Sample records for identifies aberrant dna

  1. DNA motifs associated with aberrant CpG island methylation.

    PubMed

    Feltus, F Alex; Lee, Eva K; Costello, Joseph F; Plass, Christoph; Vertino, Paula M

    2006-05-01

    Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.

  2. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  3. Aberrantly methylated DNA as a biomarker in breast cancer.

    PubMed

    Kristiansen, Søren; Jørgensen, Lars M; Guldberg, Per; Sölétormos, György

    2013-01-01

    Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.

  4. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  5. Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer

    PubMed Central

    Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.

    2012-01-01

    Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb). Results Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to

  6. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility.

    PubMed

    Urdinguio, Rocío G; Bayón, Gustavo F; Dmitrijeva, Marija; Toraño, Estela G; Bravo, Cristina; Fraga, Mario F; Bassas, Lluís; Larriba, Sara; Fernández, Agustín F

    2015-05-01

    Are there DNA methylation alterations in sperm that could explain the reduced biological fertility of male partners from couples with unexplained infertility? DNA methylation patterns, not only at specific loci but also at Alu Yb8 repetitive sequences, are altered in infertile individuals compared with fertile controls. Aberrant DNA methylation of sperm has been associated with human male infertility in patients demonstrating either deficiencies in the process of spermatogenesis or low semen quality. Case and control prospective study. This study compares 46 sperm samples obtained from 17 normospermic fertile men and 29 normospermic infertile patients. Illumina Infinium HD Human Methylation 450K arrays were used to identify genomic regions showing differences in sperm DNA methylation patterns between five fertile and seven infertile individuals. Additionally, global DNA methylation of sperm was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek) in 14 samples, and DNA methylation at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) measured by bisulfite pyrosequencing in 44 sperm samples. A sperm-specific DNA methylation pattern was obtained by comparing the sperm methylomes with the DNA methylomes of differentiated somatic cells using data obtained from methylation arrays (Illumina 450 K) of blood, neural and glial cells deposited in public databases. In this study we conduct, for the first time, a genome-wide study to identify alterations of sperm DNA methylation in individuals with unexplained infertility that may account for the differences in their biological fertility compared with fertile individuals. We have identified 2752 CpGs showing aberrant DNA methylation patterns, and more importantly, these differentially methylated CpGs were significantly associated with CpG sites which are specifically methylated in sperm when compared with somatic cells. We also found statistically significant (P < 0.001) associations

  7. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing

    PubMed Central

    Chan, Rebecca W. Y.; Jiang, Peiyong; Peng, Xianlu; Tam, Lai-Shan; Liao, Gary J. W.; Li, Edmund K. M.; Wong, Priscilla C. H.; Sun, Hao; Chan, K. C. Allen; Chiu, Rossa W. K.; Lo, Y. M. Dennis

    2014-01-01

    We performed a high-resolution analysis of the biological characteristics of plasma DNA in systemic lupus erythematosus (SLE) patients using massively parallel genomic and methylomic sequencing. A number of plasma DNA abnormalities were found. First, aberrations in measured genomic representations (MGRs) were identified in the plasma DNA of SLE patients. The extent of the aberrations in MGRs correlated with anti-double–stranded DNA (anti-dsDNA) antibody level. Second, the plasma DNA of active SLE patients exhibited skewed molecular size-distribution profiles with a significantly increased proportion of short DNA fragments. The extent of plasma DNA shortening in SLE patients correlated with the SLE disease activity index (SLEDAI) and anti-dsDNA antibody level. Third, the plasma DNA of active SLE patients showed decreased methylation densities. The extent of hypomethylation correlated with SLEDAI and anti-dsDNA antibody level. To explore the impact of anti-dsDNA antibody on plasma DNA in SLE, a column-based protein G capture approach was used to fractionate the IgG-bound and non–IgG-bound DNA in plasma. Compared with healthy individuals, SLE patients had higher concentrations of IgG-bound DNA in plasma. More IgG binding occurs at genomic locations showing increased MGRs. Furthermore, the IgG-bound plasma DNA was shorter in size and more hypomethylated than the non–IgG-bound plasma DNA. These observations have enhanced our understanding of the spectrum of plasma DNA aberrations in SLE and may provide new molecular markers for SLE. Our results also suggest that caution should be exercised when interpreting plasma DNA-based noninvasive prenatal testing and cancer testing conducted for SLE patients. PMID:25427797

  8. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma

    PubMed Central

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F.; Breen, Matthew

    2017-01-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24 and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near two-fold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22% versus 40%). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly-distinct subtypes of canine hemangiosarcoma. PMID:24599718

  9. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma.

    PubMed

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F; Breen, Matthew

    2014-09-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma.

  10. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers

    PubMed Central

    Liang, Gangning; Weisenberger, Daniel J.

    2017-01-01

    ABSTRACT DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival. PMID:28358281

  11. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    PubMed

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  12. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation

    PubMed Central

    Figueroa, Maria E.; Skrabanek, Lucy; Li, Yushan; Jiemjit, Anchalee; Fandy, Tamer E.; Paietta, Elisabeth; Fernandez, Hugo; Tallman, Martin S.; Greally, John M.; Carraway, Hetty; Licht, Jonathan D.; Gore, Steven D.

    2009-01-01

    Increasing evidence shows aberrant hypermethylation of genes occurring in and potentially contributing to pathogenesis of myeloid malignancies. Several of these diseases, such as myelodysplastic syndromes (MDSs), are responsive to DNA methyltransferase inhibitors. To determine the extent of promoter hypermethylation in such tumors, we compared the distribution of DNA methylation of 14 000 promoters in MDS and secondary acute myeloid leukemia (AML) patients enrolled in a phase 1 trial of 5-azacytidine and the histone deacetylase inhibitor entinostat against de novo AML patients and normal CD34+ bone marrow cells. The MDS and secondary AML patients displayed more extensive aberrant DNA methylation involving thousands of genes than did the normal CD34+ bone marrow cells or de novo AML blasts. Aberrant methylation in MDS and secondary AML tended to affect particular chromosomal regions, occurred more frequently in Alu-poor genes, and included prominent involvement of genes involved in the WNT and MAPK signaling pathways. DNA methylation was also measured at days 15 and 29 after the first treatment cycle. DNA methylation was reversed at day 15 in a uniform manner throughout the genome, and this effect persisted through day 29, even without continuous administration of the study drugs. This trial was registered at www.clinicaltrials.gov as J0443. PMID:19652201

  13. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  14. GeneBreak: detection of recurrent DNA copy number aberration-associated chromosomal breakpoints within genes.

    PubMed

    van den Broek, Evert; van Lieshout, Stef; Rausch, Christian; Ylstra, Bauke; van de Wiel, Mark A; Meijer, Gerrit A; Fijneman, Remond J A; Abeln, Sanne

    2016-01-01

    Development of cancer is driven by somatic alterations, including numerical and structural chromosomal aberrations. Currently, several computational methods are available and are widely applied to detect numerical copy number aberrations (CNAs) of chromosomal segments in tumor genomes. However, there is lack of computational methods that systematically detect structural chromosomal aberrations by virtue of the genomic location of CNA-associated chromosomal breaks and identify genes that appear non-randomly affected by chromosomal breakpoints across (large) series of tumor samples. 'GeneBreak' is developed to systematically identify genes recurrently affected by the genomic location of chromosomal CNA-associated breaks by a genome-wide approach, which can be applied to DNA copy number data obtained by array-Comparative Genomic Hybridization (CGH) or by (low-pass) whole genome sequencing (WGS). First, 'GeneBreak' collects the genomic locations of chromosomal CNA-associated breaks that were previously pinpointed by the segmentation algorithm that was applied to obtain CNA profiles. Next, a tailored annotation approach for breakpoint-to-gene mapping is implemented. Finally, dedicated cohort-based statistics is incorporated with correction for covariates that influence the probability to be a breakpoint gene. In addition, multiple testing correction is integrated to reveal recurrent breakpoint events. This easy-to-use algorithm, 'GeneBreak', is implemented in R ( www.cran.r-project.org ) and is available from Bioconductor ( www.bioconductor.org/packages/release/bioc/html/GeneBreak.html ).

  15. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  16. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma.

    PubMed

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-05-23

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1 , p14 , p16 , death-associated protein kinase ( DAPK ), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response.

  17. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma

    PubMed Central

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-01-01

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1, p14, p16, death-associated protein kinase (DAPK), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response. PMID:28545228

  18. Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis.

    PubMed

    Mankos, Marian; Shadman, Khashayar; N'diaye, Alpha T; Schmid, Andreas K; Persson, Henrik H J; Davis, Ronald W

    2012-11-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron-optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron-optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1-10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach

  19. Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis

    PubMed Central

    Mankos, Marian; Shadman, Khashayar; N'Diaye, Alpha T.; Schmid, Andreas K.; Persson, Henrik H. J.; Davis, Ronald W.

    2012-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron–optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron–optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1–10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD

  20. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  1. Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus.

    PubMed

    Zhu, Honglin; Mi, Wentao; Luo, Hui; Chen, Tao; Liu, Shengxi; Raman, Indu; Zuo, Xiaoxia; Li, Quan-Zhen

    2016-07-13

    Recent achievement in genetics and epigenetics has led to the exploration of the pathogenesis of systemic lupus erythematosus (SLE). Identification of differentially expressed genes and their regulatory mechanism(s) at whole-genome level will provide a comprehensive understanding of the development of SLE and its devastating complications, lupus nephritis (LN). We performed whole-genome transcription and DNA methylation analysis in PBMC of 30 SLE patients, including 15 with LN (SLE LN(+)) and 15 without LN (SLE LN(-)), and 25 normal controls (NC) using HumanHT-12 Beadchips and Illumina Human Methy450 chips. The serum proinflammatory cytokines were quantified using Bio-plex Human Cytokine 27-plex assay. Differentially expressed genes and differentially methylated CpG were analyzed with GenomeStudio, R, and SAM software. The association between DNA methylation and gene expression were tested. Gene interaction pathways of the differentially expressed genes were analyzed by IPA software. We identified 552 upregulated genes and 550 downregulated genes in PBMC of SLE. Integration of DNA methylation and gene expression profiling showed that 334 upregulated genes were hypomethylated, and 479 downregulated genes were hypermethylated. Pathway analysis on the differential genes in SLE revealed significant enrichment in interferon (IFN) signaling and toll-like receptor (TLR) signaling pathways. Nine IFN- and seven TLR-related genes were identified and displayed step-wise increase in SLE LN(-) and SLE LN(+). Hypomethylated CpG sites were detected on these genes. The gene expressions for MX1, GPR84, and E2F2 were increased in SLE LN(+) as compared to SLE LN(-) patients. The serum levels of inflammatory cytokines, including IL17A, IP-10, bFGF, TNF-α, IL-6, IL-15, GM-CSF, IL-1RA, IL-5, and IL-12p70, were significantly elevated in SLE compared with NC. The levels of IL-15 and IL1RA correlated with their mRNA expression. The upregulation of IL-15 may be regulated by hypomethylated

  2. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  3. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumours

    PubMed Central

    Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-01-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterised. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium’s HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly epigenetically regulated in this tumour type. Using a linear model for microarray data we identified 1610 differentially methylated autosomal CpG sites with 809 CpG sites (representing 603 genes) being hypermethylated and 801 CpG sites (representing 712 genes) being hypomethylated in cholangiocarcinoma versus adjacent normal tissues (false discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12 and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  4. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    PubMed

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  5. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  6. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].

    PubMed

    Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G

    2012-12-01

    The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.

  7. Wavelet-based identification of DNA focal genomic aberrations from single nucleotide polymorphism arrays

    PubMed Central

    2011-01-01

    Background Copy number aberrations (CNAs) are an important molecular signature in cancer initiation, development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism (SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes related to cancer development located in the focal regions of CNAs. Results In this study, we introduce a novel method referred to as the wavelet-based identification of focal genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set identifies focal amplification regions that contain known oncogenes, though these regions are not reported using a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12). Conclusions Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets. PMID:21569311

  8. RNA-Seq analysis identifies aberrant RNA splicing of TRIP12 in acute myeloid leukemia patients at remission.

    PubMed

    Gao, Panke; Jin, Zhen; Cheng, Yingying; Cao, Xiangshan

    2014-10-01

    Aberrant splicing events play important roles in the pathogenesis of acute myeloid leukemia (AML). To investigate the aberrant splicing events in AML during treatment, we carried out RNA sequencing in peripheral mononuclear cell samples from a patient with complete remission. In addition to the sequencing samples, selected splicing events were confirmed and validated with real-time quantitative RT-PCR in another seven pairs of samples. A total of 4.05 and 3.39 GB clean data of the AML and remission sample were generated, respectively, and 2,223 differentially expressed genes (DEGs) were identified. Integrated with gene expression profiling on T cells from AML patients compared with healthy donors, 82 DEGs were also differentially expressed in AML CD4 T cells and CD8 T cells. Twenty-three alternative splicing events were considered to be confidential, and they were involved in many biological processes, such as RNA processing, cellular macromolecule catabolic process, and DNA binding process. An exon3-skipping event in TRIP12 was detected in patients at remission and further validated in another three independent samples. TRIP12 is an ubiquitin ligase of ARF, which suppresses aberrant cell growth by activating p53 responses. The exon3-skipping isoform of TRIP12 increased significantly after treatment. Our results may provide new understanding of AML, and the confirmed alternative splicing event of TRIP12 may be used as potential target for future investigations.

