Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.
Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima
2012-08-27
In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.
Mattow, J; Jungblut, P R; Schaible, U E; Mollenkopf, H J; Lamer, S; Zimny-Arndt, U; Hagens, K; Müller, E C; Kaufmann, S H
2001-08-01
A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG.
Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces
Zerbe, Brandon S.; Hall, David R.
2013-01-01
In the context of protein-protein interactions, the term “hot spot” refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening. PMID:22770357
Ma, Chao-Ying; Gao, Li-Yan; Li, Ning; Li, Xiao-Hui; Ma, Wu-Jun; Appels, Rudi; Yan, Yue-Ming
2012-01-01
The relationship between chromosome deletion in wheat and protein expression were investigated using Chinese Spring and fine deletion line 3BS-8. Through 2-DE (2-D electrophoresis) analysis, no differentially expressed proteins (DEPs) were found in leaf samples; however, 47 DEPs showed at least two-fold abundance variation (p < 0.05) in matured wheat grains and 21 spots were identified by tandem MALDI-TOF/TOF-MS. Among the identified spots, four were cultivar-specific, including three (spots B15, B16, and B21) in Chinese Spring and one in 3BS-8 (spot B10). Among variety-different DEPs between Chinese Spring and 3BS-8, most spots showed a higher express profile in CS; only four spots showed up-regulated expression tendency in 3BS-8. An interesting observation was that more than half of the identified protein spots were involved in storage proteins, of which 11 spots were identified as globulins. According to these results, we can presume that the encoded genes of protein spots B15, B16, and B21 were located on the chromosome segment deleted in 3BS-8. PMID:23202959
Zhan, Xianquan; Yang, Haiyan; Peng, Fang; Li, Jianglin; Mu, Yun; Long, Ying; Cheng, Tingting; Huang, Yuda; Li, Zhao; Lu, Miaolong; Li, Na; Li, Maoyu; Liu, Jianping; Jungblut, Peter R
2018-04-01
Two-dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI-MS, LC-Q-TOF MS and LC-Orbitrap Velos MS for the identification of proteins within one spot. With LC-Orbitrap Velos MS each Coomassie Blue-stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large-scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low-abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE-MS to separate at the protein species level. Therefore, 2DE coupled with high-sensitivity LC-MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom-up LC-MS investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jobim, M I M; Trein, C; Zirkler, H; Gregory, R M; Sieme, H; Mattos, R C
2011-09-01
The objective was to evaluate protein profiles of equine seminal plasma using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and to determine whether any of these proteins were related to semen freezability. Seminal plasma was collected from 10 stallions, of high and low semen freezability, housed at the State Stud of Lower Saxony, and routinely used in AI programs. Twenty-five protein spots were identified from the two-dimensional gel (12%), seven of which were present in all samples (all proteins were identified by MALDI-MS). Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used to generate ion images of samples in one or more mass-to-charge (m/z) values, providing the capability of mapping specific molecules to two-dimensional coordinates of the original sample. Of the 25 proteins identified, two spots had greater relative content (P < 0.05) in seminal plasma samples collected from stallions with high semen freezability: spot 5 (80-85 kDa, isoelectric point [pI] 7.54), identified as CRISP-3; and spot 45 (18.2 kDa, pI 5.0-5.2), identified as HSP-2. Conversely, protein content was greater (P < 0.05) in seminal plasma samples from stallions with low semen freezability: spot 7 (75.4 kDa, pI 6.9-7.4), identified as lactoferrin; spot 15 (26.7 kDa, pI 5.51), identified as kallikrein; spot 25 (25 kDa, pI 7.54), identified as CRISP-3; and spot 35 (13.9 kDa, pI 3.8-4.2), identified as HSP-1. In conclusion, there were differences in the seminal plasma protein profile from stallions with high and low semen freezability. Furthermore, CRISP-3 and HSP-2 were potential seminal plasma markers of high semen freezability. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.
2013-08-01
Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.
Frazer, G S; Bucci, D M; Brooks, C L
1996-11-01
One of the problems encountered with two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is the streaking of proteins so that individual spot identification is compromised. This study was conducted to determine whether a low loading dose (50 microg) of protein would permit resolution of more discrete protein spots using megapixel camera technology, and if so, to present a nomenclature for future comparisons of the identified proteins. If the major proteins could be identified in a 50-microg sample we aimed to determine whether they could be identified in the supernatant (seminal plasma plus extender) of cryopreserved semen. Two ejaculates were obtained from each of 6 bulls and bovine seminal plasma (BSP) protein concentration was standardized to 50 microg/10 microl. Isoelectric points (pI) and molecular weights (MWt) of BSP proteins were determined by measuring spot mobility on 2-D PAGE (15% polyacrylamide). Three distinct protein spot constellations (a,b,c) could be readily seen by the naked eye and a faintly stained constellation "d" was identified by the megapixel camera. The image analysis software located 6 protein spots in both constellation "a" (MWt 26 kDa; pI 4.2 to 4.8) and "b" ( MWt 27 kDa; pI 6.6 to 8.0). Constellation "c" contained 13 protein spots distributed in a right-angled triangle with its base towards the acidic end of the gel (MWt 14.7 to 18.8 kDa; pI 5.3 to 7.4). Only spots c(2), c(3), c(5), c(8), and c(13) were present in all 12 samples. Streaking can be eliminated by using 50 microg protein for 2-D PAGE, and the major protein spots are readily identified by megapixel camera technology. Protein spots c(3), c(5), c(13) and constellation "a" appear to correspond with Manjunath's proteins (BSP-A(1), -A(2); -A(3); -30 kDa). Killian's 2 low fertility proteins may lie in the "c" constellation, and 1 of the high fertility proteins may lie in the "b" constellation. The 3 major BSP proteins can be visualized in the supernatant of cryopreserved semen. We believe that the technique may prove useful for retrospective analysis of processed semen batches that achieve less than satisfactory results in the field.
Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi
2002-09-01
Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.
Comparison of Proteins in Whole Blood and Dried Blood Spot Samples by LC/MS/MS
NASA Astrophysics Data System (ADS)
Chambers, Andrew G.; Percy, Andrew J.; Hardie, Darryl B.; Borchers, Christoph H.
2013-09-01
Dried blood spot (DBS) sampling methods are desirable for population-wide biomarker screening programs because of their ease of collection, transportation, and storage. Immunoassays are traditionally used to quantify endogenous proteins in these samples but require a separate assay for each protein. Recently, targeted mass spectrometry (MS) has been proposed for generating highly-multiplexed assays for biomarker proteins in DBS samples. In this work, we report the first comparison of proteins in whole blood and DBS samples using an untargeted MS approach. The average number of proteins identified in undepleted whole blood and DBS samples by liquid chromatography (LC)/MS/MS was 223 and 253, respectively. Protein identification repeatability was between 77 %-92 % within replicates and the majority of these repeated proteins (70 %) were observed in both sample formats. Proteins exclusively identified in the liquid or dried fluid spot format were unbiased based on their molecular weight, isoelectric point, aliphatic index, and grand average hydrophobicity. In addition, we extended this comparison to include proteins in matching plasma and serum samples with their dried fluid spot equivalents, dried plasma spot (DPS), and dried serum spot (DSS). This work begins to define the accessibility of endogenous proteins in dried fluid spot samples for analysis by MS and is useful in evaluating the scope of this new approach.
Proteomic identification of rhythmic proteins in rice seedlings.
Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee
2011-04-01
Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.
Zhang, Li-Li; Feng, Ren-Jun; Zhang, Yin-Dong
2012-08-15
Banana peels (Musa spp.) are a good example of a plant tissue where protein extraction is challenging due to the abundance of interfering metabolites. Sample preparation is a critical step in proteomic research and is critical for good results. We sought to evaluate three methods of protein extraction: trichloroacetic acid (TCA)-acetone precipitation, phenol extraction, and TCA precipitation. We found that a modified phenol extraction protocol was the most optimal method. SDS-PAGE and two-dimensional gel electrophoresis (2-DE) demonstrated good protein separation and distinct spots of high quality protein. Approximately 300 and 550 protein spots were detected on 2-DE gels at pH values of 3-10 and 4-7, respectively. Several spots were excised from the 2-DE gels and identified by mass spectrometry. The protein spots identified were found to be involved in glycolysis, the tricarboxylic acid cycle, and the biosynthesis of ethylene. Several of the identified proteins may play important roles in banana ripening. Copyright © 2012 Society of Chemical Industry.
Merlino, Marielle; Leroy, Philippe; Chambon, Christophe; Branlard, Gérard
2009-05-01
Albumins and globulins of wheat endosperm represent 20% of total kernel protein. They are soluble proteins, mainly enzymes and proteins involved in cell functions. Two-dimensional gel immobiline electrophoresis (2DE) (pH 4-7) x SDS-Page revealed around 2,250 spots. Ninety percent of the spots were common between the very distantly related cultivars 'Opata 85' and 'Synthetic W7984', the two parents of the International Triticeae Mapping Initiative (ITMI) progeny. 'Opata' had 130 specific spots while 'Synthetic' had 96. 2DE and image analysis of the soluble proteins present in 112 recombinant inbred lines of the F9-mapped ITMI progeny enabled 120 unbiased segregating spots to be mapped on 21 wheat (Triticum aestivum L. em. Thell) chromosomes. After trypsic digestion, mapped spots were subjected to MALDI-Tof or tandem mass spectrometry for protein identification by database mining. Among the 'Opata' and 'Synthetic' spots identified, many enzymes have already been mapped in the barley and rice genomes. Multigene families of Heat Shock Proteins, beta-amylases, UDP-glucose pyrophosphorylases, peroxydases and thioredoxins were successfully identified. Although other proteins remain to be identified, some differences were found in the number of segregating proteins involved in response to stress: 11 proteins found in the modern selected cultivar 'Opata 85' as compared to 4 in the new hexaploid ;Synthetic W7984'. In addition, 'Opata' and 'Synthetic' differed in the number of proteins involved in protein folding (2 and 10, respectively). The usefulness of the mapped enzymes for future research on seed composition and characteristics is discussed.
Kim, Young-Ha; slam, Mohammad Saiful; You, Myung-Jo
2015-01-01
Proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. For detection of antigens from Haemaphysalis longicornis, 1-dimensional electrophoresis (1-DE) quantitative immunoblotting technique combined with 2-dimensional electrophoresis (2-DE) immunoblotting was used for whole body proteins from unfed and partially fed female ticks. Reactivity bands and 2-DE immunoblotting were performed following 2-DE electrophoresis to identify protein spots. The proteome of the partially fed female had a larger number of lower molecular weight proteins than that of the unfed female tick. The total number of detected spots was 818 for unfed and 670 for partially fed female ticks. The 2-DE immunoblotting identified 10 antigenic spots from unfed females and 8 antigenic spots from partially fed females. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF) of relevant spots identified calreticulin, putative secreted WC salivary protein, and a conserved hypothetical protein from the National Center for Biotechnology Information and Swiss Prot protein sequence databases. These findings indicate that most of the whole body components of these ticks are non-immunogenic. The data reported here will provide guidance in the identification of antigenic proteins to prevent infestation and diseases transmitted by H. longicornis. PMID:25748713
Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L
2014-01-21
Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Xu, David; Si, Yubing; Meroueh, Samy O
2017-09-25
The binding affinity of a protein-protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein-protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein-protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein-protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein-protein interactions do not optimally mimic protein-ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.
A feature-based approach to modeling protein-protein interaction hot spots.
Cho, Kyu-il; Kim, Dongsup; Lee, Doheon
2009-05-01
Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.
Preliminary study on plasma proteins in pregnant and non-pregnant female dogs.
Szczubiał, Marek; Wawrzykowski, Jacek; Dąbrowski, Roman; Krawczyk, Magdalena; Kankofer, Marta
2017-07-15
In this study, we used a combined approach based on 2-dimensional electrophoresis (2-DE), difference in gel electrophoresis (DIGE), and mass spectrometry (MS) to identify the plasma protein composition in pregnant female dogs and compared it with non-pregnant female dogs. We used the plasma samples obtained from four female dogs during I, II, and III thirds of pregnancy, three days after parturition, as well as from four non-pregnant female dogs in diestrus phase. Analysis of 2-DE gel image exhibited of 249 protein spots. The intensity of staining of 35 spots differed significantly (P < 0.05) between the non-pregnant and pregnant female dogs. We used matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI TOF MS) to identify 47 spots corresponding to 52 different proteins. Five identified protein spots, including zinc finger BED domain-containing protein 5, hemoglobin subunit beta-2, integrator complex subunit 7, apolipoprotein A-I, and glutamyl aminopeptidase were differentially presented in the plasma of pregnant and non-pregnant female dogs. To the best of our knowledge, this is the first report on the plasma protein profile of pregnant and non-pregnant female dogs. In this study, we identified proteins that have not been previously identified in dogs. Our findings showed that numerous protein spots were differentially presented in the plasma of female dogs during normal pregnancy. Although we identified only a limited number of differentially presented proteins, our study demonstrated that the plasma protein profile changed during pregnancy in female dogs, which suggests its importance in maintaining pregnancy. Further studies are necessary to define complete plasma protein profile of pregnant female dogs and to identify all proteins that are differentially presented in the pregnant animals compared with the non-pregnant ones. In addition, studies are warranted to explain the role of those proteins in maintaining the pregnancy and their usefulness in detection of early pregnancy. Furthermore, our results indicated that DIGE technique is useful in the comparison of samples originated from different states and time points in dogs. Copyright © 2017 Elsevier Inc. All rights reserved.
DIGE Analysis Software and Protein Identification Approaches.
Hmmier, Abduladim; Dowling, Paul
2018-01-01
DIGE is a high-resolution two-dimensional gel electrophoresis method, with excellent dynamic range obtained by fluorescent tag labeling of protein samples. Scanned images of DIGE gels show thousands of protein spots, each spot representing a single or a group of protein isoforms. By using commercially available software, each protein spot is defined by an outline, which is digitized and correlated with the quantity of proteins present in each spot. Software packages include DeCyder, SameSpots, and Dymension 3. In addition, proteins of interest can be excised from post-stained gels and identified with conventional mass spectrometry techniques. High-throughput mass spectrometry is performed using sophisticated instrumentation including matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), MALDI-TOF/TOF, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Tandem MS (MALDI-TOF/TOF or LC-MS/MS), analyzes fragmented peptides, resulting in amino acid sequence information, especially useful when protein spots are low abundant or where a mixture of proteins is present.
2011-01-01
Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480
USDA-ARS?s Scientific Manuscript database
Immunoproteomic approaches were conducted to identify antigenic proteins from the total proteins of unsporulated oocysts of Eimeria tenella (E. tenella). Approximately 101 protein spots were recognized by chicken sera infected experimentally with E. tenella. Fourty-six spots of unsporulated oocysts ...
Impact of cryopreservation on bull () semen proteome.
Westfalewicz, B; Dietrich, M A; Ciereszko, A
2015-11-01
Cryopreservation of bull spermatozoa is a well-established technique, allowing artificial insemination of cattle on a commercial scale. However, the extent of proteome changes in seminal plasma and spermatozoa during cryopreservation are not yet fully known. The objective of this study was to compare the proteomes of fresh, equilibrated, and cryopreserved bull semen (spermatozoa and seminal plasma) to establish the changes in semen proteins during the cryopreservation process. Semen was collected from 6 mature Holstein Friesian bulls. After sample processing, comparative analysis and identification of proteins was performed using 2-dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry. Analysis of spermatozoa extracts revealed that 25 identified protein spots, representing 16 proteins, underwent significant ( < 0.05) changes in abundance due to equilibration and cryopreservation. Eighteen protein spots decreased in abundance, 5 protein spots increased in abundance, and 2 protein spots showed different, specific patterns of abundance changes. Analysis of seminal fluid containing seminal plasma showed that 6 identified protein spots, representing 4 proteins, underwent significant ( < 0.05) changes in abundance due to equilibration and cryopreservation. Two protein spots increased in abundance and 4 decreased in abundance. Semen extending and equilibration seems to be responsible for a significant portion of the proteome changes related to cryopreservation technology. Most sperm proteins affected by equilibration and cryopreservation are membrane bound, and loss of those proteins may reduce natural spermatozoa coating. Further research is needed to unravel the mechanisms of the particular protein changes described in this study and establish the relationship between those changes and sperm quality.
Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.
Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta
2014-01-01
Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric points and different molecular weights or spots with different isoelectric points and similar molecular weights play an important role in proteome analysis. The regions characteristic of albumin, globulin and legumin and vicilin fractions of globulin with typical MW and pi values were identified as the results of performed 2D electrophoretic separations of pea proteins. 2D gel electrophoresis of albumins and the vicilin fraction of globulins revealed the presence of 4 and 2 spots, respectively, representing potentially allergenic proteins. They probably corresponded to vicilin fragments synthesized during post-translational modification of the analysed protein.
Xu, Ming-Yi; Qu, Ying; Jia, Xiao-Fang; Wang, Mei-Ling; Liu, Heng; Wang, Xing-Peng; Zhang, Li-Jun; Lu, Lun-Gen
2013-09-01
Because of the limitations of liver biopsy, reliable non-invasive serum biomarkers of liver fibrosis are needed. The aim of this study was to identify such markers by the use of serum proteomics in chronic hepatitis B (CHB). Two-dimensional gel electrophoresis (2-DE) was used to identify differentially expressed protein spots in sera from 40 CHB patients [20 with mild fibrosis (S0-S1) and 20 with severe fibrosis (S3-S4)]. Mass spectrometry (MS) based multiple reaction monitoring (MRM) was used to quantify peptide ions of differential protein spots in another set of sera from 86 CHB patients with different liver fibrosis (S0-S4). Seven differentially expressed protein spots were found by 2-DE. Fourteen peptide ions of seven target protein spots were quantified by MS-based MRM. Summed peak areas ratio (SPAR) values of peptide ions from protein spot 1, 4 and 8, identified as apo serum transferrin, complement component C3c and transferrin, were significantly different from non-fibrosis (S0) to fibrosis stage 4. AUROCs of models established by peptide ions (protein spot 1, 4, 8) and model consisting of a combination of all ions were 0.848∼0.966 (S2-S4 versus S0-S1) and 0.785∼0.875 (S3-S4 versus S0-S2). Only the peptide ions model of transferrin had better sensitivity and specificity for predicting fibrosis stages than did aspartate aminotransferase-to-platelet ratio index (APRI), FIB-4 and Forn's index. Serum peptide ions of transferrin, detected by proteomic MRM, are new and promising biomarkers for staging liver fibrosis in CHB patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Jannotti-Passos, Liana K; Andrade, Hélida M; Caldeira, Roberta L; Romanha, Alvaro J; Murta, Silvane M F; Chapeaurouge, Donat A; Perales, Jonas; Coelho, Paulo Marcos Z; Carvalho, Omar S
2008-03-01
For a better comprehension of the parasite-host interaction, proteins expressed by the cardiac and pericardial tissues were compared between susceptible (Cabo Frio) and resistant (Taim) Biomphalaria tenagophila populations, challenged (c) and non-challenged (nc) with Schistosoma mansoni. Proteins were separated by two-dimensional gel electrophoresis (2DE) and stained with Coomassie blue. A total of 146 and 135 spots were observed in Cabo Frio (CFnc) and in Taim (Tnc) non-challenged populations, respectively, whereas 153 spots were detected in both Cabo Frio (CFc) and Taim (Tc) challenged populations. Regarding comparisons between CFnc and CFc, the numbers of exclusive spots obtained were one and nine, respectively, whereas Tnc yielded 17 and Tc eight exclusive spots. By comparing the total of spots in CF (nc+c) with T (nc+c) populations, we obtained: four exclusive spots for CFc; zero for CFnc; four for Tc and; one for Tnc. A quantitative comparison (reason>2.5) of the total spots of CF (nc+c) with T (nc+c) populations allowed us to distinguish five more intense spots for Tc, 14 for Tnc, 15 for CFnc and 11 for CFc. In the CFnc population, two proteins were identified: actin and ATP synthase alpha chain; in the CFc population, four proteins: actin, calmodulin, HSP70, and dehydrogenase; in the Tnc population, five proteins: matrilin, HSP70, actin, ATP synthase alpha chain and intermediate filament of the protein; and in the Tc population, three proteins: actin, alpha-S1 casein and ATP synthase alpha chain. Out of a total of 79 spots, only nine proteins were identified due to the low number of available nucleotide sequences in the GenBank. Nevertheless, knowing proteins regarded as differentially expressed is indispensable for hitherto unidentified genes implicated in B. tenagophila resistance and or susceptibility to S. mansoni infection.
NASA Astrophysics Data System (ADS)
Zhou, Qian; Wu, Changgong; Dong, Bo; Li, Fuhua; Liu, Fengqi; Xiang, Jianhai
2010-03-01
Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica. Fourteen differentially displayed protein spots were detected and seven of them were identified. Three spots were up-expressed and identified: actin, heat shock protein 70, and chaperone subunit 1; three down-regulated proteins were identified: arginine kinase, elongation factor-2, and glycine-rich protein; and a newly expressed protein was identified as peroxiredoxin. The study indicates the involvement of all the differentially expressed proteins in the early responses of protein expression, and in the survival of A. sinica in the presence of copper and other heavy metals; the findings improve understanding of the organism’s adaptive responses and resistance.
Protein-protein interface analysis and hot spots identification for chemical ligand design.
Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua
2014-01-01
Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.
Proteins related to the functions of fibroblast-like synoviocytes identified by proteomic analysis.
Zhang, Hui; Fan, Lie Ying; Zong, Ming; Sun, Li Shan; Lu, Liu
2012-01-01
It is well known that the fibroblast-like synoviocytes (FLS) play a key role in pathogenesis of rheumatoid arthritis (RA). This study was performed to separate the differentially expressed proteins of FLS from the patients with RA or osteoarthritis (OA) by two-dimensional electrophoresis (2-DE), and found proteins associated with the functions of FLS by mass spectrometry (MS). Total proteins were extracted and quantified from the primary cultured FLS from patients of RA (n=8) or OA (n=6). Proteins were separated by high-resolution 2-DE, and identified the differentially expressed proteins by MS. Western blot analyses was used to validated the expression of candidate proteins. The mRNA of these proteins was detected by semi-quantitative fluorescent PCR. There are 1147 protein spots from RA and 1324 protein spots from OA showed on 2-DE graphs, respectively. We have selected 84 protein spots for MS analysis, and 27 protein spots were successfully identified. We have found that protein isoaspartyl methyltransferase (PIMT) and pirin (iron-binding nuclear protein, PIR) with lower expression in RA, and thioredoxin 1(Trx-1) only expressed in RA may be associated with functions of FLS. Western Blot confirmed the expression of PIMT and pirin lower in RA, and Trx-1 expressed only in RA. The results of semi-quantitative fluorescent PCR are also consistent with 2-DE graphs. PIMT, pirin and Trx-1 affect the functions of FLS in some style and can be the drug targets of RA.
Liu, Jianhua; Li, Wenyu; Ji, Yihong; Tian, Di; Tian, Lu; Yang, Xinchao; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui; Song, Xiaokai
2017-01-01
Clinical chicken coccidiosis is mostly caused by simultaneous infection of several Eimeria species, and host immunity against Eimeria is species-specific. It is urgent to identify common immunodominant antigen of Eimeria for developing multivalent anticoccidial vaccines. In this study, sporozoite proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima were analyzed by two-dimensional electrophoresis (2DE). Western bot analysis was performed on the yielded 2DE gel using antisera of E. tenella E. acervulina and E. maxima respectively. Next, the detected immunodominant spots were identified by comparing the data from MALDI-TOF-MS/MS with available databases. Finally, Eimeria common antigens were identified by comparing amino acid sequence between the three Eimeria species. The results showed that analysis by 2DE of sporozoite proteins detected 629, 626 and 632 protein spots from E. tenella, E. acervulina and E. maxima respectively. Western bot analysis revealed 50 (E. tenella), 64 (E. acervulina) and 57 (E. maxima) immunodominant spots from the sporozoite 2DE gels of the three Eimeria species. The immunodominant spots were identified as 33, 27 and 25 immunodominant antigens of E. tenella, E. acervulina and E. maxima respectively. Fifty-four immunodominant proteins were identified as 18 ortholog proteins among the three Eimeria species. Finally, 5 of the 18 ortholog proteins were identified as common immunodominant antigens including elongation factor 2 (EF-2), 14-3-3 protein, ubiquitin-conjugating enzyme domain-containing protein (UCE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, our results not only provide Eimeria sporozoite immunodominant antigen map and additional immunodominant antigens, but also common immunodominant antigens for developing multivalent anticoccidial vaccines. PMID:28432276
Liu, Lianrui; Huang, Xinmei; Liu, Jianhua; Li, Wenyu; Ji, Yihong; Tian, Di; Tian, Lu; Yang, Xinchao; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui; Song, Xiaokai
2017-05-23
Clinical chicken coccidiosis is mostly caused by simultaneous infection of several Eimeria species, and host immunity against Eimeria is species-specific. It is urgent to identify common immunodominant antigen of Eimeria for developing multivalent anticoccidial vaccines. In this study, sporozoite proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima were analyzed by two-dimensional electrophoresis (2DE). Western bot analysis was performed on the yielded 2DE gel using antisera of E. tenella E. acervulina and E. maxima respectively. Next, the detected immunodominant spots were identified by comparing the data from MALDI-TOF-MS/MS with available databases. Finally, Eimeria common antigens were identified by comparing amino acid sequence between the three Eimeria species. The results showed that analysis by 2DE of sporozoite proteins detected 629, 626 and 632 protein spots from E. tenella, E. acervulina and E. maxima respectively. Western bot analysis revealed 50 (E. tenella), 64 (E. acervulina) and 57 (E. maxima) immunodominant spots from the sporozoite 2DE gels of the three Eimeria species. The immunodominant spots were identified as 33, 27 and 25 immunodominant antigens of E. tenella, E. acervulina and E. maxima respectively. Fifty-four immunodominant proteins were identified as 18 ortholog proteins among the three Eimeria species. Finally, 5 of the 18 ortholog proteins were identified as common immunodominant antigens including elongation factor 2 (EF-2), 14-3-3 protein, ubiquitin-conjugating enzyme domain-containing protein (UCE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, our results not only provide Eimeria sporozoite immunodominant antigen map and additional immunodominant antigens, but also common immunodominant antigens for developing multivalent anticoccidial vaccines.
Gilbert, Elizabeth R.; Cox, Chasity M.; Williams, Patricia M.; McElroy, Audrey P.; Dalloul, Rami A.; Ray, W. Keith; Barri, Adriana; Emmerson, Derek A.; Wong, Eric A.; Webb, Kenneth E.
2011-01-01
Background Coccidiosis is an intestinal disease caused by protozoal parasites of the genus Eimeria. Despite the advent of anti-coccidial drugs and vaccines, the disease continues to result in substantial annual economic losses to the poultry industry. There is still much unknown about the host response to infection and to date there are no reports of protein profiles in the blood of Eimeria-infected animals. The objective of this study was to evaluate the serum proteome of two genetic lines of broiler chickens after infection with one of three species of Eimeria. Methodology/Principal Findings Birds from lines A and B were either not infected or inoculated with sporulated oocysts from one of the three Eimeria strains at 15 d post-hatch. At 21 d (6 d post-infection), whole blood was collected and lesion scoring was performed. Serum was harvested and used for 2-dimensional gel electrophoresis. A total of 1,266 spots were quantitatively assessed by densitometry. Protein spots showing a significant effect of coccidia strain and/or broiler genetic line on density at P<0.05−0.01 (250 spots), P<0.01−0.001 (248 spots), and P<0.001 (314 spots) were excised and analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified in 172 spots. A total of 46 different proteins were identified. Of the spots with a corresponding protein identification, 57 showed a main effect of coccidia infection and/or 2-way interaction of coccidia infection×broiler genetic line at P<0.001. Conclusions/Significance Several of the metabolic enzymes identified in this study are potential candidates for early diagnostic markers of E. acervulina infection including malate dehydrogenase 2, NADH dehydrogenase 1 alpha subcomplex 9, and an ATP synthase. These proteins were detected only in Line A birds that were inoculated with E. acervulina. Results from this study provide a basic framework for future research aimed at uncovering the complex biochemical mechanisms involved in host response to Eimeria infection and in identifying molecular targets for diagnostic screening and development of alternative preventative and therapeutic methods. PMID:21297942
Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings
2014-01-01
Background Although protein phosphorylation is an important post-translational modification affecting protein function and metabolism, dynamic changes in this process during ontogenesis remain unexplored in woody angiosperms. Methods Phosphorylated proteins from leaves of three apple seedlings at juvenile, adult vegetative and reproductive stages were extracted and subjected to alkaline phosphatase pre-treatment. After separating the proteins by two-dimensional gel electrophoresis and phosphoprotein-specific Pro-Q Diamond staining, differentially expressed phosphoproteins were identified by MALDI-TOF-TOF mass spectrometry. Results A total of 107 phosphorylated protein spots on nine gels (three ontogenetic phases × three seedlings) were identified by MALDI-TOF-TOF mass spectrometry. The 55 spots of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) large-chain fragments varied significantly in protein abundance and degree of phosphorylation among ontogenetic phases. Abundances of the 27 spots corresponding to Rubisco activase declined between juvenile and reproductive phases. More extensively, phosphorylated β-tubulin chain spots with lower isoelectric points were most abundant during juvenile and adult vegetative phases. Conclusions Protein phosphorylation varied significantly during vegetative phase change and floral transition in apple seedlings. Most of the observed changes were consistent among seedlings and between hybrid populations. PMID:24904238
Vödisch, Martin; Albrecht, Daniela; Lessing, Franziska; Schmidt, André D; Winkler, Robert; Guthke, Reinhard; Brakhage, Axel A; Kniemeyer, Olaf
2009-03-01
The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life-threatening infections in immunosuppressed patients. We established a 2-D reference map for A. fumigatus. Using MALDI-TOF-MS/MS, we identified 381 spots representing 334 proteins. Proteins involved in cellular metabolism, protein synthesis, transport processes and cell cycle were most abundant. Furthermore, we established a protocol for the isolation of mitochondria of A. fumigatus and developed a mitochondrial proteome reference map. 147 proteins represented by 234 spots were identified.
Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X
2013-12-19
To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.
Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy A; Kraycer, Jo Ann; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G
2002-08-01
Brucella melitensis is a facultative intracellular bacterial pathogen that causes brucellosis, a zoonotic disease primarily infecting sheep and goats, characterized by undulant fever, arthritic pain and other neurological disorders in humans. A comprehensive proteomic study of strain 16M was conducted to identify and characterize the proteins expressed in laboratory-grown culture. Using overlapping narrow range immobilized pH gradient strips for two-dimensional gel electrophoresis, 883 protein spots were detected between pH 3.5 and 11. The average isoelectric point and molecular weight values of the detected spots were 5.22 and 46.5 kDa, respectively. Of the 883 observed protein spots, 440 have been identified by matrix-assisted laser desorption/ionization-mass spectrometry. These proteins represent 187 discrete open reading frames (ORFs) or 6% of the predicted 3197 ORFs contained in the genome. The corresponding ORFs of the identified proteins are distributed evenly between each of the two circular B. melitensis chromosomes, indicating that both replicons are functionally active. The presented proteome map lists those protein spots identified to date in this study. This map may serve as a baseline reference for future proteomic studies aimed at the definition of biochemical pathways associated with stress responses, host specificity, pathogenicity and virulence. It will also assist in characterization of global proteomic effects in gene-knockout mutants. Ultimately, it may aid in our overall understanding of the cell biology of B. melitensis, an important bacterial pathogen.
Golden, Mary S.; Cote, Shaun M.; Sayeg, Marianna; Zerbe, Brandon S.; Villar, Elizabeth A.; Beglov, Dmitri; Sazinsky, Stephen L.; Georgiadis, Rosina M.; Vajda, Sandor; Kozakov, Dima; Whitty, Adrian
2013-01-01
We report a comprehensive analysis of binding energy hot spots at the protein-protein interaction (PPI) interface between NF-κB Essential Modulator (NEMO) and IκB kinase subunit β (IKKβ), an interaction that is critical for NF-κB pathway signaling, using experimental alanine scanning mutagenesis and also the FTMap method for computational fragment screening. The experimental results confirm that the previously identified NBD region of IKKβ contains the highest concentration of hot spot residues, the strongest of which are W739, W741 and L742 (ΔΔG = 4.3, 3.5 and 3.2 kcal/mol, respectively). The region occupied by these residues defines a potentially druggable binding site on NEMO that extends for ~16 Å to additionally include the regions that bind IKKβ L737 and F734. NBD residues D738 and S740 are also important for binding but do not make direct contact with NEMO, instead likely acting to stabilize the active conformation of surrounding residues. We additionally found two previously unknown hot spot regions centered on IKKβ residues L708/V709 and L719/I723. The computational approach successfully identified all three hot spot regions on IKKβ. Moreover, the method was able to accurately quantify the energetic importance of all hot spots residues involving direct contact with NEMO. Our results provide new information to guide the discovery of small molecule inhibitors that target the NEMO/IKKβ interaction. They additionally clarify the structural and energetic complementarity between “pocket-forming” and “pocket occupying” hot spot residues, and further validate computational fragment mapping as a method for identifying hot spots at PPI interfaces. PMID:23506214
Characterization of major allergens of royal jelly Apis mellifera.
Rosmilah, M; Shahnaz, M; Patel, G; Lock, J; Rahman, D; Masita, A; Noormalin, A
2008-12-01
Royal jelly is widely consumed in the community and has perceived benefits ranging from promoting growth in children and improvement of general health status to enhancement of longevity for the elderly. However, royal jelly consumption has been linked to contact dermatitis, acute asthma, anaphylaxis and death. High prevalence of positive skin tests to royal jelly have been reported among atopic populations in countries with a high rate of royal jelly consumption. The present study is aimed to identify the major allergens of royal jelly. Royal jelly extract was separated by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional electrophoresis (2-D). Immunoblotting of the SDS-PAGE and 2-D profiles were performed to identify the allergenic spots. Spots were then excised from the 2-D gel, digested with trypsin and analyzed by mass spectrometry. The SDS-PAGE of royal jelly extract revealed 18 bands between 10 to 167 kD. Western blot of the fractionated proteins detected 15 IgE-binding bands between 14 to 127 kD with seven major allergens of 32, 40, 42, 49, 55, 60 and 67 kD using serum from 53 subjects with royal jelly allergy. The 2-D gel fractionated the royal jelly proteins to more than 50 different protein spots. Out of these, 30 spots demonstrated specific IgE affinity to the sera tested. Eight spots of the major royal jelly allergens were selected for mass-spectrometry analysis. Digested tryptic peptides of the spots were compared to the amino acid sequence search in protein databases which identified the fragments of royal jelly homologus to major royal jelly protein 1 (MRJ1) and major royal jelly protein 2 (MRJ2). In conclusion, the major allergens of royal jelly are MRJ1 and MRJ2 in our patients' population.
A feature-based approach to modeling protein–protein interaction hot spots
Cho, Kyu-il; Kim, Dongsup; Lee, Doheon
2009-01-01
Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533
Monoyios, Andreas; Patzl, Martina; Schlosser, Sarah; Hess, Michael; Bilic, Ivana
2018-02-01
The current study focused on Histomonas meleagridis, a unicellular protozoan, responsible for histomonosis in poultry. Recently, the occurrence of the disease increased due to the ban of effective chemotherapeutic drugs. Basic questions regarding the molecular biology, virulence mechanisms or even life cycle of the flagellate are still puzzling. In order to address some of these issues, we conducted a comparative proteomic analysis of a virulent and an attenuated H. meleagridis strain traced back to a single cell and propagated in vitro as monoxenic mono-eukaryotic cultures. Using two-dimensional electrophoresis (2-DE) for proteome visualization with computational 2-DE gel image and statistical analysis, upregulated proteins in either of the two H. meleagridis strains were detected. Statistical analysis fulfilling two criteria (≥threefold upregulation and P < 0.05) revealed 119 differentially expressed protein spots out of which 62 spots were noticed in gels with proteins from the virulent and 57 spots in gels with proteins from the attenuated culture. Mass spectrometric analysis of 32 protein spots upregulated in gels of the virulent strain identified 17 as H. meleagridis-specific. The identification revealed that these spots belonged to eight different proteins, with the majority related to cellular stress management. Two ubiquitous cellular proteins, actin and enolase, were upregulated in multiple gel positions in this strain, indicating either post-translational modification or truncation, or even both. Additionally, a known virulence factor named legumain cysteine peptidase was also detected. In contrast to this, mass spectrometric analysis of 49 protein spots, upregulated in gels of the attenuated strain, singled out 32 spots as specific for the flagellate. These spots were shown to correspond to 24 different proteins that reflect the increased metabolism, in vitro adaptation of the parasite, and amoeboid morphology. In addition to H. meleagridis proteins, the analysis identified differential expression of Escherichia coli DH5α proteins that could have been influenced by the co-cultivated H. meleagridis strain, indicating a reciprocal interaction of these two organisms during monoxenic cultivation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Kozakov, Dima; Grove, Laurie E.; Hall, David R.; Bohnuud, Tanggis; Mottarella, Scott; Luo, Lingqi; Xia, Bing; Beglov, Dmitri; Vajda, Sandor
2016-01-01
FTMap is a computational mapping server that identifies binding hot spots of macromolecules, i.e., regions of the surface with major contributions to the ligand binding free energy. To use FTMap, users submit a protein, DNA, or RNA structure in PDB format. FTMap samples billions of positions of small organic molecules used as probes and scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots, in good agreement with experimental data. FTMap serves as basis for other servers, namely FTSite to predict ligand binding sites, FTFlex to account for side chain flexibility, FTMap/param to parameterize additional probes, and FTDyn to map ensembles of protein structures. Applications include determining druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures, and providing input for fragment based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and is much faster than the more recent approaches to protein mapping based on mixed molecular dynamics. Using 16 probe molecules, the FTMap server finds the hot spots of an average size protein in less than an hour. Since FTFlex performs mapping for all low energy conformers of side chains in the binding site, its completion time is proportionately longer. PMID:25855957
Proteome analysis of Aspergillus ochraceus.
Rizwan, Muhammad; Miller, Ingrid; Tasneem, Fareeha; Böhm, Josef; Gemeiner, Manfred; Razzazi-Fazeli, Ebrahim
2010-08-01
Genome sequencing for many important fungi has begun during recent years; however, there is still some deficiency in proteome profiling of aspergilli. To obtain a comprehensive overview of proteins and their expression, a proteomic approach based on 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry was used to investigate A. ochraceus. The cell walls of fungi are exceptionally resistant to destruction, therefore two lysis protocols were tested: (1) lysis via manual grinding using liquid nitrogen, and (2) mechanical lysis via rapid agitation with glass beads using MagNalyser. Mechanical grinding with mortar and pestle using liquid nitrogen was found to be a more efficient extraction method for our purpose, resulting in extracts with higher protein content and a clear band pattern in SDS-PAGE. Two-dimensional electrophoresis gave a complex spot pattern comprising proteins of a broad range of isoelectric points and molecular masses. The most abundant spots were subjected to mass spectrometric analysis. We could identify 31 spots representing 26 proteins, most of them involved in metabolic processes and response to stress. Seventeen spots were identified by de novo sequencing due to a lack of DNA and protein database sequences of A. ochraceus. The proteins identified in our study have been reported for the first time in A. ochraceus and this represents the first proteomic approach with identification of major proteins, when the fungus was grown under submerged culture.
Abulaizi, Mayinuer; Tomonaga, Takeshi; Satoh, Mamoru; Sogawa, Kazuyuki; Matsushita, Kazuyuki; Kodera, Yoshio; Obul, Jurat; Takano, Shigetsugu; Yoshitomi, Hideyuki; Miyazaki, Masaru; Nomura, Fumio
2011-01-01
We searched for novel tumor markers of pancreatic cancer by three-step serum proteome analysis. Twelve serum abundant proteins were depleted using immunoaffinity columns followed by fractionation by reverse-phase high-performance liquid chromatography. Proteins in each fraction were separated by two-dimensional gel electrophoresis. Then the gel was stained by Coomassie Brilliant Blue. Protein spots in which the expression levels were significantly different between cancer and normal control were identified by LC-MS/MS. One hundred and two spots were upregulated, and 84 spots were downregulated in serum samples obtained from patients with pancreatic cancers, and 58 proteins were identified by mass spectrometry. These candidate proteins were validated using western blot analysis and enzyme-linked immunosorbent assay (ELISA). As a result of these validation process, we could confirm that the serum levels of apolipoprotein A-IV, vitamin D-binding protein, plasma retinol-binding protein 4, and tetranectin were significantly decreased in patients with pancreatic cancer. PMID:22091389
Di, Guilan; Luo, Xuan; Huang, Miaoqin; Chen, Jun; Kong, Xianghui; Miao, Xiulian; Ke, Caihuan
2015-12-01
Proteomic analysis was performed on the eggs of hybrid abalone and their corresponding parental lines. A total of 915 ± 19 stained protein spots were detected from Haliotis discus hannai♀ × H. discus hannai♂ (DD), 935 ± 16 from H. gigantea♀ × H. gigantea♂ (GG) and 923 ± 13 from H. gigantea♀ × H. discus hannai♂ (GD). The spots from DD and GD were clustered together. The distance between DD and GG was maximal by hierarchical cluster analysis. A total of 112 protein gel spots were identified; of these, 59 were abalone proteins. The proteins were involved in major biological processes including energy metabolism, proliferation, apoptosis, signal transduction, immunity, lipid metabolism, electron carrier proteins, protein biosynthesis and decomposition, and cytoskeletal structure. Three of 20 differential expression protein spots involved in energy metabolism exhibited as upregulated in GD, 13 spots exhibited additivity, and four spots exhibited as downregulated in the offspring. Eleven protein spots were expressed at the highest level in DD. The proteins involved in stress responses included superoxide dismutase, peroxiredoxin 6, thioredoxin peroxidase and glutathione-S-transferase. Two of seven differential expression protein spots involved in response to stress exhibited as upregulated in GD, three exhibited additivity, and two exhibited as downregulated. These results might suggest that proteomic approaches are suitable for the analysis of hybrids and the functional prediction of abalone hybridization. © 2015 Stichting International Foundation for Animal Genetics.
Proteomic analysis of ethanol-induced embryotoxicity in cultured post-implantation rat embryos.
Usami, Makoto; Mitsunaga, Katsuyoshi; Irie, Tomohiko; Miyajima, Atsuko; Doi, Osamu
2014-04-01
Protein expression changes were examined in day 10.5 rat embryos cultured for 24 hr in the presence of ethanol by using two-dimensional electrophoresis and mass spectrometry. Exposure to ethanol resulted in quantitative changes in many embryonic protein spots (16 decreased and 28 increased) at in vitro embryotoxic concentrations (130 and 195 mM); most changes occurred in a concentration-dependent manner. For these protein spots, 17 proteins were identified, including protein disulfide isomerase A3, alpha-fetoprotein, phosphorylated cofilin-1, and serum albumin. From the gene ontology classification and pathway mapping of the identified proteins, it was found that ethanol affected several biological processes involving oxidative stress and retinoid metabolism.
Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development
Zhang, Ning; Chen, Feng; Huo, Wang; Cui, Dangqun
2015-01-01
Proteomic approaches were applied in four grain developmental stages of the Chinese bread wheat Yunong 201 and its ethyl methanesulfonate (EMS) mutant line Yunong 3114. 2-DE and tandem MALDI-TOF/TOF-MS analyzed proteome characteristics during middle and late grain development of the Chinese bread wheat Yunong 201 and its EMS mutant line Yunong 3114 with larger grain sizes. We identified 130 differentially accumulated protein spots representing 88 unique proteins, and four main expression patterns displayed a dynamic description of middle and late grain formation. Those identified protein species participated in eight biochemical processes: stress/defense, carbohydrate metabolism, protein synthesis/assembly/degradation, storage proteins, energy production and transportation, photosynthesis, transcription/translation, signal transduction. Comparative proteomic characterization demonstrated 12 protein spots that co-accumulated in the two wheat cultivars with different expression patterns, and six cultivar-specific protein spots including serpin, small heat shock protein, β-amylase, α-amylase inhibitor, dimeric α-amylase inhibitor precursor, and cold regulated protein. These cultivar-specific protein spots possibly resulted in differential yield-related traits of the two wheat cultivars. Our results provide valuable information for dissection of molecular and genetics basis of yield-related traits in bread wheat and the proteomic characterization in this study could also provide insights in the biology of middle and late grain development. PMID:26442048
Pan, Yuliang; Wang, Zixiang; Zhan, Weihua; Deng, Lei
2018-05-01
Identifying RNA-binding residues, especially energetically favored hot spots, can provide valuable clues for understanding the mechanisms and functional importance of protein-RNA interactions. Yet, limited availability of experimentally recognized energy hot spots in protein-RNA crystal structures leads to the difficulties in developing empirical identification approaches. Computational prediction of RNA-binding hot spot residues is still in its infant stage. Here, we describe a computational method, PrabHot (Prediction of protein-RNA binding hot spots), that can effectively detect hot spot residues on protein-RNA binding interfaces using an ensemble of conceptually different machine learning classifiers. Residue interaction network features and new solvent exposure characteristics are combined together and selected for classification with the Boruta algorithm. In particular, two new reference datasets (benchmark and independent) have been generated containing 107 hot spots from 47 known protein-RNA complex structures. In 10-fold cross-validation on the training dataset, PrabHot achieves promising performances with an AUC score of 0.86 and a sensitivity of 0.78, which are significantly better than that of the pioneer RNA-binding hot spot prediction method HotSPRing. We also demonstrate the capability of our proposed method on the independent test dataset and gain a competitive advantage as a result. The PrabHot webserver is freely available at http://denglab.org/PrabHot/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.
Park, S H; Strobel, G A
1994-01-05
Maculosin (the diketopiperazine, cyclo (L-Pro-L-Tyr)) is a host specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa L.). Receptors for this phytotoxin have been isolated from spotted knapweed. Knapweed leaves possess most of the maculosin-binding activity in the cytosolic fraction. However, activity was also observed in the whole membrane fraction of the leaf. The binding component of the cytosolic fraction was identified as a protein(s) because of its heat-lability and sensitivity to proteases. A 16-fold purification of a toxin-binding protein was carried out by ammonium sulfate fractionation, and Sephadex G-200, and maculosin-affinity column chromatography. The affinity column was prepared with epoxy activated Sepharose 6B to which the phenolic group of maculosin was attached. The receptor was estimated to contain more than one binding protein by native and SDS-PAGE. At least one of the maculosin-binding proteins was identified as ribulose-1,5-biphosphate carboxylase (RuBPcase).
Zhou, Y-J; Xue, J-G; Wang, X-G; Zhang, X-Q
2012-11-12
Buffalograss, Buchloe dactyloides, is a dioecious species native to the Great Plains of North America. The florets at the early stages of development possess both gynoecium and androecium organ primordia but later become unisexual. Very little is known about the proteomic changes that occur when the florets change from hermaphroditism to unisexuality. We compared the protein composition of florets at the hermaphroditic stage with that at the unisexual stage. The development stage of the floret was determined by stereomicroscopic observation. Two-dimensional gel electrophoresis was used to separate the proteins extracted from female and male inflorescences. Stage- specific protein maps, with an average of about 400 spots per map, were analyzed with the protein analysis software. Eighteen spots were found to be differentially expressed between the hermaphrodite and unisexual stages. Of these, 12 were present at both stages but with a different expression value. Four specific spots appeared at the hermaphrodite stage and disappeared at the unisexual stage. Two specific protein spots were associated with female and male floret differentiation. One appears to be associated with contabescence in the female floret and the final protein appears to lead to the abortion of gynoecium in the male floret. The MALDI TOF/TOF technique was used for peptide mass fingerprinting of the differentially expressed proteins and the MASCOT software was used to search the protein database. However, only two protein spots were identified from the database. These were aldolase1 and Os05g0574400 (similar to malate dehydrogenase). This type of proteomic study can help to identify novel protein products and determine the mechanisms involved in the floral sex differentiation process in buffalo grass.
Shen, Zhi-Jun; Chen, Juan; Ghoto, Kabir; Hu, Wen-Jun; Gao, Gui-Feng; Luo, Mei-Rong; Li, Zan; Simon, Martin; Zhu, Xue-Yi; Zheng, Hai-Lei
2018-06-15
Avicennia marina (Forsk.) Vierh is one of the most salt-tolerant mangrove species. Our previous study revealed that nitric oxide (NO) enhanced the salt tolerance of A. marina by promoting salt secretion and Na+ sequestration under salt stress. However, little is known about the regulation of NO on proteomic profiling for this mangrove species. In this study, we used sodium nitroprusside (SNP), an NO donor, to investigate the regulatory mechanism of NO on salt tolerance of A. marina according to physiological and proteomic aspects. Photosynthesis data showed that the reduction in photosynthesis caused by high salinity treatment (400 mM NaCl) could be partially recovered by addition of SNP (100 μM). Further analysis revealed that the high salinity treatment could induce not only the stomatal limitation but also non-stomatal limitation on photosynthetic reduction, while SNP addition could restore the non-stomatal limitation, implying that the application of SNP was beneficial to the metabolic process in leaves. Proteomic analysis identified 49 differentially expressed proteins involved in various biological processes such as photosynthesis, energy metabolism, primary metabolism, RNA transcription, protein translation and stress response proteins. Under high salinity treatment, the abundances of proteins related to photosynthesis, such as ribulose-phosphate 3-epimerase (RPE, spot 3), RuBisCO large subunit (RBCL, spot 4, 5, 24), RuBisCO activase A (RCA, spot 17, 18) and quinine oxidoreductase-like protein isoform 1 (QOR1, spot 23), were significantly decreased. However, the abundance of proteins such as RBCL (spot 5, 9) and QOR1 (spot 23) were increased by SNP addition. In addition, exogenous NO supply alleviated salt tolerance by increasing the accumulation of some proteins involved in energy metabolism (spot 15), primary metabolism (spot 25, 45, 46), RNA transcription (spot 36) and stress response proteins (spot 12, 21, 26, 37, 43). The transcriptional levels of nine selected proteins were mostly consistent with their protein abundance except spot 46. Overall, the presented data demonstrated that NO has a positive effect on improving salt tolerance in A. marina by regulating the protein abundance involved in photosynthesis, energy metabolism, primary metabolism and stress response.
Proteomic analysis of protein phosphatase Z1 from Candida albicans
Pfliegler, Walter P.; Petrényi, Katalin; Boros, Enikő; Pócsi, István; Tőzsér, József; Dombrádi, Viktor
2017-01-01
Protein phosphatase Z is a “novel type” fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for CaPpz1 in biofilm formation, was confirmed experimentally. Thus our unbiased proteomic approach lead to the discovery of a novel function for this phosphatase in C. albicans. PMID:28837603
Han, Bing; Yang, Qin; Luo, Xin-hua; He, Xiao-fei; Wu, Jun; Cheng, Ming-liang
2009-06-02
To compare and analyze the differential expression of proteins between coal-burning arsenism serum and normal human serum and identify the proteins related with arseniasis caused by coal-burning. Serum samples were collected from 6 normal subjects and 6 patients suffering from coal-burning arsenism. 2-DE was performed to separate serum proteins. After silver staining, the differential expression of proteins was analyzed and then identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). There were an average of 779 +/- 35 spots and 865 +/- 30 spots on 2-DE matching of two groups and the matching rate was 90.1% between two groups. From these two groups, 60 different protein spots were identified. Up-regulated expression was observed in 25 proteins and down-regulated expression in 35 proteins in the patient serum group. Among which 35 with differential expression above three times were singled out and MALDI-TOF-MS analysis was carried out on them. Thirteen proteins were identified, including keratin 10, apolipoprotein A-V, transferrin, alpha-1-antitrypsin, human zinc-alpha-2-glycoprotein, mitogen-activated protein kinase 3, vacuolar protein sorting 33A, O-linked GlcNAc transferase and etc. Up-regulated expression was observed in 5 proteins and down-regulated expression in 8 proteins in the patient serum group. The well-resolved and reproducible 2-DE serum patterns of patients suffering from coal-burning arsenism were established and some differentially expressed proteins characterized. These data will be used to screen the biomarker and to further study arseniasis caused by coal-burning.
Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan
2014-12-01
Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.
Comparative Proteomic Insights into the Lactate Responses of Halophilic Salinicoccus roseus W12
Wang, Hongyan; Wang, Limin; Yang, Han; Cai, Yumeng; Sun, Lifan; Xue, Yanfen; Yu, Bo; Ma, Yanhe
2015-01-01
Extremophiles use adaptive mechanisms to survive in extreme environments, which is of great importance for several biotechnological applications. A halophilic strain, Salinicoccus roseus W12, was isolated from salt lake in Inner Mongolia, China in this study. The ability of the strain to survive under high sodium conditions (including 20% sodium lactate or 25% sodium chloride, [w/v]) made it an ideal host to screen for key factors related to sodium lactate resistance. The proteomic responses to lactate were studied using W12 cells cultivated with or without lactate stress. A total of 1,656 protein spots in sodium lactate-treated culture and 1,843 spots in NaCl-treated culture were detected by 2-dimensional gel electrophoresis, and 32 of 120 significantly altered protein spots (fold change > 2, p < 0.05) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Among 21 successfully identified spots, 19 proteins were upregulated and 2 were downregulated. The identified proteins are mainly involved in metabolism, cellular processes and signaling, and information storage and processing. Transcription studies confirmed that most of the encoding genes were upregulated after the cells were exposed to lactate in 10 min. Cross-protecting and energy metabolism-related proteins played an important role in lactate tolerance for S. roseus W12. PMID:26358621
Lu, Nan; Xu, Zhaohe; Meng, Bingnan; Sun, Yuhan; Zhang, Jiangtao; Wang, Shaoming; Li, Yun
2014-04-21
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.
Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth.
Liu, Jinwen; Hai, Guanghui; Wang, Chong; Cao, Shenquan; Xu, Wenjing; Jia, Zhigang; Yang, Chuanping; Wang, Jack P; Dai, Shaojun; Cheng, Yuxiang
2015-08-03
Wood is derived from the secondary growth of tree stems. In this study, we investigated the global changes of protein abundance in Populus early stems using a proteomic approach. Morphological and histochemical analyses revealed three typical stages during Populus early stems, which were the primary growth stage, the transition stage from primary to secondary growth and the secondary growth stage. A total of 231 spots were differentially abundant during various growth stages of Populus early stems. During Populus early stem lignifications, 87 differential spots continuously increased, while 49 spots continuously decreased. These two categories encompass 58.9% of all differential spots, which suggests significant molecular changes from primary to secondary growth. Among 231 spots, 165 unique proteins were identified using LC-ESI-Q-TOF-MS, which were classified into 14 biological function groups. The proteomic characteristics indicated that carbohydrate metabolism, oxido-reduction, protein degradation and secondary cell wall metabolism were the dominantly occurring biochemical processes during Populus early stem development. This study helps in elucidating biochemical processes and identifies potential wood formation-related proteins during tree early stem development. It is a comprehensive proteomic investigation on tree early stem development that, for the first time, reveals the overall molecular networks that occur during Populus early stem lignifications. Copyright © 2015. Published by Elsevier B.V.
