui; Weinmann-Menke, Julia; Valerius, M. Todd; Wada, Yukihiro; Ajay, Amrendra K.; Colonna, Marco; Kelley, Vicki R.

    2015-01-01

    Macrophages (Mø) are integral in ischemia/reperfusion injury–incited (I/R-incited) acute kidney injury (AKI) that leads to fibrosis and chronic kidney disease (CKD). IL-34 and CSF-1 share a receptor (c-FMS), and both cytokines mediate Mø survival and proliferation but also have distinct features. CSF-1 is central to kidney repair and destruction. We tested the hypothesis that IL-34–dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. In renal I/R, the time-related magnitude of Mø-mediated AKI and subsequent CKD were markedly reduced in IL-34–deficient mice compared with controls. IL-34, c-FMS, and a second IL-34 receptor, protein-tyrosine phosphatase ζ (PTP-ζ) were upregulated in the kidney after I/R. IL-34 was generated by tubular epithelial cells (TECs) and promoted Mø-mediated TEC destruction during AKI that worsened subsequent CKD via 2 distinct mechanisms: enhanced intrarenal Mø proliferation and elevated BM myeloid cell proliferation, which increases circulating monocytes that are drawn into the kidney by chemokines. CSF-1 expression in TECs did not compensate for IL-34 deficiency. In patients, kidney transplants subject to I/R expressed IL-34, c-FMS, and PTP−ζ in TECs during AKI that increased with advancing injury. Moreover, IL-34 expression increased, along with more enduring ischemia in donor kidneys. In conclusion, IL-34-dependent, Mø-mediated, CSF-1 nonredundant mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. PMID:26121749

  6. Averting the legacy of kidney disease--focus on childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-03-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and chronic kidney disease in later childhood or in adult life. Children born early or who are small-for-date newborns have a relatively increased risk for the development of chronic kidney disease later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced chronic kidney disease in childhood; there is evidence that children fare better than adults if they receive kidney replacement therapy including dialysis and transplant, whereas only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers, and caregivers about the needs and possibilities surrounding kidney disease in childhood. Copyright © 2016 World Kidney Day 2016 Steering Committee. Published by Elsevier Inc. All rights reserved.

  7. Cholinergic and nitrergic neuronal networks in the goldfish telencephalon.

    PubMed

    Giraldez-Perez, Rosa M; Gaytan, Susana P; Pasaro, Rosario

    2013-01-01

    The general organization of cholinergic and nitrergic elements in the central nervous system seems to be highly conserved among vertebrates, with the involvement of these neurotransmitter systems now well established in sensory, motor and cognitive processing. The goldfish is a widely used animal model in neuroanatomical, neurophysiological, and behavioral research. The purpose of this study was to examine pallial and subpallial cholinoceptive, cholinergic and nitrergic populations in the goldfish telencephalon by means of histochemical and immunohistochemical techniques in order to identify neurons containing acetylcholinesterase (AChE), choline acetyltransferase (ChAT), NADPH-diaphorase (NADPHd), and neuronal nitric oxide synthase (nNOS), and to relate their distribution to their putative functional significance. Regions containing AChE-labeled neurons represented terminal fields of cholinergic inputs as well as a widespread distribution of AChE-related enzymes; these regions also usually contained NADPHd-labeled neurons and often contained small numbers of nNOS-positive cells. However, the ventral subdivisions of the medial and lateral parts of the dorsal telencephalic area, and the ventral and lateral parts of the ventral telencephalic area, were devoid of nNOS-labeled cells. ChAT-positive neurons were found only in the lateral part of the ventral telencephalic area. ChAT- and nNOS-positive fibers exhibited a radial orientation, and were seen as thin axons with en-passant boutons. The distribution of these elements could help to elucidate the role of cholinergic and nitrergic neuronal networks in the goldfish telencephalon.

  8. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    PubMed Central

    Dreyer, Jakob K.; Jennings, Katie A.; Syed, Emilie C. J.; Wade-Martins, Richard; Cragg, Stephanie J.; Bolam, J. Paul; Magill, Peter J.

    2016-01-01

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson’s disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson’s disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits. PMID:27001837

  9. Four decades of kidney transplantation in Cuba.

    PubMed

    Alfonzo, Jorge P

    2013-01-01

    This article describes the background, beginnings, development, evolution and outcomes of kidney transplantation in Cuba. Nephrology as a medical specialty in Cuba began in 1962 and was formalized in 1966. Conditions were created to implement renal replacement therapy (including transplants), bring nephrology care to the entire country and train human resources who would assume this responsibility, making Cuba one of the first countries with a comprehensive program for renal patient care. After three unsuccessful cadaveric-donor kidney transplantations in 1968-69, the ensuing history of kidney transplantation can be summarized in the following three stages. 1970-1975: In January 1970, cadaveric-donor kidney transplantation began at the Nephrology Institute. That year, 17 kidney transplantations were performed; four of these patients lived with functional kidneys for 15-25 years; 10-year graft survival was 23.5% (Kaplan-Meier survival curve); HLA typing began in 1974. By December 1975, 170 grafts had been done in three hospitals. 1976-1985: Seven transplantation centers performed 893 grafts during this period. HLA-DR typing was introduced in 1976 and the National Histocompatibility Laboratory Network was founded in 1978. The first related living-donor kidney transplantation was done in 1979. 1986-2011: The National Kidney Transplantation Coordinating Center and the National Kidney Transplantation Program were created in 1986; the first combined kidney-pancreas transplantation was performed the same year. In 1990, cyclosporine and the Cuban monoclonal antibody IOR-T3 were introduced for immunosuppression to prevent rejection, as were other Cuban products (hepatitis B vaccine and recombinant human erythropoietin) for transplant patients. By December 2011, the cumulative number of transplants was 4636 (384 from related living donors). With over 40 years of experience, kidney transplantation is now well established in Cuba; it is free and universally accessible, on the

  10. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  11. New Pharmacologic Agents That Target Inflammation and Fibrosis in Nonalcoholic Steatohepatitis-Related Kidney Disease.

    PubMed

    Musso, Giovanni; De Michieli, Franco; Bongiovanni, Daria; Parente, Renato; Framarin, Luciana; Leone, Nicola; Berrutti, Mara; Gambino, Roberto; Cassader, Maurizio; Cohney, Solomon; Paschetta, Elena

    2017-07-01

    Epidemiologic data show an association between the prevalence and severity of nonalcoholic fatty liver disease and the incidence and stage of chronic kidney disease (CKD); furthermore, nonalcoholic steatohepatitis (NASH)-related cirrhosis has a higher risk of renal failure, a greater necessity for simultaneous liver-kidney transplantation, and a poorer renal outcome than cirrhosis of other etiologies even after simultaneous liver-kidney transplantation. These data suggest that NASH and CKD share common proinflammatory and profibrotic mechanisms of progression, which are targeted incompletely by current treatments. We reviewed therapeutic approaches to late preclinical/early clinical stage of development in NASH and/or CKD, focusing on anti-inflammatory and antifibrotic treatments, which could slow the progression of both disease conditions. Renin inhibitors and angiotensin-converting enzyme-2 activators are new renin-angiotensin axis modulators that showed incremental advantages over angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers in preclinical models. Novel, potent, and selective agonists of peroxisome proliferator-activated receptors and of farnesoid X receptor, designed to overcome limitations of older compounds, showed promising results in clinical trials. Epigenetics, heat stress response, and common effectors of redox regulation also were subjected to intensive research, and the gut was targeted by several approaches, including synbiotics, antilipopolysaccharide antibodies, Toll-like receptor-4 antagonists, incretin mimetics, and fibroblast growth factor 19 analogs. Promising anti-inflammatory therapies include inhibitors of NOD-like receptor family, pyrin domain containing 3 inflammasome, of nuclear factor-κB, and of vascular adhesion protein-1, chemokine antagonists, and solithromycin, and approaches targeting common profibrogenic pathways operating in the liver and the kidney include galectin-3 antagonists, and inhibitors of rho

  12. Kidney Transplant

    MedlinePlus

    ... Events Advocacy Donate A to Z Health Guide Kidney Transplant Print Email When your kidneys fail, treatment ... doctor, nurse and family members. What is a kidney transplant? When you get a kidney transplant, a ...

  13. Kidney Failure

    MedlinePlus

    ... store Donate Now Give Monthly Give In Honor Kidney Failure (ESRD) Causes, Symptoms, & Treatments www.kidneyfund.org > ... Disaster preparedness Kidney failure/ESRD diet What causes kidney failure? In most cases, kidney failure is caused ...

  14. Kidney Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... kidney (renal) diseases are called nephrologists . What are Kidney Diseases? For about one-third of older people, ...

  15. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    PubMed

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Kidneys for sale: who disapproves, and why?