  9. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste.

    PubMed

    Liu, Qiang; Cao, Jia; Li, Ke Qiu; Miao, Xu Hong; Li, Guang; Fan, Fei Yue; Zhao, Yong Cheng

    2009-05-01

    It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with 'E-wastes'. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group

  10. Effects of Spirulina platensis on DNA damage and chromosomal aberration against cadmium chloride-induced genotoxicity in rats.

    PubMed

    Aly, Fayza M; Kotb, Ahmed M; Hammad, Seddik

    2018-04-01

    Todays, bioactive compounds extracted from Spirulina platensis have been intensively studied for their therapeutical values. Therefore, in the present study, we aimed to evaluate the effects of S. platensis extract on DNA damage and chromosomal aberrations induced by cadmium in rats. Four groups of male albino rats (n = 7 rats) were used. The first group served as a control group and received distilled water. The second group was exposed intraperitoneally to cadmium chloride (CdCl 2 ) (3.5 mg/kg body weight dissolved in 2 ml distilled water). The third group included the rats that were orally treated with S. platensis extract (1 g/kg dissolved in 5 ml distilled water, every other day for 30 days). The fourth group included the rats that were intraperitoneally and orally exposed to cadmium chloride and S. platensis, respectively. The experiment in all groups was extended for 60 days. The results of cadmium-mediated toxicity revealed significant genetic effects (DNA fragmentation, deletion or disappearance of some base pairs of DNA, and appearance of few base pairs according to ISSR-PCR analysis). Moreover, chromosomes showed structural aberrations such as reduction of chromosomal number, chromosomal ring, chromatid deletions, chromosomal fragmentations, and dicentric chromosomes. Surprisingly, S. platensis extract plus CdCl 2 -treated group showed less genetic effects compared with CdCl 2 alone. Further, S. platensis extract upon CdCl 2 toxicity was associated with less chromosomal aberration number and nearly normal appearance of DNA fragments as indicated by the bone marrow and ISSR-PCR analysis, respectively. In conclusion, the present novel study showed that co-treatment with S. platensis extract could reduce the genotoxic effects of CdCl 2 in rats.

  11. Heritable Transmission of Diabetic Metabolic Memory in Zebrafish Correlates With DNA Hypomethylation and Aberrant Gene Expression

    PubMed Central

    Olsen, Ansgar S.; Sarras, Michael P.; Leontovich, Alexey; Intine, Robert V.

    2012-01-01

    Metabolic memory (MM) is the phenomenon whereby diabetes complications persist and progress after glycemic recovery is achieved. Here, we present data showing that MM is heritable and that the transmission correlates with hyperglycemia-induced DNA hypomethylation and aberrant gene expression. Streptozocin was used to induce hyperglycemia in adult zebrafish, and then, following streptozocin withdrawal, a recovery phase was allowed to reestablish a euglycemic state. Blood glucose and serum insulin returned to physiological levels during the first 2 weeks of the recovery phase as a result of pancreatic β-cell regeneration. In contrast, caudal fin regeneration and skin wound healing remained impaired to the same extent as in diabetic fish, and this impairment was transmissible to daughter cell tissue. Daughter tissue that was never exposed to hyperglycemia, but was derived from tissue that was, did not accumulate AGEs or exhibit increased levels of oxidative stress. However, CpG island methylation and genome-wide microarray expression analyses revealed the persistence of hyperglycemia-induced global DNA hypomethylation that correlated with aberrant gene expression for a subset of loci in this daughter tissue. Collectively, the data presented here implicate the epigenetic mechanism of DNA methylation as a potential contributor to the MM phenomenon. PMID:22228713

  12. Heterochromatic siRNAs and DDM1 Independently Silence Aberrant 5S rDNA Transcripts in Arabidopsis

    PubMed Central

    Blevins, Todd; Pontes, Olga; Pikaard, Craig S.; Meins, Frederick

    2009-01-01

    5S ribosomal RNA gene repeats are arranged in heterochromatic arrays (5S rDNA) situated near the centromeres of Arabidopsis chromosomes. The chromatin remodeling factor DDM1 is known to maintain 5S rDNA methylation patterns while silencing transcription through 5S rDNA intergenic spacers (IGS). We mapped small-interfering RNAs (siRNA) to a composite 5S rDNA repeat, revealing a high density of siRNAs matching silenced IGS transcripts. IGS transcript repression requires proteins of the heterochromatic siRNA pathway, including RNA polymerase IV (Pol IV), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Using molecular and cytogenetic approaches, we show that the DDM1 and siRNA-dependent silencing effects are genetically independent. DDM1 suppresses production of the siRNAs, however, thereby limiting RNA-directed DNA methylation at 5S rDNA repeats. We conclude that DDM1 and siRNA-dependent silencing are overlapping processes that both repress aberrant 5S rDNA transcription and contribute to the heterochromatic state of 5S rDNA arrays. PMID:19529764

  13. Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: a new insight into its pathogenesis.

    PubMed

    Pan, Jie-Xue; Tan, Ya-Jing; Wang, Fang-Fang; Hou, Ning-Ning; Xiang, Yu-Qian; Zhang, Jun-Yu; Liu, Ye; Qu, Fan; Meng, Qing; Xu, Jian; Sheng, Jian-Zhong; Huang, He-Feng

    2018-01-01

    Polycystic ovary syndrome (PCOS), whose etiology remains uncertain, is a highly heterogenous and genetically complex endocrine disorder. The aim of this study was to identify differentially expressed genes (DEGs) in granulosa cells (GCs) from PCOS patients and make epigenetic insights into the pathogenesis of PCOS. Included in this study were 110 women with PCOS and 119 women with normal ovulatory cycles undergoing in vitro fertilization acting as the control group. RNA-seq identified 92 DEGs unique to PCOS GCs in comparison with the control group. Bioinformatic analysis indicated that synthesis of lipids and steroids was activated in PCOS GCs. 5-Methylcytosine analysis demonstrated that there was an approximate 25% reduction in global DNA methylation of GCs in PCOS women (4.44 ± 0.65%) compared with the controls (6.07 ± 0.72%; P  < 0.05). Using MassArray EpiTYPER quantitative DNA methylation analysis, we also found hypomethylation of several gene promoters related to lipid and steroid synthesis, which might result in the aberrant expression of these genes. Our results suggest that hypomethylated genes related to the synthesis of lipid and steroid may dysregulate expression of these genes and promote synthesis of steroid hormones including androgen, which could partially explain mechanisms of hyperandrogenism in PCOS.

  14. Human cytomegalovirus UL76 induces chromosome aberrations

    PubMed Central

    2009-01-01

    Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations. PMID:19930723

  15. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice

    PubMed Central

    Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin

    2017-01-01

    Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics. PMID:28117817

  16. Cloning and sequence analysis of complementary DNA encoding an aberrantly rearranged human T-cell gamma chain.

    PubMed Central

    Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L

    1986-01-01

    Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221

  17. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  18. Genome-scale analysis of aberrant DNA methylation in colorectal cancer

    PubMed Central

    Hinoue, Toshinori; Weisenberger, Daniel J.; Lange, Christopher P.E.; Shen, Hui; Byun, Hyang-Min; Van Den Berg, David; Malik, Simeen; Pan, Fei; Noushmehr, Houtan; van Dijk, Cornelis M.; Tollenaar, Rob A.E.M.; Laird, Peter W.

    2012-01-01

    Colorectal cancer (CRC) is a heterogeneous disease in which unique subtypes are characterized by distinct genetic and epigenetic alterations. Here we performed comprehensive genome-scale DNA methylation profiling of 125 colorectal tumors and 29 adjacent normal tissues. We identified four DNA methylation–based subgroups of CRC using model-based cluster analyses. Each subtype shows characteristic genetic and clinical features, indicating that they represent biologically distinct subgroups. A CIMP-high (CIMP-H) subgroup, which exhibits an exceptionally high frequency of cancer-specific DNA hypermethylation, is strongly associated with MLH1 DNA hypermethylation and the BRAFV600E mutation. A CIMP-low (CIMP-L) subgroup is enriched for KRAS mutations and characterized by DNA hypermethylation of a subset of CIMP-H-associated markers rather than a unique group of CpG islands. Non-CIMP tumors are separated into two distinct clusters. One non-CIMP subgroup is distinguished by a significantly higher frequency of TP53 mutations and frequent occurrence in the distal colon, while the tumors that belong to the fourth group exhibit a low frequency of both cancer-specific DNA hypermethylation and gene mutations and are significantly enriched for rectal tumors. Furthermore, we identified 112 genes that were down-regulated more than twofold in CIMP-H tumors together with promoter DNA hypermethylation. These represent ∼7% of genes that acquired promoter DNA methylation in CIMP-H tumors. Intriguingly, 48/112 genes were also transcriptionally down-regulated in non-CIMP subgroups, but this was not attributable to promoter DNA hypermethylation. Together, we identified four distinct DNA methylation subgroups of CRC and provided novel insight regarding the role of CIMP-specific DNA hypermethylation in gene silencing. PMID:21659424

  19. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway.

    PubMed

    Durante, Marco; Formenti, Silvia C

    2018-01-01

    Radiation-induced chromosomal aberrations represent an early marker of late effects, including cell killing and transformation. The measurement of cytogenetic damage in tissues, generally in blood lymphocytes, from patients treated with radiotherapy has been studied for many years to predict individual sensitivity and late morbidity. Acentric fragments are lost during mitosis and create micronuclei (MN), which are well correlated to cell killing. Immunotherapy is rapidly becoming a most promising new strategy for metastatic tumors, and combination with radiotherapy is explored in several pre-clinical studies and clinical trials. Recent evidence has shown that the presence of cytosolic DNA activates immune response via the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which induces type I interferon transcription. Cytosolic DNA can be found after exposure to ionizing radiation either as MN or as small fragments leaking through nuclear envelope ruptures. The study of the dependence of cytosolic DNA and MN on dose and radiation quality can guide the optimal combination of radiotherapy and immunotherapy. The role of densely ionizing charged particles is under active investigation to define their impact on the activation of the interferon pathway.

  20. DNA methylation biomarkers for head and neck squamous cell carcinoma.

    PubMed

    Zhou, Chongchang; Ye, Meng; Ni, Shumin; Li, Qun; Ye, Dong; Li, Jinyun; Shen, Zhishen; Deng, Hongxia

    2018-06-21

    DNA methylation plays an important role in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). The current study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) by a comprehensive bioinformatics analysis. In addition, we screened for DEGs affected by DNA methylation modification and further investigated their prognostic values for HNSCC. We included microarray data of DNA methylation (GSE25093 and GSE33202) and gene expression (GSE23036 and GSE58911) from Gene Expression Omnibus. Aberrantly methylated-DEGs were analyzed with R software. The Cancer Genome Atlas (TCGA) RNA sequencing and DNA methylation (Illumina HumanMethylation450) databases were utilized for validation. In total, 27 aberrantly methylated genes accompanied by altered expression were identified. After confirmation by The Cancer Genome Atlas (TCGA) database, 2 hypermethylated-low-expression genes (FAM135B and ZNF610) and 2 hypomethylated-high-expression genes (HOXA9 and DCC) were identified. A receiver operating characteristic (ROC) curve confirmed the diagnostic value of these four methylated genes for HNSCC. Multivariate Cox proportional hazards analysis showed that FAM135B methylation was a favorable independent prognostic biomarker for overall survival of HNSCC patients.

  1. Effect of aspirin on chromosome aberration and DNA damage induced by X-rays in mice

    NASA Astrophysics Data System (ADS)

    Niikawa, M.; Chuuriki, K.; Shibuya, K.; Seo, M.; Nagase, H.

    In order to reveal the anticlastogenic potency of aspirin, we evaluated the suppressive ability of aspirin on chromosome aberrations induced by X-ray. Aspirin at doses of 0.5, 5 and 50 mg/kg was administrated intraperitoneally or orally at 0.5 h after or before the X-ray irradiation. The anticlastogenic activity of aspirin on chromosome aberrations induced by X-ray was determined in the mouse micronucleus test and alkaline single cell gel electrophoresis (SCG) assay in vivo. The frequency by polychromatic erythrocytes with micronuclei (MNPCEs) was decreased by about 19-61% at 0.5 h after and about 23-62% at 0.5 h before the X-ray irradiation. DNA damage by X-ray was significantly decreased by oral administration of aspirin at 0.5 h after or before the X-ray irradiation for the SCG assay. We consider aspirin can be used as preventive agents against exposure of X-ray.