Di, G; Luo, X; You, W; Zhao, J; Kong, X; Ke, C
2015-01-01
To understand the potential molecular mechanism of heterosis, protein expression patterns were compared from hybrids of Haliotis gigantea (G) and Haliotis discus hannai (D) using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analyses. Expression differences were observed in muscle samples from the four groups with 673±21.0 stained spots for H. discus hannai ♀ × H. discus hannai ♂ (DD), 692±25.6 for H. gigantea ♀ × H. gigantea ♂ (GG), 679±16.2 for H. discus hannai ♀ × H. gigantea ♂ (DG) (F1 hybrid) and 700±19 for H. gigantea ♀ × H. discus hannai ♂ (GD) (F1 hybrid). Different 2-DE image muscle protein spots had a mirrored relationship between purebreds and the F1 hybrid, suggesting that all stained spots in F1 hybrid muscle were on 2-DEs from parents. DD and DG clustered together first, and then clustered with GD, whereas the distance of DD and GG was maximal according to hierarchical cluster analysis. We identified 136 differentially expressed protein spots involved in major biological processes, including energy metabolism and stress response. Most energy metabolism proteins were additive, and stress-induced proteins displayed additivity or over-dominance. In these 136 identified protein spots, hybrid offspring with additivity or over-dominance accounted for 68.38%. Data show that a proteomic approach can provide functional prediction of abalone interspecific hybridization. PMID:25669609
Proteomic evaluation of sheep serum proteins
2012-01-01
Background The applications of proteomic strategies to ovine medicine remain limited. The definition of serum proteome may be a good tool to identify useful protein biomarkers for recognising sub-clinical conditions and overt disease in sheep. Findings from bovine species are often directly translated for use in ovine medicine. In order to characterize normal protein patterns and improve knowledge of molecular species-specific characteristics, we generated a two-dimensional reference map of sheep serum. The possible application of this approach was tested by analysing serum protein patterns in ewes with mild broncho-pulmonary disease, which is very common in sheep and in the peripartum period which is a stressful time, with a high incidence of infectious and parasitic diseases. Results This study generated the first reference 2-DE maps of sheep serum. Overall, 250 protein spots were analyzed, and 138 identified. Compared with healthy sheep, serum protein profiles of animals with rhino-tracheo-bronchitis showed a significant decrease in protein spots identified as transthyretin, apolipoprotein A1 and a significant increase in spots identified as haptoglobin, endopin 1b and alpha1B glycoprotein. In the peripartum period, haptoglobin, alpha-1-acid glycoprotein, apolipoprotein A1 levels rose, while transthyretin content dropped. Conclusions This study describes applications of proteomics in putative biomarker discovery for early diagnosis as well as for monitoring the physiological and metabolic situations critical for ovine welfare. PMID:22630135
Afzal, Ahmed J.; Natarajan, Aparna; Saini, Navinder; Iqbal, M. Javed; Geisler, Matt; El Shemy, Hany A.; Mungur, Rajsree; Willmitzer, Lothar; Lightfoot, David A.
2009-01-01
Heterodera glycines, the soybean cyst nematode (SCN), causes the most damaging chronic disease of soybean (Glycine max). Host resistance requires the resistance allele at rhg1. Resistance destroys the giant cells created in the plant's roots by the nematodes about 24 to 48 h after commencement of feeding. In addition, 4 to 8 d later, a systemic acquired resistance develops that discourages later infestations. The molecular mechanisms that control the rhg1-mediated resistance response appear to be multigenic and complex, as judged by transcript abundance changes, even in near isogenic lines (NILs). This study aimed to focus on key posttranscriptional changes by identifying proteins and metabolites that were increased in abundance in both resistant and susceptible NILs. Comparisons were made among NILs 10 d after SCN infestation and without SCN infestation. Two-dimensional gel electrophoresis resolved more than 1,000 protein spots on each gel. Only 30 protein spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were found among the four treatments. The proteins in these spots were picked, trypsin digested, and analyzed using quadrupole time-of-flight tandem mass spectrometry. Protein identifications could be made for 24 of the 30 spots. Four spots contained two proteins, so that 28 distinct proteins were identified. The proteins were grouped into six functional categories. Metabolite analysis by gas chromatography-mass spectrometry identified 131 metabolites, among which 58 were altered by one or more treatment; 28 were involved in primary metabolism. Taken together, the data showed that 17 pathways were altered by the rhg1 alleles. Pathways altered were associated with systemic acquired resistance-like responses, including xenobiotic, phytoalexin, ascorbate, and inositol metabolism, as well as primary metabolisms like amino acid synthesis and glycolysis. The pathways impacted by the rhg1 allelic state and SCN infestation agreed with transcript abundance analyses but identified a smaller set of key proteins. Six of the proteins lay within the same small region of the interactome identifying a key set of 159 interacting proteins involved in transcriptional control, nuclear localization, and protein degradation. Finally, two proteins (glucose-6-phosphate isomerase [EC 5.3.1.9] and isoflavone reductase [EC 1.3.1.45]) and two metabolites (maltose and an unknown) differed in resistant and susceptible NILs without SCN infestation and may form the basis of a new assay for the selection of resistance to SCN in soybean. PMID:19429603
Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Vázquez, Saul; Contreras-Moreira, Bruno; Abadía, Anunciación; Abadía, Javier; López-Millán, Ana-Flor
2015-01-01
The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III)-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164) were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5%) changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well-maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as with Fe-deficiency. PMID:25852707
Pajoohesh, Maryam; Naderi, Mostafa; Naderi-Manesh, Hossein
2017-11-01
Exposure to mustard gas can lead to variations in the proteome of corneal epithelium cells and after a latency period produces delayed symptoms in the eyes of chemical victims. Hence, a comparative proteome analysis was conducted between the corneal epithelial cells of chemical victims from Iran-Iraq war (1980-1988) and healthy donors. To this end, corneal epithelium samples from victims and healthy individuals were collected, and the proteome of these samples were prepared for two-dimensional electrophoresis and the analysis of spots by statistical software. Selected spots were further analyzed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Twenty four proteins were identified of which eighteen proteins showed downregulation while six proteins were upregulated in the victims in comparison to the normal individuals. Also, six protein spots were confirmed by western-blot analysis. In conclusion, all the twenty-four identified proteins are involved in pathways which their up- or down-regulation leads to the accumulation of undesired substrates, cell death and apoptosis. Bioinformatics' tools indicated that these identified proteins were involved in various metabolic processes, DNA damage response, immune response and etc. The present study provides a suitable platform for further clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Alteration of plasma membrane-bound redox systems of iron deficient pea roots by chitosan.
Meisrimler, Claudia-Nicole; Planchon, Sebastien; Renaut, Jenny; Sergeant, Kjell; Lüthje, Sabine
2011-08-12
Iron is essential for all living organisms and plays a crucial role in pathogenicity. This study presents the first proteome analysis of plasma membranes isolated from pea roots. Protein profiles of four different samples (+Fe, +Fe/Chitosan, -Fe, and -Fe/Chitosan) were compared by native IEF-PAGE combined with in-gel activity stains and DIGE. Using DIGE, 89 proteins of interest were detected in plasma membrane fractions. Data revealed a differential abundance of several spots in all samples investigated. In comparison to the control and -FeCh the abundance of six protein spots increased whereas 56 spots decreased in +FeCh. Altered protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Besides stress-related proteins, transport proteins and redox enzymes were identified. Activity stains after native PAGE and spectrophotometric measurements demonstrated induction of a ferric-chelate reductase (-Fe) and a putative respiratory burst oxidase homolog (-FeCh). However, the activity of the ferric-chelate reductase decreased in -Fe plants after elicitor treatment. The activity of plasma membrane-bound class III peroxidases increased after elicitor treatment and decreased under iron-deficiency, whereas activity of quinone reductases decreased mostly after elicitor treatment. Possible functions of proteins identified and reasons for a weakened pathogen response of iron-deficient plants were discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Lee, Seung Gyu; Lee, Kang Wook; Park, Tae Heung; Park, Ji Yeong; Han, Nam Soo; Kim, Jeong Hwan
2012-04-01
LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.
Differential protein expression during colonic adaptation in ultra-short bowel rats
Jiang, Hai-Ping; Chen, Tao; Yan, Guang-Rong; Chen, Dan
2011-01-01
AIM: To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS). METHODS: Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given post-surgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometric (MALDI-TOF/TOF-MS) analysis. RESULTS: The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation group and control group (P > 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation and control groups (P > 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were up-regulated. There were 47 common differential protein spots among the three groups, including 17 down-regulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously reported to be involved in sugar and fat metabolism, protein synthesis and oxidation reduction, which are associated with colonic adaption. CONCLUSION: Eight proteins found in this study play important roles in colonic compensation and are associated with sugar and fat metabolism, protein synthesis, and molecular chaperoning PMID:21633663
Differential protein expression during colonic adaptation in ultra-short bowel rats.
Jiang, Hai-Ping; Chen, Tao; Yan, Guang-Rong; Chen, Dan
2011-05-28
To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS). Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given post-surgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometric (MALDI-TOF/TOF-MS) analysis. The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation group and control group (P > 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation and control groups (P > 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were up-regulated. There were 47 common differential protein spots among the three groups, including 17 down-regulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously reported to be involved in sugar and fat metabolism, protein synthesis and oxidation reduction, which are associated with colonic adaption. Eight proteins found in this study play important roles in colonic compensation and are associated with sugar and fat metabolism, protein synthesis, and molecular chaperoning.
Identification of Major Outer Surface Proteins of Streptococcus agalactiae
Hughes, Martin J. G.; Moore, Joanne C.; Lane, Jonathan D.; Wilson, Rebecca; Pribul, Philippa K.; Younes, Zabin N.; Dobson, Richard J.; Everest, Paul; Reason, Andrew J.; Redfern, Joanne M.; Greer, Fiona M.; Paxton, Thanai; Panico, Maria; Morris, Howard R.; Feldman, Robert G.; Santangelo, Joseph D.
2002-01-01
To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were sequenced and cloned. These were ornithine carbamoyltransferase, phosphoglycerate kinase, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, purine nucleoside phosphorylase, enolase, and glucose-6-phosphate isomerase. Using a gram-positive expression system, we have overexpressed two of these proteins in an in vitro system. These recombinant, purified proteins were used to raise antisera. The identification of these proteins as residing on the outer surface was confirmed by the ability of the antisera to react against whole, live bacteria. Further, in a neonatal-animal model system, we demonstrate that some of these sera are protective against lethal doses of bacteria. These studies demonstrate the successful application of proteomics as a technique for identifying vaccine candidates. PMID:11854208
Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O
2017-03-28
Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.
Huergo, Luciano F; Noindorf, Lilian; Gimenes, Camila; Lemgruber, Renato S P; Cordellini, Daniela F; Falarz, Lucas J; Cruz, Leonardo M; Monteiro, Rose A; Pedrosa, Fábio O; Chubatsu, Leda S; Souza, Emanuel M; Steffens, Maria B R
2010-07-01
This study was aimed at describing the spectrum and dynamics of proteins associated with the membrane in the nitrogen-fixing bacterium Herbaspirillum seropedicae according to the availability of fixed nitrogen. Using two-dimensional electrophoresis we identified 79 protein spots representing 45 different proteins in the membrane fraction of H. seropedicae. Quantitative analysis of gel images of membrane extracts indicated two spots with increased levels when cells were grown under nitrogen limitation in comparison with nitrogen sufficiency; these spots were identified as the GlnK protein and as a conserved noncytoplasmic protein of unknown function which was encoded in an operon together with GlnK and AmtB. Comparison of gel images of membrane extracts from cells grown under nitrogen limitation or under the same regime but collected after an ammonium shock revealed two proteins, GlnB and GlnK, with increased levels after the shock. The P(II) proteins were not present in the membrane fraction of an amtB mutant. The results reported here suggest that changes in the cellular localization of P(II) might play a role in the control of nitrogen metabolism in H. seropedicae.
Dual Coordination of Post Translational Modifications in Human Protein Networks
Woodsmith, Jonathan; Kamburov, Atanas; Stelzl, Ulrich
2013-01-01
Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling. PMID:23505349
Yeast proteome map (last update).
Perrot, Michel; Moes, Suzette; Massoni, Aurélie; Jenoe, Paul; Boucherie, Hélian
2009-10-01
The identification of proteins separated on 2-D gels is essential to exploit the full potential of 2-D gel electrophoresis for proteomic investigations. For this purpose we have undertaken the systematic identification of Saccharomyces cerevisiae proteins separated on 2-D gels. We report here the identification by mass spectrometry of 100 novel yeast protein spots that have so far not been tackled due to their scarcity on our standard 2-D gels. These identifications extend the number of protein spots identified on our yeast 2-D proteome map to 716. They correspond to 485 unique proteins. Among these, 154 were resolved into several isoforms. The present data set can now be expanded to report for the first time a map of 363 protein isoforms that significantly deepens our knowledge of the yeast proteome. The reference map and a list of all identified proteins can be accessed on the Yeast Protein Map server (www.ibgc.u-bordeaux2.fr/YPM).
The impact of different ale brewer's yeast strains on the proteome of immature beer.
Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils
2013-09-30
It is well known that brewer's yeast affects the taste and aroma of beer. However, the influence of brewer's yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer's yeast strains with different abilities to degrade fermentable sugars were investigated. Beers were fermented from standard hopped wort (13° Plato) using two ale brewer's yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer.
The impact of different ale brewer’s yeast strains on the proteome of immature beer
2013-01-01
Background It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. Results Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Conclusion Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer. PMID:24079909
[Proteomic analysis of myocardial hypertrophy induced by left kidney artery coarctation in rats].
Lv, Yuan-yuan; Sun, Biao; Ma, Ji-zheng
2009-05-01
To identify the expression of proteins in cardiomyocytes in rats with left kidney artery coarctation. 16 male SD rats were separated into 2 groups (n=8): 2 kidney 1 Clip group (2K1C) and sham operation group (SO). The postoperational 8th week, after examination by normal doppler and tissue doppler echocardiography, the extracted proteins from cardiomyocytes were isolated by two-dimensional gel electrophoresis with staining. The gel images were acquired by scanner and 2-DE analysis software. Different spots observed on two 2D gels were selected and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Overall, 21 protein spots showed significant difference, and 14 out of which were identified. Kidney artery coactation-induced cardiac hypertrophy displays different expression of proteins in cardiomyocytes.
Wu, Rina; Wang, Weiwei; Yu, Dongliang; Zhang, Wenyi; Li, Yan; Sun, Zhihong; Wu, Junrui; Meng, He; Zhang, Heping
2009-01-01
Lactobacillus casei Zhang, isolated from traditional home-made koumiss in Inner Mongolia of China, was considered as a new probiotic bacterium by probiotic selection tests. We carried out a proteomics study to identify and characterize proteins expressed by L. casei Zhang in the exponential phase and stationary phase. Cytosolic proteins of the strain cultivated in de Man, Rogosa, and Sharpe broth were resolved by two-dimensional gel electrophoresis using pH 4–7 linear gradients. The number of protein spots quantified from the gels was 487 ± 21 (exponential phase) and 494 ± 13 (stationary phase) among which a total of 131 spots were identified by MALDI-TOF/MS and/or MALDI-TOF/TOF according to significant growth phase-related differences or high expression intensity proteins. Accompanied by the cluster of orthologous groups (COG), codon adaptation index (CAI), and GRAVY value analysis, the study provided a very first insight into the profile of protein expression as a reference map of L. casei. Forty-seven spots were also found in the study that showed statistically significant differences between exponential phase and stationary phase. Thirty-three of the spots increased at least 2.5-fold in the stationary phase in comparison with the exponential phase, including 19 protein spots (e.g. Hsp20, DnaK, GroEL, LuxS, pyruvate kinase, and GalU) whose intensity up-shifted above 3.0-fold. Transcriptional profiles were conducted to confirm several important differentially expressed proteins by using real time quantitative PCR. The analysis suggests that the differentially expressed proteins were mainly categorized as stress response proteins and key components of central and intermediary metabolism, indicating that these proteins might play a potential important role for the adaptation to the surroundings, especially the accumulation of lactic acid in the course of growth, and the physiological processes in bacteria cell. PMID:19508964
Chen, Jing; Han, Guiqing; Shang, Chen; Li, Jikai; Zhang, Hailing; Liu, Fengqi; Wang, Jianli; Liu, Huiying; Zhang, Yuexue
2015-01-01
Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa. PMID:25774161
Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase
2004-08-01
polyethylene glycol precipitation, ion exchange chromatography, and density gradient sedimentation (Malkas et al., 1990; Applegren et al., 1995; Coll et...jtl of 25 mM NH4HCO 3/50% acetonitrile were added and the tubes were mixed for 35-40 min on a low setting using a microtube mixer. The pale blue...these isoforms. Proteins identified in these spots are shown in table 1: Spot #* Predominant Protein MCF-10A 1 Heat Shock Protein 90 cc (hsp-90 ct) 2
Witzel, Katja; Surabhi, Giridara-Kumar; Jyothsnakumari, Gottimukkala; Sudhakar, Chinta; Matros, Andrea; Mock, Hans-Peter
2007-04-01
This paper describes the application of the recently introduced fluorescence stain Ruthenium(II)-tris-(bathophenanthroline-disulphonate) (RuBP) on a comparative proteome analysis of two phenotypically different barley lines. We carried out an analysis of protein patterns from 2-D gels of the parental lines of the Oregon Wolfe Barley mapping population DOM and REC and stained with either the conventional colloidal Coomassie Brilliant Blue (cCBB) or with the novel RuBP solution. We wished to experimentally verify the usefulness of such a stain in evaluating the complex pattern of a seed proteome, in comparison to the previously used cCBB staining technique. To validate the efficiency of visualization by both stains, we first compared the overall number of detected protein spots. On average, 790 spots were visible by cCBB staining and 1200 spots by RuBP staining. Then, the intensity of a set of spots was assessed, and changes in relative abundance were determined using image analysis software. As expected, staining with RuBP performed better in quantitation in terms of sensitivity and dynamic range. Furthermore, spots from a cultivar-specific region in the protein map were chosen for identification to asses the gain of biological information due to the staining procedure. From this particular region, eight spots were visualized exclusively by RuBP and identification was successful for all spots, proving the ability to identify even very low abundant proteins. Performance in MS analysis was comparable for both protein stains. Proteins were identified by MALDI-TOF MS peptide mass fingerprinting. This approach was not successful for all spots, due to the restricted entry number for barley in the database. Therefore, we subsequently used LC-ESI-Q-TOF MS/MS and de novo sequencing for identification. Because only an insufficient number of proteins from barley is annotated, an EST-based identification strategy was chosen for our experiment. We wished to test whether under these limitations the application of a more sensitive stain would lead to a more advanced proteome approach. In summary, we demonstrate here that the application of RuBP as an economical but reliable and sensitive fluorescence stain is highly suitable for quantitative proteome analysis of plant seeds.
Valledor, Luis; Castillejo, Maria A; Lenz, Christof; Rodríguez, Roberto; Cañal, Maria J; Jorrín, Jesús
2008-07-01
Pinus radiata is one of the most economically important forest tree species, with a worldwide production of around 370 million m (3) of wood per year. Current selection of elite trees to be used in conservation and breeding programes requires the physiological and molecular characterization of available populations. To identify key proteins related to tree growth, productivity and responses to environmental factors, a proteomic approach is being utilized. In this paper, we present the first report of the 2-DE protein reference map of physiologically mature P. radiata needles, as a basis for subsequent differential expression proteomic studies related to growth, development, biomass production and responses to stresses. After TCA/acetone protein extraction of needle tissue, 549 +/- 21 well-resolved spots were detected in Coommassie-stained gels within the 5-8 pH and 10-100 kDa M(r) ranges. The analytical and biological variance determined for 450 spots were of 31 and 42%, respectively. After LC/MS/MS analysis of in-gel tryptic digested spots, proteins were identified by using the novel Paragon algorithm that tolerates amino acid substitution in the first-pass search. It allowed the confident identification of 115 out of the 150 protein spots subjected to MS, quite unusual high percentage for a poor sequence database, as is the case of P. radiata. Proteins were classified into 12 or 18 groups based on their corresponding cell component or biological process/pathway categories, respectively. Carbohydrate metabolism and photosynthetic enzymes predominate in the 2-DE protein profile of P. radiata needles.
Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L.
Noah, Alexandre Mboene; Niemenak, Nicolas; Sunderhaus, Stephanie; Haase, Christin; Omokolo, Denis Ndoumou; Winkelmann, Traud; Braun, Hans-Peter
2013-01-14
Somatic embryogenesis can efficiently foster the propagation of Theobroma cacao, but the poor quality of resulted plantlet hinders the use of this technique in the commercial scale. The current study has been initiated to systematically compare the physiological mechanisms underlying somatic and zygotic embryogenesis in T. cacao on the proteome level. About 1000 protein spots per fraction could be separated by two-dimensional isoelectric focusing/SDS PAGE. More than 50 of the protein spots clearly differed in abundance between zygotic and somatic embryos: 33 proteins spots were at least 3-fold higher in abundance in zygotic embryos and 20 in somatic embryos. Analyses of these protein spots differing in volume by mass spectrometry resulted in the identification of 68 distinct proteins. Many of the identified proteins are involved in genetic information processing (21 proteins), carbohydrate metabolism (11 proteins) and stress response (7 proteins). Somatic embryos especially displayed many stress related proteins, few enzymes involved in storage compound synthesis and an exceptional high abundance of endopeptidase inhibitors. Phosphoenolpyruvate carboxylase, which was accumulated more than 3-fold higher in zygotic embryos, represents a prominent enzyme in the storage compound metabolism in cacao seeds. Implications on the improvement of somatic embryogenesis in cacao are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Ling-Wei; Fan, Li-Qing; Zhu, Wen-Bing; Nien, Hong-Chuan; Sun, Bo-Lan; Luo, Ke-Li; Liao, Ting-Ting; Tang, Le; Lu, Guang-Xiu
2007-05-01
To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0. In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis. The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots). The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.
Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.
Jakobi, Stephan; Nguyen, Tran Xuan Phong; Debaene, François; Metz, Alexander; Sanglier-Cianférani, Sarah; Reuter, Klaus; Klebe, Gerhard
2014-10-01
Interference with protein-protein interactions of interfaces larger than 1500 Ų by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. © 2014 Wiley Periodicals, Inc.
A proteomic analysis of green and white sturgeon larvae exposed to heat stress and selenium
Silvestre, Frédéric; Linares-Casenave, Javier; Doroshov, Serge I.; Kültz, Dietmar
2012-01-01
Temperature and selenium are two environmental parameters that potentially affect reproduction and stock recruitment of sturgeon in the San Francisco Bay / Delta Estuary. To identify proteins whose expression is modified by these environmental stressors, we performed a proteomic analysis on larval green and white sturgeons exposed to 18 or 26°C and micro-injected with Seleno-L-Methionine to reach 8 μg g-1 selenium body burden, with L-Methionine as a control. Selenium and high temperature induced mortalities and abnormal morphologies in both species, with a higher mortality in green sturgeon. Larval proteins were separated by two-dimensional gel electrophoresis and differential abundances were detected following spot quantitation and hierarchical cluster analysis. In green sturgeon, 34 of 551 protein spots detected on gels showed a variation in abundance whereas in white sturgeon only 9 of 580 protein spots were differentially expressed (P<0.01). Gel replicates were first grouped according to heat treatment. Fifteen of these spots were identified using MALDI TOF/TOF mass spectrometry. Proteins involved in protein folding, protein synthesis, protein degradation, ATP supply and structural proteins changed in abundance in response to heat and/or selenium. 40S ribosomal protein SA, FK506-binding protein 10, 65 kDa regulatory subunit A of protein phosphatase 2, protein disulfide isomerase, stress-induced-phosphoprotein 1, suppression of tumorigenicity 13 and collagen type II alpha 1, were differentially expressed in high temperature treatment only. Serine/arginine repetitive matrix protein 1, creatine kinase, serine peptidase inhibitor Kazal type 5 and HSP90 were sensitive to combined temperature and selenium exposure. Valosin-containing protein, a protein involved in aggresome formation and in protein quality control decreased more than 50% in response to selenium treatment. Potential use of such proteins as biomarkers of environmental stressors in larval sturgeons could indicate early warning signals preceding population decline. PMID:20435339
Kumar, Dilip; Kirti, Pulugurtha Bharadwaja
2015-01-01
Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism. PMID:25646800
Nanaware, Padma P; Ramteke, Manoj P; Somavarapu, Arun K; Venkatraman, Prasanna
2014-07-01
Gankyrin, a non-ATPase component of the proteasome and a chaperone of proteasome assembly, is also an oncoprotein. Gankyrin regulates a variety of oncogenic signaling pathways in cancer cells and accelerates degradation of tumor suppressor proteins p53 and Rb. Therefore gankyrin may be a unique hub integrating signaling networks with the degradation pathway. To identify new interactions that may be crucial in consolidating its role as an oncogenic hub, crystal structure of gankyrin-proteasome ATPase complex was used to predict novel interacting partners. EEVD, a four amino acid linear sequence seems a hot spot site at this interface. By searching for EEVD in exposed regions of human proteins in PDB database, we predicted 34 novel interactions. Eight proteins were tested and seven of them were found to interact with gankyrin. Affinity of four interactions is high enough for endogenous detection. Others require gankyrin overexpression in HEK 293 cells or occur endogenously in breast cancer cell line- MDA-MB-435, reflecting lower affinity or presence of a deregulated network. Mutagenesis and peptide inhibition confirm that EEVD is the common hot spot site at these interfaces and therefore a potential polypharmacological drug target. In MDA-MB-231 cells in which the endogenous CLIC1 is silenced, trans-expression of Wt protein (CLIC1_EEVD) and not the hot spot site mutant (CLIC1_AAVA) resulted in significant rescue of the migratory potential. Our approach can be extended to identify novel functionally relevant protein-protein interactions, in expansion of oncogenic networks and in identifying potential therapeutic targets. © 2013 Wiley Periodicals, Inc.
Vítámvás, Pavel; Urban, Milan O.; Škodáček, Zbynek; Kosová, Klára; Pitelková, Iva; Vítámvás, Jan; Renaut, Jenny; Prášil, Ilja T.
2015-01-01
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, 13C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments. PMID:26175745
Pre-analytical stability of the plasma proteomes based on the storage temperature
2013-01-01
Background This study examined the effect of storage temperature on the protein profile of human plasma. Plasma samples were stored for 13 days at -80°C, -20°C, +4°C and room temperature (20-25°C) prior to proteomic analysis. The proteomic comparisons were based on the differences of mean intensity values of protein spots between fresh plasma samples (named “time zero”) and plasma samples stored at different temperatures. To better understand the thermally induced biochemical changes that may affect plasma proteins during storage we identified proteins with different expressions with respect to the time zero sample. Results Using two-dimensional electrophoresis followed by MALDI-TOF MS and /or LC-MS/MS 20 protein spots representing 10 proteins were identified with significant differences in abundance when stored at different temperatures. Our results, in agreement with various authors, indicate that during storage for a short period (13 days) at four different temperatures plasma proteins were more affected by degradation processes at +4°C compared to the other temperatures analysed. However, we founded that numerous protein spots (vitamin D binding protein, alpha-1-antitrypsin, serotransferrin, apoplipoprotein A-I, apolipoprotein E, haptoglobin and complement factor B) decrease in abundance with increasing temperature up to 4°C, but at room temperature their intensity mean values are similar to those of time zero and -80°C. We hypothesize that these proteins are labile at 4°C, but at the same time they are stable at room temperature (20-25°C). Furthermore we have grouped the proteins based on their different sensitivity to the storage temperature. Spots of serum albumin, fibrinogen gamma chain and haptoglobin are more resistant to the higher temperatures tested, as they have undergone changes in abundance only at room temperature; conversely, other spots of serum albumin, fibrinogen beta chain and serotransferrin are more labile as they have undergone changes in abundance at all temperatures except at -80°C. Conclusions Although there are many studies concerning protein stability of clinical samples during storage these findings may help to provide a better understanding of the changes of proteins induced by storage temperature. PMID:23518135
Mass-transport limitations in spot-based microarrays.
Zhao, Ming; Wang, Xuefeng; Nolte, David
2010-09-20
Mass transport of analyte to surface-immobilized affinity reagents is the fundamental bottleneck for sensitive detection in solid-support microarrays and biosensors. Analyte depletion in the volume adjacent to the sensor causes deviation from ideal association, significantly slows down reaction kinetics, and causes inhomogeneous binding across the sensor surface. In this paper we use high-resolution molecular interferometric imaging (MI2), a label-free optical interferometry technique for direct detection of molecular films, to study the inhomogeneous distribution of intra-spot binding across 100 micron-diameter protein spots. By measuring intra-spot binding inhomogeneity, reaction kinetics can be determined accurately when combined with a numerical three-dimensional finite element model. To ensure homogeneous binding across a spot, a critical flow rate is identified in terms of the association rate k(a) and the spot diameter. The binding inhomogeneity across a spot can be used to distinguish high-affinity low-concentration specific reactions from low-affinity high-concentration non-specific binding of background proteins.
Gopalakrishnan, Vidhya; Purushothaman, Parthiban; Bhaskar, Anusha
2015-01-01
Diabetic retinopathy is a highly specific vascular complication of diabetes mellitus and progresses from mild non-proliferative abnormalities characterized by increased vascular permeability to moderate and severe proliferative diabetic retinopathy characterized by the growth of blood vessels on the retina. The aim of the study was to identify the differentially expressed proteins in diabetic retinopathy using two-dimensional electrophoresis. Blood sample was drawn from subjects with diabetes mellitus (without retinopathy) who served as controls and patients with diabetic retinopathy in tubes containing EDTA as anticoagulant. Albumin and immunoglobulin IgG collectively removed to enrich proteins of lower abundance. 2de was carried out to see if there are any differentially expressed proteins. Approximately 48 and 61 spots were identified in control and diabetic retinopathy respectively, of which three protein spots RBP1 (retinol-binding protein 1), NUD10 (Diphosphoinositol polyphosphohydrolase 3 alpha), NGB (neuroglobin) were down regulated and HBG2 (hemoglobin) and BY55 (CD 160 antigen) were upregulated in diabetic retinopathy. These five protein spots were excised and were subjected to in-gel tryptic digestion, and their identities were determined by ultraflex MALDI-TOF-MS. We report a comprehensive patient-based plasma proteomic approach to the identification of potential biomarkers for diabetic retinopathy screening and detection. We identified 5 different proteins that were differentially expressed in the plasma of control diabetic patients (without retinopathy). Among these five proteins the expression of neuroglobin (NGB) protein varied significantly and may be a potential biomarker in diabetic retinopathy. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of Nickel, Chlorpyrifos and Their Mixture on the Dictyostelium discoideum Proteome
Boatti, Lara; Robotti, Elisa; Marengo, Emilio; Viarengo, Aldo; Marsano, Francesco
2012-01-01
Mixtures of chemicals can have additive, synergistic or antagonistic interactions. We investigated the effects of the exposure to nickel, the organophosphate insecticide chlorpyrifos at effect concentrations (EC) of 25% and 50% and their binary mixture (Ec25 + EC25) on Dictyostelium discoideum amoebae based on lysosomal membrane stability (LMS). We treated D. discoideum with these compounds under controlled laboratory conditions and evaluated the changes in protein levels using a two-dimensional gel electrophoresis (2DE) proteomic approach. Nickel treatment at EC25 induced changes in 14 protein spots, 12 of which were down-regulated. Treatment with nickel at EC50 resulted in changes in 15 spots, 10 of which were down-regulated. Treatment with chlorpyrifos at EC25 induced changes in six spots, all of which were down-regulated; treatment with chlorpyrifos at EC50 induced changes in 13 spots, five of which were down-regulated. The mixture corresponding to EC25 of each compound induced changes in 19 spots, 13 of which were down-regulated. The data together reveal that a different protein expression signature exists for each treatment, and that only a few proteins are modulated in multiple different treatments. For a simple binary mixture, the proteomic response does not allow for the identification of each toxicant. The protein spots that showed significant differences were identified by mass spectrometry, which revealed modulations of proteins involved in metal detoxification, stress adaptation, the oxidative stress response and other cellular processes. PMID:23443088
Wang, Li; Cui, Jing; Hu, Dan Dan; Liu, Ruo Dan; Wang, Zhong Quan
2014-01-22
The excretory-secretory (ES) proteins of Trichinella spiralis muscle larvae (ML) come mainly from the excretory granules of the stichosome and the cuticles (membrane proteins), are directly exposed to the host's immune system, and are the main target antigens, which induce the immune responses. Although the ES proteins are the most commonly used diagnostic antigens for trichinellosis, their main disadvantage are the false negative results during the early stage of infection. The aim of this study was to identify early specific diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. Two-dimensional electrophoresis (2-DE) combined with Western blot were used to screen the early diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. The protein spots recognized by the sera from BALB/c mice infected with T. spiralis at 18 days post-infection (dpi) were identified by MALDI-TOF/TOF-MS and putatively annotated using GO terms obtained from the InterPro databases. The ES proteins were analyzed by 2-DE, and more than 33 protein spots were detected with molecular weight varying from 40 to 60 kDa and isoelectric point (pI) from 4 to 7. When probed with the sera from infected mice at 18 dpi, 21 protein spots were recognized and then identified, and they were characterized to correlate with five different proteins of T. spiralis, including two serine proteases, one deoxyribonuclease (DNase) II, and two kinds of trypsin. The five proteins were functionally categorized into molecular function and biological process according to GO hierarchy. 2-DE and Western blot combined with MALDI-TOF/TOF-MS were used to screen the diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. The five proteins of T. spiralis identified (two serine proteases, DNase II and two kinds of trypsin) might be the early specific diagnostic antigens of trichinellosis.
Comparative proteomic analysis of somatic embryo maturation in Carica papaya L.
2014-01-01
Background Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). Results The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). Conclusions The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya. PMID:25076862
Di, Guilan; You, Weiwei; Yu, Jinjin; Wang, Dexiang; Ke, Caihuan
2013-03-01
Protein expression patterns were compared in a Japan and Taiwan population of Haliotis diversicolor and in a hybrid between them using 2DE and MALDI-TOF-TOF analyses. Using the software PDQuest, 924 ± 7 protein spots were detected in the Japan population (RR), 861 ± 11 in the Taiwan population (TT), and 882 ± 9 in the F1 hybrid (TR). RR and TR were clustered together, but the distance between RR and TT was the maximum using hierarchical cluster analysis. A total of 46 gel spots were identified and a total of 15 spots matched with abalone proteins (a 33.6% identification rate). Hybrid exhibiting additivity or overdominance accounted for 73.9% of these 46 identified proteins. The 46 differentially expressed proteins were shown to be involved in major biological processes, including muscle contraction and regulation, energy metabolism, and stress response. The proteins involved in energy metabolism included adenosine triphosphate (ATP) synthase β subunit, fructose 1, 6-bisphosphate aldolase, triosephosphate isomerase, enolase, arginine kinase, and tauropine dehydrogenase. These proteins exhibited additivity in their offspring. The proteins involved in stress responses included HSP Hsp70 (exhibiting overdominance in the offspring) and Cu/Zn-superoxide dismutase (exhibiting additivity). These results suggested that proteomic approach is suitable for analysis of heterosis and functional prediction of abalone hybridization. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.
Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis
Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656
Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration
Deeba, Farah; Pandey, Ashutosh K.; Pandey, Vivek
2016-01-01
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant. PMID:27092152
Pereira, Jackeline L.; Queiroz, Rayner M. L.; Charneau, Sébastien O.; Felix, Carlos R.; Ricart, Carlos A. O.; da Silva, Francilene Lopes; Steindorff, Andrei Stecca; Ulhoa, Cirano J.; Noronha, Eliane F.
2014-01-01
The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. PMID:24878929
Pereira, Jackeline L; Queiroz, Rayner M L; Charneau, Sébastien O; Felix, Carlos R; Ricart, Carlos A O; da Silva, Francilene Lopes; Steindorff, Andrei Stecca; Ulhoa, Cirano J; Noronha, Eliane F
2014-01-01
The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively.
Separation and characterization of needle and xylem maritime pine proteins.
Costa, P; Pionneau, C; Bauw, G; Dubos, C; Bahrmann, N; Kremer, A; Frigerio, J M; Plomion, C
1999-01-01
Two-dimensional gel electrophoresis (2-DE) and image analysis are currently used for proteome analysis in maritime pine (Pinus pinaster Ait.). This study presents a database of expressed proteins extracted from needles and xylem, two important tissues for growth and wood formation. Electrophoresis was carried out by isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second. Silver staining made it possible to detect an average of 900 and 600 spots on 2-DE gels from needles and xylem, respectively. A total of 28 xylem and 35 needle proteins were characterized by internal peptide microsequencing. Out of these 63 proteins, 57 (90%) could be identified based on amino acid similarity with known proteins, of which 24 (42%) have already been described in conifers. Overall comparison of both tissues indicated that 29% and 36% of the spots were specific to xylem and needles, respectively, while the other spots were of identical molecular weight and isoelectric point. The homology of spot location in 2-DE patterns was further validated by sequence analysis of proteins present in both tissues. A proteomic database of maritime pine is accessible on the internet (http://www.pierroton.inra.fr/genetics/2D/).
Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan; Li, Lei; Gao, Yun-Feng
2010-10-01
The immunotoxicity of tributyltin (TBT) on marine gastropods has been comparatively little studied although risks to wildlife associated with this compound are well known. In this study, a 30-day trial was conducted to evaluate the immunotoxic effects on abalone (Haliotis diversicolor supertexta) by exposing a range of doses of TBT (0, 2, 10, and 50 ng/L). Innate immune parameters, including phagocytic ability (PA), lysozyme activity, phenoloxidase (PO) level and superoxide dismutase (SOD) activity were monitored at intervals of 5, 15 and 30 days. Haemolymph protein expression profile was also examined at the end of the experiment. The results showed that PA value, lysozyme activity and PO level significantly decreased compared with the controls (P < 0.05), which indicated that TBT exposure markedly suppressed non-specific immune competence. Exposure to TBT also caused variation in protein expression patterns of haemolymph. Among the protein spots of differential expressions, seven proteins from the haemolymph of TBT-treated abalone were successfully identified by MALDI-TOF-MS analysis. Three protein spots increased and were identified as carrier-like peptide, peroxidase 21 precursor and creatine phosphokinase. These proteins are believed to up-regulate in expression as a response to detoxification and antioxidative stress mechanisms. The other four protein spots that down-regulated in TBT-treated groups were identified as aromatase-like protein, protein kinase C, ceruloplasmin and microtubule-actin crosslinking factor 1, and these proteins play an important role in endocrine regulation and immune defense. Taken together, the results demonstrate that TBT impair abalone immunological ability and is a potential immune disruptor. 2010 Elsevier Ltd. All rights reserved.
Sumbalova, Lenka; Stourac, Jan; Martinek, Tomas; Bednar, David; Damborsky, Jiri
2018-05-23
HotSpot Wizard is a web server used for the automated identification of hotspots in semi-rational protein design to give improved protein stability, catalytic activity, substrate specificity and enantioselectivity. Since there are three orders of magnitude fewer protein structures than sequences in bioinformatic databases, the major limitation to the usability of previous versions was the requirement for the protein structure to be a compulsory input for the calculation. HotSpot Wizard 3.0 now accepts the protein sequence as input data. The protein structure for the query sequence is obtained either from eight repositories of homology models or is modeled using Modeller and I-Tasser. The quality of the models is then evaluated using three quality assessment tools-WHAT_CHECK, PROCHECK and MolProbity. During follow-up analyses, the system automatically warns the users whenever they attempt to redesign poorly predicted parts of their homology models. The second main limitation of HotSpot Wizard's predictions is that it identifies suitable positions for mutagenesis, but does not provide any reliable advice on particular substitutions. A new module for the estimation of thermodynamic stabilities using the Rosetta and FoldX suites has been introduced which prevents destabilizing mutations among pre-selected variants entering experimental testing. HotSpot Wizard is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.
Zhu, Bo; Gao, Kun-Shan; Wang, Ke-Jian; Ke, Cai-Huan; Huang, He-Qing
2012-04-01
As mercury and lead, cadmium (Cd) is one of the highly toxic metals in both the ocean and land environments, but its toxicological mechanism in organisms including human is still unclear because of the complex toxicological pathways in vivo. Here, the alga Chlorella vulgaris were cultivated at room temperature under the stress of cadmium (1 mg L(-1)) to obtain a toxic food, and then the contaminated food were directly supplied to oyster (Saccostrea cucullata) in seawater. After feeding with C. vulgaris contaminated with Cd (C. vulgaris-Cd), the differential proteins in the oyster gonad (OG) were effectively separated and identified with proteomic approaches. Eleven protein spots were observed to be significantly changed in the OG feeding with C. vulgaris-Cd, which seven spots of these differential proteins were down-regulated while four spots were up-regulated. These altered spots were further excised in gels and identified by a combined technique of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and database searching. A portion of these differential proteins were further proofed by real-time PCR and Western blotting. The results indicate that the major functions of these differential proteins were described as follows: binding, protein translocation, catalysis, regulation of energy metabolism, reproductive function and skeleton structure. These differential proteins in part may effectively provide a few novel biomarkers for the evaluation of Cd pollution level via a food pathway for harming halobios, mammal and human health, and for understanding the complex mechanisms of Cd toxicity in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wound outcome in combat injuries is associated with a unique set of protein biomarkers
2013-01-01
Background The ability to forecast whether a wound will heal after closure without further debridement(s), would provide substantial benefits to patients with severe extremity trauma. Methods Wound effluent is a readily available material which can be collected without disturbing healthy tissue. For analysis of potential host response biomarkers, forty four serial combat wound effluent samples from 19 patients with either healing or failing traumatic- and other combat-related wounds were examined by 2-D DIGE. Spot map patterns were correlated to eventual wound outcome (healed or wound failure) and analyzed using DeCyder 7.0 and differential proteins identified via LC-MS/MS. Results This approach identified 52 protein spots that were differentially expressed and thus represent candidate biomarkers for this clinical application. Many of these proteins are intimately involved in inflammatory and immune responses. Furthermore, discriminate analysis further refined the 52 differential protein spots to a smaller subset of which successfully differentiate between wounds that will heal and those that will fail and require further surgical intervention with greater than 83% accuracy. Conclusion These results suggest candidates for a panel of protein biomarkers that may aid traumatic wound care prognosis and treatment. We recommend that this strategy be refined, and then externally validated, in future studies of traumatic wounds. PMID:24192341
Sissener, Nini H; Martin, Samuel A M; Cash, Phillip; Hevrøy, Ernst M; Sanden, Monica; Hemre, Gro-Ingunn
2010-06-01
The aim of this study was to investigate potential differences in liver protein expression of Atlantic salmon fed genetically modified (GM) Roundup Ready soy at a high inclusion level (25% inclusion, constituting 21% of crude protein in the diet) for 7 months or a compositionally similar non-GM diet. The liver was selected as the target organ due to its importance in the general metabolism, and 2D gel electrophoresis used as a screening tool. Samples from 12 individual fish from each diet group were evaluated. Of a total of 781 analysed protein spots, only 36 were significantly different by ANOVA (p < 0.05) in abundance between the diet groups. All these spots had low fold differences (1.2-1.6) and high false discovery rate (q = 0.44), indicating minor differences in liver protein synthesis between fish fed GM and non-GM soy. Additionally, low fold differences were observed. Four protein spots were analyzed by liquid chromatography tandem mass spectrometry and identified using a combination of online searches in NCBI and searches in an inhouse database containing salmonid expressed sequence tags and contigs. Follow-up on these proteins by real-time polymerase chain reaction did not identify differences at the transcriptional level.
Mouat, Michael F.; Mauldin, Elizabeth A.; Casal, Margret L.
2012-01-01
Lethal acrodermatitis (LAD) is a genetic disease affecting bull terrier dogs. The phenotype is similar to that for acrodermatitis enteropathica in humans, but is currently without treatment. The purpose of the research presented here is to determine the biochemical defects associated with LAD using proteomic methodologies. Two affected (male and female) and one unaffected (male) bull terrier pups were euthanized at 14 weeks of age, their livers dissected and prepared for two-dimensional gel electrophoresis (2DE) and densitometry. Approximately 200 protein spots were observed. The density of the spots within each gel was normalized to the total spot volume of the gel; only those soluble liver protein spots that were consistently different in both of the livers of the affected pups compared to the unaffected pup were excised manually and submitted for MALDI mass spectrometry. Thirteen proteins were identified as differentially expressed in the affected, compared to the unaffected, pups. The proteins were involved in numerous cellular physiological functions, including chaperones, calcium binding, and energy metabolism, as well as being associated with the inflammatory response. Of note were haptoglobin, glutamine synthetase, prohibitin and keratin 10 which exhibited at least a 4-fold level of differential expression. These data represent the first proteomic analysis of this mutation. The differentially expressed proteins that were identified may be key in understanding the etiology of LAD, and may lead to diagnostic tools for its identification within the bull terrier population. PMID:17693109
Ge, Jia-Jia; Huang, Yu-Sen
2017-01-01
AIM To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry (LC-MS/MS). METHODS Three normal lenses and three liquefied after-cataracts were exposed to depolymerizing reagents to extract the total proteins. Protein concentrations were separated using two-dimensional gel electrophoresis (2-DE). The digitized images obtained with a GS-800 scanner were then analyzed with PDQuest7.0 software to detect the differentially-expressed protein spots. These protein spots were cut from the gel using a proteome work spot cutter and subjected to in-gel digestion with trypsin. The digested peptide separation was conducted by LC-MS/MS. RESULTS The 2-DE maps showed that lens proteins were in a pH range of 3-10 with a relative molecular weight of 21-70 kD. The relative molecular weight of the more abundant proteins was localized at 25-50 kD, and the isoelectric points were found to lie between PI 4-9. The maps also showed that the protein level within the liquefied after-cataracts was at 29 points and significantly lower than in normal lenses. The 29 points were identified by LC-MS/MS, and ten of these proteins were identified by mass spectrometry and database queries: beta-crystallin B1, glyceraldehyde-3-phosphate dehydrogenase, carbonyl reductase (NADPH) 1, cDNA FLJ55253, gamma-crystallin D, GAS2-like protein 3, sorbitol dehydrogenase, DNA FLJ60282, phosphoglycerate kinase, and filensin. CONCLUSION The level of the ten proteins may play an important role in the development of liquefied after-cataracts. PMID:28944190
Wang, Ying; Xiao, Di; Shen, Yujuan; Han, Xiuming; Zhao, Fei; Li, Xiaohong; Wu, Weiping; Zhou, Hejun; Zhang, Jianzhong; Cao, Jianping
2015-05-21
Cystic echinococcosis, which is caused by Echinococcus granulosus, is one of the most widespread zoonotic helminth diseases that affects humans and livestock. Dogs, which harbor adult worms in their small intestines, are a pivotal source of E. granulosus infection in humans and domestic animals. Therefore, novel molecular approaches for the prevention and diagnosis of this parasite infection in dogs need to be developed. In this study, we performed proteomic analysis to identify excretory/secretory products (ES) and antigenic proteins of E. granulosus adult worms using two-dimensional electrophoresis, tandem matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF), and Western blotting of sera from infected dogs. This study identified 33 ES product spots corresponding to 9 different proteins and 21 antigenic protein spots corresponding to 13 different proteins. Six antigenic proteins were identified for the first time. The present study extended the existing proteomic data of E. granulosus and provides further information regarding host-parasite interactions and survival mechanisms. The results of this study contribute to vaccination and immunodiagnoses for E. granulosus infections.
Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate.
Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha'on, Ubon
2014-01-01
Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at -75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake.
Proteomic Analysis of Kidney in Rats Chronically Exposed to Monosodium Glutamate
Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha’on, Ubon
2014-01-01
Background Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Methods Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at –75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. Results The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. Conclusion The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake. PMID:25551610
Bayram, H; Sayadi, A; Goenaga, J; Immonen, E; Arnqvist, G
2017-02-01
The seed beetle Callosobruchus maculatus is a significant agricultural pest and increasingly studied model of sexual conflict. Males possess genital spines that increase the transfer of seminal fluid proteins (SFPs) into the female body. As SFPs alter female behaviour and physiology, they are likely to modulate reproduction and sexual conflict in this species. Here, we identified SFPs using proteomics combined with a de novo transcriptome. A prior 2D-sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis identified male accessory gland protein spots that were probably transferred to the female at mating. Proteomic analysis of these spots identified 98 proteins, a majority of which were also present within ejaculates collected from females. Standard annotation workflows revealed common functional groups for SFPs, including proteases and metabolic proteins. Transcriptomic analysis found 84 transcripts differentially expressed between the sexes. Notably, genes encoding 15 proteins were highly expressed in male abdomens and only negligibly expressed within females. Most of these sequences corresponded to 'unknown' proteins (nine of 15) and may represent rapidly evolving SFPs novel to seed beetles. Our combined analyses highlight 44 proteins for which there is strong evidence that they are SFPs. These results can inform further investigation, to better understand the molecular mechanisms of sexual conflict in seed beetles. © 2016 The Royal Entomological Society.
Druggable orthosteric and allosteric hot spots to target protein-protein interactions.
Ma, Buyong; Nussinov, Ruth
2014-01-01
Drug designing targeting protein-protein interactions is challenging. Because structural elucidation and computational analysis have revealed the importance of hot spot residues in stabilizing these interactions, there have been on-going efforts to develop drugs which bind the hot spots and out-compete the native protein partners. The question arises as to what are the key 'druggable' properties of hot spots in protein-protein interactions and whether these mimic the general hot spot definition. Identification of orthosteric (at the protein- protein interaction site) and allosteric (elsewhere) druggable hot spots is expected to help in discovering compounds that can more effectively modulate protein-protein interactions. For example, are there any other significant features beyond their location in pockets in the interface? The interactions of protein-protein hot spots are coupled with conformational dynamics of protein complexes. Currently increasing efforts focus on the allosteric drug discovery. Allosteric drugs bind away from the native binding site and can modulate the native interactions. We propose that identification of allosteric hot spots could similarly help in more effective allosteric drug discovery. While detection of allosteric hot spots is challenging, targeting drugs to these residues has the potential of greatly increasing the hot spot and protein druggability.
Zhao, Guozhong; Hou, Lihua; Yao, Yunping; Wang, Chunling; Cao, Xiaohong
2012-07-16
Aspergillus oryzae plays a central role in soybean fermentation, particularly in its contribution to the flavor of soy sauce. We present a comparative assessment of the intracellular differences between wild-type strain 3.042 and mutant strain A100-8, at the proteome level. 522 different protein spots were identified by MALDI-TOF MS, with 134 spots being confirmed by MALDI-TOF MS/MS. Of these, 451 were differentially expressed proteins (DEPs). There was at least a two-fold increase for 288 spots, and at least a two-fold decrease for 163 spots, in strain A100-8 when compared to 3.042. Further analysis showed that 63 of the more abundant proteins were involved in glycolysis and the citrate cycle; 43 more abundant proteins and 10 less abundant proteins were related to amino acid biosynthesis and metabolism; two of the more abundant proteins were involved in vitamin biosynthesis; and five of the more abundant proteins and four of the less abundant proteins were related to secondary metabolites. Moreover, quantitative real time PCR showed that the mRNA expression levels of six typical genes we selected were consistent with changes in protein expression. We postulate that there may be a relationship between DEPs and the flavor formation mechanism in A. oryzae. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Hot spot analysis for driving the development of hits into leads in fragment based drug discovery
Hall, David R.; Ngan, Chi Ho; Zerbe, Brandon S.; Kozakov, Dima; Vajda, Sandor
2011-01-01
Fragment based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening results and can drive the evolution of core fragments into larger leads with a minimal loss or, in some cases, even a gain in ligand efficiency. The method places small molecular probes, the size of organic solvents, on a dense grid around the protein, and identifies the hot spots as consensus clusters formed by clusters of several probes. The hot spots are ranked based on the number of probe clusters, which predicts the binding propensity of the subsites and hence their importance for drug design. Accordingly, with a single exception the main hot spot identified by FTMap binds the core compound found by fragment screening. The most useful information is provided by the neighboring secondary hot spots, indicating the regions where the core can be extended to increase its affinity. To quantify this information, we calculate the density of probes from mapping, which describes the binding propensity at each point, and show that the change in the correlation between a ligand position and the probe density upon extending or repositioning the core moiety predicts the expected change in ligand efficiency. PMID:22145575
Proteomic profiling of mature leaves from oil palm (Elaeis guineensis Jacq.).
Tan, Hooi Sin; Jacoby, Richard P; Ong-Abdullah, Meilina; Taylor, Nicolas L; Liddell, Susan; Chee, Wong Wei; Chin, Chiew Foan
2017-04-01
Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI-protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phenotypic differences between BCG vaccines at the proteome level.
Rodríguez-Alvarez, Mauricio; Mendoza-Hernández, Guillermo; Encarnación, Sergio; Calva, Juan José; López-Vidal, Yolanda
2009-03-01
To contribute to Mycobacterium bovis BCG characterization, two substrains were analyzed using two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MS), based on their protective efficacy in a pulmonary-tuberculosis mouse model. Cell-fraction proteins of BCG Denmark and Phipps substrains were separated into approximately 500 spots in 2D-PAGE. The proteomes were similar in protein number, and isoelectric point (pI) and molecular mass (MM) distribution. Statistical analysis, resulted in 72 spots with no change, and 168 and 90 unique for BCG Phipps or Denmark, respectively. Two hundred and fourteen spots showed changes in intensity of >1-fold, 138 of Denmark, and 76 of Phipps. Seventeen spots were selected for MS-based identification (13 from Phipps and 4 from Denmark), including unique, as well as proteins with changes in intensity. The proteins identified participate in virulence, detoxification, adaptation, lipid metabolism, information pathways, cell wall and cell processes, intermediary metabolism and respiration, or still hypotheticals. Our findings contribute to phenotype characterization of BCG substrains and provide new elements to consider for the design of diagnostic tools, drug targets and a new vaccine against tuberculosis based upon protein expression through quantitative statistical analysis.
Truong, D-H; Bauwens, J; Delaplace, P; Mazzucchelli, G; Lognay, G; Francis, F
2015-11-01
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2-DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI-TOF-MS and LC-ESI-MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
El-Bebany, Ahmed F; Rampitsch, Christof; Daayf, Fouad
2010-01-01
Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396-9) and weakly (Vs06-14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty-five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC-ESI-MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant-defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics-based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.
Lise, Stefano; Archambeau, Cedric; Pontil, Massimiliano; Jones, David T
2009-10-30
Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (DeltaDeltaG) measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots") at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which DeltaDeltaG >or= 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been applied separately to biomolecular problems, the results of our investigation indicate that there are substantial benefits to be gained by their integration.
Proteomics Analysis of the Effects of Cyanate on Chromobacterium violaceum Metabolism
Baraúna, Rafael A.; Ciprandi, Alessandra; Santos, Agenor V.; Carepo, Marta S.P.; Gonçalves, Evonnildo C.; Schneider, Maria P.C.; Silva, Artur
2011-01-01
Chromobacterium violaceum is a gram-negative betaproteobacterium that has been isolated from various Brazilian ecosystems. Its genome contains the cyn operon, which gives it the ability to metabolize highly toxic cyanate into ammonium and carbon dioxide. We used a proteomics approach to investigate the effects of cyanate on the metabolism of this bacterium. The proteome of cells grown with and without cyanate was compared on 2-D gels. Differential spots were digested and identified by mass spectrometry. The bacterium was able to grow at concentrations of up to 1 mM cyanate. Eighteen spots were differentially expressed in the presence of cyanate, of which 16 were downregulated and only two were upregulated. An additional 12 spots were detected only in extracts of cells unexposed to cyanate, and one was expressed only by the exposed cells. Fourteen spots were identified, corresponding to 13 different proteins. We conclude that cyanate promotes expression of enzymes that combat oxidative stress and represses enzymes of the citric acid cycle, strongly affecting the energetic metabolism of the cell. Other proteins that were under-expressed in bacteria exposed to cyanate are involved in amino-acid metabolism or are hypothetical proteins, demonstrating that cyanate also affects expression of genes that are not part of the cyn operon. PMID:24710289
Proteomic response to sublethal cadmium exposure in a sentinel fish species, Cottus gobio.