    PubMed

    Leider, S; Roth, A E

    2010-05-01

    The shortage of transplant kidneys has spurred debate about legalizing monetary payments to donors to increase the number of available kidneys. However, buying and selling organs faces widespread disapproval. We survey a representative sample of Americans to assess disapproval for several forms of kidney market, and to understand why individuals disapprove by identifying factors that predict disapproval, including disapproval of markets for other body parts, dislike of increased scope for markets and distrust of markets generally. Our results suggest that while the public is potentially receptive to compensating kidney donors, among those who oppose it, general disapproval toward certain kinds of transactions is at least as important as concern about specific policy details. Between 51% and 63% of respondents approve of the various potential kidney markets we investigate, and between 42% and 58% want such markets to be legal. A total of 38% of respondents disapprove of at least one market. Respondents who distrust markets generally are not more disapproving of kidney markets; however we find significant correlations between kidney market disapproval and attitudes reflecting disapproval toward certain transactions-including both other body markets and market encroachment into traditionally nonmarket exchanges, such as food preparation.

  17. Parathyroid hormone-related peptide activates and modulates TRPV1 channel in human DRG neurons.

    PubMed

    Shepherd, A J; Mickle, A D; McIlvried, L A; Gereau, R W; Mohapatra, D P

    2018-05-24

    Parathyroid hormone-related peptide (PTHrP) is associated with advanced tumor growth and metastasis, especially in breast, prostate and myeloma cancers that metastasize to bones, resulting in debilitating chronic pain conditions. Our recent studies revealed that the receptor for PTHrP, PTH1R, is expressed in mouse DRG sensory neurons, and its activation leads to flow-activation and modulation of TRPV1 channel function, resulting in peripheral heat and mechanical hypersensitivity. In order to verify the translatability of our findings in rodents to humans, we explored whether this signalling axis operates in primary human DRG sensory neurons. Analysis of gene expression data from recently reported RNA deep sequencing experiments performed on mouse and human DRGs reveals that PTH1R is expressed in DRG and tibial nerve. Furthermore, exposure of cultured human DRG neurons to PTHrP leads to slow-sustained activation of TRPV1 and modulation of capsaicin-induced channel activation. Both activation and modulation of TRPV1 by PTHrP were dependent on PKC activity. Our findings suggest that functional PTHrP/PTH1R-TRPV1 signalling exists in human DRG neurons, which could contribute to local nociceptor excitation in the vicinity of metastatic bone tumor microenvironment. © 2018 European Pain Federation - EFIC®.

  18. Ancillary personnel in Spanish and Latin-American hospitals faced with living related kidney donation.

    PubMed

    Ríos, A; López-Navas, A; Ayala-García, M A; Sebastián, M J; Abdo-Cuza, A; Martínez-Alarcón, L; Ramírez, E J; Muñoz, G; Suárez-López, J; Castellanos, R; Ramírez, R; González, B; Martínez, M A; Díaz, E; Ramírez, P; Parrilla, P

    2014-01-01

    Ancillary hospital personnel represent an important body of opinion because as they work in a hospital their opinion has more credibility for the general public as a result of their activity in hospitals. However, in most cases they do not have any health care training which means that their attitude could be based on a lack of knowledge or unfounded fears. To analyze the attitude toward living kidney donation (LKD) among ancillary personnel in Spanish and Latin-American hospitals and to analyze the variables that might influence such attitude. from «International Collaborative Donor Project» a random sample was taken among ancillary personnel in Spain, Mexico and Cuba hospitals. Attitude towards LKD was evaluated using a validated, anonymously filled and self-administered survey. 951 professionals were surveyed (Spain: 277, Mexico: 632, Cuba: 42). 89% (n=850) are in favor of related kidney donation, lowering to 31% (n=289) in non-related donation. Of the rest, 8% (n=78) are not in favor and the 3% (n=23) are unsure. By country, Cubans (98%) and Mexicans (91%) are more in favour than Spanish (84%) (P=.001). The following variables are related to favourable attitude towards LKD: female sex (P=.017), university degree (P=.010), work in health services (P=.035), labour stability (P=.016), personal experience in donation and transplantation (P=.001), positive attitude toward cadaveric donation (P<.001), belief that he or she might need a transplant in the future (P<.001), positive attitude towards living liver donation (P<.001), a willingness to receive a donated living liver if needed (P<.001), having discussed the subject of organ donation and transplantation within the family (P<.001), partner's positive attitude towards the subject (P<.001), participation in voluntary type pro-social activities (P=.002) and not being concerned about possible mutilation after donation (P<.001) CONCLUSIONS: The attitude toward living related kidney donation is favourable among

  19. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease

    PubMed Central

    Llorens-Martín, Maria; Blazquez-Llorca, Lidia; Benavides-Piccione, Ruth; Rabano, Alberto; Hernandez, Felix; Avila, Jesus; DeFelipe, Javier

    2014-01-01

    A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer’s disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits. PMID:24904307

  20. Kidney Disease

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Kidney Disease KidsHealth / For Teens / Kidney Disease What's in ... Coping With Kidney Conditions Print What Do the Kidneys Do? You might never think much about some ...

  1. Characteristics of cholinoreceptors on identified TAN neurons of the ground snail Achatina fulica.

    PubMed

    Stepanov, I I; Losev, N A

    2000-01-01

    The characteristics of cholinoreceptors located on neurons TAN1, TAN2, and TAN3 of the ground snail Achatina fulica were studied by incubation of the central ganglia in a bath with cholinotropic preparations during intracellular recording of background neuron spike activity. Acetylcholine, nicotine, the selective n-cholinoreceptor agonist suberyldicholine, and the selective n-cholinoreceptor agonist 5-methylfurmethide concentration-dependently inhibited background spike activity to the level of complete blockade at concentrations of 500 microM. The m-cholinoblocker metamizil (500 microM) completely prevented the inhibitory activity of concentrations of 5-methylfurmethide of up to 500 microM. The central n-cholinoblocker etherophen (500 microM) completely blocked the inhibitory activity of 500 microM suberyldicholine. However, metamizil and etherophen added separately only partially decreased the inhibitory effects of acetylcholine but could not completely block the effect of acetylcholine. At the same time, mixtures of metamizil and etherophen (500 microM each) completely blocked the inhibition of background spike activity induced by acetylcholine. These results show that both classes of cholinoreceptors act on TAN neurons in the same direction.

  2. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    PubMed

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  3. The Role of Personality and Social Support in Health-Related Quality of Life in Chronic Kidney Disease Patients.

    PubMed

    Ibrahim, Norhayati; Teo, Sharlene S L; Che Din, Normah; Abdul Gafor, Abdul Halim; Ismail, Rozmi

    2015-01-01

    Chronic kidney disease (CKD) is commonly associated with various negative health outcomes. The aim of this study was to examine the influence of personality and social support on health-related quality of life in patients with chronic kidney disease. Health-related quality of life (HRQoL) is the quality of life studied in relation to health, and it provides important information of patients' coping with their health issues. Participants comprised of 200 patients experiencing various stages of chronic kidney disease. All participants completed the Short-Form 36 (SF-36), Big Five Inventory (BFI) and the Medical Outcomes Study (MOS) Social Support questionnaires. Participants consisted of 108 males (54.0%) and 92 females (46.0%) with the mean age of 59.3 years (SD 14.5). Results showed that higher levels of extraversion and lower perceived affectionate social support were associated with higher physical HRQoL, whereas higher levels of neuroticism were associated with poorer mental HRQoL. The current study found that certain personality traits, namely extraversion and neuroticism, were found to be associated with HRQoL. In addition, affectionate social support was also associated with higher HRQoL. Therefore, special attention should be paid to the personality of CKD patients, as well as the type of social support that they have, in planning interventions to improve their health outcomes.

  4. The Role of Personality and Social Support in Health-Related Quality of Life in Chronic Kidney Disease Patients

    PubMed Central

    Che Din, Normah; Abdul Gafor, Abdul Halim; Ismail, Rozmi

    2015-01-01

    Background Chronic kidney disease (CKD) is commonly associated with various negative health outcomes. The aim of this study was to examine the influence of personality and social support on health-related quality of life in patients with chronic kidney disease. Health-related quality of life (HRQoL) is the quality of life studied in relation to health, and it provides important information of patients’ coping with their health issues. Method Participants comprised of 200 patients experiencing various stages of chronic kidney disease. All participants completed the Short-Form 36 (SF-36), Big Five Inventory (BFI) and the Medical Outcomes Study (MOS) Social Support questionnaires. Results Participants consisted of 108 males (54.0%) and 92 females (46.0%) with the mean age of 59.3 years (SD 14.5). Results showed that higher levels of extraversion and lower perceived affectionate social support were associated with higher physical HRQoL, whereas higher levels of neuroticism were associated with poorer mental HRQoL. Conclusion The current study found that certain personality traits, namely extraversion and neuroticism, were found to be associated with HRQoL. In addition, affectionate social support was also associated with higher HRQoL. Therefore, special attention should be paid to the personality of CKD patients, as well as the type of social support that they have, in planning interventions to improve their health outcomes. PMID:26131714

  5. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon.

    PubMed

    Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Brookes, Simon J H; Hu, Hongzhen; Keating, Damien J; Spencer, Nick J

    2018-01-01

    The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways

  6. The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings

    PubMed Central

    Roberts, Michael T.; Seeman, Stephanie C.; Golding, Nace L.

