Sample records for identified molecular components

  1. Machine Learning Helps Identify CHRONO as a Circadian Clock Component

    PubMed Central

    Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.

    2014-01-01

    Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  2. Light and redox switchable molecular components for molecular electronics.

    PubMed

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  3. Identifying the immunomodulatory components of helminths.

    PubMed

    Shepherd, C; Navarro, S; Wangchuk, P; Wilson, D; Daly, N L; Loukas, A

    2015-06-01

    Immunomodulatory components of helminths offer great promise as an entirely new class of biologics for the treatment of inflammatory diseases. Here, we discuss the emerging themes in helminth-driven immunomodulation in the context of therapeutic drug discovery. We broadly define the approaches that are currently applied by researchers to identify these helminth molecules, highlighting key areas of potential exploitation that have been mostly neglected thus far, notably small molecules. Finally, we propose that the investigation of immunomodulatory compounds will enable the translation of current and future research efforts into potential treatments for autoimmune and allergic diseases, while at the same time yielding new insights into the molecular interface of host-parasite biology. © 2015 John Wiley & Sons Ltd.

  4. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    PubMed

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular dynamics in principal component space.

    PubMed

    Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L

    2012-07-26

    A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.

  6. Solid tags for identifying failed reactor components

    DOEpatents

    Bunch, Wilbur L.; Schenter, Robert E.

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  7. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    PubMed

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    NASA Astrophysics Data System (ADS)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  9. Perturbational formulation of principal component analysis in molecular dynamics simulation.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Tomoda, Shuji; Ueda, Hiroki R

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we

  10. Perturbational formulation of principal component analysis in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we

  11. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    PubMed

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  12. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.

    PubMed

    Papaleo, Elena; Mereghetti, Paolo; Fantucci, Piercarlo; Grandori, Rita; De Gioia, Luca

    2009-01-01

    Several molecular dynamics (MD) simulations were used to sample conformations in the neighborhood of the native structure of holo-myoglobin (holo-Mb), collecting trajectories spanning 0.22 micros at 300 K. Principal component (PCA) and free-energy landscape (FEL) analyses, integrated by cluster analysis, which was performed considering the position and structures of the individual helices of the globin fold, were carried out. The coherence between the different structural clusters and the basins of the FEL, together with the convergence of parameters derived by PCA indicates that an accurate description of the Mb conformational space around the native state was achieved by multiple MD trajectories spanning at least 0.14 micros. The integration of FEL, PCA, and structural clustering was shown to be a very useful approach to gain an overall view of the conformational landscape accessible to a protein and to identify representative protein substates. This method could be also used to investigate the conformational and dynamical properties of Mb apo-, mutant, or delete versions, in which greater conformational variability is expected and, therefore identification of representative substates from the simulations is relevant to disclose structure-function relationship.

  13. The Discovery of a New Massive Molecular Gas Component Associated with the Submillimeter Galaxy SMM J02399-0136

    NASA Astrophysics Data System (ADS)

    Frayer, David T.; Maddalena, Ronald J.; Ivison, R. J.; Smail, Ian; Blain, Andrew W.; Vanden Bout, Paul

    2018-06-01

    We present CO(1–0), CO(3–2), and CO(7–6) observations using the Green Bank Telescope (GBT) and the Atacama Large Millimeter Array (ALMA) of the z = 2.8 submillimeter galaxy SMM J02399‑0136. This was the first submillimeter-selected galaxy discovered and remains an archetype of the class, comprising a merger of several massive and active components, including a quasar-luminosity AGN and a highly obscured, gas-rich starburst spread over a ∼25 kpc extent. The GBT CO(1–0) line profile is comprised of two distinct velocity components separated by about 600 km s‑1 and suggests the presence of a new component of molecular gas that had not been previously identified. The CO(3–2) observations with ALMA show that this new component, designated W1, is associated with a large extended structure stretching 13 kpc westward from the AGN. W1 is not detected in the ALMA CO(7–6) data, implying that this gas has much lower CO excitation than the central starburst regions, which are bright in CO(7–6). The molecular gas mass of W1 is about 30% of the total molecular gas mass in the system, depending on the CO-to-H2 conversion factor. W1 is arguably a merger remnant; alternatively, it could be a massive molecular outflow associated with the AGN, or perhaps inflowing metal-enriched molecular gas fueling the ongoing activity.

  14. Identifying molecular subtypes related to clinicopathologic factors in pancreatic cancer

    PubMed Central

    2014-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal tumors and usually presented with locally advanced and distant metastasis disease, which prevent curative resection or treatments. In this regard, we considered identifying molecular subtypes associated with clinicopathological factor as prognosis factors to stratify PDAC for appropriate treatment of patients. Results In this study, we identified three molecular subtypes which were significant on survival time and metastasis. We also identified significant genes and enriched pathways represented for each molecular subtype. Considering R0 resection patients included in each subtype, metastasis and survival times are significantly associated with subtype 1 and subtype 2. Conclusions We observed three PDAC molecular subtypes and demonstrated that those subtypes were significantly related with metastasis and survival time. The study may have utility in stratifying patients for cancer treatment. PMID:25560450

  15. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.

    PubMed

    Kawano, Ryuji

    2018-02-19

    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Identifying the molecular basis of functions in the transcriptome of the social amoeba Dictyostelium discoideum.

    PubMed

    Whitney, T J; Gardner, D G; Mott, M L; Brandon, M

    2010-03-09

    The unusual life cycle of Dictyostelium discoideum, in which an extra-cellular stressor such as starvation induces the development of a multicellular fruiting body consisting of stalk cells and spores from a culture of identical amoebae, provides an excellent model for investigating the molecular control of differentiation and the transition from single- to multi-cellular life, a key transition in development. We utilized serial analysis of gene expression (SAGE), a molecular method that is unbiased by dependence on previously identified genes, to obtain a transcriptome from a high-density culture of amoebae, in order to examine the transition to multi-cellular development. The SAGE method provides relative expression levels, which allows us to rank order the expressed genes. We found that a large number of ribosomal proteins were expressed at high levels, while various components of the proteosome were expressed at low levels. The only identifiable transmembrane signaling system components expressed in amoebae are related to quorum sensing, and their expression levels were relatively low. The most highly expressed gene in the amoeba transcriptome, dutA untranslated RNA, is a molecule with unknown function that may serve as an inhibitor of translation. These results suggest that high-density amoebae have not initiated development, and they also suggest a mechanism by which the transition into the development program is controlled.

  18. Application of principal component analysis in protein unfolding: an all-atom molecular dynamics simulation study.

    PubMed

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-28

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  19. Application of principal component analysis in protein unfolding: An all-atom molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-01

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  20. Identifying Molecular Targets for PTSD Treatment Using Single Prolonged Stress

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0377 TITLE: Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0377 Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress 5b. GRANT...brain GR and β-AR expression alters glutamatergic and GABAergic function in neural circuits that mediate SPS-induced deficits in extinction retention

  1. Molecular Mimicry between Chikungunya Virus and Host Components: A Possible Mechanism for the Arthritic Manifestations

    PubMed Central

    Reddy, Vijayalakshmi; Desai, Anita; Krishna, Shankar Susarla; Vasanthapuram, Ravi

    2017-01-01

    Background Chikungunya virus (CHIKV), a reemerging pathogen causes a self limited illness characterized by fever, headache, myalgia and arthralgia. However, 10–20% affected individuals develop persistent arthralgia which contributes to considerable morbidity. The exact molecular mechanisms underlying these manifestations are not well understood. The present study investigated the possible occurrence of molecular mimicry between CHIKV E1 glycoprotein and host human components. Methodology Bioinformatic tools were used to identify peptides of CHIKV E1 exhibiting similarity to host components. Two peptides (A&B) were identified using several bioinformatic tools, synthesised and used to validate the results obtained in silico. An ELISA was designed to assess the immunoreactivity of serum samples from CHIKV patients to these peptides. Further, experiments were conducted in a C57BL/6J experimental mouse model to investigate if peptide A and peptide B were indeed capable of inducing pathology. Findings The serum samples showed reactivity of varying degrees, indicating that these peptides are indeed being recognized by the host immune system during CHIKV infection. Further, these peptides when injected into C57BL/6J mice were able to induce significant inflammation in the muscles of C57BL/6J mice, similar to that observed in animals that were injected with CHIKV alone. Additionally, animals that were primed initially with CHIKV followed by a subsequent injection of the CHIKV peptides exhibited enhanced inflammatory pathology in the skeletal muscles as compared to animals that were injected with peptides or virus alone. Collectively these observations validate the hypothesis that molecular mimicry between CHIKV E1 protein and host proteins does contribute to pathology in CHIKV infection. PMID:28125580

  2. A high-dispersion molecular gas component in nearby galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldú-Primo, Anahi; Walter, Fabian; Sandstrom, Karin

    2013-12-01

    We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H{sub 2}) gas components in the disks (R ≲ R {sub 25}) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H Imore » surface density, H{sub 2} surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s{sup –1} and for CO of 12.0 ± 3.9 km s{sup –1}. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σ{sub HI}/σ{sub CO}= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ∼2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.« less

  3. The diffuse molecular component in the nuclear bulge of the Milky Way

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Bronfman, L.; Mauersberger, R.; Finger, R.; Henkel, C.; Wilson, T. L.; Cortés-Zuleta, P.

    2018-02-01

    Context. The bulk of the molecular gas in the central molecular zone (CMZ) of the Galactic center region shows warm kinetic temperatures, ranging from >20 K in the coldest and densest regions (n 104-5 cm-3) up to more than 100 K for densities of about n 103 cm-3. Recently, a more diffuse, hotter (n 100 cm-3, T 250 K) gas component was discovered through absorption observations of H3+. This component may be widespread in the Galactic center, and low density gas detectable in absorption may be present even outside the CMZ along sightlines crossing the extended bulge of the Galaxy. Aim. We aim to observe and characterize diffuse and low density gas using observations of 3-mm molecular transitions seen in absorption. Methods: Using the Atacama Large (sub)Millimeter Array (ALMA) we observed the absorption against the quasar J1744-312, which is located toward the Galactic bulge region at (l, b) = (-2̊.13, -1̊.0), but outside the main molecular complexes. Results: ALMA observations in absorption against the J1744-312 quasar reveal a rich and complex chemistry in low density molecular and presumably diffuse clouds. We detected three velocity components at 0, -153, and -192 km s-1. The component at 0 km s-1 could represent gas in the Galactic disk while the velocity components at -153, and -192 km s-1 likely originate from the Galactic bulge. We detected 12 molecules in the survey, but only 7 in the Galactic bulge gas. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00119.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

  4. Substrate temperature controls molecular orientation in two-component vapor-deposited glasses

    DOE PAGES

    Jiang, J.; Walters, D. M.; Zhou, D.; ...

    2016-02-22

    Vapor-deposited glasses can be anisotropic and molecular orientation is important for organic electronics applications. In organic light emitting diodes (OLEDs), for example, the orientation of dye molecules in two-component emitting layers significantly influences emission efficiency. Here we investigate how substrate temperature during vapor deposition influences the orientation of dye molecules in a model two-component system. We determine the average orientation of a linear blue light emitter 1,4-di-[4-( N,N-diphenyl)amino]styrylbenzene (DSA-Ph) in mixtures with aluminum-tris(8-hydroxyquinoline) (Alq 3) by spectroscopic ellipsometry and IR dichroism. We find that molecular orientation is controlled by the ratio of the substrate temperature during deposition and the glassmore » transition temperature of the mixture. Furthermore, these findings extend recent results for single component vapor-deposited glasses and suggest that, during vapor deposition, surface mobility allows partial equilibration towards orientations preferred at the free surface of the equilibrium liquid.« less

  5. Dihedral angle principal component analysis of molecular dynamics simulations.

    PubMed

    Altis, Alexandros; Nguyen, Phuong H; Hegger, Rainer; Stock, Gerhard

    2007-06-28

    It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {phi(n)} to the metric coordinate space {x(n)=cos phi(n),y(n)=sin phi(n)} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300 ns molecular dynamics simulation, a critical comparison of the various methods is given.

  6. Dihedral angle principal component analysis of molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Altis, Alexandros; Nguyen, Phuong H.; Hegger, Rainer; Stock, Gerhard

    2007-06-01

    It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {φn} to the metric coordinate space {xn=cosφn,yn=sinφn} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300ns molecular dynamics simulation, a critical comparison of the various methods is given.

  7. Molecular dynamics and principal components of potassium binding with human telomeric intra-molecular G-quadruplex.

    PubMed

    Wang, Zhiguo; Chen, Ruping; Hou, Ling; Li, Jianfeng; Liu, Jun-Ping

    2015-06-01

    Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3 + 1] form-one human telomeric intra-molecular G-quadruplex. We show here that the binding of a potassium ion to a G-tetrad core is mediated by two alternative pathways. Principal component analysis illustrated the dominant concerted motions of G-quadruplex occurred at the loop domains. MM-PBSA calculations revealed that binding was energetically favorable and driven by the electrostatic interactions. The lower binding site was found more constructive favorable for binding. Our data provide useful information on a potassium-mediated stable structure of human telomeric intra-molecular G-quadruplex, implicating in ion disorder associated conformational changes and targeted drug design.

  8. Lab-on-chip components for molecular detection

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1 nM to 1 µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.

  9. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate the front and back of the space shuttle launch and entry suit (LES) and labels identify various components. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life preserver unit (LPU), life raft unit (LRU), LES gloves, suit oxygen manifold and valves, boots, and survival gear. Details of larger components are also identified.

  10. Labeled line drawing of launch and entry suit identifies various components

    NASA Image and Video Library

    1988-09-22

    Line drawings illustrate the front and back of the space shuttle launch and entry suit (LES) and labels identify various components. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life preserver unit (LPU), life raft unit (LRU), LES gloves, suit oxygen manifold and valves, boots, and survival gear. Details of larger components are also identified.

  11. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography-mass spectrometry.

    PubMed

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan; Ho, Hingman; Han, Quanbin; Fan, Xiaohui; Zuo, Zhong

    2015-01-01

    Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography-mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components' features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata.

    PubMed

    Puverel, S; Houlbrèque, F; Tambutté, E; Zoccola, D; Payan, P; Caminiti, N; Tambutté, S; Allemand, D

    2007-08-01

    Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (<3.5 kDa), but no free amino acids in the skeletal organic matrix. Since more than 98% of the 14C-labelled amino acids were incorporated into low molecular weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.

  13. Differentially Variable Component Analysis (dVCA): Identifying Multiple Evoked Components using Trial-to-Trial Variability

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Shah, Ankoor S.; Truccolo, Wilson; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.

    2003-01-01

    Electric potentials and magnetic fields generated by ensembles of synchronously active neurons in response to external stimuli provide information essential to understanding the processes underlying cognitive and sensorimotor activity. Interpreting recordings of these potentials and fields is difficult as each detector records signals simultaneously generated by various regions throughout the brain. We introduce the differentially Variable Component Analysis (dVCA) algorithm, which relies on trial-to-trial variability in response amplitude and latency to identify multiple components. Using simulations we evaluate the importance of response variability to component identification, the robustness of dVCA to noise, and its ability to characterize single-trial data. Finally, we evaluate the technique using visually evoked field potentials recorded at incremental depths across the layers of cortical area VI, in an awake, behaving macaque monkey.

  14. Methodology to identify risk-significant components for inservice inspection and testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.

    1992-08-01

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues.

  15. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  16. Uncovering potential anti-neuroinflammatory components of Modified Wuziyanzong Prescription through a target-directed molecular docking fingerprint strategy.

    PubMed

    Chen, Jinfeng; Wang, Jinlong; Lu, Yingyuan; Zhao, Shaoyang; Yu, Qian; Wang, Xuemei; Tu, Pengfei; Zeng, Kewu; Jiang, Yong

    2018-05-01

    Neuroinflammation is a main factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer disease. Our previous studies indicated that the modified Wuziyanzong Prescription (MWP) can suppress neuroinflammatory responses via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. However, the anti-neuroinflammatory components of MWP remain unclear. Herein, a target-directed molecular docking fingerprint (TMDF) strategy, via integrating the chemical profiling and molecular docking approaches, was developed to identify the potential anti-neuroinflammatory components of MWP. First, as many as 120 possible structures, including 49 flavonoids, 28 phenylpropionic acids, 18 amides, 10 carotenoids, eight phenylethanoid glycosides, four lignans, two iridoids, and one triterpenoid were deduced by the source attribution and structural classification-assisted strategy. Then, their geometries were docked against five major targets of the NF-κB and MAPKs signaling cascades, including p38-α, IKKβ, ERK1, ERK2, and TRAF6. The docking results revealed diverse contributions of different components towards the protein targets. Collectively, prenylated flavonoids showed intensive or moderate anti-neuroinflammatory activities, while phenylpropanoids, amides, phenylethanoid glycosides, lignans, and triterpenoids exhibited moderate or weak anti-neuroinflammatory effects. The anti-neuroinflammatory activities of four retrieved prenylated flavonoids were tested by Western blotting assay, and the results mostly agreed with those predicted by the docking method. These gained information demonstrates that the established TMDF strategy could be a rapid and feasible methodology to investigate the potential active components in herbal compound prescriptions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    PubMed

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses <600 Da in a complex mixture, such as SRFA. The most intense masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  18. Analysis of Molecular Diffusion by First-Passage Time Variance Identifies the Size of Confinement Zones

    PubMed Central

    Rajani, Vishaal; Carrero, Gustavo; Golan, David E.; de Vries, Gerda; Cairo, Christopher W.

    2011-01-01

    The diffusion of receptors within the two-dimensional environment of the plasma membrane is a complex process. Although certain components diffuse according to a random walk model (Brownian diffusion), an overwhelming body of work has found that membrane diffusion is nonideal (anomalous diffusion). One of the most powerful methods for studying membrane diffusion is single particle tracking (SPT), which records the trajectory of a label attached to a membrane component of interest. One of the outstanding problems in SPT is the analysis of data to identify the presence of heterogeneity. We have adapted a first-passage time (FPT) algorithm, originally developed for the interpretation of animal movement, for the analysis of SPT data. We discuss the general application of the FPT analysis to molecular diffusion, and use simulations to test the method against data containing known regions of confinement. We conclude that FPT can be used to identify the presence and size of confinement within trajectories of the receptor LFA-1, and these results are consistent with previous reports on the size of LFA-1 clusters. The analysis of trajectory data for cell surface receptors by FPT provides a robust method to determine the presence and size of confined regions of diffusion. PMID:21402028

  19. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.

    PubMed

    Banno, Taisuke; Toyota, Taro

    2015-06-30

    Unique dynamics using inanimate molecular assemblies have drawn a great amount of attention for demonstrating prebiomimetic molecular systems. For the construction of an organized logic combining two fundamental dynamics of life, we demonstrate here a molecular system that exhibits both division and self-propelled motion using oil droplets. The key molecule of this molecular system is a novel cationic surfactant containing a five-membered acetal moiety, and the molecular system can feed the self-propelled oil droplet composed of a benzaldehyde derivative and an alkanol. The division dynamics of the self-propelled oil droplets were observed through the hydrolysis of the cationic surfactant in bulk solution. The mechanism of the current dynamics is argued to be based on the supply of "fresh" oil components in the moving oil droplets, which is induced by the Marangoni instability. We consider this molecular system to be a prototype of self-reproducing inanimate molecular assembly exhibiting self-propelled motion.

  20. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures

    NASA Astrophysics Data System (ADS)

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH3 asymmetric, CH2 asymmetric, CH3 symmetric and CH2 symmetric groups, (ii) unsaturation (Cdbnd C) group, and (iii) carbonyl ester (Cdbnd O) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P < 0.05) in nutrient profile and lipid related molecular spectral intensity (CH2 asymmetric stretching peak height, CH2 symmetric stretching peak height, ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.

  1. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes.

    PubMed

    Ganot, Philippe; Zoccola, Didier; Tambutté, Eric; Voolstra, Christian R; Aranda, Manuel; Allemand, Denis; Tambutté, Sylvie

    2015-01-01

    Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Identifying Cellular and Molecular Mechanisms for Magnetosensation

    PubMed Central

    Clites, Benjamin L.; Pierce, Jonathan T.

    2017-01-01

    Diverse animals ranging from worms and insects to birds and turtles perf orm impressive journeys using the magnetic field of the earth as a cue. Although major cellular and molecular mechanisms for sensing mechanical and chemical cues have been elucidated over the past three decades, the mechanisms that animals use to sense magnetic fields remain largely mysterious. Here we survey progress on the search for magnetosensory neurons and magnetosensitive molecules important for animal behaviors. Emphasis is placed on magnetosensation in insects and birds, as well as on the magnetosensitive neuron pair AFD in the nematode Caenorhabditis elegans. We also review conventional criteria used to define animal magnetoreceptors and suggest how approaches used to identify receptors for other sensory modalities may be adapted for magnetoreceptors. Finally, we discuss prospects for under-utilized and novel approaches to identify the elusive magnetoreceptors in animals. PMID:28772099

  3. Hierarchical Time-Lagged Independent Component Analysis: Computing Slow Modes and Reaction Coordinates for Large Molecular Systems.

    PubMed

    Pérez-Hernández, Guillermo; Noé, Frank

    2016-12-13

    Analysis of molecular dynamics, for example using Markov models, often requires the identification of order parameters that are good indicators of the rare events, i.e. good reaction coordinates. Recently, it has been shown that the time-lagged independent component analysis (TICA) finds the linear combinations of input coordinates that optimally represent the slow kinetic modes and may serve in order to define reaction coordinates between the metastable states of the molecular system. A limitation of the method is that both computing time and memory requirements scale with the square of the number of input features. For large protein systems, this exacerbates the use of extensive feature sets such as the distances between all pairs of residues or even heavy atoms. Here we derive a hierarchical TICA (hTICA) method that approximates the full TICA solution by a hierarchical, divide-and-conquer calculation. By using hTICA on distances between heavy atoms we identify previously unknown relaxation processes in the bovine pancreatic trypsin inhibitor.

  4. A network analysis of the Chinese medicine Lianhua-Qingwen formula to identify its main effective components.

    PubMed

    Wang, Chun-Hua; Zhong, Yi; Zhang, Yan; Liu, Jin-Ping; Wang, Yue-Fei; Jia, Wei-Na; Wang, Guo-Cai; Li, Zheng; Zhu, Yan; Gao, Xiu-Mei

    2016-02-01

    Chinese medicine is known to treat complex diseases with multiple components and multiple targets. However, the main effective components and their related key targets and functions remain to be identified. Herein, a network analysis method was developed to identify the main effective components and key targets of a Chinese medicine, Lianhua-Qingwen Formula (LQF). The LQF is commonly used for the prevention and treatment of viral influenza in China. It is composed of 11 herbs, gypsum and menthol with 61 compounds being identified in our previous work. In this paper, these 61 candidate compounds were used to find their related targets and construct the predicted-target (PT) network. An influenza-related protein-protein interaction (PPI) network was constructed and integrated with the PT network. Then the compound-effective target (CET) network and compound-ineffective target network (CIT) were extracted, respectively. A novel approach was developed to identify effective components by comparing CET and CIT networks. As a result, 15 main effective components were identified along with 61 corresponding targets. 7 of these main effective components were further experimentally validated to have antivirus efficacy in vitro. The main effective component-target (MECT) network was further constructed with main effective components and their key targets. Gene Ontology (GO) analysis of the MECT network predicted key functions such as NO production being modulated by the LQF. Interestingly, five effective components were experimentally tested and exhibited inhibitory effects on NO production in the LPS induced RAW 264.7 cell. In summary, we have developed a novel approach to identify the main effective components in a Chinese medicine LQF and experimentally validated some of the predictions.

  5. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures.

    PubMed

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH(3) asymmetric, CH(2) asymmetric, CH(3) symmetric and CH(2) symmetric groups, (ii) unsaturation (CC) group, and (iii) carbonyl ester (CO) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P<0.05) in nutrient profile and lipid related molecular spectral intensity (CH(2) asymmetric stretching peak height, CH(2) symmetric stretching peak height, ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Modelling Creativity: Identifying Key Components through a Corpus-Based Approach

    PubMed Central

    2016-01-01

    Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research. PMID:27706185

  7. Modelling Creativity: Identifying Key Components through a Corpus-Based Approach.

    PubMed

    Jordanous, Anna; Keller, Bill

    2016-01-01

    Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research.

  8. A Delphi study to identify the core components of nurse to nurse handoff.

    PubMed

    O'Rourke, Jennifer; Abraham, Joanna; Riesenberg, Lee Ann; Matson, Jeff; Lopez, Karen Dunn

    2018-03-08

    The aim of this study was to identify the core components of nurse-nurse handoffs. Patient handoffs involve a process of passing information, responsibility and control from one caregiver to the next during care transitions. Around the globe, ineffective handoffs have serious consequences resulting in wrong treatments, delays in diagnosis, longer stays, medication errors, patient falls and patient deaths. To date, the core components of nurse-nurse handoff have not been identified. This lack of identification is a significant gap in moving towards a standardized approach for nurse-nurse handoff. Mixed methods design using the Delphi technique. From May 2016 - October 2016, using a series of iterative steps, a panel of handoff experts gave feedback on the nurse-nurse handoff core components and the content in each component to be passed from one nurse to the next during a typical unit-based shift handoff. Consensus was defined as 80% agreement or higher. After three rounds of participant review, 17 handoff experts with backgrounds in clinical nursing practice, academia and handoff research came to consensus on the core components of handoff: patient summary, action plan and nurse-nurse synthesis. This is the first study to identify the core components of nurse-nurse handoff. Subsequent testing of the core components will involve evaluating the handoff approach in a simulated and then actual patient care environment. Our long-term goal is to improve patient safety outcomes by validating an evidence-based handoff framework and handoff curriculum for pre-licensure nursing programmes that strengthen the quality of their handoff communication as they enter clinical practice. © 2018 John Wiley & Sons Ltd.

  9. An automated method for identifying artifact in independent component analysis of resting-state FMRI.

    PubMed

    Bhaganagarapu, Kaushik; Jackson, Graeme D; Abbott, David F

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available.

  10. QUANTITATION OF MOLECULAR ENDPOINTS FOR THE DOSE-RESPONSE COMPONENT OF CANCER RISK ASSESSMENT

    EPA Science Inventory

    Cancer risk assessment involves the steps of hazard identification, dose-response assessment, exposure assessment and risk characterization. The rapid advances in the use of molecular biology approaches has had an impact on all four components, but the greatest overall current...

  11. A two-component Bayesian mixture model to identify implausible gestational age.

    PubMed

    Mohammadian-Khoshnoud, Maryam; Moghimbeigi, Abbas; Faradmal, Javad; Yavangi, Mahnaz

    2016-01-01

    Background: Birth weight and gestational age are two important variables in obstetric research. The primary measure of gestational age is based on a mother's recall of her last menstrual period. This recall may cause random or systematic errors. Therefore, the objective of this study is to utilize Bayesian mixture model in order to identify implausible gestational age. Methods: In this cross-sectional study, medical documents of 502 preterm infants born and hospitalized in Hamadan Fatemieh Hospital from 2009 to 2013 were gathered. Preterm infants were classified to less than 28 weeks and 28 to 31 weeks. A two-component Bayesian mixture model was utilized to identify implausible gestational age; the first component shows the probability of correct and the second one shows the probability of incorrect classification of gestational ages. The data were analyzed through OpenBUGS 3.2.2 and 'coda' package of R 3.1.1. Results: The mean (SD) of the second component of less than 28 weeks and 28 to 31 weeks were 1179 (0.0123) and 1620 (0.0074), respectively. These values were larger than the mean of the first component for both groups which were 815.9 (0.0123) and 1061 (0.0074), respectively. Conclusion: Errors occurred in recording the gestational ages of these two groups of preterm infants included recording the gestational age less than the actual value at birth. Therefore, developing scientific methods to correct these errors is essential to providing desirable health services and adjusting accurate health indicators.

  12. Core Intervention Components: Identifying and Operationalizing What Makes Programs Work. ASPE Research Brief

    ERIC Educational Resources Information Center

    Blase, Karen; Fixsen, Dean

    2013-01-01

    This brief is part of a series that explores key implementation considerations. It focuses on the importance of identifying, operationalizing, and implementing the "core components" of evidence-based and evidence-informed interventions that likely are critical to producing positive outcomes. The brief offers a definition of "core components",…

  13. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    PubMed

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  14. Identifying key components for an effective case report poster: an observational study.

    PubMed

    Willett, Lisa L; Paranjape, Anuradha; Estrada, Carlos

    2009-03-01

    Residents demonstrate scholarly activity by presenting posters at academic meetings. Although recommendations from national organizations are available, evidence identifying which components are most important is not. To develop and test an evaluation tool to measure the quality of case report posters and identify the specific components most in need of improvement. Faculty evaluators reviewed case report posters and provided on-site feedback to presenters at poster sessions of four annual academic general internal medicine meetings. A newly developed ten-item evaluation form measured poster quality for specific components of content, discussion, and format (5-point Likert scale, 1 = lowest, 5 = highest). Evaluation tool performance, including Cronbach alpha and inter-rater reliability, overall poster scores, differences across meetings and evaluators and specific components of the posters most in need of improvement. Forty-five evaluators from 20 medical institutions reviewed 347 posters. Cronbach's alpha of the evaluation form was 0.84 and inter-rater reliability, Spearman's rho 0.49 (p < 0.001). The median score was 4.1 (Q1 -Q3, 3.7-4.6)(Q1 = 25th, Q3 = 75th percentile). The national meeting median score was higher than the regional meetings (4.4 vs, 4.0, P < 0.001). We found no difference in faculty scores. The following areas were identified as most needing improvement: clearly state learning objectives, tie conclusions to learning objectives, and use appropriate amount of words. Our evaluation tool provides empirical data to guide trainees as they prepare posters for presentation which may improve poster quality and enhance their scholarly productivity.

  15. Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins.

    PubMed

    Cossio-Pérez, Rodrigo; Palma, Juliana; Pierdominici-Sottile, Gustavo

    2017-04-24

    Principal component analysis is a technique widely used for studying the movements of proteins using data collected from molecular dynamics simulations. In spite of its extensive use, the technique has a serious drawback: equivalent simulations do not afford the same PC-modes. In this article, we show that concatenating equivalent trajectories and calculating the PC-modes from the concatenated one significantly enhances the reproducibility of the results. Moreover, the consistency of the modes can be systematically improved by adding more individual trajectories to the concatenated one.

  16. Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians

    DTIC Science & Technology

    2004-04-15

    Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians SERDP Project # CP-1251...2004 4. TITLE AND SUBTITLE Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians 5a. CONTRACT... cnidarians ? 9 Indicators of ballast water exchange 9 Materials and Methods 11 Phase I. Specimens 11 DNA

  17. Identifying Key Components for an Effective Case Report Poster: An Observational Study

    PubMed Central

    Paranjape, Anuradha; Estrada, Carlos

    2008-01-01

    BACKGROUND Residents demonstrate scholarly activity by presenting posters at academic meetings. Although recommendations from national organizations are available, evidence identifying which components are most important is not. OBJECTIVE To develop and test an evaluation tool to measure the quality of case report posters and identify the specific components most in need of improvement. DESIGN Faculty evaluators reviewed case report posters and provided on-site feedback to presenters at poster sessions of four annual academic general internal medicine meetings. A newly developed ten-item evaluation form measured poster quality for specific components of content, discussion, and format (5-point Likert scale, 1 = lowest, 5 = highest). Main outcome measure(s): Evaluation tool performance, including Cronbach alpha and inter-rater reliability, overall poster scores, differences across meetings and evaluators and specific components of the posters most in need of improvement. RESULTS Forty-five evaluators from 20 medical institutions reviewed 347 posters. Cronbach’s alpha of the evaluation form was 0.84 and inter-rater reliability, Spearman’s rho 0.49 ( < 0.001). The median score was 4.1 (Q1 -Q3, 3.7-4.6)(Q1 = 25th, Q3 = 75th percentile). The national meeting median score was higher than the regional meetings (4.4 vs, 4.0,  < 0.001). We found no difference in faculty scores. The following areas were identified as most needing improvement: clearly state learning objectives, tie conclusions to learning objectives, and use appropriate amount of words. CONCLUSIONS Our evaluation tool provides empirical data to guide trainees as they prepare posters for presentation which may improve poster quality and enhance their scholarly productivity. PMID:19089510

  18. 21 CFR 3.5 - Procedures for identifying the designated agency component.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Research have entered into agreements clarifying product jurisdictional issues. These guidance... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Procedures for identifying the designated agency component. 3.5 Section 3.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  19. 21 CFR 3.5 - Procedures for identifying the designated agency component.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Research have entered into agreements clarifying product jurisdictional issues. These guidance... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Procedures for identifying the designated agency component. 3.5 Section 3.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  20. Probing Molecular Mechanisms of the Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators of Functional Dynamics

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2012-01-01

    Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters

  1. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

    PubMed

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude; Newton, Yulia; Shih, Juliann; Robertson, A Gordon; Hinoue, Toshinori; Hoadley, Katherine A; Gibb, Ewan A; Roszik, Jason; Covington, Kyle R; Wu, Chia-Chin; Shinbrot, Eve; Stransky, Nicolas; Hegde, Apurva; Yang, Ju Dong; Reznik, Ed; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Hess, Julian M; Auman, J Todd; Rhie, Suhn K; Bowlby, Reanne; Borad, Mitesh J; Zhu, Andrew X; Stuart, Josh M; Sander, Chris; Akbani, Rehan; Cherniack, Andrew D; Deshpande, Vikram; Mounajjed, Taofic; Foo, Wai Chin; Torbenson, Michael S; Kleiner, David E; Laird, Peter W; Wheeler, David A; McRee, Autumn J; Bathe, Oliver F; Andersen, Jesper B; Bardeesy, Nabeel; Roberts, Lewis R; Kwong, Lawrence N

    2017-03-14

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. An Automated Method for Identifying Artifact in Independent Component Analysis of Resting-State fMRI

    PubMed Central

    Bhaganagarapu, Kaushik; Jackson, Graeme D.; Abbott, David F.

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available. PMID:23847511

  3. Intraoperative Molecular Imaging of Lung Adenocarcinoma Can Identify Residual Tumor Cells at the Surgical Margins

    PubMed Central

    Keating, Jane J.; Okusanya, Olugbenga T.; De Jesus, Elizabeth; Judy, Ryan; Jiang, Jack; Deshpande, Charuhas; Nie, Shuming; Low, Philip; Singhal, Sunil

    2017-01-01

    Purpose During lung surgery, identification of surgical margins is challenging. We hypothesized that molecular imaging with a fluorescent probe to pulmonary adenocarcinomas could enhance residual tumor during resection. Procedures Mice with flank tumors received a contrast agent targeting folate receptor alpha. Optimal dose and time of injection was established. Margin detection was compared using traditional methods versus molecular imaging. A pilot study was then performed in 3 humans with lung adenocarcinoma. Results The peak tumor-to background ratio (TBR) of murine tumors was 3.9. Fluorescence peaked at 2 hours and was not improved beyond 0.1 mg/kg. Traditional inspection identified 30% of mice with positive margins. Molecular imaging identified an additional 50% of residual tumor deposits (P<0.05). The fluorescent probe visually enhanced all human tumors with a mean TBR of 3.5. Conclusions Molecular imaging is an important adjunct to traditional inspection to identify surgical margins after tumor resection. PMID:26228697

  4. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  5. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    PubMed Central

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  6. Using Indices of Fidelity to Intervention Core Components to Identify Program Active Ingredients

    ERIC Educational Resources Information Center

    Abry, Tashia; Hulleman, Chris S.; Rimm-Kaufman, Sara E.

    2015-01-01

    Identifying the active ingredients of an intervention--intervention-specific components serving as key levers of change--is crucial for unpacking the intervention black box. Measures of intervention fidelity can be used to identify specific active ingredients, yet such applications are rare. We illustrate how fidelity measures can be used to…

  7. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  8. Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex.

    PubMed

    Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P

    2014-01-01

    Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods. © 2013 John Wiley & Sons Ltd.

  9. Comparing hair-morphology and molecular methods to identify fecal samples from Neotropical felids

    PubMed Central

    Alberts, Carlos C.; Saranholi, Bruno H.; Frei, Fernando; Galetti, Pedro M.

    2017-01-01

    To avoid certain problems encountered with more-traditional and invasive methods in behavioral-ecology studies of mammalian predators, such as felids, molecular approaches have been employed to identify feces found in the field. However, this method requires a complete molecular biology laboratory, and usually also requires very fresh fecal samples to avoid DNA degradation. Both conditions are normally absent in the field. To address these difficulties, identification based on morphological characters (length, color, banding, scales and medullar patterns) of hairs found in feces could be employed as an alternative. In this study we constructed a morphological identification key for guard hairs of eight Neotropical felids (jaguar, oncilla, Geoffroy’s cat, margay, ocelot, Pampas cat, puma and jaguarundi) and compared its efficiency to that of a molecular identification method, using the ATP6 region as a marker. For this molecular approach, we simulated some field conditions by postponing sample-conservation procedures. A blind test of the identification key obtained a nearly 70% overall success rate, which we considered equivalent to or better than the results of some molecular methods (probably due to DNA degradation) found in other studies. The jaguar, puma and jaguarundi could be unequivocally discriminated from any other Neotropical felid. On a scale ranging from inadequate to excellent, the key proved poor only for the margay, with only 30% of its hairs successfully identified using this key; and have intermediate success rates for the remaining species, the oncilla, Geoffroy’s cat, ocelot and Pampas cat, were intermediate. Complementary information about the known distributions of felid populations may be necessary to substantially improve the results obtained with the key. Our own molecular results were even better, since all blind-tested samples were correctly identified. Part of these identifications were made from samples kept in suboptimal conditions

  10. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  11. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  12. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  13. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  14. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas

    PubMed Central

    2013-01-01

    Backgound The venom of the Cuban scorpion Rhopalurus junceus is poorly study from the point of view of their components at molecular level and the functions associated. The purpose of this article was to conduct a proteomic analysis of venom components from scorpions collected in different geographical areas of the country. Results Venom from the blue scorpion, as it is called, was collected separately from specimens of five distinct Cuban towns (Moa, La Poa, Limonar, El Chote and Farallones) of the Nipe-Sagua-Baracoa mountain massif and fractionated by high performance liquid chromatography (HPLC); the molecular masses of each fraction were ascertained by mass spectrometry analysis. At least 153 different molecular mass components were identified among the five samples analyzed. Molecular masses varied from 466 to 19755 Da. Scorpion HPLC profiles differed among these different geographical locations and the predominant molecular masses of their components. The most evident differences are in the relative concentration of the venom components. The most abundant components presented molecular weights around 4 kDa, known to be K+-channel specific peptides, and 7 kDa, known to be Na+-channel specific peptides, but with small molecular weight differences. Approximately 30 peptides found in venom samples from the different geographical areas are identical, supporting the idea that they all probably belong to the same species, with some interpopulational variations. Differences were also found in the presence of phospholipase, found in venoms from the Poa area (molecular weights on the order of 14 to 19 kDa). The only ubiquitous enzyme identified in the venoms from all five localities studied (hyaluronidase) presented the same 45 kD molecular mass, identified by gel electrophoresis analysis. Conclusions The venom of these scorpions from different geographical areas seem to be similar, and are rich in peptides that have of the same molecular masses of the peptides

  15. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  16. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  17. Genomic analyses identify molecular subtypes of pancreatic cancer.

    PubMed

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  18. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula.

    PubMed

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling; Wang, Yun

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.

  19. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components. PMID:29692857

  20. Sentan: A Novel Specific Component of the Apical Structure of Vertebrate Motile Cilia

    PubMed Central

    Yuba-Kubo, Akiko; Tsukita, Sachiko; Tsukita, Shoichiro; Amagai, Masayuki

    2008-01-01

    Human respiratory and oviductal cilia have specific apical structures characterized by a narrowed distal portion and a ciliary crown. These structures are conserved among vertebrates that have air respiration systems; however, the molecular components of these structures have not been defined, and their functions are unknown. To identify the molecular component(s) of the cilia apical structure, we screened EST libraries to identify gene(s) that are exclusively expressed in ciliated tissues, are transcriptionally up-regulated during in vitro ciliogenesis, and are not expressed in testis (because sperm flagella have no such apical structures). One of the identified gene products, named sentan, was localized to the distal tip region of motile cilia. Using anti-sentan polyclonal antibodies and electron microscopy, sentan was shown to localize exclusively to the bridging structure between the cell membrane and peripheral singlet microtubules, which specifically exists in the narrowed distal portion of cilia. Exogenously expressed sentan showed affinity for the membrane protrusions, and a protein–lipid binding assay revealed that sentan bound to phosphatidylserine. These findings suggest that sentan is the first molecular component of the ciliary tip to bridge the cell membrane and peripheral singlet microtubules, making the distal portion of the cilia narrow and stiff to allow for better airway clearance or ovum transport. PMID:18829862

  1. A two-step strategy to visually identify molecularly imprinted polymers for tagged proteins.

    PubMed

    Brandis, Alexander; Partouche, Eran; Yechezkel, Tamar; Salitra, Yoseph; Shkoulev, Vladimir; Scherz, Avigdor; Grynszpan, Flavio

    2017-08-01

    A practical and relatively simple method to identify molecularly imprinted polymers capable of binding proteins via the molecular tagging (epitope-like) approach has been developed. In our two-step method, we first challenge a previously obtained anti-tag molecularly imprinted polymer with a small molecule including the said tag of choice (a biotin derivative as shown here or other) connected to a linker bound to a second biotin moiety. An avidin molecule partially decorated with fluorescent labels is then allowed to bind the available biotin derivative associated with the polymer matrix. At the end of this simple process, and after washing off all the low-affinity binding molecules from the polymer matrix, only suitable molecularly imprinted polymers binding avidin through its previously acquired small molecule tag (or epitope-like probe, in a general case) will remain fluorescent. For confirmation, we tested the selective performance of the anti-biotin molecularly imprinted polymer binding it to biotinylated alkaline phosphatase. Residual chemical activity of the enzyme on the molecularly imprinted polymer solid support was observed. In all cases, the corresponding nonimprinted polymer controls were inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    PubMed

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  3. Identifying the binding mode of a molecular scaffold

    NASA Astrophysics Data System (ADS)

    Chema, Doron; Eren, Doron; Yayon, Avner; Goldblum, Amiram; Zaliani, Andrea

    2004-01-01

    We describe a method for docking of a scaffold-based series and present its advantages over docking of individual ligands, for determining the binding mode of a molecular scaffold in a binding site. The method has been applied to eight different scaffolds of protein kinase inhibitors (PKI). A single analog of each of these eight scaffolds was previously crystallized with different protein kinases. We have used FlexX to dock a set of molecules that share the same scaffold, rather than docking a single molecule. The main mode of binding is determined by the mode of binding of the largest cluster among the docked molecules that share a scaffold. Clustering is based on our `nearest single neighbor' method [J. Chem. Inf. Comput. Sci., 43 (2003) 208-217]. Additional criteria are applied in those cases in which more than one significant binding mode is found. Using the proposed method, most of the crystallographic binding modes of these scaffolds were reconstructed. Alternative modes, that have not been detected yet by experiments, could also be identified. The method was applied to predict the binding mode of an additional molecular scaffold that was not yet reported and the predicted binding mode has been found to be very similar to experimental results for a closely related scaffold. We suggest that this approach be used as a virtual screening tool for scaffold-based design processes.

  4. Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister

    NASA Technical Reports Server (NTRS)

    Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.

    2005-01-01

    Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.

  5. Identifying Effective Components of Child Maltreatment Interventions: A Meta-analysis.

    PubMed

    van der Put, Claudia E; Assink, Mark; Gubbels, Jeanne; Boekhout van Solinge, Noëlle F

    2018-06-01

    There is a lack of knowledge about specific components that make interventions effective in preventing or reducing child maltreatment. The aim of the present meta-analysis was to increase this knowledge by summarizing findings on effects of interventions for child maltreatment and by examining potential moderators of this effect, such as intervention components and study characteristics. Identifying effective components is essential for developing or improving child maltreatment interventions. A literature search yielded 121 independent studies (N = 39,044) examining the effects of interventions for preventing or reducing child maltreatment. From these studies, 352 effect sizes were extracted. The overall effect size was significant and small in magnitude for both preventive interventions (d = 0.26, p < .001) and curative interventions (d = 0.36, p < .001). Cognitive behavioral therapy, home visitation, parent training, family-based/multisystemic, substance abuse, and combined interventions were effective in preventing and/or reducing child maltreatment. For preventive interventions, larger effect sizes were found for short-term interventions (0-6 months), interventions focusing on increasing self-confidence of parents, and interventions delivered by professionals only. Further, effect sizes of preventive interventions increased as follow-up duration increased, which may indicate a sleeper effect of preventive interventions. For curative interventions, larger effect sizes were found for interventions focusing on improving parenting skills and interventions providing social and/or emotional support. Interventions can be effective in preventing or reducing child maltreatment. Theoretical and practical implications are discussed.