  2. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Bishop, Jack; Gingerich, John

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  3. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE PAGES

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; ...

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  4. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations

    PubMed Central

    Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze

    2010-01-01

    Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882

  5. Predicting aberrant CpG island methylation

    PubMed Central

    Feltus, F. A.; Lee, E. K.; Costello, J. F.; Plass, C.; Vertino, P. M.

    2003-01-01

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context. PMID:14519846

  6. Predicting aberrant CpG island methylation.

    PubMed

    Feltus, F A; Lee, E K; Costello, J F; Plass, C; Vertino, P M

    2003-10-14

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context.

  7. A Monochromatic, Aberration-Corrected, Dual-Beam Low Energy Electron Microscope

    PubMed Central

    Mankos, Marian; Shadman, Khashayar

    2013-01-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. PMID:23582636

  8. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    PubMed

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Identifying DNA Methylation Biomarkers for Non-Endoscopic Detection of Barrett’s Esophagus

    PubMed Central

    Moinova, Helen R.; LaFramboise, Thomas; Lutterbaugh, James D.; Chandar, Apoorva Krishna; Dumot, John; Faulx, Ashley; Brock, Wendy; De la Cruz Cabrera, Omar; Guda, Kishore; Barnholtz-Sloan, Jill S.; Iyer, Prasad G.; Canto, Marcia I.; Wang, Jean S.; Shaheen, Nicholas J.; Thota, Prashanti N.; Willis, Joseph E.; Chak, Amitabh; Markowitz, Sanford D.

    2018-01-01

    We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE), based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma (EAC). Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve (AUC)=0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals, who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 minutes. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE. PMID:29343623

  10. Whole DNA methylome profiling in mice exposed to secondhand smoke.

    PubMed

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-11-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease.

  11. Whole DNA methylome profiling in mice exposed to secondhand smoke

    PubMed Central

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-01-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease. PMID:23051858

  12. XPD polymorphisms: effects on DNA repair proficiency.

    PubMed

    Lunn, R M; Helzlsouer, K J; Parshad, R; Umbach, D M; Harris, E L; Sanford, K K; Bell, D A

    2000-04-01

    XPD codes for a DNA helicase involved in transcription and nucleotide excision repair. Rare XPD mutations diminish nucleotide excision repair resulting in hypersensitivity to UV light and increased risk of skin cancer. Several polymorphisms in this gene have been identified but their impact on DNA repair is not known. We compared XPD genotypes at codons 312 and 751 with DNA repair proficiency in 31 women. XPD genotypes were measured by PCR-RFLP. DNA repair proficiency was assessed using a cytogenetic assay that detects X-ray induced chromatid aberrations (breaks and gaps). Chromatid aberrations were scored per 100 metaphase cells following incubation at 37 degrees C (1.5 h after irradiation) to allow for repair of DNA damage. Individuals with the Lys/Lys codon 751 XPD genotype had a higher number of chromatid aberrations (132/100 metaphase cells) than those having a 751Gln allele (34/100 metaphase cells). Individuals having greater than 60 chromatid breaks plus gaps were categorized as having sub-optimal repair. Possessing a Lys/Lys751 genotype increased the risk of sub-optimal DNA repair (odds ratio = 7.2, 95% confidence interval = 1.01-87.7). The Asp312Asn XPD polymorphism did not appear to affect DNA repair proficiency. These results suggest that the Lys751 (common) allele may alter the XPD protein product resulting in sub-optimal repair of X-ray-induced DNA damage.

  13. Identifying DNA methylation in a nanochannel

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyin; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Rahong, Sakon; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu

    2016-01-01

    DNA methylation is a stable epigenetic modification, which is well known to be involved in gene expression regulation. In general, however, analyzing DNA methylation requires rather time consuming processes (24-96 h) via DNA replication and protein modification. Here we demonstrate a methodology to analyze DNA methylation at a single DNA molecule level without any protein modifications by measuring the contracted length and relaxation time of DNA within a nanochannel. Our methodology is based on the fact that methylation makes DNA molecules stiffer, resulting in a longer contracted length and a longer relaxation time (a slower contraction rate). The present methodology offers a promising way to identify DNA methylation without any protein modification at a single DNA molecule level within 2 h.

  14. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe.

  15. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia.

    PubMed

    Ashktorab, Hassan; Daremipouran, M; Goel, Ajay; Varma, Sudhir; Leavitt, R; Sun, Xueguang; Brim, Hassan

    2014-04-01

    The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject's colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands-in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)-were significantly hypermethylated in tumor vs. normal tissues (P<0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network-the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated

  16. Admixture Aberration Analysis: Application to Mapping in Admixed Population Using Pooled DNA

    NASA Astrophysics Data System (ADS)

    Bercovici, Sivan; Geiger, Dan

    Admixture mapping is a gene mapping approach used for the identification of genomic regions harboring disease susceptibility genes in the case of recently admixed populations such as African Americans. We present a novel method for admixture mapping, called admixture aberration analysis (AAA), that uses a DNA pool of affected admixed individuals. We demonstrate through simulations that AAA is a powerful and economical mapping method under a range of scenarios, capturing complex human diseases such as hypertension and end stage kidney disease. The method has a low false-positive rate and is robust to deviation from model assumptions. Finally, we apply AAA on 600 prostate cancer-affected African Americans, replicating a known risk locus. Simulation results indicate that the method can yield over 96% reduction in genotyping. Our method is implemented as a Java program called AAAmap and is freely available.

  17. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-07-21

    A method is disclosed for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe. 11 figs.

  18. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes

    PubMed Central

    Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J. Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R. Scott; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M.; Fisher, William E.; Brunicardi, F. Charles; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M.

    2012-01-01

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869

  19. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    PubMed

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  20. Meiotic drive on aberrant chromosome 1 in the mouse is determined by a linked distorter.

    PubMed

    Agulnik, S I; Sabantsev, I D; Orlova, G V; Ruvinsky, A O

    1993-04-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from wild populations of Mus musculus. Meiotic drive favouring the aberrant chromosome was demonstrated for heterozygous females. Its cause was preferential passage of aberrant chromosome 1 to the oocyte. Genetic analysis allowed us to identify a two-component system conditioning deviation from equal segregation of the homologues. The system consists of a postulated distorter and responder. The distorter is located on chromosome 1 distally to the responder, between the ln and Pep-3 genes, and it acts on the responder when in trans position. Polymorphism of the distorters was manifested as variation in their effect on meiotic drive level in the laboratory strain and mice from wild populations.

  1. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  2. Aberration hubs in protein interaction networks highlight actionable targets in cancer.

    PubMed

    Karimzadeh, Mehran; Jandaghi, Pouria; Papadakis, Andreas I; Trainor, Sebastian; Rung, Johan; Gonzàlez-Porta, Mar; Scelo, Ghislaine; Vasudev, Naveen S; Brazma, Alvis; Huang, Sidong; Banks, Rosamonde E; Lathrop, Mark; Najafabadi, Hamed S; Riazalhosseini, Yasser

    2018-05-18

    Despite efforts for extensive molecular characterization of cancer patients, such as the international cancer genome consortium (ICGC) and the cancer genome atlas (TCGA), the heterogeneous nature of cancer and our limited knowledge of the contextual function of proteins have complicated the identification of targetable genes. Here, we present Aberration Hub Analysis for Cancer (AbHAC) as a novel integrative approach to pinpoint aberration hubs, i.e. individual proteins that interact extensively with genes that show aberrant mutation or expression. Our analysis of the breast cancer data of the TCGA and the renal cancer data from the ICGC shows that aberration hubs are involved in relevant cancer pathways, including factors promoting cell cycle and DNA replication in basal-like breast tumors, and Src kinase and VEGF signaling in renal carcinoma. Moreover, our analysis uncovers novel functionally relevant and actionable targets, among which we have experimentally validated abnormal splicing of spleen tyrosine kinase as a key factor for cell proliferation in renal cancer. Thus, AbHAC provides an effective strategy to uncover novel disease factors that are only identifiable by examining mutational and expression data in the context of biological networks.

  3. A model of chromosome aberration induction: applications to space research.

    PubMed

    Ballarini, Francesca; Ottolenghi, Andrea

    2005-10-01

    A mechanistic model and Monte Carlo code simulating chromosome aberration induction in human lymphocytes is presented. The model is based on the assumption that aberrations arise from clustered DNA lesions and that only the free ends of clustered lesions created in neighboring chromosome territories or in the same territory can join and produce exchanges. The lesions are distributed in the cell nucleus according to the radiation track structure. Interphase chromosome territories are modeled as compact intranuclear regions with volumes proportional to the chromosome DNA contents. Both Giemsa staining and FISH painting can be simulated, and background aberrations can be taken into account. The good agreement with in vitro data provides validation of the model in terms of both the assumptions adopted and the simulation techniques. As an application in the field of space research, the model predictions were compared with aberration yields measured among crew members of long-term missions on board Mir and ISS, assuming an average radiation quality factor of 2.4. The agreement obtained also validated the model for in vivo exposure scenarios and suggested possible applications to the prediction of other relevant aberrations, typically translocations.

  4. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers.

    PubMed

    Kakoi, H; Hirota, K; Gawahara, H; Kurosawa, M; Kuwajima, M

    2005-03-01

    Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.

  5. Vanadium inhibits DNA-protein cross-links and ameliorates surface level changes of aberrant crypt foci during 1,2-dimethylhydrazine induced rat colon carcinogenesis.

    PubMed

    Kanna, P Suresh; Saralaya, M G; Samanta, K; Chatterjee, M

    2005-01-01

    The trace mineral vanadium inhibits cancer development in a variety of experimental animal models. The present study was to gain insight into a putative anticancer effect of vanadium in a rat model of colon carcinogenesis. The in vivo study was intended to clarify the effect of vanadium on DNA-protein cross-links (DPC), surface level changes of aberrant crypt foci (ACF) and biotransformation status during 1,2-dimethylhydrazine (1,2-DMH) induced preneoplastic rat colon carcinogenesis. The comet assay showed statistically higher mean base values of DNA-protein mass (p<0.01) and mean frequencies of tailed cells (p<0.001) in the carcinogen-induced group after treatment with proteinase K. Treatment with vanadium in the form of ammonium monovanadate supplemented ad libitum in drinking water for the entire experimental period caused a significant (p<0.02) reduction (40%) in DNA-protein cross-links in colon cells. Further, the biotransformation status of vanadium was ascertained measuring the drug metabolising enzymes, glutathione S-transferase (GST) and cytochrome P-450 (Cyt P-450). Significantly, there was an increase in glutathione S-transferase and cytochrome P-450 levels (p<0.01 and p<0.02, respectively) in rats supplemented with vanadium as compared to their carcinogen controls. As an endpoint marker, we also evaluated the effect of vanadium on surface level changes of aberrant crypt foci induced by 1,2-DMH by scanning electron microscopy. Animals induced with 1,2-DMH and supplemented with vanadium showed a marked improvement in colonic architecture with less number of aberrant crypt foci in contrast to the animals induced with 1,2-DMH alone, thereby exhibiting its anti-carcinogenicity by modulating the markers studied herein.

  6. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells.

    PubMed

    Ponomarev, Artem L; George, Kerry; Cucinotta, Francis A

    2014-03-01

    We have developed a model that can simulate the yield of radiation-induced chromosomal aberrations (CAs) and unrejoined chromosome breaks in normal and repair-deficient cells. The model predicts the kinetics of chromosomal aberration formation after exposure in the G₀/G₁ phase of the cell cycle to either low- or high-LET radiation. A previously formulated model based on a stochastic Monte Carlo approach was updated to consider the time dependence of DNA double-strand break (DSB) repair (proper or improper), and different cell types were assigned different kinetics of DSB repair. The distribution of the DSB free ends was derived from a mechanistic model that takes into account the structure of chromatin and DSB clustering from high-LET radiation. The kinetics of chromosomal aberration formation were derived from experimental data on DSB repair kinetics in normal and repair-deficient cell lines. We assessed different types of chromosomal aberrations with the focus on simple and complex exchanges, and predicted the DSB rejoining kinetics and misrepair probabilities for different cell types. The results identify major cell-dependent factors, such as a greater yield of chromosome misrepair in ataxia telangiectasia (AT) cells and slower rejoining in Nijmegen (NBS) cells relative to the wild-type. The model's predictions suggest that two mechanisms could exist for the inefficiency of DSB repair in AT and NBS cells, one that depends on the overall speed of joining (either proper or improper) of DNA broken ends, and another that depends on geometric factors, such as the Euclidian distance between DNA broken ends, which influences the relative frequency of misrepair.

  7. DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence.

    PubMed

    Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming

    2015-11-01

    Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.