Dorts, Jennifer; Kestemont, Patrick; Dieu, Marc; Raes, Martine; Silvestre, Frédéric
2011-02-04
The present study aimed at evaluating the toxicity of short-term cadmium (Cd) exposure in the European bullhead Cottus gobio, a candidate sentinel species. Several enzymatic activity assays (citrate synthase, cytochrome c oxidase, and lactate dehydrogenase) were carried out in liver and gills of fish exposed to 0.01, 0.05, 0.25, and 1 mg Cd/L for 4 days. Exposure to high Cd concentrations significantly altered the activity of these enzymes either in liver and/or in gills. Second, 2D-DIGE technique was used to identify proteins differentially expressed in tissues of fish exposed to either 0.01 or 1 mg Cd/L. Fifty-four hepatic protein spots and 37 branchial protein spots displayed significant changes in abundance in response to Cd exposure. A total of 26 and 12 different proteins were identified using nano LC-MS/MS in liver and gills, respectively. The identified differentially expressed proteins can be categorized into diverse functional classes, related to metabolic process, general stress response, protein fate, and cell structure for instance. This work provides new insights into the biochemical and molecular events in Cd-induced toxicity in fish and suggests that further studies on the identified proteins could provide crucial information to better understand the mechanisms of Cd toxicity in fish.
Oda, Ken; Kakizono, Dararat; Yamada, Osamu; Iefuji, Haruyuki; Akita, Osamu; Iwashita, Kazuhiro
2006-05-01
Filamentous fungi are widely used for the production of homologous and heterologous proteins. Recently, there has been increasing interest in Aspergillus oryzae because of its ability to produce heterologous proteins in solid-state culture. To provide an overview of protein secretion by A. oryzae in solid-state culture, we carried out a comparative proteome analysis of extracellular proteins in solid-state and submerged (liquid) cultures. Extracellular proteins prepared from both cultures sequentially from 0 to 40 h were subjected to two-dimensional electrophoresis, and protein spots at 40 h were identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. We also attempted to identify cell wall-bound proteins of the submerged culture. We analyzed 85 spots from the solid-state culture and 110 spots from the submerged culture. We identified a total of 29 proteins, which were classified into 4 groups. Group 1 consisted of extracellular proteins specifically produced in the solid-state growth condition, such as glucoamylase B and alanyl dipeptidyl peptidase. Group 2 consisted of extracellular proteins specifically produced in the submerged condition, such as glucoamylase A (GlaA) and xylanase G2 (XynG2). Group 3 consisted of proteins produced in both conditions, such as xylanase G1. Group 4 consisted of proteins that were secreted to the medium in the solid-state growth condition but trapped in the cell wall in the submerged condition, such as alpha-amylase (TAA) and beta-glucosidase (Bgl). A Northern analysis of seven genes from the four groups suggested that the secretion of TAA and Bgl was regulated by trapping these proteins in the cell wall in submerged culture and that secretion of GlaA and XynG2 was regulated at the posttranscriptional level in the solid-state culture.
Oda, Ken; Kakizono, Dararat; Yamada, Osamu; Iefuji, Haruyuki; Akita, Osamu; Iwashita, Kazuhiro
2006-01-01
Filamentous fungi are widely used for the production of homologous and heterologous proteins. Recently, there has been increasing interest in Aspergillus oryzae because of its ability to produce heterologous proteins in solid-state culture. To provide an overview of protein secretion by A. oryzae in solid-state culture, we carried out a comparative proteome analysis of extracellular proteins in solid-state and submerged (liquid) cultures. Extracellular proteins prepared from both cultures sequentially from 0 to 40 h were subjected to two-dimensional electrophoresis, and protein spots at 40 h were identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. We also attempted to identify cell wall-bound proteins of the submerged culture. We analyzed 85 spots from the solid-state culture and 110 spots from the submerged culture. We identified a total of 29 proteins, which were classified into 4 groups. Group 1 consisted of extracellular proteins specifically produced in the solid-state growth condition, such as glucoamylase B and alanyl dipeptidyl peptidase. Group 2 consisted of extracellular proteins specifically produced in the submerged condition, such as glucoamylase A (GlaA) and xylanase G2 (XynG2). Group 3 consisted of proteins produced in both conditions, such as xylanase G1. Group 4 consisted of proteins that were secreted to the medium in the solid-state growth condition but trapped in the cell wall in the submerged condition, such as α-amylase (TAA) and β-glucosidase (Bgl). A Northern analysis of seven genes from the four groups suggested that the secretion of TAA and Bgl was regulated by trapping these proteins in the cell wall in submerged culture and that secretion of GlaA and XynG2 was regulated at the posttranscriptional level in the solid-state culture. PMID:16672490
Zhou, Zhongbo; Meng, Fangang; He, Xiang; Chae, So-Ryong; An, Yujia; Jia, Xiaoshan
2015-01-20
Metaproteomic analyses, including two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation and matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/TOF mass spectrometer (MS) detection, were used to trace and identify biocake proteins on membranes in a bench-scale submerged membrane bioreactor (MBR). 2D-PAGE images showed that proteins in the biocake (S3) at a low transmembrane pressure (TMP) level (i.e., before the TMP jump) had larger gray intensities in the pH 5.5–7.0 region regardless of the membrane flux, similar to soluble microbial product (SMP) proteins. However, the biocake (S2 and S4) at a high TMP level (i.e., after the TMP jump) had many more proteins in the pH range of 4.0–5.5, similar to extracellular polymeric substance (EPS) proteins. Such similarities between biocake proteins and SMP or EPS proteins can be useful for tracing the sources of proteins resulting in membrane fouling. In total, 183 differentially abundant protein spots were marked in the three biocakes (S2, S3, and S4). However, only 32 protein spots co-occurred in the 2D gels of the three biocakes, indicating that membrane fluxes and TMP evolution levels had significant effects on the abundance of biocake proteins. On the basis of the MS and MS/MS data, 23 of 71 protein spots were successfully identified. Of the 23 proteins, outer membrane proteins (Omp) were a major contributor (60.87%). These Omps were mainly from potential surface colonizers such as Aeromonas, Enterobacter, Pseudomonas, and Thauera. Generally, the metaproteomic analysis is a useful alternative to trace the sources and compositions of biocake proteins on the levels of molecules and bacteria species that can provide new insight into membrane fouling.
Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily
2014-01-01
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.
Coumans, Joëlle V. F.; Poljak, Anne; Raftery, Mark J.; Pereg, Lily
2014-01-01
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA − strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome. PMID:25502569
Identification and proteomic analysis of a novel gossypol-degrading fungal strain.
Yang, Xia; Sun, Jian-Yi; Guo, Jian-Lin; Weng, Xiao-Yan
2012-03-15
Cottonseed meal, an important source of feed raw materials, has limited use in the feed industry because of the presence of the highly toxic gossypol. The aim of the current work was to isolate the gossypol-degrading fungus from a soil microcosm and investigate the proteins involved in gossypol degradation. A fungal strain, AN-1, that uses gossypol as its sole carbon source was isolated and identified as Aspergillus niger. A large number of intracellular proteins were detected using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no significant difference was observed between the glucose-containing and gossypol-containing mycelium extracts. Two-dimensional gel electrophoresis results showed that the protein spots were concentrated in the 25.0-66.2 kDa range and distributed in different pI gradients. PDQuest software showed that 51 protein spots in the gels were differentially expressed. Of these, 20 differential protein spots, including six special spots expressed in gossypol, were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The fungus AN-1 biodegraded gossypol and the proteomic analysis results indicate that some proteins were involved in the gossypol biodegradation during fungus survival, using gossypol as its sole carbon source. Copyright © 2011 Society of Chemical Industry.
Wang, J F; Mao, X Y; Zhao, C
2014-01-01
The experiment were performed to investigate the poisoning-related proteins and main pathological changes after mouse suffered from injection of botulinum toxin serotype E. Dose of 0.75 LD50 botulinum toxin serotype E per mice were administrated by intraperitoneal injection. Survival mouse were picked as experimental group. The blood were collected from orbital blood and serum sample was separated by centrifugation. The heart, liver, spleen, lung, kidney were fixed in 10 % neutral buffered formalin and then developed paraffin sections. Serum protein components were analyzed by SDS-PAGE gel electrophoresis coupled with 2-DE SDS-PAGE gel electrophoresis. Differentially expressed proteins were analyzed by PDQUest8.0 software and subjected to ion trap mass spectrometry equipped with a high performance liquid chromatography system. The observation of pathological section showed that heart, liver, spleen, lung, kidney exhibited pathological changes in different degree, especially in heart, liver and lung tissues. Heart muscle tissue display serious inflammatory response, heart muscle fiber compulsively expanded and filled with erythrocyte and inflammatory exudates, some heart muscle fiber ruptured, even necrosis; hepatic cell in edge of liver occur apoptosis and some hepatic cell have disintegrated, and even died; pulmonary alveoli broken and partial vein filled with blood. Serum proteins component present a significant changes between control serum and botulism in 24 h by SDS-PAGE gel electrophoresis and 2-DE-SDS-PAGE gel electrophoresis. Twenty differentially expressed protein spots were observed in 2-DE profiles, in which 14 protein spots were undetectable in serum proteome under botulism, 3 protein spots exclusively expressed in state of botulism, 3 protein spots were low-expressed in serum proteome under botulism. Fourteen proteins have been identified among 20 spots elected on two-dimensional electrophoresis gels. Crystal proteins family exclusively expressed in control group serum. Haptoglobin were low-expressed under botulism in serum protein components, however, serum amyloid A only expressed in serum sample under botulism in 24 h, which were verified by Western-blot. Identified proteins involved in energy metabolism, cellular stress response, transcription, body defense and cell proliferation. These findings represent the first report of BoNT-induced changes in serum proteome and histopathology, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and botulism.
Computational prediction of protein hot spot residues.
Morrow, John Kenneth; Zhang, Shuxing
2012-01-01
Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.
Sackmann-Sala, Lucila; Ding, Juan; Frohman, Lawrence A; Kopchick, John J
2009-12-01
To identify biomarkers of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) action in human serum. The search for new markers of GH activity has received extensive attention given that the current biomarkers (IGF-1, IGFBP-3 and collagen peptides) show substantial variability in the population, and are not reliably predictive of either the physiologic effects of GH therapy or the detection of GH abuse by athletes. GH releasing hormone (GHRH) is a polypeptide synthesized in the hypothalamus that binds to receptors on pituitary somatotropes to promote the synthesis and release of GH. Serum GH and IGF-1 levels have been shown to increase with administration of GHRH or CJC-1295, a long-acting GHRH analog. Sera from 11 healthy young adult men before and one week after CJC-1295 injection were analyzed by two-dimensional gel electrophoresis for proteomic changes. Serum proteins displaying significant changes before and after treatment were subsequently identified using mass spectrometry. In addition, correlations between these proteins and GH or IGF-1 levels were evaluated. Two protein spots that displayed decreased intensities after treatment were identified as an apolipoprotein A1 isoform and a transthyretin isoform. Three protein spots upregulated by CJC-1295 treatment included beta-hemoglobin, a C-terminal fragment of albumin, and a mix of an immunoglobulin fragment and another C-terminal albumin fragment. A linear relationship was found between the spot containing immunoglobulin and albumin fragments and IGF-1 levels. Although the molecular mechanisms linking the identified proteins to GH and IGF-1 biological activity remain to be clarified, the results suggest that they represent potential biomarkers of GH and/or IGF-1 action.
Proteomic analysis of zebrafish embryos exposed to simulated-microgravity
NASA Astrophysics Data System (ADS)
Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing
Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics
Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao.
Niemenak, Nicolas; Kaiser, Edward; Maximova, Siela N; Laremore, Tatiana; Guiltinan, Mark J
2015-05-15
Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses. Copyright © 2015 Elsevier GmbH. All rights reserved.
Proteomic analysis of papaya (Carica papaya L.) displaying typical sticky disease symptoms.
Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Almeida, Igor C; Fernandes, Patricia M B; Zingali, Russolina B
2011-07-01
Papaya (Carica papaya L.) hosts the only described laticifer-infecting virus (Papaya meleira virus, PMeV), which is the causal agent of papaya sticky disease. To understand the systemic effects of PMeV in papaya, we conducted a comprehensive proteomic analysis of leaf samples from healthy and diseased plants grown under field conditions. First, a reference 2-DE map was established for proteins from healthy samples. A total of 486 reproducible spots were identified, and MALDI-TOF-MS/MS data identified 275 proteins accounting for 159 distinct proteins from 231 spots that were annotated. Second, the differential expression of proteins from healthy and diseased leaves was determined through parallel experiments, using 2-DE and DIGE followed by MALDI-TOF-MS/MS and LC-IonTrap-MS/MS, respectively. Conventional 2-DE analysis revealed 75 differentially expressed proteins. Of those, 48 proteins were identified, with 26 being upregulated (U) and 22 downregulated (D). In general, metabolism-related proteins were downregulated, and stress-responsive proteins were upregulated. This expression pattern was corroborated by the results of the DIGE analysis, which identified 79 differentially expressed proteins, with 23 identified (17 U and 6 D). Calreticulin and the proteasome subunits 20S and RPT5a were shown to be upregulated during infection by both 2-DE and DIGE analyses. These data may help shed light on plant responses against stresses and viral infections. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational Prediction of Hot Spot Residues
Morrow, John Kenneth; Zhang, Shuxing
2013-01-01
Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154
Zhang, Y X; Yu, D; Tian, X L; Liu, C Y; Gai, S P; Zheng, G S
2015-01-01
Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Norton, Thomas T.
2007-01-01
Purpose The tree shrew model of refractive development is particularly useful because, like humans, tree shrews have a fibrous sclera. Selective changes in some candidate extracellular matrix proteins and mRNAs have been found in the sclera during the development of, and recovery from, induced myopia. We undertook a more neutral proteomic analysis using two-dimensional gel electrophoresis and mass spectrometry to identify scleral proteins that are differentially expressed during the development of, and recovery from, lens-induced myopia. Methods Five tree shrews (Tupaia glis belangeri) wore a monocular –5 D lens for 4 days, starting 24 days after natural eye opening. At the end of this time, all treated eyes had partially compensated for the lens and were –3.5±0.7 D (mean ± SEM) myopic relative to the untreated fellow control eyes. An additional five animals wore a –5 D lens for 11–13 days, followed by 4 days of recovery without the –5 D lens. The amount of recovery was 1.6±0.4 D. Scleral proteins from both groups were then isolated and resolved by two-dimensional gel electrophoresis and spots that were differentially expressed were identified by mass spectrometry. Results The scleral protein profile typically displayed ~700 distinct protein spots within the pH 5–8 range. Comparison of the treated-eye and control-eye scleras of the lens-compensation animals revealed five spots that were significantly differentially expressed in all five pairs of eyes; all were downregulated 1.2 to 1.7 fold in the treated eye. These proteins were identified as: pigment epithelium-derived factor (PEDF), procollagen I α1, procollagen I α2, and thrombospondin I (two spots). In the recovering eyes, the two thrombospondin I spots remained lower in abundance while PEDF and the procollagens were no longer downregulated. In addition, 78 kDa glucose-regulated protein (GRP 78), a member of the heat shock protein 70 family, was slightly upregulated 1.3 fold. Conclusions We found consistent results across animals that were of a magnitude consistent with the physiologically small changes to the focal plane of these eyes. Changes in collagen confirm previous findings, but downregulation of thrombospondin I adds detail to our understanding of the chain of signals that regulates scleral creep rate. The differential changes in PEDF and GRP 78 were not expected, based on previous studies, and demonstrate the utility of the proteomic approach in tree shrew sclera. PMID:17893659
NASA Astrophysics Data System (ADS)
Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus
2007-12-01
A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.
Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.).
Ogura, Takahiro; Ogihara, Jun; Sunairi, Michio; Takeishi, Hidetaka; Aizawa, Tomoko; Olivos-Trujillo, Marcos R; Maureira-Butler, Iván J; Salvo-Garrido, Haroldo E
2014-06-01
Yellow lupin (Lupinus luteus L.) is a legume crop containing a large amount of protein in its seeds. In this study, we constructed a seed-protein catalog to provide a foundation for further study of the seeds. A total of 736 proteins were identified in 341 2DE spots by nano-LC-MS/MS. Eight storage proteins were found as multiple spots in the 2DE gels. The 736 proteins correspond to 152 unique proteins as shown by UniRef50 clustering. Sixty-seven of the 152 proteins were associated with KEGG-defined pathways. Of the remaining proteins, 57 were classified according to a GO term. The functions of the remaining 28 proteins have yet to be determined. This is the first yellow lupin seed-protein catalog, and it contains considerably more data than previously reported for white lupin (L. albus L.). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de Queiroz, João Vitor; Vieira, José Cavalcante Souza; de Oliveira, Grasieli; Braga, Camila Pereira; da Cunha Bataglioli, Izabela; da Silva, Janaína Macedo; de Paula Araújo, Wellington Luiz; de Magalhães Padilha, Pedro
2018-05-08
Predator fish can accumulate high levels of mercury, which qualifies them as potential indicators of this toxic metal. The predatory species Brachyplatystoma filamentosum, popularly known as filhote, is among the most consumed species in the Brazilian Amazon. Continuing the metalloproteomic studies of mercury in Amazonian fishes that have been developed in the last 5 years, the present paper provides the data of protein characterization associated with mercury in muscle and liver samples of filhote (Brachyplatystoma filamentosum) collected in the Madeira River, Brazilian Amazon. The mercury concentration in the muscle and liver samples was determined by graphite furnace atomic absorption spectrometry (GFAAS). The protein fraction was extracted in an aqueous medium, and later, a fractional precipitation procedure was performed to obtain the protein pellets. Then, the proteome of the tissue samples of this fish species was separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and a mercury mapping of the protein spots was carried out by GFAAS after acid digestion. Protein spots that had mercury were characterized by mass spectrometry with electrospray ionization in sequence (ESI-MS/MS) after tryptic digestion. It was possible to characterize 11 mercury-associated protein spots that presented biomarker characteristics and could be used to monitor mercury in fish species of the Amazon region. Thus, the metalloproteomic strategies used in the present study allowed us to characterize 11 mercury-associated protein spots. It should be noted that the protein spots identified as GFRP, TMEM186, TMEM57B, and BHMT, which have coordination sites for elements with characteristics of soft acids, such as mercury, can be used as biomarkers of mercury contamination in monitoring studies of this toxic metal in fish species from the Amazon region.
Aziz, Kamran M A
2015-01-01
Current study has invented a new method for utilizing spot urine protein among diabetic patients. There have been various efforts and strategies in research internationally to detect, diagnose and monitor nephropathy/DKD. Although 24-hour urine studies are gold standard, however, there exist some controversies about microalbuminuria and spot urine protein. The current study was designed to utilize spot urine protein among diabetic patients and to find its association with routine dipstick urine test for albumin, and microalbuminuria. The study demonstrated significant association of spot urine protein with urine dipstick albumin, and has demonstrated increasing spot urine protein with increasing albumin in urine (p-value < 0.0001). This study also demonstrated significantly higher levels of spot urine protein between the groups with nephropathy/DKD as compared to those without nephropathy/DKD (p-value < 0.0001). Similarly, spot urine protein and spot urine protein/creatinine were also significantly associated with microalbumin and microalbumin/creatinine in urine. Significant regression models for spot urine protein and microalbuminuria were also developed and proposed to detect and estimate microalbumin in urine while utilizing spot urine protein (< 0.0001). Synthesized regression equations and models can be used confidently to detect, rule out and monitor proteinuria and DKD. ROC curves were utilized to detect spot urine protein cutoff points for nephropathy and DKD with high specificity and sensitivity. Some important patents were also discussed in the paper regarding albuminuria/proteinuria detection and management. Current study has demonstrated and concluded, for the first time, that there exists a significant association of spot urine protein with routine dipstick albumin in urine and microalbuminuria. It is also essential to detect early, monitor and manage proteinuria, hypertension and dyslipidemia with good glycemic control to prevent diabetes complications.
Kazemipour, N; Qazizadeh, H; Sepehrimanesh, M; Salimi, S
2015-05-01
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that involves different organs. Its most important feature is the production of specific autoantibodies against nuclear or cytoplasmic antigens. Proteomic analysis of serum, as one of the most readily available body fluids, can be used as a method for clarifying the pathogenesis of SLE. In this study the serum proteome of 13 patients with SLE was evaluated and compared with seven healthy control participants. A specific kit was used to remove high-abundance proteins. After depletion, the protein expression patterns created by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF-MS were used to identify disease-associated proteins. We found differential expression of 15 protein spots, including seven up-regulated and eight down-regulated proteins in SLE samples, in comparison with healthy participants. These spots were identified by MALDI-TOF/TOF-MS and classified into three groups include keratins, apolipoproteins and albumin, and individual proteins such as transthyretin, haptoglobin and prothrombin. These findings can help to clarify the pathophysiology and mechanism of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira
2012-06-18
A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine
2007-03-01
The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.
Chance, Mark R.; Chang, Jinsook; Liu, Shuqing; Gokulrangan, Giridharan; Chen, Daniel H.-C.; Lindsay, Aaron; Geng, Ruishuang; Zheng, Qing Y.; Alagramam, Kumar
2010-01-01
Proteins and protein networks associated with cochlear pathogenesis in the Ames waltzer (av) mouse, a model for deafness in Usher syndrome 1F (USH1F), were identified. Cochlear protein from wild-type and av mice at postnatal day 30, a time point in which cochlear pathology is well established, was analyzed by quantitative 2D gel electrophoresis followed by mass spectrometry (MS). The analytic gel resolved 2270 spots; 69 spots showed significant changes in intensity in the av cochlea compared with the control. The cochlin protein was identified in 20 peptide spots, most of which were up-regulated, while a few were down-regulated. Analysis of MS sequence data showed that, in the av cochlea, a set of full-length isoforms of cochlin was up-regulated, while isoforms missing the N-terminal FCH/LCCL domain were down-regulated. Protein interaction network analysis of all differentially expressed proteins was performed with Metacore software. That analysis revealed a number of statistically significant candidate protein networks predicted to be altered in the affected cochlea. Quantitative PCR (qPCR) analysis of select candidates from the proteomic and bioinformatic investigations showed up-regulation of Coch mRNA and those of p53, Brn3a and Nrf2, transcription factors linked to stress response and survival. Increased mRNA of Brn3a and Nrf2 has previously been associated with increased expression of cochlin in human glaucomatous trabecular meshwork. Our report strongly suggests that increased level of cochlin is an important etiologic factor leading to the degeneration of cochlear neuroepithelia in the USH1F model. PMID:20097680
Li, Ling; Li, Dan; Liu, Li; Li, Shijun; Feng, Yanping; Peng, Xiuli; Gong, Yanzhang
2015-01-01
Endothelin receptor B subtype 2 (EDNRB2) is a seven-transmembrane G-protein coupled receptor. In this study, we investigated EDNRB2 gene as a candidate gene for duck spot plumage pattern according to studies of chicken and Japanese quail. The entire coding region was cloned by the reverse transcription polymerase chain reaction (RT-PCR). Sequence analysis showed that duck EDNRB2 cDNA contained a 1311 bp open reading frame and encoded a putative protein of 436 amino acids residues. The transcript shared 89%-90% identity with the counterparts in other avian species. A phylogenetic tree based on amino acid sequences showed that duck EDNRB2 was evolutionary conserved in avian clade. The entire coding region of EDNRB2 were sequenced in 20 spot and 20 non-spot ducks, and 13 SNPs were identified. Two of them (c.940G>A and c.995G>A) were non-synonymous substitutions, and were genotyped in 647 ducks representing non-spot and spot phenotypes. The c.995G>A mutation, which results in the amino acid substitution of Arg332His, was completely associated with the spot phenotype: all 152 spot ducks were carriers of the AA genotype and the other 495 individuals with non-spot phenotype were carriers of GA or GG genotype, respectively. Segregation in 17 GA×GG and 22 GA×GA testing combinations confirmed this association since the segregation ratios and genotypes of the offspring were in agreement with the hypothesis. In order to investigate the underlying mechanism of the spot phenotype, MITF gene was used as cell type marker of melanocyte progenitor cells while TYR and TYRP1 gene were used as cell type markers of mature melanocytes. Transcripts of MITF, TYR and TYRP1 gene with expected size were identified in all pigmented skin tissues while PCR products were not obtained from non-pigmented skin tissues. It was inferred that melanocytes are absent in non-pigmented skin tissues of spot ducks.
Amjadi, Fatemehsadat; Mehdizadeh, Mehdi; Ashrafi, Mahnaz; Nasrabadi, Davood; Taleahmad, Sara; Mirzaei, Mehdi; Gupta, Vivek; Salekdeh, Ghasem Hosseini; Aflatoonian, Reza
2018-04-21
What is the molecular basis of infertility related to uterine dysfunction in women with polycystic ovary syndrome (PCOS)? In this study, differences in protein expression between PCOS and normal endometrium were identified using a proteomic approach based on two-dimensional electrophoresis (2-DE) coupled with mass spectrometry (MS). The proteome of endometrium were analysed during the proliferative (on day 2 or 3 before ovulation, n = 6) and luteal phases (on day 3-5 after ovulation, n = 6) from healthy women and PCOS patients (12-14 days after spontaneous bleeding, n = 12). The differentially expressed proteins were categorized based on the biological process using the DAVID bioinformatics resources. Over 803 reproducible protein spots were detected on gels, and 150 protein spots showed different intensities between PCOS and normal women during the proliferative and luteal phases. MS analysis detected 70 proteins out of 150 spots. For four of the 70 proteins, 14-3-3 protein, annexin A5, SERPINA1 and cathepsin D, 2-DE results were validated and localized by Western blot and immunohistochemistry, respectively, and their gene expression profiles were confirmed by real-time quantitative PCR. The obtained results corresponded to the proteomic analysis. The differentially expressed proteins identified are known to be involved in apoptosis, oxidative stress, inflammation and the cytoskeleton. The processes related to the differentially expressed proteins play important roles in fecundity and fecundability. The present study may reveal the cause of various endometrial aberrations as a limiting factor for achieving pregnancy in PCOS women. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Czubinski, Jaroslaw; Montowska, Magdalena; Pospiech, Edward; Lampart-Szczapa, Eleonora
2017-12-01
Proteins enzymatic digestion is a very complex process, during which some components are degraded, whereas others remain in an unchanged form. Moreover, enzymatic hydrolysis is one of the most popular methods used to reduce the allergenicity of food proteins. In the present study, the efficiency of enzymatic hydrolysis of lupin seed proteins was assessed by proteomic analysis as performed by two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry identification. Two digestion systems were used: oriented digestion carried out by trypsin and model in vitro digestion mimicking the conditions present in the gastrointestinal tract. The comparisons of 2-DE maps of proteins isolated form different lupin seed species revealed that the differences in proteins expression were observed mainly in the central parts of gels (i.e. in the molecular weight range from 20 to 70 kDa, and the pH range 5-7). In total, 27 differentially expressed proteins spots were successfully identified by mass spectrometry analysis. An important reduction in the number of proteins spots on 2-DE maps was observed when trypsin and the in vitro digestion model were applied. The protein spot insensitive to digestion in both hydrolysis systems was identified as β-conglutin. The results of the present study provide insight into the nature of the digestion process that may take place after lupin seed protein intake and highlight the important fact that some of the proteins are insensitive to digestive enzyme activity. Moreover, evaluation of digestion activity of trypsin towards lupin seed proteins may be used for the development of specific processes with respect to hypoallergenic food production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Maeda, Kenji; Finnie, Christine; Svensson, Birte
2004-01-01
Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thioredoxin-targeted proteins based on two-dimensional electrophoresis and fluorescence labelling of thiol groups was achieved by application of a highly sensitive Cy5 maleimide dye and large-format two-dimensional gels, resulting in a 10-fold increase in the observed number of labelled protein spots. The technique also provided information about accessible thiol groups in the proteins identified in the barley seed proteome. In total, 16 different putative target proteins were identified from 26 spots using tryptic in-gel digestion, matrix-assisted laser-desorption ionization-time-of-flight MS and database search. HvTrxh1 and HvTrxh2 were shown to have similar target specificity. Barley alpha-amylase/subtilisin inhibitor, previously demonstrated to be reduced by both HvTrxh1 and HvTrxh2, was among the identified target proteins, confirming the suitability of the method. Several alpha-amylase/trypsin inhibitors, some of which are already known as target proteins of thioredoxin h, and cyclophilin known as a target protein of m-type thioredoxin were also identified. Lipid transfer protein, embryospecific protein, three chitinase isoenzymes, a single-domain glyoxalase-like protein and superoxide dismutase were novel identifications of putative target proteins, suggesting new physiological roles of thioredoxin h in barley seeds. PMID:14636158
Petitot, F; Frelon, S; Chambon, C; Paquet, F; Guipaud, O
2016-08-22
The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect. This study aimed at investigating if serum proteins could be useful as biomarkers of both uranium exposure and radiological effect. Male Sprague-Dawley rats were chronically exposed through drinking water to low levels (40mg/L, corresponding to 1mg of uranium per animal per day) of either 4% (235)U-enriched uranium (EU) or 12% EU during 6 weeks. A proteomics approach based on two-dimensional electrophoresis (2D-DIGE) and mass spectrometry (MS) was used to establish protein expression profiles that could be relevant for discriminating between groups, and to identify some differentially expressed proteins following uranium ingestion. It demonstrated that the expressions of 174 protein spots over 1045 quantified spots were altered after uranium exposure (p<0.05). Using both inferential and non-supervised multivariate statistics, we show sets of spots features that lead to a clear discrimination between controls and EU exposed groups on the one hand (21 spots), and between 4% EU and 12% EU on the other hand (7 spots), showing that investigation of the serum proteome may possibly be of relevance to address both uranium contamination and radiological effect. Finally, using bioinformatics tools, pathway analyses of differentially expressed MS-identified proteins find that acute phase, inflammatory and immune responses as well as oxidative stress are likely involved in the response to contamination, suggesting a physiological perturbation, but that does not necessarily lead to a toxic effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sperm membrane proteins associated with the boar semen cryopreservation.
Guimarães, Daianny B; Barros, Tatyane B; van Tilburg, Maurício F; Martins, Jorge A M; Moura, Arlindo A; Moreno, Frederico B; Monteiro-Moreira, Ana C; Moreira, Renato A; Toniolli, Ricardo
2017-08-01
This study aimed to define sperm membrane protein markers of semen freezability of boars with the aid of a proteomic approach. Semen from fourteen adult boars were subjected to slow freezing and rapid thawing. After thawing, sperm vigor and motility were analyzed, and based on these results, animals were separated into two groups: good (GFEs) and poor freezability (PFEs). Sperm membrane proteins were extracted and subjected to two-dimensional electrophoresis. Stained gels were analyzed by computerized resources to indicate differentially expressed protein spots, that were identified by mass spectrometry. Six animals showed good freezability with average sperm vigor and motility of 2.2±0.8 and 41.8±22.9, respectively, whereas eight boars showed poor freezability, with 1.9±0.6 and 26.8±17.5 of sperm vigor sperm motility, respectively. An average of 263±62.2 spots per gel and 234.2±54.6 of spots consistently present in all gels were detected. The intensities of five spots were significantly different between groups. Fc fragment of IgG binding protein and lactadherin were more intense in the PFE group, while Arylsulfatase A and F-actin capping protein subunit alpha 1 were more expressed in the GEF group. Based on their functions and interactions with other proteins, we conclude that these four sperm membrane proteins may act as potential markers of boar semen freezability. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barboro, Paola; D'Arrigo, Cristina; Repaci, Erica
Tumor progression is characterized by definite changes in the protein composition of the nuclear matrix (NM). The interactions of chromatin with the NM occur via specific DNA sequences called MARs (matrix attachment regions). In the present study, we applied a proteomic approach along with a Southwestern assay to detect both differentially expressed and MAR-binding NM proteins, in persistent hepatocyte nodules (PHN) in respect with normal hepatocytes (NH). In PHN, the NM undergoes changes both in morphology and in protein composition. We detected over 500 protein spots in each two dimensional map and 44 spots were identified. Twenty-three proteins were differentiallymore » expressed; among these, 15 spots were under-expressed and 8 spots were over-expressed in PHN compared to NH. These changes were synchronous with several modifications in both NM morphology and the ability of NM proteins to bind nuclear RNA and/or DNA containing MARs sequences. In PHN, we observed a general decrease in the expression of the basic proteins that bound nuclear RNA and the over-expression of two species of Mw 135 kDa and 81 kDa and pI 6.7-7.0 and 6.2-7.4, respectively, which exclusively bind to MARs. These results suggest that the deregulated expression of these species might be related to large-scale chromatin reorganization observed in the process of carcinogenesis by modulating the interaction between MARs and the scaffold structure.« less
Kim, So W.; Gupta, Ravi; Lee, Seo H.; Min, Cheol W.; Agrawal, Ganesh K.; Rakwal, Randeep; Kim, Jong B.; Jo, Ick H.; Park, Soo-Yun; Kim, Jae K.; Kim, Young-Chang; Bang, Kyong H.; Kim, Sun T.
2016-01-01
Panax ginseng roots are well known for their medicinal properties and have been used in Korean and Chinese traditional medicines for 1000s of years. However, the medicinal value of P. ginseng fruits remain poorly characterized. In this study, we used an integrated biochemical, proteomics, and metabolomics approach to look into the medicinal properties of ginseng fruits. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] assays showed higher antioxidant activities in ginseng fruits than leaves or roots. Two-dimensional gel electrophoresis (2-DE) profiling of ginseng fruit proteins (cv. Cheongsun) showed more than 400 spots wherein a total of 81 protein spots were identified by mass spectrometry using NCBInr, UniRef, and an in-house developed RNAseq (59,251 protein sequences)-based databases. Gene ontology analysis showed that most of the identified proteins were related to the hydrolase (18%), oxidoreductase (16%), and ATP binding (15%) activities. Further, a comparative proteome analysis of four cultivars of ginseng fruits (cvs. Yunpoong, Gumpoong, Chunpoong, and Cheongsun) led to the identification of 22 differentially modulated protein spots. Using gas chromatography-time of flight mass spectrometry (GC-TOF MS), 66 metabolites including amino acids, sugars, organic acids, phenolic acids, phytosterols, tocopherols, and policosanols were identified and quantified. Some of these are well known medicinal compounds and were not previously identified in ginseng. Interestingly, the concentration of almost all metabolites was higher in the Chunpoong and Gumpoong cultivars. Parallel comparison of the four cultivars also revealed higher amounts of the medicinal metabolites in Chunpoong and Gumpoong cultivars. Taken together, our results demonstrate that ginseng fruits are a rich source of medicinal compounds with potential beneficial health effects. PMID:27458475
The Effect of Selenium Enrichment on Baker s Yeast Proteome
El-Bayoumy, Karam; Das, Arunangshu; Russell, Stephen; Wolfe, Steven; Jordan, Rick; Renganathan, Kutralanathan; Loughran, Thomas P.; Somiari, Richard
2011-01-01
The use of regular yeast (RY) and selenium-enriched yeast (SEY) as dietary supplement is of interest because the Nutritional Prevention of Cancer (NPC) trial revealed that SEY but not RY decreased the incidence of prostate cancer (PC). Using two-dimensional difference in gel electrophoresis (2D-DIGE) – tandem mass spectrometry (MS/MS) approach, we performed proteomic analysis of RY and SEY to identify proteins that are differentially expressed as a result of selenium enrichment. 2D-DIGE revealed 96 candidate protein spots that were differentially expressed (p≤0.05) between SEY and RY. The 96 spots were selected, sequenced by LC/MS/MS and 37 proteins were unequivocally identified. The 37 identified proteins were verified with ProteinProphet software and mapped to existing Gene Ontology categories. Furthermore, the expression profile of 5 of the proteins with validated or putative roles in the carcinogenesis process, and for which antibodies against human forms of the proteins are available commercially were verified by western analysis. This study provides evidence for the first time that SEY contains higher levels of Pyruvate Kinase, HSP70, and Elongation factor 2 and lower levels of Eukaryotic Translation Initiation Factor 5A-2 and Triosephosphate Isomerase than those found in RY. PMID:22067702
Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin
2013-08-01
Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.
Proteomic analysis of blue light-induced twining response in Cuscuta australis.
Li, Dongxiao; Wang, Liangjiang; Yang, Xiaopo; Zhang, Guoguang; Chen, Liang
2010-01-01
The parasitic plant Cuscuta australis (dodder) invades a variety of species by entwining the stem and leaves of a host and developing haustoria. The twining response prior to haustoria formation is regarded as the first sign for dodders to parasitize host plants, and thus has been the focus of studies on the host-parasite interaction. However, the molecular mechanism is still poorly understood. In the present work, we have investigated the different effects of blue and white light on the twining response, and identified a set of proteins that were differentially expressed in dodder seedlings using a proteomic approach. Approximately 1,800 protein spots were detected on each 2-D gel, and 47 spots with increased or decreased protein levels were selected and analyzed with MALDI-TOF-MS. Peptide mass fingerprints (PMFs) obtained for these spots were used for protein identification through cross-species database searches. The results suggest that the blue light-induced twining response in dodder seedlings may be mediated by proteins involved in light signal transduction, cell wall degradation, cell structure, and metabolism.
Badillo-Vargas, I E; Rotenberg, D; Schneweis, D J; Hiromasa, Y; Tomich, J M; Whitfield, A E
2012-08-01
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a persistent propagative manner. Despite the extensive replication of TSWV in midgut and salivary glands, there is little to no pathogenic effect on F. occidentalis. We hypothesize that the first-instar larva (L1) of F. occidentalis mounts a response to TSWV that protects it from pathogenic effects caused by virus infection and replication in various insect tissues. A partial thrips transcriptome was generated using 454-Titanium sequencing of cDNA generated from F. occidentalis exposed to TSWV. Using these sequences, the L1 thrips proteome that resolved on a two-dimensional gel was characterized. Forty-seven percent of the resolved protein spots were identified using the thrips transcriptome. Real-time quantitative reverse transcriptase PCR (RT-PCR) analysis of virus titer in L1 thrips revealed a significant increase in the normalized abundance of TSWV nucleocapsid RNA from 2 to 21 h after a 3-h acquisition access period on virus-infected plant tissue, indicative of infection and accumulation of virus. We compared the proteomes of infected and noninfected L1s to identify proteins that display differential abundances in response to virus. Using four biological replicates, 26 spots containing 37 proteins were significantly altered in response to TSWV. Gene ontology assignments for 32 of these proteins revealed biological roles associated with the infection cycle of other plant- and animal-infecting viruses and antiviral defense responses. Our findings support the hypothesis that L1 thrips display a complex reaction to TSWV infection and provide new insights toward unraveling the molecular basis of this interaction.
Badillo-Vargas, I. E.; Rotenberg, D.; Schneweis, D. J.; Hiromasa, Y.; Tomich, J. M.
2012-01-01
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a persistent propagative manner. Despite the extensive replication of TSWV in midgut and salivary glands, there is little to no pathogenic effect on F. occidentalis. We hypothesize that the first-instar larva (L1) of F. occidentalis mounts a response to TSWV that protects it from pathogenic effects caused by virus infection and replication in various insect tissues. A partial thrips transcriptome was generated using 454-Titanium sequencing of cDNA generated from F. occidentalis exposed to TSWV. Using these sequences, the L1 thrips proteome that resolved on a two-dimensional gel was characterized. Forty-seven percent of the resolved protein spots were identified using the thrips transcriptome. Real-time quantitative reverse transcriptase PCR (RT-PCR) analysis of virus titer in L1 thrips revealed a significant increase in the normalized abundance of TSWV nucleocapsid RNA from 2 to 21 h after a 3-h acquisition access period on virus-infected plant tissue, indicative of infection and accumulation of virus. We compared the proteomes of infected and noninfected L1s to identify proteins that display differential abundances in response to virus. Using four biological replicates, 26 spots containing 37 proteins were significantly altered in response to TSWV. Gene ontology assignments for 32 of these proteins revealed biological roles associated with the infection cycle of other plant- and animal-infecting viruses and antiviral defense responses. Our findings support the hypothesis that L1 thrips display a complex reaction to TSWV infection and provide new insights toward unraveling the molecular basis of this interaction. PMID:22696645
Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.
Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi
2014-01-01
The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species. Overall results suggest that there were many new types of glutelin subunits and precursor in the three wild rice species. Hence, wild rice species are important genetic resources for improving nutritional quality to rice.
Poetsch, Ansgar; Schlüsener, Daniela; Florizone, Christine; Eltis, Lindsay; Menzel, Christoph; Rögner, Matthias; Steinert, Kerstin; Roth, Udo
2008-01-01
Integral membrane proteins are notoriously difficult to identify and analyze by mass spectrometry because of their low abundance and limited number of trypsin cleavage sites. Our strategy to address this problem is based on a novel technology for MALDI-MS peptide sample preparation that increases the success rate of membrane protein identification by increasing the sensitivity of the MALDI-TOF system. For this, we used sample plates with predeposited matrix spots of CHCA crystals prepared by vacuum sublimation onto an extremely low wettable (ultraphobic) surface. In experiments using standard peptides, an up to 10-fold gain of sensitivity was found for on-chip preparations compared with classical dried-droplet preparations on a steel target. In order to assess the performance of the chips with membrane proteins, three model proteins (bacteriorhodopsin, subunit IV(a) of ATP synthase, and the cp47 subunit from photosystem II) were analyzed. To mimic realistic analysis conditions, purified proteins were separated by SDS-PAGE and digested with trypsin. The digest MALDI samples were prepared either by dried-droplet technique on steel plates using CHCA as matrix, or applied directly onto the matrix spots of the chip surface. Significantly higher signal-to-noise ratios were observed for all of the spectra resulting from on-chip preparations of different peptides. In a second series of experiments, the membrane proteome of Rhodococcus jostii RHA1 was investigated by AIEC/SDS-PAGE in combination with MALDI-TOF MS/MS. As in the first experiments, Coomassie-stained SDS-PAGE bands were digested and the two different preparation methods were compared. For preparations on the Mass·Spec·Turbo Chip, 43 of 60 proteins were identified, whereas only 30 proteins were reliably identified after classical sample preparation. Comparison of the obtained Mascot scores, which reflect the confidence level of the protein identifications, revealed that for 70% of the identified proteins, higher scores were obtained by on-chip sample preparation. Typically, this gain was a consequence of higher sequence coverage due to increased sensitivity. PMID:19137096
2-DE analysis indicates that Acinetobacter baumannii displays a robust and versatile metabolism
Soares, Nelson C; Cabral, Maria P; Parreira, José R; Gayoso, Carmen; Barba, Maria J; Bou, Germán
2009-01-01
Background Acinetobacter baumannii is a nosocomial pathogen that has been associated with outbreak infections in hospitals. Despite increasing awareness about this bacterium, its proteome remains poorly characterised, however recently the complete genome of A. baumannii reference strain ATCC 17978 has been sequenced. Here, we have used 2-DE and MALDI-TOF/TOF approach to characterise the proteome of this strain. Results The membrane and cytoplasmatic protein extracts were analysed separately, these analyses revealed the reproducible presence of 239 and 511 membrane and cytoplamatic protein spots, respectively. MALDI-TOF/TOF characterisation identified a total of 192 protein spots (37 membrane and 155 cytoplasmatic) and revealed that the identified membrane proteins were mainly transport-related proteins, whereas the cytoplasmatic proteins were of diverse nature, although mainly related to metabolic processes. Conclusion This work indicates that A. baumannii has a versatile and robust metabolism and also reveal a number of proteins that may play a key role in the mechanism of drug resistance and virulence. The data obtained complements earlier reports of A. baumannii proteome and provides new tools to increase our knowledge on the protein expression profile of this pathogen. PMID:19785748
Proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing conditions.
Crespo-Sempere, A; Gil, J V; Martínez-Culebras, P V
2011-06-30
Aspergillus carbonarius is an important ochratoxin A producing fungus that is responsible for mycotoxin contamination of grapes and wine. In this study, the proteomes of highly (W04-40) and weakly (W04-46) OTA-producing A. carbonarius strains were compared to identify proteins that may be involved in OTA biosynthesis. Protein samples were extracted from two biological replicates and subjected to two dimensional gel electrophoresis analysis and mass spectrometry. Expression profile comparison (PDQuest software), revealed 21 differential spots that were statistically significant and showed a two-fold change in expression, or greater. Among these, nine protein spots were identified by MALDI-MS/MS and MASCOT database and twelve remain unidentified. Of the identified proteins, seven showed a higher expression in strain W04-40 (high OTA producer) and two in strain W04-46 (low OTA producer). Some of the identified amino acid sequences shared homology with proteins involved in regulation, amino acid metabolism, oxidative stress and sporulation. It is worth noting the presence of a protein with 126.5 fold higher abundance in strain W04-40 showing homology with protein CipC, a protein with unknown function related with pathogenesis and mycotoxin production by some authors. Variations in protein expression were also further investigated at the mRNA level by real-time PCR analysis. The mRNA expression levels from three identified proteins including CipC showed correlation with protein expression levels. This study represents the first proteomic analysis for a comparison of two A. carbonarius strains with different OTA production and will contribute to a better understanding of the molecular events involved in OTA biosynthesis. Copyright © 2011 Elsevier B.V. All rights reserved.
Alterations of proteins in MDCK cells during acute potassium deficiency.
Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith
2016-06-01
Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Background Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. Results Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. Conclusions This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome the difficulties of matching peptides to gene sequences for members of highly similar, rapidly evolving storage protein families. Prospects for simplifying this process for routine analyses are discussed. The ability to measure expression levels for individual flour protein genes complements information gained from efforts to sequence the wheat genome and is essential for studies of effects of environment on gene expression. PMID:21314956
2015-01-01
Identifying determinant(s) of protein thermostability is key for rational and data-driven protein engineering. By analyzing more than 130 pairs of mesophilic/(hyper)thermophilic proteins, we identified the quality (residue-wise energy) of hydrophobic interactions as a key factor for protein thermostability. This distinguishes our study from previous ones that investigated predominantly structural determinants. Considering this key factor, we successfully discriminated between pairs of mesophilic/(hyper)thermophilic proteins (discrimination accuracy: ∼80%) and searched for structural weak spots in E. coli dihydrofolate reductase (classification accuracy: 70%). PMID:24437522
Curry, E; Stoops, M A; Roth, T L
2012-07-15
Currently, there is no method of accurately and non-invasively diagnosing pregnancy in polar bears. Specific proteins may exhibit altered profiles in the feces of pregnant bears, but predicting appropriate candidate proteins to investigate is speculative at best. The objective of this study was to identify potential pregnancy biomarker proteins based on their increased abundance in the feces of pregnant polar bears compared to pseudopregnant females (controls) using two-dimensional in-gel electrophoresis (2D-DIGE) and mass spectrometry (MS). Three 2D-DIGE gels were performed to evaluate fecal protein profiles from controls (n=3) and pregnant polar bears (n=3). There were 2224.67±52.39 (mean±SEM) spots resolved per gel. Of these, only five proteins were elevated in the pregnant group (P<0.05), and seven additional spots tended to be higher (0.05
99.9% confidence interval. The 11 spots represented seven distinct proteins, five of which were significantly more abundant in the pregnant group: IgGFc-binding protein, filamin-C, carboxypeptidase B, transthyretin, and immunoglobulin heavy chain variable region. To our knowledge, this was the first study that employed 2D-DIGE to identify differentially expressed proteins in fecal samples to characterize a physiological condition other than those related to gastrointestinal disorders. These promising results provided a strong foundation for ensuing efforts to develop a non-invasive pregnancy assay for use in both captive and wild polar bears. Copyright © 2012 Elsevier Inc. All rights reserved.
2012-01-01
Background Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis. Methods Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots. Results A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein). Conclusions A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC. PMID:22726388
Escobar-Tovar, Lina; Guzmán-Quesada, Mauricio; Sandoval-Fernández, Jorge A; Gómez-Lim, Miguel A
2015-06-01
Black Sigatoka, a devastating disease of bananas and plantains worldwide, is caused by the fungus Mycosphaerella fijiensis. Several banana cultivars such as 'Yangambi Km 5' and Calcutta IV, have been known to be resistant to the fungus, but the resistance has been broken in 'Yangambi Km 5' in Costa Rica. Since the resistance of this variety still persists in Mexico, the aim of this study was to compare the in vitro and in planta secretomes from two avirulent and virulent M. fijiensis isolates using proteomics and bioinformatics approaches. We aimed to identify differentially expressed proteins in fungal isolates that differ in pathogenicity and that might be responsible for breaking the resistance in 'Yangambi Km 5'. We were able to identify 90 protein spots in the secretomes of fungal isolates encoding 42 unique proteins and 35 differential spots between them. Proteins involved in carbohydrate transport and metabolism were more prevalent. Several proteases, pathogenicity-related, ROS detoxification and unknown proteins were also highly or specifically expressed by the virulent isolate in vitro or during in planta infection. An unknown protein representing a virulence factor candidate was also identified. These results demonstrated that the secretome reflects major differences between both M. fijiensis isolates. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C
2013-04-26
The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, our results suggest that comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
Berg, Ingrid L.; Neumann, Rita; Lam, Kwan-Wood G.; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A.; Jeffreys, Alec J.
2011-01-01
PRDM9 has recently been identified as a likely trans-regulator of meiotic recombination hot spots in humans and mice1-3. The protein contains a zinc finger array that in humans can recognise a short sequence motif associated with hot spots4, with binding to this motif possibly triggering hot-spot activity via chromatin remodelling5. We now show that variation in the zinc finger array in humans has a profound effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Very subtle changes within the array can create hot-spot non-activating and enhancing alleles, and even trigger the appearance of a new hot spot. PRDM9 thus appears to be the preeminent global regulator of hot spots in humans. Variation at this locus also influences aspects of genome instability, specifically a megabase-scale rearrangement underlying two genomic disorders6 as well as minisatellite instability7, implicating PRDM9 as a risk factor for some pathological genome rearrangements. PMID:20818382
Jagota, Anita; Mattam, Ushodaya
2017-08-01
Aging is associated with changes in several basic parameters of circadian timing system (CTS) in mammals leading to circadian dysfunction. We had reported earlier that upon aging and in rotenone induced Parkinson's disease (RIPD) rat model there were significant alterations in the core clock genes expression levels and daily pulses. To identify biomarkers of aging and PD chronomics of proteomic day-night profiles in suprachiasmatic nucleus (SCN), pineal and substantia nigra (SN) in 3 month (m), 12, 24 m and RIPD rat model were studied at two time points i.e. Zeitgeber Time (ZT)-6 (mid-day) and ZT-18 (mid-night). Proteome analysis was done by using two dimensional (2-D) electrophoresis and the spots showing robust day-night variations were identified by using MALDI TOF/TOF analysis. In 3 m rats the number of proteins showing day-night variations were relatively more than 12, 24 m and RIPD rat model in SCN and SN. But in pineal there was increase in number of protein spots showing day-night variations in 24 m. Mass spectroscopy of the protein spots showing robust day night variation in aging and RIPD rats were identified. As melatonin, a multitasking molecule, an endogenous synchronizer of rhythm, an antioxidant and an antiaging drug, declines with aging, the effects of melatonin administration on differential alterations in chronomics of 2-D protein profiles in aging and RIPD male Wistar rats were studied. We report here that the melatonin could be playing an important role in modulating the chronomics of 2-D protein profiles. Additionally, various proteins were identified for the first time in this study showing significant day night variation in SCN, pineal and SN may prove useful towards targeting novel treatments for circadian dysfunction, good health and longevity.
Two-dimensional proteome reference maps for the soybean cyst nematode Heterodera glycines
USDA-ARS?s Scientific Manuscript database
Two-dimensional electrophoresis (2-DE) reference maps of Heterodera glycines were constructed. After in-gel digestion with trypsin, 803 spots representing 426 proteins were subsequently identified by LC-MS/MS. Proteins with annotated function were further categorized by Gene Ontology. Results showed...
Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins
Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric
2013-01-01
Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359
Isolation and characterizations of oxalate-binding proteins in the kidney
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roop-ngam, Piyachat; Chaiyarit, Sakdithep; Pongsakul, Nutkridta
Highlights: Black-Right-Pointing-Pointer The first large-scale characterizations of oxalate-binding kidney proteins. Black-Right-Pointing-Pointer The recently developed oxalate-conjugated EAH Sepharose 4B beads were applied. Black-Right-Pointing-Pointer 38 forms of 26 unique oxalate-binding kidney proteins were identified. Black-Right-Pointing-Pointer 25/26 (96%) of identified proteins had 'L-x(3,5)-R-x(2)-[AGILPV]' domain. -- Abstract: Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) tomore » resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed 'L-x(3,5)-R-x(2)-[AGILPV]' as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone modulators.« less
2013-01-01
Background Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and ‘Candidatus Liberibacter asiaticus’ (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the global protein expression profiles and nutrient concentrations in leaves of Las-infected grapefruit plants at pre-symptomatic or symptomatic stages for HLB. Results This study identified 123 protein spots out of 191 spots that showed significant changes in the leaves of grapefruit plants in response to Las infection and all identified spots matched to 69 unique proteins/peptides. A down-regulation of 56 proteins including those associated with photosynthesis, protein synthesis, and metabolism was correlated with significant reductions in the concentrations of Ca, Mg, Fe, Zn, Mn, and Cu in leaves of grapefruit plants in response to Las infection, particularly in symptomatic plants. Oxygen-evolving enhancer (OEE) proteins, a PSI 9 kDa protein, and a Btf3-like protein were among a small group of proteins that were down-regulated in both pre-symptomatic and symptomatic plants in response to Las infection. Furthermore, a Las-mediated up-regulation of 13 grapefruit proteins was detected, which included Cu/Zn superoxide dismutase, chitinases, lectin-related proteins, miraculin-like proteins, peroxiredoxins and a CAP 160 protein. Interestingly, a Las-mediated up-regulation of granule-bound starch synthase was correlated with an increase in the K concentrations of pre-symptomatic and symptomatic plants. Conclusions This study constitutes the first attempt to characterize the interrelationships between protein expression and nutritional status of Las-infected pre-symptomatic or symptomatic grapefruit plants and sheds light on the physiological and molecular mechanisms associated with HLB disease development. PMID:23578104
Nwugo, Chika C; Lin, Hong; Duan, Yongping; Civerolo, Edwin L
2013-04-11
Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and 'Candidatus Liberibacter asiaticus' (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the global protein expression profiles and nutrient concentrations in leaves of Las-infected grapefruit plants at pre-symptomatic or symptomatic stages for HLB. This study identified 123 protein spots out of 191 spots that showed significant changes in the leaves of grapefruit plants in response to Las infection and all identified spots matched to 69 unique proteins/peptides. A down-regulation of 56 proteins including those associated with photosynthesis, protein synthesis, and metabolism was correlated with significant reductions in the concentrations of Ca, Mg, Fe, Zn, Mn, and Cu in leaves of grapefruit plants in response to Las infection, particularly in symptomatic plants. Oxygen-evolving enhancer (OEE) proteins, a PSI 9 kDa protein, and a Btf3-like protein were among a small group of proteins that were down-regulated in both pre-symptomatic and symptomatic plants in response to Las infection. Furthermore, a Las-mediated up-regulation of 13 grapefruit proteins was detected, which included Cu/Zn superoxide dismutase, chitinases, lectin-related proteins, miraculin-like proteins, peroxiredoxins and a CAP 160 protein. Interestingly, a Las-mediated up-regulation of granule-bound starch synthase was correlated with an increase in the K concentrations of pre-symptomatic and symptomatic plants. This study constitutes the first attempt to characterize the interrelationships between protein expression and nutritional status of Las-infected pre-symptomatic or symptomatic grapefruit plants and sheds light on the physiological and molecular mechanisms associated with HLB disease development.