  6. Identifying effective intervention components for smoking cessation: a factorial screening experiment.

    PubMed

    Piper, Megan E; Fiore, Michael C; Smith, Stevens S; Fraser, David; Bolt, Daniel M; Collins, Linda M; Mermelstein, Robin; Schlam, Tanya R; Cook, Jessica W; Jorenby, Douglas E; Loh, Wei-Yin; Baker, Timothy B

    2016-01-01

    To identify promising intervention components intended to help smokers to attain and maintain abstinence in their quit smoking attempts. A fully crossed, six-factor randomized fractional factorial experiment. Eleven primary care clinics in southern Wisconsin, USA. A total of 637 adult smokers (55% women, 88% white) motivated to quit smoking who visited primary care clinics. Six intervention components designed to prepare smokers to quit, and achieve and maintain abstinence (i.e. for the preparation, cessation and maintenance phases of smoking treatment): (1) preparation nicotine patch versus none; (2) preparation nicotine gum versus none; (3) preparation counseling versus none; (4) intensive cessation in-person counseling versus minimal; (5) intensive cessation telephone counseling versus minimal; and (6) 16 versus 8 weeks of combination nicotine replacement therapy (nicotine patch  +  nicotine gum). Seven-day self-reported point-prevalence abstinence at 16 weeks. Preparation counseling significantly improved week 16 abstinence rates (P = .04), while both forms of preparation nicotine replacement therapy interacted synergistically with intensive cessation in-person counseling (P < 0.05). Conversely, intensive cessation phone counseling and intensive cessation in-person counseling interacted antagonistically (P < 0.05)-these components produced higher abstinence rates by themselves than in combination. Preparation counseling and the combination of intensive cessation in-person counseling with preparation nicotine gum or patch are promising intervention components for smoking and should be evaluated as an integrated treatment package. © 2015 Society for the Study of Addiction.

  7. Identifying geochemical processes using End Member Mixing Analysis to decouple chemical components for mixing ratio calculations

    NASA Astrophysics Data System (ADS)

    Pelizardi, Flavia; Bea, Sergio A.; Carrera, Jesús; Vives, Luis

    2017-07-01

    Mixing calculations (i.e., the calculation of the proportions in which end-members are mixed in a sample) are essential for hydrological research and water management. However, they typically require the use of conservative species, a condition that may be difficult to meet due to chemical reactions. Mixing calculation also require identifying end-member waters, which is usually achieved through End Member Mixing Analysis (EMMA). We present a methodology to help in the identification of both end-members and such reactions, so as to improve mixing ratio calculations. The proposed approach consists of: (1) identifying the potential chemical reactions with the help of EMMA; (2) defining decoupled conservative chemical components consistent with those reactions; (3) repeat EMMA with the decoupled (i.e., conservative) components, so as to identify end-members waters; and (4) computing mixing ratios using the new set of components and end-members. The approach is illustrated by application to two synthetic mixing examples involving mineral dissolution and cation exchange reactions. Results confirm that the methodology can be successfully used to identify geochemical processes affecting the mixtures, thus improving the accuracy of mixing ratios calculations and relaxing the need for conservative species.

  8. A Non-Biological Method for Screening Active Components against Influenza Virus from Traditional Chinese Medicine by Coupling a LC Column with Oseltamivir Molecularly Imprinted Polymers

    PubMed Central

    Yang, Ya-Jun; Li, Jian-Yong; Liu, Xi-Wang; Zhang, Ji-Yu; Liu, Yu-Rong; Li, Bing

    2013-01-01

    To develop a non-biological method for screening active components against influenza virus from traditional Chinese medicine (TCM) extraction, a liquid chromatography (LC) column prepared with oseltamivir molecularly imprinted polymer (OSMIP) was employed with LC-mass spectrometry (LC-MS). From chloroform extracts of compound TCM liquid preparation, we observed an affinitive component m/z 249, which was identified to be matrine following analysis of phytochemical literatures, OSMIP-LC column on-line of control compounds and MS/MS off-line. The results showed that matrine had similar bioactivities with OS against avian influenza virus H9N2 in vitro for both alleviating cytopathic effect and hemagglutination inhibition and that the stereostructures of these two compounds are similar while their two-dimensional structures were different. In addition, our results suggested that the bioactivities of those affinitive compounds were correlated with their chromatographic behaviors, in which less difference of the chromatographic behaviors might have more similar bioactivities. This indicates that matrine is a potential candidate drug to prevent or cure influenza for human or animal. In conclusion, the present study showed that molecularly imprinted polymers can be used as a non-biological method for screening active components against influenza virus from TCM. PMID:24386385

  9. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers.

    PubMed

    Egorov, Evgeny S; Merzlyak, Ekaterina M; Shelenkov, Andrew A; Britanova, Olga V; Sharonov, George V; Staroverov, Dmitriy B; Bolotin, Dmitriy A; Davydov, Alexey N; Barsova, Ekaterina; Lebedev, Yuriy B; Shugay, Mikhail; Chudakov, Dmitriy M

    2015-06-15

    Emerging high-throughput sequencing methods for the analyses of complex structure of TCR and BCR repertoires give a powerful impulse to adaptive immunity studies. However, there are still essential technical obstacles for performing a truly quantitative analysis. Specifically, it remains challenging to obtain comprehensive information on the clonal composition of small lymphocyte populations, such as Ag-specific, functional, or tissue-resident cell subsets isolated by sorting, microdissection, or fine needle aspirates. In this study, we report a robust approach based on unique molecular identifiers that allows profiling Ag receptors for several hundred to thousand lymphocytes while preserving qualitative and quantitative information on clonal composition of the sample. We also describe several general features regarding the data analysis with unique molecular identifiers that are critical for accurate counting of starting molecules in high-throughput sequencing applications. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Identifying Efficacious Treatment Components of Panic Control Treatment for Adolescents: A Preliminary Examination

    ERIC Educational Resources Information Center

    Micco, Jamie A.; Choate-Summers, Molly L.; Ehrenreich, Jill T.; Pincus, Donna B.; Mattis, Sara G.

    2007-01-01

    Panic Control Treatment for Adolescents (PCT-A) is a developmentally sensitive and efficacious treatment for adolescents with panic disorder. The present study is a preliminary examination of the relative efficacy of individual treatment components in PCT-A in a sample of treatment completers; the study identified when rapid improvements in panic…

  11. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    NASA Astrophysics Data System (ADS)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (<200°C) to provide homogeneous carbon-free materials via the elimination of isobutylene and water. A gel is formed when thermolyses are performed in non-polar solvents, and subsequent drying of the gel in a conventional manner yields high surface area xerogels. This thermolytic molecular precursor (TMP) approach has been utilized to provide a variety of oxide materials with tailored properties. In addition, the oxygen rich environment of the molecular precursors coupled with the presence of M-O-E heterolinkages permits use of them as models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures

  12. Low energy electron induced fragmentation and reactions of DNA and its molecular components

    NASA Astrophysics Data System (ADS)

    Bass, Andrew

    2005-05-01

    Much research has been stimulated by the recognition that ionizing radiation can, in condensed matter, generate large numbers of secondary electrons with energies less than 20 eV [1] and by the experimental demonstration that such electrons may induce both single and double strand breaks in plasmid DNA [2]. Identifying the underlying mechanisms involves several research methodologies, from further experiments with DNA to studies of the electron interaction with the component `sub-units' of DNA in both the gas and condensed phases [3]. In particular, understanding electron-induced strand break damage, the type of damage most difficult for organisms to repair, necessitates study of the sub-units of DNA back-bone, and here Tetrahyrofuran (THF) and its derivatives, provide a useful model for the furyl ring at the centre of the deoxyribose sugar. In this contribution, we review with particular reference to DNA and related molecules, the use of electron spectroscopy and mass spectrometry to study electron-induced fragmentation and reactions in thin molecular solids. We describe a newly completed instrument that combines laser post-ionization with a time-of-flight mass analyzer for highly sensitive ion and neutral detection. Use of the instrument is illustrated with results for THF and derivatives. Anion desorption measurements reveal the role of transient negative ions (TNI) and Dissociative Electron Attachment in significant molecular fragmentation and permit effective cross sections for this electron-induced damage to be obtained. The neutral yield functions also illustrate the importance of TNI, mirroring features seen in recently measured cross sections for electron induced aldehyde production in THF [4]. 1. J. A. Laverne and S. M. Pimblott, Radiat. Res. 141, 208 (1995) 2. B. Boudaiffa, et al, Science 287, 1658 (2000) 3. L. Sanche. Physica Scripta. 68, C108, (2003) 4. S.-P. Breton, et al.,J. Chem. Phys. 121, 11240 (2004)

  13. Identifying components for programmatic latent tuberculosis infection control in the European Union

    PubMed Central

    Sandgren, Andreas; Vonk Noordegraaf-Schouten, Jannigje M; Oordt-Speets, Anouk M; van Kessel, Gerarda B; de Vlas, Sake J; van der Werf, Marieke J

    2016-01-01

    Individuals with latent tuberculosis infection (LTBI) are the reservoir of Mycobacterium tuberculosis in a population and as long as this reservoir exists, elimination of tuberculosis (TB) will not be feasible. In 2013, the European Centre for Disease Prevention and Control (ECDC) started an assessment of benefits and risks of introducing programmatic LTBI control, with the aim of providing guidance on how to incorporate LTBI control into national TB strategies in European Union/European Economic Area (EU/EEA) Member States and candidate countries. In a first step, experts from the Member States, candidate countries, and international and national organisations were consulted on the components of programmatic LTBI control that should be considered and evaluated in literature reviews, mathematical models and cost-effectiveness studies. This was done through a questionnaire and two interactive discussion rounds. The main components identified were identification and targeting of risk groups, determinants of LTBI and progression to active TB, optimal diagnostic tests for LTBI, effective preventive treatment regimens, and to explore the potential for combining LTBI control with other health programmes. Political commitment, a solid healthcare infrastructure, and favourable economic situation in specific countries were identified as essential to facilitate the implementation of programmatic LTBI control. PMID:27589214

  14. Molecular Models Candy Components

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    An explanation of various principles of chemistry in a paper by Fanny Ennever by the use of candy is described. The paper explains components of sucrose and the invert sugar that results from the hydrolysis of sucrose and will help students in determining whether the products are indeed hydrates of carbon.

  15. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria

    PubMed Central

    Srinivasan, Sujatha; Munch, Matthew M.; Sizova, Maria V.; Fiedler, Tina L.; Kohler, Christina M.; Hoffman, Noah G.; Liu, Congzhou; Agnew, Kathy J.; Marrazzo, Jeanne M.; Epstein, Slava S.; Fredricks, David N.

    2016-01-01

    Background. Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Methods. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. Results. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. Conclusions. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously “uncultivated” bacteria are amenable to conventional cultivation. PMID:27449870

  16. Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates

    NASA Astrophysics Data System (ADS)

    Sittel, Florian; Jain, Abhinav; Stock, Gerhard

    2014-07-01

    Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.

  17. Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates.

    PubMed

    Sittel, Florian; Jain, Abhinav; Stock, Gerhard

    2014-07-07

    Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.

  18. Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening

    PubMed Central

    Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei

    2009-01-01

    We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498

  19. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria.

    PubMed

    Srinivasan, Sujatha; Munch, Matthew M; Sizova, Maria V; Fiedler, Tina L; Kohler, Christina M; Hoffman, Noah G; Liu, Congzhou; Agnew, Kathy J; Marrazzo, Jeanne M; Epstein, Slava S; Fredricks, David N

    2016-08-15

    Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously "uncultivated" bacteria are amenable to conventional cultivation. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems.

    PubMed

    Foster, Clay A; West, Ann H

    2017-01-01

    Two-component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus-dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well-characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation-induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155-176. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  1. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae.

    PubMed

    He, Yawen; Zhao, Ruiming; Di, Zhiyong; Li, Zhongjie; Xu, Xiaobo; Hong, Wei; Wu, Yingliang; Zhao, Huabin; Li, Wenxin; Cao, Zhijian

    2013-08-26

    The scorpion family Chaerilidae is phylogenetically differentiated from Buthidae. Their venom components are not known, and the evolution of the venom components is not well understood. Here, we performed a transcriptome analysis of the venom glands from two scorpion species, Chaerilus tricostatus and Chaerilus tryznai. Fourteen types of venom peptides were discovered from two species, 10 of which were shared by both C. tricostatus and C. tryznai. Notably, the venom components of Chaerilidae were also found to contain four toxin types (NaTx, β-KTx, Scamp and bpp-like peptides), previously considered to be specific to Buthidae. Moreover, cytolytic peptides were the most abundant toxin type in C. tricostatus, C. tryznai and the family Euscorpiidae. Furthermore, 39 and 35 novel atypical venom molecules were identified from C. tricostatus and C. tryznai, respectively. Finally, the evolutionary analysis showed that the NaTx, β-KTx, and bpp-like toxin types were recruited into the venom before the lineage split between Buthidae and non-Buthidae families. This study provides an integrated understanding of the venom components of the scorpion family Chaerilidae. The family Chaerilidae has a specific venom arsenal that is intermediate between Buthidae and non-Buthidae, which suggests the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae species. This work gave a first overview of the venom components of Chaerilidae scorpions, and discovered large numbers of new toxin molecules, which significantly enriches the molecular diversity of scorpion venom peptides/proteins components. Based on phylogenetic analysis we speculated that the NaTx, β-KTx and bpp-like toxin type genes were recruited into venom before the lineage split between Buthidae and non-Buthidae. By Comparing the toxin types and abundance of the Buthidae, Chaerilidae and non-Buthidae families, we found that the family Chaerilidae has a specific venom arsenal that is intermediate

  2. Novel high-molecular weight fucosylated milk oligosaccharides identified in dairy streams.

    PubMed

    Mehra, Raj; Barile, Daniela; Marotta, Mariarosaria; Lebrilla, Carlito B; Chu, Caroline; German, J Bruce

    2014-01-01

    Oligosaccharides are the third largest component in human milk. This abundance is remarkable because oligosaccharides are not digestible by the newborn, and yet they have been conserved and amplified during evolution. In addition to encouraging the growth of a protective microbiota dominated by bifidobacteria, oligosaccharides have anti-infective activity, preventing pathogens from binding to intestinal cells. Although it would be advantageous adding these valuable molecules to infant milk formula, the technologies to reproduce the variety and complexity of human milk oligosaccharides by enzymatic/organic synthesis are not yet mature. Consequently, there is an enormous interest in alternative sources of these valuable oligosaccharides. Recent research has demonstrated that bovine milk and whey permeate also contain oligosaccharides. Thus, a thorough characterization of oligosaccharides in bovine dairy streams is an important step towards fully assessing their specific functionalities. In this study, bovine milk oligosaccharides (BMOs) were concentrated by membrane filtration from a readily available dairy stream called "mother liquor", and analyzed by high accuracy MALDI FT-ICR mass spectrometry. The combination of HPLC and accurate mass spectrometry allowed the identification of ideal processing conditions leading to the production of Kg amount of BMO enriched powders. Among the BMOs identified, 18 have high-molecular weight and corresponded in size to the most abundant oligosaccharides present in human milk. Notably 6 oligosaccharides contained fucose, a sugar monomer that is highly abundant in human milk, but is rarely observed in bovine milk. This work shows that dairy streams represent a potential source of complex milk oligosaccharides for commercial development of unique dairy ingredients in functional foods that reproduce the benefits of human milk.

  3. Novel High-Molecular Weight Fucosylated Milk Oligosaccharides Identified in Dairy Streams

    PubMed Central

    Mehra, Raj; Barile, Daniela; Marotta, Mariarosaria; Lebrilla, Carlito B.; Chu, Caroline; German, J. Bruce

    2014-01-01

    Oligosaccharides are the third largest component in human milk. This abundance is remarkable because oligosaccharides are not digestible by the newborn, and yet they have been conserved and amplified during evolution. In addition to encouraging the growth of a protective microbiota dominated by bifidobacteria, oligosaccharides have anti-infective activity, preventing pathogens from binding to intestinal cells. Although it would be advantageous adding these valuable molecules to infant milk formula, the technologies to reproduce the variety and complexity of human milk oligosaccharides by enzymatic/organic synthesis are not yet mature. Consequently, there is an enormous interest in alternative sources of these valuable oligosaccharides. Recent research has demonstrated that bovine milk and whey permeate also contain oligosaccharides. Thus, a thorough characterization of oligosaccharides in bovine dairy streams is an important step towards fully assessing their specific functionalities. In this study, bovine milk oligosaccharides (BMOs) were concentrated by membrane filtration from a readily available dairy stream called “mother liquor”, and analyzed by high accuracy MALDI FT-ICR mass spectrometry. The combination of HPLC and accurate mass spectrometry allowed the identification of ideal processing conditions leading to the production of Kg amount of BMO enriched powders. Among the BMOs identified, 18 have high-molecular weight and corresponded in size to the most abundant oligosaccharides present in human milk. Notably 6 oligosaccharides contained fucose, a sugar monomer that is highly abundant in human milk, but is rarely observed in bovine milk. This work shows that dairy streams represent a potential source of complex milk oligosaccharides for commercial development of unique dairy ingredients in functional foods that reproduce the benefits of human milk. PMID:24810963

  4. Identifying molecular drivers of gastric cancer through next-generation sequencing.

    PubMed

    Liang, Han; Kim, Yon Hui

    2013-11-01

    Gastric cancer is the second most common cause of cancer-related death in the world, representing a major global health issue. The high mortality rate is largely due to the lack of effective medical treatment for advanced stages of this disease. Recently next-generation sequencing (NGS) technology has become a revolutionary tool for cancer research, and several NGS studies in gastric cancer have been published. Here we review the insights gained from these studies regarding how use NGS to elucidate the molecular basis of gastric cancer and identify potential therapeutic targets. We also discuss the challenges and future directions of such efforts. Published by Elsevier Ireland Ltd.

  5. Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira; Ando, Yasuhisa

    2010-08-01

    The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.

  6. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGES

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; ...

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH 4:NH 3:H 2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the naturemore » of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  7. Low molecular weight components of pollen alter bronchial epithelial barrier functions.

    PubMed

    Blume, Cornelia; Swindle, Emily J; Gilles, Stefanie; Traidl-Hoffmann, Claudia; Davies, Donna E

    2015-01-01

    The bronchial epithelium plays a key role in providing a protective barrier against many environmental substances of anthropogenic or natural origin which enter the lungs during breathing. Appropriate responses to these agents are critical for regulation of tissue homeostasis, while inappropriate responses may contribute to disease pathogenesis. Here, we compared epithelial barrier responses to different pollen species, characterized the active pollen components and the signaling pathways leading to epithelial activation. Polarized bronchial cells were exposed to extracts of timothy grass (Phleum pratense), ragweed (Ambrosia artemisifolia), mugwort (Artemisia vulgaris), birch (Betula alba) and pine (Pinus sylvestris) pollens. All pollen species caused a decrease in ionic permeability as monitored trans-epithelial electrical resistance (TER) and induced polarized release of mediators analyzed by ELISA, with grass pollen showing the highest activity. Ultrafiltration showed that the responses were due to components <3kDa. However, lipid mediators, including phytoprostane E1, had no effect on TER, and caused only modest induction of mediator release. Reverse-phase chromatography separated 2 active fractions: the most hydrophilic maximally affected cytokine release whereas the other only affected TER. Inhibitor studies revealed that JNK played a more dominant role in regulation of barrier permeability in response to grass pollen exposure, whereas ERK and p38 controlled cytokine release. Adenosine and the flavonoid isorhamnetin present in grass pollen contributed to the overall effect on airway epithelial barrier responses. In conclusion, bronchial epithelial barrier functions are differentially affected by several low molecular weight components released by pollen. Furthermore, ionic permeability and innate cytokine production are differentially regulated.

  8. Bulked segregant analysis identifies molecular markers linked to Melampsora medusae resistance in Populus deltoides

    Treesearch

    G. M. Tabor; Thomas L. Kubisiak; N. B. Klopfenstein; R. B. Hall; Henry S. McNabb

    2000-01-01

    In the north central United States, leaf rust caused by Melampsora medusae is a major disease problem on Populus deltoides. In this study we identified molecular markers linked to a M. medusae resistance locus (Lrd1) that was segregating 1:1 within an intraspecific P. deltoides...

  9. The dynamical role of the central molecular ring within the framework of a seven-component Galaxy model

    NASA Astrophysics Data System (ADS)

    Simin, A. A.; Fridman, A. M.; Haud, U. A.

    1991-09-01

    A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.

  10. Assessing the dispersive and electrostatic components of the cohesive energy of ionic liquids using molecular dynamics simulations and molar refraction data.

    PubMed

    Shimizu, Karina; Tariq, Mohammad; Costa Gomes, Margarida F; Rebelo, Luís P N; Canongia Lopes, José N

    2010-05-06

    Molecular dynamics simulations were used to calculate the density and the cohesive molar internal energy of seventeen different ionic liquids in the liquid phase. The results were correlated with previously reported experimental density and molar refraction data. The link between the dispersive component of the total cohesive energy of the fluid and the corresponding molar refraction was established in an unequivocal way. The results have shown that the two components of the total cohesive energy (dispersive and electrostatic) exhibit strikingly different trends and ratios along different families of ionic liquids, a notion that may help explain their diverse behavior toward different molecular solutes and solvents.

  11. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    PubMed Central

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  12. Recognition of the Component Odors in Mixtures

    PubMed Central

    Fletcher, Dane B; Hettinger, Thomas P

    2017-01-01

    Abstract Natural olfactory stimuli are volatile-chemical mixtures in which relative perceptual saliencies determine which odor-components are identified. Odor identification also depends on rapid selective adaptation, as shown for 4 odor stimuli in an earlier experimental simulation of natural conditions. Adapt-test pairs of mixtures of water-soluble, distinct odor stimuli with chemical features in common were studied. Identification decreased for adapted components but increased for unadapted mixture-suppressed components, showing compound identities were retained, not degraded to individual molecular features. Four additional odor stimuli, 1 with 2 perceptible odor notes, and an added “water-adapted” control tested whether this finding would generalize to other 4-compound sets. Selective adaptation of mixtures of the compounds (odors): 3 mM benzaldehyde (cherry), 5 mM maltol (caramel), 1 mM guaiacol (smoke), and 4 mM methyl anthranilate (grape-smoke) again reciprocally unmasked odors of mixture-suppressed components in 2-, 3-, and 4-component mixtures with 2 exceptions. The cherry note of “benzaldehyde” (itself) and the shared note of “methyl anthranilate and guaiacol” (together) were more readily identified. The pervasive mixture-component dominance and dynamic perceptual salience may be mediated through peripheral adaptation and central mutual inhibition of neural responses. Originating in individual olfactory receptor variants, it limits odor identification and provides analytic properties for momentary recognition of a few remaining mixture-components. PMID:28641388

  13. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    PubMed

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  14. Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis.

    PubMed

    Karpuzcu, M Ekrem; Fairbairn, David; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L

    2014-01-01

    Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in Southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (PC1) was attributed to urban wastewater-derived sources, including municipal wastewater and residential septic tank effluents, while Principal Component 2 (PC2) was attributed to agricultural sources. The variances of the concentrations of cotinine, DEET and the prescription drugs carbamazepine, erythromycin and sulfamethoxazole were best explained by PC1, while the variances of the concentrations of the agricultural pesticides atrazine, metolachlor and acetochlor were best explained by PC2. Mixed use compounds carbaryl, iprodione and daidzein did not specifically group with either PC1 or PC2. Furthermore, despite the fact that caffeine and acetaminophen have been historically associated with human use, they could not be attributed to a single dominant land use category (e.g., urban/residential or agricultural). Contributions from septic systems did not clarify the source for these two compounds, suggesting that additional sources, such as runoff from biosolid-amended soils, may exist. Based on these results, PCA may be a useful way to broadly categorize the sources of new and previously uncharacterized emerging contaminants or may help to clarify transport pathways in a given area. Acetaminophen and caffeine were not ideal markers for urban/residential contamination sources in the study area and may need to be reconsidered as such in other areas as well.

  15. Molecular Analysis of Non-Small Cell Lung Cancer (NSCLC) Identifies Subsets with Different Sensitivity to Insulin like Growth Factor I Receptor (IGF-IR) Inhibition

    PubMed Central

    Gualberto, Antonio; Dolled-Filhart, Marisa; Gustavson, Mark; Christiansen, Jason; Wang, Yu-Fen; Hixon, Mary L.; Reynolds, Jennifer; McDonald, Sandra; Ang, Agnes; Rimm, David L.; Langer, Corey J.; Blakely, Johnetta; Garland, Linda; Paz-Ares, Luis G.; Karp, Daniel D.; Lee, Adrian V.

    2010-01-01

    Purpose Identify molecular determinants of sensitivity of NSCLC to anti-insulin like growth factor receptor (IGF-IR) therapy. Experimental Design 216 tumor samples were investigated. 165 consisted of retrospective analyses of banked tissue and an additional 51 were from patients enrolled in a phase 2 study of figitumumab (F), a monoclonal antibody against the IGF-IR, in stage IIIb/IV NSCLC. Biomarkers assessed included IGF-IR, EGFR, IGF-2, IGF-2R, IRS-1, IRS-2, vimentin and E-cadherin. Sub-cellular localization of IRS-1 and phosphorylation levels of MAPK and Akt1 were also analyzed. Results IGF-IR was differentially expressed across histological subtypes (P=0.04), with highest levels observed in squamous cell tumors. Elevated IGF-IR expression was also observed in a small number of squamous cell tumors responding to chemotherapy combined with F (p=0.008). Since no other biomarker/response interaction was observed using classical histological sub-typing, a molecular approach was undertaken to segment NSCLC into mechanism-based subpopulations. Principal component analysis and unsupervised Bayesian clustering identified 3 NSCLC subsets that resembled the steps of the epithelial-to-mesenchymal transition: E-cadherin high/IRS-1 low (Epithelial-like), E-cadherin intermediate/IRS-1 high (Transitional) and E-cadherin low/IRS-1 low (Mesenchymal-like). Several markers of the IGF-IR pathway were over-expressed in the Transitional subset. Furthermore, a higher response rate to the combination of chemotherapy and F was observed in Transitional tumors (71%) compared to those in the Mesenchymal-like subset (32%, p=0.03). Only one Epithelial-like tumor was identified in the phase 2 study, suggesting that advanced NSCLC has undergone significant de-differentiation at diagnosis. Conclusion NSCLC comprises molecular subsets with differential sensitivity to IGF-IR inhibition. PMID:20670944

  16. ITPI: Initial Transcription Process-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; Li, Yanwen; Zhang, Yanling; Li, Zhiyong; Bi, Tian; He, Yusu; Song, Kuokui; Wang, Yun

    2016-01-01

    Identification of bioactive components is an important area of research in traditional Chinese medicine (TCM) formula. The reported identification methods only consider the interaction between the components and the target proteins, which is not sufficient to explain the influence of TCM on the gene expression. Here, we propose the Initial Transcription Process-based Identification (ITPI) method for the discovery of bioactive components that influence transcription factors (TFs). In this method, genome-wide chip detection technology was used to identify differentially expressed genes (DEGs). The TFs of DEGs were derived from GeneCards. The components influencing the TFs were derived from STITCH. The bioactive components in the formula were identified by evaluating the molecular similarity between the components in formula and the components that influence the TF of DEGs. Using the formula of Tian-Zhu-San (TZS) as an example, the reliability and limitation of ITPI were examined and 16 bioactive components that influence TFs were identified. PMID:27034696

  17. Material for "Substrate temperature controls molecular orientation in two-component vapor- deposited glasses." Soft Matter, 2016, 12, 3265.

    DOE Data Explorer

    Jiang, Jing [Nanjing University; Walters, Diane M [University of Wisconsin-Madison; Zhou, Dongshan [Nanjing University; Ediger, Mark D [University of Wisconsin-Madison

    2016-08-18

    Data set for work presented in Jiang, J.; Walters, D. M.; Zhou, D.; Ediger, M. D. “Substrate Temperature Controls Molecular Orientation in Two -Component Vapor-deposited Glasses.” Soft Matt. 2016, 12, 3265. Includes all data presented in the manuscript as well as example raw data and analysis.

  18. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  19. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  20. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues.

    NASA Astrophysics Data System (ADS)

    Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.

    2017-11-01

    The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.

  1. Glioblastoma with oligodendroglioma component (GBM-O): molecular genetic and clinical characteristics.

    PubMed

    Appin, Christina L; Gao, Jingjing; Chisolm, Candace; Torian, Mike; Alexis, Dianne; Vincentelli, Cristina; Schniederjan, Matthew J; Hadjipanayis, Costas; Olson, Jeffrey J; Hunter, Stephen; Hao, Chunhai; Brat, Daniel J

    2013-07-01

    Glioblastoma (GBM) is an aggressive primary brain tumor with an average survival of approximately 1 year. A recently recognized subtype, glioblastoma with oligodendroglioma component (GBM-O), was designated by the World Health Organization (WHO) in 2007. We investigated GBM-Os for their clinical and molecular characteristics as compared to other forms of GBM. Tissue samples were used to determine EGFR, PTEN, and 1p and 19q status by fluorescence in situ hybridization (FISH); p53 and mutant IDH1 protein expression by immunohistochemistry (IHC); and MGMT promoter status by methylation-specific polymerase chain reaction (PCR). GBM-Os accounted for 11.9% of all GBMs. GBM-Os arose in younger patients compared to other forms of GBMs (50.7 years vs. 58.7 years, respectively), were more frequently secondary neoplasms, had a higher frequency of IDH1 mutations and had a lower frequency of PTEN deletions. Survival was longer in patients with GBM-Os compared to those with other GBMs, with median survivals of 16.2 and 8.1 months, respectively. Most of the survival advantage for GBM-O appeared to be associated with a younger age at presentation. Among patients with GBM-O, younger age at presentation and 1p deletion were most significant in conferring prolonged survival. Thus, GBM-O represents a subset of GBMs with distinctive morphologic, clinical and molecular characteristics. © 2013 The Authors; Brain Pathology © 2013 International Society of Neuropathology.

  2. Molecular Testing of 163 Patients with Morquio A (Mucopolysaccharidosis IVA) Identifies 39 Novel GALNS Mutations

    PubMed Central

    Morrone, A; Tylee, K.L.; Al-Sayed, M; Brusius-Facchin, A.C.; Caciotti, A.; Church, H.J.; Coll, M.J.; Davidson, K.; Fietz, M.J.; Gort, L.; Hegde, M.; Kubaski, F.; Lacerda, L.; Laranjeira, F.; Leistner-Segal, S.; Mooney, S.; Pajares, S.; Pollard, L.; Riberio, I.; Wang, R.Y.; Miller, N.

    2014-01-01

    Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles produce protein with decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided. PMID:24726177

  3. Molecular Characterization and Expression Analysis of Chloroplast Protein Import Components in Tomato (Solanum lycopersicum)

    PubMed Central

    Yan, Jianmin; Campbell, James H.; Glick, Bernard R.; Smith, Matthew D.; Liang, Yan

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and initial import into the organelle of thousands of nucleus-encoded proteins. These proteins are translated in the cytosol as precursor proteins with cleavable amino-terminal targeting sequences called transit peptides. The majority of the known Toc components that mediate chloroplast protein import were originally identified in pea, and more recently have been studied most extensively in Arabidopsis. With the completion of the tomato genome sequencing project, it is now possible to identify putative homologues of the chloroplast import components in tomato. In the work reported here, the Toc GTPase cDNAs from tomato were identified, cloned and analyzed. The analysis revealed that there are four Toc159 homologues (slToc159-1, -2, -3 and -4) and two Toc34 homologues (slToc34-1 and -2) in tomato, and it was shown that tomato Toc159 and Toc34 homologues share high sequence similarity with the comparable import apparatus components from Arabidopsis and pea. Thus, tomato is a valid model for further study of this system. The expression level of Toc complex components was also investigated in different tissues during tomato development. The two tomato Toc34 homologues are expressed at higher levels in non-photosynthetic tissues, whereas, the expression of two tomato Toc159 homologues, slToc159-1 and slToc159-4, were higher in photosynthetic tissues, and the expression patterns of slToc159-2 was not significantly different in photosynthetic and non-photosynthetic tissues, and slToc159-3 expression was limited to a few select tissues. PMID:24751891

  4. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    PubMed

    Rodriguez-Canales, Jaime; Hanson, Jeffrey C; Hipp, Jason D; Balis, Ulysses J; Tangrea, Michael A; Emmert-Buck, Michael R; Bova, G Steven

    2013-01-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This updated chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high-quality, appropriately anatomically tagged scientific results. Improvement in this area will significantly increase life science quality and productivity. The chapter is divided into introduction, materials, protocols, and notes subheadings. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this chapter, readers are advised to read through the entire

  5. Yeast Reporter Assay to Identify Cellular Components of Ricin Toxin A Chain Trafficking.

    PubMed

    Becker, Björn; Schnöder, Tina; Schmitt, Manfred J

    2016-12-06

    RTA, the catalytic A-subunit of the ribosome inactivating A/B toxin ricin, inhibits eukaryotic protein biosynthesis by depurination of 28S rRNA. Although cell surface binding of ricin holotoxin is mainly mediated through its B-subunit (RTB), sole application of RTA is also toxic, albeit to a significantly lower extent, suggesting alternative pathways for toxin uptake and transport. Since ricin toxin trafficking in mammalian cells is still not fully understood, we developed a GFP-based reporter assay in yeast that allows rapid identification of cellular components required for RTA uptake and subsequent transport through a target cell. We hereby show that Ypt6p, Sft2p and GARP-complex components play an important role in RTA transport, while neither the retromer complex nor COPIB vesicles are part of the transport machinery. Analyses of yeast knock-out mutants with chromosomal deletion in genes whose products regulate ADP-ribosylation factor GTPases (Arf-GTPases) and/or retrograde Golgi-to-ER (endoplasmic reticulum) transport identified Sso1p, Snc1p, Rer1p, Sec22p, Erv46p, Gea1p and Glo3p as novel components in RTA transport, suggesting the developed reporter assay as a powerful tool to dissect the multistep processes of host cell intoxication in yeast.

  6. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  7. Similar bowtie structures and distinct largest strong components are identified in the transcriptional regulatory networks of Arabidopsis thaliana during photomorphogenesis and heat shock.

    PubMed

    Luo, Shitao; Zhang, Fengming; Ruan, Yingfei; Li, Jie; Zhang, Zheng; Sun, Yan; Deng, Shixiong; Peng, Rui

    2018-06-01

    Photomorphogenesis and heat shock are critical biological processes of plants. A recent research constructed the transcriptional regulatory networks (TRNs) of Arabidopsis thaliana during these processes using DNase-seq. In this study, by strong decomposition, we revealed that each of these TRNs can be represented as a similar bowtie structure with only one non-trivial and distinct strong component. We further identified distinct patterns of variation of a few light-related genes in these bowtie structures during photomorphogenesis. These results suggest that bowtie structure may be a common property of TRNs of plants, and distinct variation patterns of genes in bowtie structures of TRNs during biological processes may reflect distinct functions. Overall, our study provides an insight into the molecular mechanisms underlying photomorphogenesis and heat shock, and emphasizes the necessity to investigate the strong connectivity structures while studying TRNs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach

    PubMed Central

    Scott, Milcah C.; Sarver, Aaron L.; Gavin, Katherine J.; Thayanithy, Venugopal; Getzy, David M.; Newman, Robert A.; Cutter, Gary R.; Lindblad-Toh, Kerstin; Kisseberth, William C.; Hunter, Lawrence E.; Subramanian, Subbaya; Breen, Matthew; Modiano, Jaime F.

    2011-01-01

    The heterogeneous and chaotic nature of osteosarcoma has confounded accurate molecular classification, prognosis, and prediction for this tumor. The occurrence of spontaneous osteosarcoma is largely confined to humans and dogs. While the clinical features are remarkably similar in both species, the organization of dogs into defined breeds provides a more homogeneous genetic background that may increase the likelihood to uncover molecular subtypes for this complex disease. We thus hypothesized that molecular profiles derived from canine osteosarcoma would aid in molecular subclassification of this disease when applied to humans. To test the hypothesis, we performed genome wide gene expression profiling in a cohort of dogs with osteosarcoma, primarily from high-risk breeds. To further reduce inter-sample heterogeneity, we assessed tumor-intrinsic properties through use of an extensive panel of osteosarcoma-derived cell lines. We observed strong differential gene expression that segregated samples into two groups with differential survival probabilities. Groupings were characterized by the inversely correlated expression of genes associated with G2/M transition and DNA damage checkpoint and microenvironment-interaction categories. This signature was preserved in data from whole tumor samples of three independent dog osteosarcoma cohorts, with stratification into the two expected groups. Significantly, this restricted signature partially overlapped a previously defined, predictive signature for soft tissue sarcomas, and it unmasked orthologous molecular subtypes and their corresponding natural histories in five independent data sets from human patients with osteosarcoma. Our results indicate that the narrower genetic diversity of dogs can be utilized to group complex human osteosarcoma into biologically and clinically relevant molecular subtypes. This in turn may enhance prognosis and prediction, and identify relevant therapeutic targets. PMID:21621658

  9. Immunohistochemical, cytogenetic, and molecular cytogenetic characterization of both components of a dedifferentiated liposarcoma: implications for histogenesis.

    PubMed

    Nishio, Jun; Iwasaki, Hiroshi; Nabeshima, Kazuki; Naito, Masatoshi

    2015-01-01

    Dedifferentiated liposarcoma (DDLS) is a malignant adipocytic tumor showing transition from an atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDLS) to a non-lipogenic sarcoma of variable histological grades. We present the immunohistochemical, cytogenetic, and molecular cytogenetic findings of DDLS arising in the right chest wall of a 76-year-old man. Magnetic resonance imaging exhibited a large mass composed of two components with heterogeneous signal intensities, suggesting the coexistence of a fatty area and another soft tissue component. The grossly heterogeneous mass was histologically composed of an ALT/WDLS component transitioning abruptly into a dedifferentiated component. Immunohistochemistry was positive for murine double-minute 2 (MDM2), cyclin-dependent kinase 4 (CDK4), and p16 in both components, although a more strong and diffuse staining was found in the dedifferentiated area. The MIB-1 labeling index was extremely higher in the dedifferentiated area compared to the ALT/WDLS area. Cytogenetic analysis of the ALT/WDLS component revealed the following karyotype: 46,X,-Y,+r. Notably, cytogenetic analysis of the dedifferentiated component revealed a similar but more complex karyotype. Spectral karyotyping demonstrated that the ring chromosome was entirely composed of material from chromosome 12. Interphase fluorescence in situ hybridization analysis revealed amplification of MDM2 and CDK4 in both components. These findings suggest that multiple abnormal clones derived from a single precursor cell would be present in DDLS, with one or more containing supernumerary rings or giant marker chromosomes. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of Tuberous Sclerosis

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of...DATES COVERED 1 July 2014 - 30 June 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using Genetic Buffering Relationships Identified in Fission Yeast ...SUPPLEMENTARY NOTES 14. ABSTRACT Using the genetically tractable fission yeast as a model, we sought to exploit recent advances in gene interaction

  11. Identifying Components of Meta-Awareness about Composition: Toward a Theory and Methodology for Writing Studies

    ERIC Educational Resources Information Center

    VanKooten, Crystal

    2016-01-01

    Recent research in writing studies has highlighted meta-awareness as valuable for student learning in courses such as first-year writing (FYW); however, meta-awareness needs to be further theorized and its components identified. In this article, I draw on a case study of six students in two FYW courses that is informed by Gregory Schraw's model of…

  12. Robust Principal Component Analysis Regularized by Truncated Nuclear Norm for Identifying Differentially Expressed Genes.

    PubMed

    Wang, Ya-Xuan; Gao, Ying-Lian; Liu, Jin-Xing; Kong, Xiang-Zhen; Li, Hai-Jun

    2017-09-01

    Identifying differentially expressed genes from the thousands of genes is a challenging task. Robust principal component analysis (RPCA) is an efficient method in the identification of differentially expressed genes. RPCA method uses nuclear norm to approximate the rank function. However, theoretical studies showed that the nuclear norm minimizes all singular values, so it may not be the best solution to approximate the rank function. The truncated nuclear norm is defined as the sum of some smaller singular values, which may achieve a better approximation of the rank function than nuclear norm. In this paper, a novel method is proposed by replacing nuclear norm of RPCA with the truncated nuclear norm, which is named robust principal component analysis regularized by truncated nuclear norm (TRPCA). The method decomposes the observation matrix of genomic data into a low-rank matrix and a sparse matrix. Because the significant genes can be considered as sparse signals, the differentially expressed genes are viewed as the sparse perturbation signals. Thus, the differentially expressed genes can be identified according to the sparse matrix. The experimental results on The Cancer Genome Atlas data illustrate that the TRPCA method outperforms other state-of-the-art methods in the identification of differentially expressed genes.

  13. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    PubMed

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Using molecular tools to identify the geographical origin of a case of human brucellosis.

    PubMed

    Muchowski, J K; Koylass, M S; Dainty, A C; Stack, J A; Perrett, L; Whatmore, A M; Perrier, C; Chircop, S; Demicoli, N; Gatt, A B; Caruana, P A; Gopaul, K K

    2015-10-01

    Although Malta is historically linked with the zoonosis brucellosis, there had not been a case of the disease in either the human or livestock population for several years. However, in July 2013 a case of human brucellosis was identified on the island. To determine whether this recent case originated in Malta, four isolates from this case were subjected to molecular analysis. Molecular profiles generated using multilocus sequence analysis and multilocus variable number tandem repeat for the recent human case isolates and 11 Brucella melitensis strains of known Maltese origin were compared with others held on in-house and global databases. While the 11 isolates of Maltese origin formed a distinct cluster, the recent human isolation was not associated with these strains but instead clustered with isolates originating from the Horn of Africa. These data was congruent with epidemiological trace-back showed that the individual had travelled to Malta from Eritrea. This work highlights the potential of using molecular typing data to aid in epidemiological trace-back of Brucella isolations and assist in monitoring of the effectiveness of brucellosis control schemes.

  15. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Phaser.MRage: automated molecular replacement.

    PubMed

    Bunkóczi, Gábor; Echols, Nathaniel; McCoy, Airlie J; Oeffner, Robert D; Adams, Paul D; Read, Randy J

    2013-11-01

    Phaser.MRage is a molecular-replacement automation framework that implements a full model-generation workflow and provides several layers of model exploration to the user. It is designed to handle a large number of models and can distribute calculations efficiently onto parallel hardware. In addition, phaser.MRage can identify correct solutions and use this information to accelerate the search. Firstly, it can quickly score all alternative models of a component once a correct solution has been found. Secondly, it can perform extensive analysis of identified solutions to find protein assemblies and can employ assembled models for subsequent searches. Thirdly, it is able to use a priori assembly information (derived from, for example, homologues) to speculatively place and score molecules, thereby customizing the search procedure to a certain class of protein molecule (for example, antibodies) and incorporating additional biological information into molecular replacement.

  17. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth.

    PubMed

    Connor, Erin E; Baldwin, Ransom L; Li, Cong-jun; Li, Robert W; Chung, Hoyoung

    2013-03-01

    During weaning, epithelial cell function in the rumen transitions in response to conversion from a pre-ruminant to a true ruminant environment to ensure efficient nutrient absorption and metabolism. To identify gene networks affected by weaning in bovine rumen, Holstein bull calves were fed commercial milk replacer only (MRO) until 42 days of age, then were provided diets of either milk + orchardgrass hay (MH) or milk + grain-based calf starter (MG). Rumen epithelial RNA was extracted from calves sacrificed at four time points: day 14 (n = 3) and day 42 (n = 3) of age while fed the MRO diet and day 56 (n = 3/diet) and day 70 (n = 3/diet) while fed the MH and MG diets for transcript profiling by microarray hybridization. Five two-group comparisons were made using Permutation Analysis of Differential Expression® to identify differentially expressed genes over time and developmental stage between days 14 and 42 within the MRO diet, between day 42 on the MRO diet and day 56 on the MG or MH diets, and between the MG and MH diets at days 56 and 70. Ingenuity Pathway Analysis (IPA) of differentially expressed genes during weaning indicated the top 5 gene networks involving molecules participating in lipid metabolism, cell morphology and death, cellular growth and proliferation, molecular transport, and the cell cycle. Putative genes functioning in the establishment of the rumen microbial population and associated rumen epithelial inflammation during weaning were identified. Activation of transcription factor PPAR-α was identified by IPA software as an important regulator of molecular changes in rumen epithelium that function in papillary development and fatty acid oxidation during the transition from pre-rumination to rumination. Thus, molecular markers of rumen development and gene networks regulating differentiation and growth of rumen epithelium were identified for selecting targets and methods for improving and assessing rumen development and

  18. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    PubMed

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  19. Super-reduced polyoxometalates: excellent molecular cluster battery components and semipermeable molecular capacitors.