  8. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients

    PubMed Central

    Lin, De-Chen; Wang, Ming-Rong; Koeffler, H. Phillip

    2018-01-01

    Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. The exomes of more than 600 ESCCs have been sequenced in the past 4 years, and numerous key aberrations have been identified. Recently, researchers reported both inter- and intratumor heterogeneity. Although these are interesting observations, their clinical implications are unclear due to the limited number of samples profiled. Epigenomic alterations, such as changes in DNA methylation, histone acetylation, and RNA editing, also have been observed in ESCCs. However, it is not clear what proportion of ESCC cells carry these epigenomic aberrations or how they contribute to tumor development. We review the genomic and epigenomic characteristics of ESCCs, with a focus on emerging themes. We discuss their clinical implications and future research directions. PMID:28757263

  9. The Distribution of Chromosomal Aberrations in Human Cells Predicted by a Generalized Time-Dependent Model of Radiation-Induced Formation of Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; George, K.; Cucinotta, F. A.

    2011-01-01

    New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.

  10. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruta, Mayumi; Shimada, Midori, E-mail: midorism@med.nagoya-cu.ac.jp; Nishiyama, Atsuya

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program.more » Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.« less

  11. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes.

    PubMed

    Katyal, Sachin; Lee, Youngsoo; Nitiss, Karin C; Downing, Susanna M; Li, Yang; Shimada, Mikio; Zhao, Jingfeng; Russell, Helen R; Petrini, John H J; Nitiss, John L; McKinnon, Peter J

    2014-06-01

    DNA damage is considered to be a prime factor in several spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. We observed the endogenous accumulation of pathogenic topoisomerase-1 (Top1)-DNA cleavage complexes (Top1ccs) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We found that the defective DNA damage response factors in these two diseases cooperatively modulated Top1cc turnover in a non-epistatic and ATM kinase-independent manner. Furthermore, coincident neural inactivation of ATM and DNA single-strand break repair factors, including tyrosyl-DNA phosphodiesterase-1 or XRCC1, resulted in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Notably, direct Top1 poisoning to elevate Top1cc levels phenocopied the neuropathology of the mouse models described above. Our results identify a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating that genome integrity is important for preventing disease in the nervous system.

  12. DNA Copy Number Aberrations, and Human Papillomavirus Status in Penile Carcinoma. Clinico-Pathological Correlations and Potential Driver Genes.

    PubMed

    La-Touche, Susannah; Lemetre, Christophe; Lambros, Maryou; Stankiewicz, Elzbieta; Ng, Charlotte K Y; Weigelt, Britta; Rajab, Ramzi; Tinwell, Brendan; Corbishley, Cathy; Watkin, Nick; Berney, Dan; Reis-Filho, Jorge S

    2016-01-01

    Penile squamous cell carcinoma is a rare disease, in which somatic genetic aberrations have yet to be characterized. We hypothesized that gene copy aberrations might correlate with human papillomavirus status and clinico-pathological features. We sought to determine the spectrum of gene copy number aberrations in a large series of PSCCs and to define their correlations with human papillomavirus, histopathological subtype, and tumor grade, stage and lymph node status. Seventy formalin-fixed, paraffin embedded penile squamous cell carcinomas were centrally reviewed by expert uropathologists. DNA was extracted from micro-dissected samples, subjected to PCR-based human papillomavirus assessment and genotyping (INNO-LiPA human papillomavirus Genotyping Extra Assay) and microarray-based comparative genomic hybridization using a 32K Bacterial Artificial Chromosome array platform. Sixty-four samples yielded interpretable results. Recurrent gains were observed in chromosomes 1p13.3-q44 (88%), 3p12.3-q29 (86%), 5p15.33-p11 (67%) and 8p12-q24.3 (84%). Amplifications of 5p15.33-p11 and 11p14.1-p12 were found in seven (11%) and four (6%) cases, respectively. Losses were observed in chromosomes 2q33-q37.3 (86%), 3p26.3-q11.1 (83%) and 11q12.2-q25 (81%). Although many losses and gains were similar throughout the cohort, there were small significant differences observed at specific loci, between human papillomavirus positive and negative tumors, between tumor types, and tumor grade and nodal status. These results demonstrate that despite the diversity of genetic aberrations in penile squamous cell carcinomas, there are significant correlations between the clinico-pathological data and the genetic changes that may play a role in disease natural history and progression and highlight potential driver genes, which may feature in molecular pathways for existing therapeutic agents.

  13. DNA Copy Number Aberrations, and Human Papillomavirus Status in Penile Carcinoma. Clinico-Pathological Correlations and Potential Driver Genes

    PubMed Central

    Lambros, Maryou; Stankiewicz, Elzbieta; Ng, Charlotte K. Y.; Weigelt, Britta; Rajab, Ramzi; Tinwell, Brendan; Corbishley, Cathy; Watkin, Nick; Berney, Dan; Reis-Filho, Jorge S.

    2016-01-01

    Penile squamous cell carcinoma is a rare disease, in which somatic genetic aberrations have yet to be characterized. We hypothesized that gene copy aberrations might correlate with human papillomavirus status and clinico-pathological features. We sought to determine the spectrum of gene copy number aberrations in a large series of PSCCs and to define their correlations with human papillomavirus, histopathological subtype, and tumor grade, stage and lymph node status. Seventy formalin-fixed, paraffin embedded penile squamous cell carcinomas were centrally reviewed by expert uropathologists. DNA was extracted from micro-dissected samples, subjected to PCR-based human papillomavirus assessment and genotyping (INNO-LiPA human papillomavirus Genotyping Extra Assay) and microarray-based comparative genomic hybridization using a 32K Bacterial Artificial Chromosome array platform. Sixty-four samples yielded interpretable results. Recurrent gains were observed in chromosomes 1p13.3-q44 (88%), 3p12.3-q29 (86%), 5p15.33-p11 (67%) and 8p12-q24.3 (84%). Amplifications of 5p15.33-p11 and 11p14.1-p12 were found in seven (11%) and four (6%) cases, respectively. Losses were observed in chromosomes 2q33-q37.3 (86%), 3p26.3-q11.1 (83%) and 11q12.2-q25 (81%). Although many losses and gains were similar throughout the cohort, there were small significant differences observed at specific loci, between human papillomavirus positive and negative tumors, between tumor types, and tumor grade and nodal status. These results demonstrate that despite the diversity of genetic aberrations in penile squamous cell carcinomas, there are significant correlations between the clinico-pathological data and the genetic changes that may play a role in disease natural history and progression and highlight potential driver genes, which may feature in molecular pathways for existing therapeutic agents. PMID:26901676

  14. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  15. [Integrated DNA barcoding database for identifying Chinese animal medicine].

    PubMed

    Shi, Lin-Chun; Yao, Hui; Xie, Li-Fang; Zhu, Ying-Jie; Song, Jing-Yuan; Zhang, Hui; Chen, Shi-Lin

    2014-06-01

    In order to construct an integrated DNA barcoding database for identifying Chinese animal medicine, the authors and their cooperators have completed a lot of researches for identifying Chinese animal medicines using DNA barcoding technology. Sequences from GenBank have been analyzed simultaneously. Three different methods, BLAST, barcoding gap and Tree building, have been used to confirm the reliabilities of barcode records in the database. The integrated DNA barcoding database for identifying Chinese animal medicine has been constructed using three different parts: specimen, sequence and literature information. This database contained about 800 animal medicines and the adulterants and closely related species. Unknown specimens can be identified by pasting their sequence record into the window on the ID page of species identification system for traditional Chinese medicine (www. tcmbarcode. cn). The integrated DNA barcoding database for identifying Chinese animal medicine is significantly important for animal species identification, rare and endangered species conservation and sustainable utilization of animal resources.

  16. Detecting independent and recurrent copy number aberrations using interval graphs.

    PubMed

    Wu, Hsin-Ta; Hajirasouliha, Iman; Raphael, Benjamin J

    2014-06-15

    Somatic copy number aberrations SCNAS: are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNA: s makes the problem of identifying recurrent aberrations notoriously difficult. We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNA: s, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNA: s as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. http://compbio.cs.brown.edu/software. © The Author 2014. Published by Oxford University Press.

  17. TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells

    PubMed Central

    Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi

    2016-01-01

    Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763

  18. Computational model of chromosome aberration yield induced by high- and low-LET radiation exposures.

    PubMed

    Ponomarev, Artem L; George, Kerry; Cucinotta, Francis A

    2012-06-01

    We present a computational model for calculating the yield of radiation-induced chromosomal aberrations in human cells based on a stochastic Monte Carlo approach and calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. A previously developed DNA-fragmentation model for high- and low-LET radiation called the NASARadiationTrackImage model was enhanced to simulate a stochastic process of the formation of chromosomal aberrations from DNA fragments. The current version of the model gives predictions of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G(0)/G(1) cell cycle phase during the first cell division after irradiation. As the model can predict smaller-sized deletions and rings (<3 Mbp) that are below the resolution limits of current cytogenetic analysis techniques, we present predictions of hypothesized small deletions that may be produced as a byproduct of properly repaired DNA double-strand breaks (DSB) by nonhomologous end-joining. Additionally, the model was used to scale chromosomal exchanges in two or three chromosomes that were obtained from whole-chromosome FISH painting analysis techniques to whole-genome equivalent values.

  19. DNA microarrays for identifying fishes.

    PubMed

    Kochzius, M; Nölte, M; Weber, H; Silkenbeumer, N; Hjörleifsdottir, S; Hreggvidsson, G O; Marteinsson, V; Kappel, K; Planes, S; Tinti, F; Magoulas, A; Garcia Vazquez, E; Turan, C; Hervet, C; Campo Falgueras, D; Antoniou, A; Landi, M; Blohm, D

    2008-01-01

    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a "Fish Chip" for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products.

  20. Aberrant DNA methylation patterns in diabetic nephropathy

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate whether global levels of DNA methylation status were associated with albuminuria and progression of diabetic nephropathy in a case-control study of 123 patients with type 2 diabetes- 53 patients with albuminuria and 70 patients without albuminuria. Methods The 5-methyl cytosine content was assessed by reverse phase high pressure liquid chromatography (RP-HPLC) of peripheral blood mononuclear cells to determine individual global DNA methylation status in two groups. Results Global DNA methylation levels were significantly higher in patients with albuminuria compared with those in normal range of albuminuria (p = 0.01). There were significant differences in global levels of DNA methylation in relation to albuminuria (p = 0.028) and an interesting pattern of increasing global levels of DNA methylation in terms of albuminuria severity. In patients with micro- and macro albuminuria, we found no significant correlations between global DNA methylation levels and duration of diabetes (p > 0.05). In both sub groups, there were not significant differences between global DNA methylation levels with good and poor glycaemic control (p > 0.05). In addition, in patients with albuminuria, no differences in DNA methylation levels were observed between patients with and without other risk factors including age, gender, hypertension, dyslipidaemia and obesity. Conclusions These data may be helpful in further studies to develop novel biomarkers and new strategies for clinical care of patients at risk of diabetic nephropathy. PMID:25028646

  1. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours

    PubMed Central

    Murai, M; Toyota, M; Satoh, A; Suzuki, H; Akino, K; Mita, H; Sasaki, Y; Ishida, T; Shen, L; Garcia-Manero, G; Issa, J-P J; Hinoda, Y; Tokino, T; Imai, K

    2005-01-01

    Hypoxia is a key factor contributing to the progression of human neoplasias and to the development of resistance to chemotherapy. BNIP3 is a proapoptotic member of the Bcl-2 protein family involved in hypoxia-induced cell death. We evaluated the expression and methylation status of BNIP3 gene to better understand the role of epigenetic alteration of its expression in haematopoietic tumours. Methylation of the region around the BNIP3 transcription start site was detected in four acute lymphocytic leukaemia, one multiple myeloma and one Burkitt lymphoma cell lines, and was closely associated with silencing the gene. That expression of BNIP3 was restored by treatment with 5-aza2′-deoxycytidine (5-aza-dC), a methyltransferase inhibitor, which confirmed the gene to be epigenetically inactivated by methylation. Notably, re-expression of BNIP3 using 5-aza2-dC also restored hypoxia-mediated cell death in methylated cell lines. Acetylation of histone H3 in the 5′ region of the gene, which was assessed using chromatin immunoprecipitation assays, correlated directly with gene expression and inversely with DNA methylation. Among primary tumours, methylation of BNIP3 was detected in five of 34 (15%) acute lymphocytic leukaemias, six of 35 (17%) acute myelogenous leukaemias and three of 14 (21%) multiple myelomas. These results suggest that aberrant DNA methylation of the 5′ CpG island and histone deacetylation play key roles in silencing BNIP3 expression in haematopoietic tumours. PMID:15756280

  2. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  3. [Meiotic drive for aberrant chromosome 1 in mice is determined by a linked distorter].