    2014-01-01

    The medial superior olive (MSO) senses microsecond differences in the coincidence of binaural signals, a critical cue for detecting sound location along the azimuth. An important component of this circuit is provided by inhibitory neurons of the medial and lateral nuclei of the trapezoid body (MNTB and LNTB, respectively). While MNTB neurons are fairly well described, little is known about the physiology of LNTB neurons. Using whole cell recordings from gerbil brainstem slices, we found that LNTB and MNTB neurons have similar membrane time constants and input resistances and fire brief action potentials, but only LNTB neurons fire repetitively in response to current steps. We observed that LNTB neurons receive graded excitatory and inhibitory synaptic inputs, with at least some of the latter arriving from other LNTB neurons. To address the relative timing of inhibition to the MSO from the LNTB versus the MNTB, we examined inhibitory responses to auditory nerve stimulation using a slice preparation that retains the circuitry from the auditory nerve to the MSO intact. Despite the longer physical path length of excitatory inputs driving contralateral inhibition, inhibition from both pathways arrived with similar latency and jitter. An analysis of paired whole cell recordings between MSO and MNTB neurons revealed a short and reliable delay between the action potential peak in MNTB neurons and the onset of the resulting IPSP (0.55 ± 0.01 ms, n = 4, mean ± SEM). Reconstructions of biocytin-labeled neurons showed that MNTB axons ranged from 580 to 858 μm in length (n = 4). We conclude that while both LNTB and MNTB neurons provide similarly timed inhibition to MSO neurons, the reliability of inhibition from the LNTB at higher frequencies is more constrained relative to that from the MNTB due to differences in intrinsic properties, the strength of excitatory inputs, and the presence of feedforward inhibition. PMID:24860434

  7. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  8. Identifying genetic relatives without compromising privacy.

    PubMed

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  9. Acute kidney injury after percutaneous nephrolithotomy for stones in solitary kidneys.

    PubMed

    El-Nahas, Ahmed R; Taha, Diaa-Eldin; Ali, Hussien M; Elshal, Ahmed M; Zahran, Mohamed H; El-Tabey, Nasr A; El-Assmy, Ahmed M; Harraz, Ahmed M; Moawad, Hazem E; Othman, Mahmoud M

    2017-04-01

    The aim of this study was to report the incidence, severity, outcome and risk factors of acute kidney injury (AKI) following percutaneous nephrolithotomy (PNL) in solitary kidneys. The study included consecutive adult patients who underwent PNL for treatment of calculi in a solitary kidney between May 2012 and July 2015. Patients with congenital renal anomalies or with stages 4 and 5 chronic kidney disease (CKD) were excluded. Serum creatinine levels were measured the day before PNL, daily after PNL for 2-5 days and after 3 months. AKI was depicted according to changes in early postoperative serum creatinine levels and its severity was determined based on the Acute Kidney Injury Network (AKIN) classification. The outcome of AKI was evaluated after 3 months by changes in the stage of CKD. Univariate and multivariate statistical analyses were conducted to determine risk factors for developing AKI. The study included 100 patients (62 males) with a mean ± SD age of 50 ± 11.7 years. Complications were reported for 27 patients. AKI developed in 25 patients; at the 3 month follow-up, 23 of them (92%) had completely recovered from AKI and two (8%) had developed stage 4 CKD. Independent risk factors for developing AKI were multiple PNL tracts and postoperative ureteric obstruction (relative risks were 14 and 22, respectively). The incidence of AKI was 25% after PNL for a solitary kidney. The likelihood of renal function recovery was 92%. Multiple PNL tracts and postoperative ureteric obstruction were risk factors for developing AKI.

  10. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila

    PubMed Central

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-01-01

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY. DOI: http://dx.doi.org/10.7554/eLife.02780.001 PMID:24939987

  11. Kidney Biopsy

    MedlinePlus

    ... Series Urinary Tract Imaging Urodynamic Testing Virtual Colonoscopy Kidney Biopsy What is a kidney biopsy? A kidney biopsy is a procedure that ... performs procedures using imaging equipment Why is a kidney biopsy performed? A health care provider will perform ...

  12. Kidney Disease Basics

    MedlinePlus

    ... My Kidneys Fail? Clinical Trials What Is Chronic Kidney Disease? Chronic kidney disease (CKD) means your kidneys ... work, be active, and enjoy life. Will my kidneys get better? Kidney disease is often “progressive”, which ...

  13. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice.

    PubMed

    Wang, Xiaoxin X; Luo, Yuhuan; Wang, Dong; Adorini, Luciano; Pruzanski, Mark; Dobrinskikh, Evgenia; Levi, Moshe

    2017-07-21

    Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Chronic kidney disease, severe arterial and arteriolar sclerosis and kidney neoplasia: on the spectrum of kidney involvement in MELAS syndrome.

    PubMed

    Piccoli, Giorgina Barbara; Bonino, Laura Davico; Campisi, Paola; Vigotti, Federica Neve; Ferraresi, Martina; Fassio, Federica; Brocheriou, Isabelle; Porpiglia, Francesco; Restagno, Gabriella

    2012-02-21

    MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the support therapy of these patients improves.

  15. Developmental Programming of Branching Morphogenesis in the Kidney.

    PubMed

    Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais

    2015-10-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.

  16. Diversity and Homogeneity in Responses of Midbrain Dopamine Neurons

    PubMed Central

    Fiorillo, Christopher D.; Yun, Sora R.; Song, Minryung R.

    2013-01-01

    Dopamine neurons of the ventral midbrain have been found to signal a reward prediction error that can mediate positive reinforcement. Despite the demonstration of modest diversity at the cellular and molecular levels, there has been little analysis of response diversity in behaving animals. Here we examine response diversity in rhesus macaques to appetitive, aversive, and neutral stimuli having relative motivational values that were measured and controlled through a choice task. First, consistent with previous studies, we observed a continuum of response variability and an apparent absence of distinct clusters in scatter plots, suggesting a lack of statistically discrete subpopulations of neurons. Second, we found that a group of “sensitive” neurons tend to be more strongly suppressed by a variety of stimuli and to be more strongly activated by juice. Third, neurons in the “ventral tier” of substantia nigra were found to have greater suppression, and a subset of these had higher baseline firing rates and late “rebound” activation after suppression. These neurons could belong to a previously identified subgroup of dopamine neurons that express high levels of H-type cation channels but lack calbindin. Fourth, neurons further rostral exhibited greater suppression. Fifth, although we observed weak activation of some neurons by aversive stimuli, this was not associated with their aversiveness. In conclusion, we find a diversity of response properties, distributed along a continuum, within what may be a single functional population of neurons signaling reward prediction error. PMID:23486943

  17. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellularmore » matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8

  18. Unique molecular changes in kidney allografts after simultaneous liver-kidney compared with solitary kidney transplantation.

    PubMed

    Taner, Timucin; Park, Walter D; Stegall, Mark D

    2017-05-01

    Kidney allografts transplanted simultaneously with liver allografts from the same donor are known to be immunologically privileged. This is especially evident in recipients with high levels of donor-specific anti-HLA antibodies. Here we investigated the mechanisms of liver's protective impact using gene expression in the kidney allograft. Select solitary kidney transplant or simultaneous liver-kidney transplant recipients were retrospectively reviewed and separated into four groups: 16 cross-match negative kidney transplants, 15 cross-match positive kidney transplants, 12 cross-match negative simultaneous liver-kidney transplants, and nine cross-match-positive simultaneous liver-kidney transplants. Surveillance biopsies of cross-match-positive kidney transplants had increased expression of genes associated with donor-specific antigens, inflammation, and endothelial cell activation compared to cross-match-negative kidney transplants. These changes were not found in cross-match-positive simultaneous liver-kidney transplant biopsies when compared to cross-match-negative simultaneous liver-kidney transplants. In addition, simultaneously transplanting a liver markedly increased renal expression of genes associated with tissue integrity/metabolism, regardless of the cross-match status. While the expression of inflammatory gene sets in cross-match-positive simultaneous liver-kidney transplants was not completely reduced to the level of cross-match-negative kidney transplants, the downstream effects of donor-specific anti-HLA antibodies were blocked. Thus, simultaneous liver-kidney transplants can have a profound impact on the kidney allograft, not only by decreasing inflammation and avoiding endothelial cell activation in cross-match-positive recipients, but also by increasing processes associated with tissue integrity/metabolism by unknown mechanisms. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Effect of Immigration Status on Outcomes in Pediatric Kidney Transplant Recipients.