    PubMed

    Nishimoto, Yoshio; Yokogawa, Daisuke; Yoshikawa, Hirofumi; Awaga, Kunio; Irle, Stephan

    2014-06-25

    Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM(3-)) clusters [PM12O40](3-) (M = Mo, W) are converted toward their super-reduced POM(27-) state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal-metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a prominently emerging structural feature. The origin of the metal triangle formation during super-reduction stems from the formation of characteristic three-center two-electron bonds in triangular metal atom sites, created under preservation of the POM skeleton via "squeezing out" of oxygen atoms bridging two metal atoms when the underlying metal atoms form covalent bonds. The driving force for this unusual geometrical and electronic structure change is a local Jahn-Teller distortion at individual transition-metal octahedral sites, where the triply degenerate t2 d orbitals become partially filled during reduction and gain energy by distortion of the octahedron in such a way that metal-metal bonds are formed. The bonding orbitals show strong contributions from mixing with metal-oxygen antibonding orbitals, thereby "shuffling away" excess electrons from the cluster center to the outside of the cage. The high density of negatively charged yet largely separated

  20. Principal Component Analysis of Lipid Molecule Conformational Changes in Molecular Dynamics Simulations.

    PubMed

    Buslaev, Pavel; Gordeliy, Valentin; Grudinin, Sergei; Gushchin, Ivan

    2016-03-08

    Molecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers.

  1. A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation.

    PubMed

    Schmid-Burgk, Jonathan L; Chauhan, Dhruv; Schmidt, Tobias; Ebert, Thomas S; Reinhardt, Julia; Endl, Elmar; Hornung, Veit

    2016-01-01

    Inflammasomes are high molecular weight protein complexes that assemble in the cytosol upon pathogen encounter. This results in caspase-1-dependent pro-inflammatory cytokine maturation, as well as a special type of cell death, known as pyroptosis. The Nlrp3 inflammasome plays a pivotal role in pathogen defense, but at the same time, its activity has also been implicated in many common sterile inflammatory conditions. To this effect, several studies have identified Nlrp3 inflammasome engagement in a number of common human diseases such as atherosclerosis, type 2 diabetes, Alzheimer disease, or gout. Although it has been shown that known Nlrp3 stimuli converge on potassium ion efflux upstream of Nlrp3 activation, the exact molecular mechanism of Nlrp3 activation remains elusive. Here, we describe a genome-wide CRISPR/Cas9 screen in immortalized mouse macrophages aiming at the unbiased identification of gene products involved in Nlrp3 inflammasome activation. We employed a FACS-based screen for Nlrp3-dependent cell death, using the ionophoric compound nigericin as a potassium efflux-inducing stimulus. Using a genome-wide guide RNA (gRNA) library, we found that targeting Nek7 rescued macrophages from nigericin-induced lethality. Subsequent studies revealed that murine macrophages deficient in Nek7 displayed a largely blunted Nlrp3 inflammasome response, whereas Aim2-mediated inflammasome activation proved to be fully intact. Although the mechanism of Nek7 functioning upstream of Nlrp3 yet remains elusive, these studies provide a first genetic handle of a component that specifically functions upstream of Nlrp3. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Potential origin and formation for molecular components of humic acids in soils

    NASA Astrophysics Data System (ADS)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    humification. The less humified samples contain relatively more components having a relationship to lignin. The more humified samples are composed of relatively more molecular formulas in the CCAM and condensed aromatic regions and also contain relatively more carboxylated molecular formulas than the less humified samples. To explain the molecular formulas observed we propose a humification process that involves photo- or microbially-generated reactive oxygen species in soils which are responsible for transforming the materials supplied to soil as fresh organic matter, mainly lignin, to the molecules observed in ESI-FTICR-MS data. When plotted on the van Krevelen diagram, the H/C and O/C ratios of molecular formulas from humic acids predictably plot in the same regions as the newly produced formulas discovered by Chen, et al. (2014) when natural organic matter was photoirradiated or when lignin-derived humics were subjected to Fenton chemistry (Waggoner et al., 2015). References: Chen H., Abdulla H.A.N., Sanders R.L., Myneni S.C.B., Mopper K. and Hatcher P.G. (2014) Production of Black Carbon-like and Aliphatic Molecules from Terrestrial Dissolved Organic Matter in the Presence of Sunlight and Iron. Environmental Science & Technology Letters 1, 399-404. Waggoner D.C., Chen H., Willoughby A.S. and Hatcher P.G. (2015) Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin. Organic Geochemistry 82, 69-76.

  3. Integrated Molecular Profiling of Human Gastric Cancer Identifies DDR2 as a Potential Regulator of Peritoneal Dissemination.

    PubMed

    Kurashige, Junji; Hasegawa, Takanori; Niida, Atsushi; Sugimachi, Keishi; Deng, Niantao; Mima, Kosuke; Uchi, Ryutaro; Sawada, Genta; Takahashi, Yusuke; Eguchi, Hidetoshi; Inomata, Masashi; Kitano, Seigo; Fukagawa, Takeo; Sasako, Mitsuru; Sasaki, Hiroki; Sasaki, Shin; Mori, Masaki; Yanagihara, Kazuyoshi; Baba, Hideo; Miyano, Satoru; Tan, Patrick; Mimori, Koshi

    2016-03-03

    Peritoneal dissemination is the most frequent, incurable metastasis occurring in patients with advanced gastric cancer (GC). However, molecular mechanisms driving peritoneal dissemination still remain poorly understood. Here, we aimed to provide novel insights into the molecular mechanisms that drive the peritoneal dissemination of GC. We performed combined expression analysis with in vivo-selected metastatic cell lines and samples from 200 GC patients to identify driver genes of peritoneal dissemination. The driver-gene functions associated with GC dissemination were examined using a mouse xenograft model. We identified a peritoneal dissemination-associated expression signature, whose profile correlated with those of genes related to development, focal adhesion, and the extracellular matrix. Among the genes comprising the expression signature, we identified that discoidin-domain receptor 2 (DDR2) as a potential regulator of peritoneal dissemination. The DDR2 was upregulated by the loss of DNA methylation and that DDR2 knockdown reduced peritoneal metastasis in a xenograft model. Dasatinib, an inhibitor of the DDR2 signaling pathway, effectively suppressed peritoneal dissemination. DDR2 was identified as a driver gene for GC dissemination from the combined expression signature and can potentially serve as a novel therapeutic target for inhibiting GC peritoneal dissemination.

  4. Synaptic proteomics as a means to identify the molecular basis of mental illness: Are we getting there?

    PubMed

    Reig-Viader, Rita; Sindreu, Carlos; Bayés, Àlex

    2018-06-08

    Synapses are centrally involved in many brain disorders, particularly in psychiatric and neurodevelopmental ones. However, our current understanding of the proteomic alterations affecting synaptic performance in the majority of mental illnesses is limited. As a result, novel pharmacotherapies with improved neurological efficacy have been scarce over the past decades. The main goal of synaptic proteomics in the context of mental illnesses is to identify dysregulated molecular mechanisms underlying these conditions. Here we reviewed and performed a meta-analysis of previous neuroproteomic research to identify proteins that may be consistently dysregulated in one or several mental disorders. Notably, we found very few proteins reproducibly altered among independent experiments for any given condition or between conditions, indicating that we are still far from identifying key pathophysiological mechanisms of mental illness. We suggest that future research in the field will require higher levels of standardization and larger-scale experiments to address the challenge posed by biological and methodological variability. We strongly believe that more resources should be placed in this field as the need to identify the molecular roots of mental illnesses is highly pressing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Coarse gaining of molecular crystals: limitations imposed by molecular flexibility

    NASA Astrophysics Data System (ADS)

    Picu, Catalin; Pal, Anirban

    Molecular crystals include molecular electronics, energetic materials, pharmaceuticals and some food components. In many of these applications the small scale mechanical behavior of the crystal is important such as for example in energetic materials where detonation is induced by the formation of hot spots which are induced thermomechanically, and in pharmaceuticals where phase stability is critical for the biochemical activity of the drug. Accurate modeling of these processes requires resolving the atomistic scale details of the material. However, the cost of these models is very large due to the complexity of the molecules forming the crystal, and some form of coarse graning is necessary. In this study we identify the limitations imposed by the need to accurately capture molecular flexibility on the development of coarse grained models for the energetic molecular crystal RDX. We define guidelines for the definition of coarse grained models that target elastic and plastic crystal scale properties such as elastic constants, thermal expansion, compressibility, the critical stress for the motion of dislocations (Peierls stress) and the stacking fault energy This work was supported by the ARO through Grant W911NF-09-1-0330 and AFRL through Grant FA8651-16-1-0004.

  6. Component analysis of somatosensory evoked potentials for identifying spinal cord injury location.

    PubMed

    Wang, Yazhou; Li, Guangsheng; Luk, Keith D K; Hu, Yong

    2017-05-24

    This study aims to determine whether the time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) can be used to identify the specific location of a compressive spinal cord injury using a classification technique. Waveforms of SEPs after compressive injuries at various locations (C4, C5 and C6) in rat spinal cords were decomposed into a series of TFCs using a high-resolution time-frequency analysis method. A classification method based on support vector machine (SVM) was applied to the distributions of these TFCs among different pathological locations. The difference among injury locations manifests itself in different categories of SEP TFCs. High-energy TFCs of normal-state SEPs have significantly higher power and frequency than those of injury-state SEPs. The location of C5 is characterized by a unique distribution pattern of middle-energy TFCs. The difference between C4 and C6 is evidenced by the distribution pattern of low-energy TFCs. The proposed classification method based on SEP TFCs offers a discrimination accuracy of 80.2%. In this study, meaningful information contained in various SEP components was investigated and used to propose a new application of SEPs for identification of the location of pathological changes in the cervical spinal cord.

  7. Characterization of the Organic Component of Low-Molecular-Weight Chromium-Binding Substance and Its Binding of Chromium123

    PubMed Central

    Chen, Yuan; Watson, Heather M.; Gao, Junjie; Sinha, Sarmistha Halder; Cassady, Carolyn J.; Vincent, John B.

    2011-01-01

    Chromium was proposed to be an essential element over 50 y ago and was shown to have therapeutic potential in treating the symptoms of type 2 diabetes; however, its mechanism of action at a molecular level is unknown. One chromium-binding biomolecule, low-molecular weight chromium-binding substance (LMWCr or chromodulin), has been found to be biologically active in in vitro assays and proposed as a potential candidate for the in vivo biologically active form of chromium. Characterization of the organic component of LMWCr has proven difficult. Treating bovine LMWCr with trifluoroacetic acid followed by purification on a graphite powder micro-column generates a heptapeptide fragment of LMWCr. The peptide sequence of the fragment was analyzed by MS and tandem MS (MS/MS and MS/MS/MS) using collision-induced dissociation and post-source decay. Two candidate sequences, pEEEEGDD and pEEEGEDD (where pE is pyroglutamate), were identified from the MS/MS experiments; additional tandem MS suggests the sequence is pEEEEGDD. The N-terminal glutamate residues explain the inability to sequence LMWCr by the Edman method. Langmuir isotherms and Hill plots were used to analyze the binding constants of chromic ions to synthetic peptides similar in composition to apoLMWCr. The sequence pEEEEGDD was found to bind 4 chromic ions per peptide with nearly identical cooperativity and binding constants to those of apoLMWCr. This work should lead to further studies elucidating or eliminating a potential role for LMWCr in treating the symptoms of type 2 diabetes and other conditions resulting from improper carbohydrate and lipid metabolism. PMID:21593351

  8. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Mongerson, Chandler R. L.; Borsook, David; Becerra, Lino

    2017-01-01

    Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework. PMID:29311770

  9. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    PubMed

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  10. Phaser.MRage: automated molecular replacement

    PubMed Central

    Bunkóczi, Gábor; Echols, Nathaniel; McCoy, Airlie J.; Oeffner, Robert D.; Adams, Paul D.; Read, Randy J.

    2013-01-01

    Phaser.MRage is a molecular-replacement automation framework that implements a full model-generation workflow and provides several layers of model exploration to the user. It is designed to handle a large number of models and can distribute calculations efficiently onto parallel hardware. In addition, phaser.MRage can identify correct solutions and use this information to accelerate the search. Firstly, it can quickly score all alternative models of a component once a correct solution has been found. Secondly, it can perform extensive analysis of identified solutions to find protein assemblies and can employ assembled models for subsequent searches. Thirdly, it is able to use a priori assembly information (derived from, for example, homologues) to speculatively place and score molecules, thereby customizing the search procedure to a certain class of protein molecule (for example, antibodies) and incorporating additional biological information into molecular replacement. PMID:24189240

  11. A suite of molecular markers for identifying species, detecting introgression and describing population structure in spadefoot toads (Spea spp.).

    PubMed

    Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D

    2012-09-01

    Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.

  12. Hypercellularity Components of Glioblastoma Identified by High b-Value Diffusion-Weighted Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanik, Priyanka P.; Parmar, Hemant A.; Mammoser, Aaron G.

    2015-07-15

    Purpose: Use of conventional magnetic resonance imaging (MRI) for target definition may expose glioblastomas (GB) to inadequate radiation dose coverage of the nonenhanced hypercellular subvolume. This study aimed to develop a technique to identify the hypercellular components of GB by using high b-value diffusion-weighted imaging (DWI) and to investigate its relationship with the prescribed 95% isodose volume (PDV) and progression-free survival (PFS). Methods and Materials: Twenty-one patients with GB underwent chemoradiation therapy post-resection and biopsy. Radiation therapy (RT) treatment planning was based upon conventional MRI. Pre-RT DWIs were acquired in 3 orthogonal directions with b-values of 0, 1000, and 3000more » s/mm{sup 2}. Hypercellularity volume (HCV) was defined on the high b-value (3000 s/mm{sup 2}) DWI by a threshold method. Nonenhanced signified regions not covered by the Gd-enhanced gross tumor volume (GTV-Gd) on T1-weighted images. The PDV was used to evaluate spatial coverage of the HCV by the dose plan. Association between HCV and PFS or other clinical covariates were assessed using univariate proportional hazards regression models. Results: HCVs and nonenhanced HCVs varied from 0.58 to 67 cm{sup 3} (median: 9.8 cm{sup 3}) and 0.15 to 60 cm{sup 3} (median: 2.5 cm{sup 3}), respectively. Fourteen patients had incomplete dose coverage of the HCV, 6 of whom had >1 cm{sup 3} HCV missed by the 95% PDV (range: 1.01-25.4 cm{sup 3}). Of the 15 patients who progressed, 5 progressed earlier, within 6 months post-RT, and 10 patients afterward. Pre-RT HCVs within recurrent GTVs-Gd were 78% (range: 65%-89%) for the 5 earliest progressions but lower, 53% (range: 0%-85%), for the later progressions. HCV and nonenhanced HCV were significant negative prognostic indicators for PFS (P<.002 and P<.01, respectively). The hypercellularity subvolume not covered by the 95% PDV was a significant negative predictor for PFS (P<.05). Conclusions: High b

  13. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    PubMed

    Bova, G Steven; Eltoum, Isam A; Kiernan, John A; Siegal, Gene P; Frost, Andra R; Best, Carolyn J M; Gillespie, John W; Su, Gloria H; Emmert-Buck, Michael R

    2005-02-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This article reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies, and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing, and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high quality, appropriately anatomically tagged scientific results. In optimized protocols is a source of inefficiency in current life science research. Improvement in this area will significantly increase life science quality and productivity. The article is divided into introduction, materials, protocols, and notes sections. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the

  14. Mixed endometrial carcinomas with a "low-grade serous"-like component: a clinicopathologic, immunohistochemical, and molecular genetic study.

    PubMed

    Espinosa, Iñigo; D'Angelo, Emanuela; Corominas, Marina; Gonzalez, Alan; Prat, Jaime

    2018-01-01

    Recently, we reported 2 mixed endometrioid endometrial carcinomas with a "low-grade serous"-like component, which does not fit into any of the 4 molecular groups described by The Cancer Genome Atlas. To understand the nature of these tumors, we have done an immunohistochemical and molecular genetic study of these 2 cases and added a third case. Immunoreactivity for p53, ER, Ki67, WT1, MLH1, PMS2, MSH2, and MSH6 was assessed. Targeted next-generation sequencing for somatic mutations, including genes commonly implicated in carcinogenesis including TP53, KRAS, and PIK3CA, and Sanger sequencing for PTEN and POLE were also performed. All patients were nulliparous and had morbid obesity. Their tumors showed a micropapillary component that resembled that of ovarian low-grade serous carcinoma and merged with villoglandular endometrioid carcinoma. The invasive tumor glands exhibited a microcystic, elongated, or fragmented pattern and contained psammoma bodies. Two tumors showed aberrant p53 expression, and all 3 were positive for ER. All showed KRAS mutations, and TP53 mutations were found in 2 cases. One patient developed peritoneal carcinomatosis, one patient is alive with disease, and another died of a brain tumor. The third patient, whose tumor was confined to the uterus (stage IA), is alive without evidence of disease, but she has been followed for only 6 months. Mixed endometrial carcinomas with a "low-grade" serous-like component exhibit a morphologic spectrum of endometrioid and serous differentiation with microcystic, elongated, or fragmented features; ER expression; KRAS and TP53 mutations; and aggressive behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma

    PubMed Central

    Castro, Nadia P; Osório, Cynthia ABT; Torres, César; Bastos, Elen P; Mourão-Neto, Mário; Soares, Fernando A; Brentani, Helena P; Carraro, Dirce M

    2008-01-01

    Introduction Ductal carcinoma in situ (DCIS) of the breast includes a heterogeneous group of preinvasive tumors with uncertain evolution. Definition of the molecular factors necessary for progression to invasive disease is crucial to determining which lesions are likely to become invasive. To obtain insight into the molecular basis of DCIS, we compared the gene expression pattern of cells from the following samples: non-neoplastic, pure DCIS, in situ component of lesions with co-existing invasive ductal carcinoma, and invasive ductal carcinoma. Methods Forty-one samples were evaluated: four non-neoplastic, five pure DCIS, 22 in situ component of lesions with co-existing invasive ductal carcinoma, and 10 invasive ductal carcinoma. Pure cell populations were isolated using laser microdissection. Total RNA was purified, DNase treated, and amplified using the T7-based method. Microarray analysis was conducted using a customized cDNA platform. The concept of molecular divergence was applied to classify the sample groups using analysis of variance followed by Tukey's test. Results Among the tumor sample groups, cells from pure DCIS exhibited the most divergent molecular profile, consequently identifying cells from in situ component of lesions with co-existing invasive ductal carcinoma as very similar to cells from invasive lesions. Additionally, we identified 147 genes that were differentially expressed between pure DCIS and in situ component of lesions with co-existing invasive ductal carcinoma, which can discriminate samples representative of in situ component of lesions with co-existing invasive ductal carcinoma from 60% of pure DCIS samples. A gene subset was evaluated using quantitative RT-PCR, which confirmed differential expression for 62.5% and 60.0% of them using initial and partial independent sample groups, respectively. Among these genes, LOX and SULF-1 exhibited features that identify them as potential participants in the malignant process of DCIS

  16. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma.

    PubMed

    Castro, Nadia P; Osório, Cynthia A B T; Torres, César; Bastos, Elen P; Mourão-Neto, Mário; Soares, Fernando A; Brentani, Helena P; Carraro, Dirce M

    2008-01-01

    Ductal carcinoma in situ (DCIS) of the breast includes a heterogeneous group of preinvasive tumors with uncertain evolution. Definition of the molecular factors necessary for progression to invasive disease is crucial to determining which lesions are likely to become invasive. To obtain insight into the molecular basis of DCIS, we compared the gene expression pattern of cells from the following samples: non-neoplastic, pure DCIS, in situ component of lesions with co-existing invasive ductal carcinoma, and invasive ductal carcinoma. Forty-one samples were evaluated: four non-neoplastic, five pure DCIS, 22 in situ component of lesions with co-existing invasive ductal carcinoma, and 10 invasive ductal carcinoma. Pure cell populations were isolated using laser microdissection. Total RNA was purified, DNase treated, and amplified using the T7-based method. Microarray analysis was conducted using a customized cDNA platform. The concept of molecular divergence was applied to classify the sample groups using analysis of variance followed by Tukey's test. Among the tumor sample groups, cells from pure DCIS exhibited the most divergent molecular profile, consequently identifying cells from in situ component of lesions with co-existing invasive ductal carcinoma as very similar to cells from invasive lesions. Additionally, we identified 147 genes that were differentially expressed between pure DCIS and in situ component of lesions with co-existing invasive ductal carcinoma, which can discriminate samples representative of in situ component of lesions with co-existing invasive ductal carcinoma from 60% of pure DCIS samples. A gene subset was evaluated using quantitative RT-PCR, which confirmed differential expression for 62.5% and 60.0% of them using initial and partial independent sample groups, respectively. Among these genes, LOX and SULF-1 exhibited features that identify them as potential participants in the malignant process of DCIS. We identified new genes that are

  17. Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups.

    PubMed

    Bosse, Tjalling; Nout, Remi A; McAlpine, Jessica N; McConechy, Melissa K; Britton, Heidi; Hussein, Yaser R; Gonzalez, Carlene; Ganesan, Raji; Steele, Jane C; Harrison, Beth T; Oliva, Esther; Vidal, August; Matias-Guiu, Xavier; Abu-Rustum, Nadeem R; Levine, Douglas A; Gilks, C Blake; Soslow, Robert A

    2018-05-01

    mixture of molecular subtypes of endometrial carcinoma, rather than a homogeneous group. The addition of molecular markers identifies prognostic subgroups, with potential therapeutic implications.

  18. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  19. Comparative Analysis of Metabolic Syndrome Components in over 15,000 African Americans Identifies Pleiotropic Variants: Results from the PAGE Study

    PubMed Central

    Carty, Cara L.; Bhattacharjee, Samsiddhi; Haessler, Jeff; Cheng, Iona; Hindorff, Lucia A.; Aroda, Vanita; Carlson, Christopher S.; Hsu, Chun-Nan; Wilkens, Lynne; Liu, Simin; Selvin, Elizabeth; Jackson, Rebecca; North, Kari E.; Peters, Ulrike; Pankow, James S.; Chatterjee, Nilanjan; Kooperberg, Charles

    2014-01-01

    Background Metabolic syndrome (MetS) refers to the clustering of cardio-metabolic risk factors including dyslipidemia, central adiposity, hypertension and hyperglycemia in individuals. Identification of pleiotropic genetic factors associated with MetS traits may shed light on key pathways or mediators underlying MetS. Methods and Results Using the Metabochip array in 15,148 African Americans (AA) from the PAGE Study, we identify susceptibility loci and investigate pleiotropy among genetic variants using a subset-based meta-analysis method, ASsociation-analysis-based-on-subSETs (ASSET). Unlike conventional models which lack power when associations for MetS components are null or have opposite effects, ASSET uses one-sided tests to detect positive and negative associations for components separately and combines tests accounting for correlations among components. With ASSET, we identify 27 SNPs in 1 glucose and 4 lipids loci (TCF7L2, LPL, APOA5, CETP, LPL, APOC1/APOE/TOMM40) significantly associated with MetS components overall, all P< 2.5e-7, the Bonferroni adjusted P-value. Three loci replicate in a Hispanic population, n=5172. A novel AA-specific variant, rs12721054/APOC1, and rs10096633/LPL are associated with ≥3 MetS components. We find additional evidence of pleiotropy for APOE, TOMM40, TCF7L2 and CETP variants, many with opposing effects; e.g. the same rs7901695/TCF7L2 allele is associated with increased odds of high glucose and decreased odds of central adiposity. Conclusions We highlight a method to increase power in large-scale genomic association analyses, and report a novel variant associated with all MetS components in AA. We also identify pleiotropic associations that may be clinically useful in patient risk profiling and for informing translational research of potential gene targets and medications. PMID:25023634

  20. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors

    PubMed Central

    Schütte, Moritz; Risch, Thomas; Abdavi-Azar, Nilofar; Boehnke, Karsten; Schumacher, Dirk; Keil, Marlen; Yildiriman, Reha; Jandrasits, Christine; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Worth, Catherine L.; Schweiger, Caroline; Liebs, Sandra; Lange, Martin; Warnatz, Hans- Jörg; Butcher, Lee M.; Barrett, James E.; Sultan, Marc; Wierling, Christoph; Golob-Schwarzl, Nicole; Lax, Sigurd; Uranitsch, Stefan; Becker, Michael; Welte, Yvonne; Regan, Joseph Lewis; Silvestrov, Maxine; Kehler, Inge; Fusi, Alberto; Kessler, Thomas; Herwig, Ralf; Landegren, Ulf; Wienke, Dirk; Nilsson, Mats; Velasco, Juan A.; Garin-Chesa, Pilar; Reinhard, Christoph; Beck, Stephan; Schäfer, Reinhold; Regenbrecht, Christian R. A.; Henderson, David; Lange, Bodo; Haybaeck, Johannes; Keilholz, Ulrich; Hoffmann, Jens; Lehrach, Hans; Yaspo, Marie-Laure

    2017-01-01

    Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab. PMID:28186126

  1. Is Increased Intracellular Calcium in Red Blood Cells a Common Component in the Molecular Mechanism Causing Anemia?

    PubMed Central

    Hertz, Laura; Huisjes, Rick; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Makhro, Asya; Danielczok, Jens G.; Egee, Stephane; del Mar Mañú-Pereira, Maria; van Wijk, Richard; Vives Corrons, Joan-Lluis; Bogdanova, Anna; Kaestner, Lars

    2017-01-01

    For many hereditary disorders, although the underlying genetic mutation may be known, the molecular mechanism leading to hemolytic anemia is still unclear and needs further investigation. Previous studies revealed an increased intracellular Ca2+ in red blood cells (RBCs) from patients with sickle cell disease, thalassemia, or Gardos channelopathy. Therefore we analyzed RBCs' Ca2+ content from 35 patients with different types of anemia (16 patients with hereditary spherocytosis, 11 patients with hereditary xerocytosis, 5 patients with enzymopathies, and 3 patients with hemolytic anemia of unknown cause). Intracellular Ca2+ in RBCs was measured by fluorescence microscopy using the fluorescent Ca2+ indicator Fluo-4 and subsequent single cell analysis. We found that in RBCs from patients with hereditary spherocytosis and hereditary xerocytosis the intracellular Ca2+ levels were significantly increased compared to healthy control samples. For enzymopathies and hemolytic anemia of unknown cause the intracellular Ca2+ levels in RBCs were not significantly different. These results lead us to the hypothesis that increased Ca2+ levels in RBCs are a shared component in the mechanism causing an accelerated clearance of RBCs from the blood stream in channelopathies such as hereditary xerocytosis and in diseases involving defects of cytoskeletal components like hereditary spherocytosis. Future drug developments should benefit from targeting Ca2+ entry mediating molecular players leading to better therapies for patients. PMID:28932200

  2. Molecular defects identified by whole exome sequencing in a child with Fanconi anemia.

    PubMed

    Zheng, Zhaojing; Geng, Juan; Yao, Ru-En; Li, Caihua; Ying, Daming; Shen, Yongnian; Ying, Lei; Yu, Yongguo; Fu, Qihua

    2013-11-10

    Fanconi anemia is a rare genetic disease characterized by bone marrow failure, multiple congenital malformations, and an increased susceptibility to malignancy. At least 15 genes have been identified that are involved in the pathogenesis of Fanconi anemia. However, it is still a challenge to assign the complementation group and to characterize the molecular defects in patients with Fanconi anemia. In the current study, whole exome sequencing was used to identify the affected gene(s) in a boy with Fanconi anemia. A recurring, non-synonymous mutation was found (c.3971C>T, p.P1324L) as well as a novel frameshift mutation (c.989_995del, p.H330LfsX2) in FANCA gene. Our results indicate that whole exome sequencing may be useful in clinical settings for rapid identification of disease-causing mutations in rare genetic disorders such as Fanconi anemia. © 2013 Elsevier B.V. All rights reserved.

  3. Identification of the Molecular Clockwork of the Oyster Crassostrea gigas

    PubMed Central

    Perrigault, Mickael; Tran, Damien

    2017-01-01

    Molecular clock system constitutes the origin of biological rhythms that allow organisms to anticipate cyclic environmental changes and adapt their behavior and physiology. Components of the molecular clock are largely conserved across a broad range of species but appreciable diversity in clock structure and function is also present especially in invertebrates. The present work aimed at identify and characterize molecular clockwork components in relationship with the monitoring of valve activity behavior in the oyster Crassostrea gigas. Results provided the characterization of most of canonical clock gene including clock, bmal/cycle, period, timeless, vertebrate-type cry, rev-erb, ror as well as other members of the cryptochrome/photolyase family (plant-like cry, 6–4 photolyase). Analyses of transcriptional variations of clock candidates in oysters exposed to light / dark regime and to constant darkness led to the generation of a putative and original clockwork model in C. gigas, intermediate of described systems in vertebrates and insects. This study is the first characterization of a mollusk clockwork. It constitutes essential bases to understand interactions of the different components of the molecular clock in C. gigas as well as the global mechanisms associated to the generation and the synchronization of biological rhythms in oysters. PMID:28072861

  4. Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors.

    PubMed

    Lauria, Antonino; Ippolito, Mario; Almerico, Anna Maria

    2009-10-01

    Inhibiting a protein that regulates multiple signal transduction pathways in cancer cells is an attractive goal for cancer therapy. Heat shock protein 90 (Hsp90) is one of the most promising molecular targets for such an approach. In fact, Hsp90 is a ubiquitous molecular chaperone protein that is involved in folding, activating and assembling of many key mediators of signal transduction, cellular growth, differentiation, stress-response and apoptothic pathways. With the aim to analyze which molecular descriptors have the higher importance in the binding interactions of these classes, we first performed molecular docking experiments on the 187 Hsp90 inhibitors included in the BindingDB, a public database of measured binding affinities. Further, for each frozen conformation obtained from the docking, a set of 250 molecular descriptors was calculated, and the resulting Structure/Descriptors matrix was submitted to Principal Component Analysis. From the factor scores it emerged a good clusterization among similar compounds both in terms of structural class and activity spectrum, while examination of the loadings of the first two factors also allowed to study the classes of descriptors which mainly contribute to each one.

  5. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling.

    PubMed

    Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Steiner-Haldenstätt, Sabine; Pohl, Esther; Li, Yun; Milz, Esther; Martin, Marcel; Thiele, Holger; Altmüller, Janine; Alanay, Yasemin; Kayserili, Hülya; Klein-Hitpass, Ludger; Böhringer, Stefan; Wollstein, Andreas; Albrecht, Beate; Boduroglu, Koray; Caliebe, Almuth; Chrzanowska, Krystyna; Cogulu, Ozgur; Cristofoli, Francesca; Czeschik, Johanna Christina; Devriendt, Koenraad; Dotti, Maria Teresa; Elcioglu, Nursel; Gener, Blanca; Goecke, Timm O; Krajewska-Walasek, Malgorzata; Guillén-Navarro, Encarnación; Hayek, Joussef; Houge, Gunnar; Kilic, Esra; Simsek-Kiper, Pelin Özlem; López-González, Vanesa; Kuechler, Alma; Lyonnet, Stanislas; Mari, Francesca; Marozza, Annabella; Mathieu Dramard, Michèle; Mikat, Barbara; Morin, Gilles; Morice-Picard, Fanny; Ozkinay, Ferda; Rauch, Anita; Renieri, Alessandra; Tinschert, Sigrid; Utine, G Eda; Vilain, Catheline; Vivarelli, Rossella; Zweier, Christiane; Nürnberg, Peter; Rahmann, Sven; Vermeesch, Joris; Lüdecke, Hermann-Josef; Zeschnigk, Michael; Wollnik, Bernd

    2013-12-20

    Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.

  6. A molecular dynamics study of components of the ginger (Zingiber officinale) extract inside human acetylcholinesterase: implications for Alzheimer disease.

    PubMed

    Cuya, Teobaldo; Baptista, Leonardo; Celmar Costa França, Tanos

    2017-11-23

    Components of ginger (Zingiber officinale) extracts have been described as potential new drug candidates against Alzheimer disease (AD), able to interact with several molecular targets related to the AD treatment. However, there are very few theoretical studies in the literature on the possible mechanisms of action by which these compounds can work as potential anti-AD drugs. For this reason, we performed here docking, molecular dynamic simulations and mmpbsa calculations on four components of ginger extracts former reported as active inhibitors of human acetylcholinesterase (HssAChE), and compared our results to the known HssAChE inhibitor and commercial drug in use against AD, donepezil (DNP). Our findings points to two among the compounds studied: (E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-on and 1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3- ethoxyphenyl) heptane-3,5-diyl diacetate, as promising new HssAChE inhibitors that could be as effective as DNP. We also mapped the binding of the studied compounds in the different binding pockets inside HssAChE and established the preferred interactions to be favored in the design of new and more efficient inhibitors.

  7. Modeling complex and multi-component food systems in molecular dynamics simulations on the example of chocolate conching.

    PubMed

    Greiner, Maximilian; Sonnleitner, Bettina; Mailänder, Markus; Briesen, Heiko

    2014-02-01

    Additional benefits of foods are an increasing factor in the consumer's purchase. To produce foods with the properties the consumer demands, understanding the micro- and nanostructure is becoming more important in food research today. We present molecular dynamics (MD) simulations as a tool to study complex and multi-component food systems on the example of chocolate conching. The process of conching is chosen because of the interesting challenges it provides: the components (fats, emulsifiers and carbohydrates) contain diverse functional groups, are naturally fluctuating in their chemical composition, and have a high number of internal degrees of freedom. Further, slow diffusion in the non-aqueous medium is expected. All of these challenges are typical to food systems in general. Simulation results show the suitability of present force fields to correctly model the liquid and crystal density of cocoa butter and sucrose, respectively. Amphiphilic properties of emulsifiers are observed by micelle formation in water. For non-aqueous media, pulling simulations reveal high energy barriers for motion in the viscous cocoa butter. The work for detachment of an emulsifier from the sucrose crystal is calculated and matched with detachment of the head and tail groups separately. Hydrogen bonding is shown to be the dominant interaction between the emulsifier and the crystal surface. Thus, MD simulations are suited to model the interaction between the emulsifier and sugar crystal interface in non-aqueous media, revealing detailed information about the structuring and interactions on a molecular level. With interaction parameters being available for a wide variety of chemical groups, MD simulations are a valuable tool to understand complex and multi-component food systems in general. MD simulations provide a substantial benefit to researchers to verify their hypothesis in dynamic simulations with an atomistic resolution. Rapid rise of computational resources successively

  8. Comparative analyses identify molecular signature of MRI-classified SVZ-associated glioblastoma

    PubMed Central

    Lin, Chin-Hsing Annie; Rhodes, Christopher T.; Lin, ChenWei; Phillips, Joanna J.; Berger, Mitchel S.

    2017-01-01

    ABSTRACT Glioblastoma (GBM) is a highly aggressive brain cancer with limited therapeutic options. While efforts to identify genes responsible for GBM have revealed mutations and aberrant gene expression associated with distinct types of GBM, patients with GBM are often diagnosed and classified based on MRI features. Therefore, we seek to identify molecular representatives in parallel with MRI classification for group I and group II primary GBM associated with the subventricular zone (SVZ). As group I and II GBM contain stem-like signature, we compared gene expression profiles between these 2 groups of primary GBM and endogenous neural stem progenitor cells to reveal dysregulation of cell cycle, chromatin status, cellular morphogenesis, and signaling pathways in these 2 types of MRI-classified GBM. In the absence of IDH mutation, several genes associated with metabolism are differentially expressed in these subtypes of primary GBM, implicating metabolic reprogramming occurs in tumor microenvironment. Furthermore, histone lysine methyltransferase EZH2 was upregulated while histone lysine demethylases KDM2 and KDM4 were downregulated in both group I and II primary GBM. Lastly, we identified 9 common genes across large data sets of gene expression profiles among MRI-classified group I/II GBM, a large cohort of GBM subtypes from TCGA, and glioma stem cells by unsupervised clustering comparison. These commonly upregulated genes have known functions in cell cycle, centromere assembly, chromosome segregation, and mitotic progression. Our findings highlight altered expression of genes important in chromosome integrity across all GBM, suggesting a common mechanism of disrupted fidelity of chromosome structure in GBM. PMID:28278055

  9. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    PubMed

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  10. Controlled release of molecular components of dendrimer/bioactive complexes

    DOEpatents

    Segalman, Daniel J.; Wallace, J. Shield

    1998-01-01

    A method for releasing molecules (guest molecules) from the matrix formed by the structure of another molecule (host molecule) in a controllable manner has been invented. This method has many applications in science and industry. In addition, applications based on such molecular systems may revolutionize significant areas of medicine, in particular the treatment of cancer and of viral infection. Similar effects can also be obtained by controlled fragmentation of a source molecule, where the molecular fragments form the active principle.

  11. Controlled release of molecular components of dendrimer/bioactive complexes

    DOEpatents

    Segalman, D.J.; Wallace, J.S.

    1998-08-18

    A method for releasing molecules (guest molecules) from the matrix formed by the structure of another molecule (host molecule) in a controllable manner has been invented. This method has many applications in science and industry. In addition, applications based on such molecular systems may revolutionize significant areas of medicine, in particular the treatment of cancer and of viral infection. Similar effects can also be obtained by controlled fragmentation of a source molecule, where the molecular fragments form the active principle. 13 figs.

  12. The measurement of molecular fragments from DNA components using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Akamatsu, K.; Yokoya, A.

    2003-03-01

    Photon-stimulated desorption of positive ions from thin film DNA components, 2-deoxy- D-ribose, thymine and guanine, were investigated in the oxygen K-edge excitation region. H +, CH 2+, C 2H 2+, CHO +, C 3H 3+ and C 2HO + were desorbed mainly from the 2-deoxy- D-ribose thin film following oxygen K-edge excitation. The ion yields were obtained as a function of the photon energy. Each spectrum showed a prominent peak structure coinciding with the O 1 s→ σ∗(C-O) excitation energy. These results indicate that the observed ions are produced not only by direct photodecomposition but also by the impact of secondary electrons that the core excitation generates. On the other hand, H + has been observed by irradiation of thymine and guanine thin films, while only insignificant amounts of the other ions were observed. It is shown that the core excitation more drastically degraded the 2-deoxy- D-ribose molecule into small fragments than is the case with the nucleobases. The sugar moiety in DNA is likely to be one of the nor fragile molecular sites, conducive to a single-strand DNA break.

  13. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy

    PubMed Central

    2017-01-01

    Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package. PMID:28100584

  14. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    PubMed

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  15. IDENTIFYING THE SIGNATURE OF THE NATURAL ATTENUATION IN THE MICROBIAL ECOLOGY OF HYDROCARBON CONTAMINATED GROUNDWATER USING MOLECULAR METHODS AND &LDQUO;BUG TRAPS&RDQUO;

    EPA Science Inventory

    These related projects have combined biological molecular methods and a novel passive sampling system (bio-trap) to produce a technology that will allow the active component of any contaminated groundwater microbial community to be investigated. Conventional sampling methods c...

  16. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples.

    PubMed

    Oblinsky, Daniel G; Vanschouwen, Bryan M B; Gordon, Heather L; Rothstein, Stuart M

    2009-12-14

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the beta1 domain of protein G.

  17. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples

    NASA Astrophysics Data System (ADS)

    Oblinsky, Daniel G.; VanSchouwen, Bryan M. B.; Gordon, Heather L.; Rothstein, Stuart M.

    2009-12-01

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the β1 domain of protein G.

  18. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci

    PubMed Central

    Ju, Jin Hyun; Crystal, Ronald G.

    2017-01-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In

  19. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.

    PubMed

    Ju, Jin Hyun; Shenoy, Sushila A; Crystal, Ronald G; Mezey, Jason G

    2017-05-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In

  20. MoCha: Molecular Characterization of Unknown Pathways.

    PubMed

    Lobo, Daniel; Hammelman, Jennifer; Levin, Michael

    2016-04-01

    Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.

  1. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    PubMed

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Identifying training and informational components to develop a psoriasis self- management application

    PubMed Central

    Safdari, Reza; Firoz, Alireza; Masoorian, Hoorie

    2017-01-01

    Background: Psoriasis is a complex disease with lifelong emotional and social consequences for affected patients. It also reduces the patients’ quality of life and requires a long-term management. Therefore, in addition to appropriate treatment of the disease, selfmanagement strategies to improve patient health and quality of life are essential. On the other hand, smartphone-based applications alter the way people interact with health care and public health systems. This study aimed at identifying training and informational components to develop a psoriasis self- management application. Methods: This descriptive-analytic study was conducted on 100 patients with psoriasis and 26 dermatologists who were selected randomly, using Morgan table. The data were collected using a researcher- made questionnaire, which included demographic and clinical information, lifestyle training and management, and application capabilities in psoriasis self-management. A group of experts and a test-retest method were used to confirm the validity and reliability of the questionnaire, respectively. Results: The mean scores for demographic and clinical information, lifestyle training and management, and application capabilities in self-management were 80.55%, 85.7%, and 88.8% from the patients’ perspective, and 83.7%, 71%, and 75% from the specialists’ viewpoint, respectively. Conclusion: Determining self-management components by patients as persons who are suffering from the disease and physicians as specialists in the field will be helpful in efficient psoriasis self-management. It is more likely that self-reliant patients, who are aware of the benefits and risks of their disease management application, will follow their treatment plan and pursue the management of their disease more seriously PMID:29445696

  3. Identifying the essential components of cultural competence in a Chinese nursing context: A qualitative study.

    PubMed

    Cai, Duanying; Kunaviktikul, Wipada; Klunklin, Areewan; Sripusanapan, Acharaporn; Avant, Patricia Kay

    2017-06-01

    This qualitative study using semi-structured interviews was conducted to identify the essential components of cultural competence from the perspective of Chinese nurses. A purposive sample of 20 nurse experts, including senior clinical nurses, nurse administrators, and educators in transcultural nursing, was recruited. Using thematic analysis, four themes: awareness, attitudes, knowledge, and skills, with two subthemes for each, were identified. Notably, culture in China was understood in a broad way. The participants' responses focused upon demographic attributes, individuality, and efforts to facilitate quality care rather than on the cultural differences of ethnicity and race and developing the capacity to change discrimination or health disparities. A greater understanding of cultural competence in the Chinese nursing context, in which a dominant cultural group exists, is essential to facilitate the provision of culturally competent care to diverse populations. © 2016 John Wiley & Sons Australia, Ltd.

  4. In silico molecular comparisons of C. elegans and mammalian pharmacology identify distinct targets that regulate feeding.

    PubMed

    Lemieux, George A; Keiser, Michael J; Sassano, Maria F; Laggner, Christian; Mayer, Fahima; Bainton, Roland J; Werb, Zena; Roth, Bryan L; Shoichet, Brian K; Ashrafi, Kaveh

    2013-11-01

    Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.

  5. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  7. Identifying molecular features for prostate cancer with Gleason 7 based on microarray gene expression profiles.

    PubMed

    Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana

    2011-01-01

    Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.

  8. Molecular Characterization of Hap Complex Components Responsible for Methanol-Inducible Gene Expression in the Methylotrophic Yeast Candida boidinii

    PubMed Central

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu

    2015-01-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts. PMID:25595445

  9. Application of computational methods to the design and characterisation of porous molecular materials.

    PubMed

    Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J

    2017-06-06

    Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.