    PubMed

    Agul'nik, S I; Sabantsev, I D; Orlova, G V; Ruvinskiĭ, A O

    1992-12-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from natural populations of Mus musculus. A meiotic drive favouring the aberrant chromosome was previously demonstrated for heterozygous females. The cause for this was the preferential passage of the chromosome 1 to the oocyte. Genetic analysis made it possible to identify a two-component system conditioning the deviation from equal segregation of the homologues. The system consists of the postulated distorter and a responder. The distorter is located on the chromosome 1 distally to the responder, between the 1n and Pep 3 genes, the former acting on the responder when in the trans position. Polymorphism of the distorters was manifested as variation in their effect on the meiotic drive level in the laboratory strain and mice from natural populations.

  4. Further evidence that aberrant segregation and crossing over in Sordaria brevicollis may be discrete, though associated, events.

    PubMed

    Theivendirarajah, K; Whitehouse, H L

    1983-01-01

    Crosses were made between buff spore colour mutants in Sordaria brevicollis in the presence of flanking markers. Recombinant asci with one or more wild-type spores were isolated and the spores germinated and scored for buff and flanking marker genotype. The buff genotype was determined by back-crossing to each parent and looking for recombinants. It was found that the majority of the recombinant asci had aberrant segregation at one or other mutant site but not both. It was inferred that in the recombinants hybrid DNA rarely extended to both sites. When the aberrant segregation was associated with crossing-over, the crossovers were situated at either end of the gene rather than between the allelic sites where the hybrid DNA was believed to terminate. Thus, some of the crossovers were separated from the site of the aberrant segregation by a site apparently not involved in hybrid DNA and none was in the position predicted by the Meselson-Radding model, that is, where the hybrid DNA terminates.

  5. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms.

    PubMed

    Martin, Lee J; Wong, Margaret

    2013-10-01

    Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. A diagnosis is fatal owing to degeneration of motor neurons in brain and spinal cord that control swallowing, breathing, and movement. ALS can be inherited, but most cases are not associated with a family history of the disease. The mechanisms causing motor neuron death in ALS are still unknown. Given the suspected complex interplay between multiple genes, the environment, metabolism, and lifestyle in the pathogenesis of ALS, we have hypothesized that the mechanisms of disease in ALS involve epigenetic contributions that can drive motor neuron degeneration. DNA methylation is an epigenetic mechanism for gene regulation engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to carbon-5 in cytosine residues in gene regulatory promoter and nonpromoter regions. Recent genome-wide analyses have found differential gene methylation in human ALS. Neuropathologic assessments have revealed that motor neurons in human ALS show significant abnormalities in Dnmt1, Dnmt3a, and 5-methylcytosine. Similar changes are seen in mice with motor neuron degeneration, and Dnmt3a was found abundantly at synapses and in mitochondria. During apoptosis of cultured motor neuron-like cells, Dnmt1 and Dnmt3a protein levels increase, and 5-methylcytosine accumulates. Enforced expression of Dnmt3a, but not Dnmt1, induces degeneration of cultured neurons. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocks apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with small molecules RG108 and procainamide protects motor neurons from excessive DNA methylation and apoptosis in cell culture and in a mouse model of ALS. Thus, motor neurons can engage epigenetic mechanisms to cause their degeneration, involving Dnmts and increased DNA methylation. Aberrant DNA methylation in vulnerable cells is a new direction for discovering mechanisms of ALS

  6. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients.

    PubMed

    Ponomaryova, Anastasia A; Rykova, Elena Yu; Cherdyntseva, Nadezda V; Skvortsova, Tatiana E; Dobrodeev, Alexey Yu; Zav'yalov, Alexander A; Bryzgalov, Leonid O; Tuzikov, Sergey A; Vlassov, Valentin V; Laktionov, Pavel P

    2013-09-01

    To date, aberrant DNA methylation has been shown to be one of the most common and early causes of malignant cell transformation and tumors of different localizations, including lung cancer. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA circulating in the blood (cirDNA) is a convenient tumor-associated DNA marker that can be used as a minimally invasive diagnostic test. In the current study, we investigated the methylation status in blood samples of 32 healthy donors and 60 lung cancer patients before and after treatment with neoadjuvant chemotherapy followed by total tumor resection. Using quantitative methylation-specific PCR, we found that the index of methylation (IM), calculated as IM = 100 × [copy number of methylated/(copy number of methylated + unmethylated gene)], for the RASSF1A and RARB2 genes in the cirDNA isolated from blood plasma and cell-surface-bound cirDNA was elevated 2- to 3-fold in lung cancer patients compared with healthy donors. Random forest classification tree model based on these variables combined (RARB2 and RASSF1A IM in both plasma and cell-surface-bound cirDNA) lead to NSCLC patients' and healthy subjects' differentiation with 87% sensitivity and 75% specificity. An association of increased IM values with an advanced stage of non-small-cell lung cancer was found for RARB2 but not for RASSF1A. Chemotherapy and total tumor resection resulted in a significant decrease in the IM for RARB2 and RASSF1A, in both cirDNA fractions, comparable to the IM level of healthy subjects. Importantly, a rise in the IM for RARB2 was detected in patients within the follow-up period, which manifested in disease relapse at 9 months, confirmed with instrumental and pathologic methods. Our data indicate that quantitative analysis of the methylation status of the RARB2 and RASSF1A tumor suppressor genes in both cirDNA fractions is a useful tool for lung cancer diagnostics, evaluation of cancer

  7. DNA Repair in Prostate Cancer: Biology and Clinical Implications.

    PubMed

    Mateo, Joaquin; Boysen, Gunther; Barbieri, Christopher E; Bryant, Helen E; Castro, Elena; Nelson, Pete S; Olmos, David; Pritchard, Colin C; Rubin, Mark A; de Bono, Johann S

    2017-03-01

    For more precise, personalized care in prostate cancer (PC), a new classification based on molecular features relevant for prognostication and treatment stratification is needed. Genomic aberrations in the DNA damage repair pathway are common in PC, particularly in late-stage disease, and may be relevant for treatment stratification. To review current knowledge on the prevalence and clinical significance of aberrations in DNA repair genes in PC, particularly in metastatic disease. A literature search up to July 2016 was conducted, including clinical trials and preclinical basic research studies. Keywords included DNA repair, BRCA, ATM, CRPC, prostate cancer, PARP, platinum, predictive biomarkers, and hereditary cancer. We review how the DNA repair pathway is relevant to prostate carcinogenesis and progression. Data on how this may be relevant to hereditary cancer and genetic counseling are included, as well as data from clinical trials of PARP inhibitors and platinum therapeutics in PC. Relevant studies have identified genomic defects in DNA repair in PCs in 20-30% of advanced castration-resistant PC cases, a proportion of which are germline aberrations and heritable. Phase 1/2 clinical trial data, and other supporting clinical data, support the development of PARP inhibitors and DNA-damaging agents in this molecularly defined subgroup of PC following success in other cancer types. These studies may be an opportunity to improve patient care with personalized therapeutic strategies. Key literature on how genomic defects in the DNA damage repair pathway are relevant for prostate cancer biology and clinical management is reviewed. Potential implications for future changes in patient care are discussed. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. Relationship between radiation-induced aberrations in individual chromosomes and their DNA content: effects of interaction distance

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; Lucas, J. N.

    2001-01-01

    PURPOSE: To study the effect of the interaction distance on the frequency of inter- and intrachromosome exchanges in individual chromosomes with respect to their DNA content. Assumptions: Chromosome exchanges are formed by misrejoining of two DNA double-strand breaks (DSB) induced within an interaction distance, d. It is assumed that chromosomes in G(0)/G(1) phase of the cell cycle occupy a spherical domain in a cell nucleus, with no spatial overlap between individual chromosome domains. RESULTS: Formulae are derived for the probability of formation of inter-, as well as intra-, chromosome exchanges relating to the DNA content of the chromosome for a given interaction distance. For interaction distances <1 microm, the relative frequency of interchromosome exchanges predicted by the present model is similar to that by Cigarran et al. (1998) based on the assumption that the probability of interchromosome exchanges is proportional to the "surface area" of the chromosome territory. The "surface area" assumption is shown to be a limiting case of d-->0 in the present model. The present model also predicts that the probability of intrachromosome exchanges occurring in individual chromosomes is proportional to their DNA content with correction terms. CONCLUSION: When the interaction distance is small, the "surface area" distribution for chromosome participation in interchromosome exchanges has been expected. However, the present model shows that for the interaction distance as large as 1 microm, the predicted probability of interchromosome exchange formation is still close to the surface area distribution. Therefore, this distribution does not necessarily rule out the formation of complex chromosomal aberrations by long-range misrejoining of DSB.

  9. Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations

    PubMed Central

    Bianchi-Frias, Daniella; Basom, Ryan; Delrow, Jeffrey J; Coleman, Ilsa M; Dakhova, Olga; Qu, Xiaoyu; Fang, Min; Franco, Omar E.; Ericson, Nolan G.; Bielas, Jason H.; Hayward, Simon W.; True, Lawrence; Morrissey, Colm; Brown, Lisha; Bhowmick, Neil A.; Rowley, David; Ittmann, Michael; Nelson, Peter S.

    2017-01-01

    Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole genome copy number analyses, targeted sequencing of TP53, and fluorescence in situ hybridization. Comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy number aberrations (SCNAs). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, no loss of heterozygosity (LOH) or copy-neutral LOH in cultured cancer-associated fibroblasts (CAFs), which are known to promote prostate cancer progression in vivo. PMID:26753621

  10. A Monte-Carlo Model for the Formation of Radiation-induced Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Cornforth, Michael N.; Loucas, Brad D.; Cucinotta, Francis A.

    2009-01-01

    Purpose: To simulate radiation-induced chromosome aberrations in mammalian cells (e.g., rings, translocations, and dicentrics) and to calculate their frequency distributions following exposure to DNA double strand breaks (DSBs) produced by high-LET ions. Methods: The interphase genome was assumed to be comprised of a collection of 2 kbp rigid-block monomers following the random-walk geometry. Additional details for the modeling of chromosomal structure, such as chromosomal domains and chromosomal loops, were included. A radial energy profile for heavy ion tracks was used to simulate the high-LET pattern of induced DSBs. The induced DSB pattern depended on the ion charge and kinetic energy, but always corresponded to the DSB yield of 25 DSBs/cell/Gy. The sum of all energy contributions from Poisson-distributed particle tracks was taken to account for all possible one-track and multi-track effects. The relevant output of the model was DNA fragments produced by DSBs. The DSBs, or breakpoints, were defined by (x, y, z, l) positions, where x, y, z were the Euclidian coordinates of a DSB, and where l was the relative position along the genome. Results: The code was used to carry out Monte Carlo simulations for DSB rejoinings at low doses. The resulting fragments were analyzed to estimate the frequencies of specific types of chromosomal aberrations. Histograms for relative frequencies of chromosomal aberrations and P.D.F.s (probability density functions) of a given aberration type were produced. The relative frequency of dicentrics to rings was compared to empirical data to calibrate rejoining probabilities. Of particular interest was the predicted distribution of ring sizes, irrespective of their frequencies relative to other aberrations. Simulated ring sizes were . 4 kbp, which are far too small to be observed experimentally (i.e., by microscopy) but which, nevertheless, are conjectured to exist. Other aberrations, for example, inversions, translocations, as well as

  11. Identifying corals displaying aberrant behavior in Fiji’s Lau Archipelago

    PubMed Central

    Chen, Chii-Shiarng; Dempsey, Alexandra C.

    2017-01-01

    Abstract Given the numerous threats against Earth’s coral reefs, there is an urgent need to develop means of assessing reef coral health on a proactive timescale. Molecular biomarkers may prove useful in this endeavor because their expression should theoretically undergo changes prior to visible signs of health decline, such as the breakdown of the coral-dinoflagellate (genus Symbiodinium) endosymbiosis. Herein 13 molecular- and physiological-scale biomarkers spanning both eukaryotic compartments of the anthozoan-Symbiodinium mutualism were assessed across 70 pocilloporid coral colonies sampled from reefs of Fiji’s easternmost province, Lau. Eleven colonies were identified as outliers upon employment of a detection method based partially on the Mahalanobis distance; these corals were hypothesized to have been displaying aberrant sub-cellular behavior with respect to their gene expression signatures, as they were characterized not only by lower Symbiodinium densities, but also by higher levels of expression of several stress-targeted genes. Although these findings could suggest that the sampled colonies were physiologically compromised at the time of sampling, further studies are warranted to state conclusively whether these 11 scleractinian coral colonies are more stress-prone than nearby conspecifics that demonstrated statistically normal phenotypes. PMID:28542245

  12. Chromosomal aberrations and deoxyribonucleic acid single-strand breaks in adipose-derived stem cells during long-term expansion in vitro.