    PubMed

    McEnhill, M E; Brennan, J L; Winnicki, E; Lee, M M; Tavakol, M; Posselt, A M; Stock, P G; Portale, A A

    2016-06-01

    Kidney transplantation is the optimal treatment for children with end-stage renal disease. For children with undocumented immigration status, access to kidney transplantation is limited, and data on transplant outcomes in this population are scarce. The goal of the present retrospective single-center study was to compare outcomes after kidney transplantation in undocumented children with those of US citizen children. Undocumented residency status was identified in 48 (17%) of 289 children who received a kidney transplant between 1998 and 2010. In undocumented recipients, graft survival at 1 and 5 years posttransplantation was similar, and mean estimated glomerular filtration rate at 1 year was higher than that in recipients who were citizens. The risk of allograft failure was lower in undocumented recipients relative to that in citizens at 5 years posttransplantation, after adjustment for patient age, donor age, donor type, and HLA mismatch (p < 0.04). In contrast, nearly one in five undocumented recipients who reached 21 years of age lost their graft, primarily because they were unable to pay for immunosuppressive medications once their state-funded insurance had ended. These findings support the ongoing need for immigration policies for the undocumented that facilitate access to work-permits and employment-related insurance for this disadvantaged group. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Left Lateral Sectionectomy of the Native Liver and Combined Living-Related Liver–Kidney Transplantation for Primary Hyperoxaluria Type 1

    PubMed Central

    Chen, Guo-Yong; Wei, Si-Dong; Zou, Zhong-Wu; Tang, Gao-Feng; Sun, Jian-Jun; Zhou, Shao-Tang

    2015-01-01

    Abstract Primary hyperoxaluria type I (PH1), the most severe form of primary hyperoxalurias, is a liver disease of the metabolic defect in glyoxylate detoxification that can be corrected by liver transplantation. A 21-year-old man presented to our center after 4 months of regular hemodialysis for kidney failure caused by nephrolithiasis. A diagnosis of PH1 was confirmed by mutations of the AGXT gene. Left lateral sectionectomy of the native liver was performed; and auxiliary partial orthotopic liver transplantation (APOLT) and kidney transplantation were carried out synchronously using a living donor. After transplantation, the patient's plasma oxalate and creatinine levels substantially decreased and the patient recovered well with good dual grafts function. APOLT and kidney transplantation can compensate the liver deficient in liver enzyme production and aid the renal elimination of oxalate, thus serving as an effective treatment option for patients with PH1. In conclusion, left lateral sectionectomy of the native liver and combined living-related liver–kidney transplantation can be a surgical option for PH1. PMID:26252291

  1. The kidney allocation score: methodological problems, moral concerns and unintended consequences.

    PubMed

    Hippen, B

    2009-07-01

    The growing disparity between the demand for and supply of kidneys for transplantation has generated interest in alternative systems of allocating kidneys from deceased donors. This personal viewpoint focuses attention on the Kidney Allocation Score (KAS) proposal promulgated by the UNOS/OPTN Kidney Committee. I identify several methodological and moral flaws in the proposed system, concluding that any iteration of the KAS proposal should be met with more skepticism than sanguinity.

  2. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases

    PubMed Central

    Kaifer, Kevin A.; Osman, Erkan Y.; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L.

    2017-01-01

    The term “motor neuron disease” encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic

  3. Obesity-related chronic kidney disease is associated with spleen-derived IL-10.

    PubMed

    Gotoh, Koro; Inoue, Megumi; Masaki, Takayuki; Chiba, Seiichi; Shiraishi, Kentaro; Shimasaki, Takanobu; Matsuoka, Kazue; Ando, Hisae; Fujiwara, Kansuke; Fukunaga, Naoya; Aoki, Kohei; Nawata, Tomoko; Katsuragi, Isao; Kakuma, Tetsuya; Seike, Masataka; Yoshimatsu, Hironobu

    2013-05-01

    Obesity is associated with systemic low-grade inflammation and is a risk factor for chronic kidney disease (CKD), but the molecular mechanism remains uncertain. We noticed spleen-derived interleukin (IL)-10 because it is observed that obesity reduces several cytokines in the spleen. We examined whether spleen-derived IL-10 regulates CKD caused by a high-fat diet (HF)-induced obesity as follows: (i) male mice were fed with HF (60% fat) during 8 weeks and IL-10 induction from the spleen was examined, (ii) glomerular hypertrophy, fibrosis, inflammatory responses in the kidney and systolic blood pressure (SBP) were evaluated in splenectomy (SPX)-treated mice fed HF, (iii) exogenous IL-10 was systemically administered to HF-induced obese mice and the alteration of obesity-induced pathogenesis caused by IL-10 treatment was assessed. (iv) IL-10 knockout (IL-10KO) mice were treated with SPX and glomerular hypertrophy, fibrosis and the inflammatory condition in the kidney and SBP were also investigated. Obesity decreased serum levels of only IL-10, an anti-inflammatory cytokine even though pro- and anti-inflammatory cytokine expression in the spleen was significantly lower in the obese group. SPX aggravated HF-induced inflammatory responses in the kidney and hypertension. These HF-induced alterations were inhibited by systemically administered IL-10. Moreover, SPX had little effect on inflammatory responses and SBP in the kidney of IL-10KO mice. We suggest that obesity reduces IL-10 induction from the spleen, and spleen-derived IL-10 may protect against the development of CKD induced by obesity.

  4. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate

  5. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    PubMed

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep

  6. Drug repurposing in kidney disease.

    PubMed

    Panchapakesan, Usha; Pollock, Carol

    2018-07-01

    Drug repurposing, is the re-tasking of known medications for new clinical indications. Advantages, compared to de novo drug development, include reduced cost and time to market plus the added benefit of a known pharmacokinetic and safety profiles. Suitable drug candidates are identified through serendipitous observations, data mining, or increased understanding of disease mechanisms. This review highlights drugs suited for repurposing in kidney disease. The main cause of mortality in patients with chronic kidney disease is cardiovascular disease. Hence, we have included CV endpoints for the drugs. This review begins with candidates in acute kidney injury: vasodilators levosimendan and vitamin D, followed by candidates in CKD, with particular focus on diabetic kidney disease, autosomal dominant polycystic kidney disease, and focal segmental glomerulosclerosis. Examples include glucose-lowering drugs (sodium glucose co-transporter 2 inhibitors, glucagon-like peptide 1 agonists, and metformin), which have mechanistic potential for cardiac and/or renal protection beyond glucose lowering, with broader applicability to the nondiabetic population; xanthine oxidase inhibitors (allopurinol, febuxostat), selective endothelin receptor A antagonist (atrasentan), Janus kinase inhibitor (baricitinib), selective costimulation modulator (abatacept), pentoxyfylline, and the DNA demethylating agent/vasodilator (hydralazine). Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Measure of synchrony in the activity of intrinsic cardiac neurons

    PubMed Central

    Longpré, Jean-Philippe; Salavatian, Siamak; Beaumont, Eric; Armour, J. Andrew; Ardell, Jeffrey L.; Jacquemet, Vincent

    2014-01-01

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally-efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI>0.1. The estimated bias due to artifacts was typically < 1%. Strongly cardiovascular- and pulmonary-related neurons (SI>0.5) were found. Results support the use of jitter-based synchrony index in the context of intrinsic cardiac neurons. PMID:24621585

  8. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    PubMed Central

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  9. Transcriptomic correlates of neuron electrophysiological diversity

    PubMed Central

    Li, Brenna; Crichlow, Cindy-Lee; Mancarci, B. Ogan; Pavlidis, Paul

    2017-01-01

    How neuronal diversity emerges from complex patterns of gene expression remains poorly understood. Here we present an approach to understand electrophysiological diversity through gene expression by integrating pooled- and single-cell transcriptomics with intracellular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset of 34 neuron types with paired gene expression and intrinsic electrophysiological features from publically accessible sources, the largest such collection to date. We identified 420 genes whose expression levels significantly correlated with variability in one or more of 11 physiological parameters. We next trained statistical models to infer cellular features from multivariate gene expression patterns. Such models were predictive of gene-electrophysiological relationships in an independent collection of 12 visual cortex cell types from the Allen Institute, suggesting that these correlations might reflect general principles relating expression patterns to phenotypic diversity across very different cell types. Many associations reported here have the potential to provide new insights into how neurons generate functional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with resting potential and spiking frequency are consistent with known causal mechanisms. Our work highlights the promise and inherent challenges in using cell type-specific transcriptomics to understand the mechanistic origins of neuronal diversity. PMID:29069078

  10. PACSIN2 accelerates nephrin trafficking and is up-regulated in diabetic kidney disease

    PubMed Central

    Dumont, Vincent; Tolvanen, Tuomas A.; Kuusela, Sara; Wang, Hong; Nyman, Tuula A.; Lindfors, Sonja; Tienari, Jukka; Nisen, Harry; Suetsugu, Shiro; Plomann, Markus; Kawachi, Hiroshi; Lehtonen, Sanna