  10. Molecular mechanisms of two-component system RhpRS regulating type III secretion system in Pseudomonas syringae

    PubMed Central

    Deng, Xin; Liang, Haihua; Chen, Kai; He, Chuan; Lan, Lefu; Tang, Xiaoyan

    2014-01-01

    Pseudomonas syringae uses the two-component system RhpRS to regulate the expression of type III secretion system (T3SS) genes and bacterial virulence. However, the molecular mechanisms and the regulons of RhpRS have yet to be fully elucidated. Here, we show that RhpS functions as a kinase and a phosphatase on RhpR and as an autokinase upon itself. RhpR is phosphorylated by the small phosphodonor acetyl phosphate. A specific RhpR-binding site containing the inverted repeat (IR) motif GTATC-N6-GATAC, was mapped to its own promoter by a DNase I footprint analysis. Electrophoretic mobility shift assay indicated that P-RhpR has a higher binding affinity to the IR motif than RhpR. To identify additional RhpR targets in P. syringae, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) and detected 167 enriched loci including the hrpR promoter, suggesting the direct regulation of T3SS cascade genes by RhpR. A genome-wide microarray analysis showed that, in addition to the T3SS cascade genes, RhpR differentially regulates a large set of genes with various functions in response to different growth conditions. Together, these results suggested that RhpRS is a global regulator that allows P. syringae to sense and respond to environmental changes by coordinating T3SS expression and many other biological processes. PMID:25249629

  11. Genomic Characterization of Vulvar (Pre)cancers Identifies Distinct Molecular Subtypes with Prognostic Significance.

    PubMed

    Nooij, Linda S; Ter Haar, Natalja T; Ruano, Dina; Rakislova, Natalia; van Wezel, Tom; Smit, Vincent T H B M; Trimbos, Baptist J B M Z; Ordi, Jaume; van Poelgeest, Mariette I E; Bosse, Tjalling

    2017-11-15

    Purpose: Vulvar cancer (VC) can be subclassified by human papillomavirus (HPV) status. HPV-negative VCs frequently harbor TP53 mutations; however, in-depth analysis of other potential molecular genetic alterations is lacking. We comprehensively assessed somatic mutations in a large series of vulvar (pre)cancers. Experimental Design: We performed targeted next-generation sequencing (17 genes), p53 immunohistochemistry and HPV testing on 36 VC and 82 precursors (sequencing cohort). Subsequently, the prognostic significance of the three subtypes identified in the sequencing cohort was assessed in a series of 236 VC patients (follow-up cohort). Results: Frequent recurrent mutations were identified in HPV-negative vulvar (pre)cancers in TP53 (42% and 68%), NOTCH1 (28% and 41%), and HRAS (20% and 31%). Mutation frequency in HPV-positive vulvar (pre)cancers was significantly lower ( P = 0.001). Furthermore, a substantial subset of the HPV-negative precursors (35/60, 58.3%) and VC (10/29, 34.5%) were TP53 wild-type (wt), suggesting a third, not-previously described, molecular subtype. Clinical outcomes in the three different subtypes (HPV + , HPV - /p53wt, HPV - /p53abn) were evaluated in a follow-up cohort consisting of 236 VC patients. Local recurrence rate was 5.3% for HPV + , 16.3% for HPV - /p53wt and 22.6% for HPV - /p53abn tumors ( P = 0.044). HPV positivity remained an independent prognostic factor for favorable outcome in the multivariable analysis ( P = 0.020). Conclusions: HPV - and HPV + vulvar (pre)cancers display striking differences in somatic mutation patterns. HPV - /p53wt VC appear to be a distinct clinicopathologic subgroup with frequent NOTCH1 mutations. HPV + VC have a significantly lower local recurrence rate, independent of clinicopathological variables, opening opportunities for reducing overtreatment in VC. Clin Cancer Res; 23(22); 6781-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma.

    PubMed

    Tan, Patrick; Yeoh, Khay-Guan

    2015-10-01

    Gastric cancer (GC) is globally the fifth most common cancer and third leading cause of cancer death. A complex disease arising from the interaction of environmental and host-associated factors, key contributors to GC's high mortality include its silent nature, late clinical presentation, and underlying biological and genetic heterogeneity. Achieving a detailed molecular understanding of the various genomic aberrations associated with GC will be critical to improving patient outcomes. The recent years has seen considerable progress in deciphering the genomic landscape of GC, identifying new molecular components such as ARID1A and RHOA, cellular pathways, and tissue populations associated with gastric malignancy and progression. The Cancer Genome Atlas (TCGA) project is a landmark in the molecular characterization of GC. Key challenges for the future will involve the translation of these molecular findings to clinical utility, by enabling novel strategies for early GC detection, and precision therapies for individual GC patients. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa

    PubMed Central

    Wong, Vanessa K.; Holt, Kathryn E.; Okoro, Chinyere; Baker, Stephen; Pickard, Derek J.; Marks, Florian; Page, Andrew J.; Olanipekun, Grace; Munir, Huda; Alter, Roxanne; Fey, Paul D.; Feasey, Nicholas A.; Weill, Francois-Xavier; Le Hello, Simon; Hart, Peter J.; Kariuki, Samuel; Breiman, Robert F.; Gordon, Melita A.; Heyderman, Robert S.; Jacobs, Jan; Lunguya, Octavie; Msefula, Chisomo; MacLennan, Calman A.; Keddy, Karen H.; Smith, Anthony M.; Onsare, Robert S.; De Pinna, Elizabeth; Nair, Satheesh; Amos, Ben; Dougan, Gordon; Obaro, Stephen

    2016-01-01

    Background The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children. Methods A total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome sequenced, and the resulting data was used to place these Nigerian isolates into a worldwide context based on their phylogeny and carriage of molecular determinants of antibiotic resistance. Results Several distinct S. Typhi genotypes were identified in Nigeria that were related to other clusters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expanding S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances in Asia and in east, central and southern Africa, was not detected in this study. However, antimicrobial resistance was common amongst the Nigerian isolates and was associated with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi. Conclusions These data indicate that typhoid in Nigeria was established through multiple independent introductions into the country, with evidence of regional spread. MDR typhoid appears to be evolving independently of the haplotype H58 found in other typhoid endemic countries. This study highlights an urgent need for routine surveillance to monitor the epidemiology of typhoid and evolution of antimicrobial resistance within the bacterial population as a means to facilitate public health interventions to reduce the substantial morbidity and mortality of typhoid. PMID:27657909

  14. Identifying knowledge gaps between practice and research for implementation components of sustainable interventions to improve the working environment - A rapid review.

    PubMed

    Rasmussen, Charlotte Diana Nørregaard; Højberg, Helene; Bengtsen, Elizabeth; Jørgensen, Marie Birk

    2018-02-01

    In a recent study, we involved all relevant stakeholders to identify practice-based implementation components for successful implementation and sustainability in work environment interventions. To understand possible knowledge gaps between evidence and practice, the aim of this paper is to investigate if effectiveness studies of the 11 practice-based implementation components can be identified in existing scientific literature. PubMed/MEDLINE, PsycINFO, and Web of Science were searched for relevant studies. After screening, 38 articles met the inclusion criteria. Since some of the studies describe more than one practice-based implementation concept a total of 125 quality criteria assessments were made. The overall result is that 10 of the 11 practice-based implementation components can be found in the scientific literature, but the evaluation of them is poor. From this review it is clear that there are knowledge gaps between evidence and practice with respect to the effectiveness of implementation concepts. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Component-resolved diagnosis in hymenoptera allergy.

    PubMed

    Antolín-Amérigo, D; Ruiz-León, B; Boni, E; Alfaya-Arias, T; Álvarez-Mon, M; Barbarroja-Escudero, J; González-de-Olano, D; Moreno-Aguilar, C; Rodríguez-Rodríguez, M; Sánchez-González, M J; Sánchez-Morillas, L; Vega-Castro, A

    Component-resolved diagnosis based on the use of well-defined, properly characterised and purified natural and recombinant allergens constitutes a new approach in the diagnosis of venom allergy. Prospective readers may benefit from an up-to-date review on the allergens. The best characterised venom is that of Apis mellifera, whose main allergens are phospholipase A2 (Api m1), hyaluronidase (Api m2) and melittin (Api m4). Additionally, in recent years, new allergens of Vespula vulgaris have been identified and include phospholipase A1 (Ves v1), hyaluronidase (Ves v2) and antigen 5 (Ves v5). Polistes species are becoming an increasing cause of allergy in Europe, although only few allergens have been identified in this venom. In this review, we evaluate the current knowledge about molecular diagnosis in hymenoptera venom allergy. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  16. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek

    2015-06-01

    We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).

  17. Identifying and Assessing Creativity as a Component of Giftedness

    ERIC Educational Resources Information Center

    Kaufman, James C.; Plucker, Jonathan A.; Russell, Christina M.

    2012-01-01

    Most theories of giftedness include creativity as a central component. Creativity assessment has a key role, therefore, in measuring giftedness. This article reviews the state of the creativity assessment, from divergent thinking tests (including the Torrance Tests of Creative Thinking) to the consensual assessment technique to rating scales and…

  18. Clustering the Orion B giant molecular cloud based on its molecular emission

    PubMed Central

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2017-01-01

    Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the

  19. Clustering the Orion B giant molecular cloud based on its molecular emission.

    PubMed

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also

  20. Plant synthetic biology for molecular engineering of signalling and development.

    PubMed

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  1. Drosophila histone locus bodies form by hierarchical recruitment of components

    PubMed Central

    White, Anne E.; Burch, Brandon D.; Yang, Xiao-cui; Gasdaska, Pamela Y.; Dominski, Zbigniew; Marzluff, William F.

    2011-01-01

    Nuclear bodies are protein- and RNA-containing structures that participate in a wide range of processes critical to genome function. Molecular self-organization is thought to drive nuclear body formation, but whether this occurs stochastically or via an ordered, hierarchical process is not fully understood. We addressed this question using RNAi and proteomic approaches in Drosophila melanogaster to identify and characterize novel components of the histone locus body (HLB), a nuclear body involved in the expression of replication-dependent histone genes. We identified the transcription elongation factor suppressor of Ty 6 (Spt6) and a homologue of mammalian nuclear protein of the ataxia telangiectasia–mutated locus that is encoded by the homeotic gene multisex combs (mxc) as novel HLB components. By combining genetic manipulation in both cell culture and embryos with cytological observations of Mxc, Spt6, and the known HLB components, FLICE-associated huge protein, Mute, U7 small nuclear ribonucleoprotein, and MPM-2 phosphoepitope, we demonstrated sequential recruitment and hierarchical dependency for localization of factors to HLBs during development, suggesting that ordered assembly can play a role in nuclear body formation. PMID:21576393

  2. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Li, Xin; Do, Changwoo; Kim, Tae-Hwan; Shew, Chwen-Yang; Liu, Yun; Yang, Jun; Hong, Kunlun; Porcar, Lionel; Chen, Chun-Yu; Liu, Emily L.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren

    2011-10-01

    An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  3. Quantification of vitamin E and gamma-oryzanol components in rice germ and bran.

    PubMed

    Yu, Shanggong; Nehus, Zachary T; Badger, Thomas M; Fang, Nianbai

    2007-09-05

    Rice bran is a rich natural source of vitamin E and gamma-oryzanol, which have been extensively studied and reported to possess important health-promoting properties. However, commercial rice bran is a mixture of rice bran and germ, and profiles of vitamin E and gamma-oryzanol components in these two different materials are less well-studied. In the current study, vitamin E and gamma-oryzanol components in rice bran and germ were analyzed by liquid chromatography/mass spectrometry/mass spectrometry. The components were identified by electrospray ionization mass spectrometry (ESI-MS) with both positive- and negative-ion modes. Both deprotonated molecular ion [M - H](-) and protonated molecular ion [M + H](+) found as the base peaks in spectra of vitamin E components made ESI-MS a valuable analytic method in detecting vitamin E compounds, especially when they were at very low levels in samples. Ultraviolet absorption was used for quantification of vitamin E and gamma-oryzanol components. While the level of vitamin E in rice germ was 5 times greater than in rice bran, the level of gamma-oryzanol in rice germ was 5 times lower than in rice bran. Also, the major vitamin E component was alpha-tocopherol in rice germ and gamma-tocotrienol in rice bran. These data suggest that rice bran and germ have significantly different profiles of vitamin E and gamma-oryzanol components. The method enables rapid and direct on-line identification and quantification of the vitamin E and gamma-oryzanol components in rice bran and germ.

  4. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis.

    PubMed

    Ma, Yibao; Zhao, Yong; Zhao, Ruiming; Zhang, Weiping; He, Yawen; Wu, Yingliang; Cao, Zhijian; Guo, Lin; Li, Wenxin

    2010-07-01

    Scorpion venoms contain a vast untapped reservoir of natural products, which have the potential for medicinal value in drug discovery. In this study, toxin components from the scorpion Heterometrus petersii venom were evaluated by transcriptome and proteome analysis.Ten known families of venom peptides and proteins were identified, which include: two families of potassium channel toxins, four families of antimicrobial and cytolytic peptides,and one family from each of the calcium channel toxins, La1-like peptides, phospholipase A2,and the serine proteases. In addition, we also identified 12 atypical families, which include the acid phosphatases, diuretic peptides, and ten orphan families. From the data presented here, the extreme diversity and convergence of toxic components in scorpion venom was uncovered. Our work demonstrates the power of combining transcriptomic and proteomic approaches in the study of animal venoms.

  5. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane.

    PubMed

    Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri

    2007-06-29

    Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.

  6. Identifying reliable independent components via split-half comparisons

    PubMed Central

    Groppe, David M.; Makeig, Scott; Kutas, Marta

    2011-01-01

    Independent component analysis (ICA) is a family of unsupervised learning algorithms that have proven useful for the analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG). ICA decomposes an EEG/MEG data set into a basis of maximally temporally independent components (ICs) that are learned from the data. As with any statistic, a concern with using ICA is the degree to which the estimated ICs are reliable. An IC may not be reliable if ICA was trained on insufficient data, if ICA training was stopped prematurely or at a local minimum (for some algorithms), or if multiple global minima were present. Consequently, evidence of ICA reliability is critical for the credibility of ICA results. In this paper, we present a new algorithm for assessing the reliability of ICs based on applying ICA separately to split-halves of a data set. This algorithm improves upon existing methods in that it considers both IC scalp topographies and activations, uses a probabilistically interpretable threshold for accepting ICs as reliable, and requires applying ICA only three times per data set. As evidence of the method’s validity, we show that the method can perform comparably to more time intensive bootstrap resampling and depends in a reasonable manner on the amount of training data. Finally, using the method we illustrate the importance of checking the reliability of ICs by demonstrating that IC reliability is dramatically increased by removing the mean EEG at each channel for each epoch of data rather than the mean EEG in a prestimulus baseline. PMID:19162199

  7. Formalizing the definition of meta-analysis in Molecular Ecology.

    PubMed

    ArchMiller, Althea A; Bauer, Eric F; Koch, Rebecca E; Wijayawardena, Bhagya K; Anil, Ammu; Kottwitz, Jack J; Munsterman, Amelia S; Wilson, Alan E

    2015-08-01

    Meta-analysis, the statistical synthesis of pertinent literature to develop evidence-based conclusions, is relatively new to the field of molecular ecology, with the first meta-analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta-analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta-analyses previously published in this journal. We also provide a brief overview of the many components required for meta-analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta-analysis. We performed a literature review to identify articles published as 'meta-analyses' in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta-analyses published in Molecular Ecology have the potential to set the standard for meta-analyses in other journals. We found that while many of these reviewed articles were strong meta-analyses, others failed to follow standard meta-analytical techniques. One of these unsatisfactory meta-analyses was in fact a secondary analysis. Other studies attempted meta-analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta-analysis. By drawing attention to the inconsistency of studies labelled as meta-analyses, we emphasize the importance of understanding the components of traditional meta-analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. © 2015 John Wiley & Sons Ltd.

  8. Major structural components in freshwater dissolved organic matter.

    PubMed

    Lam, Buuan; Baer, Andrew; Alaee, Mehran; Lefebvre, Brent; Moser, Arvin; Williams, Antony; Simpson, André J

    2007-12-15

    Dissolved organic matter (DOM) contains a complex array of chemical components that are intimately linked to many environmental processes, including the global carbon cycle, and the fate and transport of chemical pollutants. Despite its importance, fundamental aspects, such as the structural components in DOM remain elusive, due in part to the molecular complexity of the material. Here, we utilize multidimensional nuclear magnetic resonance spectroscopy to demonstrate the major structural components in Lake Ontario DOM. These include carboxyl-rich alicyclic molecules (CRAM), heteropolysaccharides, and aromatic compounds, which are consistent with components recently identified in marine dissolved organic matter. In addition, long-range proton-carbon correlations are obtained for DOM, which support the existence of material derived from linear terpenoids (MDLT). It is tentatively suggested that the bulk of freshwater dissolved organic matter is aliphatic in nature, with CRAM derived from cyclic terpenoids, and MDLT derived from linear terpenoids. This is in agreement with previous reports which indicate terpenoids as major precursors of DOM. At this time it is not clear in Lake Ontario whether these precursors are of terrestrial or aquatic origin or whether transformations proceed via biological and/ or photochemical processes.

  9. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

    PubMed Central

    Pamenter, Matthew E.; Powell, Frank L.

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896

  10. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols

    NASA Astrophysics Data System (ADS)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-08-01

    Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river

  11. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  12. Integrated Molecular Characterization of Testicular Germ Cell Tumors.

    PubMed

    Shen, Hui; Shih, Juliann; Hollern, Daniel P; Wang, Linghua; Bowlby, Reanne; Tickoo, Satish K; Thorsson, Vésteinn; Mungall, Andrew J; Newton, Yulia; Hegde, Apurva M; Armenia, Joshua; Sánchez-Vega, Francisco; Pluta, John; Pyle, Louise C; Mehra, Rohit; Reuter, Victor E; Godoy, Guilherme; Jones, Jeffrey; Shelley, Carl S; Feldman, Darren R; Vidal, Daniel O; Lessel, Davor; Kulis, Tomislav; Cárcano, Flavio M; Leraas, Kristen M; Lichtenberg, Tara M; Brooks, Denise; Cherniack, Andrew D; Cho, Juok; Heiman, David I; Kasaian, Katayoon; Liu, Minwei; Noble, Michael S; Xi, Liu; Zhang, Hailei; Zhou, Wanding; ZenKlusen, Jean C; Hutter, Carolyn M; Felau, Ina; Zhang, Jiashan; Schultz, Nikolaus; Getz, Gad; Meyerson, Matthew; Stuart, Joshua M; Akbani, Rehan; Wheeler, David A; Laird, Peter W; Nathanson, Katherine L; Cortessis, Victoria K; Hoadley, Katherine A

    2018-06-12

    We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significance-KIT, KRAS, and NRAS-exclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P < 0.05) in the CH 2 asymmetric to CH 3 asymmetric stretching band peak intensity ratios for the flaxseed. There were linear and quadratic effects ( P < 0.05) of the treatment time from 0, 20, 40 and 60 min on the ratios of the CH 2 asymmetric to CH 3 asymmetric stretching vibration intensity. Autoclaving had no significant effect ( P > 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study

  14. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    PubMed Central

    Taïbi, Khaled; del Campo, Antonio D.; Vilagrosa, Alberto; Bellés, José M.; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J.; López-Nicolás, José M.; Mulet, José M.

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis. Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas. PMID:28791030

  15. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers.

    PubMed

    Taïbi, Khaled; Del Campo, Antonio D; Vilagrosa, Alberto; Bellés, José M; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J; López-Nicolás, José M; Mulet, José M

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis . Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  16. Can Abdominal CT Imaging Help Accurately Identify a Dedifferentiated Component in a Well-Differentiated Liposarcoma?

    PubMed Central

    Bhosale, Priya; Wang, Jieqi; Varma, Datla G.K; Jensen, Corey; Patnana, Madhavi; Wei, Wei; Chauhan, Anil; Feig, Barry; Patel, Shreyaskumar; Somaiah, Neeta; Sagebiel, Tara

    2016-01-01

    Purpose To assess the ability of CT to differentiate an atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDLPS) from a WDLPS with a dedifferentiated component (DDLPS) within it. Materials and Methods Forty-nine untreated patients with abdominal atypical lipomatous tumors/well-differentiated liposarcomas who had undergone contrast-enhanced CT were identified using an institutional database. Three radiologists who were blinded to the pathology findings evaluated all the images independently to determine whether a dedifferentiated component was present within the WDLPS. The CT images were evaluated for fat content (≤25% or >25%); presence of ground-glass density, enhancing and/or necrotic nodules; presence of a capsule surrounding the mass; septations; and presence and pattern of calcifications. A multivariate logistic regression model with generalized estimating equations was used to correlate imaging features with pathology findings. Kappa statistics were calculated to assess agreement between the three radiologists. Results On the basis of pathological findings, 12 patients had been diagnosed with DDLPS within a WDLPS and 37 had been diagnosed with WDLPS. The presence of an enhancing or a centrally necrotic nodule within the atypical lipomatous tumor was associated with dedifferentiated liposarcoma (p = 0.02 and p = 0.0003, respectively). The three readers showed almost perfect agreement in overall diagnosis (kappa r = 0.83; 95% confidence-interval 0.67 to 0.99). Conclusion An enhancing or centrally necrotic nodule may be indicative of a dedifferentiated component in well-differentiated liposarcoma. Ground-glass density nodules may not be indicative of dedifferentiation. PMID:27454788

  17. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-01

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  18. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure.

    PubMed

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-17

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  19. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  20. A Molecular Code for Identity in the Vomeronasal System.

    PubMed

    Fu, Xiaoyan; Yan, Yuetian; Xu, Pei S; Geerlof-Vidavsky, Ilan; Chong, Wongi; Gross, Michael L; Holy, Timothy E

    2015-10-08

    In social interactions among mammals, individuals are recognized by olfactory cues, but identifying the key signals among thousands of compounds remains a major challenge. To address this need, we developed a new technique, component-activity matching (CAM), to select candidate ligands that "explain" patterns of bioactivity across diverse complex mixtures. Using mouse urine from eight different sexes and strains, we identified 23 components to explain firing rates in seven of eight functional classes of vomeronasal sensory neurons. Focusing on a class of neurons selective for females, we identified a novel family of vomeronasal ligands, steroid carboxylic acids. These ligands accounted for much of the neuronal activity of urine from some female strains, were necessary for normal levels of male investigatory behavior of female scents, and were sufficient to trigger mounting behavior. CAM represents the first step toward an exhaustive characterization of the molecular cues for natural behavior in a mammalian olfactory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Circadian signaling in Homarus americanus: Region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system.

    PubMed

    Christie, Andrew E; Yu, Andy; Pascual, Micah G; Roncalli, Vittoria; Cieslak, Matthew C; Warner, Amanda N; Lameyer, Tess J; Stanhope, Meredith E; Dickinson, Patsy S; Joe Hull, J

    2018-04-11

    Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of

  2. ATMOS: Simulating molecular spectra towards the remote detection of biosignature gases

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; Petkowski, Janusz; Seager, Sara

    2018-01-01

    The ability to identify molecules within spectral data is of importance for a variety of academic and industrial uses, in particular for the spectroscopic detection of life. A comprehensive analysis of any observational spectra requires information about the spectrum of each of its molecular components. However, knowledge of molecular spectra currently only exists for a few hundred molecules and, other than a handful of exceptions (e.g. water, NH3), most of their spectra are incomplete. Given the relatively low level of accuracy that observations often require, there is value in creating approximate models for the spectra of molecules, particularly for those about which we know very little or nothing at all. ATMOS (Approximate Theoretical MOlecular Spectra) can quickly provide spectral information for any given molecule, using a combination of experimental measurements, organic chemistry and quantum mechanics. ATMOS 1.0, presented here, can identify volatile molecules with significant spectral features in any given wavelength window within the infrared region and provide approximate spectra for thousands of gases.

  3. Identifying Candidate Chemical-Disease Linkages ...

    EPA Pesticide Factsheets

    Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment. Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment.

  4. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli

    PubMed Central

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-01-01

    Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli. PMID:23503680

  5. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    PubMed

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  6. Gas chromatography/mass spectrometry based component profiling and quality prediction for Japanese sake.

    PubMed

    Mimura, Natsuki; Isogai, Atsuko; Iwashita, Kazuhiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-10-01

    Sake is a Japanese traditional alcoholic beverage, which is produced by simultaneous saccharification and alcohol fermentation of polished and steamed rice by Aspergillus oryzae and Saccharomyces cerevisiae. About 300 compounds have been identified in sake, and the contribution of individual components to the sake flavor has been examined at the same time. However, only a few compounds could explain the characteristics alone and most of the attributes still remain unclear. The purpose of this study was to examine the relationship between the component profile and the attributes of sake. Gas chromatography coupled with mass spectrometry (GC/MS)-based non-targeted analysis was employed to obtain the low molecular weight component profile of Japanese sake including both nonvolatile and volatile compounds. Sake attributes and overall quality were assessed by analytical descriptive sensory test and the prediction model of the sensory score from the component profile was constructed by means of orthogonal projections to latent structures (OPLS) regression analysis. Our results showed that 12 sake attributes [ginjo-ka (aroma of premium ginjo sake), grassy/aldehydic odor, sweet aroma/caramel/burnt odor, sulfury odor, sour taste, umami, bitter taste, body, amakara (dryness), aftertaste, pungent/smoothness and appearance] and overall quality were accurately explained by component profiles. In addition, we were able to select statistically significant components according to variable importance on projection (VIP). Our methodology clarified the correlation between sake attribute and 200 low molecular components and presented the importance of each component thus, providing new insights to the flavor study of sake. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Trilinolein identified as a sex-specific component of tergal glands in alates of Coptotermes formosanus.

    PubMed

    Bland, John M; Park, Yong Ihl; Raina, Ashok K; Dickens, Joseph C; Hollister, Benedict

    2004-04-01

    Hexane extracts of the tergal glands from female alates of the Formosan subterranean termite Coptotermes formosanus were analyzed by high performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry with collision-induced dissociation. Double bond configuration was determined by chemical modifications with gas chromatography-mass spectrometry. A single component, identified as the triacylglycerol, trilinolein, was unique to the female tergal glands. This compound was not found in other areas of the female alate abdomen or in the corresponding area of male alates. Neither gland extract nor trilinolein caused a behavioral response from male alates. However, significant differences were found between males and females for responses from neurons within sensilla of the maxillary palps.

  8. Identifying apple surface defects using principal components analysis and artifical neural networks

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...

  9. Molecular dynamics simulations on networks of heparin and collagen.

    PubMed

    Kulke, Martin; Geist, Norman; Friedrichs, Wenke; Langel, Walter

    2017-06-01

    Synthetic scaffolds containing collagen (Type I) are of increasing interest for bone tissue engineering, especially for highly porous biomaterials in combination with glycosaminoglycans. In experiments the integration of heparin during the fibrillogenesis resulted in different types of collagen fibrils, but models for this aggregation on a molecular scale were only tentative. We conducted molecular dynamic simulations investigating the binding of heparin to collagen and the influence of the telopeptides during collagen aggregation. This aims at explaining experimental findings on a molecular level. Novel structures for N- and C-telopeptides were developed with the TIGER2 replica exchange algorithm and dihedral principle component analysis. We present an extended statistical analysis of the mainly electrostatic interaction between heparin and collagen and identify several binding sites. Finally, we propose a molecular mechanism for the influence of glycosaminoglycans on the morphology of collagen fibrils. Proteins 2017; 85:1119-1130. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Molecular marker to identify radiolarian species -toward establishment of paleo-environmental proxy-

    NASA Astrophysics Data System (ADS)

    Ishitani, Y.

    2017-12-01

    Marine fossilized unicellular plankton are known to have many genetically divergent species (biological species) in the single morphological species and these biological species show the species-specific environments much more precisely than that of morphological species. Among these plankton, Radiolaria are one of the best candidates for time- and environmental-indicators in the modern and past oceans, because radiolarians are the only group which represent entire water column from shallow to deep waters. However, the ecology and evolution of radiolarian were traditionally studied in paleontology and paleoceanography by morphological species. Even Radiolaria has a huge potential for novel proxy of wide and deep environments, there is no criterion to identify the biological species. The motivation for this study is setting the quantitative delimitation to establish the biological species of radiolarians based on molecular data, for leading the future ecological and paleo-environmental study. Identification of the biological species by ribosomal DNA sequences are mainly based on two ways: one is the evolutionary distance of the small subunit (SSU) rDNA, the internal transcribed spacer region of ribosomal DNA (ITS1 and 2), and the large subunit (LSU) rDNA; and the other is the secondary structure of ITS2. In the present study, all four possible genetic markers (SSU, ITS1, ITS2, and LSU rDNA) were amplified from 232 individuals of five radiolarian morphological species and applied to examine the evolutionary distance and secondary structure of rDNA. Comprehensive survey clearly shows that evolutionary distance of ITS1 rDNA and the secondary structure of ITS2 is good to identify the species. Notably, evolutionary distance of ITS1 rDNA is possible to set the common delimitation to identify the biological species, as 0.225 substitution per site. The results show that the ITS1 and ITS 2 rDNA could be the criterion for radiolarian species identification.

  11. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing.

    PubMed

    Hong, Jungeui; Gresham, David

    2017-11-01

    Quantitative analysis of next-generation sequencing (NGS) data requires discriminating duplicate reads generated by PCR from identical molecules that are of unique origin. Typically, PCR duplicates are identified as sequence reads that align to the same genomic coordinates using reference-based alignment. However, identical molecules can be independently generated during library preparation. Misidentification of these molecules as PCR duplicates can introduce unforeseen biases during analyses. Here, we developed a cost-effective sequencing adapter design by modifying Illumina TruSeq adapters to incorporate a unique molecular identifier (UMI) while maintaining the capacity to undertake multiplexed, single-index sequencing. Incorporation of UMIs into TruSeq adapters (TrUMIseq adapters) enables identification of bona fide PCR duplicates as identically mapped reads with identical UMIs. Using TrUMIseq adapters, we show that accurate removal of PCR duplicates results in improved accuracy of both allele frequency (AF) estimation in heterogeneous populations using DNA sequencing and gene expression quantification using RNA-Seq.

  12. Principal component analysis of three-dimensional face shape: Identifying shape features that change with age.

    PubMed

    Kurosumi, M; Mizukoshi, K

    2018-05-01

    The types of shape feature that constitutes a face have not been comprehensively established, and most previous studies of age-related changes in facial shape have focused on individual characteristics, such as wrinkle, sagging skin, etc. In this study, we quantitatively measured differences in face shape between individuals and investigated how shape features changed with age. We analyzed three-dimensionally the faces of 280 Japanese women aged 20-69 years and used principal component analysis to establish the shape features that characterized individual differences. We also evaluated the relationships between each feature and age, clarifying the shape features characteristic of different age groups. Changes in facial shape in middle age were a decreased volume of the upper face and increased volume of the whole cheeks and around the chin. Changes in older people were an increased volume of the lower cheeks and around the chin, sagging skin, and jaw distortion. Principal component analysis was effective for identifying facial shape features that represent individual and age-related differences. This method allowed straightforward measurements, such as the increase or decrease in cheeks caused by soft tissue changes or skeletal-based changes to the forehead or jaw, simply by acquiring three-dimensional facial images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Integrative molecular network analysis identifies emergent enzalutamide resistance mechanisms in prostate cancer

    PubMed Central

    King, Carly J.; Woodward, Josha; Schwartzman, Jacob; Coleman, Daniel J.; Lisac, Robert; Wang, Nicholas J.; Van Hook, Kathryn; Gao, Lina; Urrutia, Joshua; Dane, Mark A.; Heiser, Laura M.; Alumkal, Joshi J.

    2017-01-01

    Recent work demonstrates that castration-resistant prostate cancer (CRPC) tumors harbor countless genomic aberrations that control many hallmarks of cancer. While some specific mutations in CRPC may be actionable, many others are not. We hypothesized that genomic aberrations in cancer may operate in concert to promote drug resistance and tumor progression, and that organization of these genomic aberrations into therapeutically targetable pathways may improve our ability to treat CRPC. To identify the molecular underpinnings of enzalutamide-resistant CRPC, we performed transcriptional and copy number profiling studies using paired enzalutamide-sensitive and resistant LNCaP prostate cancer cell lines. Gene networks associated with enzalutamide resistance were revealed by performing an integrative genomic analysis with the PAthway Representation and Analysis by Direct Reference on Graphical Models (PARADIGM) tool. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with MEK, EGFR, RAS, and NFKB. Functional validation studies of 64 genes identified 10 candidate genes whose suppression led to greater effects on cell viability in enzalutamide-resistant cells as compared to sensitive parental cells. Examination of a patient cohort demonstrated that several of our functionally-validated gene hits are deregulated in metastatic CRPC tumor samples, suggesting that they may be clinically relevant therapeutic targets for patients with enzalutamide-resistant CRPC. Altogether, our approach demonstrates the potential of integrative genomic analyses to clarify determinants of drug resistance and rational co-targeting strategies to overcome resistance. PMID:29340039

  14. Can Abdominal Computed Tomography Imaging Help Accurately Identify a Dedifferentiated Component in a Well-Differentiated Liposarcoma?

    PubMed

    Bhosale, Priya; Wang, Jieqi; Varma, Datla; Jensen, Corey; Patnana, Madhavi; Wei, Wei; Chauhan, Anil; Feig, Barry; Patel, Shreyaskumar; Somaiah, Neeta; Sagebiel, Tara

    To assess the ability of computed tomography (CT) to differentiate an atypical lipomatous tumor/well-differentiated liposarcoma (WDLPS) from a WDLPS with a dedifferentiated component (DDLPS) within it. Forty-nine untreated patients with abdominal atypical lipomatous tumors/well-differentiated liposarcomas who had undergone contrast-enhanced CT were identified using an institutional database. Three radiologists who were blinded to the pathology findings evaluated all the images independently to determine whether a dedifferentiated component was present within the WDLPS. The CT images were evaluated for fat content (≤25% or >25%); presence of ground-glass density, enhancing and/or necrotic nodules; presence of a capsule surrounding the mass; septations; and presence and pattern of calcifications. A multivariate logistic regression model with generalized estimating equations was used to correlate imaging features with pathology findings. Kappa statistics were calculated to assess agreement between the three radiologists. On the basis of pathological findings, 12 patients had been diagnosed with DDLPS within a WDLPS and 37 had been diagnosed with WDLPS. The presence of an enhancing or a centrally necrotic nodule within the atypical lipomatous tumor was associated with dedifferentiated liposarcoma (P = 0.02 and P = 0.0003, respectively). The three readers showed almost perfect agreement in overall diagnosis (κ r = 0.83; 95% confidence interval, 0.67-0.99). An enhancing or centrally necrotic nodule may be indicative of a dedifferentiated component in well-differentiated liposarcoma. Ground-glass density nodules may not be indicative of dedifferentiation.

  15. Farewell to GBM-O: Genomic and transcriptomic profiling of glioblastoma with oligodendroglioma component reveals distinct molecular subgroups.

    PubMed

    Hinrichs, Benjamin H; Newman, Scott; Appin, Christina L; Dunn, William; Cooper, Lee; Pauly, Rini; Kowalski, Jeanne; Rossi, Michael R; Brat, Daniel J

    2016-01-13

    Glioblastoma with oligodendroglioma component (GBM-O) was recognized as a histologic pattern of glioblastoma (GBM) by the World Health Organization (WHO) in 2007 and is distinguished by the presence of oligodendroglioma-like differentiation. To better understand the genetic underpinnings of this morphologic entity, we performed a genome-wide, integrated copy number, mutational and transcriptomic analysis of eight (seven primary, primary secondary) cases. Three GBM-O samples had IDH1 (p.R132H) mutations; two of these also demonstrated 1p/19q co-deletion and had a proneural transcriptional profile, a molecular signature characteristic of oligodendroglioma. The additional IDH1 mutant tumor lacked 1p/19q co-deletion, harbored a TP53 mutation, and overall, demonstrated features most consistent with IDH mutant (secondary) GBM. Finally, five tumors were IDH wild-type (IDHwt) and had chromosome seven gains, chromosome 10 losses, and homozygous 9p deletions (CDKN2A), alterations typical of IDHwt (primary) GBM. IDHwt GBM-Os also demonstrated EGFR and PDGFRA amplifications, which correlated with classical and proneural expression subtypes, respectively. Our findings demonstrate that GBM-O is composed of three discrete molecular subgroups with characteristic mutations, copy number alterations and gene expression patterns. Despite displaying areas that morphologically resemble oligodendroglioma, the current results indicate that morphologically defined GBM-O does not correspond to a particular genetic signature, but rather represents a collection of genetically dissimilar entities. Ancillary testing, especially for IDH and 1p/19q, should be used for determining these molecular subtypes.

  16. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.

    PubMed

    Nguyen, Phuong H

    2007-05-15

    Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.

  17. Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain.

    PubMed

    Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Roy, Nairita; Ryan, Lauren N; Stanford, John A; Swerdlow, Russell H

    2016-12-01

    Mitochondria and mitochondrial debris are found in the brain's extracellular space, and extracellular mitochondrial components can act as damage associated molecular pattern (DAMP) molecules. To characterize the effects of potential mitochondrial DAMP molecules on neuroinflammation, we injected either isolated mitochondria or mitochondrial DNA (mtDNA) into hippocampi of C57BL/6 mice and seven days later measured markers of inflammation. Brains injected with whole mitochondria showed increased Tnfα and decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation. Some of these effects were also observed in brains injected with mtDNA (decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation), and mtDNA injection also caused several unique changes including increased CSF1R protein and AKT phosphorylation. To further establish the potential relevance of this response to Alzheimer's disease (AD), a brain disorder characterized by neurodegeneration, mitochondrial dysfunction, and neuroinflammation we also measured App mRNA, APP protein, and Aβ 1-42 levels. We found mitochondria (but not mtDNA) injections increased these parameters. Our data show that in the mouse brain extracellular mitochondria and its components can induce neuroinflammation, extracellular mtDNA or mtDNA-associated proteins can contribute to this effect, and mitochondria derived-DAMP molecules can influence AD-associated biomarkers.

  18. Component spectra extraction from terahertz measurements of unknown mixtures.

    PubMed

    Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X

    2015-10-20

    The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.

  19. Molecular marker characterization and source appointment of particulate matter and its organic aerosols.

    PubMed

    Choi, Jong-Kyu; Ban, Soo-Jin; Kim, Yong-Pyo; Kim, Yong-Hee; Yi, Seung-Muk; Zoh, Kyung-Duk

    2015-09-01

    This study was carried out to identify possible sources and to estimate their contribution to total suspended particle (TSP) organic aerosol (OA) contents. A total of 120 TSP and PM2.5 samples were collected simultaneously every third day over a one-year period in urban area of Incheon, Korea. High concentration in particulate matters (PM) and its components (NO3(-), water soluble organic compounds (WSOCs), and n-alkanoic acids) were observed during the winter season. Among the organics, n-alkanes, n-alkanoic acids, levoglucosan, and phthalates were major components. Positive matrix factorization (PMF) analysis identified seven sources of organic aerosols including combustion 1 (low molecular weight (LMW)-polycyclic aromatic hydrocarbons (PAHs)), combustion 2 (high molecular weight (HMW)-PAHs), biomass burning, vegetative detritus (n-alkane), secondary organic aerosol 1 (SOA1), secondary organic aerosol 2 (SOA2), and motor vehicles. Vegetative detritus increased during the summer season through an increase in biogenic/photochemical activity, while most of the organic sources were prominent in the winter season due to the increases in air pollutant emissions and atmospheric stability. The correlation factors were high among the main components of the organic carbon (OC) in the TSP and PM2.5. The results showed that TSP OAs had very similar characteristics to the PM2.5 OAs. SOA, combustion (PAHs), and motor vehicle were found to be important sources of carbonaceous PM in this region. Our results imply that molecular markers (MMs)-PMF model can provide useful information on the source and characteristics of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Analysis of metabolic syndrome components in >15 000 african americans identifies pleiotropic variants: results from the population architecture using genomics and epidemiology study.

    PubMed

    Carty, Cara L; Bhattacharjee, Samsiddhi; Haessler, Jeff; Cheng, Iona; Hindorff, Lucia A; Aroda, Vanita; Carlson, Christopher S; Hsu, Chun-Nan; Wilkens, Lynne; Liu, Simin; Selvin, Elizabeth; Jackson, Rebecca; North, Kari E; Peters, Ulrike; Pankow, James S; Chatterjee, Nilanjan; Kooperberg, Charles

    2014-08-01

    Metabolic syndrome (MetS) refers to the clustering of cardiometabolic risk factors, including dyslipidemia, central adiposity, hypertension, and hyperglycemia, in individuals. Identification of pleiotropic genetic factors associated with MetS traits may shed light on key pathways or mediators underlying MetS. Using the Metabochip array in 15 148 African Americans from the Population Architecture using Genomics and Epidemiology (PAGE) study, we identify susceptibility loci and investigate pleiotropy among genetic variants using a subset-based meta-analysis method, ASsociation-analysis-based-on-subSETs (ASSET). Unlike conventional models that lack power when associations for MetS components are null or have opposite effects, Association-analysis-based-on-subsets uses 1-sided tests to detect positive and negative associations for components separately and combines tests accounting for correlations among components. With Association-analysis-based-on-subsets, we identify 27 single nucleotide polymorphisms in 1 glucose and 4 lipids loci (TCF7L2, LPL, APOA5, CETP, and APOC1/APOE/TOMM40) significantly associated with MetS components overall, all P<2.5e-7, the Bonferroni adjusted P value. Three loci replicate in a Hispanic population, n=5172. A novel African American-specific variant, rs12721054/APOC1, and rs10096633/LPL are associated with ≥3 MetS components. We find additional evidence of pleiotropy for APOE, TOMM40, TCF7L2, and CETP variants, many with opposing effects (eg, the same rs7901695/TCF7L2 allele is associated with increased odds of high glucose and decreased odds of central adiposity). We highlight a method to increase power in large-scale genomic association analyses and report a novel variant associated with all MetS components in African Americans. We also identify pleiotropic associations that may be clinically useful in patient risk profiling and for informing translational research of potential gene targets and medications. © 2014 American Heart

  1. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies.

    PubMed

    Patel, Shivani; Modi, Palmi; Chhabria, Mahesh

    2018-05-01

    Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain.

    PubMed

    Wolf, Antje; Kirschner, Karl N

    2013-02-01

    With improvements in computer speed and algorithm efficiency, MD simulations are sampling larger amounts of molecular and biomolecular conformations. Being able to qualitatively and quantitatively sift these conformations into meaningful groups is a difficult and important task, especially when considering the structure-activity paradigm. Here we present a study that combines two popular techniques, principal component (PC) analysis and clustering, for revealing major conformational changes that occur in molecular dynamics (MD) simulations. Specifically, we explored how clustering different PC subspaces effects the resulting clusters versus clustering the complete trajectory data. As a case example, we used the trajectory data from an explicitly solvated simulation of a bacteria's L11·23S ribosomal subdomain, which is a target of thiopeptide antibiotics. Clustering was performed, using K-means and average-linkage algorithms, on data involving the first two to the first five PC subspace dimensions. For the average-linkage algorithm we found that data-point membership, cluster shape, and cluster size depended on the selected PC subspace data. In contrast, K-means provided very consistent results regardless of the selected subspace. Since we present results on a single model system, generalization concerning the clustering of different PC subspaces of other molecular systems is currently premature. However, our hope is that this study illustrates a) the complexities in selecting the appropriate clustering algorithm, b) the complexities in interpreting and validating their results, and c) by combining PC analysis with subsequent clustering valuable dynamic and conformational information can be obtained.

  3. Screening and Identifying Antioxidative Components in Ginkgo biloba Pollen by DPPH-HPLC-PAD Coupled with HPLC-ESI-MS2

    PubMed Central

    Netrusov, A. I.; Zhou, Qingxin; Guo, Danyang; Liu, Xiaoyong; He, Hailun; Xin, Xue; Wang, Yifen; Chen, Leilei

    2017-01-01

    The Ginkgo biloba is one of ancient trees that exists from billions of years ago, its leaf and nut are used as herbs and foods in China, while so far its pollen does not have any application except pollination. In order to evaluate the antioxidant activity of Ginkgo biloba pollen, and rapidly screen its antioxidative components, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability, total flavonoid, total phenol, and proanthocyanidin of Ginkgo biloba pollen were determined and compared with those of Ginkgo biloba leaf and nut, and the off-line DPPH-HPLC-PAD and HPLC-ESI-MS2 were applied for screening and identifying the antioxidant flavonoids in Ginkgo biloba pollen. The results showed that the DPPH scavenging ability of Ginkgo biloba pollen was much higher than Ginkgo biloba nut, but lower than Ginkgo biloba leaf, while the total content of flavonoid in Ginkgo biloba pollen was approximately 4.37 times higher than in Ginkgo biloba leaf. Further studies found that the major flavonol aglycone in Ginkgo biloba pollen was kaempferol, which accounted for 96.71% of the total aglycones (includes quercetin, kaempferol and isorhamnetin), and the main flavonoid components in Ginkgo biloba pollen were flavonoid glycosides. Finally, ten antioxidant peaks were screened and identified to be flavonoids (including kaempferol and nine flavonoid glycosides), so flavonoids were likely to be the main antioxidant components in GP, and among them, three novel kaempferol glycosides (peaks 1, 2, and 3) were found in Ginkgo biloba pollen for the first time, which had never been found in Ginkgo biloba. PMID:28095510

  4. Screening and Identifying Antioxidative Components in Ginkgo biloba Pollen by DPPH-HPLC-PAD Coupled with HPLC-ESI-MS2.