Proteomic changes in female rat hippocampus following exposure to a terrified sound stress.
Yang, Juan; Hu, Lili; Song, Tusheng; Liu, Yong; Wu, Qiuhua; Zhao, Lingyu; Liu, Liying; Zhao, Xiaoge; Zhang, Dianzeng; Huang, Chen
2014-06-01
Stress plays a profound role in the onset of affective disorders, including an elevation in risk factors for depression and anxiety. Women are twice as vulnerable to stress as men because of greater sensitivity to a substance produced during times of anxiety. To better define the abnormal proteins implicated in cognitive deficits and other stress-induced dysfunction, female rats were exposed to terrified sound stress, and two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) were utilized to determine the differential protein expression in the hippocampus in sound-stressed female rats compared with controls. Quantitative differences were found in 44 protein spots which were differentially expressed between the stressed and control groups (fold change of >2; p < 0.01). Eighteen protein spots were downregulated, and 26 protein spots were upregulated in the stressed group. The seven most differentially expressed proteins were identified and validated as follows: dihydropyrimidinase-related protein 2 (DRP-2), creatine kinase B type, dynamin-1 protein, alpha-internexin, glial fibrillary acidic protein beta, gamma-enolase, and peptidyl-prolyl cis-trans isomerase A. Changes in protein levels were detected in the hippocampus of female rats subjected to terrified sound stress. The findings herein may open new opportunities for further investigations on the modulation induced in the hippocampus by stress at the molecular level, especially with respect to females stress.
Exclusion of EDNRB and KIT as the basis for white spotting in Border Collies.
Metallinos, D; Rine, J
2000-01-01
White spotting patterns in mammals can be caused by mutations in the genes for the endothelin B receptor and c-Kit, whose protein products are necessary for proper migration, differentiation or survival of the melanoblast population of cells. Although there are many different dog breeds that segregate white spotting patterns, no genes have been identified that are linked to these phenotypes. An intercross was generated from a female Newfoundland and a male Border Collie and the white spotting phenotypes of the intercross progeny were evaluated by measuring percentage surface area of white in the puppies. The Border Collie markings segregated as a simple autosomal recessive (7/25 intercross progeny had the phenotype). Two candidate genes, for the endothelin B receptor (EDNRB) and c-Kit (KIT), were evaluated for segregation with the white spotting pattern. Polymorphisms between the Border Collie and Newfoundland were identified for EDNRB using Southern analysis after a portion of the canine gene had been cloned. Polymorphisms for KIT were identified using a microsatellite developed from a bacterial artificial chromosome containing the canine gene. Both EDNRB and KIT were excluded as a cause of the white spotting pattern in at least two of the intercross progeny. Although these genes have been implicated in white spotting in other mammals, including horses, pigs, cows, mice and rats, they do not appear to be responsible for the white spotting pattern found in the Border Collie breed of dog.
Exclusion of EDNRB and KIT as the basis for white spotting in Border Collies
Metallinos, Danika; Rine, Jasper
2000-01-01
Background: White spotting patterns in mammals can be caused by mutations in the genes for the endothelin B receptor and c-Kit, whose protein products are necessary for proper migration, differentiation or survival of the melanoblast population of cells. Although there are many different dog breeds that segregate white spotting patterns, no genes have been identified that are linked to these phenotypes. Results: An intercross was generated from a female Newfoundland and a male Border Collie and the white spotting phenotypes of the intercross progeny were evaluated by measuring percentage surface area of white in the puppies. The Border Collie markings segregated as a simple autosomal recessive (7/25 intercross progeny had the phenotype). Two candidate genes, for the endothelin B receptor (EDNRB) and c-Kit (KIT), were evaluated for segregation with the white spotting pattern. Polymorphisms between the Border Collie and Newfoundland were identified for EDNRB using Southern analysis after a portion of the canine gene had been cloned. Polymorphisms for KIT were identified using a microsatellite developed from a bacterial artificial chromosome containing the canine gene. Conclusions: Both EDNRB and KIT were excluded as a cause of the white spotting pattern in at least two of the intercross progeny. Although these genes have been implicated in white spotting in other mammals, including horses, pigs, cows, mice and rats, they do not appear to be responsible for the white spotting pattern found in the Border Collie breed of dog. PMID:11178229
Chang, Dong W; Hayashi, Shinichi; Gharib, Sina A; Vaisar, Tomas; King, S Trevor; Tsuchiya, Mitsuhiro; Ruzinski, John T; Park, David R; Matute-Bello, Gustavo; Wurfel, Mark M; Bumgarner, Roger; Heinecke, Jay W; Martin, Thomas R
2008-10-01
Acute lung injury causes complex changes in protein expression in the lungs. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of pathogenesis and new targets for treatment. The purpose of this study was to examine the changes in protein expression in the bronchoalveolar lavage fluid (BALF) of patients during the course of the acute respiratory distress syndrome (ARDS). Using two-dimensional difference gel electrophoresis (DIGE), the expression of proteins in the BALF from patients on Days 1 (n = 7), 3 (n = 8), and 7 (n = 5) of ARDS were compared with findings in normal volunteers (n = 9). The patterns of protein expression were analyzed using principal component analysis (PCA). Biological processes that were enriched in the BALF proteins of patients with ARDS were identified using Gene Ontology (GO) analysis. Protein networks that model the protein interactions in the BALF were generated using Ingenuity Pathway Analysis. An average of 991 protein spots were detected using DIGE. Of these, 80 protein spots, representing 37 unique proteins in all of the fluids, were identified using mass spectrometry. PCA confirmed important differences between the proteins in the ARDS and normal samples. GO analysis showed that these differences are due to the enrichment of proteins involved in inflammation, infection, and injury. The protein network analysis showed that the protein interactions in ARDS are complex and redundant, and revealed unexpected central components in the protein networks. Proteomics and protein network analysis reveals the complex nature of lung protein interactions in ARDS. The results provide new insights about protein networks in injured lungs, and identify novel mediators that are likely to be involved in the pathogenesis and progression of acute lung injury.
Guan, Wenzhu; Ferry, Natalie; Edwards, Martin G; Bell, Howard A; Othman, Hamizah; Gatehouse, John A; Gatehouse, Angharad M R
2015-01-01
The grain aphid Sitobion avenae (F.) is a major pest of wheat, acting as a virus vector as well as causing direct plant damage. Commonly grown wheat varieties in the UK have only limited resistance to this pest. The present study was carried out to investigate the potential of a diploid wheat line (ACC20 PGR1755), reported as exhibiting resistance to S. avenae, to serve as a source of resistance genes. The diploid wheat line was confirmed as partially resistant, substantially reducing the fecundity, longevity and growth rate of the aphid. Proteomic analysis showed that approximately 200 protein spots were reproducibly detected in leaf extracts from both the resistant line and a comparable susceptible line (ACC5 PGR1735) using two-dimensional gel electrophoresis and image comparison software. Twenty-four spots were significantly up-regulated (>2-fold) in the resistant line after 24 h of aphid feeding (13 and 11 involved in local and systemic responses, respectively). Approximately 50 % of all differentially expressed protein spots were identified by a combination of database searching with MS and MS/MS data, revealing that the majority of proteins up-regulated by aphid infestation were involved in metabolic processes (including photosynthesis) and transcriptional regulation. However, in the resistant line only, several stress response proteins (including NBS-LRR-like proteins) and oxidative stress response proteins were identified as up-regulated in response to aphid feeding, as well as proteins involved in DNA synthesis/replication/repair. This study indicates that the resistant diploid line ACC20 PGR1755 may provide a valuable resource in breeding wheat for resistance to aphids.
Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter
2014-01-01
Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the nowadays widely used ICMS approach. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Ling; Li, Dan; Liu, Li; Li, Shijun; Feng, Yanping; Peng, Xiuli; Gong, Yanzhang
2015-01-01
Endothelin receptor B subtype 2 (EDNRB2) is a seven-transmembrane G-protein coupled receptor. In this study, we investigated EDNRB2 gene as a candidate gene for duck spot plumage pattern according to studies of chicken and Japanese quail. The entire coding region was cloned by the reverse transcription polymerase chain reaction (RT-PCR). Sequence analysis showed that duck EDNRB2 cDNA contained a 1311bp open reading frame and encoded a putative protein of 436 amino acids residues. The transcript shared 89%-90% identity with the counterparts in other avian species. A phylogenetic tree based on amino acid sequences showed that duck EDNRB2 was evolutionary conserved in avian clade. The entire coding region of EDNRB2 were sequenced in 20 spot and 20 non-spot ducks, and 13 SNPs were identified. Two of them (c.940G>A and c.995G>A) were non-synonymous substitutions, and were genotyped in 647 ducks representing non-spot and spot phenotypes. The c.995G>A mutation, which results in the amino acid substitution of Arg332His, was completely associated with the spot phenotype: all 152 spot ducks were carriers of the AA genotype and the other 495 individuals with non-spot phenotype were carriers of GA or GG genotype, respectively. Segregation in 17 GA×GG and 22 GA×GA testing combinations confirmed this association since the segregation ratios and genotypes of the offspring were in agreement with the hypothesis. In order to investigate the underlying mechanism of the spot phenotype, MITF gene was used as cell type marker of melanocyte progenitor cells while TYR and TYRP1 gene were used as cell type markers of mature melanocytes. Transcripts of MITF, TYR and TYRP1 gene with expected size were identified in all pigmented skin tissues while PCR products were not obtained from non-pigmented skin tissues. It was inferred that melanocytes are absent in non-pigmented skin tissues of spot ducks. PMID:25955279
Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics
2011-01-01
Background High abundance protein depletion is a major challenge in the study of serum/plasma proteomics. Prior to this study, most commercially available kits for depletion of highly abundant proteins had only been tested and evaluated in adult serum/plasma, while the depletion efficiency on umbilical cord serum/plasma had not been clarified. Structural differences between some adult and fetal proteins (such as albumin) make it likely that depletion approaches for adult and umbilical cord serum/plasma will be variable. Therefore, the primary purposes of the present study are to investigate the efficiencies of several commonly-used commercial kits during high abundance protein depletion from umbilical cord serum and to determine which kit yields the most effective and reproducible results for further proteomics research on umbilical cord serum. Results The immunoaffinity based kits (PROTIA-Sigma and 5185-Agilent) displayed higher depletion efficiency than the immobilized dye based kit (PROTBA-Sigma) in umbilical cord serum samples. Both the PROTIA-Sigma and 5185-Agilent kit maintained high depletion efficiency when used three consecutive times. Depletion by the PROTIA-Sigma Kit improved 2DE gel quality by reducing smeared bands produced by the presence of high abundance proteins and increasing the intensity of other protein spots. During image analysis using the identical detection parameters, 411 ± 18 spots were detected in crude serum gels, while 757 ± 43 spots were detected in depleted serum gels. Eight spots unique to depleted serum gels were identified by MALDI- TOF/TOF MS, seven of which were low abundance proteins. Conclusions The immunoaffinity based kits exceeded the immobilized dye based kit in high abundance protein depletion of umbilical cord serum samples and dramatically improved 2DE gel quality for detection of trace biomarkers. PMID:21554704
Christensen, Britt; Ludvigsen, Maja; Nellemann, Birgitte; Kopchick, John J.; Honoré, Bent; Jørgensen, Jens Otto L.
2015-01-01
Introduction Despite implementation of the biological passport to detect erythropoietin abuse, a need for additional biomarkers remains. We used a proteomic approach to identify novel serum biomarkers of prolonged erythropoiesis-stimulating agent (ESA) exposure (Darbepoietin-α) and/or aerobic training. Trial Design Thirty-six healthy young males were randomly assigned to the following groups: Sedentary-placebo (n = 9), Sedentary-ESA (n = 9), Training-placebo (n = 10), or Training-ESA (n = 8). They were treated with placebo/Darbepoietin-α subcutaneously once/week for 10 weeks followed by a 3-week washout period. Training consisted of supervised biking 3/week for 13 weeks at the highest possible intensity. Serum was collected at baseline, week 3 (high dose Darbepoietin-α), week 10 (reduced dose Darbepoietin-α), and after a 3-week washout period. Methods Serum proteins were separated according to charge and molecular mass (2D-gel electrophoresis). The identity of proteins from spots exhibiting altered intensity was determined by mass spectrometry. Results Six protein spots changed in response to Darbepoietin-α treatment. Comparing all 4 experimental groups, two protein spots (serotransferrin and haptoglobin/haptoglobin related protein) showed a significant response to Darbepoietin-α treatment. The haptoglobin/haptoglobin related protein spot showed a significantly lower intensity in all subjects in the training-ESA group during the treatment period and increased during the washout period. Conclusion An isoform of haptoglobin/haptoglobin related protein could be a new anti-doping marker and merits further research. Trial Registration ClinicalTrials.gov NCT01320449 PMID:25679398
Pressey, Joseph G.; Pressey, Christine S.; Robinson, Gloria; Herring, Richie; Wilson, Landon; Kelly, David R.; Kim, Helen
2011-01-01
To evaluate the consequences of expression of the protein encoded by PAX3-FOXO1 (P3F) in the pediatric malignancy alveolar rhabdomyosarcoma (A-RMS), we developed and evaluated a genetically defined in vitro model of A-RMS tumorigenesis. The expression of P3F in cooperation with simian virus 40 (SV40) Large-T (LT) antigen in murine C3H10T1/2 fibroblasts led to robust malignant transformation. Using 2 dimensional difference gel electrophoresis (2D-DIGE) we compared proteomes from lysates from cells that express P3F + LT versus from cells that express LT alone. Analysis of 2D gel spot patterns by DeCyder™ image analysis software indicated 93 spots that were different in abundance. Peptide mass fingerprint analysis of the 93 spots by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis identified 37 non-redundant proteins. 2D DIGE analysis of cell culture media conditioned by cells transduced by P3F + LT versus by LT alone found 29 spots in the P3F + LT cells leading to the identification of 11 non-redundant proteins. A substantial number of proteins with potential roles in tumorigenesis and myogenesis were detected, most of which have not been identified in previous wide-scale expression studies of RMS experimental models or tumors. We validated the 2D gel image analysis findings by western blot analysis and immunohistochemistry (IHC). Thus, the 2D DIGE proteomics methodology described here provided an important discovery approach to the study of RMS biology and complements the findings of previous mRNA expression studies. PMID:21110518
Pressey, Joseph G; Pressey, Christine S; Robinson, Gloria; Herring, Richie; Wilson, Landon; Kelly, David R; Kim, Helen
2011-02-04
To evaluate the consequences of expression of the protein encoded by PAX3-FOXO1 (P3F) in the pediatric malignancy alveolar rhabdomyosarcoma (A-RMS), we developed and evaluated a genetically defined in vitro model of A-RMS tumorigenesis. The expression of P3F in cooperation with simian virus 40 (SV40) Large-T (LT) antigen in murine C3H10T1/2 fibroblasts led to robust malignant transformation. Using 2-dimensional-difference gel electrophoresis (2D-DIGE), we compared proteomes from lysates from cells that express P3F + LT versus from cells that express LT alone. Analysis of 2D gel spot patterns by DeCyder image analysis software indicated 93 spots that were different in abundance. Peptide mass fingerprint analysis of the 93 spots by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis identified 37 nonredundant proteins. 2D-DIGE analysis of cell culture media conditioned by cells transduced by P3F + LT versus by LT alone found 29 spots in the P3F + LT cells leading to the identification of 11 nonredundant proteins. A substantial number of proteins with potential roles in tumorigenesis and myogenesis were detected, most of which have not been identified in previous wide-scale expression studies of RMS experimental models or tumors. We validated the 2D gel image analysis findings by Western blot analysis and immunohistochemistry (IHC). Thus, the 2D-DIGE proteomics methodology described here provided an important discovery approach to the study of RMS biology and complements the findings of previous mRNA expression studies.
Image-guided genomic analysis of tissue response to laser-induced thermal stress
NASA Astrophysics Data System (ADS)
Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.
2011-05-01
The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.
Wendler, Sergej; Hürtgen, Daniel; Kalinowski, Jörn; Klein, Andreas; Niehaus, Karsten; Schulte, Fabian; Schwientek, Patrick; Wehlmann, Hermann; Wehmeier, Udo F; Pühler, Alfred
2013-08-20
The pseudotetrasaccharide acarbose is a medically relevant secondary metabolite produced by strains of the genera Actinoplanes and Streptomyces. In this study gene products involved in acarbose metabolism were identified by analyzing the cytosolic and extracellular proteome of Actinoplanes sp. SE50/110 cultures grown in a high-maltose minimal medium. The analysis by 2D protein gel electrophoresis of cytosolic proteins of Actinoplanes sp. SE50/110 resulted in 318 protein spots and 162 identified proteins. Nine of those were acarbose cluster proteins (Acb-proteins), namely AcbB, AcbD, AcbE, AcbK, AcbL, AcbN, AcbR, AcbV and AcbZ. The analysis of proteins in the extracellular space of Actinoplanes sp. SE50/110 cultures resulted in about 100 protein spots and 22 identified proteins. The identifications included the three acarbose gene cluster proteins AcbD, AcbE and AcbZ. After their identification, proteins were classified into functional groups. The dominant functional groups were the carbohydrate binding, carbohydrate cleavage and carbohydrate transport proteins. The other functional groups included protein cleavage, amino acid degradation, nucleic acid cleavage and a number of functionally uncharacterized proteins. In addition, signal peptide structures of extracellularly found proteins were analyzed. Of the 22 detected proteins 19 contained signal peptides, while 2 had N-terminal transmembrane helices explaining their localization. The only protein having neither of them was enolase. Under the conditions applied, the secretome of Actinoplanes sp. SE50/110 was dominated by seven proteins involved in carbohydrate metabolism (PulA, AcbE, AcbD, MalE, AglE, CbpA and Cgt). Of special interest were the identified extracellular pullulanase PulA and the two solute-binding proteins MalE and AglE. The identifications suggest that Actinoplanes sp. SE50/110 has two maltose/maltodextrin import systems. We postulate the identified MalEFG transport system of Actinoplanes sp. SE50/100 as the missing acarbose-metabolite importer and present a model of acarbose metabolism that is extended by the newly identified gene products. Copyright © 2012 Elsevier B.V. All rights reserved.
Trisiriroj, Arunee; Jeyachok, Narumon; Chen, Shui-Tein
2004-07-01
Proteomic approach is applied for the analysis of seed brans of 14 rice varieties (Oryza sativa L. ssp. indica) which can classify to five aromatic rice and nine nonaromatic rice. The two-dimensional electrophoresis (2-DE) protein patterns for 14 rice varieties were similar within pH ranges of 3-10 and 4-7. To characterize aromatic group-specific proteins, we compared 2-D gels of aromatic rice to nonaromatic rice using PDQUEST image analysis. Four out of six differential spots were identified as hypothetical proteins, but one (SSP 7003) was identified by matrix assisted laser desoption/ionization-quardrupole-time of fight (MALDI-Q-TOF) as prolamin with three matching peptides based on NCBI database. Prolamin is a class of storage proteins with three different polypeptides of 10, 13, and 16 kDa. Spot SSP7003 was identified as a 13 kDa polypeptide of prolamin by combination of mass spectroscopy and N-terminal sequence analyses. In contrast, one sulfur-rich 16 kDa polypeptide of prolamin was found in extremely high intensity in brans of deep-water rice compared to nondeep-water rice. Our results suggest that proteomics is a powerful step to open the way for the identification of rice varieties.
Staszak, Aleksandra Maria; Pawłowski, Tomasz Andrzej
2014-01-01
The proteome of zygotic embryos of Acer platanoides L. was analyzed via high-resolution 2D-SDS-PAGE and MS/MS in order to: (1) identify significant physiological processes associated with embryo development; and (2) identify changes in the proteome of the embryo associated with the acquisition of seed dormancy. Seventeen spots were identified as associated with morphogenesis at 10 to 13 weeks after flowering (WAF). Thirty-three spots were associated with maturation of the embryo at 14 to 22 WAF. The greatest changes in protein abundance occurred at 22 WAF, when seeds become fully mature. Overall, the stage of morphogenesis was characterized by changes in the abundance of proteins (tubulins and actin) associated with the growth and development of the embryo. Enzymes related to energy supply were especially elevated, most likely due to the energy demand associated with rapid growth and cell division. The stage of maturation is crucial to the establishment of seed dormancy and is associated with a higher abundance of proteins involved in genetic information processing, energy and carbon metabolism and cellular and antioxidant processes. Results indicated that a glycine-rich RNA-binding protein and proteasome proteins may be directly involved in dormancy acquisition control, and future studies are warranted to verify this association. PMID:24941250
Staszak, Aleksandra Maria; Pawłowski, Tomasz Andrzej
2014-06-17
The proteome of zygotic embryos of Acer platanoides L. was analyzed via high-resolution 2D-SDS-PAGE and MS/MS in order to: (1) identify significant physiological processes associated with embryo development; and (2) identify changes in the proteome of the embryo associated with the acquisition of seed dormancy. Seventeen spots were identified as associated with morphogenesis at 10 to 13 weeks after flowering (WAF). Thirty-three spots were associated with maturation of the embryo at 14 to 22 WAF. The greatest changes in protein abundance occurred at 22 WAF, when seeds become fully mature. Overall, the stage of morphogenesis was characterized by changes in the abundance of proteins (tubulins and actin) associated with the growth and development of the embryo. Enzymes related to energy supply were especially elevated, most likely due to the energy demand associated with rapid growth and cell division. The stage of maturation is crucial to the establishment of seed dormancy and is associated with a higher abundance of proteins involved in genetic information processing, energy and carbon metabolism and cellular and antioxidant processes. Results indicated that a glycine-rich RNA-binding protein and proteasome proteins may be directly involved in dormancy acquisition control, and future studies are warranted to verify this association.
Printing Proteins as Microarrays for High-Throughput Function Determination
NASA Astrophysics Data System (ADS)
MacBeath, Gavin; Schreiber, Stuart L.
2000-09-01
Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.
Misnan, Rosmilah; Murad, Shahnaz; Yadzir, Zailatul Hani Mohd; Abdullah, Noormalin
2012-12-01
Tropomyosin and arginine kinase have been identified as the major allergens in multiple species of crab. Charybdis feriatus is an important commercial crab in this country. To characterize the major allergens of C. feriatus using a proteomics approach and subsequently to identify the allergens involved in cross-reactivity with Portunus pelagicus. Raw and boiled extracts of the crabs were prepared from crab meat. The protein profile of the extracts was determined by SDS-PAGE and two-dimensional electrophoresis (2-DE). Major allergens were identified by the immunoblotting test using sera from 50 patients with crab allergy. The major allergens were further identified by 2-DE immunoblotting. The major allergenic spots were then excised, digested by trypsin and identified by mass spectrometry analysis. The immunoblotting inhibition test was performed to study the crossreactivity between red crab and blue crab allergens using sera from 20 patients with allergy to both red and blue crabs. At least 20 protein bands between 13 to 250 kDa were detected in the SDS-PAGE gel of raw extract, while boiled extract procuced fewer protein bands. Proteins of 36 kDa and 41 kDa were recognized as the major allergens of the crab. The major allergenic spot sequences of the 36 and 41 kDa proteins were identified as crab tropomyosin and arginine kinase, respectively. All IgE-binding proteins, including both major allergens, were found to be cross-creative with P. pelagicus allergens. In addition to tropomyosin, arginine kinase was also identified as the major allergen of C. feriatus among our local crab-allergic patients. Cross-reactivity of this crab with P. pelagicus was demonstrated in this study.
Effects of chronic high stocking density on liver proteome of rainbow trout (Oncorhynchus mykiss).
Naderi, Mahdi; Keyvanshokooh, Saeed; Salati, Amir Parviz; Ghaedi, Alireza
2017-10-01
The main aim of the present study was to assess the effects of chronic high stocking density on liver proteome of rainbow trout. Rainbow trout juveniles (42.6 ± 2.3 g average body weight) were randomly distributed into six tanks at two stocking densities (low stocking density (LD) = 20 kg m -3 and high stocking density (HD) = 80 kg m -3 ). Both treatments were performed in triplicate tanks for a period of 60 days. High stocking density caused a reduction in the growth performance compared with LD fish. Lysozyme activity increased with stocking density, while serum complement activity presented the opposite pattern. Serum cortisol and total protein levels did not show significant differences (P > 0.05) between experimental groups. The fish reared at high stocking density showed significantly lower osmolality and globulin values but higher albumin level. The HD group had significantly higher activities of catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde content in the liver when compared to the LD group. Comparative proteomics was used to determine the proteomic responses in livers of rainbow trout reared at high stocking density for 60 days. Out of nine protein spots showing altered abundance (>1.5-folds, P < 0.05), eight spots were successfully identified. Two proteins including apolipoprotein A-I-2 precursor and mitochondrial stress-70 protein were found to increase in HD group. The spots found to decrease in the HD group were identified as follows: 2-peptidylprolyl isomerase A, two isoforms of glyceraldehydes-3-phosphate dehydrogenase, an unnamed protein product similar to fructose-bisphosphate aldolase, 78 kDa glucose-regulated protein, and serum albumin 1 protein.
Integrated and comparative proteomics of high-oil and high-protein soybean seeds.
Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing
2015-04-01
We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kumar, Durairaj M; Patil, Vikas; Ramachandran, Bini; Nila, Murugesan V; Dharmalingam, Kuppamuthu; Somasundaram, Kumaravel
2013-07-01
The current treatment for glioblastoma includes temozolomide (TMZ) chemotherapy, yet the mechanism of action of TMZ is not thoroughly understood. Here, we investigated the TMZ-induced changes in the proteome of the glioma-derived cell line (U251) by 2D DIGE. We found 95 protein spots to be significantly altered in their expression after TMZ treatment. MS identified four upregulated spots: aspartyl tRNA synthetase glutathione synthetase, interleukin-1 receptor-associated kinase-4 (IRAK4), and breast carcinoma amplified sequence-1 and one downregulated spot: optineurin. TMZ-induced regulation of these five genes was validated by RT-qPCR and Western blot analysis. RNAi-mediated knockdown of IRAK4, an important mediator of Toll-like receptors signaling and chemoresistance, rendered the glioma cells resistant to TMZ. High levels of IRAK4 induced upon TMZ treatment resulted in IRAK1 downregulation and inhibition of NFkB pathway. Endogenous IRAK4 protein, but not transcript levels in glioma cell lines, correlated with TMZ sensitivity. Thus, we have identified several TMZ-modulated proteins and discovered an important novel role for IRAK4 in determining TMZ sensitivity of glioma cells through its ability to inhibit Toll-like receptor signaling and NFkB pathway. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chun-Ping; Pan, Zhi-Fen; Nima, Zha-Xi; Tang, Ya-Wei; Cai, Peng; Liang, Jun-Jun; Deng, Guang-Bing; Long, Hai; Yu, Mao-Qun
2011-03-15
The starch granule-associated proteins (SGAPs) are the minor components of the starch granules and a majority of them are believed to be starch biosynthetic enzymes. The Qinghai-Tibet Plateau in China, one of the centres of origin of cultivated barley, is abundant in hull-less barley resources which exhibit high polymorphism in SGAPs. The SGAPs of hull-less barley from Qinghai-Tibet Plateau were analysed by one-dimensional (1-D) SDS-PAGE, 2-D PAGE and ESI-Q-TOF MS/MS. In the 1-D SDS-PAGE gel, four proteins including a 80 kDa starch synthase, actin, actin 4 and ATP synthase β-subunit were identified as novel SGAPs. A total of six different bands were identified as starch granule-bound starch synthase I (GBSSI) and the segregation of the novel GBSSI bands in F(1) and F(2) seeds derived from yf127 × yf70 was in accordance with Mendel's law. In the 2-D PAGE gel, 92 spots were identified as 42 protein species which could be classified into 15 functional groups. Thirteen protein species were identified as SGAPs for the first time and multiple spots were identified as GBSSI. This study revealed novel SGAPs in hull-less barley from the Qinghai-Tibet Plateau in China and these will be significant in further studies of starch biosynthesis in barley. Copyright © 2011 Society of Chemical Industry.
Kim, Jin Yeong; Wu, Jingni; Kwon, Soon Jae; Oh, Haram; Lee, So Eui; Kim, Sang Gon; Wang, Yiming; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kang, Kyu Young; Ahn, Il-Pyung; Kim, Beom-Gi; Kim, Sun Tae
2014-10-01
Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice-C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG-fractionation of total proteins coupled with MS (MALDI-TOF/TOF and nESI-LC-MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS-PAGE in combination with nESI-LC-MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice-C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hot spot-based design of small-molecule inhibitors for protein-protein interactions.
Guo, Wenxing; Wisniewski, John A; Ji, Haitao
2014-06-01
Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This Digest discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, He; Li, Lei
2015-08-11
To explore the proteomic differences among with and without curcumin treatment of vincristine-resistance HCT-8/VCR cells of human colon carcinoma by using mass spectrometry and two-dimensional gel electrophore-sis (2-DE). The total proteins of the both groups were extracted from serum were run in immobilized pH gradient isoelectic focusing (IPG-IEF) at the first dimension.The proteins pots in gels were visualized by silver staining protocol, scanned by using a molecular imager GS-800 calibrated densitometer. The differentially expressed proteins were identified and analyzed by PDQuest 8.0 software. The diferentially displayed protein spots were searched and identifiyed by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS), the interested proteins were further validated by RT-PCR and Western blot. The 2-DE HCT-8/VCR cells patterns were acquired with clear background, well-resolution and reproduction. And 1 070±96 protein spots were detected in control HCT-8/VCR cells and 1 030±69 in curcumin-treated HCT-8/VCR cells. Twenty-nine differential protein spots were found to be differentially expressed. Glutathione S-transferase pi1 gene (GSTP1), a diferentiaI expression protein was identified which one of these proteins. RT-PCR and Western blotting results showed that the expressions of GSTP1 mRNA (0.49±0.09) and protein (0.29±0.07) in curcumin-treated group were significantly lower than in control group (GSTP1 mRNA 1.19±0.21 and protein 0.70±0.13, both P<0.05), indicating that curcumin down regulated these expressions. The suppression of GSTP1 by curcumin could enhance the vincristine chemosensitivity in HCT-8/VCR. GSTP1 overexpression may be involved in the vincristine -resistance of human colon carcinoma cells.
Probing binding hot spots at protein-RNA recognition sites.
Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad
2016-01-29
We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Yoshida, Yutaka; Miyazaki, Kenji; Kamiie, Junichi; Sato, Masao; Okuizumi, Seiji; Kenmochi, Akihisa; Kamijo, Ken'ichi; Nabetani, Takuji; Tsugita, Akira; Xu, Bo; Zhang, Ying; Yaoita, Eishin; Osawa, Tetsuo; Yamamoto, Tadashi
2005-03-01
To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.
Ribosomal protein L24 defect in Belly spot and tail (Bst), a mouse Minute
Oliver, Edward R.; Saunders, Thomas L.; Tarlé, Susan A.; Glaser, Tom
2008-01-01
Summary Ribosomal protein mutations, termed Minutes, have been instrumental in studying the coordination of cell and tissue growth in Drosophila. Although abundant in flies, equivalent defects in mammals are relatively unknown. Belly spot and tail (Bst) is a semidominant mouse mutation that disrupts pigmentation, somitogenesis and retinal cell fate determination. Here, we identify Bst as a deletion within the Rpl24 riboprotein gene. Bst significantly impairs Rpl24 splicing and ribosome biogenesis. Bst/+ cells have decreased rates of protein synthesis and proliferation, and are outcompeted by wild-type cells in C57BLKS↔ROSA26 chimeras. Bacterial artificial chromosome (BAC) and cDNA transgenes correct the mutant phenotypes. Our findings establish Bst as a mouse Minute and provide the first detailed characterization of a mammalian ribosomal protein mutation. PMID:15289434
Gutiérrez-Sánchez, Gerardo; Atwood, James; Kolli, V S Kumar; Roussos, Sévastianos; Augur, Christopher
2012-04-01
Caffeine is toxic to most microorganisms. However, some filamentous fungi, such as Aspergillus tamarii, are able to metabolize this alkaloid when fed caffeine as the sole nitrogen source. The aim of the present work was to identify intracellular A. tamarii proteins, regulated by caffeine, using fluorescence difference two-dimensional gel electrophoresis. Specific proteins from two culture media of A. tamarii grown either on ammonium sulfate or caffeine as the sole nitrogen source were analysed by mass spectrometry. Thirteen out of a total of 85 differentially expressed spots were identified after database search. Identified up-regulated proteins include phosphoglycerate kinase, malate dehydrogenase, dyp-type peroxidase family protein, heat shock protein, Cu, Zn superoxidase dismutase and xanthine dehydrogenase. Some of the proteins identified in this study are involved in the caffeine degradation pathway as well as in stress response, suggesting that stress proteins could be involved in caffeine metabolism in filamentous fungi.
Proteomic analysis of upland rice (Oryza sativa L.) exposed to intermittent water deficit.
Rabello, Fernanda R; Villeth, Gabriela R C; Rabello, Aline R; Rangel, Paulo H N; Guimarães, Cleber M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fabio O; Ferreira, Márcio E; Mehta, Angela
2014-06-01
Rice is the most important crop consumed all over the world. In Brazil, irrigated rice covers 50 % of the rice producing area and is responsible for 75 % of the national production. Upland rice covers most of the remaining area, and is therefore, a very important production system in the country. In the present study, we have used the drought tolerant upland rice variety Três Meses Antigo to investigate the proteomic changes that occur during drought stress. Plants were submitted to drought by the reposition of 50 % of the water lost daily. Twenty days after the beginning of the drought stress period, leaves were harvested and used for protein extraction. The 2D maps obtained from treated and control plants revealed 408 reproducible spots, 44 of which were identified by mass spectrometry, including 15 differential proteins. Several unaltered proteins were also identified (39 spots) and were mainly involved in photosynthesis. Taken together, the results obtained suggest that the tolerant upland rice up-regulates anti-oxidant and energy production related proteins in order to cope with water deficit.
Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.
Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A
2004-03-01
Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.
Pawłowski, Tomasz A
2009-01-01
Background Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. Results A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA) and gibberellic (GA) acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. Conclusion In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. Seed dormancy breaking involves proteins of various processes but the proteasome proteins, S-adenosylmethionine synthetase, glycine-rich RNA binding protein, ABI3-interacting protein 1, EF-2 and adenosylhomocysteinase are of particular importance. The effect of exogenously applied hormones was not a determining factor for total inhibition (ABA) or stimulation (GA) of Norway maple seed dormancy breaking and germination but proteomic data has proven these hormones play a role. PMID:19413897
Pawłowski, Tomasz A
2009-05-04
Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA) and gibberellic (GA) acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. Seed dormancy breaking involves proteins of various processes but the proteasome proteins, S-adenosylmethionine synthetase, glycine-rich RNA binding protein, ABI3-interacting protein 1, EF-2 and adenosylhomocysteinase are of particular importance. The effect of exogenously applied hormones was not a determining factor for total inhibition (ABA) or stimulation (GA) of Norway maple seed dormancy breaking and germination but proteomic data has proven these hormones play a role.
From a 2DE-gel spot to protein function: lesson learned from HS1 in chronic lymphocytic leukemia.
Apollonio, Benedetta; Bertilaccio, Maria Teresa Sabrina; Restuccia, Umberto; Ranghetti, Pamela; Barbaglio, Federica; Ghia, Paolo; Caligaris-Cappio, Federico; Scielzo, Cristina
2014-10-19
The identification of molecules involved in tumor initiation and progression is fundamental for understanding disease's biology and, as a consequence, for the clinical management of patients. In the present work we will describe an optimized proteomic approach for the identification of molecules involved in the progression of Chronic Lymphocytic Leukemia (CLL). In detail, leukemic cell lysates are resolved by 2-dimensional Electrophoresis (2DE) and visualized as "spots" on the 2DE gels. Comparative analysis of proteomic maps allows the identification of differentially expressed proteins (in terms of abundance and post-translational modifications) that are picked, isolated and identified by Mass Spectrometry (MS). The biological function of the identified candidates can be tested by different assays (i.e. migration, adhesion and F-actin polymerization), that we have optimized for primary leukemic cells.
KFC Server: interactive forecasting of protein interaction hot spots.
Darnell, Steven J; LeGault, Laura; Mitchell, Julie C
2008-07-01
The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.
Identification of proteins with the CDw75 epitope in human colorectal cancer
Mariño-Crespo, Óscar; Fernández-Briera, Almudena; Gil-Martín, Emilio
2018-01-01
The CDw75 epitope is an α(2,6) sialylated antigen overexpressed in colorectal cancer (CRC), where its expression correlates with the progression of the disease. The CDw75 epitope is located mainly in N-glycoproteins, whose identity remains unknown. The aim of the present study was to identify proteins with the CDw75 epitope as a strategy to deepen the understanding of molecular pathogenesis of CRC and to identify novel biomarkers for this disease. For this purpose, a two-dimensional electrophoresis approach was employed. Protein spots in the gels were matched to the corresponding CDw75 positive spots in the immunoblotted polyvinylidene difluoride membranes, and further identification of the protein species was performed by mass spectrometry. Additionally, one-dimensional western blotting experiments were performed to verify the expression of these candidate proteins in the colorectal tissue and their coincidence in molecular mass with the CDw75-positive bands. The findings of the present study indicate that haptoglobin and the keratins 8 (K8) and 18 (K18) are proteins with the CDw75 epitope in the colorectal tissue from CRC patients and also suggest novel functions and cellular locations for these proteins in the colorectal tissue and in relation to CRC. PMID:29391890
Bai, Fang; Morcos, Faruck; Cheng, Ryan R; Jiang, Hualiang; Onuchic, José N
2016-12-13
Protein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design. Fragment docking and direct coupling analysis are used in an integrated computational method to estimate druggable protein-protein interfaces. (i) This method explores the binding of fragment-sized molecular probes on the protein surface using a molecular docking-based screen. (ii) The energetically favorable binding sites of the probes, called hot spots, are spatially clustered to map out candidate binding sites on the protein surface. (iii) A coevolution-based interface interaction score is used to discriminate between different candidate binding sites, yielding potential interfacial targets for therapeutic drug design. This approach is validated for important, well-studied disease-related proteins with known pharmaceutical targets, and also identifies targets that have yet to be studied. Moreover, therapeutic agents are proposed by chemically connecting the fragments that are strongly bound to the hot spots.
Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego
2015-07-01
Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop. Copyright © 2015 Elsevier Ltd. All rights reserved.
El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier
2017-01-01
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., omp A/B and rick A) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria.
Li, Nan; Han, Zhenzhen; Li, Lin; Zhang, Bing; Liu, Zhidong; Li, Jiawei
2018-01-01
The objective of this study was to investigate the effects of the solid lipid nanoparticles of baicalin (BA-SLNs) on an experimental cataract model and explore the molecular mechanism combined with bioinformatics analysis. The transparency of lens was observed daily by slit-lamp and photography. Lenticular opacity was graded. Two-dimensional gel electrophoresis (2-DE) was employed to analyze the differential protein expression modes in each group. Proteins of interest were subjected to protein identification by nano-liquid chromatography tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis was performed using the Ingenuity Pathway Analysis (IPA) online software to comprehend the biological implications of the proteins identified by proteomics. At the end of the sodium selenite-induced cataract progression, almost all lenses from the model group developed partial nuclear opacity; however, all lenses were clear and normal in the blank group. There was no significant difference between the BA-SLNs group and the blank group. Many protein spots were differently expressed in 2-DE patterns of total proteins of lenses from each group, and 65 highly different protein spots were selected to be identified between the BA-SLNs group and the model group. A total of 23 proteins were identified, and 12 of which were crystalline proteins. We considered crystalline proteins to play important roles in preserving the normal expression levels of proteins and the transparency of lenses. The general trend in the BA-SLN-treated lenses' data showed that BA-SLNs regulated the protein expression mode of cataract lenses to normal lenses. Our findings suggest that BA-SLNs may be a potential therapeutic agent in treating cataract by regulating protein expression and may also be a strong candidate for future clinical research.
Nabian, S; Taheri, M; Fard, R Mazaheri Nezhad; Aramoon, M
2013-01-01
Background Boophilus annulatus is an obligate blood feeder tick that can cause great losses in animals due to anemia and its ability to injure its host skin directly. The aim of this study was identification of cattle humoral immune response to some tick proteins during experimental infestation. Methods Immune sera against tick were collected from experimentally infested cattle with ticks. One and two-dimensional electrophoresis and Western blotting methods were used for the detection of immunogenic proteins in larval tick extract and eight of these proteins were identified by MALDITOF and MALDI-TOF-TOF mass spectrometry. Results In non-reducing one-dimensional SDS-PAGE, some bounds between 12 to more than 250-kDa appeared. In two-dimensional SDS-PAGE, numerous spot appeared and the identified immunogenic proteins by parallel immunoblotting weighted between 14 and 97 kDa. Amino acid sequences of protein spot with 37-kDa molecular weight had identity to tropomyosin based on Mascot search in NCBI. Conclusion Anti tropomyosin antibodies can be induced in experimentally infested hosts with ticks and it seems that tropomyosin can be useful for the development of anti tick vaccines. PMID:23914237
Cheng, Lixiang; Wang, Yuping; He, Qiang; Li, Huijun; Zhang, Xiaojing; Zhang, Feng
2016-08-31
Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Bi, Rui; Pan, Yiou; Shang, Qingli; Peng, Tianfei; Yang, Shuang; Wang, Shang; Xin, Xuecheng; Liu, Yan; Xi, Jinghui
2016-09-01
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean. Copyright © 2016. Published by Elsevier Inc.
Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels.
Amiour, Nardjis; Merlino, Marielle; Leroy, Philippe; Branlard, Gérard
2002-06-01
Wheat proteins and specially gluten proteins have been well studied and are closely associated with baking products. Amphiphilic proteins (proteins that are soluble using nonionic detergent Triton X-114 ) also play an important role in wheat quality. Some of them, like puroindolines, are lipid binding proteins, and are strongly linked to dough foaming properties and to fine crumb texture. However many amphiphilic proteins are still unknown and both their physiological and technological functions remain to be analysed. In order to explore these proteins, proteomic analysis was carried out using 81 F9 lines, progeny obtained from an interspecific cross "W7984"x"Opata", and already used to built a map of more than 2000 molecular markers (International Triticeae Mapping Initiative, ITMImap). Two-dimensional electrophoresis (immobilized pH gradient (pH 6-11)x sodium dodecyl sulfate-polyacrylamide gel electrophoresis) was performed on amphiphilic proteins with three to five replicates for each line. Silver stained gels were analysed using Melanie 3 software. Genetic determinism was carried out on 170 spots segregating between the two parental hexaploïd wheats. Many of these spots were mapped on different chromosomes of the ITMImap. Spots of interest were identified using matrix-assisted laser desorption/ionization-time of flight and some of them were partly sequenced using electrospray ionization-tandem mass spectrometry. This proteomic approach provided some very useful information about some proteic components linked to bread wheat quality and particularly to kernel hardness.
Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki
2006-11-01
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.
Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).
Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C
2011-05-01
The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.
Morino, Kazuko; Kimizu, Mayumi; Fujiwara, Masayuki
2016-01-01
Reactive oxygen species (ROS) production is an early event in the immune response of plants. ROS production affects the redox-based modification of cysteine residues in redox proteins, which contribute to protein functions such as enzymatic activity, protein-protein interactions, oligomerization, and intracellular localization. Thus, the sensitivity of cysteine residues to changes in the cellular redox status is critical to the immune response of plants. We used disulfide proteomics to identify immune response-related redox proteins. Total protein was extracted from rice cultured cells expressing constitutively active or dominant-negative OsRacl, which is a key regulator of the immune response in rice, and from rice cultured cells that were treated with probenazole, which is an activator of the plant immune response, in the presence of the thiol group-specific fluorescent probe monobromobimane (mBBr), which was a tag for reduced proteins in a differential display two-dimensional gel electrophoresis. The mBBr fluorescence was detected by using a charge-coupled device system, and total protein spots were detected using Coomassie brilliant blue staining. Both of the protein spots were analyzed by gel image software and identified using MS spectrometry. The possible disulfide bonds were identified using the disulfide bond prediction software. Subcellular localization and bimolecular fluorescence complementation analysis were performed in one of the identified proteins: Oryza sativa cold shock protein 2 (OsCSP2). We identified seven proteins carrying potential redox-sensitive cysteine residues. Two proteins of them were oxidized in cultured cells expressing DN-OsRac1, which indicates that these two proteins would be inactivated through the inhibition of OsRac1 signaling pathway. One of the two oxidized proteins, OsCSP2, contains 197 amino acid residues and six cysteine residues. Site-directed mutagenesis of these cysteine residues revealed that a Cys 140 mutation causes mislocalization of a green fluorescent protein fusion protein in the root cells of rice. Bimolecular fluorescence complementation analysis revealed that OsCSP2 is localized in the nucleus as a homo dimer in rice root cells. The findings of the study indicate that redox-sensitive cysteine modification would contribute to the immune response in rice.
Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu
2016-01-01
Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.
Molina, Laurence; Salvetat, Nicolas; Ameur, Randa Ben; Peres, Sabine; Sommerer, Nicolas; Jarraya, Fayçal; Ayadi, Hammadi; Molina, Franck; Granier, Claude
2011-12-10
The characterization of the normal urinary proteome is steadily progressing and represents a major interest in the assessment of clinical urinary biomarkers. To estimate quantitatively the variability of the normal urinary proteome, urines of 20 healthy people were collected. We first evaluated the impact of the sample conservation temperature on urine proteome integrity. Keeping the urine sample at RT or at +4°C until storage at -80°C seems the best way for long-term storage of samples for 2D-GE analysis. The quantitative variability of the normal urinary proteome was estimated on the 20 urines mapped by 2D-GE. The occurrence of the 910 identified spots was analysed throughout the gels and represented in a virtual 2D gel. Sixteen percent of the spots were found to occur in all samples and 23% occurred in at least 90% of urines. About 13% of the protein spots were present only in 10% or less of the samples, thus representing the most variable part of the normal urinary proteome. Twenty proteins corresponding to a fraction of the fully conserved spots were identified by mass spectrometry. In conclusion, a "public" urinary proteome, common to healthy individuals, seems to coexist with a "private" urinary proteome, which is more specific to each individual. Copyright © 2011 Elsevier B.V. All rights reserved.
Serafín-López, J.; Talavera-Paulin, M.; Amador-Molina, J. C.; Alvarado-Riverón, M.; Vilchis-Landeros, M. M.; Méndez-Ortega, P.; Fafutis-Morris, M.; Paredes-Cervantes, V.; López-Santiago, R.; León, C. I.; Guerrero, M. I.; Ribas-Aparicio, R. M.; Mendoza-Hernández, G.; Carreño-Martínez, C.; Estrada-Parra, S.; Estrada-García, I.
2011-01-01
Leprosy is an infectious disease caused by Mycobacterium leprae, which is a noncultivable bacterium. One of the principal goals of leprosy research is to develop serological tests that will allow identification and early treatment of leprosy patients. M. habana is a cultivable nonpathogenic mycobacterium and candidate vaccine for leprosy, and several antigens that cross-react between M. leprae and M. habana have been discovered. The aim of the present study was to extend the identification of cross-reactive antigens by identifying M. habana proteins that reacted by immunoblotting with antibodies in serum samples from leprosy patients but not with antibodies in sera from tuberculosis (TB) patients or healthy donors (HDs). A 28-kDa antigen that specifically reacted with sera from leprosy patients was identified. To further characterize this antigen, protein spots were aligned in two-dimensional polyacrylamide gels and Western blots. Spots cut out from the gels were then analyzed by mass spectrometry. Two proteins were identified: enoyl-coenzyme A hydratase (lipid metabolism; ML2498) and antigen 85B (Ag85B; mycolyltransferase; ML2028). These proteins represent promising candidates for the design of a reliable tool for the serodiagnosis of lepromatous leprosy, which is the most frequent form in Mexico. PMID:21613461
Rebello, Karina M; Barros, Juliana S L; Mota, Ester M; Carvalho, Paulo C; Perales, Jonas; Lenzi, Henrique L; Neves-Ferreira, Ana G C
2011-08-24
Angiostrongylus costaricensis is a nematode helminth that causes an intestinal acute inflammatory process known as abdominal angiostrongyliasis, which is a poorly understood human disease occurring in Latin America. Our aim was to study the proteomic profiles of adult parasites focusing on immunogenic proteins. Total cellular extracts from both genders showed similar 2-DE profiles, with 60% of all protein spots focused between pH 5-7 and presenting molecular masses from 20.1 to 66 kDa. A total of 53 different dominant proteins were identified in our dataset and were mainly associated with the following over-represented Gene Ontology Biological Process terms: "macromolecule metabolic process", "developmental process", "response to stress", and "biological regulation". Female and male immunoblots showed similar patterns of reactive proteins. Immunoreactive spots identified by MALDI-PSD were found to represent heat shock proteins, a putative abnormal DAuer Formation family member, and galectins. To date, very few biochemical analyses have focused on the nematode Angiostrongylus costaricensis. As such, our results contribute to a better understanding of its biology and the mechanisms underlying the host-parasite relationship associated with this species. Moreover, our findings represent a first step in the search for candidate proteins for diagnostic assays and the treatment of this parasitic infection. Copyright © 2011 Elsevier B.V. All rights reserved.
Da Costa, Gustavo Góes; Gomig, Talita Helen Bombardelli; Kaviski, Rodrigo; Santos Sousa, Karla; Kukolj, Caroline; De Lima, Rubens Silveira; De Andrade Urban, Cicero; Cavalli, Iglenir J; Ribeiro, Enilze M S F
2015-01-01
Breast cancer is the most common type of cancer among women worldwide, and about 57,000 new cases are expected for the Brazilian population in 2015. Elucidation of protein expression and modification is essential for the biological understanding, early diagnosis and therapeutics of breast cancer. The main objectives of the study are comparison between the proteome of tumor and paired non-tumor breast cancer tissues, describing all identified proteins, highlighting the ones most differentially expressed and comparing the data with existing literature. The five paired samples from patients with invasive ductal carcinoma were analyzed by 2-DE and MS. We collected 161 identified spots corresponding to 110 distinct proteins. Forty-three differentially-expressed spots were common to at least two samples, and the ten proteins with the highest-fold changes were CASPE, ENOG, TPM1, CAPG, VIME, TPM3, TRFE, PDIA6, WDR61 and PDIA3. Metabolic enzymes and proteins with binding functions were the most representative functional classes of proteins with increased and decreased expression in tumor tissue respectively. Taking the fold change as a parameter, we point to future targets to be studied by functional methods in a search for biomarkers for initiation and progress of breast cancer. Copyright© 2015, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
Jeffery Daim, Leona Daniela; Ooi, Tony Eng Keong; Ithnin, Nalisha; Mohd Yusof, Hirzun; Kulaveerasingam, Harikrishna; Abdul Majid, Nazia; Karsani, Saiful Anuar
2015-08-01
The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheung, H C; Leung, K Y; Choi, C H
2016-06-01
International guidelines have endorsed spot urine protein-to-creatinine ratio of >30 mg protein/mmol creatinine as an alternative to a 24-hour urine sample to represent significant proteinuria. This study aimed to determine the accuracy of spot urine protein-to-creatinine ratio in predicting significant proteinuria and adverse pregnancy outcome. This case series was conducted in a regional obstetric unit in Hong Kong. A total of 120 Chinese pregnant patients with pre-eclampsia delivered at Queen Elizabeth Hospital from January 2011 to December 2013 were included. Relationship of spot urine protein-to-creatinine ratio and 24-hour proteinuria; accuracy of the ratio against 24-hour urine protein at different cut-offs; and relationship of such ratio and adverse pregnancy outcome were studied. Spot urine protein-to-creatinine ratio was correlated with 24-hour urine protein with Pearson correlation coefficient of 0.914 (P<0.0001) when the ratio was <200 mg/mmol. The optimal threshold of spot urine protein-to-creatinine ratio for diagnosing proteinuria in Chinese pregnant patients (33 mg/mmol) was similar to that stated in the international literature (30 mg/mmol). A cut-off of 20 mg/mmol provided a 100% sensitivity, and 52 mg/mmol provided a 100% specificity. There was no significant difference in spot urine protein-to-creatinine ratio between cases with and without adverse pregnancy outcome. Spot urine protein-to-creatinine ratio had a positive and significant correlation with 24-hour urine results in Chinese pre-eclamptic women when the ratio was <200 mg/mmol. Nonetheless, this ratio was not predictive of adverse pregnancy outcome.
Analyses of pea necrotic yellow dwarf virus-encoded proteins.
Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna
2017-06-01
Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.
Proteome regulation during Olea europaea fruit development.
Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano
2013-01-01
Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.
Urinary spot albumin:creatinine ratio for documenting proteinuria in women with preeclampsia.
Huang, Qitao; Gao, Yunfei; Yu, Yanhong; Wang, Wei; Wang, Shuoshi; Zhong, Mei
2012-01-01
To assess whether a single urinary spot urinary albumin:creatinine ratio (ACR) can be used to estimate 24-hour urinary protein excretion in women with preeclampsia. ACR and 24-hour urinary protein excretion were measured in 50 consecutive patients with preeclampsia. ACR was determined in a spot midstream urine sample and the amount of protein excretion was quantified in a 24-hour urine collection performed the following day. The correlation between the spot ACR and 24-hour urine protein excretion was assessed, and the diagnostic value of ACR was expressed in terms of specificity and sensitivity. Receiver operating characteristic curve analysis was used to determine the best cutoff values of the spot ACR for mild preeclampsia (proteinuria ≥ 0.3 g/24 h) and severe preeclampsia (defined in China as proteinuria ≥ 2 g/24 h). A strong correlation was evident between the spot ACR and 24-hour urinary protein excretion (r = .938; P < .001). The optimal spot ACR cutoff point was 22.8 mg/mmol for 0.3 g/24 h of protein excretion (mild preeclampsia) with a sensitivity and specificity of 82.4% and 99.4%, respectively, and 155.6 mg/mmol for 2 g/24 h of protein excretion (severe preeclampsia) with a sensitivity and specificity of 90.6% and 99.6%, respectively. Compared with 24-hour urinary protein excretion, the spot urinary ACR may be a simple, convenient, and accurate indicator of significant proteinuria in women with preeclampsia.
Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M
2015-02-01
Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.