    2017-01-01

    Nephrin is a core component of podocyte (glomerular epithelial cell) slit diaphragm and is required for kidney ultrafiltration. Down-regulation or mislocalization of nephrin has been observed in diabetic kidney disease (DKD), characterized by albuminuria. Here, we investigate the role of protein kinase C and casein kinase 2 substrate in neurons 2 (PACSIN2), a regulator of endocytosis and recycling, in the trafficking of nephrin and development of DKD. We observe that PACSIN2 is up-regulated and nephrin mislocalized in podocytes of obese Zucker diabetic fatty (ZDF) rats that have altered renal function. In cultured podocytes, PACSIN2 and nephrin colocalize and interact. We show that nephrin is endocytosed in PACSIN2-positive membrane regions and that PACSIN2 overexpression increases both nephrin endocytosis and recycling. We identify rabenosyn-5, which is involved in early endosome maturation and endosomal sorting, as a novel interaction partner of PACSIN2. Interestingly, rabenosyn-5 expression is increased in podocytes in obese ZDF rats, and, in vitro, its overexpression enhances the association of PACSIN2 and nephrin. We also show that palmitate, which is elevated in diabetes, enhances this association. Collectively, PACSIN2 is up-regulated and nephrin is abnormally localized in podocytes of diabetic ZDF rats. In vitro, PACSIN2 enhances nephrin turnover apparently via a mechanism involving rabenosyn-5. The data suggest that elevated PACSIN2 expression accelerates nephrin trafficking and associates with albuminuria.—Dumont, V., Tolvanen, T. A., Kuusela, S., Wang, H., Nyman, T. A., Lindfors, S., Tienari, J., Nisen, H., Suetsugu, S., Plomann, M., Kawachi, H., Lehtonen, S. PACSIN2 accelerates nephrin trafficking and is up-regulated in diabetic kidney disease. PMID:28550045

  11. Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease

    PubMed Central

    Lennon, Vanda A.; Ermilov, Leonid G.; Szurszewski, Joseph H.; Vernino, Steven

    2003-01-01

    Neuronal nicotinic AChRs (nAChRs) are implicated in the pathogenesis of diverse neurological disorders and in the regulation of small-cell lung carcinoma growth. Twelve subunits have been identified in vertebrates, and mutations of one are recognized in a rare form of human epilepsy. Mice with genetically manipulated neuronal nAChR subunits exhibit behavioral or autonomic phenotypes. Here, we report the first model of an acquired neuronal nAChR disorder and evidence for its pertinence to paraneoplastic neurological autoimmunity. Rabbits immunized once with recombinant α3 subunit (residues 1–205) develop profound gastrointestinal hypomotility, dilated pupils with impaired light response, and grossly distended bladders. As in patients with idiopathic and paraneoplastic autoimmune autonomic neuropathy, the severity parallels serum levels of ganglionic nAChR autoantibody. Failure of neurotransmission through abdominal sympathetic ganglia, with retention of neuronal viability, confirms that the disorder is a postsynaptic channelopathy. In addition, we found ganglionic nAChR protein in small-cell carcinoma lines, identifying this cancer as a potential initiator of ganglionic nAChR autoimmunity. The data support our hypothesis that immune responses driven by distinct neuronal nAChR subtypes expressed in small-cell carcinomas account for several lung cancer–related paraneoplastic disorders affecting cholinergic systems, including autoimmune autonomic neuropathy, seizures, dementia, and movement disorders. PMID:12639997

  12. Vitamin D, Hypercalciuria and Kidney Stones

    PubMed Central

    Letavernier, Emmanuel; Daudon, Michel

    2018-01-01

    The estimated lifetime risk of nephrolithiasis is growing nowadays, and the formation of kidney stones is frequently promoted by hypercalciuria. Vitamin D, and especially its active metabolite calcitriol, increase digestive calcium absorption—as urinary calcium excretion is directly correlated with digestive calcium absorption, vitamin D metabolites could theoretically increase calciuria and promote urinary stone formation. Nevertheless, there was, until recently, low evidence that 25-hydroxyvitamin D serum levels would be correlated with kidney stone formation, even if high calcitriol concentrations are frequently observed in hypercalciuric stone formers. Low 25-hydroxyvitamin D serum levels have been associated with a broad spectrum of diseases, leading to a huge increase in vitamin D prescription in the general population. In parallel, an increased frequency of kidney stone episodes has been observed in prospective studies evaluating vitamin D alone or in association with calcium supplements, and epidemiological studies have identified an association between high 25-hydroxyvitamin D serum levels and kidney stone formation in some groups of patients. Moreover, urinary calcium excretion has been shown to increase in response to vitamin D supplements, at least in some groups of kidney stone formers. It seems likely that predisposed individuals may develop hypercalciuria and kidney stones in response to vitamin D supplements. PMID:29562593

  13. Kidney pain (image)

    MedlinePlus

    A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the size of sand or ... A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the ...

  14. Utility in Treating Kidney Failure in End-Stage Liver Disease With Simultaneous Liver-Kidney Transplantation.

    PubMed

    Cheng, Xingxing S; Stedman, Margaret R; Chertow, Glenn M; Kim, W Ray; Tan, Jane C

    2017-05-01

    Simultaneous liver-kidney (SLK) transplantation plays an important role in treating kidney failure in patients with end-stage liver disease. It used 5% of deceased donor kidney transplanted in 2015. We evaluated the utility, defined as posttransplant kidney allograft lifespan, of this practice. Using data from the Scientific Registry of Transplant Recipients, we compared outcomes for all SLK transplants between January 1, 1995, and December 3, 2014, to their donor-matched kidney used in kidney-alone (Ki) or simultaneous pancreas kidney (SPK) transplants. Primary outcome was kidney allograft lifespan, defined as the time free from death or allograft failure. Secondary outcomes included death and death-censored allograft failure. We adjusted all analyses for donor, transplant, and recipient factors. The adjusted 10-year mean kidney allograft lifespan was higher in Ki/SPK compared with SLK transplants by 0.99 years in the Model for End-stage Liver Disease era and 1.71 years in the pre-Model for End-stage Liver Disease era. Death was higher in SLK recipients relative to Ki/SPK recipients: 10-year cumulative incidences 0.36 (95% confident interval 0.33-0.38) versus 0.19 (95% confident interval 0.17-0.21). SLK transplantation exemplifies the trade-off between the principles of utility and medical urgency. With each SLK transplantation, about 1 year of allograft lifespan is traded so that sicker patients, that is, SLK transplant recipients, are afforded access to the organ. These data provide a basis against which benefits derived from urgency-based allocation can be measured.

  15. Utility in Treating Kidney Failure in End-Stage Liver Disease With Simultaneous Liver-Kidney Transplantation

    PubMed Central

    Cheng, Xingxing S.; Stedman, Margaret R.; Chertow, Glenn M.; Kim, W. Ray; Tan, Jane C.

    2017-01-01

    Background Simultaneous liver-kidney (SLK) transplantation plays an important role in treating kidney failure in patients with end-stage liver disease. It used 5% of deceased donor kidney transplanted in 2015. We evaluated the utility, defined as posttransplant kidney allograft lifespan, of this practice. Methods Using data from the Scientific Registry of Transplant Recipients, we compared outcomes for all SLK transplants between January 1, 1995, and December 3, 2014, to their donor-matched kidney used in kidney-alone (Ki) or simultaneous pancreas kidney (SPK) transplants. Primary outcome was kidney allograft lifespan, defined as the time free from death or allograft failure. Secondary outcomes included death and death-censored allograft failure. We adjusted all analyses for donor, transplant, and recipient factors. Results The adjusted 10-year mean kidney allograft lifespan was higher in Ki/SPK compared with SLK transplants by 0.99 years in the Model for End-stage Liver Disease era and 1.71 years in the pre-Model for End-stage Liver Disease era. Death was higher in SLK recipients relative to Ki/SPK recipients: 10-year cumulative incidences 0.36 (95% confident interval 0.33-0.38) versus 0.19 (95% confident interval 0.17-0.21). Conclusions SLK transplantation exemplifies the trade-off between the principles of utility and medical urgency. With each SLK transplantation, about 1 year of allograft lifespan is traded so that sicker patients, that is, SLK transplant recipients, are afforded access to the organ. These data provide a basis against which benefits derived from urgency-based allocation can be measured. PMID:28437790

  16. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle

    PubMed Central

    Hassani, Oum Kaltoum; Lee, Maan Gee; Jones, Barbara E.

    2009-01-01

    Neurons containing melanin-concentrating hormone (MCH) are codistributed with neurons containing orexin (Orx or hypocretin) in the lateral hypothalamus, a peptide and region known to be critical for maintaining wakefulness. Evidence from knockout and c-Fos studies suggests, however, that the MCH neurons might play a different role than Orx neurons in regulating activity and sleep–wake states. To examine this possibility, neurons were recorded across natural sleep–wake states in head-fixed rats and labeled by using the juxtacellular technique for subsequent immunohistochemical identification. Neurons identified as MCH+ did not fire during wake (W); they fired selectively during sleep, occasionally during slow wave sleep (SWS) and maximally during paradoxical sleep (PS). As W-Off/Sleep-On, the MCH neurons discharged in a reciprocal manner to the W-On/Sleep-Off Orx neurons and could accordingly play a complementary role to Orx neurons in sleep–wake state regulation and contribute to the pathophysiology of certain sleep disorders, such as narcolepsy with cataplexy. PMID:19188611

  17. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney.