    PubMed

    Qiu, Jiying; Chen, Xiangyan; Netrusov, A I; Zhou, Qingxin; Guo, Danyang; Liu, Xiaoyong; He, Hailun; Xin, Xue; Wang, Yifen; Chen, Leilei

    2017-01-01

    The Ginkgo biloba is one of ancient trees that exists from billions of years ago, its leaf and nut are used as herbs and foods in China, while so far its pollen does not have any application except pollination. In order to evaluate the antioxidant activity of Ginkgo biloba pollen, and rapidly screen its antioxidative components, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability, total flavonoid, total phenol, and proanthocyanidin of Ginkgo biloba pollen were determined and compared with those of Ginkgo biloba leaf and nut, and the off-line DPPH-HPLC-PAD and HPLC-ESI-MS2 were applied for screening and identifying the antioxidant flavonoids in Ginkgo biloba pollen. The results showed that the DPPH scavenging ability of Ginkgo biloba pollen was much higher than Ginkgo biloba nut, but lower than Ginkgo biloba leaf, while the total content of flavonoid in Ginkgo biloba pollen was approximately 4.37 times higher than in Ginkgo biloba leaf. Further studies found that the major flavonol aglycone in Ginkgo biloba pollen was kaempferol, which accounted for 96.71% of the total aglycones (includes quercetin, kaempferol and isorhamnetin), and the main flavonoid components in Ginkgo biloba pollen were flavonoid glycosides. Finally, ten antioxidant peaks were screened and identified to be flavonoids (including kaempferol and nine flavonoid glycosides), so flavonoids were likely to be the main antioxidant components in GP, and among them, three novel kaempferol glycosides (peaks 1, 2, and 3) were found in Ginkgo biloba pollen for the first time, which had never been found in Ginkgo biloba.

  5. MOLECULAR GAS VELOCITY DISPERSIONS IN THE ANDROMEDA GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldú-Primo, Anahi; Schruba, Andreas, E-mail: caldu@mpia.de, E-mail: schruba@mpe.mpg.de

    In order to characterize the distribution of molecular gas in spiral galaxies, we study the line profiles of CO (1 – 0) emission in Andromeda, our nearest massive spiral galaxy. We compare observations performed with the IRAM 30 m single-dish telescope and with the CARMA interferometer at a common resolution of 23 arcsec ≈ 85 pc × 350 pc and 2.5 km s{sup −1}. When fitting a single Gaussian component to individual spectra, the line profile of the single dish data is a factor of 1.5 ± 0.4 larger than the interferometric data one. This ratio in line widths ismore » surprisingly similar to the ratios previously observed in two other nearby spirals, NGC 4736 and NGC 5055, but measured at ∼0.5–1 kpc spatial scale. In order to study the origin of the different line widths, we stack the individual spectra in five bins of increasing peak intensity and fit two Gaussian components to the stacked spectra. We find a unique narrow component of FWHM = 7.5 ± 0.4 km s{sup −1} visible in both the single dish and the interferometric data. In addition, a broad component with FWHM = 14.4 ± 1.5 km s{sup −1} is present in the single-dish data, but cannot be identified in the interferometric data. We interpret this additional broad line width component detected by the single dish as a low brightness molecular gas component that is extended on spatial scales >0.5 kpc, and thus filtered out by the interferometer. We search for evidence of line broadening by stellar feedback across a range of star formation rates but find no such evidence on ∼100 pc spatial scale when characterizing the line profile by a single Gaussian component.« less

  6. A reduced basis method for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vincent-Finley, Rachel Elisabeth

    In this dissertation, we develop a method for molecular simulation based on principal component analysis (PCA) of a molecular dynamics trajectory and least squares approximation of a potential energy function. Molecular dynamics (MD) simulation is a computational tool used to study molecular systems as they evolve through time. With respect to protein dynamics, local motions, such as bond stretching, occur within femtoseconds, while rigid body and large-scale motions, occur within a range of nanoseconds to seconds. To capture motion at all levels, time steps on the order of a femtosecond are employed when solving the equations of motion and simulations must continue long enough to capture the desired large-scale motion. To date, simulations of solvated proteins on the order of nanoseconds have been reported. It is typically the case that simulations of a few nanoseconds do not provide adequate information for the study of large-scale motions. Thus, the development of techniques that allow longer simulation times can advance the study of protein function and dynamics. In this dissertation we use principal component analysis (PCA) to identify the dominant characteristics of an MD trajectory and to represent the coordinates with respect to these characteristics. We augment PCA with an updating scheme based on a reduced representation of a molecule and consider equations of motion with respect to the reduced representation. We apply our method to butane and BPTI and compare the results to standard MD simulations of these molecules. Our results indicate that the molecular activity with respect to our simulation method is analogous to that observed in the standard MD simulation with simulations on the order of picoseconds.

  7. Interrogating selectivity in catalysis using molecular vibrations

    NASA Astrophysics Data System (ADS)

    Milo, Anat; Bess, Elizabeth N.; Sigman, Matthew S.

    2014-03-01

    The delineation of molecular properties that underlie reactivity and selectivity is at the core of physical organic chemistry, and this knowledge can be used to inform the design of improved synthetic methods or identify new chemical transformations. For this reason, the mathematical representation of properties affecting reactivity and selectivity trends, that is, molecular parameters, is paramount. Correlations produced by equating these molecular parameters with experimental outcomes are often defined as free-energy relationships and can be used to evaluate the origin of selectivity and to generate new, experimentally testable hypotheses. The premise behind successful correlations of this type is that a systematically perturbed molecular property affects a transition-state interaction between the catalyst, substrate and any reaction components involved in the determination of selectivity. Classic physical organic molecular descriptors, such as Hammett, Taft or Charton parameters, seek to independently probe isolated electronic or steric effects. However, these parameters cannot address simultaneous, non-additive variations to more than one molecular property, which limits their utility. Here we report a parameter system based on the vibrational response of a molecule to infrared radiation that can be used to mathematically model and predict selectivity trends for reactions with interlinked steric and electronic effects at positions of interest. The disclosed parameter system is mechanistically derived and should find broad use in the study of chemical and biological systems.

  8. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhendong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com

    2014-08-07

    The idea for separating the algebraic exact two-component (X2C) relativistic Hamiltonians into spin-free (sf) and spin-dependent terms [Z. Li, Y. Xiao, and W. Liu, J. Chem. Phys. 137, 154114 (2012)] is extended to both electric and magnetic molecular properties. Taking the spin-free terms (which are correct to infinite order in α ≈ 1/137) as zeroth order, the spin-dependent terms can be treated to any desired order via analytic derivative technique. This is further facilitated by unified Sylvester equations for the response of the decoupling and renormalization matrices to single or multiple perturbations. For practical purposes, explicit expressions of order α{supmore » 2} in spin are also given for electric and magnetic properties, as well as two-electron spin-orbit couplings. At this order, the response of the decoupling and renormalization matrices is not required, such that the expressions are very compact and completely parallel to those based on the Breit-Pauli (BP) Hamiltonian. However, the former employ sf-X2C wave functions, whereas the latter can only use nonrelativistic wave functions. As the sf-X2C terms can readily be interfaced with any nonrelativistic program, the implementation of the O(α{sup 2}) spin-orbit corrections to sf-X2C properties requires only marginal revisions of the routines for evaluating the BP type of corrections.« less

  9. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties

    NASA Astrophysics Data System (ADS)

    Li, Zhendong; Xiao, Yunlong; Liu, Wenjian

    2014-08-01

    The idea for separating the algebraic exact two-component (X2C) relativistic Hamiltonians into spin-free (sf) and spin-dependent terms [Z. Li, Y. Xiao, and W. Liu, J. Chem. Phys. 137, 154114 (2012)] is extended to both electric and magnetic molecular properties. Taking the spin-free terms (which are correct to infinite order in α ≈ 1/137) as zeroth order, the spin-dependent terms can be treated to any desired order via analytic derivative technique. This is further facilitated by unified Sylvester equations for the response of the decoupling and renormalization matrices to single or multiple perturbations. For practical purposes, explicit expressions of order α2 in spin are also given for electric and magnetic properties, as well as two-electron spin-orbit couplings. At this order, the response of the decoupling and renormalization matrices is not required, such that the expressions are very compact and completely parallel to those based on the Breit-Pauli (BP) Hamiltonian. However, the former employ sf-X2C wave functions, whereas the latter can only use nonrelativistic wave functions. As the sf-X2C terms can readily be interfaced with any nonrelativistic program, the implementation of the O(α ^2) spin-orbit corrections to sf-X2C properties requires only marginal revisions of the routines for evaluating the BP type of corrections.

  10. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhir

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day formore » 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.« less

  11. Molecular Docking and Molecular Dynamics to Identify a Novel Human Immunodeficiency Virus Inhibitor from Alkaloids of Toddalia asiatica

    PubMed Central

    Priya, R.; Sumitha, Rajendrarao; Doss, C. George Priya; Rajasekaran, C.; Babu, S.; Seenivasan, R.; Siva, R.

    2015-01-01

    Background: Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. Objective: For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. Materials and Methods: In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). Results: The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. Conclusion: The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. SUMMARY In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed

  12. Molecular Docking and Molecular Dynamics to Identify a Novel Human Immunodeficiency Virus Inhibitor from Alkaloids of Toddalia asiatica.

    PubMed

    Priya, R; Sumitha, Rajendrarao; Doss, C George Priya; Rajasekaran, C; Babu, S; Seenivasan, R; Siva, R

    2015-10-01

    Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug

  13. Well-tempered metadynamics as a tool for characterizing multi-component, crystalline molecular machines.

    PubMed

    Ilott, Andrew J; Palucha, Sebastian; Hodgkinson, Paul; Wilson, Mark R

    2013-10-10

    The well-tempered, smoothly converging form of the metadynamics algorithm has been implemented in classical molecular dynamics simulations and used to obtain an estimate of the free energy surface explored by the molecular rotations in the plastic crystal, octafluoronaphthalene. The biased simulations explore the full energy surface extremely efficiently, more than 4 orders of magnitude faster than unbiased molecular dynamics runs. The metadynamics collective variables used have also been expanded to include the simultaneous orientations of three neighboring octafluoronaphthalene molecules. Analysis of the resultant three-dimensional free energy surface, which is sampled to a very high degree despite its significant complexity, demonstrates that there are strong correlations between the molecular orientations. Although this correlated motion is of limited applicability in terms of exploiting dynamical motion in octafluoronaphthalene, the approach used is extremely well suited to the investigation of the function of crystalline molecular machines.

  14. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic - Part 1: Comparison of hydrolysable components with plant wax lipids and lignin phenols

    NASA Astrophysics Data System (ADS)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-03-01

    Hydrolysable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in the arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with changing climate. Here, we examine the molecular composition and source of hydrolysable compounds isolated from surface sediments derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α, ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolysable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same arctic river sediments and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments

  15. Dissecting the regulon of the two-component system CvsSR: Identifying new virulence genes in Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    Recognition of environmental changes and regulation of genes that allow for adaption to those changes is essential for survival of bacteria. Two-component systems (TCSs) allow bacteria to sense and adapt to their environment. We previously identified the TCS CvsSR in the bacterial plant pathogen Pse...

  16. [Study on molecular recognition technology in active constituents extracted and isolated from Aconitum pendulum].

    PubMed

    Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu

    2011-03-01

    To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.

  17. Duodenoscope-Related Outbreak of a Carbapenem-Resistant Klebsiella pneumoniae Identified Using Advanced Molecular Diagnostics.

    PubMed

    Humphries, Romney M; Yang, Shuan; Kim, Stephen; Muthusamy, Venkatara Raman; Russell, Dana; Trout, Alisa M; Zaroda, Teresa; Cheng, Quen J; Aldrovandi, Grace; Uslan, Daniel Zachary; Hemarajata, Peera; Rubin, Zachary Aaron

    2017-10-01

    Carbapenem-resistant Klebsiella pneumoniae infections are increasingly prevalent in North American hospitals. We describe an outbreak of carbapenem-resistant K. pneumoniae containing the blaOXA-232 gene transmitted by contaminated duodenoscopes during endoscopic retrograde cholangiopancreatography (ERCP) procedures. An outbreak investigation was performed when 9 patients with blaOXA-232 carbapenem-resistant K. pneumoniae infections were identified at a tertiary care hospital. The investigation included 2 case-control studies, review of duodenoscope reprocessing procedures, and culture of devices. Carbapenem-resistant Enterobacteriacieae (CRE) isolates were evaluated with polymerase chain reaction analysis for carbapenemase genes, and isolates with the blaOXA-232 gene were subjected to whole-genome sequencing and chromosome single-nucleotide polymorphism analysis. On recognition of ERCP as a key risk factor for infection, targeted patient notification and CRE screening cultures were performed. Molecular testing ultimately identified 17 patients with blaOxa-232 carbapenem-resistant K. pneumoniae isolates, including 9 with infections, 7 asymptomatic carriers who had undergone ERCP, and 1 additional patient who had been hospitalized in India and was probably the initial carrier. Two case-control studies established a point-source outbreak associated with 2 specific duodenoscopes. A field investigation of the use, reprocessing, and storage of deuodenoscopes did not identify deviations from US Food and Drug Administration or manufacturer recommendations for reprocessing. This outbreak demonstrated the previously underappreciated potential for duodenoscopes to transmit disease, even after undergoing high-level disinfection according to manufacturers' guidelines.

  18. Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts.

    PubMed

    Kuhn, Thomas; Hailer, Frank; Palm, Harry W; Klimpel, Sven

    2013-05-01

    Here, we present the ITS ribosomal DNA (rDNA) sequence data on 330 larvae of nematodes of the genus Anisakis Dujardin, 1845 collected from 26 different bony fish species from 21 sampling locations and different climatic zones. New host records are provided for Anisakis simplex (Rudolphi, 1809) sensu stricto (s.s.) and A. pegreffli Campana-Rouget et Biocca, 1955 from Anoplopoma fimbria (Pallas) (Santa Barbara, East Pacific), A. typica (Diesing, 1860) from Caesio cuning (Bloch), Lepturacanthus savala (Cuvier) and Katsuwonus pelamis (Linnaeus) (Indonesia, West Pacific), A. simplex s.s. from Cololabis saira (Brevoort) (Hawaii, Central Pacific), A. simplex C of Nascetti et al. (1986) from Sebastolobus alascanus Bean (Santa Barbara, East Pacific) and A. physeteris Baylis, 1923 from Synaphobranchus kaupii Johnson (Namibia, East Atlantic). Comparison with host records from 60 previous molecular studies of Anisakis species reveals the teleost host range so far recorded for the genus. Perciform (57 species) and gadiform (21) fishes were the most frequently infected orders, followed by pleuronectiforms (15) and scorpaeniforms (15). Most commonly infected fish families were Scombridae (12), Gadidae (10), Carangidae (8) and Clupeidae (7), with Merluccius merluccius (Linnaeus) alone harbouring eight Anisakis species. Different intermediate host compositions implicate differing life cycles for the so far molecularly identified Anisakis sibling species.

  19. Clustering the Orion B giant molecular cloud based on its molecular emission

    NASA Astrophysics Data System (ADS)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also

  20. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Usingmore » protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our

  1. Application of molecular genetic tools for forest pathology

    Treesearch

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  2. Application of Principal Component Analysis to NIR Spectra of Phyllosilicates: A Technique for Identifying Phyllosilicates on Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Lanza, N. L.

    2012-01-01

    Orbital near-infrared (NIR) reflectance spectra of the martian surface from the OMEGA and CRISM instruments have identified a variety of phyllosilicates in Noachian terrains. The types of phyllosilicates present on Mars have important implications for the aqueous environments in which they formed, and, thus, for recognizing locales that may have been habitable. Current identifications of phyllosilicates from martian NIR data are based on the positions of spectral absorptions relative to laboratory data of well-characterized samples and from spectral ratios; however, some phyllosilicates can be difficult to distinguish from one another with these methods (i.e. illite vs. muscovite). Here we employ a multivariate statistical technique, principal component analysis (PCA), to differentiate between spectrally similar phyllosilicate minerals. PCA is commonly used in a variety of industries (pharmaceutical, agricultural, viticultural) to discriminate between samples. Previous work using PCA to analyze raw NIR reflectance data from mineral mixtures has shown that this is a viable technique for identifying mineral types, abundances, and particle sizes. Here, we evaluate PCA of second-derivative NIR reflectance data as a method for classifying phyllosilicates and test whether this method can be used to identify phyllosilicates on Mars.

  3. The common molecular players in plant hormone crosstalk and signaling.

    PubMed

    Ohri, Puja; Bhardwaj, Renu; Bali, Shagun; Kaur, Ravinderjit; Jasrotia, Shivam; Khajuria, Anjali; Parihar, Ripu D

    2015-01-01

    Plant growth and development is under the control of mutual interactions among plant hormones. The five classical categories of plant hormones include auxins, cytokinins, gibberellins, abscisic acid and ethylene. Additionally, newer classes of plant hormones have been recognized like brassinosteroids, jasmonic acid, salicylic acid and polyamines. These hormones play significant roles in regulating the plant growth and development. Various receptors and key signaling components of these hormones have been studied and identified. At genetic level, crosstalk among the various plant hormones is found to be antagonistic or synergistic. In addition, components of signaling pathway of one plant hormone interact with the signaling components of other hormone. Thus, an attempt has been made to review the literature regarding the role of plant hormones in plant physiology and the common molecular players in their signaling and crosstalk.

  4. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.

    PubMed

    Li, Ang; Wei, Yiyong; Hung, Clark; Vunjak-Novakovic, Gordana

    2018-08-01

    Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Molecular communication among biological nanomachines: a layered architecture and research issues.

    PubMed

    Nakano, Tadashi; Suda, Tatsuya; Okaie, Yutaka; Moore, Michael J; Vasilakos, Athanasios V

    2014-09-01

    Molecular communication is an emerging communication paradigm for biological nanomachines. It allows biological nanomachines to communicate through exchanging molecules in an aqueous environment and to perform collaborative tasks through integrating functionalities of individual biological nanomachines. This paper develops the layered architecture of molecular communication and describes research issues that molecular communication faces at each layer of the architecture. Specifically, this paper applies a layered architecture approach, traditionally used in communication networks, to molecular communication, decomposes complex molecular communication functionality into a set of manageable layers, identifies basic functionalities of each layer, and develops a descriptive model consisting of key components of the layer for each layer. This paper also discusses open research issues that need to be addressed at each layer. In addition, this paper provides an example design of targeted drug delivery, a nanomedical application, to illustrate how the layered architecture helps design an application of molecular communication. The primary contribution of this paper is to provide an in-depth architectural view of molecular communication. Establishing a layered architecture of molecular communication helps organize various research issues and design concerns into layers that are relatively independent of each other, and thus accelerates research in each layer and facilitates the design and development of applications of molecular communication.

  6. Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations.

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala

    2018-06-01

    Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆G binding  = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation

  7. 3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B-NS3 protease inhibitors.

    PubMed

    Luo, Pei H; Zhang, Xuan R; Huang, Lan; Yuan, Lun; Zhou, Xang Z; Gao, X; Li, Ling S

    2017-10-01

    NS2B-NS3 protease has been identified to serve as lead drug design target due to its significant role in West Nile viral (WNV) and dengue virus (DENV) reproduction and replication. There are currently no approved chemotherapeutic drugs and effective vaccines to inhibit DENV and WNV infections. In this work, 3D-QSAR pharmacophore model has been developed to discover potential inhibitory candidates. Validation through Fischer's model and decoy test indicate that the developed 3D pharmacophore model is highly predictive for DENV inhibitors, which was then employed to screen ZINC chemical library to obtain reasonable hits. Following ADMET filtering, 15 hits were subjected to further filter through molecular docking and CoMFA modeling. Finally, top three hits were identified as lead compounds or potential inhibitory candidates with IC 50 values of ∼0.4637 µM and fitness of ∼57.73. It is implied from CoMFA modeling that substituents at the side site of benzotriazole such as a p-nitro group (e.g. biphenyl head) and a carbonyl (e.g. carboxylate function) at the side site of furan or amino group may improve bioactivity of ZINC85645245, respectively. Molecular dynamics simulations (MDS) were performed to discover new interactions and reinforce the binding modes from docking for the hits also. The QSAR and MDS results obtained from this work should be useful in determining structural requirements for inhibitor development as well as in designing more potential inhibitors for NS2B-NS3 protease.

  8. Application of linear mixed-effects model with LASSO to identify metal components associated with cardiac autonomic responses among welders: a repeated measures study

    PubMed Central

    Zhang, Jinming; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2017-01-01

    Background Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations. Objective To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses. Methods Urinary concentrations of 16 types of metals were examined and ‘acceleration capacity’ (AC) and ‘deceleration capacity’ (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures. Results Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with ‘selected’ metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with −0.58 ms (−1.03, –0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC. Conclusion Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes. PMID:28663305

  9. Organic-based molecular switches for molecular electronics.

    PubMed

    Fuentes, Noelia; Martín-Lasanta, Ana; Alvarez de Cienfuegos, Luis; Ribagorda, Maria; Parra, Andres; Cuerva, Juan M

    2011-10-05

    In a general sense, molecular electronics (ME) is the branch of nanotechnology which studies the application of molecular building blocks for the fabrication of electronic components. Among the different types of molecules, organic compounds have been revealed as promising candidates for ME, due to the easy access, great structural diversity and suitable electronic and mechanical properties. Thanks to these useful capabilities, organic molecules have been used to emulate electronic devices at the nanoscopic scale. In this feature article, we present the diverse strategies used to develop organic switches towards ME with special attention to non-volatile systems.

  10. Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.

    PubMed

    Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han

    2016-02-01

    Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).

  11. Molecular analysis of mixed endometrial carcinomas shows clonality in most cases

    PubMed Central

    Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han

    2016-01-01

    Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180

  12. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    PubMed

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  13. Model-based recursive partitioning to identify risk clusters for metabolic syndrome and its components: findings from the International Mobility in Aging Study

    PubMed Central

    Pirkle, Catherine M; Wu, Yan Yan; Zunzunegui, Maria-Victoria; Gómez, José Fernando

    2018-01-01

    Objective Conceptual models underpinning much epidemiological research on ageing acknowledge that environmental, social and biological systems interact to influence health outcomes. Recursive partitioning is a data-driven approach that allows for concurrent exploration of distinct mixtures, or clusters, of individuals that have a particular outcome. Our aim is to use recursive partitioning to examine risk clusters for metabolic syndrome (MetS) and its components, in order to identify vulnerable populations. Study design Cross-sectional analysis of baseline data from a prospective longitudinal cohort called the International Mobility in Aging Study (IMIAS). Setting IMIAS includes sites from three middle-income countries—Tirana (Albania), Natal (Brazil) and Manizales (Colombia)—and two from Canada—Kingston (Ontario) and Saint-Hyacinthe (Quebec). Participants Community-dwelling male and female adults, aged 64–75 years (n=2002). Primary and secondary outcome measures We apply recursive partitioning to investigate social and behavioural risk factors for MetS and its components. Model-based recursive partitioning (MOB) was used to cluster participants into age-adjusted risk groups based on variabilities in: study site, sex, education, living arrangements, childhood adversities, adult occupation, current employment status, income, perceived income sufficiency, smoking status and weekly minutes of physical activity. Results 43% of participants had MetS. Using MOB, the primary partitioning variable was participant sex. Among women from middle-incomes sites, the predicted proportion with MetS ranged from 58% to 68%. Canadian women with limited physical activity had elevated predicted proportions of MetS (49%, 95% CI 39% to 58%). Among men, MetS ranged from 26% to 41% depending on childhood social adversity and education. Clustering for MetS components differed from the syndrome and across components. Study site was a primary partitioning variable for all components

  14. Using molecular recognition of beta-cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry.

    PubMed

    Zhang, Min; Shi, Zhen; Bai, Yinjuan; Gao, Yong; Hu, Rongzu; Zhao, Fenqi

    2006-02-01

    This study presents a novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes of beta-cyclodextrin (beta-CD) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500 to 1700 Da, avoiding matrix interference. The MWs of one composite explosive composed of 2,6-DNT, TNT, and RDX, one propellant with unknown components, and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP, and 662) were measured. The molecular recognition and inclusion behavior of beta-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, simple, accurate, and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2) beta-CD has good inclusion and modular recognition abilities to the above EMs.

  15. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY ...

    EPA Pesticide Factsheets

    Hepatitis E virus (HEV) is an emerging pathogen that causes significant illness in the developing world. Like the hepatitis A virus, it is transmitted via the fecal-oral route and can cause short-term, acute hepatitis. In addition, hepatitis E has been found to cause a significant rate of mortality in pregnant women. Thus far, a hepatitis E outbreak has not been reported in the U. S. although a swine variant of the virus is common in Midwestern hogs. Since it will be important to identify the presence of this virus in the water supply, we have developed and are testing a reverse transcription-polymerase chain reaction (RT-PCR) method that should be able to identify all of the known HEV strains. Develop sensitive techniques to detect and identify emerging human waterborne pathogenic viruses and viruses on the CCL.Determine effectiveness of viral indicators to measure microbial quality in water matrices.Support activities: (a) culture and distribution of mammalian cells for Agency and scientific community research needs, (b) provide operator expertise for research requiring confocal and electron microscopy, (c) glassware cleaning, sterilization and biological waste disposal for the Cincinnati EPA facility, (d) operation of infectious pathogenic suite, (e) maintenance of walk-in constant temperature rooms and (f) provide Giardia cysts.

  16. Recent Advances in Molecular Mechanisms of Abdominal Aortic Aneurysm Formation

    PubMed Central

    Annambhotla, Suman; Bourgeois, Sebastian; Wang, Xinwen; Lin, Peter H.; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Abdominal Aortic Aneurysm (AAA) is an increasingly common clinical condition with fatal implications. It is associated with advanced age, male gender, cigarette smoking, atherosclerosis, hypertension, and genetic predisposition. Although significant evidence has emerged in the last decade, the molecular mechanisms of AAA formation remains poorly understood. Currently, the treatment for AAA remains primarily surgical with the lone innovation of endovascular therapy. With advance in the human genome, understanding precisely which molecules and genes mediate AAA development and blocking their activity at the molecular level could lead to important new discoveries and therapies. This review summarizes recent updates in molecular mechanisms of AAA formation including animal models, autoimmune components, infection, key molecules and cytokines, mechanical forces, genetics and pharmacotherapy. This review will be helpful to those who want to recognize the newest endeavors within the field and identify possible lines of investigation in AAA. PMID:18259804

  17. Multiple-component covalent organic frameworks

    PubMed Central

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-01-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607

  18. Multiple-component covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-07-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.

  19. Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma.

    PubMed

    Donson, Andrew M; Apps, John; Griesinger, Andrea M; Amani, Vladimir; Witt, Davis A; Anderson, Richard C E; Niazi, Toba N; Grant, Gerald; Souweidane, Mark; Johnston, James M; Jackson, Eric M; Kleinschmidt-DeMasters, Bette K; Handler, Michael H; Tan, Aik-Choon; Gore, Lia; Virasami, Alex; Gonzalez-Meljem, Jose Mario; Jacques, Thomas S; Martinez-Barbera, Juan Pedro; Foreman, Nicholas K; Hankinson, Todd C

    2017-09-01

    Pediatric adamantinomatous craniopharyngioma (ACP) is a highly solid and cystic tumor, often causing substantial damage to critical neuroendocrine structures such as the hypothalamus, pituitary gland, and optic apparatus. Paracrine signaling mechanisms driving tumor behavior have been hypothesized, with IL-6R overexpression identified as a potential therapeutic target. To identify potential novel therapies, we characterized inflammatory and immunomodulatory factors in ACP cyst fluid and solid tumor components. Cytometric bead analysis revealed a highly pro-inflammatory cytokine pattern in fluid from ACP compared to fluids from another cystic pediatric brain tumor, pilocytic astrocytoma. Cytokines and chemokines with particularly elevated concentrations in ACPs were IL-6, CXCL1 (GRO), CXCL8 (IL-8) and the immunosuppressive cytokine IL-10. These data were concordant with solid tumor compartment transcriptomic data from a larger cohort of ACPs, other pediatric brain tumors and normal brain. The majority of receptors for these cytokines and chemokines were also over-expressed in ACPs. In addition to IL-10, the established immunosuppressive factor IDO-1 was overexpressed by ACPs at the mRNA and protein levels. These data indicate that ACP cyst fluids and solid tumor components are characterized by an inflammatory cytokine and chemokine expression pattern. Further study regarding selective cytokine blockade may inform novel therapeutic interventions. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  20. Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.

    PubMed

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-04-26

    In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.

  1. Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique

    PubMed Central

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-01-01

    In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393

  2. The mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant-mycorrhizal symbioses.

    PubMed

    Miura, Chihiro; Yamaguchi, Katsushi; Miyahara, Ryohei; Yamamoto, Tatsuki; Fuji, Masako; Yagame, Takahiro; Imaizumi-Anraku, Haruko; Yamato, Masahide; Shigenobu, Shuji; Kaminaka, Hironori

    2018-04-12

    Achlorophylous and early developmental stages of chorolophylous orchids are highly dependent on carbon and other nutrients provided by mycorrhizal fungi, in a nutritional mode termed mycoheterotrophy. Previous findings have implied that some common properties at least partially underlie the mycorrhizal symbioses of mycoheterotrophic orchids and that of autotrophic arbuscular mycorrhizal (AM) plants; however, information about the molecular mechanisms of the relationship between orchids and their mycorrhizal fungi is limited. In this study, we characterized the molecular basis of an orchid-mycorrhizal (OM) symbiosis by analyzing the transcriptome of Bletilla striata at an early developmental stage associated with the mycorrhizal fungus Tulasnella sp. The essential components required for the establishment of mutual symbioses with AM fungi and/or rhizobia in most terrestrial plants were identified from B. striata gene set. A cross-species gene complementation analysis showed one of the component genes, calcium and calmodulin-dependent protein kinase gene CCaMK in B. striata, retains functional characteristics of that in AM plants. The expression analysis revealed the activation of homologs of AM-related genes during the OM symbiosis. Our results suggest that orchids possess, at least partly, the molecular mechanisms common to AM plants.

  3. Large-scale Patterns of 14C Age of Bulk Organic Carbon and Various Molecular Components in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Jia, J.; Liu, Z.; Cao, Z.; Chen, L.; He, J. S.; Haghipour, N.; Wacker, L.; Eglinton, T. I.; Feng, X.

    2017-12-01

    Unraveling the fate of organic carbon (OC) in soils is essential to understanding the impact of global changes on the global carbon cycle. Previous studies have shown that while various soil OC components have different decomposability, chemically labile OC can have old 14C ages. However, few studies have compared the 14C age of various soil OC components on a large scale, which may provide important information on the link between the age or turnover of soil OC components to their sources, molecular structures as well as environmental variables. In this project, a suite of soil profiles were sampled along a large-scale transect of temperate and alpine grasslands across the Tibetan and Mongolian Plateaus in China with contrasting climatic, vegetation and soil properties. Bulk OC and source-specific compounds (including fatty acids (FAs), diacids (DAs) and lignin phenols) were radiocarbon-dated to investigate the age and turnover dynamics of different OC pools and the mechanisms controlling their stability. Our results show that lignin phenols displayed a large 14C variability. Short-chain (C16, 18) FAs sourced from vascular plants as well as microorganisms were younger than plant-derived long-chain FAs and DAs, indicating that short-chain FAs were easier to be decomposed or newly synthesized. In the temperate grasslands, long-chain DAs were younger than FAs, while the opposite trend was observed in the alpine grasslands. Preliminary correlation analysis suggests that the age of short-chain FAs were mainly influenced by clay contents and climate, while reactive minerals, clay or silt particles were important factors in the stabilization of long-chain FAs, DAs and lignin phenols. Overall, our study provided a unique 14 C dataset of soil OC components in grasslands, which will provide important constraints on soil carbon turnover in future investigations.

  4. Light-operated machines based on threaded molecular structures.

    PubMed

    Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

  5. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.

    PubMed

    Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin

    2016-02-23

    The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.

  6. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    PubMed Central

    Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin

    2016-01-01

    The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438

  7. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components.

    PubMed

    Butcher, Rebecca A; Ragains, Justin R; Kim, Edward; Clardy, Jon

    2008-09-23

    In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered "nonaging" because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.

  8. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma

    PubMed Central

    Weiser, Keith C.; Liu, Bin; Hansen, Gwenn M.; Skapura, Darlene; Hentges, Kathryn E.; Yarlagadda, Sujatha; Morse III, Herbert C.

    2007-01-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision. PMID:17926094

  9. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma.

    PubMed

    Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J

    2007-10-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .

  10. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants.

    PubMed

    Marty-Roix, Robyn; Vladimer, Gregory I; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D; Chee, Jonathan D; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-15

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    PubMed

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  12. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    PubMed

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  13. Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12

    PubMed Central

    Vogel, Otto; Hoehn, Barbara; Henning, Ulf

    1972-01-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465

  14. Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta).

    PubMed

    Lisman, John

    2017-11-29

    The engram refers to the molecular changes by which a memory is stored in the brain. Substantial evidence suggests that memory involves learning-dependent changes at synapses, a process termed long-term potentiation (LTP). Thus, understanding the storages process that underlies LTP may provide insight into how the engram is stored. LTP involves induction, maintenance (storage), and expression sub-processes; special tests are required to specifically reveal properties of the storage process. The strongest of these is the Erasure test in which a transiently applied agent that attacks a putative storage molecule may lead to persistent erasure of previously induced LTP/memory. Two major hypotheses have been proposed for LTP/memory storage: the CaMKII and PKM-zeta hypotheses. After discussing the tests that can be used to identify the engram (Necessity test, Saturation/Occlusion test, Erasure test), the status of these hypotheses is evaluated, based on the literature on LTP and memory-guided behavior. Review of the literature indicates that all three tests noted above support the CaMKII hypothesis when done at both the LTP level and at the behavioral level. Taken together, the results strongly suggest that the engram is stored by an LTP process in which CaMKII is a critical memory storage molecule.

  15. Novel therapeutic strategies in myelodysplastic syndromes: do molecular genetics help?

    PubMed

    Chung, Stephen S

    2016-03-01

    Many studies over the past decade have together identified genes that are recurrently mutated in the myelodysplastic syndromes (MDS). We will summarize how this information has informed our understanding of disease pathogenesis and behavior, with an emphasis on how this information may inform therapeutic strategies. Genomic sequencing techniques have allowed for the identification of many recurrently mutated genes in MDS, with the most common mutations being found in epigenetic modifiers and components of the splicing machinery. Although many mutations are associated with clinical outcomes and disease phenotypes, at the current time they add relatively little to already robust clinical prognostic algorithms. However, as molecular genetic data are accumulated in larger numbers of patients, it is likely that the clinical significance of co-occurring mutations and less common mutations will come to light. Finally, mutated genes may identify biologically distinct subgroups of MDS that may benefit from novel therapies, and a subset of these genes may themselves serve as therapeutic targets. Advances in our knowledge of the molecular genetics of MDS have significantly improved our understanding of disease biology and promise to improve tools for clinical decision-making and identify new therapies for patients.

  16. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Szymanski, Craig; Wang, Zhaoying

    2016-01-01

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics atmore » the molecular level.« less

  17. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    PubMed

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    PubMed

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  19. Standards-based metadata procedures for retrieving data for display or mining utilizing persistent (data-DOI) identifiers.

    PubMed

    Harvey, Matthew J; Mason, Nicholas J; McLean, Andrew; Rzepa, Henry S

    2015-01-01

    We describe three different procedures based on metadata standards for enabling automated retrieval of scientific data from digital repositories utilising the persistent identifier of the dataset with optional specification of the attributes of the data document such as filename or media type. The procedures are demonstrated using the JSmol molecular visualizer as a component of a web page and Avogadro as a stand-alone modelling program. We compare our methods for automated retrieval of data from a standards-compliant data repository with those currently in operation for a selection of existing molecular databases and repositories. Our methods illustrate the importance of adopting a standards-based approach of using metadata declarations to increase access to and discoverability of repository-based data. Graphical abstract.

  20. Liquid chromatography-diode array detection-mass spectrometry for compositional analysis of low molecular weight heparins.

    PubMed

    Wang, Zhangjie; Li, Daoyuan; Sun, Xiaojun; Bai, Xue; Jin, Lan; Chi, Lianli

    2014-04-15

    Low molecular weight heparins (LMWHs) are important artificial preparations from heparin polysaccharide and are widely used as anticoagulant drugs. To analyze the structure and composition of LMWHs, identification and quantitation of their natural and modified building blocks are indispensable. We have established a novel reversed-phase high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry approach for compositional analysis of LMWHs. After being exhaustively digested and labeled with 2-aminoacridone, the structural motifs constructing LMWHs, including 17 components from dalteparin and 15 components from enoxaparin, were well separated, identified, and quantified. Besides the eight natural heparin disaccharides, many characteristic structures from dalteparin and enoxaparin, such as modified structures from the reducing end and nonreducing end, 3-O-sulfated tetrasaccharides, and trisaccharides, have been unambiguously identified based on their retention time and mass spectra. Compared with the traditional heparin compositional analysis methods, the approach described here is not only robust but also comprehensive because it is capable of identifying and quantifying nearly all components from lyase digests of LMWHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hierarchthis: An Interactive Interface for Identifying Mission-Relevant Components of the Advanced Multi-Mission Operations System

    NASA Technical Reports Server (NTRS)

    Litomisky, Krystof

    2012-01-01

    Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.

  2. Clinicopathological and molecular stability and methylation analyses of gastric papillary adenocarcinoma.

    PubMed

    Uesugi, Noriyuki; Sugai, Tamotsu; Sugimoto, Ryo; Eizuka, Makoto; Fujita, Yasuko; Sato, Ayaka; Osakabe, Mitsumasa; Ishida, Kazuyuki; Koeda, Keisuke; Sasaki, Akira; Matsumoto, Takayuki

    2017-10-01

    The molecular alterations and pathological features of gastric papillary adenocarcinoma (GPA) remain unknown. We examined GPA samples and compared their molecular and pathological characteristics with those of gastric tubular adenocarcinoma (GTA). Additionally, we identified pathological and molecular features of GPA that vary with microsatellite stability. In the present study, samples from 63 GPA patients and 47 GTA patients were examined using a combination of polymerase chain reaction (PCR)-microsatellite assays and PCR-pyrosequencing in order to detect microsatellite instability (microsatellite instability, MSI; microsatellite stable, MSS), methylation status (low methylation, intermediate methylation and high methylation level), and chromosomal AI in multiple cancer-related loci. Additionally, the expression levels of TP53 and Her2 were evaluated using immunohistochemistry. GTA and GPA are statistically different in their frequency of pathological features, including mucinous, poorly differentiated and invasive micropapillary components. Clear genetic patterns differentiating GPA and GTA could not be identified with a hierarchical cluster analysis, but microsatellite stability was linked with TP53 and Her2 overexpression. Methylation status in GPA was also associated with the development of high microsatellite instability. However, no pathological differences were associated with microsatellite stability. We suggest that although molecular alterations in a subset of GPAs are closely associated with microsatellite stability, they play a minor role in GPA carcinogenesis. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  3. Identifying seedling root architectural traits associated with yield and yield components in wheat.

    PubMed

    Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L

    2017-05-01

    Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total

  4. Developing interpretable models with optimized set reduction for identifying high risk software components

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Basili, Victor R.; Hetmanski, Christopher J.

    1993-01-01

    Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are limited and scheduling is tight. Therefore, one needs to be able to differentiate low/high fault frequency components so that testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. This paper presents the Optimized Set Reduction approach for constructing such models, intended to fulfill specific software engineering needs. Our approach to classification is to measure the software system and build multivariate stochastic models for predicting high risk system components. We present experimental results obtained by classifying Ada components into two classes: is or is not likely to generate faults during system and acceptance test. Also, we evaluate the accuracy of the model and the insights it provides into the error making process.

  5. MelanomaDB: A Web Tool for Integrative Analysis of Melanoma Genomic Information to Identify Disease-Associated Molecular Pathways

    PubMed Central

    Trevarton, Alexander J.; Mann, Michael B.; Knapp, Christoph; Araki, Hiromitsu; Wren, Jonathan D.; Stones-Havas, Steven; Black, Michael A.; Print, Cristin G.

    2013-01-01

    Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g., mutations) in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability, and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html. A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research. The MelanomaDB database illustrates dysregulation of specific signaling pathways across 310 exome-sequenced melanomas and in individual tumors and identifies the distribution of somatic variants in melanoma. We suggest that MelanomaDB can provide a context in which to interpret the tumor molecular profiles of individual melanoma patients relative to biological information and available drug therapies. PMID:23875173

  6. Moving forward with actionable therapeutic targets and opportunities in endometrial cancer: NCI clinical trials planning meeting report on identifying key genes and molecular pathways for targeted endometrial cancer trials

    PubMed Central

    MacKay, Helen J.; Levine, Douglas A.; Bae-Jump, Victoria L.; Bell, Daphne W.; McAlpine, Jessica N.; Santin, Alessandro; Fleming, Gini F.; Mutch, David G.; Nephew, Kenneth P.; Wentzensen, Nicolas; Goodfellow, Paul J.; Dorigo, Oliver; Nijman, Hans W.; Broaddus, Russell; Kohn, Elise C.

    2017-01-01

    The incidence and mortality rates from endometrial cancer are increasing. There have been no new drugs approved for the treatment of endometrial cancer in decades. The National Cancer Institute, Gynecologic Cancer Steering Committee identified the integration of molecular and/or histologic stratification into endometrial cancer management as a top strategic priority. Based on this, they convened a group of experts to review the molecular data in this disease. Here we report on the actionable opportunities and therapeutic directions identified for incorporation into future clinical trials. PMID:29137450

  7. Wide-field 12CO (J=2-1) and 13CO (J=2-1) Observations toward the Aquila Rift and Serpens Molecular Cloud Complexes. I. Molecular Clouds and Their Physical Properties

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Dobashi, Kazuhito; Shimoikura, Tomomi; Tanaka, Tomohiro; Onishi, Toshikazu

    2017-03-01

    We present the results of wide-field 12CO (J=2{--}1) and 13CO (J=2{--}1) observations toward the Aquila Rift and Serpens molecular cloud complexes (25^\\circ < l< 33^\\circ and 1^\\circ < b< 6^\\circ ) at an angular resolution of 3.‧4 (≈ 0.25 pc) and at a velocity resolution of 0.079 km s-1 with velocity coverage of -5 {km} {{{s}}}-1< {V}{LSR}< 35 {km} {{{s}}}-1. We found that the 13CO emission better traces the structures seen in the extinction map, and derived the {X}{13{CO}}-factor of this region. Applying SCIMES to the 13CO data cube, we identified 61 clouds and derived their mass, radii, and line widths. The line width-radius relation of the identified clouds basically follows those of nearby molecular clouds. The majority of the identified clouds are close to virial equilibrium, although the dispersion is large. By inspecting the 12CO channel maps by eye, we found several arcs that are spatially extended to 0.°2-3° in length. In the longitude-velocity diagrams of 12CO, we also found two spatially extended components that appear to converge toward Serpens South and the W40 region. The existence of two components with different velocities and arcs suggests that large-scale expanding bubbles and/or flows play a role in the formation and evolution of the Serpens South and W40 cloud.

  8. Unknown components of the plastidial permeome

    PubMed Central

    Pick, Thea R.; Weber, Andreas P. M.

    2014-01-01

    Beyond their role in photosynthesis plastids provide a plethora of additional metabolic functions to plant cells. For example, they harbor complete biosynthetic pathways for the de novo synthesis of carotenoids, fatty acids, and amino acids. Furthermore plastids contribute important reactions to multi-compartmentalized pathways, such as photorespiration or plant hormone syntheses, and they depend on the import of essential molecules that they cannot synthesize themselves, such as ascorbic acid. This causes a high traffic of metabolites across the plastid envelope. Although it was recently shown that non-polar substrates could be exchanged between the plastid and the ER without involving transporters, various essential transport processes are mediated by highly selective but still unknown metabolite transporters. This review focuses on selected components of the plastidial permeome that are predicted to exist but that have not yet been identified as molecular entities, such as the transporters for isopentenyl diphosphate (IPP) or ascorbic acid. PMID:25191333

  9. Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription*

    PubMed Central

    Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.