Li, Zhengyu; Min, Wenjiao; Huang, Canhua; Bai, Shujun; Tang, Minghai; Zhao, Xia
2010-01-01
We used proteomic approaches to identify altered expressed proteins in endometrial carcinoma, with the aim of discovering potential biomarkers or therapeutic targets for endometrial carcinoma. The global proteins extracted from endometrial carcinoma and normal endometrial tissues were separated by 2-dimensional electrophoresis and analyzed with PDQuest (Bio-Rad, Hercules, Calif) software. The differentially expressed spots were identified by mass spectrometry and searched against NCBInr protein database. Those proteins with potential roles were confirmed by Western blotting and immunohistochemical assays. Ninety-nine proteins were identified by mass spectrometry, and a cluster diagram analysis indicated that these proteins were involved in metabolism, cell transformation, protein folding, translation and modification, proliferation and apoptosis, signal transduction, cytoskeleton, and so on. In confirmatory immunoblotting and immunohistochemical analyses, overexpressions of epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A were also observed in endometrial carcinoma tissues, which were consistent with the proteomic results. Our results suggested that these identified proteins, including epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A, might be of potential values in the studies of endometrial carcinogenesis or investigations of diagnostic biomarkers or treatment targets for endometrial carcinoma.
Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet
2010-01-01
Background Previous studies suggested that dietary tannin ingestion may induce changes in mouse salivary proteins in addition to the primarily studied proline-rich proteins (PRPs). The aim of the present study was to determine the protein expression changes induced by condensed tannin intake on the fraction of mouse whole salivary proteins that are unable to form insoluble tannin-protein complexes. Two-dimensional polyacrylamide gel electrophoresis protein separation was used, followed by protein identification by mass spectrometry. Results Fifty-seven protein spots were excised from control group gels, and 21 different proteins were identified. With tannin consumption, the expression levels of one α-amylase isoform and one unidentified protein increased, whereas acidic mammalian chitinase and Muc10 decreased. Additionally, two basic spots that stained pink with Coomassie Brilliant Blue R-250 were newly observed, suggesting that some induced PRPs may remain uncomplexed or form soluble complexes with tannins. Conclusion This proteomic analysis provides evidence that other salivary proteins, in addition to tannin-precipitating proteins, are affected by tannin ingestion. Changes in the expression levels of the acidic mammalian chitinase precursor and in one of the 14 salivary α-amylase isoforms underscores the need to further investigate their role in tannin ingestion. PMID:21159160
Bündig, Christin; Jozefowicz, Anna Maria; Mock, Hans-Peter; Winkelmann, Traud
2016-06-30
Starch potatoes (Solanum tuberosum L.) are of interest for production of starch, ethanol, and biopolymers. Due to the predicted increase in drought periods, the breeding of starch potatoes for drought tolerance is essential. This study aims to elucidate the physiological mechanisms that give rise to drought tolerance. Two genotypes contrasting in drought tolerance were compared. We applied osmotic stress which is a known component of drought stress under in vitro conditions. Shoot tips were harvested after 11days of culture on control medium and medium supplied with 0.2M sorbitol. Their proteomes were analyzed using two-dimensional isoelectric focussing sodium dodecyl sulphate polyacrylamide gel electrophoresis (2D-IEF/SDS-PAGE). Of a total of 679 distinct protein spots, 118 and 20 spots with differential abundance were found in the sensitive and the tolerant genotype, respectively, after the application of stress. Using mass spectrometry, the proteins in 100 differentially abundant spots were identified; a majority of these proteins were from the chloroplast. For the sensitive genotype, an increase in the abundance of proteinase inhibitors and their precursors, changes in stress responsive proteins and an altered RNA/DNA-binding response were observed. The differentially abundant spots of the tolerant genotype comprised one chaperone and one hydrogen peroxide detoxifying protein. Our findings reveal that the two genotypes have different responses to osmotic stress in terms of protein degradation and reactive oxygen species (ROS) scavenging and production. Our data suggest that the tolerant genotype might adjust to the applied stress more quickly. A comparative temporal analysis might provide further insights into these rapid changes and assist in the development of biomarkers. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei
2016-01-01
Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.
Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P
2014-07-04
Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.
Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M; Song, Song-Quan
2016-01-01
Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice ( Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold ( P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation.
Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M.; Song, Song-Quan
2016-01-01
Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation. PMID:27708655
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.
1989-01-01
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.
Goichon, Alexis; Bertrand, Julien; Chan, Philippe; Lecleire, Stéphane; Coquard, Aude; Cailleux, Anne-Françoise; Vaudry, David; Déchelotte, Pierre; Coëffier, Moïse
2015-08-01
Amino acids are well known to be key effectors of gut protein turnover. We recently reported that enteral delivery of proteins markedly stimulated global duodenal protein synthesis in carbohydrate-fed healthy humans, but specifically affected proteins remain unknown. We aimed to assess the influence of an enteral protein supply on the duodenal mucosal proteome in carbohydrate-fed humans. Six healthy volunteers received for 5 h, on 2 occasions and in random order, either an enteral infusion of maltodextrins alone (0.25 g · kg⁻¹ · h⁻¹) mimicking the fed state or maltodextrins with a protein powder (0.14 g proteins · kg⁻¹ · h⁻¹). Endoscopic duodenal biopsy specimens were then collected and frozen until analysis. A 2-dimensional polyacrylamide gel electrophoresis-based comparative proteomics analysis was then performed, and differentially expressed proteins (at least ±1.5-fold change; Student's t test, P < 0.05) were identified by mass spectrometry. Protein expression changes were confirmed by Western blot analysis. Thirty-two protein spots were differentially expressed after protein delivery compared with maltodextrins alone: 28 and 4 spots were up- or downregulated, respectively. Among the 22 identified proteins, 11 upregulated proteins were involved either in the cytoskeleton (ezrin, moesin, plastin 1, lamin B1, vimentin, and β-actin) or in protein biosynthesis (glutamyl-prolyl-transfer RNA synthetase, glutaminyl-transfer RNA synthetase, elongation factor 2, elongation factor 1δ, and eukaryotic translation and initiation factor 3 subunit f). Enteral delivery of proteins altered the duodenal mucosal proteome and mainly stimulated the expression of proteins involved in cytoskeleton and protein biosynthesis. These results suggest that protein supply may affect intestinal morphology by stimulating actin cytoskeleton remodeling. © 2015 American Society for Nutrition.
Yohannes, Elizabeth; Chang, Jinsook; Christ, George J.; Davies, Kelvin P.; Chance, Mark R.
2008-01-01
Protein expression profiles in rat bladder smooth muscle were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four age-matched control rat bladder tissues were prepared independently and analyzed together across multiple DIGE gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 100 spots were determined to be significantly changing among the four experimental groups. A subsequent mass spectrometry analysis of the 100 spots identified a total of 56 unique proteins. Of the proteins identified by two-dimensional DIGE/MS, 10 exhibited significant changes 1 week after STZ-induced hyperglycemia, whereas the rest showed differential expression after 2 months. A network analysis of these proteins using MetaCore™ suggested induction of transcriptional factors that are too low to be detected by two-dimensional DIGE and identified an enriched cluster of down-regulated proteins that are involved in cell adhesion, cell shape control, and motility, including vinculin, intermediate filaments, Ppp2r1a, and extracellular matrix proteins. The proteins that were up-regulated include proteins involved in muscle contraction (e.g. Mrlcb and Ly-GDI), in glycolysis (e.g. α-enolase and Taldo1), in mRNA processing (e.g. heterogeneous nuclear ribonucleoprotein A2/B1), in inflammatory response (e.g. S100A9, Annexin 1, and apoA-I), and in chromosome segregation and migration (e.g. Tuba1 and Vil2). Our results suggest that the development of diabetes-related complications in this model involves the down-regulation of structural and extracellular matrix proteins in smooth muscle that are essential for normal muscle contraction and relaxation but also induces proteins that are associated with cell proliferation and inflammation that may account for some of the functional deficits known to occur in diabetic complications of bladder. PMID:18337374
Shiu, Ya-Li; Chiu, Kuo-Hsun; Huynh, Truong-Giang; Liu, Ping-Chung; Liu, Chun-Hung
2017-06-01
This study aimed to unravel the regulatory roles of choline in activating immune responses and disease resistance of the orange-spotted grouper Epinephelus coioides. Fish were fed a choline-supplemented diet at 1 g kg -1 of feed for 30 days. Fish fed a fish meal basal diet without choline-supplement served as controls. At the end of the feeding trial, fish were challenged with Vibrio alginolyticus. Meanwhile, plasma proteomics of fish in each group were also evaluated by two-dimensional gel electrophoresis (2-DE), and differentially expressed proteins were identified by tandem mass spectrophotometry (MS/MS), then a Western blot analysis or real-time polymerase chain reaction was used to confirm differential expressions of immune-enhancing proteins. Results showed that choline significantly increased survival of E. coioides 48 days after being injected with V. alginolyticus. From maps of plasma proteins, a comparative analysis between the control and choline groups revealed that 111 spots matched, with 26 altered expression spots in the choline group. Of these 26 spots, 16 were upregulated and 10 downregulated. After protein identification by reverse-phase nano-high-performance liquid chromatography-electrospray ionization MS/MS analysis, eight of 26 proteins were found to be immune-related proteins, all of which were upregulated, including complement 3 (C3), alpha-2-macroglobulin-P-like isoform (A2M), fibrinogen beta chain precursor (FBG), and immunoglobulin heavy constant mu (Ighm) proteins. Expression of the A2M protein and A2M enzyme activity in plasma of fish fed choline significantly increased compared to the control group. Additionally, A2M messenger (m)RNA transcripts were also upregulated in the liver and kidneys. Significantly higher C3 expressions at both the mRNA and protein levels were detected in the liver of fish in the choline group. Moreover, FBG gene expressions in the liver and kidneys significantly increased, while Ighm increased in the kidneys and spleen of fish in the choline group. Our results suggest that dietary administration of choline can protect grouper against bacterial infections through activating the complement system, thereby inducing antiprotease activity and natural antibodies that play important roles in the innate immune system of fish. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gravitational stress-induced changes in the phosphoproteom of Arabidopsis thaliana cell cultures
NASA Astrophysics Data System (ADS)
Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Schuetz, Wolfgang; Madlung, Johannes; Fladerer, Claudia; Nordheim, Alfred; Costa, Alex; Barjaktarovic, Zarko
Callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly (P¡0.05) in amount after 2h of hypergravity (18 up-, 10 down-regulated) could be identified. The corre-sponding proteins were largely involved in stress responses, including detoxification of reactive oxygen species (ROS; Barjaktaroviá et al., J. Exptl. Bot. 58:4357 (2007)). In the present study, c we extended these investigations to phosphorylated proteins. For this purpose, callus cell cul-tures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded most reliable data. First changes, however, were visible as early as 10 min after start of treatment. Out of the protein spots altered in phosphorylation, we were able to identify 24 from those responding to random positioning and 12 which responded to 8 g. The respective proteins are involved in scavenging and detoxification of ROS (32Most recent data obtained from parabolic flights indicate that exposure times to g of as little as 20 s are sufficient to alter the phosphorylation of proteins pattern. This is accompanied by changes in the cellular Ca2+ and H2O2 contents.
Thiele, Thomas; Iuga, Cristina; Janetzky, Susann; Schwertz, Hansjorg; Gesell Salazar, Manuela; Fürll, Birgit; Völker, Uwe; Greinacher, Andreas; Steil, Leif
2012-12-05
Production and storage of platelet concentrates (PC) induce protein changes in platelets leading to impaired platelet function. This study aimed to identify signaling pathways involved in the development of early platelet storage lesions in apheresis-PCs stored in plasma or additive solution (PAS). Apheresis-PCs from four donors were stored in plasma or in PAS at 22°C (n=4 each). Platelets were analyzed at day 0 (production day) and after 1, 6 and 9 days of storage. Platelet response to agonists (TRAP, collagen, ADP) and to hypotonic shock decreased, CD62P expression increased in both storage media over time. Using DIGE 1550 protein spots were monitored and compared to baseline values at day 0. Platelets in plasma displayed changes in 352 spots (166/day 1, 263/day 6 and 201/day 9); in PAS 325 spots changed (202/day 1, 221/day 6, 200/day 9). LC-ESI-MS/MS analysis of 405 platelet proteins revealed 32 proteins changed during storage in plasma (9/day 1, 15/day 6 and 26/day 9) and 28 in PAS (5/day 1, 20/day 6, 26/day 9). Ingenuity pathway analysis found integrin-αII(b)β(3) and focal adhesion signaling pathways involved in early alterations, being confirmed by Western blotting. Corresponding mRNAs in platelets were identified by next generation sequencing for 84 changed proteins. Integrin-αII(b)β(3) and focal adhesion signaling cause irreversible early storage lesions in apheresis platelets. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.
Ashida, Nobuhisa; Yanagihara, Sae; Shinoda, Tadashi; Yamamoto, Naoyuki
2011-10-01
The adhesive activities of eight Lactobacillus acidophilus strains toward intestinal epithelial Caco-2 cells were studied to understand the probiotic characteristics of the L. acidophilus L-92 strain. Most of the strains, including L-92, showed high adhesive activity; CP23 showed the lowest adhesive activity. CP23 was selected for comparative analysis of cell wall-associated proteins versus the L-92 strain. Cell wall-associated proteins extracted from L-92 and CP23 were subjected to two-dimensional electrophoresis, and major spots observed in the former were compared to the corresponding spots in the latter. To understand the effects of key components of L-92 on its adhesion to Caco-2 cells, 18 spots with stronger signals in L-92 than those in CP23 were identified by a MALDI-TOF/TOF of Ultraflex analysis. Among the identified proteins of L-92, surface-layer protein A (SlpA) was considered strongly involved in adhesion in the eight L. acidophilus strains. To study the importance of SlpA in the adhesion of L. acidophilus, the amounts of SlpA proteins in LiCl extracts of the eight strains were compared by SDSpolyacrylamide gel electrophoresis. As a result, the adhesive abilities of L. acidophilus strains to Caco-2 cells correlated closely to the amount of SlpA in the cells and the productivity of IL-12, an inflammatory cytokine, in all eight strains. These results strongly suggested that SlpA in L. acidophilus might play a key role in its attachment to Caco-2 cells and in the release of IL-12 from dendritic cells.
Ha, Moon Kyung; Chung, Kee Yang; Lee, Ju Hee; Bang, Dongsik; Park, Yoon Kee; Lee, Kwang Hoon
2004-09-01
Aging is associated with the progressive pathophysiologic modification of endothelial cells. In vitro endothelial cell senescence is accompanied by proliferative activity failure and by perturbations in gene and protein expressions. Moreover, this cellular senescence in culture has been proposed to reflect processes that occur in aging organisms. In order to observe the changing patterns of protein expression in senescent human dermal microvascular endothelial cells (HDMECs), proteins obtained from both early- and late-passaged HDMECs were separated by two-dimensional electrophoresis, visualized by silver staining, and quantified by image processing. Proteins of interest were extracted by in-gel digestion with trypsin and quantified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), by searching the National Center for Biotechnology Information protein-sequence database. More than 2000 spots were detected by 2D electrophoresis within a linear pH range of 3-10. Twenty-two major differentially expressed spots were observed in serially passaged HDMECs and identified with high confidence by MALDI-TOF-MS. One of these spots was found to be a 14-15 kDa psoriasis-associated fatty acid-binding protein (PA-FABP) with high affinity for long-chain fatty acids. The expression of PA-FABP was confirmed to be elevated in senescent HDMECs (passage 20) by fluorescence-activated cell sorting (FACS), confocal laser microscopy, and by immunohistochemistry in aged human skin tissue. Our results suggest that the overexpression of FABP in cultured senescent HDMECs is closely related to skin aging.
Han, Qiaoxia; Kang, Guozhang; Guo, Tiancai
2013-02-01
Following three-day exposure to -5 °C simulated spring freeze stress, wheat plants at the anther connective tissue formation phase of spike development displayed the drooping and wilting of leaves and markedly increased rates of relative electrolyte leakage. We analysed freeze-stress responsive proteins in wheat leaves at one and three days following freeze-stress exposure, using two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results indicate that out of 75 protein spots successfully identified under freeze-stress conditions 52 spots were upregulated and 18 were downregulated. These spring freeze-stress responsive proteins were involved in signal transduction, stress/defence/detoxification, protein metabolism (i.e. translation, processing, and degradation), photosynthesis, amino acid metabolism, carbohydrate metabolism, and energy pathways, and may therefore be functionally relevant for many biological processes. The enhanced accumulation of signal transduction proteins such as a C2H2 zinc finger protein, stress/defence/detoxification proteins including LEA-related COR protein, disease resistance protein, Cu/Zn superoxide dismutase, and two ascorbate peroxidases may play crucial roles in the mechanisms of response to spring freeze stress in wheat plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Kiirika, Leonard M.; Schmitz, Udo; Colditz, Frank
2014-01-01
ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homolog in plants). Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i) infected with pathogenic (Aphanomyces euteiches) and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti). While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector), we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi), 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique) were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique) after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique) after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein degradation. PMID:25101099
Hu, Peifeng; Herningtyas, Elizabeth H.; Kale, Varsha; Crimmins, Eileen M.; Risbud, Arun R.; McCreath, Heather; Lee, Jinkook; Strauss, John; O’Brien, Jennifer C.; Bloom, David E.; Seeman, Teresa E.
2015-01-01
Measurement of C-reactive protein, a marker of inflammation, in dried blood spots has been increasingly incorporated in community-based social surveys internationally. Although the dried blood spot based CRP assay protocol has been validated in the United States, it remains unclear whether laboratories in other less developed countries can generate C-reactive protein results of similar quality. We therefore conducted external quality monitoring for dried blood spot based C-reactive protein measurement for the Indonesia Family Life Survey and the Longitudinal Aging Study in India. Our results show that dried blood spot based C-reactive protein results in these two countries have excellent and consistent correlations with serum-based values and dried blood spot based results from the reference laboratory in the United States. Even though the results from duplicate samples may have fluctuations in absolute values over time, the relative order of C-reactive protein levels remains similar and the estimates are reasonably precise for population-based studies that investigate the association between socioeconomic factors and health. PMID:25879265
Kattah, Andrea; Milic, Natasa; White, Wendy; Garovic, Vesna
2017-10-01
We performed a prospective, longitudinal study of pregnant women presenting to their first obstetrics visits to characterize the changes in spot urine protein-to-creatinine (UPCR) and albumin-to-creatinine ratios (UACR) in normotensive pregnancies, as well as identify clinical characteristics associated with isolated proteinuria and preeclampsia. We measured spot urinary albumin, protein, and creatinine at the first prenatal visit, end of the second trimester, and at delivery. In the normotensive pregnancies ( n = 142), we found that from the beginning of pregnancy to delivery, UACR increased by a median [interquartile range (IQR)] of 14.7 mg/g Cr (3.74-51.8) and UPCR by 60 mg/g Cr (30-130) ( P < 0.001 for both changes). Isolated proteinuria (defined as UPCR > 300 mg/g Cr in the absence of hypertension) was identified in 19/142 (13.4%) normotensive pregnancies. Increases in systolic and diastolic blood pressure from early pregnancy to delivery and increases in UACR from early to midpregnancy were associated with isolated proteinuria at delivery. Twelve women developed preeclampsia. Nulliparity, early, and midpregnancy diastolic blood pressures were strongly associated with the development of preeclampsia, but early changes in UACR were not. In conclusion, women who develop isolated proteinuria at delivery have a larger increase in blood pressure than women without proteinuria and have a "microalbuminuric" phase earlier in gestation, unlike women who develop preeclampsia. These findings suggest a different mechanism of urine protein excretion in women with isolated proteinuria as compared with women with preeclampsia, where proteinuria has a more abrupt onset. Copyright © 2017 the American Physiological Society.
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.
1987-09-04
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.
2012-01-01
Background There has been a rising incidence of invasive aspergillosis (IA) in critically ill patients, even in the absence of an apparent predisposing immunodeficiency. The diagnosis of IA is difficult because clinical signs are not sensitive and specific, and serum galactomannan has relatively low sensitivity in this group of patients. Therefore, more prompt and accurate disease markers for early diagnosis are needed. To establish disease markers demands a thorough knowledge of fungal antigens which may be detected in the serum or other body fluids of patients. Herein we report novel immunodominant antigens identified from extracellular proteins of Aspergillus fumigatus. Results Extracellular proteins of A. fumigatus were separated by two-dimensional electrophoresis (2-DE) and probed with the sera from critically ill patients with proven IA. The immunoreactive protein spots were identified by MALDI-TOF mass spectrometry (MALDI-TOF -MS). Forty spots from 2DE gels were detected and 17 different proteins were identified as immunogenic in humans. Function annotation revealed that most of these proteins were metabolic enzymes involved in carbohydrate, fatty acid, amino acid, and energy metabolism. One of the proteins, thioredoxin reductase GliT (TR), which showed the best immunoactivity, was analyzed further for secretory signals, protein localization, and homology. The results indicated that TR is a secretory protein with a signal sequence exhibiting a high probability for secretion. Furthermore, TR did not match any human proteins, and had low homology with most other fungi. The recombinant TR was recognized by the sera of all proven IA patients with different underlying diseases in this study. Conclusions The immunoreactive proteins identified in this study may be helpful for the diagnosis of IA in critically ill patients. Our results indicate that TR and other immunodominant antigens have potential as biomarkers for the serologic diagnosis of invasive aspergillosis. PMID:22251604
Shi, Li-ning; Li, Fang-qiu; Huang, Mei; Lu, Jing-fen; Kong, Xiao-xiang; Wang, Shi-qin; Shao, Hai-feng
2012-01-18
There has been a rising incidence of invasive aspergillosis (IA) in critically ill patients, even in the absence of an apparent predisposing immunodeficiency. The diagnosis of IA is difficult because clinical signs are not sensitive and specific, and serum galactomannan has relatively low sensitivity in this group of patients. Therefore, more prompt and accurate disease markers for early diagnosis are needed. To establish disease markers demands a thorough knowledge of fungal antigens which may be detected in the serum or other body fluids of patients. Herein we report novel immunodominant antigens identified from extracellular proteins of Aspergillus fumigatus. Extracellular proteins of A. fumigatus were separated by two-dimensional electrophoresis (2-DE) and probed with the sera from critically ill patients with proven IA. The immunoreactive protein spots were identified by MALDI-TOF mass spectrometry (MALDI-TOF -MS). Forty spots from 2DE gels were detected and 17 different proteins were identified as immunogenic in humans. Function annotation revealed that most of these proteins were metabolic enzymes involved in carbohydrate, fatty acid, amino acid, and energy metabolism. One of the proteins, thioredoxin reductase GliT (TR), which showed the best immunoactivity, was analyzed further for secretory signals, protein localization, and homology. The results indicated that TR is a secretory protein with a signal sequence exhibiting a high probability for secretion. Furthermore, TR did not match any human proteins, and had low homology with most other fungi. The recombinant TR was recognized by the sera of all proven IA patients with different underlying diseases in this study. The immunoreactive proteins identified in this study may be helpful for the diagnosis of IA in critically ill patients. Our results indicate that TR and other immunodominant antigens have potential as biomarkers for the serologic diagnosis of invasive aspergillosis.
Balsamo, Geisi M; Valentim-Neto, Pedro A; Mello, Carla S; Arisi, Ana C M
2015-12-09
The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.
Wen, Li; Liu, Gai; Zhang, Zai-Jun; Tao, Jun; Wan, Cui-Xiang; Zhu, Ying-Guo
2006-03-01
The proteins of HL type cytoplasmic male sterility rice anther of YTA (CMS) and YTB (maintenance line) were separated by two-dimensional electrophoresis with immobilized ph (3-10 non-linear) gradients as the first dimension and SDS-PAGE as the second. The silver-stained proteins spots were analyzed using Image Master 2D software, there were about 1800 detectable spots on each 2D-gel, and about 85 spots were differential expressed. With direct MALDI-TOF mass spectrometry analysis and protein database searching, 9 protein spots out of 16 were identified. Among those proteins, there were Putative nucleic acid binding protein, glucose-1-phosphate adenylyltransferase (ADP-glucose pyrophosphorylase, AGPase) (EC: 2.7.7.27) large chain, UDP-glucuronic acid decarboxylase, putative calcium-binding protein annexin, putative acetyl-CoA synthetase and putative lipoamide dehydrogenase etc. They were closely associated with metabolism, protein biosynthesis, transcription, signal transduction and so on, all of which are cell activities that are essential to pollen development. Some of the identified proteins, i.e. AGPase, putative lipoamide dehydrogenase and putative acetyl-CoA synthetase were deeply discussed on the relationship to CMS. AGPase catalyzes a very important step in the biosynthesis of alpha 1,4-glucans (glycogen or starch) in bacteria and plants: synthesis of the activated glucosyl donor, ADP-glucose, from glucose-1-phosphate and ATP. The lack of the AGPase in male sterile line might directly result in the reduction of starch, and the synthesis of starch was the most important processes during the development of pollen. In present research, the descent or reduction of putative lipoamide dehydrogenase and putative acetyl-CoA synthetase seemed involved in pollen sterility in rice. The degeneration and formation of various tissues during pollen development may impose high demands for energy and key biosynthetic intermediates. Under such conditions, the TCA cycle needs to operate fully, because the TCA cycle is an important source for many intermediates required for biosynthetic pathways, in addition to performing an oxidative, energy-producing role. Thus, it seemed reasonable to infer that the decrease of putative lipoamide dehydrogenase and putative acetyl-CoA synthetase in anther might prevent the conversion of pyruvate into acetyl-CoA, and as a result, the TCA cycle could no longer operate at a sufficient rate to meet all requirements in anther cells, leading to pollen sterility. This study gave new insights into the mechanism of CMS in rice and demonstrated the power of the proteomic approach in plant biology studies.
Hot-spot residues at the E9/Im9 interface help binding via different mechanisms.
Wong, Sergio E; Baron, Riccardo; McCammon, J Andrew
2008-11-01
Protein-protein association involves many interface interactions, but they do not contribute equally. Ala scanning experiments reveal that only a few mutations significantly lower binding affinity. These key residues, which appear to drive protein-protein association, are called hot-spot residues. Molecular dynamics simulations of the Colicin E9/Im9 complex show Im9 Glu41 and Im9 Ser50, both hot-spots, bind via different mechanisms. The results suggest that Im9 Ser50 restricts Glu41 in a conformation auspicious for salt-bridge formation across the interface. This type of model may be helpful in engineering hot-spot clusters at protein-protein interfaces and, consequently, the design of specificity.
Coelho, Vinicio T. S.; Oliveira, Jamil S.; Valadares, Diogo G.; Chávez-Fumagalli, Miguel A.; Duarte, Mariana C.; Lage, Paula S.; Soto, Manuel; Santoro, Marcelo M.; Tavares, Carlos A. P.; Fernandes, Ana Paula; Coelho, Eduardo A. F.
2012-01-01
Background The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL). Methodology/Principal Findings Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. Conclusions/Significance The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL. PMID:22272364
Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso
2014-01-01
The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8. PMID:28250384
KFC Server: interactive forecasting of protein interaction hot spots
Darnell, Steven J.; LeGault, Laura; Mitchell, Julie C.
2008-01-01
The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model—a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein–protein or protein–DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611
Identification of novel allergens of Aspergillus fumigatus using immunoproteomics approach.
Gautam, P; Sundaram, C S; Madan, T; Gade, W N; Shah, A; Sirdeshmukh, R; Sarma, P U
2007-08-01
Approximately 20% of the world's asthmatics are suffering from Aspergillus fumigatus (Afu)-induced allergies. The characterization of specific IgE-inducing allergens in allergic aspergillosis patients is fundamental for clinical diagnosis and for immunotherapy. Immunoproteomics combined with mass spectrometric analysis was used to identify proteins of third-week culture filtrate (3wcf) potentially responsible for Afu-specific IgE immunoreactivity, using pooled sera from Afu-sensitized asthmatics. Their allergenic potential was also tested against patients with allergic bronchopulmonary aspergillosis (ABPA), by two-dimensional (2-D) gel electrophoresis immunoblotting of 3wcf proteins with individual sera from such patients. This helped us to establish a set of candidate allergens, which could be explored further for diagnostic application in allergic aspergillosis asthmatics including ABPA. Peptide mass fingerprint using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and/or de novo sequencing by MS/MS analysis of the protein spots from 2-D gels led to the identification of a total of 16 allergens of Afu. Eleven of them are being reported as allergens for the first time and five had been reported earlier. Putative isoforms of the proteins Asp f 13 and chitosanase have been observed for the first time. When studied for reactivity of these proteins among patients with ABPA using their individual sera, these patients exhibited sensitization although the pattern was varying. Taken together, these proteins could thus be considered as potential allergens even among patients with ABPA. Three of these proteins viz. the hypothetical protein (# spot no. 5), extracellular arabinase (# spot no. 6) and chitosanase (# spot no. 11) could be major allergens with specific IgE immunoreactivity with six out of eight patients' sera. The immunoproteomic approach applied to the analysis of culture filtrate proteins resulted in the identification of several candidate allergens, many of them novel, contributing to the catalogue of Afu allergenic proteins, which would facilitate improved serodiagnosis for allergic aspergillosis. In addition, the immunoreactivity of these proteins observed among the patients with ABPA may be potentially useful for its serodiagnosis and opens up further opportunities for the development of personalized immunotherapeutics for patients with ABPA.
Kanno, Hiroko; Kanda, Eiichiro; Sato, Asako; Sakamoto, Kaori; Kanno, Yoshihiko
2016-04-01
Determination of daily protein intake in the management of chronic kidney disease (CKD) requires precision. Inaccuracies in recording dietary intake occur, and estimation from total urea excretion presents hurdles owing to the difficulty of collecting whole urine for 24 h. Spot urine has been used for measuring daily sodium intake and urinary protein excretion. In this cross-sectional study, we investigated whether urea nitrogen (UN) concentration in spot urine can be used to predict daily protein intake instead of the 24-h urine collection in 193 Japanese CKD patients (Stages G1-G5). After patient randomization into 2 datasets for the development and validation of models, bootstrapping was used to develop protein intake estimation models. The parameters for the candidate multivariate regression models were male gender, age, body mass index (BMI), diabetes mellitus, dyslipidemia, proteinuria, estimated glomerular filtration rate, serum albumin level, spot urinary UN and creatinine level, and spot urinary UN/creatinine levels. The final model contained BMI and spot urinary UN level. The final model was selected because of the higher correlation between the predicted and measured protein intakes r = 0.558 (95 % confidence interval 0.400, 0.683), and the smaller distribution of the difference between the measured and predicted protein intakes than those of the other models. The results suggest that UN concentration in spot urine may be used to estimate daily protein intake and that a prediction formula would be useful for nutritional control in CKD patients.
Schokraie, Elham; Hotz-Wagenblatt, Agnes; Warnken, Uwe; Mali, Brahim; Frohme, Marcus; Förster, Frank; Dandekar, Thomas; Hengherr, Steffen; Schill, Ralph O; Schnölzer, Martina
2010-03-03
Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades.
Schokraie, Elham; Hotz-Wagenblatt, Agnes; Warnken, Uwe; Mali, Brahim; Frohme, Marcus; Förster, Frank; Dandekar, Thomas; Hengherr, Steffen; Schill, Ralph O.; Schnölzer, Martina
2010-01-01
Background Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. Principal Findings Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. Conclusions The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades. PMID:20224743
Kobayashi, Tetsuo; Yokoyama, Tomoko; Ito, Satoshi; Kobayashi, Daisuke; Yamagata, Akira; Okada, Moe; Oofusa, Ken; Narita, Ichiei; Murasawa, Akira; Nakazono, Kiyoshi; Yoshie, Hiromasa
2014-11-01
Tumor necrosis factor (TNF)-α inhibitor has been shown to affect the periodontal condition of patients with rheumatoid arthritis (RA). The aim of the present study is to assess the effect of a fully humanized anti-TNF-α monoclonal antibody, adalimumab (ADA), on the periodontal condition of patients with RA and to compare serum protein profiles before and after ADA therapy. The study participants consisted of 20 patients with RA treated with ADA. Clinical periodontal and rheumatologic parameters and serum cytokine levels were evaluated at baseline and 3 months later. Serum protein spot volume was examined with two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins with significant difference in abundance before and after ADA therapy were found and identified using mass spectrometry and protein databases. The patients showed a significant decrease in gingival index (P = 0.002), bleeding on probing (P = 0.003), probing depth (P = 0.002), disease activity score including 28 joints using C-reactive protein (P <0.001), and serum levels of TNF-α (P <0.001) and interleukin-6 (P <0.001) after ADA medication, although plaque levels were comparable. Among a total of 495 protein spots obtained, nine spots were significantly decreased in abundance at reassessment, corresponding to complement factor H, phospholipase D, serum amyloid A, complement component 4, and α-1-acid glycoprotein (P <0.01). These results suggest a beneficial effect of ADA therapy on the periodontal condition of patients with RA, which might be related to differences in serum protein profiles before and after ADA therapy.
Fang, Xiangling; Barbetti, Martin J
2014-08-28
This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt. Copyright © 2014 Elsevier B.V. All rights reserved.
Proteome Regulation during Olea europaea Fruit Development
Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano
2013-01-01
Background Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. Methodology/Principal Findings In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. Conclusions/Significance This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process. PMID:23349718
Qi, Yong; Xiong, Xiaolu; Wang, Xile; Duan, Changsong; Jia, Yinjun; Jiao, Jun; Gong, Wenping; Wen, Bohai
2013-01-01
Background Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF), is an obligate intracellular bacterium. The surface-exposed proteins (SEPs) of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. Methods R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA). Results Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. Conclusions Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease. PMID:23894656
Sun, Hongyan; Dai, Huaxin; Wang, Xiaoyun; Wang, Guohui
2016-11-01
Selenium can mitigate cadmium toxicity in plants. However, the mechanism of this alleviation has not been fully understood. In the present study, the role of Se in inducing tolerance to Cd stress in cucumber was elucidated. Results showed that Se significantly alleviated Cd-induced growth inhibition, reduced Cd concentration, increased SPAD value and improved photosynthetic performance. Through proteomic analysis by two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry, 26 protein spots were identified, which were significantly influenced by Cd stress and/or Se application. Among these proteins, the abundance of 21 spots (10 in leaves and 11 in roots) were repressed in Cd-treated and up-accumulated or no-changed in Cd+Se-treated cucumber. These altered proteins were involved in the response to stress, metabolism, photosynthesis and storage, they were including glutathione S-transferase F8, heat shock protein STI-like, peroxidase, ascorbate oxidase, fructose-bisphosphate aldolase 2, NiR, Rieske type ion sulfur subunit and PsbP domain-containing protein 6. Furthermore, we identified five proteins with an increase in relative abundance after Cd treatment, they were involved in the functional groups active in response to stress and transport. The present study provided novel insights into Se-mediated tolerance of cucumber seedlings against Cd toxicity at the proteome level. Copyright © 2016 Elsevier Inc. All rights reserved.
Delpino, M Victoria; Comerci, Diego J; Wagner, Mary Ann; Eschenbrenner, Michel; Mujer, Cesar V; Ugalde, Rodolfo A; Fossati, Carlos A; Baldi, Pablo C; Delvecchio, Vito G
2009-07-01
The virB genes coding type IV secretion system are necessary for the intracellular survival and replication of Brucella spp. In this study, extracellular proteins from B. abortus 2308 (wild type, WT) and its isogenic virB10 polar mutant were compared. Culture supernatants harvested in the early stationary phase were concentrated and subjected to 2D electrophoresis. Spots present in the WT strain but absent in the virB10 mutant (differential spots) were considered extracellular proteins released in a virB-related manner, and were identified by MALDI-TOF analysis and matching with Brucella genomes. Among the 11 differential proteins identified, DnaK chaperone (Hsp70), choloylglycine hydrolase (CGH) and a peptidyl-prolyl cis-trans isomerase (PPIase) were chosen for further investigation because of their homology with extracellular and/or virulence factors from other bacteria. The three proteins were obtained in recombinant form and specific monoclonal antibodies (mAbs) were prepared. By Western blot with these mAbs, the three proteins were detected in supernatants from the WT but not in those from the virB10 polar mutant or from strains carrying non-polar mutations in virB10 or virB11 genes. These results suggest that the expression of virB genes affects the extracellular release of DnaK, PPIase and CGH, and possibly other proteins from B. abortus.
Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools.
Orduña, Patricia; Castillo-Rodal, Antonia I; Mercado, Martha E; Ponce de León, Samuel; López-Vidal, Yolanda
2015-01-01
Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans. Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study, we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum (806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria.
Naito, Yuji; Takagi, Tomohisa; Okada, Hitomi; Omatsu, Tatsushi; Mizushima, Katsura; Handa, Osamu; Kokura, Satoshi; Ichikawa, Hiroshi; Fujiwake, Hideshi; Yoshikawa, Toshikazu
2010-05-01
The aim of this study was to identify new intestinal proteins potentially associated with acute inflammation using proteomic profiling of an in vivo mice model of ulcerative colitis. 2D fluorescence difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight spectrometer (MALDI-TOF) peptide mass fingerprinting were used to determine differentially expressed proteins between normal and inflamed intestinal mucosa. Acute colitis was induced by 8.0% dextran sodium sulfate (DSS) given p.o. for 7 days. Among a total of seven protein spots showing differential expression, we identified five different proteins, of which two were upregulated and three downregulated in colitis in comparison to normal mucosa, using the MASCOT search engine. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase 2 and serpin b1a were upregulated proteins, and protein disulfide-isomerase A3, peroxiredoxin-6 and vimentin were identified as downregulated proteins. These identified proteins may be responsible for the development of the intestinal inflammation. 2D-DIGE and MALDI-TOF mass spectrometry are useful in the search for the differentially expressed proteins.
Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation
2013-01-01
Background A lack of competence to form adventitious roots by cuttings of Chrysanthemum (Chrysanthemum morifolium) is an obstacle for the rapid fixation of elite genotypes. We performed a proteomic analysis of cutting bases of chrysanthemum cultivar ‘Jinba’ during adventitious root formation (ARF) in order to identify rooting ability associated protein and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Results The protein profiles during ARF were analyzed by comparing the 2-DE gels between 0-day-old (just severed from the stock plant) and 5-day-old cutting bases of chrysanthemum. A total of 69 differentially accumulated protein spots (two-fold change; t-test: 95% significance) were excised and analyzed using MALDI-TOF/TOF, among which 42 protein spots (assigned as 24 types of proteins and 7 unknown proteins) were confidently identified using the NCBI database. The results demonstrated that 19% proteins were related to carbohydrate and energy metabolism, 16% to photosynthesis, 10% to protein fate, 7% to plant defense, 6% to cell structure, 7% to hormone related, 3% to nitrate metabolism, 3% to lipid metabolism, 3% to ascorbate biosynthesis and 3% to RNA binding, 23% were unknown proteins. Twenty types of differentially accumulated proteins including ACC oxidase (CmACO) were further analyzed at the transcription level, most of which were in accordance with the results of 2-DE. Moreover, the protein abundance changes of CmACO are supported by western blot experiments. Ethylene evolution was higher during the ARF compared with day 0 after cutting, while silver nitrate, an inhibitor of ethylene synthesis, pretreatment delayed the ARF. It suggested that ACC oxidase plays an important role in ARF of chrysanthemum. Conclusions The proteomic analysis of cutting bases of chrysanthemum allowed us to identify proteins whose expression was related to ARF. We identified auxin-induced protein PCNT115 and ACC oxidase positively or negatively correlated to ARF, respectively. Several other proteins related to carbohydrate and energy metabolism, protein degradation, photosynthetic and cell structure were also correlated to ARF. The induction of protein CmACO provide a strong case for ethylene as the immediate signal for ARF. This strongly suggests that the proteins we have identified will be valuable for further insight into the molecular mechanisms controlling ARF. PMID:24369042
El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier
2017-01-01
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria. PMID:28775717
Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K
2017-01-01
The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for different diseases, which may help to identify the proteins that may serve as markers for diagnostics as well as targets for development of new therapeutic potential. PMID:28469466
Liver proteomics in progressive alcoholic steatosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Harshica; Wiktorowicz, John E.; Soman, Kizhake V.
2013-02-01
Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved inmore » alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3) and 3 (4–6) months. C and E represent pair-fed control and ethanol-fed rats, respectively. Highlights: ► Proteins related to ethanol-induced steatosis and mild steatohepatitis are identified. ► ADH1C and ALDH2 involved in alcohol metabolism are differentially expressed at 1 and 3 months. ► Discovery proteomics identified a group of proteins to serve as potential biomarkers. ► Using nonparametric analysis DDT is identified as a possible marker for liver damage.« less
An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation.
Balasaraswathi, R; Sadasivam, S; Ward, M; Walker, J M
1998-04-01
An antiviral protein active against mechanical transmission of tomato spotted wilt virus was identified in the root tissues of Bougainvillea spectabilis Willd. Bougainvillea Antiviral Protein I (BAP I) was purified to apparent homogeneity from the roots of Bougainvillea by ammonium sulphate precipitation, CM- and DEAE-Sepharose chromatography and reverse phase HPLC. BAP I is a highly basic protein (pI value > 8.6) with an Mr of 28,000. The N-terminal sequence of BAP I showed homology with other plant antiviral proteins. Preliminary tests suggest that purified BAP I is capable of interfering with in vitro protein synthesis.
Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith
2011-05-01
Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chaves, Daniela Fojo Seixas; de Souza, Emanuel Maltempi; Monteiro, Rose Adele; de Oliveira Pedrosa, Fábio
2009-11-02
Herbaspirillum seropedicae is an endophytic bacterium that associates with rice, sugarcane and other economically important crops. Secreted proteins play a key role in the plant-bacterial interaction. Using 2D electrophoresis and peptide mass fingerprint mass spectrometry, 63 protein spots representing 41 different secreted proteins were identified during growth of H. seropedicae under nitrogen-sufficient conditions. In silico analysis showed that 25.4% of the proteins had signal peptides and 15.9% were predicted to be non-classically secreted. Among the most abundant were flagellar components and ABC-type transport system proteins. Nine secreted proteins had also been identified in the cellular proteome, suggesting that they also play a role in the extracellular environment. No type III secreted proteins were detected by comparison of the wild type strain with an hrcN mutant strain.
Acute high-altitude hypoxic brain injury: Identification of ten differential proteins
Li, Jianyu; Qi, Yuting; Liu, Hui; Cui, Ying; Zhang, Li; Gong, Haiying; Li, Yaxiao; Li, Lingzhi; Zhang, Yongliang
2013-01-01
Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production. PMID:25206614
Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock.
Liang, Yu; Chen, Hui; Tang, Mingjuan; Shen, Shihua
2007-08-01
Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4% NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation of Boletus edulis were discussed.
Kuttner, Yosef Y; Engel, Stanislav
2018-02-01
A rational design of protein complexes with defined functionalities and of drugs aimed at disrupting protein-protein interactions requires fundamental understanding of the mechanisms underlying the formation of specific protein complexes. Efforts to develop efficient small-molecule or protein-based binders often exploit energetic hot spots on protein surfaces, namely, the interfacial residues that provide most of the binding free energy in the complex. The molecular basis underlying the unusually high energy contribution of the hot spots remains obscure, and its elucidation would facilitate the design of interface-targeted drugs. To study the nature of the energetic hot spots, we analyzed the backbone dynamic properties of contact surfaces in several protein complexes. We demonstrate that, in most complexes, the backbone dynamic landscapes of interacting surfaces form complementary "stability patches," in which static areas from the opposing surfaces superimpose, and that these areas are predominantly located near the geometric center of the interface. We propose that a diminished enthalpy-entropy compensation effect augments the degree to which residues positioned within the complementary stability patches contribute to complex affinity, thereby giving rise to the energetic hot spots. These findings offer new insights into the nature of energetic hot spots and the role that backbone dynamics play in facilitating intermolecular recognition. Mapping the interfacial stability patches may provide guidance for protein engineering approaches aimed at improving the stability of protein complexes and could facilitate the design of ligands that target complex interfaces. © 2017 Wiley Periodicals, Inc.
Rudolph, Michael C.; Wellberg, Elizabeth A.; Lewis, Andrew S.; Terrell, Kristina L.; Merz, Andrea L.; Maluf, N. Karl; Serkova, Natalie J.; Anderson, Steven M.
2014-01-01
Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed. PMID:24771867
Novoa-Herran, Susana; Umaña-Perez, Adriana; Canals, Francesc; Sanchez-Gomez, Myriam
2016-01-01
How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test ( n = 3, significance level 0.10, D > 0.642) and/or ANOVA ( n = 3, p < 0.05). The results showed that low serum doses or serum depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that serum depletion induces specific changes in protein expression concordant with main cell metabolic adaptations and EMT, resembling the progression to a malignant phenotype.
Mean protein evolutionary distance: a method for comparative protein evolution and its application.
Wise, Michael J
2013-01-01
Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.
Chen, Shumin; Wen, Meiling; Bu, Shujie; Wang, Ahui; Jin, Ya; Tan, Wen
2016-12-01
Plasma samples from adult male rats were separated by nondenaturing micro 2DE and a reference gel was selected, on which 136 CBB-stained spots were numbered and subjected to in-gel digestion and quantitative LC-MS/MS. The analysis provided the assignment of 1-25 (average eight) non-redundant proteins in each spot and totally 199 proteins were assigned in the 136 spots. About 40% of the proteins were detected in more than one spot and 15% in more than ten spots. We speculate this complexity arose from multiple causes, including protein heterogeneity, overlapping of protein locations and formation of protein complexes. Consequently, such results could not be appropriately presented as a conventional 2DE map, i.e. a list or a gel pattern with one or a few proteins annotated to each spot. Therefore, the LC-MS/MS quantity data was used to reconstruct the gel distribution of each protein and a library containing 199 native protein maps was established for rat plasma. Since proteins that formed a complex would migrate together during the nondenaturing 2DE and thus show similar gel distributions, correlation analysis was attempted for similarity comparison between the maps. The protein pairs showing high correlation coefficients included some well-known complexes, suggesting the promising application of native protein mapping for interaction analysis. With the importance of rat as the most commonly used laboratory animal in biomedical research, we expect this work would facilitate relevant studies by providing not only a reference library of rat plasma protein maps but a means for functional and interaction analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An automated decision-tree approach to predicting protein interaction hot spots.
Darnell, Steven J; Page, David; Mitchell, Julie C
2007-09-01
Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface. 2007 Wiley-Liss, Inc.
Theron, Laetitia; Fernandez, Xavier; Marty-Gasset, Nathalie; Chambon, Christophe; Viala, Didier; Pichereaux, Carole; Rossignol, Michel; Astruc, Thierry; Molette, Caroline
2013-01-30
Fat loss during cooking of duck "foie gras" is the main problem for both manufacturers and consumers. Despite the efforts of the processing industry to control fat loss, the variability of fatty liver cooking yields remains high and uncontrolled. To understand the biochemical effects of postslaughter processing on fat loss during cooking, this study characterizes for the first time the protein expression of fatty liver during chilling using a proteomic approach. For this purpose the proteins were separated according to their solubility: the protein fraction soluble in a buffer of low ionic strength (S) and the protein fraction insoluble in the same buffer (IS). Two-dimensional electrophoresis was used to analyze the S fraction and mass spectrometry for the identification of spots of interest. This analysis revealed 36 (21 identified proteins) and 34 (26 identified proteins) spots of interests in the low-fat-loss and high-fat-loss groups, respectively. The expression of proteins was lower after chilling, which revealed a suppressive effect of chilling on biological processes. The shot-gun strategy was used to analyze the IS fraction, with the identification of all the proteins by mass spectrometry. This allowed identification of 554 and 562 proteins in the low-fat-loss and high-fat-loss groups, respectively. Among these proteins, only the proteins that were up-regulated in the high-fat-loss group were significant (p value = 3.17 × 10(-3)) and corresponded to protein from the cytoskeleton and its associated proteins. Taken together, these results suggest that the variability of technological yield observed in processing plants could be explained by different aging states of fatty livers during chilling, most likely associated with different proteolytic patterns.
Comparison of the adolescent and adult mouse prefrontal cortex proteome
Small, Amanda T.; Spanos, Marina; Burrus, Brainard M.
2017-01-01
Adolescence is a developmental period characterized by unique behavioral phenotypes (increased novelty seeking, risk taking, sociability and impulsivity) and increased risk for destructive behaviors, impaired decision making and psychiatric illness. Adaptive and maladaptive adolescent traits have been associated with development of the medial prefrontal cortex (mPFC), a brain region that mediates regulatory control of behavior. However, the molecular changes that underlie brain development and behavioral vulnerability have not been fully characterized. Using high-throughput 2D DIGE spot profiling with identification by MALDI-TOF mass spectrometry, we identified 62 spots in the PFC that exhibited age-dependent differences in expression. Identified proteins were associated with diverse cellular functions, including intracellular signaling, synaptic plasticity, cellular organization and metabolism. Separate Western blot analyses confirmed age-related changes in DPYSL2, DNM1, STXBP1 and CFL1 in the mPFC and expanded these findings to the dorsal striatum, nucleus accumbens, motor cortex, amygdala and ventral tegmental area. Ingenuity Pathway Analysis (IPA) identified functional interaction networks enriched with proteins identified in the proteomics screen, linking age-related alterations in protein expression to cellular assembly and development, cell signaling and behavior, and psychiatric illness. These results provide insight into potential molecular components of adolescent cortical development, implicating structural processes that begin during embryonic development as well as plastic adaptations in signaling that may work in concert to bring the cortex, and other brain regions, into maturity. PMID:28570644
Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.
Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun
2014-07-23
The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong
2011-01-21
Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.
Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice.
Picard, Brigitte; Kammoun, Malek; Gagaoua, Mohammed; Barboiron, Christiane; Meunier, Bruno; Chambon, Christophe; Cassar-Malek, Isabelle
2016-05-04
Hsp27-encoded by HspB1- is a member of the small heat shock proteins (sHsp, 12-43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse . Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1 -null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.
Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.
Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya
2016-07-01
MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.
Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice
Picard, Brigitte; Kammoun, Malek; Gagaoua, Mohammed; Barboiron, Christiane; Meunier, Bruno; Chambon, Christophe; Cassar-Malek, Isabelle
2016-01-01
Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps. PMID:28248227
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang
2013-01-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels. PMID:22963350
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei
2013-02-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.
NASA Astrophysics Data System (ADS)
Hamelin, Elizabeth I.; Blake, Thomas A.; Perez, Jonas W.; Crow, Brian S.; Shaner, Rebecca L.; Coleman, Rebecca M.; Johnson, Rudolph C.
2016-05-01
Public health response to large scale chemical emergencies presents logistical challenges for sample collection, transport, and analysis. Diagnostic methods used to identify and determine exposure to chemical warfare agents, toxins, and poisons traditionally involve blood collection by phlebotomists, cold transport of biomedical samples, and costly sample preparation techniques. Use of dried blood spots, which consist of dried blood on an FDA-approved substrate, can increase analyte stability, decrease infection hazard for those handling samples, greatly reduce the cost of shipping/storing samples by removing the need for refrigeration and cold chain transportation, and be self-prepared by potentially exposed individuals using a simple finger prick and blood spot compatible paper. Our laboratory has developed clinical assays to detect human exposures to nerve agents through the analysis of specific protein adducts and metabolites, for which a simple extraction from a dried blood spot is sufficient for removing matrix interferents and attaining sensitivities on par with traditional sampling methods. The use of dried blood spots can bridge the gap between the laboratory and the field allowing for large scale sample collection with minimal impact on hospital resources while maintaining sensitivity, specificity, traceability, and quality requirements for both clinical and forensic applications.
Mean Protein Evolutionary Distance: A Method for Comparative Protein Evolution and Its Application
Wise, Michael J.
2013-01-01
Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins’ roles. Different species’ proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz. PMID:23613826
Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan
2012-03-01
Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.
A two-dimensional proteome reference map of Herbaspirillum seropedicae proteins.
Chaves, Daniela Fojo Seixas; Ferrer, Pércio Pereira; de Souza, Emanuel Maltempi; Gruz, Leonardo Magalhães; Monteiro, Rose Adele; de Oliveira Pedrosa, Fábio
2007-10-01
Herbaspirillum seropedicae is an endophytic diazotroph associated with economically important crops such as rice, sugarcane, and wheat. Here, we present a 2-D reference map for H. seropedicae. Using MALDI-TOF-MS we identified 205 spots representing 173 different proteins with a calculated average of 1.18 proteins/gene. Seventeen hypothetical or conserved hypothetical ORFs were shown to code for true gene products. These data will support the genome annotation process and provide a basis on which to undertake comparative proteomic studies.
Robinson, Nicholas A; Gopikrishna, Gopalapillay; Baranski, Matthew; Katneni, Vinaya Kumar; Shekhar, Mudagandur S; Shanmugakarthik, Jayakani; Jothivel, Sarangapani; Gopal, Chavali; Ravichandran, Pitchaiyappan; Gitterle, Thomas; Ponniah, Alphis G
2014-08-28
Shrimp culture is a fast growing aquaculture sector, but in recent years there has been a shift away from tiger shrimp Penaeus monodon to other species. This is largely due to the susceptibility of P. monodon to white spot syndrome virus disease (Whispovirus sp.) which has impacted production around the world. As female penaeid shrimp grow more rapidly than males, mono-sex production would be advantageous, however little is known about genes controlling or markers associated with sex determination in shrimp. In this study, a mapped set of 3959 transcribed single nucleotide polymorphisms were used to scan the P. monodon genome for loci associated with resistance to white-spot syndrome virus and sex in seven full-sibling tiger shrimp families challenged with white spot syndrome virus. Linkage groups 2, 3, 5, 6, 17, 18, 19, 22, 27 and 43 were found to contain quantitative trait loci significantly associated with hours of survival after white spot syndrome virus infection (P < 0.05 after Bonferroni correction). Nine QTL were significantly associated with hours of survival. Of the SNPs mapping to these and other regions with suggestive associations, many were found to occur in transcripts showing homology to genes with putative immune functions of interest, including genes affecting the action of the ubiquitin-proteasome pathway, lymphocyte-cell function, heat shock proteins, the TOLL pathway, protein kinase signal transduction pathways, mRNA binding proteins, lectins and genes affecting the development and differentiation of the immune system (eg. RUNT protein 1A). Several SNPs significantly associated with sex were mapped to linkage group 30, the strongest associations (P < 0.001 after Bonferroni correction) for 3 SNPs located in a 0.8 cM stretch between positions 43.5 and 44.3 cM where the feminisation gene (FEM-1, affecting sexual differentiation in Caenorhabditis elegans) mapped. The markers for disease resistance and sexual differentiation identified by this study could be useful for marker assisted selection to improve resistance to WSSV and for identifying homogametic female individuals for mono-sex (all female) production. The genes with putative functions affecting immunity and sexual differentiation that were found to closely map to these loci provide leads about the mechanisms affecting these important economic traits in shrimp.
Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin
2017-06-01
The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.
Proteomic analysis of grape berry skin responding to sunlight exclusion.