    PubMed

    Grove, Kerri J; Lareau, Nichole M; Voziyan, Paul A; Zeng, Fenghua; Harris, Raymond C; Hudson, Billy G; Caprioli, Richard M

    2018-05-17

    Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified. To explore this we utilized matrix-assisted laser desorption/ionization imaging mass spectrometry for molecular profiling of specific renal regions without disturbing distinct tissue morphology. Changes in protein expression were measured in kidney sections of eNOS -/- db/db mice, a model of diabetic nephropathy, by high spatial resolution imaging allowing molecular localizations at the level of single glomeruli and tubules. Significant increases were found in the relative abundances of several albumin fragments in the kidney of the mice with diabetic nephropathy compared with control nondiabetic mice. The relative abundance of fragments detected correlated positively with the degree of nephropathy. Furthermore, specific albumin fragments accumulating in the lumen of diabetic renal tubules were identified and predicted the enzymatic action of cathepsin D based on cleavage specificity and in vitro digestions. Importantly, this was demonstrated directly in the renal tissue with the endogenous nonlabeled murine albumin. Thus, our results provide molecular insights into the mechanism of albumin degradation in diabetic nephropathy. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Analysis of the changes and difficulties arising from kidney transplantation: a qualitative study1

    PubMed Central

    de Brito, Daniela Cristina Sampaio; de Paula, Alessandra Moregola; Grincenkov, Fabiane Rossi dos Santos; Lucchetti, Giancarlo; Sanders-Pinheiro, Hélady

    2015-01-01

    OBJECTIVE: to identify the main gains and stressors perceived by the patient, one year subsequent to kidney transplantation. METHOD: a qualitative study, in which the data were obtained and analyzed through the Discourse of the Collective Subject and frequency counting, with the participation of 50 patients who had received kidney transplantation. RESULTS: the sample presented a mean age of 44±12.8 years old, and a predominance of males (62%). The principal positive changes provided by the transplant were: return to activities; freedom/independence; well-being and health; strengthening of the I; and closening of interpersonal relationships. The most-cited stressors were: fear; medication; excess of care/control; specific characteristics of the treatment; and failure to return to the social roles. CONCLUSION: kidney transplantation caused various positive changes in the patient's routine, with the return to activities of daily living being the most important gain, in the participants' opinion. In relation to the stressors, fear related to loss of the graft, and questions relating to the immunosuppressive medication were the main challenges to be faced following transplantation. PMID:26312633

  19. ALS-related misfolded protein management in motor neurons and muscle cells.

    PubMed

    Galbiati, Mariarita; Crippa, Valeria; Rusmini, Paola; Cristofani, Riccardo; Cicardi, Maria Elena; Giorgetti, Elisa; Onesto, Elisa; Messi, Elio; Poletti, Angelo

    2014-12-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons

    NASA Technical Reports Server (NTRS)

    McCrea, R. A.; Gdowski, G. T.; Boyle, R.; Belton, T.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system.

  1. Kidney-Heart Interactions in Acute Kidney Injury.

    PubMed

    Doi, Kent

    2016-01-01

    Acute kidney injury (AKI) is a common complication in critically ill patients treated in intensive care units. Renal replacement therapy (RRT)-requiring AKI occurs in approximately 5-10% patients in intensive care unit and their mortality rate is unacceptably high (50-60%), despite sufficient control of uremia using remarkably advanced modern RRT techniques. This suggests that there are unrecognized organ interactions following AKI that could worsen the outcomes. Cardiorenal syndrome has been defined based on clinical observations that acute and chronic heart failure causes kidney injury and AKI and that chronic kidney disease worsens heart diseases. Possible pathways that connect these 2 organs have been suggested; however, the precise mechanisms are yet to be clarified, particularly in AKI-induced cardiac dysfunction. This review focuses on acute cardiac dysfunction in the setting of AKI. A recent animal study demonstrated the dysregulation of mitochondrial dynamics caused by an increased dynamin-related protein 1 expression and cellular apoptosis of the heart in a renal ischemia reperfusion model. Although the precise mechanisms that induce cardiac mitochondrial injury in AKI remain unclear, cardiac mitochondria injury could be a novel candidate of drug targets against high mortality in severe AKI. © 2016 S. Karger AG, Basel.

  2. Metabolic reprogramming during neuronal differentiation.

    PubMed

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

  3. Metabolic reprogramming during neuronal differentiation

    PubMed Central

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-01-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate–glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K–Akt–mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  4. The self-management experience of patients with type 2 diabetes and chronic kidney disease: A qualitative study.

    PubMed

    Shirazian, Shayan; Crnosija, Natalie; Weinger, Katie; Jacobson, Alan M; Park, Joonho; Tanenbaum, Molly L; Gonzalez, Jeffrey S; Mattana, Joseph; Hammock, Amy C

    2016-03-01

    The purpose of this study was to explore views related to the self-management of type 2 diabetes and chronic kidney disease. We conducted three semi-structured focus groups in participants with type 2 diabetes and chronic kidney disease. Interviews were transcribed, coded, and analyzed using thematic analysis. Credibility was supported through triangulation of data sources and the use of multiple investigators from different disciplines. Twenty-three adults participated. Three major themes were identified: emotional reactions to health state, the impact of family dynamics on self-management, and the burden of self-management regimens. Family dynamics were found to be a barrier and support to self-management, while complicated self-management regimens were found to be a barrier. Additionally, participants expressed several emotional reactions related to their CKD status, including regret related to having developed CKD and distress related both to their treatment regimens and the future possibility of dialysis. This exploratory study of patients with type 2 diabetes and chronic kidney disease describes barriers and supports to self-management and emotional reactions to chronic kidney disease status. Future research should confirm these findings in a larger population and should include family members and/or health care providers to help further define problems with self-management in patients with type 2 diabetes and chronic kidney disease. © The Author(s) 2015.

  5. C. elegans model of neuronal aging

    PubMed Central

    Peng, Chiu-Ying; Chen, Chun-Hao; Hsu, Jiun-Min

    2011-01-01

    Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and showed that age-dependent neuronal defects are regulated by insulin signaling. We identified electrical activity and epithelial attachment as two critical factors in the maintenance of structural integrity of C. elegans touch receptor neurons. These findings open a new avenue for elucidating the molecular mechanisms that maintain neuronal structures during the course of aging. PMID:22446530

  6. Polycystic kidney disease at Howard University Hospital.

    PubMed

    Hosten, A O; Cummings, Y

    1977-08-01

    Adult polycystic kidney disease treatment at Howard University Hospital is summarized. The cases are taken from autopsies performed between January 1955 and November 1975 and from the Hospital's dialysis population. Polycystic kidney disease was identified in six adults and four infants. Only two dialysis patients were clinically thought to have the disease. A review of the major clinical features of the disease is presented.

  7. Effects of Two Commonly Found Strains of Influenza A Virus on Developing Dopaminergic Neurons, in Relation to the Pathophysiology of Schizophrenia

    PubMed Central

    Landreau, Fernando; Galeano, Pablo; Caltana, Laura R.; Masciotra, Luis; Chertcoff, Agustín; Pontoriero, A.; Baumeister, Elsa; Amoroso, Marcela; Brusco, Herminia A.; Tous, Mónica I.; Savy, Vilma L.; Lores Arnaiz, María del Rosario; de Erausquin, Gabriel A.

    2012-01-01

    Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis. PMID:23251423

  8. Genomics of Mature and Immature Olfactory Sensory Neurons

    PubMed Central

    Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; McClintock, Timothy S.

    2014-01-01

    The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes. PMID:22252456

  9. A serine protease inhibitor attenuates aldosterone-induced kidney injuries via the suppression of plasmin activity.

    PubMed

    Kakizoe, Yutaka; Miyasato, Yoshikazu; Onoue, Tomoaki; Nakagawa, Terumasa; Hayata, Manabu; Uchimura, Kohei; Morinaga, Jun; Mizumoto, Teruhiko; Adachi, Masataka; Miyoshi, Taku; Sakai, Yoshiki; Tomita, Kimio; Mukoyama, Masashi; Kitamura, Kenichiro

    2016-10-01

    Emerging evidence has suggested that aldosterone has direct deleterious effects on the kidney independently of its hemodynamic effects. However, the detailed mechanisms of these direct effects remain to be elucidated. We have previously reported that camostat mesilate (CM), a synthetic serine protease inhibitor, attenuated kidney injuries in Dahl salt-sensitive rats, remnant kidney rats, and unilateral ureteral obstruction rats, suggesting that some serine proteases would be involved in the pathogenesis of kidney injuries. The current study was conducted to investigate the roles of serine proteases and the beneficial effects of CM in aldosterone-related kidney injuries. We observed a serine protease that was activated by aldosterone/salt in rat kidney lysate, and identified it as plasmin with liquid chromatography-tandem mass spectrometry. Plasmin increased pro-fibrotic and inflammatory gene expressions in rat renal fibroblast cells. CM inhibited the protease activity of plasmin and suppressed cell injury markers induced by plasmin in the fibroblast cells. Furthermore, CM ameliorated glomerulosclerosis and interstitial fibrosis in the kidney of aldosterone/salt-treated rats. Our findings indicate that plasmin has important roles in kidney injuries that are induced by aldosterone/salt, and that serine protease inhibitor could provide a new strategy for the treatment of aldosterone-associated kidney diseases in humans. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. A systematic approach to selecting task relevant neurons.