    2016-01-01

    Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR

  10. Investigation of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential

    NASA Astrophysics Data System (ADS)

    Yu, Chien-fan; Whaley, K. Birgitta; Hogg, C. S.; Sibener, S. J.

    1985-10-01

    A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of ˜32 meV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.

  11. Investigation of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(3) physisorption potential

    NASA Astrophysics Data System (ADS)

    Yu, C. F.; Whaley, K. B.; Hogg, C. S.; Sibener, S. J.

    1985-08-01

    A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of approximately 32 MeV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.

  12. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  13. Thermochemolysis: A New Sample Preparation Approach for the Detection of Organic Components of Complex Macromolecules in Mars Rocks via Gas Chromatography Mass Spectrometry in SAM on MSL

    NASA Technical Reports Server (NTRS)

    Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.

    2011-01-01

    Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.

  14. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Li, Jinxing; Yu, Zhongbo; Ding, Yimin; Xing, Wanqiu; Lu, Wenjun

    2018-04-01

    As the only connecting term between water balance and energy budget in the earth-atmospheric system, evapotranspiration (ET) is considered the most excellent indicator for the activity for the water and energy cycle. Under the background of global change, regional ET estimates, components partitioning as well as their spatial and temporal patterns recognition are of great importance in understanding the hydrological processes and improving water management practices. This is particularly true for the Tibetan Plateau (TP), one of most sensitive and vulnerable region in response to the environment change in the earth. In this study, with flux site observation data and monthly ET data from the monthly water balance method incorporating the terrestrial water storage changes from the Gravity Recovery and Climate Experiment satellite (GRACE) production as the multiple validations, the long-term daily ET in the TP was retrieved by a modified Penman-Monteith-Leuning (PML) model with considering evapotranspiration over snow covered area during 1982-2012. The spatial and temporal changes of partitioned three components of ET, i.e., soil evaporation (Es), transpiration through the stomata of plant (Ec) and canopy interception (Ei), were investigated in the TP. Meanwhile, how the ET components contribute to ET changes and respond to the change in environmental factors in the TP was revealed and discussed. The results indicate that Es dominates ET in most areas of the TP with the mean annual ratio of 65.7%, except southeastern regions where the vegetation coverage is high. Although regional average ET and three main components all present obvious increase trends during the past decades, high spatial heterogeneity for their trends are identified in the TP. Moreover, a mixed changing pattern can be apparently found for Es in southeastern area, Ec and Ei in northwestern and southeastern area. Spatially, the ET variation are mainly attributed to change in Es, followed by Ec and Ei

  15. Method of identifying hairpin DNA probes by partial fold analysis

    DOEpatents

    Miller, Benjamin L [Penfield, NY; Strohsahl, Christopher M [Saugerties, NY

    2009-10-06

    Method of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.

  16. Method of identifying hairpin DNA probes by partial fold analysis

    DOEpatents

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2008-10-28

    Methods of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.

  17. Molecular coordination of Staphylococcus aureus cell division

    PubMed Central

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  18. Methods of producing epoxides from alkenes using a two-component catalyst system

    DOEpatents

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  19. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.

    PubMed

    Sumazin, Pavel; Chen, Yidong; Treviño, Lisa R; Sarabia, Stephen F; Hampton, Oliver A; Patel, Kayuri; Mistretta, Toni-Ann; Zorman, Barry; Thompson, Patrick; Heczey, Andras; Comerford, Sarah; Wheeler, David A; Chintagumpala, Murali; Meyers, Rebecka; Rakheja, Dinesh; Finegold, Milton J; Tomlinson, Gail; Parsons, D Williams; López-Terrada, Dolores

    2017-01-01

    Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity. Analysis of immunohistochemical assays using antibodies targeting these genes in a prospective study of 35 HBs suggested that these candidate biomarkers have the potential to improve risk stratification and guide treatment decisions for HB patients at diagnosis; our results pave the way for clinical collaborative studies to validate candidate biomarkers and test their potential to improve outcome for HB patients. (Hepatology 2017;65:104-121). © 2016 by the American Association for the Study of Liver Diseases.

  20. An electric noise component with density 1/f identified on ISEE 3

    NASA Technical Reports Server (NTRS)

    Hoang, S.; Steinberg, J. L.; Couturier, P.; Feldman, W. C.

    1982-01-01

    The properties of the 1/f noise detected at the terminals of ISEE 3 antennas are described and related to the solar wind parameters. The 1/f noise was observed with the radio receivers of the three-dimensional radio mapping experiment using the S and Z dipole antennas. The noise spectra contained a negative spectral index component at frequencies lower than 0.7 of the plasma frequency, and 5-10 times the predicted thermal noise for the Z antenna. S-antenna measurements of the 1/f component revealed it to be deeply spin modulated with a minimum electric field in the direction of the solar wind. Modulation increases with increasing frequency, becomes negligible when the 1/f intensity is negligible with respect to the thermal noise, and increases with solar wind velocity. The possibilities that the noise is due either to waves or currents are discussed.

  1. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  2. Identifying the seasonal origins of human campylobacteriosis

    PubMed Central

    STRACHAN, N. J. C.; ROTARIU, O.; SMITH-PALMER, A.; COWDEN, J.; SHEPPARD, S. K.; O’BRIEN, S. J.; MAIDEN, M. C. J.; MACRAE, M.; BESSELL, P. R.; MATTHEWS, L.; REID, S. W. J.; INNOCENT, G. T.; OGDEN, I. D.; FORBES, K. J.

    2014-01-01

    SUMMARY Human campylobacteriosis exhibits a distinctive seasonality in temperate regions. This paper aims to identify the origins of this seasonality. Clinical isolates [typed by multi-locus sequence typing (MLST)] and epidemiological data were collected from Scotland. Young rural children were found to have an increased burden of disease in the late spring due to strains of non-chicken origin (e.g. ruminant and wild bird strains from environmental sources). In contrast the adult population had an extended summer peak associated with chicken strains. Travel abroad and UK mainland travel were associated with up to 17% and 18% of cases, respectively. International strains were associated with chicken, had a higher diversity than indigenous strains and a different spectrum of MLST types representative of these countries. Integrating empirical epidemiology and molecular subtyping can successfully elucidate the seasonal components of human campylobacteriosis. The findings will enable public health officials to focus strategies to reduce the disease burden. PMID:22989449

  3. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces.

    PubMed

    Lee, Dominic J O'

    2015-04-15

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.

  4. Metal-organic frameworks with dynamic interlocked components

    NASA Astrophysics Data System (ADS)

    Vukotic, V. Nicholas; Harris, Kristopher J.; Zhu, Kelong; Schurko, Robert W.; Loeb, Stephen J.

    2012-06-01

    The dynamics of mechanically interlocked molecules such as rotaxanes and catenanes have been studied in solution as examples of rudimentary molecular switches and machines, but in this medium, the molecules are randomly dispersed and their motion incoherent. As a strategy for achieving a higher level of molecular organization, we have constructed a metal-organic framework material using a [2]rotaxane as the organic linker and binuclear Cu(II) units as the nodes. Activation of the as-synthesized material creates a void space inside the rigid framework that allows the soft macrocyclic ring of the [2]rotaxane to rotate rapidly, unimpeded by neighbouring molecular components. Variable-temperature 13C and 2H solid-state NMR experiments are used to characterize the nature and rate of the dynamic processes occurring inside this unique material. These results provide a blueprint for the future creation of solid-state molecular switches and molecular machines based on mechanically interlocked molecules.

  5. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders.

    PubMed

    Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew

    2014-10-01

    The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. © 2014 The British Pharmacological Society.

  6. Controlling the rectification properties of molecular junctions through molecule–electrode coupling

    DOE PAGES

    Koepf, Matthieu; Koenigsmann, Christopher; Ding, Wendu; ...

    2016-08-17

    The development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones. The transport properties of molecular junctions derived from NPBA are characterized while varying the nature of the functional groups interfacing the backbone and the gold electrodes required for break-junction measurements. Furthermore, combining experimental and theoretical methods, it ismore » shown that at low bias (<0.85 V) transport is determined by the same frontier molecular orbital originating from the NPBA core, regardless of the anchoring group employed. The magnitude of rectification, however, is strongly dependent on the strength of the electronic coupling at the gold–NPBA interface and on the spatial distribution of the local density of states of the dominant transport channel of the molecular junction.« less

  7. Controlling the rectification properties of molecular junctions through molecule–electrode coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koepf, Matthieu; Koenigsmann, Christopher; Ding, Wendu

    The development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones. The transport properties of molecular junctions derived from NPBA are characterized while varying the nature of the functional groups interfacing the backbone and the gold electrodes required for break-junction measurements. Furthermore, combining experimental and theoretical methods, it ismore » shown that at low bias (<0.85 V) transport is determined by the same frontier molecular orbital originating from the NPBA core, regardless of the anchoring group employed. The magnitude of rectification, however, is strongly dependent on the strength of the electronic coupling at the gold–NPBA interface and on the spatial distribution of the local density of states of the dominant transport channel of the molecular junction.« less

  8. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.

    PubMed

    Gandal, Michael J; Haney, Jillian R; Parikshak, Neelroop N; Leppa, Virpi; Ramaswami, Gokul; Hartl, Chris; Schork, Andrew J; Appadurai, Vivek; Buil, Alfonso; Werge, Thomas M; Liu, Chunyu; White, Kevin P; Horvath, Steve; Geschwind, Daniel H

    2018-02-09

    The predisposition to neuropsychiatric disease involves a complex, polygenic, and pleiotropic genetic architecture. However, little is known about how genetic variants impart brain dysfunction or pathology. We used transcriptomic profiling as a quantitative readout of molecular brain-based phenotypes across five major psychiatric disorders-autism, schizophrenia, bipolar disorder, depression, and alcoholism-compared with matched controls. We identified patterns of shared and distinct gene-expression perturbations across these conditions. The degree of sharing of transcriptional dysregulation is related to polygenic (single-nucleotide polymorphism-based) overlap across disorders, suggesting a substantial causal genetic component. This comprehensive systems-level view of the neurobiological architecture of major neuropsychiatric illness demonstrates pathways of molecular convergence and specificity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion

    PubMed Central

    Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng

    2016-01-01

    Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950

  10. Molecular markers for identifying a new selected variety of Pacific white shrimp Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Zhang, Xiaojun; Liu, Jingwen; Li, Fuhua; Huang, Hao; Li, Yijun; Liu, Xiaolin; Xiang, Jianhai

    2015-01-01

    Selective breeding of the Pacific white shrimp Litopenaeus vannamei during the last decade has produced new varieties exhibiting high growth rates and disease resistance. However, the identification of new varieties of shrimps from their phenotypic characters is difficult. This study introduces a new approach for identifying varieties of shrimps using molecular markers of microsatellites and mitochondrial control region sequences. The method was employed to identify a new selected variety, Kehai No. 1 (KH-1), from three representative stocks (control group): Zhengda; Tongwei; and a stock collected from Fujian Province, which is now cultured in mainland China. By pooled genotyping of KH-1 and the control group, five microsatellites showing differences between KH-1 and the control group were screened out. Individual genotyping data confirmed the results from pooled genotyping. The genotyping data for the five microsatellites were applied to the assignment analysis of the KH-1 group and the control group using the partial Bayesian assignment method in GENECLASS2. By sequencing the mitochondrial control regions of individuals from the KH-1 and control group, four haplotypes were observed in the KH-1 group, whereas 14 haplotypes were obtained in the control group. By combining the microsatellite assignment analysis with mitochondrial control region analysis, the average accuracy of identification of individuals in the KH-1 group and control group reached 89%. The five selected microsatellite loci and mitochondrial control region sequences were highly polymorphic and could be used to distinguish new selected varieties of L. vannamei from other populations cultured in China.

  11. Molecular and immunological characterisation of Theileria parva stocks which are components of the 'Muguga cocktail' used for vaccination against East Coast fever in cattle.

    PubMed

    Bishop, R; Geysen, D; Spooner, P; Skilton, R; Nene, V; Dolan, T; Morzaria, S

    2001-01-20

    The 'Muguga cocktail' which is composed of three Theileria parva stocks Muguga, Kiambu 5 and Serengeti-transformed has been used extensively for live vaccination against East Coast fever in cattle in eastern, central and southern Africa. Herein we describe the molecular characterisation of the T. parva vaccine stocks using three techniques, an indirect fluorescent antibody test with a panel of anti-schizont monoclonal antibodies (MAb), Southern blotting with four T. parva repetitive DNA probes and polymerase chain reaction (PCR)-based assays detecting polymorphism within four single copy loci encoding antigen genes. The Muguga and Serengeti-transformed stocks exhibited no obvious differences in their reactivity with the panel of MAbs, whereas Kiambu 5 differed with several MAbs. Kiambu 5 DNA was very distinct from the Muguga and Serengeti-transformed isolates in the hybridisation pattern with all four nucleic acid probes, whereas Muguga and Serengeti-transformed isolates exhibited minor differences and could not be discriminated with one of the probes. PCR amplification in combination with restriction fragment length polymorphism analysis indicated that Kiambu 5 was also markedly divergent from the Muguga and Serengeti-transformed stocks within two of the four antigen coding genes. The T. parva Serengeti-transformed stock did not contain a 130 base pair insert within the p67 sporozoite antigen gene, which has been observed previously in most T. parva parasites isolated from buffalo, and could not be discriminated from T. parva Muguga at any of the four single copy loci. Collectively the data indicate that two of the cocktail components T. parva Serengeti-transformed and Muguga are genetically closely related, while the third component Kiambu 5 is quite distinct. Based on the findings, there may be a need to include only one of the T. parva Muguga and Serengeti-transformed components in the immunising cocktail. The study demonstrates the value of molecular

  12. Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    PubMed Central

    Nebl, Thomas; Prieto, Judith Helena; Kapp, Eugene; Smith, Brian J.; Williams, Melanie J.; Yates, John R.; Cowman, Alan F.; Tonkin, Christopher J.

    2011-01-01

    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. PMID:21980283

  13. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.

    PubMed

    Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter

    2009-09-02

    Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.

  14. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    PubMed

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  15. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    PubMed Central

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  16. Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions.

    PubMed

    Viana, Joana; Hannon, Eilis; Dempster, Emma; Pidsley, Ruth; Macdonald, Ruby; Knox, Olivia; Spiers, Helen; Troakes, Claire; Al-Saraj, Safa; Turecki, Gustavo; Schalkwyk, Leonard C; Mill, Jonathan

    2017-01-01

    Genetic association studies provide evidence for a substantial polygenic component to schizophrenia, although the neurobiological mechanisms underlying the disorder remain largely undefined. Building on recent studies supporting a role for developmentally regulated epigenetic variation in the molecular aetiology of schizophrenia, this study aimed to identify epigenetic variation associated with both a diagnosis of schizophrenia and elevated polygenic risk burden for the disease across multiple brain regions. Genome-wide DNA methylation was quantified in 262 post-mortem brain samples, representing tissue from four brain regions (prefrontal cortex, striatum, hippocampus and cerebellum) from 41 schizophrenia patients and 47 controls. We identified multiple disease-associated and polygenic risk score-associated differentially methylated positions and regions, which are not enriched in genomic regions identified in genetic studies of schizophrenia and do not reflect direct genetic effects on DNA methylation. Our study represents the first analysis of epigenetic variation associated with schizophrenia across multiple brain regions and highlights the utility of polygenic risk scores for identifying molecular pathways associated with aetiological variation in complex disease. © The Author 2016. Published by Oxford University Press.

  17. A novel literature-based approach to identify genetic and molecular predictors of survival in glioblastoma multiforme: Analysis of 14,678 patients using systematic review and meta-analytical tools.

    PubMed

    Thuy, Matthew N T; Kam, Jeremy K T; Lee, Geoffrey C Y; Tao, Peter L; Ling, Dorothy Q; Cheng, Melissa; Goh, Su Kah; Papachristos, Alexander J; Shukla, Lipi; Wall, Krystal-Leigh; Smoll, Nicolas R; Jones, Jordan J; Gikenye, Njeri; Soh, Bob; Moffat, Brad; Johnson, Nick; Drummond, Katharine J

    2015-05-01

    Glioblastoma multiforme (GBM) has a poor prognosis despite maximal multimodal therapy. Biomarkers of relevance to prognosis which may also identify treatment targets are needed. A few hundred genetic and molecular predictors have been implicated in the literature, however with the exception of IDH1 and O6-MGMT, there is uncertainty regarding their true prognostic relevance. This study analyses reported genetic and molecular predictors of prognosis in GBM. For each, its relationship with univariate overall survival in adults with GBM is described. A systematic search of MEDLINE (1998-July 2010) was performed. Eligible papers studied the effect of any genetic or molecular marker on univariate overall survival in adult patients with histologically diagnosed GBM. Primary outcomes were median survival difference in months and univariate hazard ratios. Analyses included converting 126 Kaplan-Meier curves and 27 raw data sets into primary outcomes. Seventy-four random effects meta-analyses were performed on 39 unique genetic or molecular factors. Objective criteria were designed to classify factors into the categories of clearly prognostic, weakly prognostic, non-prognostic and promising. Included were 304 publications and 174 studies involving 14,678 unique patients from 33 countries. We identified 422 reported genetic and molecular predictors, of which 52 had ⩾2 studies. IDH1 mutation and O6-MGMT were classified as clearly prognostic, validating the methodology. High Ki-67/MIB-1 and loss of heterozygosity of chromosome 10/10q were classified as weakly prognostic. Four factors were classified as non-prognostic and 13 factors were classified as promising and worthy of additional investigation. Funnel plot analysis did not identify any evidence of publication bias. This study demonstrates a novel literature and meta-analytical based approach to maximise the value that can be derived from the plethora of literature reports of molecular and genetic factors in GBM. Caution

  18. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2003-09-01

    As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.

  19. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    PubMed

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  20. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in

  1. Identifying potential selective fluorescent probes for cancer-associated protein carbonic anhydrase IX using a computational approach.

    PubMed

    Kamstra, Rhiannon L; Floriano, Wely B

    2014-11-01

    Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Knowledge-based compact disease models identify new molecular players contributing to early-stage Alzheimer’s disease

    PubMed Central

    2013-01-01

    Background High-throughput profiling of human tissues typically yield as results the gene lists comprised of a mix of relevant molecular entities with multiple false positives that obstruct the translation of such results into mechanistic hypotheses. From general probabilistic considerations, gene lists distilled for the mechanistically relevant components can be far more useful for subsequent experimental design or data interpretation. Results The input candidate gene lists were processed into different tiers of evidence consistency established by enrichment analysis across subsets of the same experiments and across different experiments and platforms. The cut-offs were established empirically through ontological and semantic enrichment; resultant shortened gene list was re-expanded by Ingenuity Pathway Assistant tool. The resulting sub-networks provided the basis for generating mechanistic hypotheses that were partially validated by literature search. This approach differs from previous consistency-based studies in that the cut-off on the Receiver Operating Characteristic of the true-false separation process is optimized by flexible selection of the consistency building procedure. The gene list distilled by this analytic technique and its network representation were termed Compact Disease Model (CDM). Here we present the CDM signature for the study of early-stage Alzheimer’s disease. The integrated analysis of this gene signature allowed us to identify the protein traffic vesicles as prominent players in the pathogenesis of Alzheimer’s. Considering the distances and complexity of protein trafficking in neurons, it is plausible that spontaneous protein misfolding along with a shortage of growth stimulation result in neurodegeneration. Several potentially overlapping scenarios of early-stage Alzheimer pathogenesis have been discussed, with an emphasis on the protective effects of AT-1 mediated antihypertensive response on cytoskeleton remodeling, along with

  3. The proteome signature of the inflammatory breast cancer plasma membrane identifies novel molecular markers of disease

    PubMed Central

    Suárez-Arroyo, Ivette J; Feliz-Mosquea, Yismeilin R; Pérez-Laspiur, Juliana; Arju, Rezina; Giashuddin, Shah; Maldonado-Martínez, Gerónimo; Cubano, Luis A; Schneider, Robert J; Martínez-Montemayor, Michelle M

    2016-01-01

    Inflammatory Breast Cancer (IBC) is the most lethal form of breast cancer with a 35% 5-year survival rate. The accurate and early diagnosis of IBC and the development of targeted therapy against this deadly disease remain a great medical challenge. Plasma membrane proteins (PMPs) such as E-cadherin and EGFR, play an important role in the progression of IBC. Because the critical role of PMPs in the oncogenic processes they are the perfect candidates as molecular markers and targets for cancer therapies. In the present study, Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) followed by mass spectrometry analysis was used to compare the relative expression levels of membrane proteins (MP) between non-cancerous mammary epithelial and IBC cells, MCF-10A and SUM-149, respectively. Six of the identified PMPs were validated by immunoblotting using the membrane fractions of non-IBC and IBC cell lines, compared with MCF-10A cells. Immunohistochemical analysis using IBC, invasive ductal carcinoma or normal mammary tissue samples was carried out to complete the validation method in nine of the PMPs. We identified and quantified 278 MPs, 76% of which classified as PMPs with 1.3-fold or higher change. We identified for the first time the overexpression of the novel plasminogen receptor, PLGRKT in IBC and of the carrier protein, SCAMP3. Furthermore, we describe the positive relationship between L1CAM expression and metastasis in IBC patients and the role of SCAMP3 as a tumor-related protein. Overall, the membrane proteomic signature of IBC reflects a global change in cellular organization and suggests additional strategies for cancer progression. Together, this study provides insight into the specialized IBC plasma membrane proteome with the potential to identify a number of novel therapeutic targets for IBC. PMID:27648361

  4. Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs.

    PubMed

    Hopken, Matthew W; Orning, Elizabeth K; Young, Julie K; Piaggio, Antoinette J

    2016-01-07

    The greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird from the Northern Rocky Mountains and a species at risk of extinction in in multiple U.S. states and Canada. Herein we report results from a proof of concept that mitochondrial and nuclear DNAs from mammalian predator saliva could be non-invasively collected from depredated greater sage-grouse eggshells and carcasses and used for predator species identification. Molecular forensic approaches have been applied to identify predators from depredated remains as one strategy to better understand predator-prey dynamics and guide management strategies. This can aid conservation efforts by correctly identifying predators most likely to impact threatened and endangered species. DNA isolated from non-invasive samples around nesting sites (e.g. fecal or hair samples) is one method that can increase the success and accuracy of predator species identification when compared to relying on nest remains alone. Predator saliva DNA was collected from depredated eggshells and carcasses using swabs. We sequenced two partial fragments of two mitochondrial genes and obtained microsatellite genotypes using canid specific primers for species and individual identification, respectively. Using this multilocus approach we were able to identify predators, at least down to family, from 11 out of 14 nests (79%) and three out of seven carcasses (47%). Predators detected most frequently were canids (86%), while other taxa included rodents, a striped skunk, and cattle. We attempted to match the genotypes of individual coyotes obtained from eggshells and carcasses with those obtained from fecal samples and coyotes collected in the areas, but no genotype matches were found. Predation is a main cause of nest failure in ground-nesting birds and can impact reproduction and recruitment. To inform predator management for ground-nesting bird conservation, accurate identification of predator species is necessary. Considering

  5. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    DOE PAGES

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; ...

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO 2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysomemore » locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.« less

  6. Molecular characteristics of Illicium verum extractives to activate acquired immune response

    PubMed Central

    Peng, Wanxi; Lin, Zhi; Wang, Lansheng; Chang, Junbo; Gu, Fangliang; Zhu, Xiangwei

    2015-01-01

    Illicium verum, whose extractives can activate the demic acquired immune response, is an expensive medicinal plant. However, the rich extractives in I. verum biomass were seriously wasted for the inefficient extraction and separation processes. In order to further utilize the biomedical resources for the good acquired immune response, the four extractives were obtained by SJYB extraction, and then the immunology moleculars of SJYB extractives were identified and analyzed by GC–MS. The result showed that the first-stage extractives contained 108 components including anethole (40.27%), 4-methoxy-benzaldehyde (4.25%), etc.; the second-stage extractives had 5 components including anethole (84.82%), 2-hydroxy-2-(4-methoxy-phenyl)-n-methyl-acetamide (7.11%), etc.; the third-stage extractives contained one component namely anethole (100%); and the fourth-stage extractives contained 5 components including cyclohexyl-benzene (64.64%), 1-(1-methylethenyl)-3-(1-methylethyl)-benzene (17.17%), etc. The SJYB extractives of I. verum biomass had a main retention time between 10 and 20 min what’s more, the SJYB extractives contained many biomedical moleculars, such as anethole, eucalyptol, [1S-(1α,4aα,10aβ)]-1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-1-phenanthrenecarboxylic acid, stigmast-4-en-3-one, γ-sitosterol, and so on. So the functional analytical results suggested that the SJYB extractives of I. verum had a function in activating the acquired immune response and a huge potential in biomedicine. PMID:27081359

  7. Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase.

    PubMed

    Murakami, Satoshi; Minami-Ohtsubo, Maki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Tabata, Tetsuya

    2017-05-31

    Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact. SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila , Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N

  8. Investigation of the spatially anisotropic component of the laterally averaged molecular Hydrogen/Ag(111) physisorption potential

    NASA Astrophysics Data System (ADS)

    Whaley, K. B.; Yu, C. F.; Hogg, C. S.; Light, J. C.; Sibener, S. J.

    1985-08-01

    A detailed investigation of the spatially anisotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Experimentally derived rotationally inelastic transition probabilities for H2, D2, and HD, taken as a function of collision energy, are compared with those resulting from close-coupled quantum scattering calculations. These calculations utilize exponential-3 and variable exponent parameterizations of the laterally averaged isotropic potential which reproduce the experimental bound state resonance spectra for p-H2 and o-D2 on Ag(111). Complementary information is obtained by analyzing the magnetic sub-level splittings for physisorbed J = 1 n-H2, using diffractive selective adsorption resonance energies calculated with first order perturbation theory. Theoretical predictions for HD/Ag(111) rotationally mediated selective adsorption resonances are also compared with previously reported experimental results, which show well resolved J-dependent energy shifts resulting in part from the orientational anisotropy of the potential. The results obtained in this study indicate that both the attractive and repulsive parts of the anisotropic potential exhibit only a weak orientation dependence, in agreement with recent theoretical predictions for this system.

  9. Investigation of the spatially anisotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential

    NASA Astrophysics Data System (ADS)

    Whaley, K. Birgitta; Yu, Chien-fan; Hogg, C. S.; Light, John C.; Sibener, S. J.

    1985-10-01

    A detailed investigation of the spatially anisotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Experimentally derived rotationally inelastic transition probabilities for H2, D2, and HD, taken as a function of collision energy, are compared with those resulting from close-coupled quantum scattering calculations. These calculations utilize exponential-3 and variable exponent parametrizations of the laterally averaged isotropic potential which reproduce the experimental bound state resonance spectra for p-H2 and o-D2 on Ag(111). Complementary information is obtained by analyzing the magnetic sublevel splittings for physisorbed J=1 n-H2, using diffractive selective adsorption resonance energies calculated with first order perturbation theory. Theoretical predictions for HD/Ag(111) rotationally mediated selective adsorption resonances are also compared with previously reported experimental results, which show well resolved J-dependent energy shifts resulting in part from the orientational anisotropy of the potential. The results obtained in this study indicate that both the attractive and repulsive parts of the anisotropic potential exhibit only a weak orientation dependence, in agreement with recent theoretical predictions for this system.

  10. [Study on volatile components from flowers of Gymnema sylvestre].

    PubMed

    Qiu, Qin; Zhen, Han-Shen; Huang, Pei-Qian

    2013-04-01

    To analyze the volatile components from flowers of Gymnema sylvestre. Volatile components of flowers of Gymnema sylvestre were extracted by water vapor distilling, and the components were separated and identified by GC-MS. 55 components were separated and 33 components were identified, accounting for 88.73% of all quantity. The principal volatile components are Phytol, Pentacosane, 10-Heneicosene (c, t), 3-Eicosene, (E) -and 2-Methyl-Z-2-docosane. The research can pro-vide scientific basis for chemical component research of flowers of Gymnema sylvestre.

  11. Emodin is identified as the active component of ether extracts from Rhizoma Polygoni Cuspidati, for anti-MRSA activity.

    PubMed

    Cao, Feng; Peng, Wei; Li, Xiaoli; Liu, Ming; Li, Bin; Qin, Rongxin; Jiang, Weiwei; Cen, Yanyan; Pan, Xichun; Yan, Zifei; Xiao, Kangkang; Zhou, Hong

    2015-06-01

    This study investigated the anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity and chemical compositions of ether extracts from Rhizoma Polygoni Cuspidati (ET-RPC). Significant anti-MRSA activities of ET-RPC against MRSA252 and MRSA clinical strains were tested in in vitro antibacterial experiments, such as inhibition zone diameter test, minimal inhibitory concentration test, and dynamic bacterial growth assay. Subsequently, 7 major compounds of ET-RPC were purified and identified as polydatin, resveratrol-4-O-d-(6'-galloyl)-glucopyranoside, resveratrol, torachryson-8-O-glucoside, emodin-8-O-glucoside, 6-hydroxy-emodin, and emodin using liquid chromatography - electrospray ionization - tandem mass spectrometry. After investigation of anti-MRSA activities of the 7 major compounds, only emodin had significant anti-MRSA activity. Further, transmission electron microscopy was used to observe morphological changes in the cell wall of MRSA252, and the result revealed that emodin could damage the integrity of cell wall, leading to loss of intracellular components. In summary, our results showed ET-RPC could significantly inhibit bacterial growth of MRSA strains. Emodin was identified as the major compound with anti-MRSA activity; this activity was related to destruction of the integrity of the cell wall and cell membrane.

  12. Synthesis of Structurally Diverse Emissive Molecular Rotors with Four-Component Ugi Stators.

    PubMed

    García-González, Ma Carmen; Aguilar-Granda, Andrés; Zamudio-Medina, Angel; Miranda, Luis D; Rodríguez-Molina, Braulio

    2018-03-02

    The use of the multicomponent Ugi reaction to rapidly prepare a library of dumbbell-like molecular rotors is highlighted here. The synthetic strategy consisted of the atom-economic access to 15 bulky and structurally diverse iodinated stators, which were cross-coupled to the 1,4-diethynylphenylene rotator. From those experiments, up to six rotors 1a-c and 1l-n were obtained, with yields ranging from 35 to 69% per coupled C-C bond. In addition to the framework diversity, five of these compounds showed aggregate-enhanced emission properties thanks to their conjugated 1,4-bis(phenylethynyl)benzene cores, a property that rises by increasing the water fraction (f w ) in their THF solutions. The results highlight the significance of the diversity-oriented synthesis of rapid access to new molecular fluorescent rotors.

  13. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders

    PubMed Central

    Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew

    2014-01-01

    The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)–amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC–amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC–amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC–amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC–amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014

  14. NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature

    PubMed Central

    Al-Mayhani, M. Talal F.; Grenfell, Richard; Narita, Masashi; Piccirillo, Sara; Kenney-Herbert, Emma; Fawcett, James W.; Collins, V. Peter; Ichimura, Koichi; Watts, Colin

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2− cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM. PMID:21798846

  15. A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics

    PubMed Central

    Delgado, Fernanda; Umans, Benjamin D.; Gerding, Matthew A.; Davis, Brigid M.

    2016-01-01

    Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ramoplanin) and bacitracin but not to other large antibiotics or detergents. In contrast to wild-type (WT) cells, the vigA mutant was stained with fluorescent vancomycin. These observations suggest that VigA specifically prevents the periplasmic accumulation of certain large antibiotics without exerting a general role in the maintenance of OM integrity. We also observed marked interspecies variability in the susceptibilities of Gram-negative pathogens to glycopeptides and bacitracin. Collectively, our findings suggest that the OM barrier is not absolute but rather depends on specific OM-antibiotic interactions. PMID:27216069

  16. Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups

    PubMed Central

    Kohe, Sarah; Brundler, Marie-Anne; Jenkinson, Helen; Parulekar, Manoj; Wilson, Martin; Peet, Andrew C; McConville, Carmel M

    2015-01-01

    Background: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. Methods: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. Results: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. Conclusions: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification. PMID:26348444

  17. Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal.

    PubMed

    Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua

    2015-12-23

    To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials.

  18. Current methods for molecular epidemiology studies of implant infections.

    PubMed

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2009-09-01

    Over the last few decades, the number of surgical procedures involving prosthetic materials has greatly multiplied, along with the rising medical and economic impact of implant-associated infections. The need to appropriately counteract and deal with this phenomenon has led to growing efforts to elucidate the etiology, pathogenesis and epidemiology of these types of infections, characterized by opportunistic pathogens. Molecular epidemiology studies have progressively emerged as a leading multitask tool to identify and fingerprint bacterial strains, unveil the complex clonal nature of important pathogens, detect outbreak events, track the origin of the infections, assess the clinical significance of individual strain types, survey their distribution, recognize associations of strain types with specific virulence determinants and/or pathological conditions, assess the role played by the specific components of the virulon, and reveal the phylogeny and the mechanisms through which new strain types have emerged. Despite the many advances that have been made thanks to these flourishing new approaches to molecular epidemiology, a number of critical aspects remain challenging. In this paper, we briefly discuss the current limitations and possible developments of molecular epidemiology methods in the investigation and surveillance of implant infections.

  19. InterPred: A pipeline to identify and model protein-protein interactions.

    PubMed

    Mirabello, Claudio; Wallner, Björn

    2017-06-01

    Protein-protein interactions (PPI) are crucial for protein function. There exist many techniques to identify PPIs experimentally, but to determine the interactions in molecular detail is still difficult and very time-consuming. The fact that the number of PPIs is vastly larger than the number of individual proteins makes it practically impossible to characterize all interactions experimentally. Computational approaches that can bridge this gap and predict PPIs and model the interactions in molecular detail are greatly needed. Here we present InterPred, a fully automated pipeline that predicts and model PPIs from sequence using structural modeling combined with massive structural comparisons and molecular docking. A key component of the method is the use of a novel random forest classifier that integrate several structural features to distinguish correct from incorrect protein-protein interaction models. We show that InterPred represents a major improvement in protein-protein interaction detection with a performance comparable or better than experimental high-throughput techniques. We also show that our full-atom protein-protein complex modeling pipeline performs better than state of the art protein docking methods on a standard benchmark set. In addition, InterPred was also one of the top predictors in the latest CAPRI37 experiment. InterPred source code can be downloaded from http://wallnerlab.org/InterPred Proteins 2017; 85:1159-1170. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Human neural crest cells display molecular and phenotypic hallmarks of stem cells

    PubMed Central

    Thomas, Sophie; Thomas, Marie; Wincker, Patrick; Babarit, Candice; Xu, Puting; Speer, Marcy C.; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Etchevers, Heather C.

    2008-01-01

    The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells. PMID:18689800

  1. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  2. Application of time series analysis on molecular dynamics simulations of proteins: a study of different conformational spaces by principal component analysis.

    PubMed

    Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C

    2004-09-08

    Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of alpha-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Calpha coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of alpha-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of alpha-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins. Copyright 2004 American Institute of Physics

  3. Application of time series analysis on molecular dynamics simulations of proteins: A study of different conformational spaces by principal component analysis

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.

    2004-09-01

    Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of α-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Cα coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of α-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of α-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins.

  4. Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach.

    PubMed

    Wang, Yan; Li, Yan

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

  5. Global proteome analysis identifies active immunoproteasome subunits in human platelets.

    PubMed

    Klockenbusch, Cordula; Walsh, Geraldine M; Brown, Lyda M; Hoffman, Michael D; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-12-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development.

    PubMed

    Zhang, Chenwang; Gao, Liuze; Xu, Eugene Yujun

    2016-11-01

    Spermatogenesis is one of the fundamental processes of sexual reproduction, present in almost all metazoan animals. Like many other reproductive traits, developmental features and traits of spermatogenesis are under strong selective pressure to change, both at morphological and underlying molecular levels. Yet evidence suggests that some fundamental features of spermatogenesis may be ancient and conserved among metazoan species. Identifying the underlying conserved molecular mechanisms could reveal core components of metazoan spermatogenic machinery and provide novel insight into causes of human infertility. Conserved RNA-binding proteins and their interacting RNA network emerge to be a common theme important for animal sperm development. We review research on the recent addition to the RNA family - Long non-coding RNA (lncRNA) and its roles in spermatogenesis in the context of the expanding RNA-protein network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    ERIC Educational Resources Information Center

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  8. Automated reuseable components system study results

    NASA Technical Reports Server (NTRS)

    Gilroy, Kathy

    1989-01-01

    The Automated Reusable Components System (ARCS) was developed under a Phase 1 Small Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of the ARCS program were: (1) to investigate issues associated with automated reuse of software components, identify alternative approaches, and select promising technologies, and (2) to develop tools that support component classification and retrieval. The approach followed was to research emerging techniques and experimental applications associated with reusable software libraries, to investigate the more mature information retrieval technologies for applicability, and to investigate the applicability of specialized technologies to improve the effectiveness of a reusable component library. Various classification schemes and retrieval techniques were identified and evaluated for potential application in an automated library system for reusable components. Strategies for library organization and management, component submittal and storage, and component search and retrieval were developed. A prototype ARCS was built to demonstrate the feasibility of automating the reuse process. The prototype was created using a subset of the classification and retrieval techniques that were investigated. The demonstration system was exercised and evaluated using reusable Ada components selected from the public domain. A requirements specification for a production-quality ARCS was also developed.

  9. Characterization of secondary organic aerosol from photo-oxidation of gasoline exhaust and specific sources of major components.

    PubMed

    Ma, Pengkun; Zhang, Peng; Shu, Jinian; Yang, Bo; Zhang, Haixu

    2018-01-01

    To further explore the composition and distribution of secondary organic aerosol (SOA) components from the photo-oxidation of light aromatic precursors (toluene, m-xylene, and 1,3,5-trimethylbenzene (1,3,5-TMB)) and idling gasoline exhaust, a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was employed. Peaks of the molecular ions of the SOA components with minimum molecular fragmentation were clearly observed from the mass spectra of SOA, through the application of soft ionization methods in VUV-PIMS. The experiments comparing the exhaust-SOA and light aromatic mixture-SOA showed that the observed distributions of almost all the predominant cluster ions in the exhaust-SOA were similar to that of the mixture-SOA. Based on the characterization experiments of SOA formed from individual light aromatic precursors, the SOA components with molecular weights of 98 and 110 amu observed in the exhaust-SOA resulted from the photo-oxidation of toluene and m-xylene; the components with a molecular weight of 124 amu were derived mainly from m-xylene; and the components with molecular weights of 100, 112, 128, 138, and 156 amu were mainly derived from 1,3,5-TMB. These results suggest that C 7 -C 9 light aromatic hydrocarbons are significant SOA precursors and that major SOA components originate from gasoline exhaust. Additionally, some new light aromatic hydrocarbon-SOA components were observed for the first time using VUV-PIMS. The corresponding reaction mechanisms were also proposed in this study to enrich the knowledge base of the formation mechanisms of light aromatic hydrocarbon-SOA compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Workshop on Molecular Animation

    PubMed Central

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.

    2011-01-01

    Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014

  11. Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria in humans.

    PubMed

    Aspholm, Marina; Aas, Finn Erik; Harrison, Odile B; Quinn, Diana; Vik, Ashild; Viburiene, Raimonda; Tønjum, Tone; Moir, James; Maiden, Martin C J; Koomey, Michael

    2010-08-19

    Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb(3) oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host.

  12. Translational informatics approach for identifying the functional molecular communicators linking coronary artery disease, infection and inflammation

    PubMed Central

    SHARMA, ANKIT; GHATGE, MADANKUMAR; MUNDKUR, LAKSHMI; VANGALA, RAJANI KANTH

    2016-01-01

    Translational informatics approaches are required for the integration of diverse and accumulating data to enable the administration of effective translational medicine specifically in complex diseases such as coronary artery disease (CAD). In the current study, a novel approach for elucidating the association between infection, inflammation and CAD was used. Genes for CAD were collected from the CAD-gene database and those for infection and inflammation were collected from the UniProt database. The cytomegalovirus (CMV)-induced genes were identified from the literature and the CAD-associated clinical phenotypes were obtained from the Unified Medical Language System. A total of 55 gene ontologies (GO) termed functional communicator ontologies were identifed in the gene sets linking clinical phenotypes in the diseasome network. The network topology analysis suggested that important functions including viral entry, cell adhesion, apoptosis, inflammatory and immune responses networked with clinical phenotypes. Microarray data was extracted from the Gene Expression Omnibus (dataset: GSE48060) for highly networked disease myocardial infarction. Further analysis of differentially expressed genes and their GO terms suggested that CMV infection may trigger a xenobiotic response, oxidative stress, inflammation and immune modulation. Notably, the current study identified γ-glutamyl transferase (GGT)-5 as a potential biomarker with an odds ratio of 1.947, which increased to 2.561 following the addition of CMV and CMV-neutralizing antibody (CMV-NA) titers. The C-statistics increased from 0.530 for conventional risk factors (CRFs) to 0.711 for GGT in combination with the above mentioned infections and CRFs. Therefore, the translational informatics approach used in the current study identified a potential molecular mechanism for CMV infection in CAD, and a potential biomarker for risk prediction. PMID:27035874

  13. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  14. Application of molecular genetic tools to studies of forest pathosystems [Chapter 2

    Treesearch

    Mee-Sook Kim; Ned B. Klopfenstein; Richard C. Hamelin

    2005-01-01

    The use of molecular genetics in forest pathology has greatly increased over the past 10 years. For the most part, molecular genetic tools were initially developed to focus on individual components (e.g., pathogen, host) of forest pathosystems. As part of broader forest ecosystem complexes, forest pathosystems involve dynamic interactions among living components (e.g...

  15. Oligomers, organosulfates, and nitroxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Turpin, B. J.; Seitzinger, S. P.

    2008-09-01

    Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50% of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Elemental compositions of 552 unique molecular species were determined in the mass range 50 500 Da in the rainwater. Three main groups of organic compounds were identified: compounds containing carbon, hydrogen, and oxygen (CHO) only, sulfur (S) containing CHOS compounds, and S- and nitrogen containing CHONS compounds. Organic acids commonly identified in precipitation were detected, as well as linear alkylbenzene sulfonates, which are persistent pollutants commonly measured in river water, seawater, and sediments, but to our knowledge, not previously documented in atmospheric samples. Within the three main groups of compounds detected in the rainwater, oligomers, organosulfates, and nitroxy-organosulfates were identified. The majority of the compounds identified are products of atmospheric reactions and are known contributors to secondary organic aerosol (SOA) formed from gas phase, aerosol phase, and in-cloud reactions in the atmosphere. It is suggested that the large uncharacterized component of SOA is the main contributor to the large uncharacterized component of rainwater organic matter.

  16. An Exploratory Study on Using Principal-Component Analysis and Confirmatory Factor Analysis to Identify Bolt-On Dimensions: The EQ-5D Case Study.

    PubMed

    Finch, Aureliano Paolo; Brazier, John Edward; Mukuria, Clara; Bjorner, Jakob Bue

    2017-12-01

    Generic preference-based measures such as the EuroQol five-dimensional questionnaire (EQ-5D) are used in economic evaluation, but may not be appropriate for all conditions. When this happens, a possible solution is adding bolt-ons to expand their descriptive systems. Using review-based methods, studies published to date claimed the relevance of bolt-ons in the presence of poor psychometric results. This approach does not identify the specific dimensions missing from the Generic preference-based measure core descriptive system, and is inappropriate for identifying dimensions that might improve the measure generically. This study explores the use of principal-component analysis (PCA) and confirmatory factor analysis (CFA) for bolt-on identification in the EQ-5D. Data were drawn from the international Multi-Instrument Comparison study, which is an online survey on health and well-being measures in five countries. Analysis was based on a pool of 92 items from nine instruments. Initial content analysis provided a theoretical framework for PCA results interpretation and CFA model development. PCA was used to investigate the underlining dimensional structure and whether EQ-5D items were represented in the identified constructs. CFA was used to confirm the structure. CFA was cross-validated in random halves of the sample. PCA suggested a nine-component solution, which was confirmed by CFA. This included psychological symptoms, physical functioning, and pain, which were covered by the EQ-5D, and satisfaction, speech/cognition,relationships, hearing, vision, and energy/sleep which were not. These latter factors may represent relevant candidate bolt-ons. PCA and CFA appear useful methods for identifying potential bolt-ons dimensions for an instrument such as the EQ-5D. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  17. Combined Molecular Dynamics Simulation-Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions.

    PubMed

    Sresht, Vishnu; Lewandowski, Eric P; Blankschtein, Daniel; Jusufi, Arben

    2017-08-22

    A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.

  18. How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016

    PubMed Central

    Astumian, R. D.