Niu, Ning; Cao, Yuegang; Duan, Wei; Wu, Benhong; Li, Shaohua
2013-05-15
The most obvious effect of sunlight exclusion from grape clusters is the inhibition of anthocyanin biosynthesis in the berry skin so that no color develops. Two-dimensional gel electrophoresis coupled with mass spectrometry was used to characterize the proteins isolated from berry skins that developed under sunlight exclusion versus those from sunlight-exposed berries. Among more than 1500 spots resolved in stained gels, the accumulation patterns of 96 spots differed significantly between sunlight-excluded berry skin and that of sunlight-exposed control berries. Seventy-two proteins, including 35 down-regulated and 37 up-regulated proteins, were identified and categorized. Proteins involved in photosynthesis and secondary metabolism, especially UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), the key step for anthocyanin biosynthesis in grape berry skin, were accumulated less in the absence of sunlight. Several isoforms of heat shock proteins were also down-regulated. The proteins that were over-accumulated in sunlight-excluded berry skin were more often related to energy production, glycolysis, the tricarboxylic-acid cycle, protein synthesis and biogenesis of cellular components. Their putative role is discussed in terms of their relevance to sunlight exclusion processes. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.
Dynamic changes in proteins during apple (Malus x domestica) fruit ripening and storage
Shi, Yun; Jiang, Li; Zhang, Li; Kang, Ruoyi; Yu, Zhifang
2014-01-01
A proteomic study, using two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight, was conducted in apple fruit (cv. ‘Golden Delicious’) starting at 10 days prior to harvest through 50 days in storage. Total protein was extracted using a phenol/sodium dodecyl sulfate protocol. More than 400 protein spots were detected in each gel and 55 differentially expressed proteins (p<0.05) were subjected to matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analysis. Fifty-three of these proteins were finally identified using an apple expressed sequence tag database downloaded from Genome Database for Rosaceae and placed into six categories. The categories and the percentage of proteins placed in each category were stress response and defense (49.0%), energy and metabolism (34.0%), fruit ripening and senescence (5.6%), signal transduction (3.8%), cell structure (3.8%) and protein synthesis (3.8%). Proteins involved in several multiple metabolic pathways, including glycolysis, pentose–phosphate pathway, anti-oxidative systems, photosynthesis and cell wall synthesis, were downregulated, especially during the climacteric burst in respiration and during the senescent stages of fruit development. Proteins classified as allergens or involved in cell wall degradation were upregulated during the ripening process. Some protein spots exhibited a mixed pattern (increasing to maximal abundance followed by a decrease), such as 1-aminocyclopropane-1-carboxylate oxidase, L-ascorbate peroxidase and abscisic acid response proteins. The identification of differentially expressed proteins associated with physiological processes identified in the current study provides a baseline of information for understanding the metabolic processes and regulatory mechanisms that occur in climacteric apple fruit during ripening and senescence. PMID:26504530
Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement
Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya
2012-01-01
Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344
Proteomic-based comparison between populations of the Great Scallop, Pecten maximus.
Artigaud, Sébastien; Lavaud, Romain; Thébault, Julien; Jean, Fred; Strand, Oivind; Strohmeier, Tore; Milan, Massimo; Pichereau, Vianney
2014-06-13
Comparing populations residing in contrasting environments is an efficient way to decipher how organisms modulate their physiology. Here we present the proteomic signatures of two populations in a non-model marine species, the great scallop Pecten maximus, living in the northern (Hordaland, Norway) and in the center (Brest, France) of this species' latitudinal distribution range. The results showed 38 protein spots significantly differentially accumulated in mantle tissues between the two populations. We could unambiguously identify 11 of the protein spots by Maldi TOF-TOF mass spectrometry. Eight proteins corresponded to different isoforms of actin, two were identified as filamin, another protein related to the cytoskeleton structure, and one was the protease elastase. Our results suggest that scallops from the two populations assayed may modulate their cytoskeleton structures through regulation of intracellular pools of actin and filamin isoforms to better adapt to their environment. Marine mollusks are non-model organisms that have been poorly studied at the proteomic level, and this article is the first studying the great scallop (P. maximus) at this level. Furthermore, it addresses population proteomics, a new promising field, especially in environmental sciences. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Secretomic survey of Trichoderma harzianum grown on plant biomass substrates.
Gómez-Mendoza, Diana Paola; Junqueira, Magno; do Vale, Luis Henrique Ferreira; Domont, Gilberto Barbosa; Ferreira Filho, Edivaldo Ximenes; Sousa, Marcelo Valle de; Ricart, Carlos André Ornelas
2014-04-04
The present work aims at characterizing T. harzianum secretome when the fungus is grown in synthetic medium supplemented with one of the four substrates: glucose, cellulose, xylan, and sugarcane bagasse (SB). The characterization was done by enzymatic assays and proteomic analysis using 2-DE/MALDI-TOF and gel-free shotgun LC-MS/MS. The results showed that SB induced the highest cellulolytic and xylanolytic activities when compared with the other substrates, while remarkable differences in terms of number and distribution of protein spots in 2-DE gels were also observed among the samples. Additionally, treatment of the secretomes with PNGase F revealed that most spot trails in 2-DE gels corresponded to N-glycosylated proteoforms. The LC-MS/MS analysis of the samples identified 626 different protein groups, including carbohydrate-active enzymes and accessory, noncatalytic, and cell-wall-associated proteins. Although the SB-induced secretome displayed the highest cellulolytic and xylanolytic activities, it did not correspond to a higher proteome complexity because CM-cellulose-induced secretome was significantly more diverse. Among the identified proteins, 73% were exclusive to one condition, while only 5% were present in all samples. Therefore, this study disclosed the variation of T. harzianum secretome in response to different substrates and revealed the diversity of the fungus enzymatic toolbox.
Alterations in brain cerebral cortex proteome of rabies-infected cat.
Kasempimolporn, Songsri; Lumlertdacha, Boonlert; Chulasugandha, Pannipa; Boonchang, Supatsorn; Sitprija, Visith
2014-07-01
Comparative proteome analysis using brain cerebral cortex tissues from cats and dogs infected with/without rabies virus were conducted using both two-dimensional gel-electrophoresis (2-DE) and 2-D fluorescence difference gel- electrophoresis (2D-DIGE) methods. The 2-DE gel images of all samples revealed >1,000 protein spots in each gel. Quantitative intensity analysis revealed the same overall protein pattern in certain regions of the gel, but the rabies-infected brains exhibited more protein spots than the non-infected controls. From approximately 880 protein spots detected by 2D-DIGE, 65 protein spots were increased and 46 were decreased. Eight of these protein spots were randomly selected and annotated by reference to previous known proteome data of rabid dog brains. They were similarly altered in both of the rabies-infected cats and dogs. A more detailed comparison of changes in proteomic profiles of brains between rabid cats and dogs should shed some light on the pathophysiological mechanism of rabies in domestic animals, as most rabies cases have been traceable to or believed to have originated from rabid dogs.
Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene.
Shen, Yu; Du, Jiangxue; Yue, Le; Zhan, Xinhua
2016-06-01
Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches.
Cross-reactivity among peanuts and tree nuts
USDA-ARS?s Scientific Manuscript database
Approximately 30% of peanut allergic individuals also have allergies to tree nuts and vise versa. Our previous work has shown that the structural data base for allergic proteins (SDAP) can identify similar IgE binding areas that may be important for cross-reactivity between allergens. Using SPOTs me...
Ou, Keli; Kesuma, Djohan; Ganesan, Kumaresan; Yu, Kun; Soon, Sou Yen; Lee, Suet Ying; Goh, Xin Pei; Hooi, Michelle; Chen, Wei; Jikuya, Hiroyuki; Ichikawa, Tetsuo; Kuyama, Hiroki; Matsuo, Ei-ichi; Nishimura, Osamu; Tan, Patrick
2006-09-01
The identification of drug-responsive biomarkers in complex protein mixtures is an important goal of quantitative proteomics. Here, we describe a novel approach for identifying such drug-induced protein alterations, which combines 2-nitrobenzenesulfenyl chloride (NBS) tryptophan labeling with two-dimensional gel electrophoresis (2DE)/mass spectrometry (MS). Lysates from drug-treated and control samples are labeled with light or heavy NBS moiety and separated on a common 2DE gel, and protein alterations are identified by MS through the differential intensity of paired NBS peptide peaks. Using NBS/2DE/MS, we profiled the proteomic alterations induced by tamoxifen (TAM) in the estrogen receptor (ER) positive MCF-7 breast cancer cell line. Of 88 protein spots that significantly changed upon TAM treatment, 44 spots representing 23 distinct protein species were successfully identified with NBS-paired peptides. Of these 23 TAM-altered proteins, 16 (70%) have not been previously associated with TAM or ER activity. We found the NBS labeling procedure to be both technically and biologically reproducible, and the NBS/2DE/MS alterations exhibited good concordance with conventional 2DE differential protein quantitation, with discrepancies largely due to the comigration of distinct proteins in the regular 2DE gels. To validate the NBS/2DE/MS results, we used immunoblotting to confirm GRP78, CK19, and PA2G4 as bona fide TAM-regulated proteins. Furthermore, we demonstrate that PA2G4 expression can serve as a novel prognostic factor for disease-free survival in two independent breast cancer patient cohorts. To our knowledge, this is the first report describing the proteomic changes in breast cancer cells induced by TAM, the most commonly used selective estrogen receptor modulator (SERM). Our results indicate that NBS/2DE/MS may represent a more reliable approach for cellular protein quantitation than conventional 2DE approaches.
Rasool, Khawaja Ghulam; Khan, Muhammad Altaf; Aldawood, Abdulrahman Saad; Tufail, Muhammad; Mukhtar, Muhammad; Takeda, Makio
2015-01-01
A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm. PMID:26287180
Rasool, Khawaja Ghulam; Khan, Muhammad Altaf; Aldawood, Abdulrahman Saad; Tufail, Muhammad; Mukhtar, Muhammad; Takeda, Makio
2015-08-17
A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm.
Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools
Orduña, Patricia; Castillo-Rodal, Antonia I.; Mercado, Martha E.; Ponce de León, Samuel; López-Vidal, Yolanda
2015-01-01
Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans. Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study, we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum (806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria. PMID:26106621
Wilson, Kate E; Marouga, Rita; Prime, John E; Pashby, D Paul; Orange, Paul R; Crosier, Steven; Keith, Alexander B; Lathe, Richard; Mullins, John; Estibeiro, Peter; Bergling, Helene; Hawkins, Edward; Morris, Christopher M
2005-10-01
Comparative proteomic methods are rapidly being applied to many different biological systems including complex tissues. One pitfall of these methods is that in some cases, such as oncology and neuroscience, tissue complexity requires isolation of specific cell types and sample is limited. Laser microdissection (LMD) is commonly used for obtaining such samples for proteomic studies. We have combined LMD with sensitive thiol-reactive saturation dye labelling of protein samples and 2-D DIGE to identify protein changes in a test system, the isolated CA1 pyramidal neurone layer of a transgenic (Tg) rat carrying a human amyloid precursor protein transgene. Saturation dye labelling proved to be extremely sensitive with a spot map of over 5,000 proteins being readily produced from 5 mug total protein, with over 100 proteins being significantly altered at p < 0.0005. Of the proteins identified, all showed coherent changes associated with transgene expression. It was, however, difficult to identify significantly different proteins using PMF and MALDI-TOF on gels containing less than 500 mug total protein. The use of saturation dye labelling of limiting samples will therefore require the use of highly sensitive MS techniques to identify the significantly altered proteins isolated using methods such as LMD.
Hot-spot analysis for drug discovery targeting protein-protein interactions.
Rosell, Mireia; Fernández-Recio, Juan
2018-04-01
Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.
Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis
Irrgang, A.; Weise, C.; Murugaiyan, J.; Roesler, U.
2014-01-01
Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891
Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai
2014-01-01
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252
Zipplies, Johanna K; Hauck, Stefanie M; Eberhardt, Christina; Hirmer, Sieglinde; Amann, Barbara; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A
2012-09-01
In equine recurrent uveitis (ERU), immune reactions are directed toward known antigens like S-antigen, interphotoreceptor retinoid-binding protein, and cellular retinalaldehyde-binding protein, and anti-retinal antibodies were detected in vitreous samples. The aim of this study was the investigation of intraocular immunoglobulin M (IgM) reactivities to retinal proteome. Retina was separated by one- and two-dimensional gel electrophoresis and blotted semidry on PVDF membranes. To identify intraocular IgM antibody responses to retinal tissue, blots were incubated with vitreous samples of ERU-diseased horses (n = 50) and healthy controls (n = 30), followed by an HRP-labeled secondary antibody specific for equine IgM. Noticeable 2D western blot signals were aligned on a 2D gel of retinal proteome, excised, and subsequently identified by tandem mass spectrometry. Interestingly, frequent and very miscellaneous IgM response patterns to the retinal proteome in 68% of ERU vitreous samples were detected. Binding of IgM antibodies was localized at 17 different molecular weights. The most frequently detected signal, in 21 of the 50 samples, was located at 49 kDa. Comparing the samples interindividually between one and up to nine different signals in one sample could be observed. All healthy vitreous samples were devoid of IgM antibodies. Analysis of targeted spots with mass spectrometry led to the clear identification of 11 different proteins (corresponding to 16 different spots). One candidate could not be discovered so far. The considerable IgM response to retinal proteins demonstrates an ongoing immune response, which might contribute to the remitting relapsing character of ERU. Novel identified target proteins point to a diverse response pattern of individual ERU cases. © 2012 American College of Veterinary Ophthalmologists.
Proteomics Analysis of Alfalfa Response to Heat Stress
Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang
2013-01-01
The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825
2013-01-01
Background Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. Results Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. Conclusions Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early identification of resistant trees (prior to the full disease development in an area) will allow forest management through the removal of susceptible trees and their root-sprouts prior to the onset of disease, allowing management and mitigation of costs, economic impact, and impacts on ecological systems and services. PMID:23317283
Dyslipidemia in people living with HIV-AIDS in a tertiary hospital in South-East Nigeria.
Anyabolu, Ernest Ndukaife
2017-01-01
Across the globe, human immunodeficiency virus (HIV) infection is a healthcare problem. Dyslipidemia, a cardiovascular risk factor, is known to occur with the progression of HIV infection. The factors which influence dyslipidemia in HIV subjects have not been completely identified. The aim of this study was to evaluate serum lipids and identify the factors which might influence dyslipidemia in treatment-naïve HIV subjects in Owerri, Nigeria. This was a cross-sectional study of treatment-naïve HIV subjects. Anthropometric and demographic data were collected. Serum LDL serum cholesterol, serum high density lipoprotein cholesterol, serum triglyceride, spot urine creatinine, spot urine osmolality, spot urine protein, serum creatinine, 24-hour urine protein, 24-hour urine osmolality, 24-hour urine creatinine, creatinine clearance and hemoglobin were conducted. The variables were compared between those who have dyslipidemia and those who have no dyslipidemia. The mean age of the subjects was 39 ± 11 years. Females constituted 72.0% and males 28.0%. Elevated serum LDL was present in 17.6%, elevated serum total cholesterol in 11.4%, elevated serum triglyceride in 9.9% and low serum HDL in 34.4% of the subjects. There was significant association between dyslipidemia and CD4 cells count, as well as anemia. There was no significant association between dyslipidemia and urine protein, urine creatinine, urine osmolality, creatinine clearance, as well as 24-hour urine volume. The prevalence of dyslipidemia was high in the study subjects. Abnormal CD4 cells count and anemia were common in treatment-naïve HIV subjects who have dyslipidemia.
Sheffield, Jeanne; Taylor, Nigel; Fauquet, Claude; Chen, Sixue
2006-03-01
Using high-resolution 2-DE, we resolved proteins extracted from fibrous and tuberous root tissues of 3-month-old cassava plants. Gel image analysis revealed an average of 1467 electrophoretically resolved spots on the fibrous gels and 1595 spots on the tuberous gels in pH 3-10 range. Protein spots from both sets of gels were digested with trypsin. The digests were subjected to nanoelectrospray quadrupole TOF tandem mass analysis. Currently, we have obtained 299 protein identifications for 292 gel spots corresponding to 237 proteins. The proteins span various functional categories from energy, primary and secondary metabolism, disease and defense, destination and storage, transport, signal transduction, protein synthesis, cell structure, and transcription to cell growth and division. Gel image analysis has shown unique, as well as up- and down-regulated proteins, present in the tuberous and the fibrous tissues. Quantitative and qualitative analysis of the cassava root proteome is an important step towards further characterization of differentially expressed proteins and the elucidation of the mechanisms underlying the development and biological functions of the two types of roots.
Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani
2014-04-01
This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. Copyright © 2013 Elsevier Ltd. All rights reserved.
Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe.
He, Sizhi; Wang, Qingsong; He, Jintang; Pu, Hai; Yang, Wei; Ji, Jianguo
2006-09-01
The proteomic study on human temporal lobe can help us to understand the physiological function of CNS in normal as well as in pathological state. Proteomic tools are potent for the assessment of protein stability post mortem. In this pilot study, the human temporal lobe biopsy specimen with chronic pharmacoresistant temporal lobe epilepsy (TLE) and autopsy specimen in control were separated by 2-DE. Using MALDI-TOF-MS and MS/MS, 375 protein spots were identified which were the products of 267 genes. Six down-regulated and 23 up-regulated protein spots in the autopsy specimen were ascertained after the gel image analysis with the ImageMaster software. A number of proteins that include neurotransmitter metabolic and glycolytic enzymes, cytoprotective proteins and cytoskeleton were found decreased while the precursor of apolipoprotein A-I increased in the TLE brain. We tried several methods to prepare the protein samples and found that DNase and RNase treatment, ultracentrifugation and Amersham clean-up kit purification can improve gel separation quality. This work optimized the sample preparation method and constructed a primary protein database of human temporal lobe and found some proteins with remarkable level change probably involved in the post-mortem process and chronic pharmacoresistant TLE pathogenesis.
USDA-ARS?s Scientific Manuscript database
Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colarado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both ...
Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O.; Alzahrani, Dunia A.; Alrabiah, Deema K.; AlYahya, Sami A.; Alfadda, Assim A.
2017-01-01
Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different (p < 0.05 and a fold change of ≥1.2) between the non-heated and heated milk samples. Eighty protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C. PMID:28350354
Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing
2014-05-14
Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new diagnostic markers and help to understand the pathogenesis of S. agalactiae. Copyright © 2014 Elsevier B.V. All rights reserved.
Monteiro, Valdirene Neves; do Nascimento Silva, Roberto; Steindorff, Andrei Stecca; Costa, Fabio Teles; Noronha, Eliane Ferreira; Ricart, Carlos André Ornelas; de Sousa, Marcelo Valle; Vainstein, Marilene Henning; Ulhoa, Cirano José
2010-10-01
Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis was used to identify some extracellular proteins secreted by T. harzianum ALL42 after growth on cell wall of M. phaseolina, Fusarium sp., and R. solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T. harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase, and proteases were identified in the gel and also detected in the supernatant of culture.
Mohamad Yadzir, Zailatul Hani; Misnan, Rosmilah; Bakhtiar, Faizal; Abdullah, Noormalin; Murad, Shahnaz
2015-01-01
Objectives. To identify the major allergenic proteins of clam (Paphia textile) and to investigate the effect of different cooking methods on the allergenicity of these identified proteins. Methods. Clam protein extracts were separated by denaturing polyacrylamide gel electrophoresis. IgE reactive proteins were then analyzed by immunoblotting with sera from patients with positive skin prick tests (SPT) to the raw clam extract. Mass spectrometry was used to identify the major allergenic proteins of this clam. Results. Raw extract showed 12 protein bands (18–150 kDa). In contrast, fewer protein bands were seen in the boiled extract; those ranging from 40 to 150 kDa were denatured. The protein profiles were similarly altered by frying or roasting. The immunoblots of raw and boiled extracts yielded 10 and 2 IgE-binding proteins, respectively. The fried and roasted extracts showed only a single IgE-binding protein at 37 kDa. Mass spectrometry analysis of the 37 and 42 kDa major allergens indicated that these spots were tropomyosin and actin, respectively. Conclusion. The two major allergens of Paphia textile were identified as the thermostable tropomyosin and a new thermolabile allergen actin. PMID:26413512
Favor, Jack; Bradley, Alan; Conte, Nathalie; Janik, Dirk; Pretsch, Walter; Reitmeir, Peter; Rosemann, Michael; Schmahl, Wolfgang; Wienberg, Johannes; Zaus, Irmgard
2009-08-01
In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca(+2)-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.
A proteomic analysis of leaf sheaths from rice.
Shen, Shihua; Matsubae, Masami; Takao, Toshifumi; Tanaka, Naoki; Komatsu, Setsuko
2002-10-01
The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching. Image analysis revealed 352 protein spots on 2-D PAGE after staining with Coomassie Brilliant Blue. The amino acid sequences of 44 of 84 proteins were determined; for 31 of these proteins, a clear function could be assigned, whereas for 12 proteins, no function could be assigned. Forty proteins did not yield amino acid sequence information, because they were N-terminally blocked, or the obtained sequences were too short and/or did not give unambiguous results. Fifty-nine proteins were analyzed by mass spectrometry; all of these proteins were identified by matching to the protein database. The amino acid sequences of 19 of 27 proteins analyzed by mass spectrometry were similar to the results of Edman sequencing. These results suggest that 2-D PAGE combined with Edman sequencing and mass spectrometry analysis can be effectively used to identify plant proteins.
HotRegion: a database of predicted hot spot clusters.
Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem
2012-01-01
Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.
Seminal plasma proteome of electroejaculated Bos indicus bulls.
Rego, J P A; Crisp, J M; Moura, A A; Nouwens, A S; Li, Y; Venus, B; Corbet, N J; Corbet, D H; Burns, B M; Boe-Hansen, G B; McGowan, M R
2014-07-01
The present study describes the seminal plasma proteome of Bos indicus bulls. Fifty-six, 24-month old Australian Brahman sires were evaluated and subjected to electroejaculation. Seminal plasma proteins were separated by 2-D SDS-PAGE and identified by mass spectrometry. The percentage of progressively motile and morphologically normal sperm of the bulls were 70.4 ± 2.3 and 64 ± 3.2%, respectively. A total of 108 spots were identified in the 2-D maps, corresponding to 46 proteins. Binder of sperm proteins accounted for 55.8% of all spots detected in the maps and spermadhesins comprised the second most abundant constituents. Other proteins of the Bos indicus seminal plasma include clusterin, albumin, transferrin, metalloproteinase inhibitor 2, osteopontin, epididymal secretory protein E1, apolipoprotein A-1, heat shock 70 kDa protein, glutathione peroxidase 3, cathelicidins, alpha-enolase, tripeptidyl-peptidase 1, zinc-alpha-2-glycoprotein, plasma serine protease inhibitor, beta 2-microglobulin, proteasome subunit beta type-4, actin, cathepsins, nucleobinding-1, protein S100-A9, hemoglobin subunit alpha, cadherin-1, angiogenin-1, fibrinogen alpha and beta chain, ephirin-A1, protein DJ-1, serpin A3-7, alpha-2-macroglobulin, annexin A1, complement factor B, polymeric immunoglobulin receptor, seminal ribonuclease, ribonuclease-4, prostaglandin-H2 d-isomerase, platelet-activating factor acetylhydrolase, and phosphoglycerate kinase 1. In conclusion, this work uniquely portrays the Bos indicus seminal fluid proteome, based on samples from a large set of animals representing the Brahman cattle of the tropical Northern Australia. Based on putative biochemical attributes, seminal proteins act during sperm maturation, protection, capacitation and fertilization. Copyright © 2014. Published by Elsevier B.V.
Aldor, Ilana S.; Krawitz, Denise C.; Forrest, William; Chen, Christina; Nishihara, Julie C.; Joly, John C.; Champion, Kathleen M.
2005-01-01
By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein spots were monitored quantitatively and qualitatively. Differentially expressed proteins were quantitatively assessed by using a t-test method with a 1% false discovery rate as a significance criterion. As determined by this criterion, 81 protein spots changed significantly between 14 and 72 h (final time) of the control fermentations (vector only). Qualitative (on-off) comparisons indicated that 20 more protein spots were present only at 14 or 72 h in the control fermentations. These changes reflected physiological responses to the culture conditions. In control and production fermentations at 72 h, 25 protein spots were significantly differentially expressed. In addition, 19 protein spots were present only in control or production fermentations at this time. The quantitative and qualitative changes were attributable to overexpression of recombinant protein. The physiological changes observed during the fermentations included the up-regulation of phosphate starvation proteins and the down-regulation of ribosomal proteins and nucleotide biosynthesis proteins. Synthesis of the stress protein phage shock protein A (PspA) was strongly correlated with synthesis of a recombinant product. This suggested that manipulation of PspA levels might improve the soluble recombinant protein yield in the periplasm for this bioprocess. Indeed, controlled coexpression of PspA during production led to a moderate, but statistically significant, improvement in the yield. PMID:15811994
Ogada, Pamella Akoth; Kiirika, Leonard Muriithi; Lorenz, Christin; Senkler, Jennifer; Braun, Hans-Peter; Poehling, Hans-Michael
2017-02-01
Tomato spotted wilt virus (TSWV) is mainly vectored by Frankliniella occidentalis Pergande, and it potentially activates the vector's immune response. However, molecular background of the altered immune response is not clearly understood. Therefore, using a proteomic approach, we investigated the immune pathways that are activated in F. occidentalis larvae after 24 h exposure to TSWV. Two-dimensional isoelectric focusing/sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-IEF/SDS/PAGE) combined with mass spectrometry (MS), were used to identify proteins that were differentially expressed upon viral infection. High numbers of proteins were abundantly expressed in F. occidentalis exposed to TSWV (73%) compared to the non-exposed (27%), with the majority functionally linked to the innate immune system such as: signaling, stress response, defense response, translation, cellular lipids and nucleotide metabolism. Key proteins included: 70 kDa heat shock proteins, Ubiquitin and Dermcidin, among others, indicative of a responsive pattern of the vector's innate immune system to viral infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics.
Gu, Jia-Yu; Wang, Ye; Zhang, Xu; Zhang, Shi-Hua; Gao, Yin; An, Cheng-Cai
2010-06-01
The phytohormone gibberellin acid (GA) controls many aspects of plant development. In this study, we identified proteins that are differentially expressed between the rice (Oryza sativa L.) GA-deficient cultivar, Aijiaonante, and its parental line, Nante. Proteins were extracted from rice leaf sheath and examined by 2DGE. Among more than 1200 protein spots reproducibly detected on each gel, 29 were found to be highly up-regulated by GAs in Nante, and 6 were down-regulated by GAs in Aijiaonante. These 35 proteins were identified by MALDI-TOF MS and were classified into three groups based on their putative function in metabolism, stress/defense processes and signal transduction. These data suggest that metabolic pathways are the main target of regulation by GAs during rice development. Our results provide new information about the involvement of GAs in rice development.
2011-01-01
Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine classifiers are quite effective in predicting hot spots based on sequence features. Hot spots cannot be fully predicted through simple analysis based on physicochemical characteristics, but there is reason to believe that integration of features and machine learning methods can remarkably improve the predictive performance for hot spots. PMID:21798070
Functional identification of the non-specific nuclease from white spot syndrome virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Li; Lin Shumei; Yanga Feng
2005-07-05
The product encoded by the wsv191 gene from shrimp white spot syndrome virus (WSSV) is homologous with non-specific nucleases (NSN) of other organisms. To functionally identify the protein, the wsv191 gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with 6His-tag at C-terminal. The fusion protein (termed as rWSSV-NSN) was purified using Ni-NTA affinity chromatography under denatured conditions, renatured and characterized by three methods. The results showed that rWSSV-NSN could hydrolyze both DNA and RNA. 5'-RACE result revealed that the transcription initiation site of the wsv191 gene was located at nucleotide residue G of the predictedmore » ATG triplet. Therefore, we concluded that the next ATG should be the genuine translation initiation codon of the wsv191 gene. Western blot analysis revealed that the molecular mass of natural WSSV-NSN was 37 kDa.« less
Lee, Hye Min; Gupta, Ravi; Kim, Sun Hyung; Wang, Yiming; Rakwal, Randeep; Agrawal, Ganesh Kumar; Kim, Sun Tae
2015-05-01
High-abundance proteins (HAPs) hamper in-depth proteome study necessitating development of a HAPs depletion method. Here, we report a novel ethanol precipitation method (EPM) for HAPs depletion from total tuber proteins. Ethanol showed a dose-dependent effect on depletion of sporamin from sweet potato and patatin from potato tubers, respectively. The 50% ethanol was an optimal concentration. 2DE analysis of EPM-prepared sweet potato proteins also revealed enrichment of storage proteins (SPs) in ethanol supernatant (ES) resulting in detection of new low-abundance proteins in ethanol pellet (EP), compared to total fraction. The ES fraction showed even higher trypsin inhibitor activity than total proteins, further showing the efficacy of EPM in enrichment of sporamin in ES fraction. Application of this method was demonstrated for comparative proteomics of two sweet potato cultivars (Hwang-geum and Ho-bac) and purification of SP (sporamin) in its native form, as examples. Comparative proteomics identified many cultivar specific protein spots and selected spots were confidently assigned for their protein identity using MALDI-TOF-TOF analysis. Overall, the EPM is simple, reproducible, and economical for depletion of SPs and is suitable for downstream proteomics study. This study opens a door for its potential application to other tuber crops or fruits rich in carbohydrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus
NASA Astrophysics Data System (ADS)
Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi
2007-12-01
After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and partially clarified the argument regarding the phosphorylation possibility of the N protein during the infection process of SARS-CoV to human host.
Castillejo, Ma Ángeles; Maldonado, Ana M; Dumas-Gaudot, Eliane; Fernández-Aparicio, Mónica; Susín, Rafael; Diego, Rubiales; Jorrín, Jesús V
2009-01-01
Background Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. Results In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection), has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774) and late-resistant (SA 4087) genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF) following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. Conclusion The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and compared with those previously obtained with pea [1] and transcriptomic analysis of other plant-pathogen and plant-parasitic plant systems. PMID:19575787
Structural hot spots for the solubility of globular proteins
Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost
2016-01-01
Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391
[Diagnostic value of radom spot albuminuria to creatinine ratio in women with preeclampsia].
Gao, Yun-fei; Huang, Qi-tao; Zhong, Mei; Wang, Yan; Wang, Wei; Wang, Zhi-jian; Leng, Ling-zhi; Yu, Yan-hong
2012-03-01
To investigate the correlation between spot albuminuria to creatinine ratio (ACR) and 24 h urinary protein excretion in women with preeclampsia and determine the optimal cut-off values of spot ACR in mild preeclampsia and severe preeclampsia. Twenty-eight women with mild preeclampsia and 22 with severe preeclampsia at Nanfang Hospital, Southern Medical University between October 2010 and June 2011 were recruited. Maternal serum cystatin, uric acid, urea nitrogen, creatinine and albumin levels were collected and analyzed. Twenty-four hours urinary protein excretion was measured with immunoturbidimetric assay and ACR with automatic analyzer DCA2000. The correlation between ACR and 24 hours urinary protein excretion was explored. And the optimal cut-off values of the spot ACR for mild and severe preeclampsia were determined with receiver operating characteristic curve. (1) Maternal serum biochemical parameters: uric acid levels in mild and severe preeclampsia were (359 ± 114) µmol/L and (450 ± 132) µmol/L, while cystatin levels were (1.3 ± 0.3) mg/L and (1.6 ± 0.5) mg/L respectively. The differences were statistically significant (P < 0.05). Serum urea nitrogen, creatinine and albumin in mild preeclampsia were (3.6 ± 1.6) mmol/L, (52 ± 38) µmol/L and (33 ± 3) g/L, while in severe preeclampsia were (6.2 ± 3.1) mmol/L, (78 ± 59) µmol/L and (29 ± 6) g/L respectively. There were no statistical significant differences (P > 0.05). (2) Twenty-four hours urinary protein excretion and ACR: 24 hours urinary protein levels in mild and severe preeclampsia was (700 ± 160) mg and (4800 ± 2200) mg (P < 0.05). ACR in mild and severe preeclampsia was (72.7 ± 12.4) mg/mmol and (401 ± 245) mg/mmol respectively (P < 0.05). (3) There was a strong correlation between the spot ACR and 24 hours urine protein excretion (r = 0.938; P < 0.05). (4) The optimal spot ACR cut-off point for the diagnosis of preeclampsia: the optimal spot ACR cut-off point was 22.8 mg/mmol for 300 mg/24 hours of protein excretion in mild preeclampsia, the area under curve was 0.956, with a sensitivity, specificity of 82.4%, 99.4% respectively. And the optimal spot ACR cut-off point was 155.6 mol for 2000 mg/24 hours of protein excretion in severe preeclampsia, the area under curve was 0.956, with a sensitivity, specificity of 88.6%, 91.3% respectively. Compared with 24 hours urinary protein excretion, the spot ACR may be a simple, convenient and accurate indicator of early diagnosis of preeclampsia. Spot ACR may be used as a replacement for 24 hours urine protein excretion in assessment of preeclampsia. The optimal spot ACR cut off points were 22.8 mg/mmol for mild preeclampsia and 155.6 mg/mmol for severe preeclampsia.
Sahin, Deniz; Karadenizli, Sabriye; Kasap, Murat; Oztas, Berrin; Kir, Hale Maral; Akpinar, Gurler; Ates, Nurbay
2018-02-06
The role of intracellular proteins in the pathogenesis of absence epilepsy were mentioned. These proteins are thought to be related to energy generation, signal transduction, inflammation processes and membrane conductance. The investigation of protein profile of the genetically epileptic rat brains was the main subject of this study. For this, a 2D-gel electrophoresis based comparative proteome analysis was performed using thalamus tissue of genetic absence epileptic WAG/Rij and age matched Wistar rats. Regulated spots displaying differences in their abundance were identified using MALDI-TOF/TOF. Among the six spots (DHRS9, BR44, HINT1, CREM, SPRE and PDIA3/ERp57) the highest mascot score was attributed to ERp57 a neuroprotective/neurodegenerative system associated protein. Western Blot analyses were performed to validate changes occurring at ERp57 in thalamus and also identify changes in fronto-parietal cortex. Reductions in the expression levels of ERp57 were detected in the thalamic and the fronto-parietal brain regions of the WAG/Rij rats in comparison to Wistar rats. Such difference might be associated with the pathogenic mechanisms dictating the absence epilepsy. Lower levels of ERp57 may be playing an important role in the development of spontaneous seizures activity seen in the absence epileptic WAG/Rij rats strain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days.
Li, Anning; Mo, Delin; Zhao, Xiao; Jiang, Wei; Cong, Peiqing; He, Zuyong; Xiao, Shuqi; Liu, Xiaohong; Chen, Yaosheng
2013-02-01
Production of high-quality meat is important to satisfy the consumer and make the pig industry competitive. Obese and lean breeds of pig show clear differences in adipogenic capacity and meat quality, but the underlying molecular mechanism remains unclear. We have compared protein expression of the longissimus muscle between Lantang (LT, obese) and Landrace (LR, lean) pigs at the age of 180 days using two-dimensional fluorescence difference gel electrophoresis. Of the 1,400 protein spots detected per gel, 18 were differentially expressed between the two breeds. Using peptide mass fingerprint and tandem mass spectrometry, 17 protein spots were identified, corresponding to ten different proteins that could be divided into four groups: metabolism-related, structure-related, stress-related, and other (unclassified). Among the metabolism-related proteins, COX5A and ATP5B, which participate in oxidative phosphorylation, were highly expressed in LT, whereas ENO3, which is involved in glycolysis, was highly expressed in LR. These results may contribute valuable information to our understanding of the molecular mechanism responsible for differences between obese and lean pigs, such as growth rate and meat quality.
Liu, Jian-Xiang; Bennett, John
2011-01-01
Crop yield is most sensitive to water deficit during the reproductive stage. For rice, the most sensitive yield component is spikelet fertility and the most sensitive stage is immediately before heading. Here, we examined the effect of drought on the anther proteome of two rice genotypes: Moroberekan and IR64. Water was withheld for 3 d before heading (3DBH) in well watered controls for 5 d until the flag leaf relative water content (RWC) had declined to 45-50%. Plants were then re-watered and heading occurred 2-3 d later, representing a delay of 4-5 d relative to controls. The anther proteins were separated at 3 DBH, at the end of the stress period, and at heading in stressed/re-watered plants and controls by two-dimensional (2-D) gel electrophoresis, and 93 protein spots were affected reproducibly in abundance by drought during the experiment across two rice genotypes. After drought stress, upon re-watering, expressions of 24 protein spots were irreversible in both genotypes, 60 protein spots were irreversible in IR64 but reversible in Moroberekan, only nine protein spots were irreversible in Moroberekan while reversible in IR64. Among them, there were 14 newly drought-induced protein spots in IR64; none of them was reversible on re-watering. However, there were 13 newly drought-induced protein spots in Moroberekan, 10 of them were reversible on re-watering, including six drought-induced protein spots that were not reversed in IR64. Taken together, our proteomics data reveal that drought-tolerant genotype Moroberekan possessed better recovery capability following drought and re-watering at the anther proteome level than the drought-sensitive genotype IR64. The disruptions of drought to rice anther development and pollen cell functions are also discussed in the paper.
Gu, Xianbin; Gao, Zhihong; Zhuang, Weibing; Qiao, Yushan; Wang, Xiuyun; Mi, Lin; Zhang, Zhen; Lin, Zhilin
2013-05-01
Low-temperature stress is one of the major abiotic stresses in plants worldwide, and the dehydration responsive element binding protein (DREB) transcription factor induces expression of genes involved in environmental stress tolerance in plants. A proteomic approach based on two-dimensional gel electrophoresis (2-DE) and subsequent mass spectrometric identification was used to study the changes in the leaf proteome profiles of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low-temperature conditions. By comparing the proteomic profiles, we located 21 protein spots that were reproducibly up- or down-regulated by more than twofold between transgenic and non-transgenic strawberries. Eight identified proteins function in energy and metabolism, four in biosynthetic processes, four were stress and defense related, three spots were identified as cold-stress related expressed sequence tags (ESTs), and two were unknown proteins. The change patterns of low-temperature tolerance proteins, including photosynthetic proteins (RuBisCO large subunit and RuBisCO activase), cytoplasmic Cu/Zn-superoxide dismutase (Cu/Zn-SOD), late embryogenesis abundant protein 14-A (Lea14-A), eukaryotic translation initiation factor 5A (eIF5A), and cold-stress related ESTs, were differentially regulated between non-transgenic and rd29A:RdreB1BI transgenic strawberries. They are likely important gene products in the regulatory network of the RdreB1BI gene. Consequently, this study provides the first characterization of the transgenic strawberry proteome and the predicted target proteins of the RdreB1BI gene by using proteomic approaches. Copyright © 2013 Elsevier GmbH. All rights reserved.
Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan
2015-12-01
Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the pathogenesis of astrocytoma formation.
Kosová, Klára; Chrpová, Jana; Šantrůček, Jiří; Hynek, Radovan; Štěrbová, Lenka; Vítámvás, Pavel; Bradová, Jana; Prášil, Ilja Tom
2017-10-03
Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, β-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant. Copyright © 2017 Elsevier B.V. All rights reserved.
Hao, J H; Dong, C J; Zhang, Z G; Wang, X L; Shang, Q M
2012-05-01
To investigate the response of cucumber seedlings to exogenous salicylic acid (SA) and gain a better understanding of SA action mechanism, we generated a proteomic profile of cucumber (Cucumis sativus L.) cotyledons treated with exogenous SA. Analysis of 1500 protein spots from each gel revealed 63 differentially expressed proteins, 59 of which were identified successfully. Of the identified proteins, 97% matched cucumber proteins using a whole cucumber protein database based on the newly completed genome established by our laboratory. The identified proteins were involved in various cellular responses and metabolic processes, including antioxidative reactions, cell defense, photosynthesis, carbohydrate metabolism, respiration and energy homeostasis, protein folding and biosynthesis. The two largest functional categories included proteins involved in antioxidative reactions (23.7%) and photosynthesis (18.6%). Furthermore, the SA-responsive protein interaction network revealed 13 key proteins, suggesting that the expression changes of these proteins could be critical for SA-induced resistance. An analysis of these changes suggested that SA-induced resistance and seedling growth might be regulated in part through pathways involving antioxidative reactions and photosynthesis. © 2012 Elsevier Ireland Ltd. All rights reserved.
Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini
2013-06-01
Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.
Sehrawat, Ankita; Abat, Jasmeet K.; Deswal, Renu
2013-01-01
Although in the last few years good number of S-nitrosylated proteins are identified but information on endogenous targets is still limiting. Therefore, an attempt is made to decipher NO signaling in cold treated Brassica juncea seedlings. Treatment of seedlings with substrate, cofactor and inhibitor of Nitric-oxide synthase and nitrate reductase (NR), indicated NR mediated NO biosynthesis in cold. Analysis of the in vivo thiols showed depletion of low molecular weight thiols and enhancement of available protein thiols, suggesting redox changes. To have a detailed view, S-nitrosylation analysis was done using biotin switch technique (BST) and avidin-affinity chromatography. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is S-nitrosylated and therefore, is identified as target repeatedly due to its abundance. It also competes out low abundant proteins which are important NO signaling components. Therefore, RuBisCO was removed (over 80%) using immunoaffinity purification. Purified S-nitrosylated RuBisCO depleted proteins were resolved on 2-D gel as 110 spots, including 13 new, which were absent in the crude S-nitrosoproteome. These were identified by nLC-MS/MS as thioredoxin, fructose biphosphate aldolase class I, myrosinase, salt responsive proteins, peptidyl-prolyl cis-trans isomerase and malate dehydrogenase. Cold showed differential S-nitrosylation of 15 spots, enhanced superoxide dismutase activity (via S-nitrosylation) and promoted the detoxification of superoxide radicals. Increased S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase sedoheptulose-biphosphatase, and fructose biphosphate aldolase, indicated regulation of Calvin cycle by S-nitrosylation. The results showed that RuBisCO depletion improved proteome coverage and provided clues for NO signaling in cold. PMID:24032038
"Print-n-Shrink" technology for the rapid production of microfluidic chips and protein microarrays.
Sollier, Kevin; Mandon, Céline A; Heyries, Kevin A; Blum, Loïc J; Marquette, Christophe A
2009-12-21
An innovative method for the production of microfluidic chips integrating protein spots is described. The technology, called "Print-n-Shrink", is based on the screen-printing of a microfluidic design (using a dielectric ink) onto Polyshrink polystyrene sheets. The initial print which has a minimum size of 15 microm (height) x 230 microm (width) is thermally treated (30 seconds, 163 degrees C) to shrink and generate features of 85 microm (height) x 100 microm (width). Concomitantly, proteins such as monoclonal antibodies or cellular adhesion proteins are spotted onto the Polyshrink sheets and shrunk together with the microfluidic design, creating a complete biochip integrating both complex microfluidic designs and protein spots for bioanalytical applications.
Lattanzio, Giuseppe; Andaluz, Sofía; Matros, Andrea; Calvete, Juan José; Kehr, Julia; Abadía, Anunciación; Abadía, Javier; López-Millán, Ana-Flor
2013-08-01
The aim of this study was to obtain a comprehensive overview of the phloem sap protein profile of Lupinus texensis, with a special focus on proteins binding Fe and Zn. L. texensis was chosen as model plant given the simplicity to obtain exudates from sieve elements. Protein profiling by 2DE revealed 249 spots, and 54 of them were unambiguously identified by MALDI-MS and ESI-MS/MS. The largest number of identified protein species belongs to protein modification/turnover and general metabolism (19-21%), followed by redox homeostasis (9%) and defense and cell structural components (7%). This protein profile is similar to that reported in other plant species, suggesting that the phloem sap proteome is quite conserved. Staining of 2DE gels for Fe-containing proteins and affinity chromatography experiments revealed the presence of two low molecular weight Fe-binding proteins in phloem sap: a metallothionein-like protein type 2B identified in the Fe-affinity chromatography, and a second protein identified with both Fe staining methods. This protein species had a molecular weight of 13.5 kDa, a pI of 5.6 and 51% homology to a phloem-specific protein from Medicago truncatula. Zinc affinity chromatography revealed four Zn-binding proteins in phloem sap, one belonging to the dehydrin family and three Zn finger proteins. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stability of Proteins in Dried Blood Spot Biobanks*
Björkesten, Johan; Enroth, Stefan; Shen, Qiujin; Wik, Lotta; Hougaard, David M.; Cohen, Arieh S.; Sörensen, Lene; Giedraitis, Vilmantas; Ingelsson, Martin; Larsson, Anders; Kamali-Moghaddam, Masood; Landegren, Ulf
2017-01-01
An important motivation for the construction of biobanks is to discover biomarkers that identify diseases at early, potentially curable stages. This will require biobanks from large numbers of individuals, preferably sampled repeatedly, where the samples are collected and stored under conditions that preserve potential biomarkers. Dried blood samples are attractive for biobanking because of the ease and low cost of collection and storage. Here we have investigated their suitability for protein measurements. Ninety-two proteins with relevance for oncology were analyzed using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either +4 °C or −24 °C. Our main findings were that (1) the act of drying only slightly influenced detection of blood proteins (average correlation of 0.970), and in a reproducible manner (correlation of 0.999), (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34 and 76% of the analyzed proteins at +4 °C and −24 °C, respectively), whereas levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at −24 °C compared with at +4 °C, as the median protein abundance had decreased to 80 and 93% of starting levels after 10 years of storage at +4 °C or −24 °C, respectively. The results of our study are encouraging as they suggest an inexpensive means to collect large numbers of blood samples, even by the donors themselves, and to transport, and store biobanked samples as spots of whole blood dried on paper. Combined with emerging means to measure hundreds or thousands of protein, such biobanks could prove of great medical value by greatly enhancing discovery as well as routine analysis of blood biomarkers. PMID:28501802
Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress
Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina
2014-01-01
Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666
Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil
2018-04-01
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Teixeira, Aparecida das Dores; Games, Patricia D; Katz, Benjamin B; Tomich, John M; Zanuncio, José C; Serrão, José Eduardo
2017-01-01
The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour's gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour's glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour's gland contributing to a more complete understanding of the biological functions of this gland in honeybees.
Xia, Qing; Wang, Hong-xia; Wang, Jie; Liu, Bing-yu; Hu, Mei-ru; Zhang, Xue-min; Shen, Bei-fen
2004-10-01
To identify two differentiation-associated proteins induced by rhIL-6 in M1 mouse myeloid leukemia cells. Protein spots were excised from 2-D gels and digested in-gel with trypsin. The trypsin lysis products were first analyzed by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) through peptide mass fingerprinting and then performed peptide sequencing by nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS/MS). The database search was finished with the Mascot search engine (http://www.matrixscience.co.uk) using the data processed through MaxEnt3 and MasSeq. The two proteins were not revealed by peptide mass fingerprint using MALDI-TOF-MS, while they were respectively identified as Destrin and Putative protein after the sequence of their trypic peptides were obtained by the nano-ESI-MS/MS techniques. Nano-ESI-MS/MS technique can successfully identify the two differentiation-associated proteins induced by rhIL-6 and has great advantage in protein analysis.
NASA Astrophysics Data System (ADS)
Keskin, Ozlem; Ma, Buyong; Rogale, Kristina; Gunasekaran, K.; Nussinov, Ruth
2005-06-01
Understanding and ultimately predicting protein associations is immensely important for functional genomics and drug design. Here, we propose that binding sites have preferred organizations. First, the hot spots cluster within densely packed 'hot regions'. Within these regions, they form networks of interactions. Thus, hot spots located within a hot region contribute cooperatively to the stability of the complex. However, the contributions of separate, independent hot regions are additive. Moreover, hot spots are often already pre-organized in the unbound (free) protein states. Describing a binding site through independent local hot regions has implications for binding site definition, design and parametrization for prediction. The compactness and cooperativity emphasize the similarity between binding and folding. This proposition is grounded in computation and experiment. It explains why summation of the interactions may over-estimate the stability of the complex. Furthermore, statistically, charge-charge coupling of the hot spots is disfavored. However, since within the highly packed regions the solvent is screened, the electrostatic contributions are strengthened. Thus, we propose a new description of protein binding sites: a site consists of (one or a few) self-contained cooperative regions. Since the residue hot spots are those conserved by evolution, proteins binding multiple partners at the same sites are expected to use all or some combination of these regions.
Proteome Analysis of Date Palm (Phoenix dactylifera L.) under Severe Drought and Salt Stress.
El Rabey, Haddad A; Al-Malki, Abdulrahman L; Abulnaja, Khalid O
2016-01-01
Date palm cultivars differently tolerate salinity and drought stress. This study was carried out to study the response of date palm to severe salinity and drought based on leaf proteome analysis. Eighteen-month-old date palm plants were subjected to severe salt (48 g/L NaCl) and drought (82.5 g/L PEG or no irrigation) conditions for one month. Using a protein 2D electrophoresis method, 55 protein spots were analyzed using mass spectrometry. ATP synthase CF1 alpha chains were significantly upregulated under all three stress conditions. Changes in the abundance of RubisCO activase and one of the RubisCO fragments were significant in the same spots only for salt stress and drought stress with no irrigation, and oxygen-evolving enhancer protein 2 was changed in different spots. Transketolase was significantly changed only in drought stress with PEG. The expression of salt and drought stress genes of the chosen protein spots was either overexpressed or downexpressed as revealed by the high or low protein abundance, respectively. In addition, all drought tolerance genes due to no irrigation were downregulated. In conclusion, the proteome analysis of date palm under salinity and drought conditions indicated that both salinity and drought tolerance genes were differentially expressed resulting in high or low protein abundance of the chosen protein spots as a result of exposure to drought and salinity stress condition.
Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S
2015-07-14
A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.
Cortés, Alba; Sotillo, Javier; Muñoz-Antoli, Carla; Fried, Bernard; Esteban, J. Guillermo; Toledo, Rafael
2015-01-01
Background Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode that has been extensively used as experimental model to investigate the factors determining the expulsion of intestinal helminths or, in contrast, the development of chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in ICR mice, a host of high compatibility in which the parasites develop chronic infections. Methodology/Principal Findings To determine the changes in protein expression, a two-dimensional DIGE approach using protein extracts from the intestine of naïve and infected mice was employed; and spots showing significant differential expression were analyzed by mass spectrometry. A total of 37 spots were identified differentially expressed in infected mice (10 were found to be over-expressed and 27 down-regulated). These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, concomitantly with mitochondrial and cytoskeletal proteins among others. Conclusion/Significance Our results suggests that changes in these processes in the ileal epithelium of ICR mice may facilitate the establishment of the parasite and the development of chronic infections. These results may serve to explain the factors determining the development of chronicity in intestinal helminth infection. PMID:26390031
Mitprasat, Mashamon; Roytrakul, Sittiruk; Jiemsup, Surasak; Boonseng, Opas; Yokthongwattana, Kittisak
2011-06-01
Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student's t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P < 0.05) during week 4 to week 8 of growth. Of these, 39 spots were successfully identified by ion trap LC-MS/MS. The proteins span various functional categories from antioxidant and defense, carbohydrate metabolism, cyanogenesis, energy metabolism, miscellaneous and unknown proteins. Results suggested possible metabolic switches in the leaf that may trigger/regulate storage root initiation and growth. This study provides a basis for further functional characterization of differentially expressed leaf proteins, which can help understand how biochemical processes in cassava leaves may be involved in storage root development.
Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A
2013-06-14
Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.
Sela, Noa; Lachman, Oded; Reingold, Victoria; Dombrovsky, Aviv
2013-10-01
A novel virus was detected in watermelon plants (Citrullus lanatus Thunb.) infected with Melon necrotic spot virus (MNSV) using SOLiD next-generation sequence analysis. In addition to the expected MSNV genome, two double-stranded RNA (dsRNA) segments of 1,312 and 1,118 bp were also identified and sequenced from the purified virus preparations. These two dsRNA segments encode two putative partitivirus-related proteins, an RNA-dependent RNA polymerase (RdRP) and a capsid protein, which were sequenced. Genomic-sequence analysis and analysis of phylogenetic relationships indicate that these two dsRNAs together make up the genome of a novel Partitivirus. This virus was found to be closely related to the Pepper cryptic virus 1 and Raphanus sativus cryptic virus. It is suggested that this novel virus putatively named Citrullus lanatus cryptic virus be considered as a new member of the family Partitiviridae.
Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R
2016-07-15
The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.
Nouri, Mohammad-Zaman; Komatsu, Setsuko
2010-05-01
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel-based and a LC MS/MS-based proteomics method. Two-day-old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two-phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel-based proteomics, four and eight protein spots were identified as up- and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up- and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low-abundance proteins could be identified by the LC MS/MS-based method. Three homologues of plasma membrane H(+)-ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H(+)-ATPase protein.
Babaheydari, Samad Bahrami; Keyvanshokooh, Saeed; Dorafshan, Salar; Johari, Seyed Ali
2016-03-01
The aim of the present study was to explore proteome changes in rainbow trout (Oncorhynchus mykiss) fertilized eggs as an effect of triploidization heat-shock treatment. Eggs and milt were taken from eight females and six males. The gametes were pooled to minimize the individual differences. After insemination, the eggs were incubated at 10°C for 10min. Half of the fertilized eggs were then subjected to heat shock for 10min submerged in a 28°C water bath to induce triploidy. The remainder were incubated normally and used as diploid controls. Three batches of eggs were randomly selected from each group and were incubated at 10-11°C under the same environmental conditions in hatchery troughs until the fry stage. Triplicate samples of 30 eggs (10 eggs per trough) from each group were randomly selected 1.5h post-fertilization for proteome extraction. Egg proteins were analyzed using two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF mass spectrometry. Based on the results from the statistical analyses, 15 protein spots were found to decrease significantly in abundance in heat-shock treated group and were selected for identification. Out of 15 protein spots showing altered abundance, 14 spots were successfully identified. All of the egg proteins identified in our study were related to vitellogenin (vtg). Decreased abundance of vitellogenin in heat-shock treated eggs in our study may either be explained by (i) higher utilization of vtg as an effect of increased cell size in triploids or (ii) changed metabolism in response to heat-shock stress and (iii) diffusion of vtg through chorion due to incidence of egg shell damage. Decreased abundance of vitellogenin in heat-shock treated eggs was associated with reduced early survival rates and lowered growth performance of triploid fish. Copyright © 2016 Elsevier B.V. All rights reserved.
Hammad, Ghania; Legrain, Yona; Touat-Hamici, Zahia; Duhieu, Stéphane; Cornu, David; Bulteau, Anne-Laure; Chavatte, Laurent
2018-01-20
Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.
Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena
2005-06-01
Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred.
Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis.
Nakayama, Motokazu; Shimatani, Kanami; Ozawa, Tadahiro; Shigemune, Naofumi; Tomiyama, Daisuke; Yui, Koji; Katsuki, Mao; Ikeda, Keisuke; Nonaka, Ai; Miyamoto, Takahisa
2015-01-01
Catechins are a class of polyphenols and have high anti-bacterial activity against various microorganisms. Here, we report the mechanism for antibacterial activity of epigallocatechin gallate (EGCg) against Gram-positive bacteria Bacillus subtilis, which is highly sensitive to EGCg. Transmission electron microscope analysis revealed that deposits containing EGCg were found throughout the cell envelope from the outermost surface to the outer surface of cytoplasmic membrane. Aggregating forms of proteins and EGCg were identified as spots that disappeared or showed markedly decreased intensity after the treatment with EGCg compared to the control by two-dimensional electrophoresis. Among the identified proteins included 4 cell surface proteins, such as oligopeptide ABC transporter binding lipoprotein, glucose phosphotransferase system transporter protein, phosphate ABC transporter substrate-binding protein, and penicillin-binding protein 5. Observations of glucose uptake of cells and cell shape B. subtilis after the treatment with EGCg suggested that EGCg inhibits the major functions of these proteins, leading to growth inhibition of B. subtilis.