    PubMed

    Kahn, Kevin; Saxena, Shreya; Eskandar, Emad; Thakor, Nitish; Schieber, Marc; Gale, John T; Averbeck, Bruno; Eden, Uri; Sarma, Sridevi V

    2015-04-30

    Since task related neurons cannot be specifically targeted during surgery, a critical decision to make is to select which neurons are task-related when performing data analysis. Including neurons unrelated to the task degrade decoding accuracy and confound neurophysiological results. Traditionally, task-related neurons are selected as those with significant changes in firing rate when a stimulus is applied. However, this assumes that neurons' encoding of stimuli are dominated by their firing rate with little regard to temporal dynamics. This paper proposes a systematic approach for neuron selection, which uses a likelihood ratio test to capture the contribution of stimulus to spiking activity while taking into account task-irrelevant intrinsic dynamics that affect firing rates. This approach is denoted as the model deterioration excluding stimulus (MDES) test. MDES is compared to firing rate selection in four case studies: a simulation, a decoding example, and two neurophysiology examples. The MDES rankings in the simulation match closely with ideal rankings, while firing rate rankings are skewed by task-irrelevant parameters. For decoding, 95% accuracy is achieved using the top 8 MDES-ranked neurons, while the top 12 firing-rate ranked neurons are needed. In the neurophysiological examples, MDES matches published results when firing rates do encode salient stimulus information, and uncovers oscillatory modulations in task-related neurons that are not captured when neurons are selected using firing rates. These case studies illustrate the importance of accounting for intrinsic dynamics when selecting task-related neurons and following the MDES approach accomplishes that. MDES selects neurons that encode task-related information irrespective of these intrinsic dynamics which can bias firing rate based selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of L-glutamate on 1F Helix aspersa neurons

    NASA Astrophysics Data System (ADS)

    Bernal-Martínez, Juan; Ortega Soto, Arturo

    2004-09-01

    The aim of this work is to characterize the effect of L-glut and related compounds on the electrical properties of 1F identified neurons of the garden snail Helix aspersa. We used intracellular recording experiments with regular microelectrodes, in current clamp conditions. We report here that the putative L-glut receptor present in 1F Helix neurons has some similarities with the L-glut receptor present in vertebrates, regarding ionic permeability and biophysical properties. However, these responses show different pharmacological properties from those receptors found in vertebrates and mammals.

  12. Automated Segmentation of Kidneys from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B.; Torres, Vicente E.; Yu, Alan S.L.; Mrug, Michal; Bennett, William M.; Flessner, Michael F.; Landsittel, Doug P.

    2016-01-01

    Background and objectives Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Design, setting, participants, & measurements Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2–weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Results Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable

  13. [Functional organization and structure of the serotonergic neuronal network of terrestrial snail].

    PubMed

    Nikitin, E S; Balaban, P M

    2011-01-01

    The extension of knowledge how the brain works requires permanent improvement of methods of recording of neuronal activity and increase in the number of neurons recorded simultaneously to better understand the collective work of neuronal networks and assemblies. Conventional methods allow simultaneous intracellular recording up to 2-5 neurons and their membrane potentials, currents or monosynaptic connections or observation of spiking of neuronal groups with subsequent discrimination of individual spikes with loss of details of the dynamics of membrane potential. We recorded activity of a compact group of serotonergic neurons (up to 56 simultaneously) in the ganglion of a terrestrial mollusk using the method of optical recording of membrane potential that allowed to record individual action potentials in details with action potential parameters and to reveal morphology of the neurons rcorded. We demonstrated clear clustering in the group in relation with the dynamics of action potentials and phasic or tonic components in the neuronal responses to external electrophysiological and tactile stimuli. Also, we showed that identified neuron Pd2 could induce activation of a significant number of neurons in the group whereas neuron Pd4 did not induce any activation. However, its activation is delayed with regard to activation of the reacting group of neurons. Our data strongly support the concept of possible delegation of the integrative function by the network to a single neuron.

  14. Neuronal Vacuolization in Feline Panleukopenia Virus Infection.

    PubMed

    Pfankuche, Vanessa M; Jo, Wendy K; van der Vries, Erhard; Jungwirth, Nicole; Lorenzen, Stephan; Osterhaus, Albert D M E; Baumgärtner, Wolfgang; Puff, Christina

    2018-03-01

    Feline panleukopenia virus (FPV) infections are typically associated with anorexia, vomiting, diarrhea, neutropenia, and lymphopenia. In cases of late prenatal or early neonatal infections, cerebellar hypoplasia is reported in kittens. In addition, single cases of encephalitis are described. FPV replication was recently identified in neurons, although it is mainly found in cells with high mitotic activity. A female cat, 2 months old, was submitted to necropsy after it died with neurologic deficits. Besides typical FPV intestinal tract changes, multifocal, randomly distributed intracytoplasmic vacuoles within neurons of the thoracic spinal cord were found histologically. Next-generation sequencing identified FPV-specific sequences within the central nervous system. FPV antigen was detected within central nervous system cells, including the vacuolated neurons, via immunohistochemistry. In situ hybridization confirmed the presence of FPV DNA within the vacuolated neurons. Thus, FPV should be considered a cause for neuronal vacuolization in cats presenting with ataxia.

  15. Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis

    PubMed Central

    Fu, Haiyan; Tian, Yuan; Zhou, Lili; Zhou, Dong; Tan, Roderick J.; Stolz, Donna B.

    2017-01-01

    Kidney fibrosis initiates at certain focal sites in which the fibrogenic niche provides a specialized microenvironment that facilitates fibroblast activation and proliferation. However, the molecular identity of these fibrogenic niches is poorly characterized. Here, we determined whether tenascin-C (TNC), an extracellular matrix glycoprotein, is a component of the fibrogenic niche in kidney fibrosis. In vivo, TNC expression increased rapidly in kidneys subjected to unilateral ureteral obstruction or ischemia/reperfusion injury and predominantly localized at the foci rich in fibroblasts in renal interstitium. In vitro, TNC selectively promoted renal interstitial fibroblast proliferation, bromodeoxyuridine incorporation, and the expression of proliferation-related genes. The mitogenic activity of TNC required the integrin/focal adhesion kinase/mitogen-activated protein kinase signaling cascade. Using decellularized extracellular matrix scaffolds, we found that TNC-enriched scaffolds facilitated fibroblast proliferation, whereas TNC-deprived scaffolds inhibited proliferation. Matrix scaffold prepared from fibrotic kidney also promoted greater ex vivo fibroblast proliferation than did scaffolds prepared from healthy kidney. Conversely, small interfering RNA-mediated knockdown of TNC in vivo repressed injury-induced fibroblast expansion and renal fibrosis. These studies identify TNC as a major constituent of the fibrogenic niche that promotes fibroblast proliferation, and illustrate a pivotal role for the TNC-enriched microenvironment in kidney fibrogenesis. PMID:27612995

  16. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  17. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  18. [Chronic kidney disease in Mexico and its relation with heavy metals].

    PubMed

    Chávez-Gómez, Nancy Libertad; Cabello-López, Alejandro; Gopar-Nieto, Rodrigo; Aguilar-Madrid, Guadalupe; Marin-López, Kennia Stephanie; Aceves-Valdez, Maricruz; Jiménez-Ramírez, Carmina; Cruz-Angulo, María del Carmen; Juárez-Pérez, Cuauhtémoc Arturo

    2017-01-01

    Chronic kidney disease (CKD) is a public health problem in Mexico, causing 25% of deaths related to diabetes mellitus (DM) and 28% related to hypertensive heart disease. In 2008 CKD reached the highest incidence of end-stage renal disease in the world. Diabetes mellitus is the main risk factor associated with CKD in Mexican population; however, heavy metals such as lead, arsenic, cadmium and mercury have been associated to nephropathies. In Mexico there are still high levels of these compounds in occupational and environmental settings; therefore, chronic exposures to these metals persist. In this review we approach to the main mechanisms of action of these metals in the body and its renal effects, as well as information about the sources of exposure to these chemical risks, the relationship between exposure to heavy metals and CKD, coupled with the economic and social consequences of this disease.

  19. SERS-Based Prognosis of Kidney Transplant Outcome

    NASA Astrophysics Data System (ADS)

    Chi, Jingmao

    Kidney transplant is the predominant procedure of all organ transplants around the world. The number of patients on the waiting list for a kidney is growing rapidly, yet the number of donations does not keep up with the fast-growing need. This thesis focuses on the surface-enhanced Raman scattering (SERS) analysis of urine samples for prognosis of kidney transplant outcome, which can potentially let patients have a more timely treatment as well as expand the organ pool for transplant. We have observed unique SERS spectral features from urine samples of kidney transplant recipients that have strong associations with the kidney acute rejection (AR) based on the analysis of urine one day after the transplant. Our ability to provide an early prognosis of transplant outcome is a significant advance over the current gold standard of clinical diagnosis, which occurs weeks or months after the surgical procedure. The SERS analysis has also been applied to urine samples from deceased kidney donors. Excellent classification ability was achieved when the enhanced PCA-LDA analysis was used to classify and identify urine samples from different cases. The sensitivity of the acute tubular necrosis (ATN) class is more than 90%, which can indicate the usable kidneys in the high failure risk category. This analysis can help clinicians identify usable kidneys which would be discarded using conventional clinic methods as high failure risk. To investigate the biomarkers that cause the unique SERS features, an HPLC-SERS-MS approach was established. The high-performance liquid chromatography (HPLC) was used to separate the urinary components to reduce the sample complexity. The mass spectrometry (MS) was used to determine the formulas and the structures of the biomarkers. The presence of 1-methyl-2-pyrrolidone (NMP) and adenine in urine samples were confirmed by both MS and SERS analysis. Succinylmonocholine, a metabolite of suxamethonium, has a potential to be the biomarker that causes

  20. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference.