    2017-01-01

    The Nobel prize in Chemistry for 2016 was awarded to Jean Pierre Sauvage, Sir James Fraser Stoddart, and Bernard (Ben) Feringa for their contributions to the design and synthesis of molecular machines. While this field is still in its infancy, and at present there are no commercial applications, many observers have stressed the tremendous potential of molecular machines to revolutionize technology. However, perhaps the most important result so far accruing from the synthesis of molecular machines is the insight provided into the fundamental mechanisms by which molecular motors, including biological motors such as kinesin, myosin, FoF1 ATPase, and the flagellar motor, function. The ability to “tinker” with separate components of molecular motors allows asking, and answering, specific questions about mechanism, particularly with regard to light driven vs. chemistry driven molecular motors. PMID:28572896

  19. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  20. Ferrocene-containing non-interlocked molecular machines.

    PubMed

    Scottwell, Synøve Ø; Crowley, James D

    2016-02-11

    Ferrocene is the prototypical organometallic sandwich complex and despite over 60 years passing since the discovery and elucidation of ferrocene's structure, research into ferrocene-containing compounds continues to grow as potential new applications in catalysis, biology and the material sciences are found. Ferrocene is chemically robust and readily functionalized which enables its facile incorporation into more complex molecular systems. This coupled with ferrocene's reversible redox properties and ability function as a "molecular ball bearing" has led to the use of ferrocene as a component in wide range of interlocked and non-interlocked synthetic molecular machine systems. This review will focus on the exploitation of ferrocene (and related sandwich complexes) for the development of non-interlocked synthetic molecular machines.

  1. Network motifs – recurring circuitry components in biological systems

    EPA Science Inventory

    Environmental perturbations, elicited by chemicals, dietary supplements, and drugs, can alter the dynamics of the molecular circuits and networks operating in cells, leading to multiple disease endpoints. Multi-component signal transduction pathways and gene regulatory circuits u...

  2. A Genome-wide Regulatory Network Identifies Key Transcription Factors for Memory CD8+ T Cell Development

    PubMed Central

    Hu, Guangan; Chen, Jianzhu

    2014-01-01

    Memory CD8+ T cell development is defined by the expression of a specific set of memory signature genes (MSGs). Despite recent progress, many components of the transcriptional control of memory CD8+ T cell development are still unknown. To identify transcription factors (TFs) and their interactions in memory CD8+ T cell development, we construct a genome-wide regulatory network and apply it to identify key TFs that regulate MSGs. Most of the known TFs in memory CD8+ T cell development are rediscovered and about a dozen new TFs are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified and Bach2 is further shown to promote both development and recall proliferation of memory CD8+ T cells through Prdm1 and Id3. Gene perturbation study identifies the mode of interactions among the TFs with Sox4 as a hub. The identified TFs and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8+ T cell development. PMID:24335726

  3. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed

    Litman, G W; Berger, L; Jahn, C L

    1982-06-11

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions.

  4. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed Central

    Litman, G W; Berger, L; Jahn, C L

    1982-01-01

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions. Images PMID:6285298

  5. Improving the distinguishable cluster results: spin-component scaling

    NASA Astrophysics Data System (ADS)

    Kats, Daniel

    2018-06-01

    The spin-component scaling is employed in the energy evaluation to improve the distinguishable cluster approach. SCS-DCSD reaction energies reproduce reference values with a root-mean-squared deviation well below 1 kcal/mol, the interaction energies are three to five times more accurate than DCSD, and molecular systems with a large amount of static electron correlation are still described reasonably well. SCS-DCSD represents a pragmatic approach to achieve chemical accuracy with a simple method without triples, which can also be applied to multi-configurational molecular systems.

  6. Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard predatory mite Metaseiulus occidentalis (Chelicerata: Arachnida: Acari: Phytoseiidae).

    PubMed

    Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y

    2015-01-01

    Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods.

  7. Molecular response of canola to salt stress: insights on tolerance mechanisms.

    PubMed

    Shokri-Gharelo, Reza; Noparvar, Pouya Motie

    2018-01-01

    Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.

  8. Child Disaster Mental Health Interventions: Therapy Components

    PubMed Central

    Pfefferbaum, Betty; Sweeton, Jennifer L.; Nitiéma, Pascal; Noffsinger, Mary A.; Varma, Vandana; Nelson, Summer D.; Newman, Elana

    2015-01-01

    Children face innumerable challenges following exposure to disasters. To address trauma sequelae, researchers and clinicians have developed a variety of mental health interventions. While the overall effectiveness of multiple interventions has been examined, few studies have focused on the individual components of these interventions. As a preliminary step to advancing intervention development and research, this literature review identifies and describes nine common components that comprise child disaster mental health interventions. This review concluded that future research should clearly define the constituent components included in available interventions. This will require that future studies dismantle interventions to examine the effectiveness of specific components and identify common therapeutic elements. Issues related to populations studied (eg, disaster exposure, demographic and cultural influences) and to intervention delivery (eg, timing and optimal sequencing of components) also warrant attention. PMID:25225954

  9. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less

  10. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water

    NASA Astrophysics Data System (ADS)

    Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M.; Gnecco, Enrico

    2014-06-01

    The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.

  11. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water.

    PubMed

    Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M; Gnecco, Enrico

    2014-07-21

    The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.

  12. "Soft docking": matching of molecular surface cubes.

    PubMed

    Jiang, F; Kim, S H

    1991-05-05

    Molecular recognition is achieved through the complementarity of molecular surface structures and energetics with, most commonly, associated minor conformational changes. This complementarity can take many forms: charge-charge interaction, hydrogen bonding, van der Waals' interaction, and the size and shape of surfaces. We describe a method that exploits these features to predict the sites of interactions between two cognate molecules given their three-dimensional structures. We have developed a "cube representation" of molecular surface and volume which enables us not only to design a simple algorithm for a six-dimensional search but also to allow implicitly the effects of the conformational changes caused by complex formation. The present molecular docking procedure may be divided into two stages. The first is the selection of a population of complexes by geometric "soft docking", in which surface structures of two interacting molecules are matched with each other, allowing minor conformational changes implicitly, on the basis of complementarity in size and shape, close packing, and the absence of steric hindrance. The second is a screening process to identify a subpopulation with many favorable energetic interactions between the buried surface areas. Once the size of the subpopulation is small, one may further screen to find the correct complex based on other criteria or constraints obtained from biochemical, genetic, and theoretical studies, including visual inspection. We have tested the present method in two ways. First is a control test in which we docked the components of a molecular complex of known crystal structure available in the Protein Data Bank (PDB). Two molecular complexes were used: (1) a ternary complex of dihydrofolate reductase, NADPH and methotrexate (3DFR in PDB) and (2) a binary complex of trypsin and trypsin inhibitor (2PTC in PDB). The components of each complex were taken apart at an arbitrary relative orientation and then docked

  13. HDL2-cholesterol/HDL3-cholesterol ratio was associated with insulin resistance, high-molecular-weight adiponectin, and components for metabolic syndrome in Japanese.

    PubMed

    Moriyama, Kengo; Negami, Masako; Takahashi, Eiko

    2014-11-01

    Recent data have suggested a relationship between the high-density lipoprotein (HDL) subclass ratio and metabolic syndrome (MetS). However, limited information is available regarding the relationships between the HDL subclass ratio and insulin resistance, associated adipocytokine levels, and MetS components. The associations of the high-density lipoprotein 2 cholesterol (HDL2-C) to high-density lipoprotein 3 cholesterol (HDL3-C) ratio with the homeostasis model assessment of insulin resistance (HOMA-IR) index, high-molecular-weight adiponectin (HMW-Ad) levels, and MetS components were examined. The study included 1155 Japanese subjects who met our inclusion criteria and underwent an annual health examination that included an HDL subclass analysis. The HDL2-C/HDL3-C ratio and the HMW-Ad level gradually decreased as the number of MetS components increased. In contrast, HOMA-IR gradually increased as the number of MetS components increased. The HDL2-C/HDL3-C ratio correlated inversely with HOMA-IR and positively with the HMW-Ad level. A strong positive correlation was observed between the HDL2-C/HDL3-C ratio and the HDL-C level. The HDL2-C/HDL3-C ratio exhibited moderate negative correlations with the body mass index, waist circumference, and triglyceride level. Weak negative correlations were observed for the HDL2-C/HDL3-C ratio with the systolic and diastolic blood pressure and fasting plasma glucose levels. Our data indicated that the HDL2-C/HDL3-C ratio was associated with insulin resistance, the HMW-Ad level, and MetS components, and it was useful for evaluating MetS in Japanese individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Lighten the Load: Scaffolding Visual Literacy in Biochemistry and Molecular Biology

    PubMed Central

    Offerdahl, Erika G.; Arneson, Jessie B.; Byrne, Nicholas

    2017-01-01

    The development of scientific visual literacy has been identified as critical to the training of tomorrow’s scientists and citizens alike. Within the context of the molecular life sciences in particular, visual representations frequently incorporate various components, such as discipline-specific graphical and diagrammatic features, varied levels of abstraction, and spatial arrangements of visual elements to convey information. Visual literacy is achieved when an individual understands the various ways in which a discipline uses these components to represent a particular way of knowing. Owing to the complex nature of visual representations, the activities through which visual literacy is developed have high cognitive load. Cognitive load can be reduced by first helping students to become fluent with the discrete components of visual representations before asking them to simultaneously integrate these components to extract the intended meaning of a representation. We present a taxonomy for characterizing one component of visual representations—the level of abstraction—as a first step in understanding the opportunities afforded students to develop fluency. Further, we demonstrate how our taxonomy can be used to analyze course assessments and spur discussions regarding the extent to which the development of visual literacy skills is supported by instruction within an undergraduate biochemistry curriculum. PMID:28130273

  15. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    PubMed

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín

    2010-12-01

    Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to

  17. PROGNOSTIC SIGNIFICANCE OF CLINICAL, HISTOPATHOLOGICAL, AND MOLECULAR CHARACTERISTICS OF MEDULLOBLASTOMAS IN THE PROSPECTIVE HIT2000 MULTICENTER CLINICAL TRIAL COHORT

    PubMed Central

    Pietsch, Torsten; Schmidt, Rene; Remke, Marc; Korshunov, Andrey; Hovestadt, Volker; Jones, David TW; Felsberg, Jörg; Kaulich, Kerstin; Goschzik, Tobias; Kool, Marcel; Northcott, Paul A.; von Hoff, Katja; von Bueren, André O.; Friedrich, Carsten; Skladny, Heyko; Fleischhack, Gudrun; Taylor, Michael D.; Cremer, Friedrich; Lichter, Peter; Faldum, Andreas; Reifenberger, Guido; Rutkowski, Stefan; Pfister, Stefan M.

    2014-01-01

    BACKGROUND: This study aimed to prospectively evaluate clinical, histopathological and molecular variables for outcome prediction in medulloblastoma patients. METHODS: Patients from the HIT2000 cooperative clinical trial were prospectively enrolled based on the availability of sufficient tumor material and complete clinical information. This revealed a cohort of 184 patients (median age 7.6 years), which was randomly split at a 2:1 ratio into a training (n = 127), and a validation (n = 57) dataset. All samples were subjected to thorough histopathological investigation, CTNNB1 mutation analysis, quantitative PCR, MLPA and FISH analyses for cytogenetic variables, and methylome analysis. RESULTS: By univariable analysis, clinical factors (M-stage), histopathological variables (large cell component, endothelial proliferation, synaptophysin pattern), and molecular features (chromosome 6q status, MYC amplification, TOP2A copy-number, subgrouping) were found to be prognostic. Molecular consensus subgrouping (WNT, SHH, Group 3, Group 4) was validated as an independent feature to stratify patients into different risk groups. When comparing methods for the identification of WNT-driven medulloblastoma, this study identified CTNNB1 sequencing and methylation profiling to most reliably identify these patients. After removing patients with particularly favorable (CTNNB1 mutation, extensive nodularity) or unfavorable (MYC amplification) markers, a risk score for the remaining “intermediate molecular risk” population dependent on age, M-stage, pattern of synaptophysin expression, and MYCN copy-number status was identified and validated, with speckled synaptophysin expression indicating worse outcome. CONCLUSIONS: Methylation subgrouping and CTNNB1 mutation status represent robust tools for the risk-stratification of medulloblastoma. A simple clinico-pathological risk score for “intermediate molecular risk” patients was identified, which deserves further validation

  18. Molecular Clustering Interrelationships and Carbohydrate Conformation in Hull and Seeds Among Barley Cultivars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N Liu; P Yu

    2011-12-31

    The objective of this study was to use molecular spectral analyses with the diffuse reflectance Fourier transform infrared spectroscopy (DRIFT) bioanlytical technique to study carbohydrate conformation features, molecular clustering and interrelationships in hull and seed among six barley cultivars (AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, CDC Cowboy), which had different degradation kinetics in rumen. The molecular structure spectral analyses in both hull and seed involved the fingerprint regions of ca. 1536-1484 cm{sup -1} (attributed mainly to aromatic lignin semicircle ring stretch), ca. 1293-1212 cm{sup -1} (attributed mainly to cellulosic compounds in the hull), ca. 1269-1217 cm{sup -1}more » (attributed mainly to cellulosic compound in the seeds), and ca. 1180-800 cm{sup -1} (attributed mainly to total CHO C-O stretching vibrations) together with an agglomerative hierarchical cluster (AHCA) and principal component spectral analyses (PCA). The results showed that the DRIFT technique plus AHCA and PCA molecular analyses were able to reveal carbohydrate conformation features and identify carbohydrate molecular structure differences in both hull and seeds among the barley varieties. The carbohydrate molecular spectral analyses at the region of ca. 1185-800 cm{sup -1} together with the AHCA and PCA were able to show that the barley seed inherent structures exhibited distinguishable differences among the barley varieties. CDC Helgason had differences from AC Metcalfe, MeLeod, CDC Cowboy and CDC Dolly in carbohydrate conformation in the seed. Clear molecular cluster classes could be distinguished and identified in AHCA analysis and the separate ellipses could be grouped in PCA analysis. But CDC Helgason had no distinguished differences from CDC Trey in carbohydrate conformation. These carbohydrate conformation/structure difference could partially explain why the varieties were different in digestive behaviors in animals. The molecular spectroscopy

  19. Identifying Recent HIV Infections: From Serological Assays to Genomics.

    PubMed

    Moyo, Sikhulile; Wilkinson, Eduan; Novitsky, Vladimir; Vandormael, Alain; Gaseitsiwe, Simani; Essex, Max; Engelbrecht, Susan; de Oliveira, Tulio

    2015-10-23

    In this paper, we review serological and molecular based methods to identify HIV infection recency. The accurate identification of recent HIV infection continues to be an important research area and has implications for HIV prevention and treatment interventions. Longitudinal cohorts that follow HIV negative individuals over time are the current gold standard approach, but they are logistically challenging, time consuming and an expensive enterprise. Methods that utilize cross-sectional testing and biomarker information have become an affordable alternative to the longitudinal approach. These methods use well-characterized biological makers to differentiate between recent and established HIV infections. However, recent results have identified a number of limitations in serological based assays that are sensitive to the variability in immune responses modulated by HIV subtypes, viral load and antiretroviral therapy. Molecular methods that explore the dynamics between the timing of infection and viral evolution are now emerging as a promising approach. The combination of serological and molecular methods may provide a good solution to identify recent HIV infection in cross-sectional data. As part of this review, we present the advantages and limitations of serological and molecular based methods and their potential complementary role for the identification of HIV infection recency.

  20. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambros, Maria Polikandritou, E-mail: mlambros@westernu.edu; Parsa, Cyrus; Mulamalla, HariChandana

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinelymore » be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage

  1. Characterization of Hippo Pathway Components by Gene Inactivation.

    PubMed

    Plouffe, Steven W; Meng, Zhipeng; Lin, Kimberly C; Lin, Brian; Hong, Audrey W; Chun, Justin V; Guan, Kun-Liang

    2016-12-01

    The Hippo pathway is important for regulating tissue homeostasis, and its dysregulation has been implicated in human cancer. However, it is not well understood how the Hippo pathway becomes dysregulated because few mutations in core Hippo pathway components have been identified. Therefore, much work in the Hippo field has focused on identifying upstream regulators, and a complex Hippo interactome has been identified. Nevertheless, it is not always clear which components are the most physiologically relevant in regulating YAP/TAZ. To provide an overview of important Hippo pathway components, we created knockout cell lines for many of these components and compared their relative contributions to YAP/TAZ regulation in response to a wide range of physiological signals. By this approach, we provide an overview of the functional importance of many Hippo pathway components and demonstrate NF2 and RHOA as important regulators of YAP/TAZ and TAOK1/3 as direct kinases for LATS1/2. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Molecular profiling of permafrost soil organic carbon composition and degradation

    NASA Astrophysics Data System (ADS)

    Gu, B.; Mann, B.

    2014-12-01

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon (C) cycling, though the dynamics of these transformations remain unclear at the molecular level. This study reports the application of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to profile molecular components of Arctic SOM collected from the surface water and the mineral horizon of a low-centered polygon soil at Barrow Environmental Observatory (BEO), Barrow, Alaska. Soil samples were subjected to anaerobic warming experiments for a period of 40 days, and the SOM was extracted before and after the incubation to determine the components of organic C that were degraded over the course of the study. A CHO index based on molecular composition data was utilized to codify SOM components according to their observed degradation potential. Carbohydrate- and lignin-like compounds in the water-soluble fraction (WSF) demonstrated a high degradation potential, while structures with similar stoichiometries in the base-soluble fraction (BSF) were not readily degraded. The WSF of SOM also shifted to a wider range of measured molecular masses including an increased prevalence of larger compounds, while the size distribution of compounds in the BSF changed little over the same period. Additionally, the molecular profiling data indicated an apparently ordered incorporation of organic nitrogen in the BSF immobilized as primary and secondary amines, possibly as components of N-heterocycles, which may provide insight into nitrogen immobilization or mobilization processes in SOM. Our study represents an important step forward for studying Arctic SOM with improved understanding of the molecular properties of soil organic C and the ability to represent SOM in climate models that will predict the impact of climate change on soil C and nutrient cycling.

  3. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  4. Compensation effects in molecular interactions and the quantum chemical le Chatelier principle.

    PubMed

    Mezey, Paul G

    2015-05-28

    Components of molecular interactions and various changes in the components of total energy changes during molecular processes typically exhibit some degrees of compensation. This may be as prominent as the over 90% compensation of the electronic energy and nuclear repulsion energy components of the total energy in some conformational changes. Some of these compensations are enhanced by solvent effects. For various arrangements of ions in a solvent, however, not only compensation but also a formal, mutual enhancement between the electronic energy and nuclear repulsion energy components of the total energy may also occur, when the tools of nuclear charge variation are applied to establish quantum chemically rigorous energy inequalities.

  5. Identifying Component-Processes of Executive Functioning that Serve as Risk Factors for the Alcohol-Aggression Relation

    PubMed Central

    Giancola, Peter R.; Godlaski, Aaron J.; Roth, Robert M.

    2011-01-01

    The present investigation determined how different component-processes of executive functioning (EF) served as risk factors for intoxicated aggression. Participants were 512 (246 men and 266 women) healthy social drinkers between 21 and 35 years of age. EF was measured using the Behavior Rating Inventory of Executive Functioning – Adult Version (BRIEF-A; Roth, Isquith, & Gioia, 2005) that assesses nine EF components. Following the consumption of either an alcohol or a placebo beverage, participants were tested on a modified version of the Taylor Aggression Paradigm (Taylor, 1967) in which mild electric shocks were received from, and administered to, a fictitious opponent. Aggressive behavior was operationalized as the shock intensities and durations administered to the opponent. Although a general BRIEF-A EF construct consisting of all nine components predicted intoxicated aggression, the best predictor involved one termed the Behavioral Regulation Index which comprises component processes such as inhibition, emotional control, flexible thinking, and self-monitoring. PMID:21875167

  6. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    PubMed

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  7. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    PubMed Central

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-01-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. PMID:15084750

  8. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  9. Optimizing of MALDI-ToF-based low-molecular-weight serum proteome pattern analysis in detection of breast cancer patients; the effect of albumin removal on classification performance.

    PubMed

    Pietrowska, M; Marczak, L; Polanska, J; Nowicka, E; Behrent, K; Tarnawski, R; Stobiecki, M; Polanski, A; Widlak, P

    2010-01-01

    Mass spectrometry-based analysis of the serum proteome allows identifying multi-peptide patterns/signatures specific for blood of cancer patients, thus having high potential value for cancer diagnostics. However, because of problems with optimization and standardization of experimental and computational design, none of identified proteome patterns/signatures was approved for diagnostics in clinical practice as yet. Here we compared two methods of serum sample preparation for mass spectrometry-based proteome pattern analysis aimed to identify biomarkers that could be used in early detection of breast cancer patients. Blood samples were collected in a group of 92 patients diagnosed at early (I and II) stages of the disease before the start of therapy, and in a group of age-matched healthy controls (104 women). Serum specimens were purified and analyzed using MALDI-ToF spectrometry, either directly or after membrane filtration (50 kDa cut-off) to remove albumin and other large serum proteins. Mass spectra of the low-molecular-weight fraction (2-10 kDa) of the serum proteome were resolved using the Gaussian mixture decomposition, and identified spectral components were used to build classifiers that differentiated samples from breast cancer patients and healthy persons. Mass spectra of complete serum and membrane-filtered albumin-depleted samples have apparently different structure and peaks specific for both types of samples could be identified. The optimal classifier built for the complete serum specimens consisted of 8 spectral components, and had 81% specificity and 72% sensitivity, while that built for the membrane-filtered samples consisted of 4 components, and had 80% specificity and 81% sensitivity. We concluded that pre-processing of samples to remove albumin might be recommended before MALDI-ToF mass spectrometric analysis of the low-molecular-weight components of human serum Keywords: albumin removal; breast cancer; clinical proteomics; mass spectrometry

  10. Similarities between principal components of protein dynamics and random diffusion

    NASA Astrophysics Data System (ADS)

    Hess, Berk

    2000-12-01

    Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.

  11. Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods

    PubMed Central

    Abreu, D. P. B.; Almeida-Paes, R.; Brilhante, R. S. N.; Chakrabarti, A.; Córdoba, S.; Gonzalez, G. M.; Guarro, J.; Johnson, E. M.; Kidd, S. E.; Pereira, S. A.; Rozental, S.; Szeszs, M. W.; Ballesté Alaniz, R.; Bonifaz, A.; Bonfietti, L. X.; Borba-Santos, L. P.; Capilla, J.; Colombo, A. L.; Dolande, M.; Isla, M. G.; Melhem, M. S. C.; Mesa-Arango, A. C.; Oliveira, M. M. E.; Panizo, M. M.; Pires de Camargo, Z.; Zancope-Oliveira, R. M.; Turnidge, J.

    2017-01-01

    ABSTRACT Clinical and Laboratory Standards Institute (CLSI) conditions for testing the susceptibilities of pathogenic Sporothrix species to antifungal agents are based on a collaborative study that evaluated five clinically relevant isolates of Sporothrix schenckii sensu lato and some antifungal agents. With the advent of molecular identification, there are two basic needs: to confirm the suitability of these testing conditions for all agents and Sporothrix species and to establish species-specific epidemiologic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles, terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto, 486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates. Data were obtained in 17 independent laboratories (Australia, Europe, India, South Africa, and South and North America) using conidial inoculum suspensions and 48 to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold concentrations) allowed the proposal of the following ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin B, 4 and 4 μg/ml; itraconazole, 2 and 2 μg/ml; posaconazole, 2 and 2 μg/ml; and voriconazole, 64 and 32 μg/ml. Ketoconazole and terbinafine ECVs for S. brasiliensis were 2 and 0.12 μg/ml, respectively. Insufficient or unsuitable data precluded the calculation of ketoconazole and terbinafine (or any other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S. mexicana. These ECVs could aid the clinician in identifying potentially resistant isolates (non-wild type) less likely to respond to therapy. PMID:28739796

  12. A metabolomics-based approach identifies changes in the small molecular weight compound composition of the peanut as a result of dry-roasting.

    PubMed

    Klevorn, Claire M; Dean, Lisa L

    2018-02-01

    Raw peanuts in the USA are subjected to thermal processing, such as dry-roasting, prior to consumption. A multi-instrument metabolomics-based platform along with targeted analyses was used to determine changes in the low-molecular-weight compound composition of peanuts due to dry-roasting. Runner and virginia-type peanut seeds were characterized using several analytical platforms including (RP)/UPLC-MS/MS (positive and negative ion mode ESI) and HILIC/UPLC-MS/MS with negative ion mode ESI. Of the 383 compounds identified, 16 compounds were unique to the roasted peanuts. Using pathway analysis, compounds associated with arginine and proline metabolism were found to be the most changed. Products of chemical degradation and compounds contained within the vesicular bodies of the peanut increased after roasting. Dry-roasting had a significant impact on the levels and types of low-molecular-weight compounds present. These findings provide useful information about composition changes due to roasting. Published by Elsevier Ltd.

  13. A comparative study of structural and conformational properties of casein kinase-1 isoforms: insights from molecular dynamics and principal component analysis.

    PubMed

    Singh, Surya Pratap; Gupta, Dwijendra K

    2015-04-21

    Wnt signaling pathway regulates several developmental processes in human; however recently this pathway has been associated with development of different types of cancers. Casein kinase-1 (CK1) constitutes a family of serine-threonine protein kinase; various members of this family participate in Wnt signal transduction pathway and serve as molecular switch to this pathway. Among the known six isoforms of CK1, in human, at least three isoforms (viz. alpha, delta and epsilon) have been reported as oncogenic. The development of common therapeutics against these kinases is an arduous task; unless we have the detailed information of their tertiary structures and conformational properties. In the present work, the dynamical and conformational properties for each of three isoforms of CK1 are explored through molecular dynamics (MD) simulations. The conformational space distribution of backbone atoms is evaluated using principal component analysis of MD data, which are further validated on the basis of potential energy surface. Based on these analytics, it is suggested that conformational subspace shifts upon binding to ligands and guides the kinase action of CK1 isoforms. Further, this paper as a first effort to concurrently study all the three isoforms of CK1 provides structural basis for development of common anticancer therapeutics against three isoforms of CK1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GSs) are one of the major components of gluten and their allelic variation has been widely associated with numerous wheat end-use quality parameters. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and...

  15. Selection on plant male function genes identifies candidates for reproductive isolation of yellow monkeyflowers.

    PubMed

    Aagaard, Jan E; George, Renee D; Fishman, Lila; Maccoss, Michael J; Swanson, Willie J

    2013-01-01

    Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the

  16. The X-ray Emitting Components towards l = 111 deg: The Local Hot Bubble and Beyond

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have obtained an XMM-Newton spectrum of the diffuse X-ray emission towards (l, b) = (111.14,1.11), a line of sight with a relatively simple distribution of absorbing clouds; > 9 x 10(exp 19)/sq cm at R>170 pc, a 6 x 10(exp 21)/sq cm molecular cloud at 2.5-3.3 kpc, and a total column of 1.2 x 10(exp 22)/sq cm. We find that the analysis of the XMM-Newton spectrum in conjunction with the RASS spectral energy distribution for the same direction requires three thermal components to be well fit: a "standard" Local Hot Bubble component with kT = 0.089, a component beyond the molecular cloud with kT = 0.59, and a component before the molecular cloud with kT = 0.21. The strength of the O VII 0.56 keV line from the Local Hot Bubble, 2.1+/-0.7 photons/sq cm/s/sr, is consistent with other recent measures. The 0.21 keV component has an emission measure of 0.0022+/-0.0006 pc and is not localized save as diffuse emission within the Galactic plane; it is the best candidate for a pervasive hot medium. The spatial separation of the approx. 0.2 keV component from the approx. 0.6 keV component suggests that the spectral decompositions of the emission from late-type spiral disks found in the literature do represent real temperature components rather than reflecting more complex temperature distributions.

  17. An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine.

    PubMed

    Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2014-08-01

    The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.

  18. Behavioral Responses of CD-1 Mice to Six Predator Odor Components.

    PubMed

    Sievert, Thorbjörn; Laska, Matthias

    2016-06-01

    Mammalian prey species are able to detect predator odors and to display appropriate defensive behavior. However, there is only limited knowledge about whether single compounds of predator odors are sufficient to elicit such behavior. Therefore, we assessed if predator-naïve CD-1 mice (n = 60) avoid sulfur-containing compounds that are characteristic components of natural predator odors and/or display other indicators of anxiety. A 2-compartment test arena was used to assess approach/avoidance behavior, general motor activity, and the number of fecal pellets excreted when the animals were presented with 1 of 6 predator odor components in one compartment and a blank control in the other compartment. We found that 2 of the 6 predator odor components (2-propylthietane and 3-methyl-1-butanethiol) were significantly avoided by the mice. The remaining 4 predator odor components (2,2-dimethylthietane, 3-mercapto-3-methylbutan-1-ol, 3-mercapto-3-methylbutyl-1-formate, and methyl-2-phenylethyl sulphide) as well as a nonpredator-associated fruity odor (n-pentyl acetate) were not avoided. Neither the general motor activity nor the number of excreted fecal pellets, both widely used measures of stress- or anxiety-related behavior, were systematically affected by any of the odorants tested. Further, we found that small changes in the molecular structure of a predator odor component can have a marked effect on its behavioral significance as 2-propylthietane was significantly avoided by the mice whereas the structurally related 2,2-dimethylthietane was not. We conclude that sulfur-containing volatiles identified as characteristic components of the urine, feces, and anal gland secretions of mammalian predators can be, but are not necessarily sufficient to elicit defensive behaviors in a mammalian prey species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection

    PubMed Central

    Choi, Young-Jun; Fuchs, Jeremy F.; Mayhew, George F.; Yu, Helen E.; Christensen, Bruce M.

    2012-01-01

    Hemocytes are integral components of mosquito immune mechanisms such as phagocytosis, melanization, and production of antimicrobial peptides. However, our understanding of hemocyte-specific molecular processes and their contribution to shaping the host immune response remains limited. To better understand the immunophysiological features distinctive of hemocytes, we conducted genome-wide analysis of hemocyte-enriched transcripts, and examined how tissue-enriched expression patterns change with the immune status of the host. Our microarray data indicate that the hemocyte-enriched trascriptome is dynamic and context-dependent. Analysis of transcripts enriched after bacterial challenge in circulating hemocytes with respect to carcass added a dimension to evaluating infection-responsive genes and immune-related gene families. We resolved patterns of transcriptional change unique to hemocytes from those that are likely shared by other immune responsive tissues, and identified clusters of genes preferentially induced in hemocytes, likely reflecting their involvement in cell type specific functions. In addition, the study revealed conserved hemocyte-enriched molecular repertoires which might be implicated in core hemocyte function by cross-species meta-analysis of microarray expression data from Anopheles gambiae and Drosophila melanogaster. PMID:22796331

  1. Develop a Model Component

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  2. Identifying changes in gait waveforms following a strengthening intervention for women with knee osteoarthritis using principal components analysis.

    PubMed

    Brenneman, Elora C; Maly, Monica R

    2018-01-01

    Lower limb strengthening exercise is pivotal for the management of symptoms related to knee osteoarthritis (OA). Though improvement in clinical symptoms is well documented, concurrent changes in gait biomechanics are ill-defined. This may occur because discrete analyses miss changes following an intervention, analyses limited to the knee undermine potential mechanical trade-offs at other joints, or strengthening interventions not been designed based on biomechanical principles. The purpose of this study was to characterize differences in entire gait waveforms for sagittal plane ankle, knee, and hip angles and external moments; the knee adduction moment; and frontal plane hip angle and moment following 12-weeks of a previously designed novel lower limb strengthening program. Forty women with knee OA completed two laboratory visits: one at baseline and one immediately following intervention (follow-up). Self-report measures, strength, and gait analyses were completed at each visit. Principal components analyses were completed for sagittal angles and external moments at the ankle, knee, and hip joints, as well as frontal plane angle and moment for the hip. Participants improved self-report and strength (p≤0.004). Two significant, yet subtle differences in principal components were identified between baseline and follow-up waveforms (p<0.05) pertaining to the knee and hip sagittal external moments. The subtle changes in concert with the lack of differences in other joints and planes suggest the lower limb strengthening program does not translate to changes in the gait waveform. It is likely this program is improving symptoms without worsening mechanics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Probabilistic analysis for identifying the driving force of protein folding

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  4. Molecular biology of pancreatic cancer: how useful is it in clinical practice?

    PubMed

    Sakorafas, George H; Smyrniotis, Vasileios

    2012-07-10

    During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the

  5. Locally advanced and metastatic basal cell carcinoma: molecular pathways, treatment options and new targeted therapies.

    PubMed

    Ruiz Salas, Veronica; Alegre, Marta; Garcés, Joan Ramón; Puig, Lluis

    2014-06-01

    The hedgehog (Hh) signaling pathway has been identified as important to normal embryonic development in living organisms and it is implicated in processes including cell proliferation, differentiation and tissue patterning. Aberrant Hh pathway has been involved in the pathogenesis and chemotherapy resistance of different solid and hematologic malignancies. Basal cell carcinoma (BCC) and medulloblastoma are two well-recognized cancers with mutations in components of the Hh pathway. Vismodegib has recently approved as the first inhibitor of one of the components of the Hh pathway (smoothened). This review attempts to provide current data on the molecular pathways involved in the development of BCC and the therapeutic options available for the treatment of locally advanced and metastatic BCC, and the new targeted therapies in development.

  6. Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kibaek; Stewart, D. Scott, E-mail: santc@illinois.edu, E-mail: dss@illinois.edu; Joshi, Kaushik

    2016-05-14

    We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model ismore » based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.« less

  7. Molecular Analysis Research at Community College of Philadelphia

    DTIC Science & Technology

    2015-09-21

    projects presented below fall under the category of "molecular genetics ", as presented in ARO Solicitation Number W911NF-12-R-0012-01. These projects...role of the GADD45 family of genes in innate immunity and sepsis. In addition to studying genetic components of the molecular response of myeloid...Equipment in left  column, procedure in right column.  kinetics of these molecular signaling pathways in genetic variants (gene KO models) has yet to

  8. Molecular Imaging: Current Status and Emerging Strategies

    PubMed Central

    Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.

    2011-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650

  9. Molecular characterization of epithelioid haemangioendotheliomas identifies novel WWTR1-CAMTA1 fusion variants.

    PubMed

    Patel, Nimesh R; Salim, Alaa A; Sayeed, Hadi; Sarabia, Stephen F; Hollingsworth, Faith; Warren, Mikako; Jakacky, Jared; Tanas, Munir; Oliveira, Andre M; Rubin, Brian P; Lazar, Alexander J; López-Terrada, Dolores; Wang, Wei-Lien

    2015-11-01

    Epithelioid haemangioendothelioma (EHE) is a malignant vascular neoplasm. Subsets have been characterized previously by translocations resulting in either WWTR1-CAMTA1 or YAP1-TFE3 fusion. We sought to develop molecular and immunohistochemical (IHC) assays to aid in the diagnosis and characterization of EHE. Fifty-two formalin-fixed, paraffin-embedded (FFPE) cases diagnosed between 2002 and 2014 were retrieved from the pathology files of our institutions. Reverse transcription-polymerase chain reaction (RT-PCR) assays were optimized to detect WWTR1-CAMTA1 and YAP1-TFE3 fusion transcripts in FFPE tissue and transcription factor E3 (TFE3) protein accumulation was examined by immunohistochemistry (IHC). RNA was extracted from 33 adequate samples, with more recent cases providing a greater yield of high quality RNA. Fourteen of 18 informative cases were positive for WWTR1-CAMTA1 fusion transcripts, four of which showed higher-grade cytological features termed by some as 'malignant EHE'. Novel in-frame fusion transcripts were identified in four cases by direct sequencing. IHC revealed variable nuclear TFE3 staining in six of 17 cases; three with patchy staining showed WWTR1-CAMTA1 fusion. One of 18 informative cases was positive for YAP1-TFE3 fusion and showed strong nuclear TFE3 staining by IHC. This study confirms the high incidence of WWTR1-CAMTA1 and YAP1-TFE3 rearrangements in EHE and indicates that the staining pattern for TFE3 IHC is critical for specificity. © 2015 John Wiley & Sons Ltd.

  10. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components.

    PubMed

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M

    2016-11-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  11. A network of molecular switches controls the activation of the two-component response regulator NtrC

    NASA Astrophysics Data System (ADS)

    Vanatta, Dan K.; Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S.

    2015-06-01

    Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.

  12. Molecular cogs of the insect circadian clock.

    PubMed

    Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki

    2003-08-01

    During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.

  13. A molecular gas-rich GRB host galaxy at the peak of cosmic star formation

    NASA Astrophysics Data System (ADS)

    Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.

    2018-05-01

    We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.

  14. Molecular markers of carcinogenesis for risk stratification of individuals with colorectal polyps: a case-control study.

    PubMed

    Gupta, Samir; Sun, Han; Yi, Sang; Storm, Joy; Xiao, Guanghua; Balasubramanian, Bijal A; Zhang, Song; Ashfaq, Raheela; Rockey, Don C

    2014-10-01

    Risk stratification using number, size, and histology of colorectal adenomas is currently suboptimal for identifying patients at increased risk for future colorectal cancer. We hypothesized that molecular markers of carcinogenesis in adenomas, measured via immunohistochemistry, may help identify high-risk patients. To test this hypothesis, we conducted a retrospective, 1:1 matched case-control study (n = 216; 46% female) in which cases were patients with colorectal cancer and synchronous adenoma and controls were patients with adenoma but no colorectal cancer at baseline or within 5 years of follow-up. In phase I of analyses, we compared expression of molecular markers of carcinogenesis in case and control adenomas, blind to case status. In phase II of analyses, patients were randomly divided into independent training and validation groups to develop a model for predicting case status. We found that seven markers [p53, p21, Cox-2, β-catenin (BCAT), DNA-dependent protein kinase (DNApkcs), survivin, and O6-methylguanine-DNA methyltransferase (MGMT)] were significantly associated with case status on unadjusted analyses, as well as analyses adjusted for age and advanced adenoma status (P < 0.01 for at least one marker component). When applied to the validation set, a predictive model using these seven markers showed substantial accuracy for identifying cases [area under the receiver operation characteristic curve (AUC), 0.83; 95% confidence interval (CI), 0.74-0.92]. A parsimonious model using three markers performed similarly to the seven-marker model (AUC, 0.84). In summary, we found that molecular markers of carcinogenesis distinguished adenomas from patients with and without colorectal cancer. Furthermore, we speculate that prospective studies using molecular markers to identify individuals with polyps at risk for future neoplasia are warranted. ©2014 American Association for Cancer Research.

  15. Synthesis, molecular docking and biological evaluation as HDAC inhibitors of cyclopeptide mimetics by a tandem three-component reaction and intramolecular [3+2] cycloaddition.

    PubMed

    Pirali, Tracey; Faccio, Valeria; Mossetti, Riccardo; Grolla, Ambra A; Di Micco, Simone; Bifulco, Giuseppe; Genazzani, Armando A; Tron, Gian Cesare

    2010-02-01

    Novel macrocyclic peptide mimetics have been synthesized by exploiting a three-component reaction and an azide-alkyne [3 + 2] cycloaddition. The prepared compounds were screened as HDAC inhibitors allowing us to identify a new compound with promising biological activity. In order to rationalize the biological results, computational studies have also been performed.

  16. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    PubMed

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  17. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    PubMed Central

    Roy, Deodutta; Morgan, Marisa; Yoo, Changwon; Deoraj, Alok; Roy, Sandhya; Yadav, Vijay Kumar; Garoub, Mohannad; Assaggaf, Hamza; Doke, Mayur

    2015-01-01

    We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC) and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PCBs), bisphenols (BPs), and phthalates. Meta-analysis showed that PCBs exposure, not Bisphenol A (BPA) and phthalates, increased the summary odds ratio for breast cancer and endometriosis. Bioinformatics analysis of gene-EDC interactions and disease associations identified several hundred genes that were altered by exposure to PCBs, phthalate or BPA. EDCs-modified genes in breast neoplasms and endometriosis are part of steroid hormone signaling and inflammation pathways. All three EDCs–PCB 153, phthalates, and BPA influenced five common genes—CYP19A1, EGFR, ESR2, FOS, and IGF1—in breast cancer as well as in endometriosis. These genes are environmentally and estrogen responsive, altered in human breast and uterine tumors and endometriosis lesions, and part of Mitogen Activated Protein Kinase (MAPK) signaling pathways in cancer. Our findings suggest that breast cancer and endometriosis share some common environmental and molecular risk factors. PMID:26512648

  18. Glycoproteins of the vitelline envelope of Amphibian oocyte: biological and molecular characterization of ZPC component (gp41) in Bufo arenarum.

    PubMed

    Barisone, Gustavo A; Krapf, Darío; Correa-Fiz, Florencia; Arranz, Silvia E; Cabada, Marcelo O

    2007-05-01

    The vitelline envelope (VE) participates in sperm-egg interactions during the first steps of fertilization. In Bufo arenarum, this envelope is composed of at least four glycoproteins, with molecular masses of 120, 75, 41, and 38 kDa and molar ratio of 1:1.3:7.4:4.8, respectively. These components were isolated and covalently coupled to silanized glass slides in order to study their sperm-binding capacity. When considering the molar ratio of the glycoproteins in the egg-envelope and assuming that each protein is monovalent for sperm, the assay showed that gp41 and gp38 possess 55 and 25% of total sperm-binding activity. We obtained a full-length cDNA of gp41 (ZPC), comprising a sequence for 486 amino acids, with 43.3% homology with Xenopus laevis ZPC. As in the case of mammalian ZP3 and Xenopus ZPC, Bufo ZPC presented a furin-like (convertase) and a C-terminal transmembrane domain (TMD) reflecting common biosynthetic and secretory pathways. As it was reported for some fishes, we obtained evidence that suggests the presence of more than one zpc gene in Bufo genome, based on different partial cDNA sequences of zpc, Southern blots and two-dimensional SDS-PAGE of deglycosylated egg-envelope components. As far as we are aware, this is the first observation of the presence of different zpc genes in an Amphibian species. Copyright (c) 2006 Wiley-Liss, Inc.

  19. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    PubMed

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  20. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    PubMed Central

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (−)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π–π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood–brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited

  1. A Systematic Classification for HVAC Systems and Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Han; Chen, Yan; Zhang, Jian

    Depending on the application, the complexity of an HVAC system can range from a small fan coil unit to a large centralized air conditioning system with primary and secondary distribution loops, and central plant components. Currently, the taxonomy of HVAC systems and the components has various aspects, which can get quite complex because of the various components and system configurations. For example, based on cooling and heating medium delivered to terminal units, systems can be classified as either air systems, water systems or air-water systems. In addition, some of the system names might be commonly used in a confusing manner,more » such as “unitary system” vs. “packaged system.” Without a systematic classification, these components and system terminology can be confusing to understand or differentiate from each other, and it creates ambiguity in communication, interpretation, and documentation. It is valuable to organize and classify HVAC systems and components so that they can be easily understood and used in a consistent manner. This paper aims to develop a systematic classification of HVAC systems and components. First, we summarize the HVAC component information and definitions based on published literature, such as ASHRAE handbooks, regulations, and rating standards. Then, we identify common HVAC system types and map them to the collected components in a meaningful way. Classification charts are generated and described based on the component information. Six main categories are identified for the HVAC components and equipment, i.e., heating and cooling production, heat extraction and rejection, air handling process, distribution system, terminal use, and stand-alone system. Components for each main category are further analyzed and classified in detail. More than fifty system names are identified and grouped based on their characteristics. The result from this paper will be helpful for education, communication, and systems and component

  2. Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola.

    PubMed

    Marconi, Richard T

    2017-10-13

    The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.