Sui, Zhiwei; Wen, Bo; Gao, Zhimin; Chen, Quanjiao
2014-01-01
Three recombinant influenza A viruses with different neuraminidases (NAs) in the background of A/PR/8/34 (PR8), named rPR8-H5N1NA, rPR8-H9N2NA, and rPR8-H1N1NA, derived from H5N1, H9N2, H1N1 (swine) viruses, respectively, were constructed. We performed a quantitative proteomics analysis to investigate differential protein expression in Madin-Darby canine kidney (MDCK) cells infected with recombinant and wild-type influenza viruses to determine whether NA replacement would alter host cell gene expression. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-TOF MS) and two-dimensional gel electrophoresis (2-DE), we identified 12 up-regulated and 49 down-regulated protein spots, including cytoskeletal proteins, molecular biosynthesis proteins, ubiquitin-proteasome pathway proteins, and heat shock proteins. The most significant changes in infected cells were observed for molecular biosynthesis proteins. We found more differentially expressed protein spots in cells infected with rPR8-H5N1NA or rPR8-H9N2NA viruses than cells infected with wild-type virus. Many of those proteins are postulated to be involved in cell-cell fusion, but the full mechanism remains to be explored. Meanwhile, our data demonstrate that the wild-type virus has evolutionary advantages over recombinant viruses. PMID:25153908
2012-01-01
Background Leaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach. Results Protein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins. Conclusions The identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones, are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary metabolism, affecting photosyntesis and carbohydrate pool. PMID:23167439
Li, Lei; Nelson, Clark J.; Solheim, Cory; Whelan, James; Millar, A. Harvey
2012-01-01
The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a 15N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (KS) and degradation (KD) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify KS and KD for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. KS and KD correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive 15N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability. PMID:22215636
Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer
NASA Astrophysics Data System (ADS)
Petersson, Linn; Berthet Duroure, Nathalie; Auger, Angèle; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Ait Ikhlef, Ali; Wingren, Christer
2014-07-01
Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm-2) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, BioplumeTM—consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um2, Ø 10 μm) at a 7-125-times increased spot density (250 000 spots cm-2), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined.
Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook
Shi, Jisen; Zhen, Yan; Zheng, Ren-Hua
2010-01-01
Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir. PMID:20363864
Gemoll, Timo; Kollbeck, Sophie L; Karstens, Karl F; Hò, Gia G; Hartwig, Sonja; Strohkamp, Sarah; Schillo, Katharina; Thorns, Christoph; Oberländer, Martina; Kalies, Kathrin; Lehr, Stefan; Habermann, Jens K
2017-08-15
While carcinogenesis in Sporadic Colorectal Cancer (SCC) has been thoroughly studied, less is known about Ulcerative Colitis associated Colorectal Cancer (UCC). This study aimed to identify and validate differentially expressed proteins between clinical samples of SCC and UCC to elucidate new insights of UCC/SCC carcinogenesis and progression. Multiplex-fluorescence two-dimensional gel electrophoresis (2-D DIGE) and mass spectrometry identified 67 proteoforms representing 43 distinct proteins. After analysis by Ingenuity Pathway Analysis ® (IPA), subsequent Western blot validation proofed the differential expression of Heat shock 27 kDA protein 1 (HSPB1) and Microtubule-associated protein R/EB family, member 1 (EB1) while the latter one showed also expression differences by immunohistochemistry. Fresh frozen tissue of UCC ( n = 10) matched with SCC ( n = 10) was investigated. Proteins of cancerous intestinal mucosal cells were obtained by Laser Capture Microdissection (LCM) and compared by 2-D DIGE. Significant spots were identified by mass spectrometry. After IPA, three proteins [EB1, HSPB1, and Annexin 5 (ANXA5)] were chosen for further validation by Western blotting and tissue microarray-based immunohistochemistry. This study identified significant differences in protein expression of colorectal carcinoma cells from UCC patients compared to patients with SCC. Particularly, EB1 was validated in an independent clinical cohort.
Li, S S; Shen, J S; Ren, D X; Liu, J X
2015-02-01
A proteomic approach was used to investigate the effects of the processing method of corn grain and soybean meal on the milk protein expression profile in lactating dairy cows. A total of 12 multiparous Holstein dairy cows were used in a 4×4 Latin square design with a 2×2 factorial arrangement. The primary factors examined were corn (finely ground (FGC) v. steam-flaked (SFC)) and soybean meal (solvent-extracted (SSBM) v. heat-treated (HSBM)), which were used to formulate four diets with the same basal ingredient: 27% FGC and 9% SSBM; 27% SFC and 9% SSBM; 27% FGC and 9% HSBM; and 27% SFC and 9% HSBM. Each period lasted for 21 days. Milk samples were collected on days 18, 19 and 20 of each period. Changes in the milk proteins were assessed by two-dimensional (2D) electrophoresis and ImageMaster 2D Platinum 6.0 software. A total of 13 spots displayed variations in protein spot abundance according to the statistical analysis. These spots were identified by a matrix-assisted laser desorption/ionization-time of flight/time of flight MS. According to the gels, the relative abundance of α(s2)-casein (CN) fragments was higher in the cows fed the SFC-HSBM than that for SFC-SSBM, whereas β-CN, α-lactalbumin and zinc-alpha-2-glycoprotein fragments were down-regulated in HSBM-fed cows. The relative decrease of β-CN expression was validated by western blot and agreed with the MS data. These results suggested that the method used to process soybean meal modified the synthesis and secretion of milk proteins in lactating dairy cows' mammary glands.
Zeng, Jing; Gao, Qiguo; Shi, Songmei; Lian, Xiaoping; Converse, Richard; Zhang, Hecui; Yang, Xiaohong; Ren, Xuesong; Chen, Song; Zhu, Liquan
2017-04-01
Angiosperms have developed self-incompatibility (SI) systems to reject self-pollen, thereby promoting outcrossing. The Brassicaceae belongs to typical sporophytic system, having a single S-locus controlled SI response, and was chosen as a model system to study SI-related intercellular signal transduction. In this regard, the downstream factor of EXO70A1 was unknown. Here, protein two-dimensional electrophoresis (2-DE) method and coupled with matrix-assisted laser desorption ionization/time of flight of flight mass spectrometry (MALDI-TOF -MS) and peptide mass fingerprinting (PMF) was used to further explore the mechanism of SI responses in Brassica oleracea L. var. capitata L. at protein level. To further confirm the time point of protein profile change, total proteins were collected from B. oleracea pistils at 0 min, 1 h, and 2 h after self-pollination. In total 902, 1088 and 1023 protein spots were separated in 0 min, 1 h and 2 h 2-DE maps, respectively. Our analyses of self-pollination profiles indicated that proteins mainly changed at 1 h post-pollination in B. oleracea. Moreover, 1077 protein spots were separated in cross-pollinated 1 h (CP) pistil 2-DE map. MALDI-TOF-MS and PMF successfully identified 34 differentially-expressed proteins (DEPs) in SP and CP 1 h 2-DE maps. Gene ontology and KEGG analysis revealed an array of proteins grouped in the following categories: stress and defense response (35%), protein metabolism (18%), carbohydrate and energy metabolism (12%), regulation of translation (9%), pollen tube development (12%), transport (9%) and cytoskeletal (6%). Sets of DEPs identified specifically in SP or only up-regulated expressed in CP pistils were chosen for funther investigating in floral organs and during the process of self- and cross-pollination. The function of these DEPs in terms of their potential involvement in SI in B. oleracea is discussed.
Acosta-Muñiz, Carlos H; Escobar-Tovar, Lina; Valdes-Rodríguez, Silvia; Fernández-Pavia, Silvia; Arias-Saucedo, Luis J; de la Cruz Espindola Barquera, Maria; Gómez Lim, Miguel Á
2012-01-01
Avocado root rot, caused by Phytophthora cinnamomi, is the most important disease that limits avocado production. A proteomic approach was employed to identify proteins that are upregulated by infection with P. cinnamomi. Different proteins were shown to be differentially expressed after challenge with the pathogen by two-dimensional (2-D) gel electrophoresis. A densitometric evaluation of protein expression indicated differential regulation during the time-course analyzed. Some proteins induced in response to the infection were identified by standard peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of the 400 protein spots detected on 2-D gels, 21 seemed to change in abundance by 3 hours after infection. Sixteen proteins were upregulated, 5 of these were only detected in infected roots and 11 showed an increased abundance. Among the differentially expressed proteins identified are homologs to isoflavone reductase, glutathione S-transferase, several abscisic acid stress-ripening proteins, cinnamyl alcohol dehydrogenase, cinnamoyl-CoA reductase, cysteine synthase and quinone reductase. A 17.3-kDa small heat-shock protein and a glycine-rich RNA-binding protein were identified as downregulated. Our group is the first to report on gene induction in response to oomycete infection in roots from avocado, using proteomic techniques. Copyright © Physiologia Plantarum 2011.
Integrative analysis of the heat shock response in Aspergillus fumigatus
2010-01-01
Background Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. Results 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS). They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones), oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha-like transcription factor upstream of some heat shock induced genes. Until now, this factor has only been found in vertebrates. Conclusions Our newly established DIGE data analysis workflow yields improved data quality and is widely applicable for other DIGE datasets. Our findings suggest that the heat shock response in A. fumigatus differs from already well-studied yeasts and other filamentous fungi. PMID:20074381
Differential antigenic protein recovery from Taenia solium cyst tissues using several detergents.
Navarrete-Perea, José; Orozco-Ramírez, Rodrigo; Moguel, Bárbara; Sciutto, Edda; Bobes, Raúl J; Laclette, Juan P
2015-07-01
Human and porcine cysticercosis is caused by the larval stage of the flatworm Taenia solium (Cestoda). The protein extracts of T. solium cysts are complex mixtures including cyst's and host proteins. Little is known about the influence of using different detergents in the efficiency of solubilization-extraction of these proteins, including relevant antigens. Here, we describe the use of CHAPS, ASB-14 and Triton X-100, alone or in combination in the extraction buffers, as a strategy to notably increase the recovery of proteins that are usually left aside in insoluble fractions of cysts. Using buffer with CHAPS alone, 315 protein spots were detected through 2D-PAGE. A total of 255 and 258 spots were detected using buffers with Triton X-100 or ASB-14, respectively. More protein spots were detected when detergents were combined, i.e., 2% CHAPS, 1% Triton X-100 and 1% ASB-14 allowed detection of up to 368 spots. Our results indicated that insoluble fractions of T. solium cysts were rich in antigens, including several glycoproteins that were sensitive to metaperiodate treatment. Host proteins, a common component in protein extracts of cysts, were present in larger amounts in soluble than insoluble fractions of cysts proteins. Finally, antigens present in the insoluble fraction were more appropriate as a source of antigens for diagnostic procedures. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterizing SH2 Domain Specificity and Network Interactions Using SPOT Peptide Arrays.
Liu, Bernard A
2017-01-01
Src Homology 2 (SH2) domains are protein interaction modules that recognize and bind tyrosine phosphorylated ligands. Their ability to distinguish binding to over thousands of potential phosphotyrosine (pTyr) ligands within the cell is critical for the fidelity of receptor tyrosine kinase (RTK) signaling. Within humans there are over a hundred SH2 domains with more than several thousand potential ligands across many cell types and cell states. Therefore, defining the specificity of individual SH2 domains is critical for predicting and identifying their physiological ligands. Here, in this chapter, I describe the broad use of SPOT peptide arrays for examining SH2 domain specificity. An orientated peptide array library (OPAL) approach can uncover both favorable and non-favorable residues, thus providing an in-depth analysis to SH2 specificity. Moreover, I discuss the application of SPOT arrays for paneling SH2 ligand binding with physiological peptides.
Kasap, Murat; Yeğenağa, Itır; Akpinar, Gurler; Tuncay, Mehmet; Aksoy, Ayça; Karaoz, Erdal
2015-01-01
The relationship between the stem cells and the bone turnover in uremic bone disease due to chronic renal failure (CRF) is not described. The aim of this study was to investigate the effect of bone turnover status on stem cell properties. To search for the presence of such link and shed some light on stem-cell relevant mechanisms of bone turnover, we carried out a study with mesenchymal stem cells. Tissue biopsies were taken from the abdominal subcutaneous adipose tissue of a CRF patient with secondary hyperparathyroidism with the high turnover bone disease. This patient underwent parathyroidectomy operation (PTX) and another sample was taken from this patient after PTX. A CRF patient with adynamic bone disease with low turnover and a healthy control were also included. Mesenchymal stem cells isolated from the subjects were analyzed using proteomic and molecular approaches. Except ALP activity, the bone turnover status did not affect common stem cell properties. However, detailed proteome analysis revealed the presence of regulated protein spots. A total of 32 protein spots were identified following 2D gel electrophoresis and MALDI-TOF/TOF analyzes. The identified proteins were classified into seven distinct groups and their potential relationship to bone turnover were discussed. Distinct protein expression patterns emerged in relation to the bone turnover status indicate a possible link between the stem cells and bone turnover in uremic bone disease due to CRF.
Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin.
Kim, Sang Woo; Choi, Jae Heon; Mukherjee, Rajib; Hwang, Ki-Chul; Yun, Jong Won
2016-04-01
We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).
Proteome of Caulobacter crescentus cell cycle publicly accessible on SWICZ server.
Vohradsky, Jiri; Janda, Ivan; Grünenfelder, Björn; Berndt, Peter; Röder, Daniel; Langen, Hanno; Weiser, Jaroslav; Jenal, Urs
2003-10-01
Here we present the Swiss-Czech Proteomics Server (SWICZ), which hosts the proteomic database summarizing information about the cell cycle of the aquatic bacterium Caulobacter crescentus. The database provides a searchable tool for easy access of global protein synthesis and protein stability data as examined during the C. crescentus cell cycle. Protein synthesis data collected from five different cell cycle stages were determined for each protein spot as a relative value of the total amount of [(35)S]methionine incorporation. Protein stability of pulse-labeled extracts were measured during a chase period equivalent to one cell cycle unit. Quantitative information for individual proteins together with descriptive data such as protein identities, apparent molecular masses and isoelectric points, were combined with information on protein function, genomic context, and the cell cycle stage, and were then assembled in a relational database with a world wide web interface (http://proteom.biomed.cas.cz), which allows the database records to be searched and displays the recovered information. A total of 1250 protein spots were reproducibly detected on two-dimensional gel electropherograms, 295 of which were identified by mass spectroscopy. The database is accessible either through clickable two-dimensional gel electrophoretic maps or by means of a set of dedicated search engines. Basic characterization of the experimental procedures, data processing, and a comprehensive description of the web site are presented. In its current state, the SWICZ proteome database provides a platform for the incorporation of new data emerging from extended functional studies on the C. crescentus proteome.
G-protein control of the ribosome-associated stress response protein SpoT.
Jiang, Mengxi; Sullivan, Susan M; Wout, Patrice K; Maddock, Janine R
2007-09-01
The bacterial response to stress is controlled by two proteins, RelA and SpoT. RelA generates the alarmone (p)ppGpp under amino acid starvation, whereas SpoT is responsible for (p)ppGpp hydrolysis and for synthesis of (p)ppGpp under a variety of cellular stress conditions. It is widely accepted that RelA is associated with translating ribosomes. The cellular location of SpoT, however, has been controversial. SpoT physically interacts with the ribosome-associated GTPase CgtA, and we show here that, under an optimized salt condition, SpoT is also associated with a pre-50S particle. Analysis of spoT and cgtA mutants and strains overexpressing CgtA suggests that the ribosome associations of SpoT and CgtA are mutually independent. The steady-state level of (p)ppGpp is increased in a cgtA mutant, but the accumulation of (p)ppGpp during amino acid starvation is not affected, providing strong evidence that CgtA regulates the (p)ppGpp level during exponential growth but not during the stringent response. We show that CgtA is not associated with pre-50S particles during amino acid starvation, indicating that under these conditions in which (p)ppGpp accumulates, CgtA is not bound either to the pre-50S particle or to SpoT. We propose that, in addition to its role as a 50S assembly factor, CgtA promotes SpoT (p)ppGpp degradation activity on the ribosome and that the loss of CgtA from the ribosome is necessary for maximal (p)ppGpp accumulation under stress conditions. Intriguingly, we found that in the absence of spoT and relA, cgtA is still an essential gene in Escherichia coli.
Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar
2014-01-01
A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.
Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar
2014-01-01
A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032
Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne
2010-02-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.
Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.
Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães
2018-05-01
This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.
Hsu, Te-Yao; Hsieh, T'sang-T'ang; Yang, Kuender D; Tsai, Ching-Chang; Ou, Chia-Yu; Cheng, Bi-Hua; Wong, Yi-Hsun; Hung, Hsuan-Ning; Chou, An-Kuo; Hsiao, Chang-Chun; Lin, Hao
2015-10-01
Preeclampsia is a major cause of mortality in pregnant women but the underlying mechanism remains unclear to date. In this study, we attempted to identify candidate proteins that might be associated with preeclampsia in pregnant women by means of proteomics tools. Differentially expressed proteins in serum samples obtained from pregnant women with severe preeclampsia (n = 8) and control participants (n = 8) were identified using two-dimensional gel electrophoresis (2-DE) followed by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Additional serum samples from 50 normal and 41 pregnant women with severe preeclampsia were analyzed by immunoassay for validation. Ten protein spots were found to be upregulated significantly in women with severe preeclampsia. These protein spots had the peptide mass fingerprints matched to α1-antitrypsin, α1-microglobulin, clusterin, and haptoglobin. Immunoassays in an independent series of serum samples showed that serum α1-antitrypsin, α1-microglobulin, and clusterin levels of severe preeclampsia patients (n = 41) were significantly higher than those in the normal participants (n = 50; α1-antitrypsin 295.95 ± 50.94 mg/dL vs. 259.31 ± 33.90 mg/dL, p = 0.02; α1-microglobulin 0.029 ± 0.004 mg/mL vs. 0.020 ± 0.004 mg/mL, p < 0.0001; clusterin 77.6 ± 16.15 μg/dL vs. 67.6 ± 15.87 μg/dL, p < 0.05). Identification of these proteins by proteomics analysis enables further understanding of the pathophysiology of preeclampsia. Further studies are warranted to investigate the role of these biomarkers in prediction of this disease. Copyright © 2015. Published by Elsevier B.V.
Artier, Juliana; da Silva Zandonadi, Flávia; de Souza Carvalho, Flávia Maria; Pauletti, Bianca Alves; Leme, Adriana Franco Paes; Carnielli, Carolina Moretto; Selistre-de-Araujo, Heloisa Sobreiro; Bertolini, Maria Célia; Ferro, Jesus Aparecido; Belasque Júnior, José; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques
2018-01-01
Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Complete Proteome of a Quinolone-Resistant Salmonella Typhimurium Phage Type DT104B Clinical Strain
Correia, Susana; Nunes-Miranda, Júlio D.; Pinto, Luís; Santos, Hugo M.; de Toro, María; Sáenz, Yolanda; Torres, Carmen; Capelo, José Luis; Poeta, Patrícia; Igrejas, Gilberto
2014-01-01
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen. PMID:25196519
Nasal protein profiles in work-related asthma caused by different exposures.
Suojalehto, H; Lindström, I; Wolff, H; Puustinen, A
2018-03-01
The mechanisms of work-related asthma (WRA) are incompletely delineated. Nasal cell samples may be informative about processes in the lower airways. Our aim was to determine the nasal protein expression profiles of WRA caused by different kind of exposures. We collected nasal brush samples from 82 nonsmoking participants, including healthy controls and WRA patients exposed to (i) protein allergens, (ii) isocyanates and (iii) welding fumes the day after relevant exposure. The proteome changes in samples were analysed by two-dimensional difference gel electrophoresis, and the differentially regulated proteins found were identified by mass spectrometry. Immunological comparison was carried out using Western blot. We detected an average of 2500 spots per protein gel. Altogether, 228 protein spots were chosen for identification, yielding 77 different proteins. Compared to the controls, exposure to protein allergens had the largest effects on the proteome. Hierarchical clustering revealed that protein allergen- and isocyanate-related asthma had similar profiles, whereas asthma related to welding fumes differed. The highly overrepresented functional categories in the asthma groups were defence response, protease inhibitor activity, inflammatory and calcium signalling, complement activation and cellular response to oxidative stress. Immunological analysis confirmed the found abundance differences in galectin 10 and protein S100-A9 between the groups. Work-related asthma patients exposed to protein allergens and isocyanates elicit similar nasal proteome responses and the profiles of welders and healthy controls were alike. Revealed biological activities of the protein expression changes are associated with allergic inflammation and asthma. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Jiang, Ji-Mou; Lin, Yong-Xiang; Chen, Yi-Yong; Deng, Chao-Jun; Gong, Hui-Wen; Xu, Qi-Zhi; Zheng, Shao-Quan; Chen, Wei
2015-06-01
The objective of this work was to investigate why loquat fruit peels are more sensitive to high temperature and strong sunlight, making them highly susceptible to sunburn, during the color changing period (CCP). Two dimensional gel electrophoresis (2-DE) of the fruit peel proteins was performed over three developmental periods, namely green fruit period (GFP), color changing period and yellow ripening period (YRP). Fifty-five protein spots with at least 2-fold differences in abundance were successfully identified by MALDI-TOF-TOF/MS. The identified proteins were divided into categories related to heat-shock response, stress response and defense, energy metabolism, photosynthesis and protein biosynthesis. The results showed that expression of proteins related to anaerobic respiration and photorespiration were increased while the proteins related to ROS scavenging, polyamine biosynthesis, defense pathogens and photosynthesis were decreased during CCP under heat stress. Our findings provide new insights into the molecular mechanism of loquat fruit susceptible to sunburn during CCP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Symanowski, Frauke; Hildebrandt, Jan-Peter
2010-03-01
The euryhaline gastropod Theodoxus fluviatilis is found in northern Germany in freshwater or in brackish water habitats in the Baltic Sea. Previous studies have revealed that individuals from both habitats are not distinguishable by morphological characters or by sequence comparison of DNA encoding 16S RNA or cytochrome C. As reported in this study, animals collected in the two habitats differ substantially in their physiological ability to adapt to different salinities. Comparison of accumulation rates of ninhydrin-positive substances (NPS) in foot muscle upon transfer of animals to higher medium salinities revealed that brackish water animals were perfectly able to mobilize NPS, while freshwater animals had only limited ability to do so. In an attempt to explore whether this difference in physiology may be caused by genetic differentiation, we compared protein expression patterns of soluble foot muscle proteins using 2D gel electrophoresis and silver staining. Of the 40 consistently detected protein spots, 27 showed similar levels in protein expression in animals collected from freshwater or brackish water habitats, respectively. In 12 spots, however, protein concentration was higher in brackish water than in freshwater animals. In four of these spots, expression levels followed increases or decreases in medium salinities. In a different set of 4 of these 12 spots, protein levels were always higher in brackish water as compared to freshwater animals, regardless of their physiological situation (14 days in artificial pond water or in medium with a salinity of 16 per thousand). The remaining 4 of the 12 spots had complex expression patterns. Protein levels of the remaining single spot were generally higher in freshwater animals than in brackish water animals. These expression patterns may indicate that freshwater and brackish water animals of T. fluviatilis belong to different locally adapted populations with subtle genetic differentiation.
Zhu, Yuanyuan; Liang, Xinle; Zhang, Hong; Feng, Wei; Liu, Ye; Zhang, Fuming; Linhardt, Robert J
2017-05-02
Aspergillus oryzae koji plays a crucial role in fermented food products due to the hydrolytic activities of secreted enzymes. In the present study, we performed a comparative secretome analysis of the industrial strain of Aspergillus oryzae 3.042 and its spontaneous mutantZJGS-LZ-21. One hundred and fifty two (152) differential protein spots were excised (p<0.05), and 25 proteins were identified. Of the identified proteins, 91.3% belonged to hydrolytic enzymes acting on carbohydrates or proteins. Consistent with their enzyme activities, the expression of 14 proteins involved in the degradation of cellulose, hemicellulose, starch and proteins, increased in the ZJGS-LZ-21isolate. In particular, increased levels of acid protease (Pep) may favor the degradation of soy proteins in acidic environments and promote the cleavage of allergenic soybean proteins in fermentation, resulting in improvements of product safety and quality. The ZJGS-LZ-21 isolate showed higher protein secretion and increased hydrolytic activities than did strain 3.042, indicating its promising application in soybean paste fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.
Xia, Junfeng; Yue, Zhenyu; Di, Yunqiang; Zhu, Xiaolei; Zheng, Chun-Hou
2016-01-01
The identification of hot spots, a small subset of protein interfaces that accounts for the majority of binding free energy, is becoming more important for the research of drug design and cancer development. Based on our previous methods (APIS and KFC2), here we proposed a novel hot spot prediction method. For each hot spot residue, we firstly constructed a wide variety of 108 sequence, structural, and neighborhood features to characterize potential hot spot residues, including conventional ones and new one (pseudo hydrophobicity) exploited in this study. We then selected 3 top-ranking features that contribute the most in the classification by a two-step feature selection process consisting of minimal-redundancy-maximal-relevance algorithm and an exhaustive search method. We used support vector machines to build our final prediction model. When testing our model on an independent test set, our method showed the highest F1-score of 0.70 and MCC of 0.46 comparing with the existing state-of-the-art hot spot prediction methods. Our results indicate that these features are more effective than the conventional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spots in protein interfaces. PMID:26934646
Schiro, Michelle M.; Stauber, Sara E.; Peterson, Tami L.; Krueger, Chateen; Darnell, Steven J.; Satyshur, Kenneth A.; Drinkwater, Norman R.; Newton, Michael A.; Hoffmann, F. Michael
2011-01-01
Background Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. Methodology/Principal Findings We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Conclusions/Significance Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses. PMID:21949838
Schiro, Michelle M; Stauber, Sara E; Peterson, Tami L; Krueger, Chateen; Darnell, Steven J; Satyshur, Kenneth A; Drinkwater, Norman R; Newton, Michael A; Hoffmann, F Michael
2011-01-01
Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses.
Rossi, Gabriela Barbosa; Valentim-Neto, Pedro Alexandre; Blank, Martina; Faria, Josias Correa de; Arisi, Ana Carolina Maisonnave
2017-08-30
Common bean (Phaseolus vulgaris L.) is a source of proteins for about one billion people worldwide. In Brazil, 'BRS Sublime', 'BRS Vereda', 'BRS Esteio', and 'BRS Estilo' cultivars were developed by Embrapa to offer high yield to farmers and excellent quality to final consumers. In this work, grain proteomes of these common bean cultivars were compared based on two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS). Principal component analysis (PCA) was applied to compare 349 matched spots in these cultivars proteomes, and all cultivars were clearly separated in PCA plot. Thirty-two differentially accumulated proteins were identified by MS. Storage proteins such as phaseolins, legumins, and lectins were the most abundant, and novel proteins were also identified. We have built a useful platform that could be used to analyze other Brazilian cultivars and genotypes of common beans.
Proteomic analysis of Chromobacterium violaceum and its adaptability to stress.
Castro, Diogo; Cordeiro, Isabelle Bezerra; Taquita, Paula; Eberlin, Marcos Nogueira; Garcia, Jerusa Simone; Souza, Gustavo Henrique M F; Arruda, Marco Aurélio Zezzi; Andrade, Edmar V; Filho, Spartaco A; Crainey, J Lee; Lozano, Luis Lopez; Nogueira, Paulo A; Orlandi, Patrícia P
2015-12-01
Chromobacterium violaceum (C. violaceum) occurs abundantly in a variety of ecosystems, including ecosystems that place the bacterium under stress. This study assessed the adaptability of C. violaceum by submitting it to nutritional and pH stresses and then analyzing protein expression using bi-dimensional electrophoresis (2-DE) and Maldi mass spectrometry. Chromobacterium violaceum grew best in pH neutral, nutrient-rich medium (reference conditions); however, the total protein mass recovered from stressed bacteria cultures was always higher than the total protein mass recovered from our reference culture. The diversity of proteins expressed (repressed by the number of identifiable 2-DE spots) was seen to be highest in the reference cultures, suggesting that stress reduces the overall range of proteins expressed by C. violaceum. Database comparisons allowed 43 of the 55 spots subjected to Maldi mass spectrometry to be characterized as containing a single identifiable protein. Stress-related expression changes were noted for C. violaceum proteins related to the previously characterized bacterial proteins: DnaK, GroEL-2, Rhs, EF-Tu, EF-P; MCP, homogentisate 1,2-dioxygenase, Arginine deiminase and the ATP synthase β-subunit protein as well as for the ribosomal protein subunits L1, L3, L5 and L6. The ability of C. violaceum to adapt its cellular mechanics to sub-optimal growth and protein production conditions was well illustrated by its regulation of ribosomal protein subunits. With the exception of the ribosomal subunit L3, which plays a role in protein folding and maybe therefore be more useful in stressful conditions, all the other ribosomal subunit proteins were seen to have reduced expression in stressed cultures. Curiously, C. violeaceum cultures were also observed to lose their violet color under stress, which suggests that the violacein pigment biosynthetic pathway is affected by stress. Analysis of the proteomic signatures of stressed C. violaceum indicates that nutrient-starvation and pH stress can cause changes in the expression of the C. violaceum receptors, transporters, and proteins involved with biosynthetic pathways, molecule recycling, energy production. Our findings complement the recent publication of the C. violeaceum genome sequence and could help with the future commercial exploitation of C. violeaceum.
Dobiesz, Malwina; Piotrowicz-Cieślak, Agnieszka I.
2017-01-01
The aim of the study was to evaluate the vigor and viability as well as to determine and compare the contents of selected protein fractions of white lupin (Lupinus albus L.) seeds stored for 26 years at temperatures of -14°C and +20°C. The seeds stored at -14°C germinated in 86.3%, while the seeds stored at +20°C did not germinate at all. The viability evaluation was confirmed by the measuring electroconductivity of seed exudates. In seeds stored at -14°C the contents of γ, δ, and β conglutin were 14, 4 and 69 mg g-1 fresh mass, respectively, while in seed stored at +20°C they were 15.5, 3, 65 mg g-1 fresh mass, respectively. One-dimensional electrophoresis of γ and δ conglutin fractions indicated the presence of several intense polypeptide bands with molecular weights from 23.0 to 10.3 kDa. Polypeptide bands with a molecular weight of 22.4 and 19.8 kDa exhibited almost two times higher expression in the seeds stored at -14°C compared to the seeds stored at +20°C. Electrophoresis revealed 310 protein spots on the maps generated for seeds stored at -14°C, and 228 spots for seeds stored at +20°C. In seeds stored at +20°C most polypeptide subunits had a pI ranging from 4.5 to 7 and a molecular weight of 10–97 kDa. The greatest differences in the contents of polypeptides between the analyzed variants was observed within the range of 20–45 kDa (-14°C: 175, +20°C: 115 protein spots) and within the range of 65–97 kDa (-14°C: 103, +20°C: 75 protein spots). In seeds stored at +20°C, a clear decline in basic (8–10 pI) polypeptides was observed. The study demonstrated that the polypeptides identified as γ and δ conglutins are probably closely related to vigor and viability of seeds. PMID:28848591
Proteomic analysis in the Dufour’s gland of Africanized Apis mellifera workers (Hymenoptera: Apidae)
2017-01-01
The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour’s gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour’s glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour’s gland contributing to a more complete understanding of the biological functions of this gland in honeybees. PMID:28542566
[Plasma proteomic analysis in children with infectious mononucleosis].
Ran, Zhi-Ling; Xiao, Bin; Liu, Hong-Rui; Liu, You-Ping; Sheng, Qiao-Ni
2015-03-01
To explore the abnormal expression of plasma proteins by analysis of proteomic expression profile in children with infectious mononucleosis (IM). Two dimensional gel electrophoresis (2-DE) followed by the mass spectrometry was used to examine important protein spots with different expression levels between children with IM and normal controls. Seven differential proteins were obtained: hemopexin, vitamin D binding protein, fetuin A, C-reactive protein, apolipoprotein A, haptoglobin and transthyretin. Compared with the control group, haptoglobin showed a higher expression level in children with IM, and the expression levels of the other proteins were obviously down-regulated. The expression changes of differential proteins identified in this study are all related with the liver acute injury, suggesting that children with IM are associated with acute liver injury. Further studies on the characteristics of above proteins will contribute to the diagnosis and treatment of pediatric IM.
MAMP (microbe-associated molecular pattern)-induced changes in plasma membrane-associated proteins.
Uhlíková, Hana; Solanský, Martin; Hrdinová, Vendula; Šedo, Ondrej; Kašparovský, Tomáš; Hejátko, Jan; Lochman, Jan
2017-03-01
Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase. Observed changes in proteins were also confirmed on transcriptional level by qRT-PCR analysis. In addition, a significantly decreased accumulation of transcripts observed after employment of a mutant variant of cryptogein Leu41Phe, exhibiting a conspicuous defect in induction of resistance, sustains the contribution of identified proteins in cryptogein-triggered cellular responses. Our data provide further evidence for dynamic MAMP-induced changes in plasma membrane associated proteins. Copyright © 2016 Elsevier GmbH. All rights reserved.
Protein binding hot spots prediction from sequence only by a new ensemble learning method.
Hu, Shan-Shan; Chen, Peng; Wang, Bing; Li, Jinyan
2017-10-01
Hot spots are interfacial core areas of binding proteins, which have been applied as targets in drug design. Experimental methods are costly in both time and expense to locate hot spot areas. Recently, in-silicon computational methods have been widely used for hot spot prediction through sequence or structure characterization. As the structural information of proteins is not always solved, and thus hot spot identification from amino acid sequences only is more useful for real-life applications. This work proposes a new sequence-based model that combines physicochemical features with the relative accessible surface area of amino acid sequences for hot spot prediction. The model consists of 83 classifiers involving the IBk (Instance-based k means) algorithm, where instances are encoded by important properties extracted from a total of 544 properties in the AAindex1 (Amino Acid Index) database. Then top-performance classifiers are selected to form an ensemble by a majority voting technique. The ensemble classifier outperforms the state-of-the-art computational methods, yielding an F1 score of 0.80 on the benchmark binding interface database (BID) test set. http://www2.ahu.edu.cn/pchen/web/HotspotEC.htm .
Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua
2015-01-01
After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980
Wang, Dan; Sun, Yong; Chang, Lili; Tong, Zheng; Xie, Quanliang; Jin, Xiang; Zhu, Liping; He, Peng; Li, Hongbin; Wang, Xuchu
2018-06-30
Rubber particle (RP) is a specific organelle for natural rubber biosynthesis (NRB) and storage in rubber tree Hevea brasiliensis. NRB is processed by RP membrane-localized proteins, which were traditionally purified by repeated washing. However, we noticed many proteins in the discarded washing solutions (WS) from RP. Here, we compared the proteome profiles of WS, C-serum (CS) and RP by 2-DE, and identified 233 abundant proteins from WS by mass spectrometry. Many spots on 2-DE gels were identified as different protein species. We further performed shotgun analysis of CS, WS and RP and identified 1837, 1799 and 1020 unique proteins, respectively. Together with 2-DE, we finally identified 1825 proteins from WS, 246 were WS-specific. These WS-specific proteins were annotated in Gene Ontology, indicating most abundant pathways are organic substance metabolic process, protein degradation, primary metabolic process, and energy metabolism. Protein-protein interaction analysis revealed these WS-specific proteins are mainly involved in ribosomal metabolism, proteasome system, vacuolar protein sorting and endocytosis. Label free and Western blotting revealed many WS-specific proteins and protein complexes are crucial for NRB initiation. These findings not only deepen our understanding of WS proteome, but also provide new evidences on the roles of RP membrane proteins in NRB. Natural rubber is stored in rubber particle from the rubber tree. Rubber particles were traditionally purified by repeated washing, but many proteins were identified from the washing solutions (WS). We obtained the first visualization proteome profiles with 1825 proteins from WS, including 246 WS-specific ones. These WS proteins contain almost all enzymes for polyisoprene initiation and may play important roles in rubber biosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Van Cutsem, Emmanuel; Simonart, Géraldine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Boutry, Marc
2011-02-01
Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine
2005-04-01
Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.
Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing
2017-01-01
Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651
Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing
2017-01-01
As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.
Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith
2009-01-01
Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.
Ligand deconstruction: Why some fragment binding positions are conserved and others are not.
Kozakov, Dima; Hall, David R; Jehle, Stefan; Jehle, Sefan; Luo, Lingqi; Ochiana, Stefan O; Jones, Elizabeth V; Pollastri, Michael; Allen, Karen N; Whitty, Adrian; Vajda, Sandor
2015-05-19
Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand.
An, SuFang; Gong, FangPing; Wang, Wei
2012-01-01
Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs), mainly mannose-binding lectin (agglutinin), exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE). Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa) and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae. PMID:23185632
Wu, Xiaolin; Xiong, Erhui; An, Sufang; Gong, Fangping; Wang, Wei
2012-01-01
Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs), mainly mannose-binding lectin (agglutinin), exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE). Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa) and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae.
Pierrard, Marie-Aline; Kestemont, Patrick; Phuong, Nguyen Thanh; Tran, Minh Phu; Delaive, Edouard; Thezenas, Marie-Laëtitia; Dieu, Marc; Raes, Martine; Silvestre, Frédéric
2012-04-18
Proteomics technology are increasingly used in ecotoxicological studies to characterize and monitor biomarkers of exposure. The present study aims at identifying long term effects of malachite green (MG) exposure on the proteome of peripheral blood mononuclear cells (PBMC) from the Asian catfish, Pangasianodon hypophthalmus. A common (0.1 ppm) concentration for therapeutic treatment was applied twice with a 72 h interval. PBMC were collected directly at the end of the second bath of MG (T1) and after 1 month of decontamination (T2). Analytical 2D-DIGE gels were run and a total of 2551±364 spots were matched. Among them, MG induced significant changes in abundance of 116 spots with no recovery after one month of decontamination. Using LC-MS/MS and considering single identification per spot, we could identify 25 different proteins. Additionally, MG residues were measured in muscle and in blood indicating that leuco-MG has almost totally disappeared after one month of decontamination. This work highlights long term effects of MG treatment on the PBMC proteome from fish intended for human consumption. Copyright © 2012 Elsevier B.V. All rights reserved.
de Jesus, Jemmyson Romário; Galazzi, Rodrigo Moretto; de Lima, Tatiani Brenelli; Banzato, Cláudio Eduardo Muller; de Almeida Lima E Silva, Luiz Fernando; de Rosalmeida Dantas, Clarissa; Gozzo, Fábio Cézar; Arruda, Marco Aurélio Zezzi
2017-12-01
An exploratory analysis using proteomic strategies in blood serum of patients with bipolar disorder (BD), and with other psychiatric conditions such as Schizophrenia (SCZ), can provide a better understanding of this disorder, as well as their discrimination based on their proteomic profile. The proteomic profile of blood serum samples obtained from patients with BD using lithium or other drugs (N=14), healthy controls, including non-family (HCNF; N=3) and family (HCF; N=9), patients with schizophrenia (SCZ; N=23), and patients using lithium for other psychiatric conditions (OD; N=4) were compared. Four methods for simplifying the serum samples proteome were evaluated for both removing the most abundant proteins and for enriching those of lower-abundance: protein depletion with acetonitrile (ACN), dithiothreitol (DTT), sequential depletion using DTT and ACN, and protein equalization using commercial ProteoMiner® kit (PM). For proteomic evaluation, 2-D DIGE and nanoLC-MS/MS analysis were employed. PM method was the best strategy for removing proteins of high abundance. Through 2-D DIGE gel image comparison, 37 protein spots were found differentially abundant (p<0.05, Student's t-test), which exhibited ≥2.0-fold change of the average value of normalized spot intensities in the serum of SCZ, BD and OD patients compared to subject controls (HCF and HCNF). From these spots detected, 13 different proteins were identified: ApoA1, ApoE, ApoC3, ApoA4, Samp, SerpinA1, TTR, IgK, Alb, VTN, TR, C4A and C4B. Proteomic analysis allowed the discrimination of patients with BD from patients with other mental disorders, such as SCZ. The findings in this exploratory study may also contribute for better understanding the pathophysiology of these disorders and finding potential serum biomarkers for these conditions. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
López-Pedrouso, María; Bernal, Javier; Franco, Daniel; Zapata, Carlos
2014-07-23
High-resolution two-dimensional electrophoresis (2-DE) profiles of the protein phaseolin, the major seed storage protein of common bean, display great number of spots with differentially glycosylated and phosphorylated α- and β-type polypeptides. This work aims to test whether these complex profiles can be useful markers of genetic differentiation and seed protein quality in bean populations. The 2-DE phaseolin profile and the amino acid composition were examined in bean seeds from 18 domesticated and wild accessions belonging to the Mesoamerican and Andean gene pools. We found that proteomic distances based on 2-DE profiles were successful in identifying the accessions belonging to each gene pool and outliers distantly related. In addition, accessions identified as outliers from proteomic distances showed the highest levels of methionine content, an essential amino acid deficient in bean seeds. These findings suggest that 2-DE phaseolin profiles provide valuable information with potential of being used in common bean genetic improvement.
A reference map of the Arabidopsis thaliana mature pollen proteome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noir, Sandra; Braeutigam, Anne; Colby, Thomas
The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of themore » identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome.« less
Proteomic analysis of Herbaspirillum seropedicae cultivated in the presence of sugar cane extract.
Cordeiro, Fabio Aparecido; Tadra-Sfeir, Michelle Zibetti; Huergo, Luciano Fernandes; de Oliveira Pedrosa, Fábio; Monteiro, Rose Adele; de Souza, Emanuel Maltempi
2013-03-01
Bacterial endophytes of the genus Herbaspirillum colonize sugar cane and can promote plant growth. The molecular mechanisms that mediate plant- H. seropedicae interaction are poorly understood. In this work, we used 2D-PAGE electrophoresis to identify H. seropedicae proteins differentially expressed at the log growth phase in the presence of sugar cane extract. The differentially expressed proteins were validated by RT qPCR. A total of 16 differential spots (1 exclusively expressed, 7 absent, 5 up- and 3 down-regulated) in the presence of 5% sugar cane extract were identified; thus the host extract is able to induce and repress specific genes of H. seropedicae. The differentially expressed proteins suggest that exposure to sugar cane extract induced metabolic changes and adaptations in H. seropedicae presumably in preparation to establish interaction with the plant.
Protein Expression Profile using Two-Dimensional Gel Analysis in Squamous Cervical Cancer Patients
Bae, Su-Mi; Min, Hyun-Jin; Ding, Guo Hua; Kwak, Sun-Young; Cho, Young-Lae; Nam, Kye-Hyun; Park, Choong Hak; Kim, Yong-Wan; Kim, Chong-Kook; Han, Byoung-Don; Lee, Young-Joo; Kim, Do Kang
2006-01-01
Purpose Screening in cervical cancer is now progressing to discover candidate genes and proteins that may serve as biological markers and that play a role in tumor progression. We examined the protein expression patterns of the squamous cell carcinoma (SCC) tissues from Korean women with using two- dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight (MALDI- TOF) mass spectrometer. Materials and Methods Normal cervix and SCC tissues were solubilized and 2-DE was performed using pH 3~10 linear IPG strips of 17 cm length. The protein expression was evaluated using PDQuest 2-D software™. The differentially expressed protein spots were identified with a MALDI-TOF mass spectrometer, and the peptide mass spectra identifications were performed using the Mascot program and by searching the Swiss-prot or NCBInr databases. Results A total of 35 proteins were detected in SCC. 17 proteins were up-regulated and 18 proteins weredown-regulated. Among the proteins that were identified, 12 proteins (pigment epithelium derived factor, annexin A2 and A5, keratin 19 and 20, heat shock protein 27, smooth muscle protein 22 alpha, α-enolase, squamous cell carcinoma antigen 1 and 2, glutathione S-transferase and apolipoprotein a1) were protein previously known to be involved in tumor, and 21 proteins were newly identified in this study. Conclusion 2-DE offers the total protein expression profiles of SCC tissues; further characterization of these differentially expressed proteins will give a chance to identify the badly needed tumor-specific diagnostic markers for SCC. PMID:19771267
Makert, Gustavo R; Vorbrüggen, Susanne; Krautwald-Junghanns, Maria-Elisabeth; Voss, Matthias; Sohn, Kai; Buschmann, Tilo; Ulbert, Sebastian
2016-07-01
The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae.
He, Zhen-Yu; Wen, Hao; Shi, Chuan-Bing; Wang, Jie
2010-01-01
AIM: To investigate the early metastasis-associated proteins in sentinel lymph node micrometastasis (SLNMM) of colorectal cancer (CRC) through comparative proteome. METHODS: Hydrophobic protein samples were extracted from individual-matched normal lymph nodes (NLN) and SLNMM of CRC. Differentially expressed protein spots were detected by two-dimensional electrophoresis and image analysis, and subsequently identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry-mass spectrometry and Western blotting, respectively. RESULTS: Forty proteins were differentially expressed in NLN and SLNMM, and 4 metastasis-concerned proteins highly expressed in SLNMM were identified to be hnRNP A1, Ezrin, tubulin β-2C and Annexin A1. Further immunohistochemistry staining of these four proteins showed their clinicopathological characteristics in lymph node metastasis of CRC. CONCLUSION: Variations of hydrophobic protein expression in NLN and SLNMM of CRC and increased expression of hnRNP A1, Ezrin, tubulin β-2C and Annexin A1 in SLNMM suggest a significantly elevated early CRC metastasis. PMID:20872967
Molecular targets for diabetes mellitus-associated erectile dysfunction.
Yohannes, Elizabeth; Chang, Jinsook; Tar, Moses T; Davies, Kelvin P; Chance, Mark R
2010-03-01
Protein expression profiles in rat corporal smooth muscle tissue were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls (AMCs) at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four AMC rat corpora tissues were prepared independently and analyzed together across multiple quantitative two-dimensional gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 170 spots were differential expressed among the four experimental groups. A subsequent mass spectrometry analysis of the 170 spots identified a total of 57 unique proteins. Network analysis of these proteins using MetaCore suggested altered activity of transcriptional factors that are of too low abundance to be detected by the two-dimensional gel method. The proteins that were down-regulated with diabetes include isoforms of collagen that are precursors to fibril-forming collagen type 1; Hsp47, which assists and mediates the proper folding of procollagen; and several proteins whose abundance is controlled by sex hormones (e.g. CRP1 and A2U). On the other hand, proteins seen or predicted to be up-regulated include proteins involved in cell apoptosis (e.g. p53, 14-3-3-gamma, Serpinf1, Cct4, Cct5, and Sepina3n), proteins that neutralize the biological activity of nerve growth factor (e.g. anti-NGF 30), and proteins involved in lipid metabolism (e.g. apoA-I and apoA-IV). Subsequent Western blot validation analysis of p53, 14-3-3-gamma, and Hsp47 confirmed increased p53 and 14-3-3-gamma and decreased Hsp47 levels in separate samples. According to the results from the Western blot analysis, Hsp47 protein showed a approximately 3-fold decrease at 1 week and was virtually undetectable at 2 months in diabetic versus control. Taken together, our results identify novel candidate proteins playing a role in erectile dysfunction in diabetes resulting from STZ treatment.
Molecular Targets for Diabetes Mellitus-associated Erectile Dysfunction*
Yohannes, Elizabeth; Chang, Jinsook; Tar, Moses T.; Davies, Kelvin P.; Chance, Mark R.
2010-01-01
Protein expression profiles in rat corporal smooth muscle tissue were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls (AMCs) at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four AMC rat corpora tissues were prepared independently and analyzed together across multiple quantitative two-dimensional gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 170 spots were differential expressed among the four experimental groups. A subsequent mass spectrometry analysis of the 170 spots identified a total of 57 unique proteins. Network analysis of these proteins using MetaCoreTM suggested altered activity of transcriptional factors that are of too low abundance to be detected by the two-dimensional gel method. The proteins that were down-regulated with diabetes include isoforms of collagen that are precursors to fibril-forming collagen type 1; Hsp47, which assists and mediates the proper folding of procollagen; and several proteins whose abundance is controlled by sex hormones (e.g. CRP1 and A2U). On the other hand, proteins seen or predicted to be up-regulated include proteins involved in cell apoptosis (e.g. p53, 14-3-3-γ, Serpinf1, Cct4, Cct5, and Sepina3n), proteins that neutralize the biological activity of nerve growth factor (e.g. anti-NGF 30), and proteins involved in lipid metabolism (e.g. apoA-I and apoA-IV). Subsequent Western blot validation analysis of p53, 14-3-3-γ, and Hsp47 confirmed increased p53 and 14-3-3-γ and decreased Hsp47 levels in separate samples. According to the results from the Western blot analysis, Hsp47 protein showed a ∼3-fold decrease at 1 week and was virtually undetectable at 2 months in diabetic versus control. Taken together, our results identify novel candidate proteins playing a role in erectile dysfunction in diabetes resulting from STZ treatment. PMID:20007950
Yoshida, Kanako; Kuramitsu, Yasuhiro; Murakami, Kohei; Ryozawa, Shomei; Taba, Kumiko; Kaino, Seiji; Zhang, Xiulian; Sakaida, Isao; Nakamura, Kazuyuki
2011-06-01
TS-1 is an oral anticancer agent containing two biochemical modulators for 5-fluorouracil (5-FU) and tegafur (FT), a metabolically activated prodrug of 5-FU. TS-1 has been recognized as an effective anticancer drug using standard therapies for patients with advanced pancreatic cancer along with gemcitabine. However, a high level of inherent and acquired tumor resistance to TS-1 induces difficulty in the treatment. To identify proteins linked to the TS-1-resistance of pancreatic cancer, we profiled protein expression levels in samples of TS-1-resistant and -sensitive pancreatic cancer cell lines by using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The cytotoxicity of a 5-FU/5-chloro-2,4-dihydroxypyridine (CDHP) combination towards pancreatic cancer cell lines was evaluated by MTS assay. Panc-1, BxPC-3, MiaPaCa-2 and PK59 showed high sensitivity to the 5-FU/CDHP combination (TS-1-sensitive), whereas PK45p and KLM-1 were much less sensitive (TS-1-resistant). Proteomic analysis showed that eleven spots, including T-complex protein 1 subunit beta, ribonuclease inhibitor, elongation factor 1-delta, peroxiredoxin-2 and superoxide dismutase (Cu-Zn), appeared to be down-regulated, and 29 spots, including hypoxia up-regulated protein 1, lamin-A/C, endoplasmin, fascin and annexin A1, appeared to be up-regulated in TS-1-resistant cells compared with -sensitive cells. These results suggest that the identified proteins showing different expression between TS-1-sensitive and -resistant pancreatic cancer cells possibly relate to TS-1-sensitivity. These findings could be useful to overcome the TS-1-resistance of pancreatic cancer cells.
AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking.
Ben-Shimon, Avraham; Niv, Masha Y
2015-05-05
The huge conformational space stemming from the inherent flexibility of peptides is among the main obstacles to successful and efficient computational modeling of protein-peptide interactions. Current peptide docking methods typically overcome this challenge using prior knowledge from the structure of the complex. Here we introduce AnchorDock, a peptide docking approach, which automatically targets the docking search to the most relevant parts of the conformational space. This is done by precomputing the free peptide's structure and by computationally identifying anchoring spots on the protein surface. Next, a free peptide conformation undergoes anchor-driven simulated annealing molecular dynamics simulations around the predicted anchoring spots. In the challenging task of a completely blind docking test, AnchorDock produced exceptionally good results (backbone root-mean-square deviation ≤ 2.2Å, rank ≤15) for 10 of 13 unbound cases tested. The impressive performance of AnchorDock supports a molecular recognition pathway that is driven via pre-existing local structural elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi (Rajiformes: Rajidae).
Li, Weidong; Chen, Xiao; Liu, Wenai; Sun, Renjie; Zhou, Haolang
2016-07-01
The complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi was determined in this study. It is 16,974 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one putative control region. The overall base composition is 30.5% A, 27.8% C, 14.0% G, and 27.8% T. There are 28 bp short intergenic spaces located in 12 gene junctions and 31 bp overlaps located in nine gene junctions in the whole mitogenome. Two start codons (ATG and GTG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The lengths of 22 tRNA genes range from 68 (tRNA-Ser2) to 75 (tRNA-Leu1) bp. The origin of L-strand replication (OL) sequence (37 bp) was identified between the tRNA-Asn and tRNA-Cys genes. The control region is 1311 bp in length with high A + T and poor G content.
Arieli, Ran
2015-01-15
All air breathing vertebrates are endowed with pulmonary surfactants, surface-active lipoprotein complexes formed by type II alveolar cells. Surfactants are deposited in clearly defined areas on the luminal aspect of blood vessels, producing hydrophobic spots. Gas nanobubbles measuring 5-100nm form spontaneously on the smooth hydrophobic spot from dissolved gas. Bubbles nucleate and grow at these spots after decompression from high pressure. Proteins with hydrophobic regions circulating in the blood will adhere to the gas phase-plasma interface. Deformation of their secondary and tertiary configuration will present them as foreign molecules or autoantigens. Components of the intact protein which are also present in a deformed protein may be recognized as foreign too. This process is proposed as the trigger for autoimmune diseases. The presence of autoimmune disease in air breathing vertebrates, increased autoimmunity and the elevated risk of decompression sickness with age, as well as variable sensitivity to both diseases, can be matched with the appearance of surfactant spots. Eliminating these spots may provide protection against both diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Water-Soluble Dried Blood Spot in Protein Analysis: A Proof-of-Concept Study.
Rosting, Cecilie; Gjelstad, Astrid; Halvorsen, Trine Grønhaug
2015-08-04
In the present work human chorionic gonadotropin (hCG) was used as a model protein in a proof-of-concept study combining water-soluble dried blood spot (DBS) material in liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based protein analysis. A water-soluble material consisting of commercially available carboxymethyl cellulose (CMC) was evaluated as sampling material for this purpose. The material dissolved readily at physiological pH. Different sample preparation methods were evaluated, and in the final method, 15 μL of whole blood was deposited and dried on CMC before the whole spot was dissolved prior to cleanup by immunoaffinity extraction, tryptic digest, and preconcentration by solid-phase extraction (SPE). The results indicated complete dissolution of hCG from the spots, acceptable limit of detection (LOD) (0.1 IU/mL), linearity (R(2) = 0.959), accuracy (16%), and precision (≤22%). Long-term stability (45 days) of hCG in dried spots at reduced temperatures (≤8 °C) was also demonstrated. The analyte recovery was comparable to the commercially available nonsolvable cellulose material (FTA DMPK-C card).
Lopes, Rosana; Solter, Philip F; Sisson, D David; Oyama, Mark A; Prosek, Robert
2006-06-01
To map canine mitochondrial proteins and identify qualitative and quantitative differences in heart mitochondrial protein expression between healthy dogs and dogs with naturally occurring and induced dilated cardiomyopathy (DCM). Left ventricle samples were obtained from 7 healthy dogs, 7 Doberman Pinschers with naturally occurring DCM, and 7 dogs with induced DCM. Fresh and frozen mitochondrial fractions were isolated from the left ventricular free wall and analyzed by 2-dimensional electrophoresis. Protein spots that increased or decreased in density by >or= 2-fold between groups were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometry. Within narrow pH gradients of control canine heart mitochondrial samples, a total of 1,528 protein spots were revealed. Forty subunits of heart mitochondrial proteins that differ significantly from control tissues were altered in tissue specimens from dogs with naturally occurring and induced forms of DCM. The most affected heart mitochondrial proteins in both groups were those of oxidative phosphorylation (55%). Upregulation of manganese superoxide dismutase was suggestive of heart oxidative injury in tissue specimens from dogs with both forms of DCM. Evidence of apoptosis was associated with overexpression of the heart mitochondrial voltage-dependent anion channel-2 protein and endonuclease G in tissue specimens from dogs with induced DCM. Alterations of heart mitochondrial proteins related to oxidative phosphorylation dysfunction were more prevalent in tissue specimens from dogs with induced or naturally occurring DCM, compared with those of control dogs.
Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon
Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between taumore » and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study of up- and down-regulation of proteins during the progression of AD helps to explain the mechanisms associated with neuronal degeneration in AD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg
2007-07-01
The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals ofmore » SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.« less
Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells.
Buhr, Nicolas; Carapito, Christine; Schaeffer, Christine; Kieffer, Emmanuelle; Van Dorsselaer, Alain; Viville, Stéphane
2008-06-01
Embryonic stem cells (ESCs) and embryonic germ cells (EGCs) provide exciting models for understanding the underlying mechanisms that make a cell pluripotent. Indeed, such understanding would enable dedifferentiation and reprogrammation of any cell type from a patient needing a cell therapy treatment. Proteome analysis has emerged as an important technology for deciphering these biological processes and thereby ESC and EGC proteomes are increasingly studied. Nevertheless, their nuclear proteomes have only been poorly investigated up to now. In order to investigate signaling pathways potentially involved in pluripotency, proteomic analyses have been performed on mouse ESC and EGC nuclear proteins. Nuclei from ESCs and EGCs at undifferentiated stage were purified by subcellular fractionation. After 2-D separation, a subtractive strategy (subtracting culture environment contaminating spots) was applied and a comparison of ESC, (8.5 day post coïtum (dpc))-EGC and (11.5 dpc)-EGC specific nuclear proteomes was performed. A total of 33 ESC, 53 (8.5 dpc)-EGC, and 36 (11.5 dpc)-EGC spots were identified by MALDI-TOF-MS and/or nano-LC-MS/MS. This approach led to the identification of two isoforms (with and without N-terminal acetylation) of a known pluripotency marker, namely developmental pluripotency associated 5 (DPPA5), which has never been identified before in 2-D gel-MS studies of ESCs and EGCs. Furthermore, we demonstrated the efficiency of our subtracting strategy, in association with a nuclear subfractionation by the identification of a new protein (protein arginine N-methyltransferase 7; PRMT7) behaving as proteins involved in pluripotency.
Hayashi, Ami; Okada, Tomonari; Matsumoto, Hiroshi; Nagaoka, Yume; Wada, Toshikazu; Gondo, Asako; Nango, Tomoka; Miyaoka, Yoshitaka; Watanabe, Kanna; Iwata, Azusa; Nakao, Toshiyuki
2013-01-01
We investigate the validity of the assessment of urinary protein excretion by spot urine samples collected by different methods in outpatients with chronic kidney disease (CKD). SUBJECTS AND METHODS We obtained 24-hour urine and two spot urine samples, including the first morning urine and daytime urine in 159 CKD patients. Urinary protein excretion was assessed by the protein/creatinine ratio from spot urine samples (morning: m-UP (g/gCr), daytime: d-UP (g/gCr) ]. We examined the correlations and the differences among m-UP, d-UP and the actual urinary protein excretion obtained by 24-hour urine (a-UP(g/day) . Significant correlations were found between m-UP and a-UP, and between d-UP and a-UP (r = 0.88, 0.85; p < 0.001). Correlations between m-UP and a-UP were greater relative to those between d-UP and a-UP in patients with less than 3.5 g/day of a-UP and in patients with CKD stages 1 to approximately 3. The percent difference between m-UP and a-UP was--16.0 +/- 40.5%, and that between d-UP and a-UP was 27.1 +/- 72.9%. The absolute value of the percent difference between d-UP and a-UP tended to be greater than that between m-UP and a-UP (34.9 +/- 25.9% vs. 49.9 +/- 59.9%, p = 0.06). Urinary protein/creatinie ratio of the first morning urine is better approximate the urinary protein excretion obtained by 24-hour urine compared with that of spot urine in the daytime.
Liu, Mingxue; Liu, Jing; Liu, Xing; Wei, Guanghui
2014-06-01
In previous studies, we established an animal model of human congenital hydronephrosis with exposure of developing mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but the etiopathogenesis is not entirely clear. The present study was to identify the changes that may be involved in the etiology at the protein level. C57BL/6J mice fetuses were treated with TCDD. Comparative proteomic analysis was adopted to identify the proteins associated with hydronephrosis induced by TCDD. Two-dimensional electrophoresis display revealed that 19 protein spots were differentially expressed in the upper urinary tract tissues in fetal mice after exposure to TCDD. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) identified 12 up-regulated proteins: peroxiredoxin I (Prx I), cadherin 6, gamma-actin, radixin, desmin, type II transforming growth factor-beta receptor, chromogranin B, serum albumin precursor, transferrin, hypothetical protein LOC70984, lipk protein, and zinc finger protein 336. Histochemical staining indicated that Prx I protein was positively expressed in the ureteric epithelium in the treated group, and not in the control group, which is consistent with MALDI-TOF-MS. Prx I protein may be a potential biomarker or responsive protein of hydronephrosis in fetal mice induced by TCDD. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
2014-01-01
Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745
Interolog interfaces in protein–protein docking
Alsop, James D.
2015-01-01
ABSTRACT Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near‐native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure‐based models of orthologs were generated for comparison with sequence‐based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940–1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:25740680
Statistical Analysis of Variation in the Human Plasma Proteome
Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; ...
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less
Proteins evolve on the edge of supramolecular self-assembly.
Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D
2017-08-10
The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.
Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration.
Guo, Qi; Zhao, Guixia; Ni, Jiajia; Guo, Yanan; Zhang, Yizhe; Tian, Qingnan; Zhang, Shoutao
2017-11-25
Planarians are an ideal model organism for regeneration research due to their amazing ability to regenerate. DNA replication is crucial for genome stability. Replication factor C (RFC), which is a replication factor C-like complex and plays an important role during DNA replication in eukaryotes, has been reported as a wound response factor during planarian regeneration. However, how RFC controls regeneration in planarians by regulating DNA replication remains to be explained. Here, we used a two-dimensional electrophoresis (2-DE) proteomic approach to identify differentially expressed proteins in intact and regenerated planarians. Approximately 132 protein spots showed differences between intact and regenerative tissues. We selected 21 significantly expressed protein spots and processed them using TOF MS analysis. Finally, we cloned three of these candidate genes (Djhsp70, Djrfc2, Djfaim), focusing on the function of Djrfc2 during regeneration. We found that the distribution of Djrfc2 tends toward the wound site. RNA interference (RNAi) of Djrfc2 increases the number of dividing cells and the expression level of planarian neoblast marker genes, which may result in hyper-proliferation. Our studies use an available approach to directly study the regeneration dynamic at the protein level and provide further evidence to support a function of Djrfc2 in planarian regeneration. Copyright © 2017. Published by Elsevier Inc.
Proteins evolve on the edge of supramolecular self-assembly
NASA Astrophysics Data System (ADS)
Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.
2017-08-01
The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.
Cecconi, Daniela; Milli, Alberto; Rinalducci, Sara; Zolla, Lello; Zapparoli, Giacomo
2009-09-01
Cultures of Oenococcus oeni, the most important malolactic bacterium, are used to induce malolactic fermentation in wine. Survival assays in two different wines confirmed that cells acclimated for 24 h in half-strength wine-like medium (acclimation medium) enhanced the malolactic performances. To investigate the effect of the pre-incubation phase on cell physiology, a proteomic study was carried out. Total protein extracts of acclimated and non-acclimated cell cultures (control) were analyzed by 2-D-PAGE. A total of 20 out of approximately 400 spots varied significantly. All the spots were identified by MS analysis and most of them were proteins involved in metabolism, transcription/translation processes and stress response. The results revealed the different physiological status between non-acclimated and acclimated cells explaining, in part, their different behavior in wine. Regulation of stress proteins such as heat and cold shock proteins was involved. Moreover, the availability of sugars and amino acids (even if at low concentration) in acclimation medium determined a modulation of energy metabolism enhancing the resistance to stressful conditions (as those that cells find in wine when inoculated). Finally, this proteomic study increased knowledge concerning the physiological changes in freeze-dried culture occurring with pre-inoculation procedures.
Proteomic profiles in hyperandrogenic syndromes.
Misiti, S; Stigliano, A; Borro, M; Gentile, G; Michienzi, S; Cerquetti, L; Bucci, B; Argese, N; Brunetti, E; Simmaco, M; Toscano, V
2010-03-01
Polycystic ovary syndrome (PCOS) and congenital adrenal hyperplasia (CAH) represent the most common causes of hyperandrogenism. Although the etiopathogeneses of these syndromes are different, they share many clinical and biochemical signs, such as hirsutism, acne, and chronic anovulation. Experimental data have shown that peripheral T-lymphocytes function as molecular sensors, being able to record molecular signals either at staminal and mature cell levels, or hormones at systemic levels. Twenty PCOS women and 10 CAH with 21-hydroxylase deficiency, aged between 18-35 yr, were studied. T-cells purified from all patients and 20 healthy donors have been analyzed by 2-dimensional gel electrophoresis. Silver-stained proteomic map of each patient was compared with a control map obtained by pooling protein samples of the 20 healthy subjects. Spots of interest were identified by peptide mass fingerprint. Computer analysis evidenced several peptidic spots significantly modulated in all patients examined. Some proteins were modulated in both syndromes, others only in PCOS or in CAH. These proteins are involved in many physiological processes as the functional state of immune system, the regulation of the cytoskeleton structure, the oxidative stress, the coagulation process, and the insulin resistance. Identification of the physiological function of these proteins could help to understand ethiopathogenetic mechanisms of hyperandrogenic syndromes and its complications.
Della Corte, Anna; Maugeri, Norma; Pampuch, Agnieszka; Cerletti, Chiara; de Gaetano, Giovanni; Rotilio, Domenico
2008-02-01
Thrombin is an agonist inducing platelet activation. We combined two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF MS) to analyse differentially expressed proteins secreted from thrombin-stimulated platelets. Human washed platelets, from healthy volunteers, were stimulated with thrombin 0.5 U/ml at 37 degrees C without stirring and the secreted proteins were resolved by 2D-DIGE. By image analysis, 1094 spots were detected in the 2D gel. The spots whose mean intensity showed at least a five-fold change intensity increase or decrease in the thrombin-activated platelet gel in comparison with unstimulated control were digested by trypsin and subjected to MALDI-TOF MS analysis. Peptides from mass spectra of in-gel digest samples were matched against available databases, using the Mascot search engine (Matrix Science) for peptide mass fingerprint. In the activated platelet secretome, transferrin, glutathione-transferase, WD repeat protein, ER-60, thrombospondin-1 precursor and thrombospondin were the most abundant. Also lamin A, a nuclear protein, not previously identified in platelets, appeared to be released. The novel strategy to combine 2D-DIGE with MALDI-TOF MS is a useful approach for a quantitative analysis of the effect of thrombin on the secretome profile of human platelets.
Statistical analysis of variation in the human plasma proteome.
Corzett, Todd H; Fodor, Imola K; Choi, Megan W; Walsworth, Vicki L; Turteltaub, Kenneth W; McCutchen-Maloney, Sandra L; Chromy, Brett A
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.
Wang, Hao; Lai, Duo; Yuan, Mei; Xu, Hanhong
2014-04-01
Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protein profiles associated with survival in lung adenocarcinoma
Chen, Guoan; Gharib, Tarek G; Wang, Hong; Huang, Chiang-Ching; Kuick, Rork; Thomas, Dafydd G.; Shedden, Kerby A.; Misek, David E.; Taylor, Jeremy M. G.; Giordano, Thomas J.; Kardia, Sharon L. R.; Iannettoni, Mark D.; Yee, John; Hogg, Philip J.; Orringer, Mark B.; Hanash, Samir M.; Beer, David G.
2003-01-01
Morphologic assessment of lung tumors is informative but insufficient to adequately predict patient outcome. We previously identified transcriptional profiles that predict patient survival, and here we identify proteins associated with patient survival in lung adenocarcinoma. A total of 682 individual protein spots were quantified in 90 lung adenocarcinomas by using quantitative two-dimensional polyacrylamide gel electrophoresis analysis. A leave-one-out cross-validation procedure using the top 20 survival-associated proteins identified by Cox modeling indicated that protein profiles as a whole can predict survival in stage I tumor patients (P = 0.01). Thirty-three of 46 survival-associated proteins were identified by using mass spectrometry. Expression of 12 candidate proteins was confirmed as tumor-derived with immunohistochemical analysis and tissue microarrays. Oligonucleotide microarray results from both the same tumors and from an independent study showed mRNAs associated with survival for 11 of 27 encoded genes. Combined analysis of protein and mRNA data revealed 11 components of the glycolysis pathway as associated with poor survival. Among these candidates, phosphoglycerate kinase 1 was associated with survival in the protein study, in both mRNA studies and in an independent validation set of 117 adenocarcinomas and squamous lung tumors using tissue microarrays. Elevated levels of phosphoglycerate kinase 1 in the serum were also significantly correlated with poor outcome in a validation set of 107 patients with lung adenocarcinomas using ELISA analysis. These studies identify new prognostic biomarkers and indicate that protein expression profiles can predict the outcome of patients with early-stage lung cancer. PMID:14573703
2014-01-01
Background Canine babesiosis is a tick-borne disease that is caused by the haemoprotozoan parasites of the genus Babesia. There are limited data on serum proteomics in dogs, and none of the effect of babesiosis on the serum proteome. The aim of this study was to identify the potential serum biomarkers of babesiosis using proteomic techniques in order to increase our understanding about disease pathogenesis. Results Serum samples were collected from 25 dogs of various breeds and sex with naturally occurring babesiosis caused by B. canis canis. Blood was collected on the day of admission (day 0), and subsequently on the 1st and 6th day of treatment. Two-dimensional electrophoresis (2DE) of pooled serum samples of dogs with naturally occurring babesiosis (day 0, day 1 and day 6) and healthy dogs were run in triplicate. 2DE image analysis showed 64 differentially expressed spots with p ≤ 0.05 and 49 spots with fold change ≥2. Six selected spots were excised manually and subjected to trypsin digest prior to identification by electrospray ionisation mass spectrometry on an Amazon ion trap tandem mass spectrometry (MS/MS). Mass spectrometry data was processed using Data Analysis software and the automated Matrix Science Mascot Daemon server. Protein identifications were assigned using the Mascot search engine to interrogate protein sequences in the NCBI Genbank database. A number of differentially expressed serum proteins involved in inflammation mediated acute phase response, complement and coagulation cascades, apolipoproteins and vitamin D metabolism pathway were identified in dogs with babesiosis. Conclusions Our findings confirmed two dominant pathogenic mechanisms of babesiosis, haemolysis and acute phase response. These results may provide possible serum biomarker candidates for clinical monitoring of babesiosis and this study could serve as the basis for further proteomic investigations in canine babesiosis. PMID:24885808
Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee
2014-01-01
Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.
Chiangjong, Wararat; Thongboonkerd, Visith
2016-04-05
Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium.
Differential expression of genes and proteins associated with wool follicle cycling.
Liu, Nan; Li, Hegang; Liu, Kaidong; Yu, Juanjuan; Cheng, Ming; De, Wei; Liu, Jifeng; Shi, Shuyan; He, Yanghua; Zhao, Jinshan
2014-08-01
Sheep are valuable resources for the wool industry. Wool growth of Aohan fine wool sheep has cycled during different seasons in 1 year. Therefore, identifying genes that control wool growth cycling might lead to ways for improving the quality and yield of fine wool. In this study, we employed Agilent sheep gene expression microarray and proteomic technology to compare the gene expression patterns of the body side skins at August and December time points in Aohan fine wool sheep (a Chinese indigenous breed). Microarray study revealed that 2,223 transcripts were differentially expressed, including 1,162 up-regulated and 1,061 down-regulated transcripts, comparing body side skin at the August time point to the December one (A/D) in Aohan fine wool sheep. Then seven differentially expressed genes were selected to validated the reliability of the gene chip data. The majority of the genes possibly related to follicle development and wool growth could be assigned into the categories including regulation of receptor binding, extracellular region, protein binding and extracellular space. Proteomic study revealed that 84 protein spots showed significant differences in expression levels. Of the 84, 63 protein spots were upregulated and 21 were downregulated in A/D. Finally, 55 protein points were determined through MALDI-TOF/MS analyses. Furthermore, the regulation mechanism of hair follicle might resemble that of fetation.
Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk.
Hinz, Katharina; O'Connor, Paula M; Huppertz, Thom; Ross, R Paul; Kelly, Alan L
2012-05-01
Proteomic analysis of bovine, caprine, buffalo, equine and camel milk highlighted significant interspecies differences. Camel milk was found to be devoid of β-lactoglobulin, whereas β-lactoglobulin was the major whey protein in bovine, buffalo, caprine, and equine milk. Five different isoforms of κ-casein were found in camel milk, analogous to the micro-heterogeneity observed for bovine κ-casein. Several spots observed in 2D-electrophoretograms of milk of all species could tentatively be identified as polypeptides arising from the enzymatic hydrolysis of caseins. The understanding gained from the proteomic comparison of these milks may be of relevance both in terms of identifying sources of hypoallergenic alternatives to bovine milk and detection of adulteration of milk samples and products.
Caititu: a tool to graphically represent peptide sequence coverage and domain distribution.
Carvalho, Paulo C; Junqueira, Magno; Valente, Richard H; Domont, Gilberto B
2008-10-07
Here we present Caititu, an easy-to-use proteomics software to graphically represent peptide sequence coverage and domain distribution for different correlated samples (e.g. originated from 2D gel spots) relatively to the full-sequence of the known protein they are related to. Although Caititu has a broad applicability, we exemplify its usefulness in Toxinology using snake venom as a model. For example, proteolytic processing may lead to inactivation or loss of domains. Therefore, our proposed graphic representation for peptides identified by two dimensional electrophoresis followed by mass spectrometric identification of excised spots can aid in inferring what kind of processing happened to the toxins, if any. Caititu is freely available to download at: http://pcarvalho.com/things/caititu.
Anel-López, L; Ortega-Ferrusola, C; Martínez-Rodríguez, C; Álvarez, M; Borragán, S; Chamorro, C; Peña, F J; Anel, L; de Paz, P
2017-01-01
Seminal plasma (SP) plays an important role in the motility, viability and maintenance of the fertilizing capacity of mammalian spermatozoa. This study is the first on brown bear (Ursus arctos) SP components, and has two main objectives: 1) to define the SP composition in bear ejaculate and 2) to identify variations in SP composition in relation to high and low levels of testosterone in serum during the breeding season. Forty-eight sperm samples from 30 sexually mature male brown bears (Ursus arctos) were obtained by electroejaculation, and their serum testosterone levels were assessed to sort the animals into 2 groups (high and low testosterone levels, threshold 5 ng/dl). The biochemical and protein compositions of the SP samples were assessed, and sperm motility was analyzed. We found that lactate dehydrogenase was significantly higher in the low-serum-testosterone samples, while concentrations of lipase and Mg+ values were significantly higher in the high-serum-testosterone samples. In contrast, sperm motility did not significantly differ (P>0.05) between the testosterone level groups (total motility: 74.42.8% in the high-level group vs. 77.1±4.7% in the low-level group). A reference digital model was constructed since there is no information for this wild species. To do this, all gel images were added in a binary multidimensional image and thirty-three spots were identified as the most-repeated spots. An analysis of these proteins was done by qualitative equivalency (isoelectric point and molecular weight) with published data for a bull. SP protein composition was compared between bears with high and low serum testosterone, and three proteins (binder of sperm and two enzymes not identified in the reference bull) showed significant (P<0.05) quantitative differences. We conclude that male bears with high or low serum testosterone levels differs only in some properties of their SP, differences in enzyme LDIP2, energy source LACT2, one protein (similar to BSP1) and Mg ion were identified between these two groups. These data may inform the application of SP to improve bear semen extenders.
Kuzuya, Kentaro; Ichihara, Sahoko; Suzuki, Yuka; Inoue, Chisa; Ichihara, Gaku; Kurimoto, Syota; Oikawa, Shinji
2018-01-01
Given the hypothesis that inflammation plays a critical role in the progression of cardiovascular diseases, the aim of the present study was to identify new diagnostic and prognostic biomarkers of myocardial proteins involved in early-phase cardiac impairment, using proteomics analysis. Using the two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF tandem mass spectrometry, we compared differences in the expression of proteins in the whole left ventricles between control hamsters, dilated cardiomyopathic hamsters (TO-2), and hypertrophy cardiomyopathic hamsters (Bio14.6) at 6 weeks of age (n = 6, each group). Proteomic analysis identified 10 protein spots with significant alterations, with 7 up-regulated and 3 down-regulated proteins in the left ventricles of both TO-2 and Bio 14.6 hamsters, compared with control hamsters. Of the total alterations, peroxiredoxin 2 (PRDX2) showed significant upregulation in the left ventricles of TO-2 and Bio 14.6 hamsters. Our data suggest that PRDX2, a redox regulating molecule, is involved in early-phase left ventricular impairment in hamsters with cardiomyopathy.
Identification of fibrinogen-binding proteins of Aspergillus fumigatus using proteomic approach.
Upadhyay, Santosh Kumar; Gautam, Poonam; Pandit, Hrishikesh; Singh, Yogendra; Basir, Seemi Farhat; Madan, Taruna
2012-03-01
Aspergillus fumigatus, the main etiological agent for various forms of human aspergillosis, gets access to the respiratory system of human host by inhalation of airborne conidia. These conidia possibly adhere to extracellular matrix (ECM) proteins. Among the ECM proteins involved in adherence, fibrinogen is thought to be crucial. Here, we studied whether A. fumigatus three-week culture filtrate (3wcf) proteins promote binding of A. fumigatus to ECM proteins and promote fungal growth. We observed that incubation of ECM with 3wcf proteins led to dose- and time-dependent increase in adherence of conidia to the ECM. In order to identify the catalogue of fibrinogen-binding A. fumigatus proteins, we carried out fibrinogen affinity blotting using two-dimensional gel electrophoresed 3wcf proteins. A total of 15 fibrinogen-binding protein spots corresponding to 7 unique proteins were identified in 3wcf using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF). Among these, 4 proteins, namely, beta-glucosidase, alpha-mannosidase, pectate lyase A and oryzin precursor were predicted to have cell wall or extracellular localization, whereas amidase family protein and two hypothetical proteins did not display the signal sequence. This study reports seven novel fibrinogen-binding proteins of A. fumigatus, some of which could be further explored for targeting the adhesion phenomenon as antifungal strategy.
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-11-19
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-01-01
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides. PMID:28952593
Ramsay, Andy; Yassin, Mohammed Ahmed; Cambanis, Alexis; Hirao, Susumu; Almotawa, Ahmad; Gammo, Mohamed; Lawson, Lovett; Arbide, Izabel; Al-Aghbari, Nasher; Al-Sonboli, Najla; Sherchand, Jeevan Bahadur; Gauchan, Punita; Cuevas, Luis Eduardo
2009-01-01
Setting. Ethiopia, Nepal, Nigeria, and Yemen. Objective. To reduce the time to complete sputum microscopy. Design. Cross-sectional surveys enrolling 923 patients with chronic cough in the 4 countries and using similar protocols. Spot-morning-spot sputum specimens were collected. An additional sputum specimen (Xspot) was collected one hour after the first, and the yields of the first two or the three specimens collected as spot-morning-spot or spot-Xspot-morning were compared. Results. 216 patients had ≥ one positive smear. 210 (97%) were identified by the spot-morning-spot, and 210 (97%) were identified by the spot-Xspot-morning specimens, with 203 and 200 identified by the first 2 specimens of each approach, respectively. Neither difference was significant. Conclusions. The time to complete smear microscopy could be reduced. PMID:20309419
Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.)
2011-01-01
Background Members of the legume genus Lupinus exude phloem 'spontaneously' from incisions made to the vasculature. This feature was exploited to document macromolecules present in exudate of white lupin (Lupinus albus [L.] cv Kiev mutant), in particular to identify proteins and RNA molecules, including microRNA (miRNA). Results Proteomic analysis tentatively identified 86 proteins from 130 spots collected from 2D gels analysed by partial amino acid sequence determination using MS/MS. Analysis of a cDNA library constructed from exudate identified 609 unique transcripts. Both proteins and transcripts were classified into functional groups. The largest group of proteins comprised those involved in metabolism (24%), followed by protein modification/turnover (9%), redox regulation (8%), cell structural components (6%), stress and defence response (6%) with fewer in other groups. More prominent proteins were cyclophilin, ubiquitin, a glycine-rich RNA-binding protein, a group of proteins that comprise a glutathione/ascorbate-based mechanism to scavenge oxygen radicals, enzymes of glycolysis and other metabolism including methionine and ethylene synthesis. Potential signalling macromolecules such as transcripts encoding proteins mediating calcium level and the Flowering locus T (FT) protein were also identified. From around 330 small RNA clones (18-25 nt) 12 were identified as probable miRNAs by homology with those from other species. miRNA composition of exudate varied with site of collection (e.g. upward versus downward translocation streams) and nutrition (e.g. phosphorus level). Conclusions This is the first inventory of macromolecule composition of phloem exudate from a species in the Fabaceae, providing a basis to identify systemic signalling macromolecules with potential roles in regulating development, growth and stress response of legumes. PMID:21342527
NASA Astrophysics Data System (ADS)
Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan
2014-02-01
Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.
Hippophae rhamnoides N-glycoproteome analysis: a small step towards sea buckthorn proteome mining.
Sougrakpam, Yaiphabi; Deswal, Renu
2016-10-01
Hippophae rhamnoides is a hardy shrub capable of growing under extreme environmental conditions namely, high salt, drought and cold. Its ability to grow under extreme conditions and its wide application in pharmaceutical and nutraceutical industry calls for its in-depth analysis. N-glycoproteome mining by con A affinity chromatography from seedling was attempted. The glycoproteome was resolved on first and second dimension gel electrophoresis. A total of 48 spots were detected and 10 non-redundant proteins were identified by MALDI-TOF/TOF. Arabidopsis thaliana protein disulfide isomerase-like 1-4 (ATPDIL1-4) electron transporter, protein disulphide isomerase, calreticulin 1 (CRT1), glycosyl hydrolase family 38 (GH 38) protein, phantastica, maturase k, Arabidopsis trithorax related protein 6 (ATXR 6), cysteine protease inhibitor were identified out of which ATXR 6, phantastica and putative ATPDIL1-4 electron transporter are novel glycoproteins. Calcium binding protein CRT1 was validated for its calcium binding by stains all staining. GO analysis showed involvement of GH 38 and ATXR 6 in glycan and lysine degradation pathways. This is to our knowledge the first report of glycoproteome analysis for any Elaeagnaceae member.
Identification of serum protein markers for early diagnosis of pregnancy in buffalo.
Buragohain, Lukumoni; Nanda, Trilok; Ghosh, Arnab; Ghosh, Mayukh; Kumar, Rajesh; Kumar, Sunil; Gupta, Sambhu Sharan; Bharali, Arpita; Mohanty, Ashok K; Singh, Inderjeet; Balhara, Ashok Kumar
2017-08-01
Improper or delayed pregnancy diagnosis has significant impact over animal production, particularly in buffaloes which inherently suffer from several reproductive inefficiencies. Thus the present study has undertaken to identify serum protein markers pertaining to early pregnancy diagnosis in buffaloes. Serum samples were collected from 10 pregnant Murrah Buffalo heifers at weekly intervals from days 0-35 post-artificial insemination and from 12 inseminated non-pregnant cyclic buffalo heifers on days 0, 7, 14 and 21. Two-dimensional gel electrophoresis and densitometric analysis revealed the presence of five protein spots showing average density fold change of ≥4 during early pregnancy. Mass spectrometry analysis identified these up-regulated proteins as anti-testosterone antibody light chain, apolipoprotein A-II precursor, serum amyloid A, cytokeratin type II, component IV isoform 1, which are have established roles in embryogenesis, but over-expression of the fifth identified protein immunoglobulin lambda light chain in pregnancy has been elucidated as a novel finding in the current study. Further, with bioinformatics analysis, potential antigenic B-cell epitopes were predicted for all these five proteins. An antibody cocktail-based approach involving antibodies against all these five up-regulated entire proteins or their epitopes could be developed for early detection of pregnancy in buffaloes. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.
Proteome analysis of Lactobacillus helveticus H9 during growth in skim milk.
Chen, Y F; Zhao, W J; Wu, R N; Sun, Z H; Zhang, W Y; Wang, J C; Bilige, M; Zhang, H P
2014-12-01
Lactobacillus helveticus H9 was isolated from traditionally fermented yak milk in Tibet (China) with the ability to produce the antihypertensive peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) during milk fermentation. To understand the changes in the protein expression of L. helveticus H9, proteome analysis was performed at 3 different growth stages, lag phase (pH 6.1), log phase (pH 5.1), and stationary phase (pH 4.5) using 2-dimensional electrophoresis (2-DE). Further analysis showed that 257 differential protein spots were found and 214 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). The cellular functions of the differentially expressed proteins were complex. Interestingly, the proteolytic system-related proteins aminopeptidase N (PepN), aminopeptidase E (PepE), endopeptidase O2 (PepO2), and oligopeptide transport system permease protein (OppC) were observed only on the maps of pH 5.1 and pH 4.5, which was consistent with the presence of angiotensin I-converting enzyme (ACE)-inhibitory peptides VPP and IPP during these 2 growth stages (log phase and stationary phase). These results, combined with a previous study of gene expression of the proteolytic system, led us to conclude that the Opp transport system, pepE, and pepO2 are likely related to the production of ACE-inhibitory peptides. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Qing, Xiao-Yu; Steenackers, Hans; Venken, Tom; De Maeyer, Marc; Voet, Arnout
2017-11-01
The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trifonova, O P; Pastushkova, L Kh; Samenkova, N F; Chernobrovkin, A L; Karuzina, I I; Lisitsa, A V; Larina, I M
2013-05-01
We identified changes in the proteome of healthy human blood plasma caused by exposure to 105-day confinement in an isolation chamber. After removal of major proteins and concentration of minor proteins, plasma fractions were analyzed by two-dimensional electrophoresis followed by identification of significantly different protein spots by mass spectrometric analysis of the peptide fragments. The levels of α- and β-chains of fibrinogen, a fragment of complement factor C4, apolipoproteins AI and E, plasminogen factor C1 complement, and immunoglobulin M changed in participants during the isolation period. These changes probably reflect the adaptive response to altered conditions of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.
2014-08-07
Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunitymore » to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.« less
Fernandes, Kenner Morais; de Magalhães-Júnior, Marcos Jorge; Baracat-Pereira, Maria Cristina; Martins, Gustavo Ferreira
2016-12-01
In this work we analyzed protein expression in the Aedes aegypti midgut during the larval (fourth instar, L4), pupal, and adult stages [including newly emerged (NE), sugar-fed (SF) and blood-fed (BF) females]. Two-dimensional electrophoresis showed 13 spots in the midgut of larvae, 95 in the midgut of pupae, 90 in the midgut of NE, and 76 in the midgut of SF or BF females. In the larval midguts, high serpin expression was noted, while in the pupae, protein abundance was lower than in the NE, SF, and BF females. The spots related to proteins linked to energy production, protein metabolism, signaling, and transport were highly expressed in the NE stage, while spots related proteins involved in translation were abundant in SF and BF females. The differential abundance of proteins in the midgut of A. aegypti at different developmental stages supports the necessity for midgut development during immature stage followed by the necessity of proteins related to digestion in adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ge, Lin; Zhu, Ming-Ming; Yang, Jing-Yu; Wang, Fang; Zhang, Rong; Zhang, Jing-Hai; Shen, Jing; Tian, Hui-Fang; Wu, Chun-Fu
2015-04-01
Depression is a complex psychiatric disorder, and its etiology and pathophysiology are not completely understood. Depression involves changes in many biogenic amine, neuropeptide, and oxidative systems, as well as alterations in neuroendocrine function and immune-inflammatory pathways. Oleamide is a fatty amide which exhibits pharmacological effects leading to hypnosis, sedation, and anti-anxiety effects. In the present study, the chronic mild stress (CMS) model was used to investigate the antidepressant-like activity of oleamide. Rats were exposed to 10weeks of CMS or control conditions and were then subsequently treated with 2weeks of daily oleamide (5mg/kg, i.p.), fluoxetine (10mg/kg, i.p.), or vehicle. Protein extracts from the hippocampus were then collected, and hippocampal maps were generated by way of two-dimensional gel electrophoresis (2-DE). Altered proteins induced by CMS and oleamide were identified through mass spectrometry and database searches. Compared to the control group, the CMS rats exhibited significantly less body weight gain and decreased sucrose consumption. Treatment with oleamide caused a reversal of the CMS-induced deficit in sucrose consumption. In the proteomic analysis, 12 protein spots were selected and identified. CMS increased the levels of adenylate kinase isoenzyme 1 (AK1), nucleoside diphosphate kinase B (NDKB), histidine triad nucleotide-binding protein 1 (HINT1), acyl-protein thioesterase 2 (APT-2), and glutathione S-transferase A4 (GSTA4). Compared to the CMS samples, seven spots changed significantly following treatment with oleamide, including GSTA4, glutathione S-transferase A6 (GSTA6), GTP-binding nuclear protein Ran (Ran-GTP), ATP synthase subunit d, transgelin-3, small ubiquitin-related modifier 2 (SUMO2), and eukaryotic translation initiation factor 5A-1 (eIF5A1). Of these seven proteins, the level of eIF5A1 was up-regulated, whereas the remaining proteins were down-regulated. In conclusion, oleamide has antidepressant-like properties in the CMS rat model. The identification of proteins altered by CMS and oleamide treatment provides support for targeting these proteins in the development of novel therapies for depression. Copyright © 2015 Elsevier Inc. All rights reserved.
Lessons from hot spot analysis for fragment-based drug discovery
Hall, David R.; Vajda, Sandor
2015-01-01
Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high affinity, druglike ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from protein three-dimensional structure, and how their strength, number and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. PMID:26538314
Song, Jun; Braun, Gordon; Bevis, Eric; Doncaster, Kristen
2006-08-01
Fruit tissues are considered recalcitrant plant tissue for proteomic analysis. Three phenol-free protein extraction procedures for 2-DE were compared and evaluated on apple fruit proteins. Incorporation of hot SDS buffer, extraction with TCA/acetone precipitation was found to be the most effective protocol. The results from SDS-PAGE and 2-DE analysis showed high quality proteins. More than 500 apple polypeptides were separated on a small scale 2-DE gel. The successful protocol was further tested on banana fruit, in which 504 and 386 proteins were detected in peel and flesh tissues, respectively. To demonstrate the quality of the extracted proteins, several protein spots from apple and banana peels were cut from 2-DE gels, analyzed by MS and have been tentatively identified. The protocol described in this study is a simple procedure which could be routinely used in proteomic studies of many types of recalcitrant fruit tissues.
Medina-Rosas, Jorge; Su, Jiandong; Cook, Richard J; Sabapathy, Arthy; Touma, Zahi
2017-09-01
The aim of this study was to determine whether spot urine protein-to-creatinine ratio (PCR) accurately measures the change in proteinuria compared with 24-hour proteinuria (24H-P). This was a retrospective analysis on patients' paired visits and paired urine samples for PCR and 24H-P. Patients with both abnormal 24H-P (>0.5 g/d) and PCR (>0.05 g/mmol) or both normal 24H-P (≤0.5 g/d) and PCR (≤0.05 g/mmol) at baseline visit were identified.The first follow-up visit with partial recovery (50% decrease in proteinuria) or complete recovery (≤0.5 g/d) was identified for those with abnormal baseline 24H-P, and new proteinuria (>0.5 g/d) was identified for those with normal 24H-P. Twenty-four-hour urine collection and PCR end-point frequencies were compared. Twenty-four-hour urine collection results were converted to 24H-PCR. Twenty-four-hour PCR and PCR were utilized to measure the magnitude of change (by standardized response mean [SRM]) in patients who achieved the end points. Of 230 patients, at baseline, 95 patients had abnormal and 109 had normal 24H-P and PCR. On follow-up, 57 achieved partial recovery, and 53 achieved complete recovery by 24H-P. Standardized response mean was -1.03 and -1.10 for 24H-PCR and PCR, respectively. By PCR, 53 patients had partial recovery, and 27 had complete recovery. Standardized response mean was -1.25 and -0.86 by 24H-PCR and PCR, respectively.For new proteinuria, 28 patients were identified by 24H-P and 21 by PCR. Twenty-four-hour PCR SRM was 0.80, and PCR SRM was 0.68. Protein-to-creatinine ratio does not have sufficient accuracy compared with 24H-P for improvement and worsening to be used in lieu of 24H-P.
Murugaiyan, Jayaseelan; Weise, Christoph; von Bergen, Martin; Roesler, Uwe
2013-09-01
Biochemical, serological, and genetic analyses have identified two genotypes of Prototheca zopfii, a unicellular microalga belonging to the family Chlorellaceae. The P. zopfii genotype 1, abundantly present in cow barns and environment, remains nonpathogenic, while P. zopfii genotype 2 has been isolated from cows with bovine mastitis. The present study was carried out to identify the protein expression level difference between the pathogenic and nonpathogenic strains of P. zopfii. A total of 782 protein spots were observed on the 2D fluorescence difference gel electrophoresis (2D DIGE) gels among which 63 and 44 proteins were identified to be overexpressed in genotypes 1 and 2, respectively. The limited number of protein entries specific for Prototheca in public repositories resulted mainly in the identification of proteins described in other algae, microorganisms, or plants. Gene ontology (GO) analysis indicated reduced carbohydrate metabolism in genotype 1, while genotype 2 displayed enhanced DNA binding, kinase activity, and signal transduction. These effects point to metabolic and signaling adaptations in the pathogenic strain and provide insights into the evolution of otherwise highly similar strains. All MS data have been deposited in the ProteomeXchange with identifier PXD000126. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Wei; Ravikumar, Krishnakumar M; Parisien, Marc; Yang, Sichun
2016-12-01
Structural determination of protein-protein complexes such as multidomain nuclear receptors has been challenging for high-resolution structural techniques. Here, we present a combined use of multiple biophysical methods, termed iSPOT, an integration of shape information from small-angle X-ray scattering (SAXS), protection factors probed by hydroxyl radical footprinting, and a large series of computationally docked conformations from rigid-body or molecular dynamics (MD) simulations. Specifically tested on two model systems, the power of iSPOT is demonstrated to accurately predict the structures of a large protein-protein complex (TGFβ-FKBP12) and a multidomain nuclear receptor homodimer (HNF-4α), based on the structures of individual components of the complexes. Although neither SAXS nor footprinting alone can yield an unambiguous picture for each complex, the combination of both, seamlessly integrated in iSPOT, narrows down the best-fit structures that are about 3.2Å and 4.2Å in RMSD from their corresponding crystal structures, respectively. Furthermore, this proof-of-principle study based on the data synthetically derived from available crystal structures shows that the iSPOT-using either rigid-body or MD-based flexible docking-is capable of overcoming the shortcomings of standalone computational methods, especially for HNF-4α. By taking advantage of the integration of SAXS-based shape information and footprinting-based protection/accessibility as well as computational docking, this iSPOT platform is set to be a powerful approach towards accurate integrated modeling of many challenging multiprotein complexes. Copyright © 2016 Elsevier Inc. All rights reserved.
de Ronde, Dryas; Pasquier, Adrien; Ying, Su; Butterbach, Patrick; Lohuis, Dick; Kormelink, Richard
2014-02-01
Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)-based resistance. The observation that NSs from two natural resistance-breaking isolates had lost RNA silencing suppressor (RSS) activity and Avr suggested a link between the two functions. To test this, a large set of NSs mutants was generated by alanine substitutions in NSs from resistance-inducing wild-type strains (NSs(RI) ), amino acid reversions in NSs from resistance-breaking strains (NSs(RB)), domain deletions and swapping. Testing these mutants for their ability to suppress green fluorescent protein (GFP) silencing and to trigger a Tsw-mediated hypersensitive response (HR) revealed that the two functions can be separated. Changes in the N-terminal domain were found to be detrimental for both activities and indicated the importance of this domain, additionally supported by domain swapping between NSs(RI) and NSs(RB). Swapping domains between the closely related Tospovirus Groundnut ringspot virus (GRSV) NSs and TSWV NSs(RI) showed that Avr functionality could not simply be transferred between species. Although deletion of the C-terminal domain rendered NSs completely dysfunctional, only a few single-amino-acid mutations in the C-terminus affected both functions. Mutation of a GW/WG motif (position 17/18) rendered NSs completely dysfunctional for RSS and Avr activity, and indicated a putative interaction between NSs and Argonaute 1 (AGO1), and its importance in TSWV virulence and viral counter defence against RNA interference. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A.
2012-01-01
Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy. With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053
Chang, Chia-Hao; Tang, Cheng-Hao; Kang, Chao-Kai; Lo, Wan-Yu; Lee, Tsung-Han
Milkfish is an important aquaculture species in Taiwan, and its high mortality during cold snaps in winter usually causes huge economic losses. To understand the effect of hypothermal stress and the corresponding compensatory stress response in milkfish, this study aimed to compare liver and gill protein levels between milkfish exposed to nonlethal (18°C), lethal (16°C), and control (28°C) temperatures. Using a proteomics approach based on two-dimensional electrophoresis and nano-LC-MS/MS analysis, this study identified thirty unique protein spots from milkfish livers and gills for which protein abundance was significantly different between nonlethal, lethal, and control temperature groups. Proteins identified in the liver were classified into three different categories according to their cellular function: (1) anti-oxidative stress, (2) apoptotic pathway, and (3) cytoskeleton. Similarly, proteins identified in the gill were sorted in five different functional categories: (1) cytoskeleton, (2) immune response, (3) protein quality control, (4) energy production, and (5) intracellular homeostasis. Based on functional information derived from the identified proteins, we assumed that different levels of hypothermal stress had a different effect and induced a different cellular response. Upon nonlethal hypothermal stress, the identified proteins were involved in anti-oxidative stress and anti-inflammation pathways, suggesting that milkfish had high levels of oxidative stress in the liver and exhibited inflammation response in the gill. Upon lethal hypothermal stress, however, identified proteins were associated with apoptosis in the liver and regulation of intracellular homeostasis in the gill. The present study provided evidence to illustrate different multi-physiological responses to nonlethal and lethal hypothermal stress in milkfish livers and gills.
Chang, Chia-Hao; Tang, Cheng-Hao; Kang, Chao-Kai; Lo, Wan-Yu; Lee, Tsung-Han
2016-01-01
Milkfish is an important aquaculture species in Taiwan, and its high mortality during cold snaps in winter usually causes huge economic losses. To understand the effect of hypothermal stress and the corresponding compensatory stress response in milkfish, this study aimed to compare liver and gill protein levels between milkfish exposed to nonlethal (18°C), lethal (16°C), and control (28°C) temperatures. Using a proteomics approach based on two-dimensional electrophoresis and nano-LC-MS/MS analysis, this study identified thirty unique protein spots from milkfish livers and gills for which protein abundance was significantly different between nonlethal, lethal, and control temperature groups. Proteins identified in the liver were classified into three different categories according to their cellular function: (1) anti-oxidative stress, (2) apoptotic pathway, and (3) cytoskeleton. Similarly, proteins identified in the gill were sorted in five different functional categories: (1) cytoskeleton, (2) immune response, (3) protein quality control, (4) energy production, and (5) intracellular homeostasis. Based on functional information derived from the identified proteins, we assumed that different levels of hypothermal stress had a different effect and induced a different cellular response. Upon nonlethal hypothermal stress, the identified proteins were involved in anti-oxidative stress and anti-inflammation pathways, suggesting that milkfish had high levels of oxidative stress in the liver and exhibited inflammation response in the gill. Upon lethal hypothermal stress, however, identified proteins were associated with apoptosis in the liver and regulation of intracellular homeostasis in the gill. The present study provided evidence to illustrate different multi-physiological responses to nonlethal and lethal hypothermal stress in milkfish livers and gills. PMID:27657931
Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami; Ohnishi, Jun; Ohki, Takehiro; Tsuda, Shinya
2009-08-01
The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the second putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami
2009-08-01
The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the secondmore » putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.« less
Raftery, Mark J; Saldanha, Rohit G; Geczy, Carolyn L; Kumar, Rakesh K
2003-01-01
Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis), rye grass (Lolium perenne) and Bermuda grass (Cynodon dactylon) were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense) group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1. PMID:14577842
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S.
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3–10 in a molecular weight range of 11–170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6–8. PMID:27239343
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence.
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3-10 in a molecular weight range of 11-170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6-8.
Huynh, Thien J; Flaherty, Matthew L; Gladstone, David J; Broderick, Joseph P; Demchuk, Andrew M; Dowlatshahi, Dar; Meretoja, Atte; Davis, Stephen M; Mitchell, Peter J; Tomlinson, George A; Chenkin, Jordan; Chia, Tze L; Symons, Sean P; Aviv, Richard I
2014-01-01
Rapid, accurate, and reliable identification of the computed tomography angiography spot sign is required to identify patients with intracerebral hemorrhage for trials of acute hemostatic therapy. We sought to assess the accuracy and interobserver agreement for spot sign identification. A total of 131 neurology, emergency medicine, and neuroradiology staff and fellows underwent imaging certification for spot sign identification before enrolling patients in 3 trials targeting spot-positive intracerebral hemorrhage for hemostatic intervention (STOP-IT, SPOTLIGHT, STOP-AUST). Ten intracerebral hemorrhage cases (spot-positive/negative ratio, 1:1) were presented for evaluation of spot sign presence, number, and mimics. True spot positivity was determined by consensus of 2 experienced neuroradiologists. Diagnostic performance, agreement, and differences by training level were analyzed. Mean accuracy, sensitivity, and specificity for spot sign identification were 87%, 78%, and 96%, respectively. Overall sensitivity was lower than specificity (P<0.001) because of true spot signs incorrectly perceived as spot mimics. Interobserver agreement for spot sign presence was moderate (k=0.60). When true spots were correctly identified, 81% correctly identified the presence of single or multiple spots. Median time needed to evaluate the presence of a spot sign was 1.9 minutes (interquartile range, 1.2-3.1 minutes). Diagnostic performance, interobserver agreement, and time needed for spot sign evaluation were similar among staff physicians and fellows. Accuracy for spot identification is high with opportunity for improvement in spot interpretation sensitivity and interobserver agreement particularly through greater reliance on computed tomography angiography source data and awareness of limitations of multiplanar images. Further prospective study is needed.
Lupi, R; Denery-Papini, S; Rogniaux, H; Lafiandra, D; Rizzi, C; De Carli, M; Moneret-Vautrin, D A; Masci, S; Larré, C
2013-03-27
Wheat kernel albumins/globulins (A/G) and gluten proteins are responsible for baker's asthma and food allergy in atopic subjects. Although no commercial genetically modified wheats are currently being grown, they are under study and the allergenicity of GM products is a major concern. In order to establish the expected and unexpected effects of genetic transformation on allergenicity and also to carry out a safety assessment of genetic transformation, two GM wheat lines (bread and pasta wheat) transformed with endogenous genes were compared to their untransformed counterparts (wt), first by an allergenomic approach, and second, using ELISA with sera from patients suffering from food allergy to wheat and baker's asthma. The 2D immunoblots performed on sera from patients suffering from food allergy and baker's asthma on the A/G fraction of the four lines (two GM and two wt) revealed comparable IgE-binding profiles. A total of 109 IgE-binding spots were analyzed by mass spectrometry, and most of the proteins identified had already been described as allergens or potential allergens. Only two IgE-binding proteins were specific to one GM line. The concentration of specific IgE against the A/G fractions of GM wheat lines and their wt genotypes differed for some sera. The originality of our paper is to relate the transformation of wheat lines with their potential allergenicity using patient sera, such focus has never been done before in wheat and should be of interest to the researches working in this field. Another interesting point of this paper is the study of two types of allergies (respiratory and food) on two wheat genotypes and their GM which reveals that some allergens already known in respiratory allergy could be involved in children suffering from wheat food allergy. In this paper we used a classical 2D proteomic analysis and the protein identifications were performed by mass spectrometry after spot picking and in gel trypsin hydrolysis. Concerning the LC-MS/MS analyses classical software and parameters were used as described in Material and methods. We worked on wheat which is actually not fully sequenced that was a difficulty; we therefore searched against two databanks (proteins and ESTs) in order to compare the results. Moreover all proteins reported in our paper were identified with at least three unique peptides. The identified proteins were checked for their potential allergenicity. In order to have a best interpretation of protein identified in terms of potential allergens, BLAST alignments were performed by using an allergen databank (SDAP). This allows the determination of the cross-reactivity of these identified proteins with known allergens of other species and also the prediction of a potential allergenicity. Copyright © 2013 Elsevier B.V. All rights reserved.
Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang
2015-04-01
By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rodrigues, Silas Pessini; Ventura, José Aires; Zingali, R B; Fernandes, P M B
2009-01-01
A variety of sample preparation protocols for plant proteomic analysis using two-dimensional gel electrophoresis (2-DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2-DE. Four sample preparation methods were tested: (1) phenol extraction and methanol-ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid-acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS-PAGE (1-DE) and 2-DE. Fifteen selected protein spots were trypsinised and analysed by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Methods number 3 and 4 resulted in large quantities of protein with good 1-DE separation and were chosen for 2-DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. The described sample preparation method allows the proteomic analysis of papaya leaves by 2-DE and mass spectrometry (MALDI-TOF-MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species.
Thagun, Chonprakun; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Narangajavana, Jarunya; Sojikul, Punchapat
2012-09-15
White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping
2014-12-01
The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571 ± 117, 1,281 ± 231 and 904 ± 127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress.
von Korff, M.
2013-01-01
The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts. PMID:23918963
Differential Proteomic Analysis of Noncardia Gastric Cancer from Individuals of Northern Brazil
Leal, Mariana Ferreira; Chung, Janete; Calcagno, Danielle Queiroz; Assumpção, Paulo Pimentel; Demachki, Samia; da Silva, Ismael Dale Cotrim Guerreiro; Chammas, Roger; Burbano, Rommel Rodríguez; de Arruda Cardoso Smith, Marília
2012-01-01
Gastric cancer is the second leading cause of cancer-related death worldwide. The identification of new cancer biomarkers is necessary to reduce the mortality rates through the development of new screening assays and early diagnosis, as well as new target therapies. In this study, we performed a proteomic analysis of noncardia gastric neoplasias of individuals from Northern Brazil. The proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. For the identification of differentially expressed proteins, we used statistical tests with bootstrapping resampling to control the type I error in the multiple comparison analyses. We identified 111 proteins involved in gastric carcinogenesis. The computational analysis revealed several proteins involved in the energy production processes and reinforced the Warburg effect in gastric cancer. ENO1 and HSPB1 expression were further evaluated. ENO1 was selected due to its role in aerobic glycolysis that may contribute to the Warburg effect. Although we observed two up-regulated spots of ENO1 in the proteomic analysis, the mean expression of ENO1 was reduced in gastric tumors by western blot. However, mean ENO1 expression seems to increase in more invasive tumors. This lack of correlation between proteomic and western blot analyses may be due to the presence of other ENO1 spots that present a slightly reduced expression, but with a high impact in the mean protein expression. In neoplasias, HSPB1 is induced by cellular stress to protect cells against apoptosis. In the present study, HSPB1 presented an elevated protein and mRNA expression in a subset of gastric cancer samples. However, no association was observed between HSPB1 expression and clinicopathological characteristics. Here, we identified several possible biomarkers of gastric cancer in individuals from Northern Brazil. These biomarkers may be useful for the assessment of prognosis and stratification for therapy if validated in larger clinical study sets. PMID:22860099
Khandakar, Jebunnahar; Haraguchi, Izumi; Yamaguchi, Kenichi; Kitamura, Yoshie
2013-01-01
Hyoscyamus albus is a well-known source of the tropane alkaloids, hyoscyamine and scopolamine, which are biosynthesized in the roots. To assess the major biochemical adaptations that occur in the roots of this plant in response to iron deficiency, we used a small-scale proteomic approach in which 100 mg of root tips were treated with and without Fe, respectively, for 5 days. Two-dimensional mini gels showed that 48 spots were differentially accumulated between the two conditions of Fe availability and a further 36 proteins were identified from these spots using MALDI-QIT-TOF mass spectrometry. The proteins that showed elevated levels in the roots lacking Fe were found to be associated variously with carbohydrate metabolism, cell differentiation, secondary metabolism, and oxidative defense. Most of the proteins involved in carbohydrate metabolism were increased in abundance, but mitochondrial NAD-dependent malate dehydrogenase was decreased, possibly resulting in malate secretion. Otherwise, all the proteins showing diminished levels in the roots were identified as either Fe-containing or ATP-requiring. For example, a significant decrease was observed in the levels of hyoscyamine 6β-hydroxylase (H6H), which requires Fe and is involved in the conversion of hyoscyamine to scopolamine. To investigate the effects of Fe deficiency on alkaloid biosynthesis, gene expression studies were undertaken both for H6H and for another Fe-dependent protein, Cyp80F1, which is involved in the final stage of hyoscyamine biosynthesis. In addition, tropane alkaloid contents were determined. Reduced gene expression was observed in the case of both of these proteins and was accompanied by a decrease in the content of both hyoscyamine and scopolamine. Finally, we have discussed energetic and Fe-conservation strategies that might be adopted by the roots of H. albus to maintain iron homeostasis under Fe-limiting conditions. PMID:24009619
Bru-Martínez, Roque; Herrero, María Trinidad; Fernández-Villalba, Emiliano; Cuenca, Nicolás; Martín-Nieto, José
2013-01-01
Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper. PMID:24040246
Reimann, Sven; Smits, Sander H. J.; Schmitt, Lutz; Groth, Georg; Gohlke, Holger
2014-01-01
Human heat shock protein of 90 kDa (hHsp90) is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD) should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScorePPI. Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization. PMID:24760083
Amaradasa, Bimal S; Amundsen, Keenan
2016-01-01
Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.
Deng, Wei-Wei; Sasamoto, Hamako; Ashihara, Hiroshi
2015-05-01
It has been suggested that caffeine acts as an allelochemical which influences the germination and growth of plants. The effect of caffeine on the expression profiles of proteins was investigated in shoot-root axes of rice (Oryza sativa) seedlings. Two-dimensional difference gel electrophoresis combined with Matrix-Assisted Laser Desorption/Ionization Time of Flight/Time of Flight Mass Spectrometry was employed for the separation and identification of proteins. The results indicated that amounts of 51 protein spots were reduced and 14 were increased by treatment with 1 mM caffeine. Twelve rice seedling proteins were identified. Down-regulated proteins were β-tubulin, sucrose synthase, glyceraldehyde-3-phosphate dehydrogenase, reversibly glycosylated polypeptide/α-1,4-glucan protein synthase and cytoplasmic malate dehydrogenase. In contrast, up-regulated proteins were alanyl-aminopeptidase, acetyl-CoA carboxylase, adenine phosphoribosyltransferase, NAD-malate dehydrogenase, ornithine carbamoyltransferase, glucose-6-phosphate isomerase and nuclear RNA binding protein. Possible alternation of metabolism caused by caffeine is discussed with the protein expression data.