    PubMed

    Froelich, Katrin; Mickler, Johannes; Steusloff, Gudrun; Technau, Antje; Ramos Tirado, Mario; Scherzed, Agmal; Hackenberg, Stephan; Radeloff, Andreas; Hagen, Rudolf; Kleinsasser, Norbert

    2013-07-01

    Adipose-derived stem cells (ASCs) are a promising mesenchymal cell source for tissue engineering approaches. To obtain an adequate cell amount, in vitro expansion of the cells may be required in some cases. To monitor potential contraindications for therapeutic applications in humans, DNA strand breaks and chromosomal aberrations in ASCs during in vitro expansion were examined. After isolation of ASC from human lipoaspirates of seven patients, in vitro expansion over 10 passages was performed. Cells from passages 1, 2, 3, 5 and 10 were used for the alkaline single-cell microgel electrophoresis (comet) assay to detect DNA single-strand breaks and alkali labile as well as incomplete excision repair sites. Chromosomal changes were examined by means of the chromosomal aberration test. During in vitro expansion, ASC showed no DNA single-strand breaks in the comet assay. With the chromosomal aberration test, however, a significant increase in chromosomal aberrations were detected. The study showed that although no DNA fragmentation could be determined, the safety of ASC cannot be ensured with respect to chromosome stability during in vitro expansion. Thus, reliable analyses for detecting ASC populations, which accumulate chromosomal aberrations or even undergo malignant transformation during extensive in vitro expansion, must be implemented as part of the safety evaluation of these cells for stem cell-based therapy. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Terahertz molecular resonance of cancer DNA.

    PubMed

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A; Son, Joo-Hiuk

    2016-11-15

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  14. Terahertz molecular resonance of cancer DNA

    NASA Astrophysics Data System (ADS)

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A.; Son, Joo-Hiuk

    2016-11-01

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  15. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India.

    PubMed

    Basu, Baidehi; Chakraborty, Joyeeta; Chandra, Aditi; Katarkar, Atul; Baldevbhai, Jadav Ritesh Kumar; Dhar Chowdhury, Debjit; Ray, Jay Gopal; Chaudhuri, Keya; Chatterjee, Raghunath

    2017-01-01

    Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India.

  16. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    PubMed Central

    Kuss-Duerkop, Sharon K.; Westrich, Joseph A.

    2018-01-01

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers. PMID:29438328

  17. Numerical chromosomal aberrations in Hodgkin's disease detected by in situ hybridisation on routine paraffin sections.

    PubMed Central

    Pringle, J H; Shaw, J A; Gillies, A; Lauder, I

    1997-01-01

    AIMS: To visualise directly numerical chromosomal aberrations and polyploidy in both Hodgkin and Reed Sternberg (HRS) cells and background cells from cases of Hodgkin's disease using in situ hybridisation. METHODS: Non-isotopic DNA in situ hybridisation was applied to interphase cell nuclei of Hodgkin's disease within routine paraffin embedded tissue sections. Two a satellite DNA probes, specific for chromosomes 3 and 12, were used to evaluate the feasibility of this approach. Double labelling with immunocytochemical detection of the CD30 antigen was used to identify HRS cells. Cytogenetic normal diploid and triploid placental tissue served as controls. RESULTS: The eight cases of Hodgkin's disease investigated displayed frequent polysomy, while the majority of background cells showed disomy signals. CONCLUSIONS: Numerical chromosomal aberrations were detected in HRS cells from eight cases of Hodgkin's disease by in situ hybridisation. These data show that in Hodgkin's disease HRS cells frequently display polyploidy compared with background cells and are, therefore, probably the only neoplastic component in this disease. Correlations between polysomy and tumour type or grade could not be made from these data owing to the limited number of cases examined and to problems with interpreting data from truncated nuclei. Images PMID:9306933

  18. Anti-forensics of chromatic aberration

    NASA Astrophysics Data System (ADS)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  19. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  20. Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae).

    PubMed

    Yang, Jun-Bo; Wang, Yi-Ping; Möller, Michael; Gao, Lian-Ming; Wu, Ding

    2012-03-01

    DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia. © 2011 Blackwell Publishing Ltd.

  1. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-inducedmore » heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.« less

  2. Identifying single bases in a DNA oligomer with electron tunnelling.

    PubMed

    Huang, Shuo; He, Jin; Chang, Shuai; Zhang, Peiming; Liang, Feng; Li, Shengqin; Tuchband, Michael; Fuhrmann, Alexander; Ros, Robert; Lindsay, Stuart

    2010-12-01

    It has been proposed that single molecules of DNA could be sequenced by measuring the physical properties of the bases as they pass through a nanopore. Theoretical calculations suggest that electron tunnelling can identify bases in single-stranded DNA without enzymatic processing, and it was recently experimentally shown that tunnelling can sense individual nucleotides and nucleosides. Here, we report that tunnelling electrodes functionalized with recognition reagents can identify a single base flanked by other bases in short DNA oligomers. The residence time of a single base in a recognition junction is on the order of a second, but pulling the DNA through the junction with a force of tens of piconewtons would yield reading speeds of tens of bases per second.

  3. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  4. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks

    PubMed Central

    van Dyk, Ewald; Hoogstraat, Marlous; ten Hoeve, Jelle; Reinders, Marcel J. T.; Wessels, Lodewyk F. A.

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects recurrent copy number breaks, rather than recurrently amplified or deleted regions. This change of perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-estimation of the background model are avoided. Furthermore, we control the false discovery rate on the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known cancer genes. PMID:27396759

  5. DNA Barcoding Identifies Illegal Parrot Trade.

    PubMed

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    PubMed Central

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  7. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    NASA Astrophysics Data System (ADS)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta'Ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  8. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    PubMed

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  9. Polymorphism of DNA repair gene XPD Lys751Gln and chromosome aberrations in lymphocytes of thyroid cancer patients exposed to ionizing radiation due to the Chornobyl accident.

    PubMed

    Shkarupa, V M; Mishcheniuk, O Y; Henyk-Berezovska, S O; Palamarchuk, V O; Klymenko, S V

    2016-12-01

    The aim of this work was to analyze the relationship between polymorphisms of DNA repair gene XPD Lys751Gln and frequency and spectrum of chromosome aberrations in the culture of peripheral blood lymphocytes of thyroid cancer (TC) patients having been exposed to ionizing radiation due to the Chornobyl accident. XPD Lys751Gln polymorphisms were detected by polymerase chain reaction in 102 TC patients including 38 patients exposed to ionizing radiation due to Chornobyl disaster (Chornobyl recovery workers, evacuees, and the residents of contaminated areas), 64 patients without history of ionizing radiation exposure and 45 healthy residents of Ukraine as control group. In homozygous carriers of the minor allele XPD Gln751Gln, exposed to ionizing radiation, the significantly increased risk of TC (odds ratio = 3.66; p = 0.03; 95% confidence interval 1.04-12.84) was found. Among evacuees and residents of contaminated areas, homozygous carriers of the minor allele variants of XPD gene were characterized by the high level of spontaneous chromosome aberrations. TC patients without history of ionizing radiation exposure, being homozygous carriers of the allele XPD Lys751Lys, had significantly reduced frequency of chromosome-type aberrations. The carriage of homozygous minor allele of DNA repair gene XPD Gln751Gln is a risk factor for TC in persons from Ukrainian population exposed to ionizing radiation and is associated with the increased levels of chromosomal instability. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  10. Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia).

    PubMed

    Sinniger, Frederic; Reimer, James D; Pawlowski, Jan

    2008-12-01

    The order Zoantharia is known for its chaotic taxonomy and difficult morphological identification. One method that potentially could help for examining such troublesome taxa is DNA barcoding, which identifies species using standard molecular markers. The mitochondrial cytochrome oxidase subunit I (COI) has been utilized to great success in groups such as birds and insects; however, its applicability in many other groups is controversial. Recently, some studies have suggested that barcoding is not applicable to anthozoans. Here, we examine the use of COI and mitochondrial 16S ribosomal DNA for zoanthid identification. Despite the absence of a clear barcoding gap, our results show that for most of 54 zoanthid samples, both markers could separate samples to the species, or species group, level, particularly when easily accessible ecological or distributional data were included. Additionally, we have used the short V5 region of mt 16S rDNA to identify eight old (13 to 50 years old) museum samples. We discuss advantages and disadvantages of COI and mt 16S rDNA as barcodes for Zoantharia, and recommend that either one or both of these markers be considered for zoanthid identification in the future.

  11. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  12. A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets.

    PubMed

    Adamia, Sophia; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bar-Natan, Michal; Pevzner, Samuel; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Burke, John; Galinsky, Ilene; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Stone, Richard; Griffin, James D

    2014-03-01

    Despite new treatments, acute myeloid leukemia (AML) remains an incurable disease. More effective drug design requires an expanded view of the molecular complexity that underlies AML. Alternative splicing of RNA is used by normal cells to generate protein diversity. Growing evidence indicates that aberrant splicing of genes plays a key role in cancer. We investigated genome-wide splicing abnormalities in AML and based on these abnormalities, we aimed to identify novel potential biomarkers and therapeutic targets. We used genome-wide alternative splicing screening to investigate alternative splicing abnormalities in two independent AML patient cohorts [Dana-Farber Cancer Institute (DFCI) (Boston, MA) and University Hospital de Nantes (UHN) (Nantes, France)] and normal donors. Selected splicing events were confirmed through cloning and sequencing analysis, and than validated in 193 patients with AML. Our results show that approximately 29% of expressed genes genome-wide were differentially and recurrently spliced in patients with AML compared with normal donors bone marrow CD34(+) cells. Results were reproducible in two independent AML cohorts. In both cohorts, annotation analyses indicated similar proportions of differentially spliced genes encoding several oncogenes, tumor suppressor proteins, splicing factors, and heterogeneous-nuclear-ribonucleoproteins, proteins involved in apoptosis, cell proliferation, and spliceosome assembly. Our findings are consistent with reports for other malignances and indicate that AML-specific aberrations in splicing mechanisms are a hallmark of AML pathogenesis. Overall, our results suggest that aberrant splicing is a common characteristic for AML. Our findings also suggest that splice variant transcripts that are the result of splicing aberrations create novel disease markers and provide potential targets for small molecules or antibody therapeutics for this disease. ©2013 AACR

  13. The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences.

    PubMed

    Jia, Pingping; Chai, Weihang

    2018-05-01

    Genome instability gives rise to cancer. MLH1, commonly known for its important role in mismatch repair (MMR), DNA damage signaling and double-strand break (DSB) repair, safeguards genome stability. Recently we have reported a novel role of MLH1 in preventing aberrant formation of interstitial telomeric sequences (ITSs) at intra-chromosomal regions. Deficiency in MLH1, in particular its N-terminus, leads to an increase of ITSs. Here, we identify that the ATPase activity in the MLH1 N-terminal domain is important for suppressing the formation of ITSs. The ATPase activity is also needed for recruiting MLH1 to DSBs. Moreover, defective ATPase activity of MLH1 causes an increase in micronuclei formation. Our results highlight the crucial role of MLH1's ATPase domain in preventing the aberrant formation of telomeric sequences at the intra-chromosomal regions and preserving genome stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  15. DNA Methylation in Schizophrenia.

    PubMed

    Pries, Lotta-Katrin; Gülöksüz, Sinan; Kenis, Gunter

    2017-01-01

    Schizophrenia is a highly heritable psychiatric condition that displays a complex phenotype. A multitude of genetic susceptibility loci have now been identified, but these fail to explain the high heritability estimates of schizophrenia. In addition, epidemiologically relevant environmental risk factors for schizophrenia may lead to permanent changes in brain function. In conjunction with genetic liability, these environmental risk factors-likely through epigenetic mechanisms-may give rise to schizophrenia, a clinical syndrome characterized by florid psychotic symptoms and moderate to severe cognitive impairment. These pathophysiological features point to the involvement of epigenetic processes. Recently, a wave of studies examining aberrant DNA modifications in schizophrenia was published. This chapter aims to comprehensively review the current findings, from both candidate gene studies and genome-wide approaches, on DNA methylation changes in schizophrenia.

  16. Identifying Fishes through DNA Barcodes and Microarrays.

    PubMed

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N; Weber, Hannes; Blohm, Dietmar

    2010-09-07

    International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  17. Nasopharyngeal carcinoma heterogeneity of DNA content identified on cytologic preparations.

    PubMed

    Maohuai, C; Chang, A R; Lo, D

    2001-06-01

    To evaluate tumor heterogeneity of DNA content in nasopharyngeal carcinoma (NPC) performed on cytologic specimens. Image cytometric analysis of DNA ploidy status of 40 NPCs was performed on nasopharyngeal brushing smears stained with the Feulgen method after hematoxylin eosin staining. If the DNA distribution pattern from the same tumor exhibited diploid, aneuploid or/and tetraploid peaks or some combination of these patterns, the presence of tumor heterogeneity of DNA content was identified. Thirty-four cases (85%) had a nondiploid DNA pattern among the 40 NPCs. Twenty-eight cases exhibited tumor heterogeneity of DNA content (70%). Of the 28 tumors, 13 (46%) had a combination of diploid and tetraploid patterns, 10 (37%) had a combination of diploid and aneuploid patterns, 3 cases (11%) had a combination of tetraploid and aneuploid patterns, and 2 cases had two aneuploid stem lines. The relationship between DNA ploidy pattern and tumor histologic and cytologic morphology was also examined. There is a high incidence of DNA content heterogeneity in NPC. The relevance of tumor heterogeneity to the biologic behavior of NPC awaits further study. DNA quantification with image cytometry on destained cytologic preparations is feasible and reliable.