  3. Molecular characterization of Clostridium botulinum isolates from foodborne outbreaks in Thailand, 2010.

    PubMed

    Wangroongsarb, Piyada; Kohda, Tomoko; Jittaprasartsin, Chutima; Suthivarakom, Karun; Kamthalang, Thanitchi; Umeda, Kaoru; Sawanpanyalert, Pathom; Kozaki, Shunji; Ikuta, Kazuyoshi

    2014-01-01

    Thailand has had several foodborne outbreaks of botulism, one of the biggest being in 2006 when laboratory investigations identified the etiologic agent as Clostridium botulinum type A. Identification of the etiologic agent from outbreak samples is laborious using conventional microbiological methods and the neurotoxin mouse bioassay. Advances in molecular techniques have added enormous information regarding the etiology of outbreaks and characterization of isolates. We applied these methods in three outbreaks of botulism in Thailand in 2010. A total of 19 cases were involved (seven each in Lampang and Saraburi and five in Maehongson provinces). The first outbreak in Lampang province in April 2010 was associated with C. botulinum type F, which was detected by conventional methods. Outbreaks in Saraburi and Maehongson provinces occurred in May and December were due to C. botulinum type A1(B) and B that were identified by conventional methods and molecular techniques, respectively. The result of phylogenetic sequence analysis showed that C. botulinum type A1(B) strain Saraburi 2010 was close to strain Iwate 2007. Molecular analysis of the third outbreak in Maehongson province showed C. botulinum type B8, which was different from B1-B7 subtype. The nontoxic component genes of strain Maehongson 2010 revealed that ha33, ha17 and botR genes were close to strain Okra (B1) while ha70 and ntnh genes were close to strain 111 (B2). This study demonstrates the utility of molecular genotyping of C. botulinum and how it contributes to our understanding the epidemiology and variation of boNT gene. Thus, the recent botulism outbreaks in Thailand were induced by various C. botulinum types.

  4. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    PubMed Central

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  5. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  6. Disentangling the multigenic and pleiotropic nature of molecular function

    PubMed Central

    2015-01-01

    Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917

  7. Evaluation of serological and molecular tests used to identify Toxoplasma gondii infection in pregnant women attended in a public health service in São Paulo state, Brazil.

    PubMed

    Murata, Fernando Henrique Antunes; Ferreira, Marina Neves; Pereira-Chioccola, Vera Lucia; Spegiorin, Lígia Cosentino Junqueira Franco; Meira-Strejevitch, Cristina da Silva; Gava, Ricardo; Silveira-Carvalho, Aparecida Perpétuo; de Mattos, Luiz Carlos; Brandão de Mattos, Cinara Cássia

    2017-09-01

    Toxoplasmosis during pregnancy can have severe consequences. The use of sensitive and specific serological and molecular methods is extremely important for the correct diagnosis of the disease. We compared the ELISA and ELFA serological methods, conventional PCR (cPCR), Nested PCR and quantitative PCR (qPCR) in the diagnosis of Toxoplasma gondii infection in pregnant women without clinical suspicion of toxoplasmosis (G1=94) and with clinical suspicion of toxoplasmosis (G2=53). The results were compared using the Kappa index, and the sensitivity, specificity, positive predictive value and negative predictive value were calculated. The results of the serological methods showed concordance between the ELISA and ELFA methods even though ELFA identified more positive cases than ELISA. Molecular methods were discrepant with cPCR using B22/23 primers having greater sensitivity and lower specificity compared to the other molecular methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA

    DOE PAGES

    Mangel, Walter F.; McGrath, William J.; Xiong, Kan; ...

    2016-02-02

    Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a ‘molecular sled’ named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26±1.8 × 10 6 (bp) 2 s −1. pVIc is a ‘molecular sled,’ because it can slide heterologous cargos along DNA,more » for example, a streptavidin tetramer. Similar peptides, for example, from the C terminus of β-actin or NLSIII of the p53 protein, slide along DNA. Finally, characteristics of the ‘molecular sled’ in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry.« less

  9. Protein myozap--a late addition to the molecular ensembles of various kinds of adherens junctions.

    PubMed

    Rickelt, Steffen; Kuhn, Caecilia; Winter-Simanowski, Stefanie; Zimbelmann, Ralf; Frey, Norbert; Franke, Werner Wilhelm

    2011-12-01

    The protein myozap, a polypeptide of 54 kDa, has recently been identified as a component of the cytoplasmic plaques of the composite junctions (areae compositae) in the myocardiac intercalated disks and of the adherens junctions (AJs) in vascular endothelia. Now we report that using very sensitive new antibodies and drastic localization methods, we have also identified this protein as a component of the AJ plaques in simple and complex epithelia, in the adluminal cell layer of the transitional epithelium of the urinary tract and in certain cell layers of diverse stratified epithelia, including gingiva, tongue, pharynx and esophagus, cervix, vagina and epidermis. Myozap has not been identified in desmosomal and tight junction plaques. We have also detected protein myozap in AJ structures of carcinomas. The discovery of a novel major protein in AJ plaques now calls for re-examinations of molecular interactions in AJ formation and maintenance and also offers a new marker for diagnostic immunocytochemistry. We also discuss the need for progressive unravelling, extractive treatments and buffer rinses of sections and cultured cells to reveal obscured or masked antigens, before definitive negative conclusions in immunohistochemistry can be made.

  10. Goals and objectives for molecular pathology education in residency programs. The Association for Molecular Pathology Training and Education Committee.

    PubMed

    1999-11-01

    Increasing knowledge of the molecular basis of disease and advances in technology for analyzing nucleic acids and gene products are changing pathology practice. The explosion of information regarding inherited susceptibility to disease is an important aspect of this transformation. Pathology residency programs are incorporating molecular pathology education into their curricula to prepare newly trained pathologists for the future, yet little guidance has been available regarding the important components of molecular pathology training. We present general goals for pathology training programs for molecular pathology education. These include recommendations to pathology residents for the acquisition of both basic knowledge in human genetics and molecular biology and specific skills relevant to microbiology, molecular oncology, genetics, histocompatibility, and identity determination. The importance of residents gaining facility in integrating data gained via nucleic acid based-technology with other laboratory and clinical information available in the care of patients is emphasized.

  11. Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil.

    PubMed

    Olivero, J; Gracia, T; Payares, P; Vivas, R; Díaz, D; Daza, E; Geerlings, P

    1997-05-01

    Using quantitative structure-retention relationships (QSRR) methodologies the Kovats gas chromatographic retention indices for both apolar (DB-1) and polar (DB-Wax) columns for 48 compounds from Ylang-Ylang essential oil were empirically predicted from calculated and experimental data on molecular structure. Topological, geometric, and electronic descriptors were obtained for model generation. Relationships between descriptors and the retention data reported were established by linear multiple regression, giving equations that can be used to predict the Kovats indices for compounds present in essential oils, both in DB-1 and DB-Wax columns. Factor analysis was performed to interpret the meaning of the descriptors included in the models. The prediction model for the DB-1 column includes descriptors such as Randic's first-order connectivity index (1X), the molecular surface (MSA), the sum of the atomic charge on all the hydrogens (QH), Randic's third-order connectivity index (3X) and the molecular electronegativity (chi). The prediction model for the DB-Wax column includes the first three descriptors mentioned for the DB-1 column (1X, MSA and QH) and the most negative charge (MNC), the global softness (S), and the difference between Randic's and Kier and Hall's third-order connectivity indexes (3X-3XV).

  12. Identifying Molecular Culprits of Cervical Cancer Progression | Center for Cancer Research

    Cancer.gov

    Human papillomavirus (HPV) DNA is found in 99.7% of invasive cervical carcinomas, providing strong evidence that the virus is a causative agent in the development of this disease. However, most women who become infected with HPV do not develop invasive cervical lesions, indicating that additional exogenous or genetic factors may determine whether HPV preclinical lesions will progress to cancer. Identification of these factors would be facilitated by a deeper understanding of the cellular and molecular changes that accompany progression to malignancy. In addition, knowledge of which women are at greatest risk for disease progression would be a significant clinical advancement in the management of patients with premalignant cervical lesions.

  13. Molecular Chaperone Hsp90 Is a Therapeutic Target for Noroviruses

    PubMed Central

    Urena, Luis; Gonzalez-Hernandez, Mariam B.; Choi, Jayoung; de Rougemont, Alexis; Rocha-Pereira, Joana; Neyts, Johan; Hwang, Seungmin; Wobus, Christiane E.

    2015-01-01

    ABSTRACT Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5′ and 3′ extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces

  14. Pharmacophore modeling, molecular docking, and molecular dynamics simulation approaches for identifying new lead compounds for inhibiting aldose reductase 2.

    PubMed

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; Lee, Keun Woo

    2012-07-01

    Aldose reductase 2 (ALR2), which catalyzes the reduction of glucose to sorbitol using NADP as a cofactor, has been implicated in the etiology of secondary complications of diabetes. A pharmacophore model, Hypo1, was built based on 26 compounds with known ALR2-inhibiting activity values. Hypo1 contains important chemical features required for an ALR2 inhibitor, and demonstrates good predictive ability by having a high correlation coefficient (0.95) as well as the highest cost difference (128.44) and the lowest RMS deviation (1.02) among the ten pharmacophore models examined. Hypo1 was further validated by Fisher's randomization method (95%), test set (r = 0.91), and the decoy set shows the goodness of fit (0.70). Furthermore, during virtual screening, Hypo1 was used as a 3D query to screen the NCI database, and the hit leads were sorted by applying Lipinski's rule of five and ADME properties. The best-fitting leads were subjected to docking to identify a suitable orientation at the ALR2 active site. The molecule that showed the strongest interactions with the critical amino acids was used in molecular dynamics simulations to calculate its binding affinity to the candidate molecules. Thus, Hypo1 describes the key structure-activity relationship along with the estimated activities of ALR2 inhibitors. The hit molecules were searched against PubChem to find similar molecules with new scaffolds. Finally, four molecules were found to satisfy all of the chemical features and the geometric constraints of Hypo1, as well as to show good dock scores, PLPs and PMFs. Thus, we believe that Hypo1 facilitates the selection of novel scaffolds for ALR2, allowing new classes of ALR2 inhibitors to be designed.

  15. Identifying acceptable components for home-based health promotion services for older people with mild frailty: A qualitative study.

    PubMed

    Frost, Rachael; Kharicha, Kalpa; Jovicic, Ana; Liljas, Ann E M; Iliffe, Steve; Manthorpe, Jill; Gardner, Benjamin; Avgerinou, Christina; Goodman, Claire; Drennan, Vari M; Walters, Kate

    2018-05-01

    Mild frailty is common in later life, increasing the risk of hospitalisation, loss of independence and premature death. Targeted health promotion services may reduce adverse outcomes and increase quality of life; however, effective, well-developed theory-based interventions are lacking. We aimed to explore perceptions of health promotion behaviours undertaken by older people with mild frailty, barriers and facilitators to engagement, and identify potential components for new home-based health promotion services. We carried out 17 semi-structured qualitative interviews and six focus groups with 53 stakeholders, including 14 mildly frail older people, 12 family carers, 19 community health and social care professionals, and 8 homecare workers, in one urban and one semi-rural area of England. Transcripts were thematically analysed. Older people with mild frailty reported engaging in a variety of lifestyle behaviours to promote health and well-being. Key barriers or facilitators to engaging in these included transport, knowledge of local services, social support and acceptance of personal limitations. Older people, carers and professionals agreed that any new service should address social networks and mobility and tailor other content to each individual. Services should aim to increase motivation through focussing on independence and facilitate older people to continue carrying out behaviours that improve their well-being, as well as provide information, motivation, psychological support and practical support. Stakeholders agreed services should be delivered over a sustained period by trained non-specialist workers. New services including these components are likely to be acceptable to older people with mild frailty. © 2017 The Authors. Health and Social Care in the Community Published by John Wiley & Sons Ltd.

  16. Identifying the myogenic and metabolic components of cerebral autoregulation.

    PubMed

    Payne, S J

    2018-05-14

    Cerebral autoregulation is the term used to describe a number of mechanisms that act together to maintain a near constant cerebral blood flow in response to changes in arterial blood pressure. These mechanisms are complex and known to be affected in a range of cerebrovascular diseases. However, it can be difficult to assign an alteration in cerebral autoregulation to one of the underlying physiological mechanisms without the use of a complex mathematical model. In this paper, we thus set out a new approach that enables these mechanisms to be related to the autoregulation behaviour and hence inferred from experimental measurements. We show that the arteriolar response is a function of just three parameters, which we term the elastic, the myogenic and the metabolic sensitivity coefficients, and that the full vascular response is dependent upon only seven parameters. The ratio of the strengths of the myogenic and the metabolic responses is found to be in the range 2.5 to 5 over a wide range of pressure, indicating that the balance between the two appears to lie within this range. We validate the model with existing experimental data both at the level of an individual vessel and across the whole vasculature, and show that the results are consistent with findings from the literature. We then conduct a sensitivity analysis of the model to demonstrate which parameters are most important in determining the strength of static autoregulation, showing that autoregulation strength is predominantly set by the arteriolar sensitivity coefficients. This new approach could be used in future studies to help to interpret the components of the autoregulation response and how they are affected under different conditions, providing a greater insight into the fundamental processes that govern autoregulation. Copyright © 2018. Published by Elsevier Ltd.

  17. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  18. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    PubMed Central

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823

  19. A genomic approach to identify hybrid incompatibility genes.

    PubMed

    Cooper, Jacob C; Phadnis, Nitin

    2016-07-02

    Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids.

  20. A genomic approach to identify hybrid incompatibility genes

    PubMed Central

    Cooper, Jacob C.; Phadnis, Nitin

    2016-01-01

    ABSTRACT Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids. PMID:27230814

  1. A method to identify aperiodic disturbances in the ionosphere

    NASA Astrophysics Data System (ADS)

    Wang, J.-S.; Chen, Z.; Huang, C.-M.

    2014-05-01

    In this paper, variations in the ionospheric F2 layer's critical frequency are decomposed into their periodic and aperiodic components. The latter include disturbances caused both by geophysical impacts on the ionosphere and random noise. The spectral whitening method (SWM), a signal-processing technique used in statistical estimation and/or detection, was used to identify aperiodic components in the ionosphere. The whitening algorithm adopted herein is used to divide the Fourier transform of the observed data series by a real envelope function. As a result, periodic components are suppressed and aperiodic components emerge as the dominant contributors. Application to a synthetic data set based on significant simulated periodic features of ionospheric observations containing artificial (and, hence, controllable) disturbances was used to validate the SWM for identification of aperiodic components. Although the random noise was somewhat enhanced by post-processing, the artificial disturbances could still be clearly identified. The SWM was then applied to real ionospheric observations. It was found to be more sensitive than the often-used monthly median method to identify geomagnetic effects. In addition, disturbances detected by the SWM were characterized by a Gaussian-type probability density function over all timescales, which further simplifies statistical analysis and suggests that the disturbances thus identified can be compared regardless of timescale.

  2. Simple sequence repeat markers that identify Claviceps species and strains.

    PubMed

    Gilmore, Barbara S; Alderman, Stephen C; Knaus, Brian J; Bassil, Nahla V; Martin, Ruth C; Dombrowski, James E; Dung, Jeremiah K S

    2016-01-01

    Claviceps purpurea is a pathogen that infects most members of Pooideae, a subfamily of Poaceae, and causes ergot, a floral disease in which the ovary is replaced with a sclerotium. When the ergot body is accidently consumed by either man or animal in high enough quantities, there is extreme pain, limb loss and sometimes death. This study was initiated to develop simple sequence repeat (SSRs) markers for rapid identification of  C. purpurea . SSRs were designed from sequence data stored at the National Center for Biotechnology Information database. The study consisted of 74 ergot isolates, from four different host species, Lolium perenne , Poa pratensis , Bromus inermis , and Secale cereale plus three additional Claviceps species, C. pusilla , C. paspali and C. fusiformis. Samples were collected from six different counties in Oregon and Washington over a 5-year period. Thirty-four SSR markers were selected, which enabled the differentiation of each isolate from one another based solely on their molecular fingerprints. Discriminant analysis of principle components was used to identify four isolate groups, CA Group 1, 2, 3, and 4, for subsequent cluster and molecular variance analyses. CA Group 1 consisting of eight isolates from the host species P. pratensis , was separated on the cluster analysis plot from the remaining three groups and this group was later identified as C. humidiphila . The other three groups were distinct from one another, but closely related. These three groups contained samples from all four of the host species. These SSRs are simple to use, reliable and allowed clear differentiation of C. humidiphila from C. purpurea . Isolates from the three separate species, C. pusilla , C. paspali and C. fusiformis , also amplified with these markers. The SSR markers developed in this study will be helpful in defining the population structure and genetics of Claviceps strains. They will also provide valuable tools for plant breeders needing to identify

  3. Agent-Based Modeling in Molecular Systems Biology.

    PubMed

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-07-01

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  4. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    PubMed

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  5. Molecular pathology of bone tumours: diagnostic implications.

    PubMed

    Puls, Florian; Niblett, Angela J; Mangham, D Chas

    2014-03-01

    Alongside histomorphology and immunohistochemistry, molecular pathology is now established as one of the cornerstones in the tissue diagnosis of bone tumours. We describe the principal molecular pathological techniques employed, and each of the bone tumour entities where their identified characteristic molecular pathological changes can be detected to support and confirm the suspected histological diagnosis. Tumours discussed include fibrous dysplasia, classical and subtype osteosarcomas, central and surface cartilaginous tumours, Ewing's sarcoma, vascular tumours, aneurysmal bone cyst, chordoma, myoepithelioma, and angiomatoid fibrous histiocytoma. This is a rapidly evolving field with discoveries occurring every few months, and some of the newer entities (the Ewing's-like sarcomas), which are principally identified by their molecular pathology characteristics, are discussed. © 2013 John Wiley & Sons Ltd.

  6. Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin.

    PubMed

    Tromp, Angelino T; Van Gent, Michiel; Abrial, Pauline; Martin, Amandine; Jansen, Joris P; De Haas, Carla J C; Van Kessel, Kok P M; Bardoel, Bart W; Kruse, Elisabeth; Bourdonnay, Emilie; Boettcher, Michael; McManus, Michael T; Day, Christopher J; Jennings, Michael P; Lina, Gérard; Vandenesch, François; Van Strijp, Jos A G; Jan Lebbink, Robert; Haas, Pieter-Jan A; Henry, Thomas; Spaan, András N

    2018-05-07

    The staphylococcal bi-component leukocidins Panton-Valentine leukocidin (PVL) and γ-haemolysin CB (HlgCB) target human phagocytes. Binding of the toxins' S-components to human complement C5a receptor 1 (C5aR1) contributes to cellular tropism and human specificity of PVL and HlgCB. To investigate the role of both leukocidins during infection, we developed a human C5aR1 knock-in (hC5aR1 KI ) mouse model. HlgCB, but unexpectedly not PVL, contributed to increased bacterial loads in tissues of hC5aR1 KI mice. Compared to humans, murine hC5aR1 KI neutrophils showed a reduced sensitivity to PVL, which was mediated by the toxin's F-component LukF-PV. By performing a genome-wide CRISPR-Cas9 screen, we identified CD45 as a receptor for LukF-PV. The human-specific interaction between LukF-PV and CD45 provides a molecular explanation for resistance of hC5aR1 KI mouse neutrophils to PVL and probably contributes to the lack of a PVL-mediated phenotype during infection in these mice. This study demonstrates an unsuspected role of the F-component in driving the sensitivity of human phagocytes to PVL.

  7. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

    PubMed

    Rose, Amy E; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega Y Saenz de Miera, Eleazar C; Medicherla, Ratna; Christos, Paul J; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-04-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM.

  8. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression

    PubMed Central

    Rose, Amy E.; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega y Saenz de Miera, Eleazar C.; Medicherla, Ratna; Christos, Paul J.; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-01-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathological and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (SNP 6.0, Affymetrix) with gene expression array (U133A 2.0, Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N=114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P<0.05, Spearman’s rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene methylthioadenosine phosphorylase (MTAP) in SSM resulted in reduced cell growth. The differential expression of another metabolic related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389

  9. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    NASA Astrophysics Data System (ADS)

    Lehn, Jean-Marie

    2004-03-01

    Molecular chemistry has developed a wide range of very powerful procedures for constructing ever more sophisticated molecules from atoms linked by covalent bonds. Beyond molecular chemistry lies supramolecular chemistry, which aims at developing highly complex chemical systems from components interacting via non-covalent intermolecular forces. By the appropriate manipulation of these interactions, supramolecular chemistry became progressively the chemistry of molecular information, involving the storage of information at the molecular level, in the structural features, and its retrieval, transfer, and processing at the supramolecular level, through molecular recognition processes operating via specific interactional algorithms. This has paved the way towards apprehending chemistry also as an information science. Numerous receptors capable of recognizing, i.e. selectively binding, specific substrates have been developed, based on the molecular information stored in the interacting species. Suitably functionalized receptors may perform supramolecular catalysis and selective transport processes. In combination with polymolecular organization, recognition opens ways towards the design of molecular and supramolecular devices based on functional (photoactive, electroactive, ionoactive, etc) components. A step beyond preorganization consists in the design of systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined supramolecular architectures by self-assembly from their components. Self-organization processes, directed by the molecular information stored in the components and read out at the supramolecular level through specific interactions, represent the operation of programmed chemical systems. They have been implemented for the generation of a variety of discrete functional architectures of either organic or inorganic nature. Self-organization processes also give access to advanced supramolecular materials, such as

  10. Physical conditions in molecular clouds

    NASA Technical Reports Server (NTRS)

    Evans, Neal J., II

    1989-01-01

    Recent developments have complicated the picture of the physical conditions in molecular clouds. The discoveries of widespread emission from high-J lines of CD and 12-micron IRAS emission have revealed the presence of considerably hotter gas and dust near the surfaces of molecular clouds. These components can complicate interpretation of the bulk of the cloud gas. Commonly assumed relations between column density or mean density and cloud size are called into question by conflicting results and by consideration of selection effects. Analysis of density and density structure through molecular excitation has shown that very high densities exist in star formation regions, but unresolved structure and possible chemical effects complicate the interpretation. High resolution far-IR and submillimeter observations offer a complementary approach and are beginning to test theoretical predictions of density gradients in clouds.

  11. [Neuroendocrine prostate cancer: Natural history, molecular features, therapeutic management and future directions].

    PubMed

    Campedel, Luca; Kossaï, Myriam; Blanc-Durand, Paul; Rouprêt, Morgan; Seisen, Thomas; Compérat, Eva; Spano, Jean-Philippe; Malouf, Gabriel

    2017-09-01

    Neuroendocrine prostate cancer is a rare malignancy with a an adverse prognostic. Histologically, It can be pure (small cells or large cells neuroendocrine carcinoma) or mixed with a adenocarcinoma component. Rarely diagnosed de novo, neuroendocrine prostate cancer is generally associated with advanced stage disease resistant to castration. As such, this histological subtype could represent an aggressive evolution of prostatic adenocarcinoma, through the epithelio-neuroendocrine transdifferentiation mechanism (phenomenon of lineage plasticity). Nonetheless, neuroendocrine prostate cancer is a heterogeneous malignancy with multiple histopathological variants showing distinct clinical features. The broad variety of molecular analyses could help to understand the ontogeny of this histological subtype and its signaling pathways. This may also allow identifying diagnostic and prognostic biomarkers as well as potential molecular targets. However, treatment options are currently limited and consist only in platinium-based chemotherapy for advanced stage disease. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu; Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases whenmore » the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.« less

  13. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?

    PubMed

    Brenton, James D; Carey, Lisa A; Ahmed, Ahmed Ashour; Caldas, Carlos

    2005-10-10

    Profiling breast cancer with expression arrays has become common, and it has been suggested that the results from early studies will lead to understanding of the molecular differences between clinical cases and allow individualization of care. We critically review two main applications of expression profiling; studies unraveling novel breast cancer classifications and those that aim to identify novel markers for prediction of clinical outcome. Breast cancer may now be subclassified into luminal, basal, and HER2 subtypes with distinct differences in prognosis and response to therapy. However, profiling studies to identify predictive markers have suffered from methodologic problems that prevent general application of their results. Future work will need to reanalyze existing microarray data sets to identify more representative sets of candidate genes for use as prognostic signatures and will need to take into account the new knowledge of molecular subtypes of breast cancer when assessing predictive effects.

  14. Molecular basis of angiosperm tree architecture

    USDA-ARS?s Scientific Manuscript database

    The shoot architecture of trees greatly impacts orchard and forest management methods. Amassing greater knowledge of the molecular genetics behind tree form can benefit these industries as well as contribute to basic knowledge of plant developmental biology. This review covers basic components of ...

  15. A Study Identifying the Components of a Quality Child Care Center.

    ERIC Educational Resources Information Center

    Panetta, Sandra J.

    Specific characteristics of a quality day care center are identified through a survey of parents, teachers, and directors utilizing or working in day care centers. The introduction to this descriptive research study offers background information on the history of the child care movement in America and a review of related research projects. A…

  16. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.

    PubMed

    Brenner, Howard

    2005-12-01

    A quiescent single-component gravity-free gas subject to a small steady uniform temperature gradient T, despite being at rest, is shown to experience a drift velocity UD=-D* gradient ln T, where D* is the gas's nonisothermal self-diffusion coefficient. D* is identified as being the gas's thermometric diffusivity alpha. The latter differs from the gas's isothermal isotopic self-diffusion coefficient D, albeit only slightly. Two independent derivations are given of this drift velocity formula, one kinematical and the other dynamical, both derivations being strictly macroscopic in nature. Within modest experimental and theoretical uncertainties, this virtual drift velocity UD=-alpha gradient ln T is shown to be constitutively and phenomenologically indistinguishable from the well-known experimental and theoretical formulas for the thermophoretic velocity U of a macroscopic (i.e., non-Brownian) non-heat-conducting particle moving under the influence of a uniform temperature gradient through an otherwise quiescent single-component rarefied gas continuum at small Knudsen numbers. Coupled with the size independence of the particle's thermophoretic velocity, the empirically observed equality, U=UD, leads naturally to the hypothesis that these two velocities, the former real and the latter virtual, are, in fact, simply manifestations of the same underlying molecular phenomenon, namely the gas's Brownian movement, albeit biased by the temperature gradient. This purely hydrodynamic continuum-mechanical equality is confirmed by theoretical calculations effected at the kinetic-molecular level on the basis of an existing solution of the Boltzmann equation for a quasi-Lorentzian gas, modulo small uncertainties pertaining to the choice of collision model. Explicitly, this asymptotically valid molecular model allows the virtual drift velocity UD of the light gas and the thermophoretic velocity U of the massive, effectively non-Brownian, particle, now regarded as the tracer particle

  17. Dynamic Multi-Component Hemiaminal Assembly

    PubMed Central

    You, Lei; Long, S. Reid; Lynch, Vincent M.

    2012-01-01

    A simple approach to generating in situ metal templated tris-(2-picolyl)amine-like multi-component assemblies with potential applications in molecular recognition and sensing is reported. The assembly is based on the reversible covalent association between di-(2-picolyl)amine and aldehydes. Zinc ion is the best for inducing assembly among the metal salts investigated, while 2-picolinaldehyde is the best among the heterocyclic aldehydes studied. Although an equilibrium constant of 6.6 * 103 M-1 was measured for the assembly formed by 2-picolinaldehdye, di-(2-picolyl)amine, and zinc triflate, the equilibrium constants for other systems are in the 102 M-1 range. X-ray structural analysis revealed that zinc adopts a trigonal bipyramidal geometry within the assembled ligand. The diversity and equilibrium of the assemblies are readily altered by simply changing concentrations, varying components, or adding counter anions. PMID:21919095

  18. Use of molecular testing to identify a cluster of patients with polycythemia vera in eastern Pennsylvania.

    PubMed

    Seaman, Vincent; Jumaan, Aisha; Yanni, Emad; Lewis, Brian; Neyer, Jonathan; Roda, Paul; Xu, Mingjiang; Hoffman, Ronald

    2009-02-01

    The role of the environment in the origin of polycythemia vera has not been well documented. Recently, molecular diagnostic tools have been developed to facilitate the diagnosis of polycythemia vera. A cluster of patients with polycythemia vera was suspected in three countries in eastern Pennsylvania where there have long been a concern about environment hazards. Rigorous clinical criteria and JAK2 617V>F testing were used to confirm the diagnosis of polycythemia vera in patients in this area. Participants included cases of polycythemia vera from the 2001 to 2005 state cancer registry as well as self- and physician-referred cases. A diagnosis of polycythemia vera was confirmed in 53% of 62 participants using WHO criteria, which includes JAK2 617V>F testing. A statistically significant cluster of cases (P < 0.001) was identified where the incidence of polycythemia vera was 4.3 times that of the rest of the study area. The area of the cluster contained numerous sources of hazardous material including waste-coal power plants and U.S. Environmental Protection Agency Superfund sites. The diagnosis of polycythemia vera based solely on clinical criteria is frequently erroneous, suggesting that our prior knowledge of the epidemiology of this disease might be inaccurate. The JAK2 617V>F mutational analysis provides diagnostic clarity and permitted the confirmation of a cluster of polycythemia vera cases not identified by traditional clinical and pathologic diagnostic criteria. The close proximity of this cluster to known areas of hazardous material exposure raises concern that such environmental factors might play a role in the origin of polycythemia vera.

  19. Spectral molecular line surveys of active galaxies

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin

    The enormous mass of molecular gas and dust found in the nuclei of active galaxies has a major role in feeding the activity (either starburst or AGN) and therefore in the galactic evolution. Thus, observations of the molecular can provide clues to identify and analyze the type of activity in very deeply obscured galactic nuclei. Indeed, studies of the chemical composition in starburst galaxies via wide band spectral has shown the potential of molecular spectroscopy to trace the physical and chemical propierties of their central ISM material. In this work we present the analysis of the emission of molecules such as HCN, CCH, CN,CS,HCO+, HNC, CH3OH, among others obtained from the survey of spectra of the 3 near seyfert galaxies observed with the APEX Telescope. We have also found that one of the molecules is not at LTE conditions- H3O+ molecule. Whether radiatively pumped or maser enhanced, the emission of H3O+ is emerging from a different region from most other molecules (distributed in two molecular lobes seen as the two velocity components). H3O+ emission peaks close to the systemic velocity of the system, particularly clear in NGC 253, which suggest the emission to be centrally peaked towards the nuclear engine, It is common in the same kind of galaxies? In adition, preliminar conclusions show isotopic ratio 12C/13C in starburst galaxies is higher than nuclei of the Milky Way indicating that interestelar matter in starburst nuclei is less processed than in the nucleus of the Milky Way .There are two possible explanations for this effect in starburst, nucleosynthesis differences due stellar population history and acretion of matter from halo.

  20. Structure-activity modelling of essential oils, their components, and key molecular parameters and descriptors.

    PubMed

    Owen, Lucy; Laird, Katie; Wilson, Philippe B

    2018-04-01

    Many essential oil components are known to possess broad spectrum antimicrobial activity, including against antibiotic resistant bacteria. These compounds may be a useful source of new and novel antimicrobials. However, there is limited research on the structure-activity relationship (SAR) of essential oil compounds, which is important for target identification and lead optimization. This study aimed to elucidate SARs of essential oil components from experimental and literature sources. Minimum Inhibitory Concentrations (MICs) of essential oil components were determined against Escherichia coli and Staphylococcus aureus using a microdilution method and then compared to those in published in literature. Of 12 essential oil components tested, carvacrol and cuminaldehyde were most potent with MICs of 1.98 and 2.10 mM, respectively. The activity of 21 compounds obtained from the literature, MICs ranged from 0.004 mM for limonene to 36.18 mM for α-terpineol. A 3D qualitative SAR model was generated from MICs using FORGE software by consideration of electrostatic and steric parameters. An r 2 value of 0.807 for training and cross-validation sets was achieved with the model developed. Ligand efficiency was found to correlate well to the observed activity (r 2  = 0.792), while strongly negative electrostatic regions were present in potent molecules. These descriptors may be useful for target identification of essential oils or their major components in antimicrobial/drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice.

    PubMed

    Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2013-08-01

    In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated central region component1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID receptor-interacting protein13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with homologous pairing aberration in rice meiosis1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.

  2. Design considerations for multi component molecular-polymeric nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Singer, K. D.; Kuzyk, M. G.; Fang, T.; Holland, W. R.; Cahill, P. A.

    1990-08-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85 deg and possess an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to possess a large third order nonlinearity, and may display two-level behavior.

  3. Alimentary Tract Bacteria Isolated and Identified with API-20E and Molecular Cloning Techniques from Australian Tropical Fruit Flies, Bactrocera cacuminata and B. tryoni

    PubMed Central

    Thaochan, N.; Drew, R. A. I.; Hughes, J. M.; Vijaysegaran, S.; Chinajariyawong, A.

    2010-01-01

    Bacteria were isolated from the crop and midgut of field collected Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Two methods were used, firstly isolation onto two types of bacteriological culture media (PYEA and TSA) and identification using the API-20E diagnostic kit, and secondly, analysis of samples using the 16S rRNA gene molecular diagnostic method. Using the API-20E method, 10 genera and 17 species of bacteria in the family Enterobacteriaceae were identified from cultures growing on the nutrient agar. The dominant species in both the crop and midgut were Citrobacter freundii, Enterobacter cloacae and Klebsiella oxytoca. Providencia rettgeri, Klebsiella pneumoniae ssp ozaenae and Serratia marcescens were isolated from B. tryoni only. Using the molecular cloning technique that is based on 16S rRNA gene sequences, five bacteria classes were dignosed — Alpha-, Beta-, Gamma- and Delta- Proteobacteria and Firmicutes — including five families, Leuconostocaceae, Enterococcaceae, Acetobacteriaceae, Comamonadaceae and Enterobacteriaceae. The bacteria affiliated with Firmicutes were found mainly in the crop while the Gammaproteobacteria, especially the family Enterobacteriaceae, was dominant in the midgut. This paper presents results from the first known application of molecular cloning techniques to study bacteria within tephritid species and the first record of Firmicutes bacteria in these flies. PMID:20883132

  4. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function

    PubMed Central

    Manesia, Javed K.; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M.

    2018-01-01

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term “transcription.” By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function. PMID:27958775

  5. The molecular composition of ambers

    USGS Publications Warehouse

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.

    1988-01-01

    Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.

  6. Molecular Phenotyping Combines Molecular Information, Biological Relevance, and Patient Data to Improve Productivity of Early Drug Discovery.

    PubMed

    Drawnel, Faye Marie; Zhang, Jitao David; Küng, Erich; Aoyama, Natsuyo; Benmansour, Fethallah; Araujo Del Rosario, Andrea; Jensen Zoffmann, Sannah; Delobel, Frédéric; Prummer, Michael; Weibel, Franziska; Carlson, Coby; Anson, Blake; Iacone, Roberto; Certa, Ulrich; Singer, Thomas; Ebeling, Martin; Prunotto, Marco

    2017-05-18

    Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molecular and Microbial Mechanisms Increasing Soil C Storage Under Future Rates of Anthropogenic N Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zak, Donald R.

    A growing body of evidence reveals that anthropogenic N deposition can reduce the microbial decay of plant detritus and increase soil C storage across a wide range of terrestrial ecosystems. This aspect of global change has the potential to constrain the accumulation of anthropogenic CO 2 in the Earth’s atmosphere, and hence slow the pace of climate warming. The molecular and microbial mechanisms underlying this biogeochemical response are not understood, and they are not a component of any coupled climate-biogeochemical model estimating ecosystem C storage, and hence, the future climate of an N-enriched Earth. Here, we report the use ofmore » genomic-enabled approaches to identify the molecular underpinnings of the microbial mechanisms leading to greater soil C storage in response to anthropogenic N deposition, thereby enabling us to better anticipate changes in soil C storage.« less

  8. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems

    PubMed Central

    Abby, Sophie S.; Néron, Bertrand; Ménager, Hervé; Touchon, Marie; Rocha, Eduardo P. C.

    2014-01-01

    Motivation Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose. Results Macromolecular System Finder (MacSyFinder) provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway) including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM) protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate “Cas-finder” using publicly available protein profiles. Availability and Implementation MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher). It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The “Cas-finder” (models and HMM profiles) is distributed as a compressed tarball archive as Supporting Information. PMID:25330359

  9. Environmental risk assessment of biocidal products: identification of relevant components and reliability of a component-based mixture assessment.

    PubMed

    Coors, Anja; Vollmar, Pia; Heim, Jennifer; Sacher, Frank; Kehrer, Anja

    2018-01-01

    Biocidal products are mixtures of one or more active substances (a.s.) and a broad range of formulation additives. There is regulatory guidance currently under development that will specify how the combined effects of the a.s. and any relevant formulation additives shall be considered in the environmental risk assessment of biocidal products. The default option is a component-based approach (CBA) by which the toxicity of the product is predicted from the toxicity of 'relevant' components using concentration addition. Hence, unequivocal and practicable criteria are required for identifying the 'relevant' components to ensure protectiveness of the CBA, while avoiding unnecessary workload resulting from including by default components that do not significantly contribute to the product toxicity. The present study evaluated a set of different criteria for identifying 'relevant' components using confidential information on the composition of 21 wood preservative products. Theoretical approaches were complemented by experimentally testing the aquatic toxicity of seven selected products. For three of the seven tested products, the toxicity was underestimated for the most sensitive endpoint (green algae) by more than factor 2 if only the a.s. were considered in the CBA. This illustrated the necessity of including at least some additives along with the a.s. Considering additives that were deemed 'relevant' by the tentatively established criteria reduced the underestimation of toxicity for two of the three products. A lack of data for one specific additive was identified as the most likely reason for the remaining toxicity underestimation of the third product. In three other products, toxicity was overestimated by more than factor 2, while prediction and observation fitted well for the seventh product. Considering all additives in the prediction increased only the degree of overestimation. Supported by theoretical calculations and experimental verifications, the present

  10. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.

    PubMed

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-14

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  11. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-01

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  12. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants*

    PubMed Central

    Marty-Roix, Robyn; Vladimer, Gregory I.; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D.; Chee, Jonathan D.; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-01

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. PMID:26555265

  13. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  14. Specific heat determination of plant barrier lipophilic components: biological implications.

    PubMed

    Casado, C G; Heredia, A

    2001-04-02

    The specific heat of isolated plant cuticles and their corresponding cuticular waxes have been measured for the physiological temperature in the range of 273-318 K at regular intervals. C(p) values ranged from 1.5 up to 4 J K(-1) g(-1) indicating a high cohesion, at the molecular level, of the molecular lipophilic components that constitute the plant cuticle. Second order phase transitions around 293 K, assigned to the cuticular matrix mainly constituted of the biopolyester cutin, have been detected and measured. Ecophysiological and physical implications of these thermodynamic data are discussed.

  15. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease

    PubMed Central

    Dong, Shu; Zhan, Zong-Ying; Cao, Hong-Yan; Wu, Chao; Bian, Yan-Qin; Li, Jian-Yuan; Cheng, Gen-Hong; Liu, Ping; Sun, Ming-Yu

    2017-01-01

    AIM To identify a panel of biomarkers that can distinguish between non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), and explore molecular mechanism involved in the process of developing NASH from NAFLD. METHODS Biomarkers may differ during stages of NAFLD. Urine and blood were obtained from non-diabetic subjects with NAFLD and steatosis, with normal liver function (n = 33), from patients with NASH, with abnormal liver function (n = 45), and from healthy age and sex-matched controls (n = 30). Samples were subjected to metabolomic analysis to identify potential non-invasive biomarkers. Differences in urinary metabolic profiles were analyzed using liquid chromatography tandem mass spectrometry with principal component analysis and partial least squares-discriminate analysis. RESULTS Compared with NAFLD patients, patients with NASH had abnormal liver function and high serum lipid concentrations. Urinary metabonomics found differences in 31 metabolites between these two groups, including differences in nucleic acids and amino acids. Pathway analysis based on overlapping metabolites showed that pathways of energy and amino acid metabolism, as well as the pentose phosphate pathway, were closely associated with pathological processes in NAFLD and NASH. CONCLUSION These findings suggested that a panel of biomarkers could distinguish between NAFLD and NASH, and could help to determine the molecular mechanism involved in the process of developing NASH from NAFLD. Urinary biomarkers may be diagnostic in these patients and could be used to assess responses to therapeutic interventions. PMID:28487615

  16. Molecular Biology of Lung Cancer

    PubMed Central

    Nana-Sinkam, Serge Patrick

    2013-01-01

    Based on recent bench and clinical research, the treatment of lung cancer has been refined, with treatments allocated according to histology and specific molecular features. For example, targeting mutations such as epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors has been particularly successful as a treatment modality, demonstrating response rates in selected patients with adenocarcinoma tumors harboring EGFR mutations that are significantly higher than those for conventional chemotherapy. However, the development of new targeted therapies is, in part, highly dependent on an improved understanding of the molecular underpinnings of tumor initiation and progression, knowledge of the role of molecular aberrations in disease progression, and the development of highly reproducible platforms for high-throughput biomarker discovery and testing. In this article, we review clinically relevant research directed toward understanding the biology of lung cancer. The clinical purposes of this research are (1) to identify susceptibility variants and field molecular alterations that will promote the early detection of tumors and (2) to identify tumor molecular alterations that serve as therapeutic targets, prognostic biomarkers, or predictors of tumor response. We focus on research developments in the understanding of lung cancer somatic DNA mutations, chromosomal aberrations, epigenetics, and the tumor microenvironment, and how they can advance diagnostics and therapeutics. PMID:23649444

  17. Probing the brain with molecular fMRI.

    PubMed

    Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan

    2018-06-01

    One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Carboxyl group footprinting mass spectrometry and molecular dynamics identify key interactions in the HER2-HER3 receptor tyrosine kinase interface.

    PubMed

    Collier, Timothy S; Diraviyam, Karthikeyan; Monsey, John; Shen, Wei; Sept, David; Bose, Ron

    2013-08-30

    The HER2 receptor tyrosine kinase is a driver oncogene in many human cancers, including breast and gastric cancer. Under physiologic levels of expression, HER2 heterodimerizes with other members of the EGF receptor/HER/ErbB family, and the HER2-HER3 dimer forms one of the most potent oncogenic receptor pairs. Previous structural biology studies have individually crystallized the kinase domains of HER2 and HER3, but the HER2-HER3 kinase domain heterodimer structure has yet to be solved. Using a reconstituted membrane system to form HER2-HER3 kinase domain heterodimers and carboxyl group footprinting mass spectrometry, we observed that HER2 and HER3 kinase domains preferentially form asymmetric heterodimers with HER3 and HER2 monomers occupying the donor and acceptor kinase positions, respectively. Conformational changes in the HER2 activation loop, as measured by changes in carboxyl group labeling, required both dimerization and nucleotide binding but did not require activation loop phosphorylation at Tyr-877. Molecular dynamics simulations on HER2-HER3 kinase dimers identify specific inter- and intramolecular interactions and were in good agreement with MS measurements. Specifically, several intermolecular ionic interactions between HER2 Lys-716-HER3 Glu-909, HER2 Glu-717-HER3 Lys-907, and HER2 Asp-871-HER3 Arg-948 were identified by molecular dynamics. We also evaluated the effect of the cancer-associated mutations HER2 D769H/D769Y, HER3 E909G, and HER3 R948K (also numbered HER3 E928G and R967K) on kinase activity in the context of this new structural model. This study provides valuable insights into the EGF receptor/HER/ErbB kinase structure and interactions, which can guide the design of future therapies.

  19. Evolutionary molecular medicine.

    PubMed

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  20. Molecular Characterization of Clostridium botulinum Isolates from Foodborne Outbreaks in Thailand, 2010

    PubMed Central

    Wangroongsarb, Piyada; Kohda, Tomoko; Jittaprasartsin, Chutima; Suthivarakom, Karun; Kamthalang, Thanitchi; Umeda, Kaoru; Sawanpanyalert, Pathom; Kozaki, Shunji; Ikuta, Kazuyoshi

    2014-01-01

    Background Thailand has had several foodborne outbreaks of botulism, one of the biggest being in 2006 when laboratory investigations identified the etiologic agent as Clostridium botulinum type A. Identification of the etiologic agent from outbreak samples is laborious using conventional microbiological methods and the neurotoxin mouse bioassay. Advances in molecular techniques have added enormous information regarding the etiology of outbreaks and characterization of isolates. We applied these methods in three outbreaks of botulism in Thailand in 2010. Methodology/Principal Findings A total of 19 cases were involved (seven each in Lampang and Saraburi and five in Maehongson provinces). The first outbreak in Lampang province in April 2010 was associated with C. botulinum type F, which was detected by conventional methods. Outbreaks in Saraburi and Maehongson provinces occurred in May and December were due to C. botulinum type A1(B) and B that were identified by conventional methods and molecular techniques, respectively. The result of phylogenetic sequence analysis showed that C. botulinum type A1(B) strain Saraburi 2010 was close to strain Iwate 2007. Molecular analysis of the third outbreak in Maehongson province showed C. botulinum type B8, which was different from B1–B7 subtype. The nontoxic component genes of strain Maehongson 2010 revealed that ha33, ha17 and botR genes were close to strain Okra (B1) while ha70 and ntnh genes were close to strain 111 (B2). Conclusion/Significance This study demonstrates the utility of molecular genotyping of C. botulinum and how it contributes to our understanding the epidemiology and variation of boNT gene. Thus, the recent botulism outbreaks in Thailand were induced by various C. botulinum types. PMID:24475015