    PubMed

    Vafapour, Marzieh; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Talebi, Nahid; Shirdavani, Soheyla

    2015-01-01

    The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P < 0.05), while GABA decreased these parameters in female significantly (P < 0.05), but not in male rats. Uterus weight decreased significantly in female rats treated with GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P < 0.05). GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.

  1. Commercial kidney transplantation is an important risk factor in long-term kidney allograft survival.

    PubMed

    Prasad, G V Ramesh; Ananth, Sailesh; Palepu, Sneha; Huang, Michael; Nash, Michelle M; Zaltzman, Jeffrey S

    2016-05-01

    Transplant tourism, a form of transplant commercialization, has resulted in serious short-term adverse outcomes that explain reduced short-term kidney allograft survival. However, the nature of longer-term outcomes in commercial kidney transplant recipients is less clear. To study this further, we identified 69 Canadian commercial transplant recipients of 72 kidney allografts transplanted during 1998 to 2013 who reported to our transplant center for follow-up care. Their outcomes to 8 years post-transplant were compared with 702 domestic living donor and 827 deceased donor transplant recipients during this period using Kaplan-Meier survival plots and multivariate Cox regression analysis. Among many complications, notable specific events included hepatitis B or C seroconversion (7 patients), active hepatitis and/or fulminant hepatic failure (4 patients), pulmonary tuberculosis (2 patients), and a type A dissecting aortic aneurysm. Commercial transplantation was independently associated with significantly reduced death-censored kidney allograft survival (hazard ratio 3.69, 95% confidence interval 1.88-7.25) along with significantly delayed graft function and eGFR 30 ml/min/1.73 m(2) or less at 3 months post-transplant. Thus, commercial transplantation represents an important risk factor for long-term kidney allograft loss. Concerted arguments and efforts using adverse recipient outcomes among the main premises are still required in order to eradicate transplant commercialization. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. [Relations between location of elements in periodic table and affinity for the kidneys (author's transl)].

    PubMed

    Ando, A; Hisada, K; Ando, I

    1977-10-01

    The distribution of many inorganic compounds in rats was investigated in order to evaluate kidney affinity of inorganic compounds. In these experiments, 30%, 10-20% and 4-10% of administered dose was localized in the kidneys in 203Hg-acetate and 203 Bi-acetate, in H198AuCl4, 103PdCl2, 201TlCl, 210Pd(NO3)2 and H2(127M)TeO3, and in Na2(51)CrO4, 54MnCl2, (114m)InCl3 and 7BeCl2, respectively. Some bipositive ions and anions was hardly taken up into the kidneys. And in many hard acids according to classification of Lewis acids, the uptake rate into the kidneys was usually small. On the other hand, Hg, Au and Bi, which have strong binding power to the protein, showed high uptake rate in the kidneys. As Hg++, Au+ and Bi+++ was soft acids according to classification of Lewis acids, it was thought that these elements would bind strongly to soft base (RSH, RS-) present in the kidney.

  3. New Insights into Microglia-Neuron Interactions: A Neuron's Perspective.

    PubMed

    Pósfai, Balázs; Cserép, Csaba; Orsolits, Barbara; Dénes, Ádám

    2018-05-19

    Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research. Copyright © 2018. Published by Elsevier Ltd.

  4. Gender and living donor kidney transplantation.

    PubMed

    Khalifeh, Neda; Hörl, Walter H

    2011-03-01

    Renal transplantation is the first choice of treatment for end-stage renal disease (ESRD) patients. It offers a longer life span, a better quality of life, and lower health care costs as compared to long-term dialysis. In the past years, a constantly rising demand of kidneys on the one hand and a shortage of disposable organs on the other hand pose a growing challenge on transplant medicine. Donor and recipient gender may influence many aspects of kidney transplantation, but the nature of these interactions is still unclear. This article summarizes a part of our present knowledge in the field of gender-related kidney donation and kidney transplantation. Causes for gender disparity and its consequences will be discussed.

  5. Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict

    PubMed Central

    Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A.

    2017-01-01

    Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. PMID:26494798

  6. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    PubMed

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not

  7. Chronic kidney disease, severe arterial and arteriolar sclerosis and kidney neoplasia: on the spectrum of kidney involvement in MELAS syndrome

    PubMed Central

    2012-01-01

    Background MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. Case presentation We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Conclusions Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the

  8. Averting the legacy of kidney disease - Focus on childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-03-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  9. Averting the legacy of kidney disease: focus on childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-04-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  10. Averting the Legacy of Kidney Disease - Focus on Childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-01-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood. © 2016 S. Karger AG, Basel.

  11. Averting the legacy of kidney disease - focus on childhood.

    PubMed

    Ingelfinger, J R; Kalantar-Zadeh, K; Schaefer, F

    2016-01-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, in that the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease as a consequence of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for-date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, although only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that the World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  12. Averting the Legacy of Kidney Disease - Focus on Childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-01-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for-date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood. © 2016 S. Karger AG, Basel.

  13. Averting the Legacy of Kidney Disease: Focus on Childhood.

    PubMed

    Ingelfinger, J R; Kalantar-Zadeh, K; Schaefer, F

    2016-01-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for-date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policymakers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  14. Averting the legacy of kidney disease: focus on childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-06-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  15. Averting the legacy of kidney disease - focus on childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-04-08

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group amongst children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertensionand CKD in later childhood or in adult life. Children born early or who are small-for-date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely to help to detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, whilst only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic oreconomic circumstances. Our hope is that World Kidney Day will inform the general public, policymakers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  16. Averting the Legacy of Kidney Disease - Focus on Childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-04-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  17. Averting the Legacy of Kidney Disease--Focus on Childhood.

    PubMed

    Ingelfinger, Julie R; Kalantar-Zadeh, Kamyar; Schaefer, Franz

    2016-01-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention. Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood. © 2016 S. Karger AG, Basel.

  18. Averting the legacy of kidney disease-focus on childhood.

    PubMed

    Ingelfinger, Julie R; Schaefer, Franz; Kalantar-Zadeh, Kamyar

    2016-03-01

    World Kidney Day 2016 focuses on kidney disease in childhood and the antecedents of adult kidney disease that can begin in earliest childhood. Chronic kidney disease (CKD) in childhood differs from that in adults, as the largest diagnostic group among children includes congenital anomalies and inherited disorders, with glomerulopathies and kidney disease in the setting of diabetes being relatively uncommon. In addition, many children with acute kidney injury will ultimately develop sequelae that may lead to hypertension and CKD in later childhood or in adult life. Children born early or who are small-for date newborns have relatively increased risk for the development of CKD later in life. Persons with a high-risk birth and early childhood history should be watched closely in order to help detect early signs of kidney disease in time to provide effective prevention or treatment. Successful therapy is feasible for advanced CKD in childhood; there is evidence that children fare better than adults, if they receive kidney replacement therapy including dialysis and transplantation, while only a minority of children may require this ultimate intervention Because there are disparities in access to care, effort is needed so that those children with kidney disease, wherever they live, may be treated effectively, irrespective of their geographic or economic circumstances. Our hope is that World Kidney Day will inform the general public, policy makers and caregivers about the needs and possibilities surrounding kidney disease in childhood.

  19. Kidney (Renal) Failure

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Kidney Failure Kidney failure, also known as renal failure, ... evaluated? How is kidney failure treated? What is kidney (renal) failure? The kidneys are designed to maintain ...

  20. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro.

    PubMed

    Heuckeroth, R O; Lampe, P A; Johnson, E M; Milbrandt, J

    1998-08-01

    Signaling through the c-Ret tyrosine kinase and the endothelin B receptor pathways is known to be critical for development of the enteric nervous system. To clarify the role of these receptors in enteric nervous system development, the effect of ligands for these receptors was examined on rat enteric neuron precursors in fully defined medium in primary culture. In this culture system, dividing Ret-positive cells differentiate, cluster into ganglia containing neurons and enteric glia, and create extensive networks reminiscent of the enteric plexus established in vivo. Glial cell-line-derived neurotrophic factor (GDNF) and neurturin both potently support survival and proliferation of enteric neuron precursors in this system. Addition of either neurturin or GDNF to these cultures increased the number of both neurons and enteric glia. Persephin, a third GDNF family member, shares many properties with neurturin and GDNF in the central nervous system and in kidney development. By contrast, persephin does not promote enteric neuron precursor proliferation or survival in these cultures. Endothelin-3 also does not increase the number of enteric neurons or glia in these cultures. Copyright 1998 Academic Press.