  18. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio; Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio

    2013-12-01

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. MYC and the Control of DNA Replication

    PubMed Central

    Dominguez-Sola, David; Gautier, Jean

    2014-01-01

    The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC’s diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer. PMID:24890833

  20. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma.

    PubMed

    Parker, Nicole R; Hudson, Amanda L; Khong, Peter; Parkinson, Jonathon F; Dwight, Trisha; Ikin, Rowan J; Zhu, Ying; Cheng, Zhangkai Jason; Vafaee, Fatemeh; Chen, Jason; Wheeler, Helen R; Howell, Viive M

    2016-03-04

    Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies.

  1. Chromosomal aberrations and aneuploidy in oral potentially malignant lesions: distinctive features for tongue

    PubMed Central

    2011-01-01

    Background The mucosae of the oral cavity are different at the histological level but appear all equally exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia may develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs) in the OPMLs from different oral anatomical subsites. Methods Samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on DNA obtained from diploid nuclei suspensions directly. When aneuploid nuclei were detected, these were physically separated from diploid nuclei on the base of their DI values by means of a DNA-FCM-Sorter in order to improve the a-CGH analysis. Results Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. Conclusions We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this hypothesis should be validated in a prospective clinical study. PMID:21995418

  2. Aberrant methylation of GCNT2 is tightly related to lymph node metastasis of primary CRC.

    PubMed

    Nakamura, Kazunori; Yamashita, Keishi; Sawaki, Hiromichi; Waraya, Mina; Katoh, Hiroshi; Nakayama, Nobukazu; Kawamata, Hiroshi; Nishimiya, Hiroshi; Ema, Akira; Narimatsu, Hisashi; Watanabe, Masahiko

    2015-03-01

    Glycoprotein expression profile is dramatically altered in human cancers; however, specific glycogenes have not been fully identified. A comprehensive real-time polymerase chain reaction (PCR) system for glycogenes (CRPS-G) identified several outstanding glycogenes. GCNT2 was of particular interest after GCNT2 expression and epigenetics were rigorously investigated in primary colorectal cancer (CRC). The highlights of this work can be summarized as follows: (i) Expression of GCNT2 was remarkably suppressed. (ii) Silenced expression of GCNT2 was reactivated by combined demethylating agents. (iii) Promoter DNA methylation of GCNT2 was silenced in CRC cell lines and tissues. Hypomethylation of GCNT2 variant 2 is tightly associated with lymph node metastasis in primary CRC. (iv) GCNT2 methylation level in the normal tissues also showed a close association with that in the tumor tissues and reflected lymph node metastasis. We identified aberrant expression of GCNT2, which can be explained by promoter DNA hypermethylation. Hypomethylation of the GCNT2 variant 2 reflected lymph node metastasis of CRC in the tumor and normal tissues. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Efficient repair of DNA double-strand breaks in malignant cells with structural instability

    PubMed Central

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V.; Nakahara, Kenneth; Aplan, Peter D.

    2009-01-01

    Aberrant repair of DNA double strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR. PMID:19909760

  4. Efficient repair of DNA double-strand breaks in malignant cells with structural instability.

    PubMed

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V; Nakahara, Kenneth; Aplan, Peter D

    2010-01-05

    Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1alpha) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1alpha promoter from the TK gene, or deletion of either the EF1alpha promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.

  5. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication.

    PubMed

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Identifying DNA-binding proteins using structural motifs and the electrostatic potential

    PubMed Central

    Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.

    2004-01-01

    Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290

  7. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-inducedmore » heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.« less

  8. THE RELATION BETWEEN DNA SYNTHESIS AND CHROMOSOME STRUCTURE AS RESOLVED BY X-RAY DAMAGE

    PubMed Central

    Evans, H. J.; Savage, J. R. K.

    1963-01-01

    Vicia faba root tip cells were treated for short periods with tritiated thymidine, either immediately before or after exposure of roots to x-rays, and autoradiograph preparations were analysed in an attempt to test the hypothesis that chromatid type (B') aberrations are induced only in those chromosome regions that have synthesized DNA prior to x-irradiation, whereas chromosome type (B'') aberrations are induced only in unduplicated chromosome regions. Studying the relation between presence or absence of label at loci involved in aberrations, in cells irradiated at different development stages, and the pattern of labelling in cells carrying both types of aberration leads to the conclusion that B'' aberrations are induced only in unreplicated chromosome regions. Following replication, only B' aberrations are induced, but these aberrations are also induced in chromosome regions preparing to incorporate DNA. It is suggested that the doubled response of the chromosome to x-rays prior to DNA incorporation might reflect a physical separation of replicating units prior to replication. The aberration yields in damaged cells which were irradiated in G 1 S, and early G 2 were in the ratio of 1.0:2.0:3.2. The data indicate that the increased yield of B' in early G 2 relative to S cells may be a consequence of changes in the spatial distribution of the chromosomes within the nucleus. PMID:14064107

  9. Identification of genomic aberrations associated with lymph node metastasis in diffuse-type gastric cancer.

    PubMed

    Choi, Ji-Hye; Kim, Young-Bae; Ahn, Ji Mi; Kim, Min Jae; Bae, Won Jung; Han, Sang-Uk; Woo, Hyun Goo; Lee, Dakeun

    2018-04-06

    Diffuse-type gastric cancer (DGC) is a GC subtype with heterogeneous clinical outcomes. Lymph node metastasis of DGC heralds a dismal progression, which hampers the curative treatment of patients. However, the genomic heterogeneity of DGC remains unknown. To identify genomic variations associated with lymph node metastasis in DGC, we performed whole exome sequencing on 23 cases of DGC and paired non-tumor tissues and compared the mutation profiles according to the presence (N3, n = 13) or absence (N0, n = 10) of regional lymph node metastasis. Overall, we identified 185 recurrently mutated genes in DGC, which included a significant novel mutation at CMTM2, as well as previously known mutations at CDH1, RHOA, and TP53. Noticeably, CMTM2 expression could predict the prognostic outcomes of DGC but not intestinal-type GC (IGC), indicating pivotal roles of CMTM2 in DGC progression. In addition, we identified a recurrent loss of heterozygosity (LOH) of DNA copy numbers at the 3p12-pcen locus in DGC. A comparison of N0 and N3 tumors showed that N3 tumors exhibited more frequent DNA copy number aberrations, including copy-neutral LOH and mutations of CpTpT trinucleotides, than N0 tumors (P = 0.2 × 10 -3 ). In conclusion, DGCs have distinct profiles of somatic mutations and DNA copy numbers according to the status of lymph node metastasis, and this might be helpful in delineating the pathobiology of DGC.

  10. A contracted DNA repeat in LHX3 intron 5 is associated with aberrant splicing and pituitary dwarfism in German shepherd dogs.

    PubMed

    Voorbij, Annemarie M W Y; van Steenbeek, Frank G; Vos-Loohuis, Manon; Martens, Ellen E C P; Hanson-Nilsson, Jeanette M; van Oost, Bernard A; Kooistra, Hans S; Leegwater, Peter A

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism.

  11. A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs

    PubMed Central

    Voorbij, Annemarie M. W. Y.; van Steenbeek, Frank G.; Vos-Loohuis, Manon; Martens, Ellen E. C. P.; Hanson-Nilsson, Jeanette M.; van Oost, Bernard A.; Kooistra, Hans S.; Leegwater, Peter A.

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism. PMID:22132174

  12. Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer.

    PubMed

    Glöckner, Sabine C; Dhir, Mashaal; Yi, Joo Mi; McGarvey, Kelly E; Van Neste, Leander; Louwagie, Joost; Chan, Timothy A; Kleeberger, Wolfram; de Bruïne, Adriaan P; Smits, Kim M; Khalid-de Bakker, Carolina A J; Jonkers, Daisy M A E; Stockbrügger, Reinhold W; Meijer, Gerrit A; Oort, Frank A; Iacobuzio-Donahue, Christine; Bierau, Katja; Herman, James G; Baylin, Stephen B; Van Engeland, Manon; Schuebel, Kornel E; Ahuja, Nita

    2009-06-01

    We have used a gene expression array-based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)-marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115). We further explored the potential of TFPI2 as a biomarker for the early detection of CRC using stool DNA-based assays in patients with nonmetastatic CRC and average-risk noncancer controls who were candidates for screening. TFPI2 methylation was detected in stool DNA from stage I to III CRC patients with a sensitivity of 76% to 89% and a specificity of 79% to 93%. Detection of TFPI2 methylation in stool DNA may act as a useful adjunct to the noninvasive strategies for screening of CRCs in the future.

  13. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma.

    PubMed

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-07-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10(-9) ), but was less obvious in other types of solid tumors except for prostate and Epstein-Barr virus (EBV)-positive gastric cancer (FDR<10(-3) ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Use of DNA barcodes to identify flowering plants

    PubMed Central

    Kress, W. John; Wurdack, Kenneth J.; Zimmer, Elizabeth A.; Weigt, Lee A.; Janzen, Daniel H.

    2005-01-01

    Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes. PMID:15928076

  15. Use of DNA barcodes to identify flowering plants.

    PubMed

    Kress, W John; Wurdack, Kenneth J; Zimmer, Elizabeth A; Weigt, Lee A; Janzen, Daniel H

    2005-06-07

    Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.

  16. Human aberrant crypt foci with carcinoma in situ from a patient with sporadic colon cancer.

    PubMed

    Konstantakos, A K; Siu, I M; Pretlow, T G; Stellato, T A; Pretlow, T P

    1996-09-01

    Aberrant crypt foci are putative preneoplastic lesions found in the colons of carcinogen-treated rodents and at an increased frequency in humans at increased risk for colon cancer. There is a strong association between aberrant crypt foci and colon cancer, including many shared phenotypic and genetic alterations. The aim of this study is to present further evidence of a relationship between aberrant crypt foci and colon cancer in humans. Multiple aberrant crypt foci from a single patient were identified in unembedded colonic mucosa. Histological sections of the aberrant crypt foci and adjacent mucosa were evaluated for dysplasia, proliferative activity, and pigment-laden macrophages that were characterized with histochemical techniques. The first patient with sporadic colon cancer identified with aberrant crypt foci with carcinoma in situ is described. It is interesting that this 99-year-old patient had multiple carcinomas in situ, pseudomelanosis coli, and two metachronous colon cancers. These data lend support to the hypothesis that aberrant crypt foci are precursors of some colon cancers.

  17. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

    PubMed

    Scassa, María E; Marazita, Mariela C; Ceruti, Julieta M; Carcagno, Abel L; Sirkin, Pablo F; González-Cid, Marcela; Pignataro, Omar P; Cánepa, Eduardo T

    2007-05-01

    Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.

  18. Using circulating cell-free DNA to monitor personalized cancer therapy.

    PubMed

    Oellerich, Michael; Schütz, Ekkehard; Beck, Julia; Kanzow, Philipp; Plowman, Piers N; Weiss, Glen J; Walson, Philip D

    2017-05-01

    High-quality genomic analysis is critical for personalized pharmacotherapy in patients with cancer. Tumor-specific genomic alterations can be identified in cell-free DNA (cfDNA) from patient blood samples and can complement biopsies for real-time molecular monitoring of treatment, detection of recurrence, and tracking resistance. cfDNA can be especially useful when tumor tissue is unavailable or insufficient for testing. For blood-based genomic profiling, next-generation sequencing (NGS) and droplet digital PCR (ddPCR) have been successfully applied. The US Food and Drug Administration (FDA) recently approved the first such "liquid biopsy" test for EGFR mutations in patients with non-small cell lung cancer (NSCLC). Such non-invasive methods allow for the identification of specific resistance mutations selected by treatment, such as EGFR T790M, in patients with NSCLC treated with gefitinib. Chromosomal aberration pattern analysis by low coverage whole genome sequencing is a more universal approach based on genomic instability. Gains and losses of chromosomal regions have been detected in plasma tumor-specific cfDNA as copy number aberrations and can be used to compute a genomic copy number instability (CNI) score of cfDNA. A specific CNI index obtained by massive parallel sequencing discriminated those patients with prostate cancer from both healthy controls and men with benign prostatic disease. Furthermore, androgen receptor gene aberrations in cfDNA were associated with therapeutic resistance in metastatic castration resistant prostate cancer. Change in CNI score has been shown to serve as an early predictor of response to standard chemotherapy for various other cancer types (e.g. NSCLC, colorectal cancer, pancreatic ductal adenocarcinomas). CNI scores have also been shown to predict therapeutic responses to immunotherapy. Serial genomic profiling can detect resistance mutations up to 16 weeks before radiographic progression. There is a potential for cost savings

  19. Quantitative DNA Methylation Profiling in Cancer.

    PubMed

    Ammerpohl, Ole; Haake, Andrea; Kolarova, Julia; Siebert, Reiner

    2016-01-01

    Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.

  20. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  1. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer.

    PubMed

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-12-22

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.

  2. Rapid metaphase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremer, T.; Popp, S.; Emmerich, P.

    1990-01-01

    Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the 1q12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co-gamma-rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreadsmore » were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization.« less

  3. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.

    PubMed

    Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow

    2018-06-01

    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Gain-of-function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies

    PubMed Central

    Liu, Xia; Zheng, Hong; Li, Xiaobo; Wang, Siying; Meyerson, Howard J.; Yang, Wentian; Neel, Benjamin G.; Qu, Cheng-Kui

    2016-01-01

    Gain-of-function (GOF) mutations of protein tyrosine phosphatase nonreceptor type 11 Ptpn11 (Shp2), a protein tyrosine phosphatase implicated in multiple cell signaling pathways, are associated with childhood leukemias and solid tumors. The underlying mechanisms are not fully understood. Here, we report that Ptpn11 GOF mutations disturb mitosis and cytokinesis, causing chromosomal instability and greatly increased susceptibility to DNA damage-induced malignancies. We find that Shp2 is distributed to the kinetochore, centrosome, spindle midzone, and midbody, all of which are known to play critical roles in chromosome segregation and cytokinesis. Mouse embryonic fibroblasts with Ptpn11 GOF mutations show a compromised mitotic checkpoint. Centrosome amplification and aberrant mitosis with misaligned or lagging chromosomes are significantly increased in Ptpn11-mutated mouse and patient cells. Abnormal cytokinesis is also markedly increased in these cells. Further mechanistic analyses reveal that GOF mutant Shp2 hyperactivates the Polo-like kinase 1 (Plk1) kinase by enhancing c-Src kinase-mediated tyrosine phosphorylation of Plk1. This study provides novel insights into the tumorigenesis associated with Ptpn11 GOF mutations and cautions that DNA-damaging treatments in Noonan syndrome patients with germ-line Ptpn11 GOF mutations could increase the risk of therapy-induced malignancies. PMID:26755576

  5. Aberrant and multiaberrant (rogue) cells in peripheral lymphocytes of Hodgkin's lymphoma patients after chemotherapy.

    PubMed

    Ryabchenko, Nikolay I; Nasonova, Valentina A; Fesenko, Eleonora V; Kondrashova, Tatiana V; Antoschina, Margarita M; Pavlov, Vyacheslav V; Ryabikina, Natalya V

    2006-10-10

    We analyzed spontaneous chromosome lesions in peripheral lymphocytes cultured from Hodgkin's lymphoma (HL) patients before and after cytostatic chemotherapy. The mean aberration frequency was significantly higher in HL patients after chemotherapy (7.20+/-0.58 per 100 metaphases) than in non-treated HL patients (4.80+/-0.54), and in non-treated patients than in healthy subjects (2.12+/-0.13). In lymphocytes of HL patients, who received chemotherapy, we found, in addition to ordinary aberrant cells, a large number of multiaberrant (or rogue) cells, i.e. metaphases carrying multiple (at least four) chromosome-type exchange aberrations. Rogue cells were found in 15 out of 18 chemotherapeutically treated HL patients (in total, 60 rogue cells per 5,568 scored cells), whereas in 30 non-treated patients only 1 rogue cell was found (per 4,988 scored cells). No correlation was found between the yield of rogue cells and the aberration frequency in ordinary aberrant cells. Aberration spectra (ratios of chromatid- to chromosome-type aberrations and of breaks to exchanges) were essentially different in ordinary aberrant and multiaberrant cells. These data, as well as analysis of cellular distributions of aberrations, implied independent induction of chromosome damage in ordinary aberrant and rogue cells. Analysis of aberration patterns in diploid and polyploid rogue metaphases belonging to the first, second, and third in vitro division indicated that rogue cells could be formed both in vivo and in vitro, and could survive at least two rounds of in vitro replication, given blocked chromosome segregation. These results suggested that formation of rogue cells, unlike ordinary aberrant cells, was triggered by events other than direct DNA and/or chromosome lesions. A hypothesis regarding disrupted apoptosis as a candidate mechanism for rogue cell formation seems to be most suitable for interpretation of our data. Cultured lymphocytes of chemotherapeutically treated HL patients may

  6. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma

    PubMed Central

    Anwar, Sumadi Lukman; Lehmann, Ulrich

    2014-01-01

    Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726

  7. Genome wide approaches to identify protein-DNA interactions.

    PubMed

    Ma, Tao; Ye, Zhenqing; Wang, Liguo

    2018-05-29

    Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease.

    PubMed

    Liu, Yibin; Song, Chen; Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Makrigiorgos, G Mike

    2017-04-07

    Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as plasma-circulating DNA (cfDNA), are potentially powerful prognostic and predictive biomarkers in human disease including cancer. We report on a novel, highly-multiplexed approach to facilitate analysis of clinically useful methylation changes in minor DNA populations. Methylation Specific Nuclease-assisted Minor-allele Enrichment (MS-NaME) employs a double-strand-specific DNA nuclease (DSN) to remove excess DNA with normal methylation patterns. The technique utilizes oligonucleotide-probes that direct DSN activity to multiple targets in bisulfite-treated DNA, simultaneously. Oligonucleotide probes targeting unmethylated sequences generate local double stranded regions resulting to digestion of unmethylated targets, and leaving methylated targets intact; and vice versa. Subsequent amplification of the targeted regions results in enrichment of the targeted methylated or unmethylated minority-epigenetic-alleles. We validate MS-NaME by demonstrating enrichment of RARb2, ATM, MGMT and GSTP1 promoters in multiplexed MS-NaME reactions (177-plex) using dilutions of methylated/unmethylated DNA and in DNA from clinical lung cancer samples and matched normal tissue. MS-NaME is a highly scalable single-step approach performed at the genomic DNA level in solution that combines with most downstream detection technologies including Sanger sequencing, methylation-sensitive-high-resolution melting (MS-HRM) and methylation-specific-Taqman-based-digital-PCR (digital Methylight) to boost detection of low-level aberrant methylation-changes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome.

    PubMed

    Singh, L; Jones, K W

    1982-02-01

    Satellite DNA (Bkm) from the W sex-determining chromosome of snakes, which is related to sequences on the mouse Y chromosome, has been used to analyze the DNA and chromosomes of sex-reversed (Sxr) XXSxr male mice. Such mice exhibit a male-specific Southern blot Bkm hybridization pattern, consistent with the presence of Y-chromosome DNA. In situ hybridization of Bkm to chromosomes of XXSxr mice shows an aberrant concentration of related sequences on the distal terminus of a large mouse chromosome. The XYSxr carrier male, however, shows a pair of small chromosomes, which are presumed to be aberrant Y derivatives. Meiosis in the XYSxr mouse involves transfer of chromatin rich in Bkm-related DNA from the Y-Y1 complex to the X distal terminus. We suggest that this event is responsible for the transmission of the Sxr trait.

  10. Identifying Canadian Freshwater Fishes through DNA Barcodes

    PubMed Central

    Hubert, Nicolas; Hanner, Robert; Holm, Erling; Mandrak, Nicholas E.; Taylor, Eric; Burridge, Mary; Watkinson, Douglas; Dumont, Pierre; Curry, Allen; Bentzen, Paul; Zhang, Junbin; April, Julien; Bernatchez, Louis

    2008-01-01

    efficiently identified through the use of DNA barcoding, especially the species complex of small-sized species, and that the present COI library can be used for subsequent applications in ecology and systematics. PMID:22423312

  11. Aberrant membranous expression of β-catenin predicts poor prognosis in patients with craniopharyngioma.

    PubMed

    Li, Zongping; Xu, Jianguo; Huang, Siqing; You, Chao

    2015-12-01

    The objective of this study is to investigate β-catenin expression in craniopharyngioma patients and determine its significance in predicting the prognosis of this disease. Fifty craniopharyngioma patients were enrolled in this study. Expression of β-catenin in tumor specimens collected from these patients was examined through immunostaining. In addition, mutation of exon 3 in the β-catenin gene, CTNNB1, was analyzed using polymerase chain reaction, denaturing high-pressure liquid chromatography, and DNA sequencing. Based on these results, we explored the association between membranous β-catenin expression, clinical and pathologic characteristics, and prognoses in these patients. Of all craniopharyngioma specimens, 31 (62.0%) had preserved membranous β-catenin expression, whereas the remaining 19 specimens (38.0%) displayed aberrant expression. Statistical analysis showed a significant correlation between aberrant membranous β-catenin expression and CTNNB1 exon 3 mutation, as well as between aberrant membranous β-catenin expression and the histopathologic type of craniopharyngioma and type of resection in our patient population. Furthermore, aberrant membranous β-catenin expression was found to be associated with poor patient survival. Results of Kaplan-Meier survival analysis and Cox regression analysis further confirmed this finding. In conclusion, our study demonstrated that aberrant membranous β-catenin expression was significantly correlated with poor survival in patients with craniopharyngioma. This raises the possibility for use of aberrant membranous β-catenin expression as an independent risk factor in predicting the prognosis of this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A bayesian analysis for identifying DNA copy number variations using a compound poisson process.

    PubMed

    Chen, Jie; Yiğiter, Ayten; Wang, Yu-Ping; Deng, Hong-Wen

    2010-01-01

    To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.

  13. Method for identifying mutagenic agents which induce large, multilocus deletions in DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, W.E.C.; Belouchi, A.; Dewyse, P.

    1993-07-13

    A method of identifying a mutagenic agent is described which includes a large, multilocus deletions in DNA in mammalian cells comprising: (i) exposing a class III heterozygous CHO cell line to a potential mutagenic agent under investigation, and allowing any mutation of the cell line to proceed, said cell line being characterized in that a restriction fragment length variation exists in on mutation it becomes resistant to 2,6-diaminopurine and in that the DNA sequence adjacent to the two alleles of the APRT gene such that the DNA sequence adjacent to one of the two alleles can be digested with themore » enzyme BclI but the DNA sequence variation adjacent to the other of the two alleles cannot be digested with BclI, (ii) isolating induced mutations of the cell line deficient in APRT function, (iii) isolating DNA from the induced mutants, (iv) digesting the isolated DNA with BclI enzyme to produce digested fragments including a 19 kb fragment and any 2 kb fragment, which fragments hybridize with the labeled probe derived from DNA fragment PDI, (v) separating any digested fragments, (vi) transferring the separated fragments of (v) to a solid support, (vii) hybridizing the supported separated fragments with a labeled probe derived from the clone DNA fragment PD 1, (viii) determining fragments having undergone loss of the 2 kb band identified by the probe, as an identification of parent mutants in which the loss occurred, and (ix) evaluating the mutating ability of the potential mutagenic agent.« less

  14. Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes

    NASA Astrophysics Data System (ADS)

    Willingale, R.; Pearson, J. F.; Martindale, A.; Feldman, C. H.; Fairbend, R.; Schyns, E.; Petit, S.; Osborne, J. P.; O'Brien, P. T.

    2016-07-01

    We identify all the significant aberrations that limit the performance of square pore micro-channel plate optics (MPOs) used as an X-ray lobster eye. These include aberrations intrinsic to the geometry, intrinsic errors associated with the slumping process used to introduce a spherical form to the plates and imperfections associated with the plate manufacturing process. The aberrations are incorporated into a comprehensive software model of the X-ray response of the optics and the predicted imaging response is compared with the measured X-ray performance obtained from a breadboard lobster eye. The results reveal the manufacturing tolerances which limit the current performance of MPOs and enable us to identify particular intrinsic aberrations which will limit the ultimate performance we can expect from MPO-lobster eye telescopes.

  15. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    PubMed Central

    Schreiner, Sabrina; Nassal, Michael

    2017-01-01

    Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system. PMID:28531167

  16. Radiation sensitivity of the gastrula-stage embryo: Chromosome aberrations and mutation induction in lacZ transgenic mice: The roles of DNA double-strand break repair systems.

    PubMed

    Jacquet, Paul; van Buul, Paul; van Duijn-Goedhart, Annemarie; Reynaud, Karine; Buset, Jasmine; Neefs, Mieke; Michaux, Arlette; Monsieurs, Pieter; de Boer, Peter; Baatout, Sarah

    2015-10-01

    At the gastrula phase of development, just after the onset of implantation, the embryo proper is characterized by extremely rapid cell proliferation. The importance of DNA repair is illustrated by embryonic lethality at this stage after ablation of the genes involved. Insight into mutation induction is called for by the fact that women often do not realize they are pregnant, shortly after implantation, a circumstance which may have important consequences when women are subjected to medical imaging using ionizing radiation. We screened gastrula embryos for DNA synthesis, nuclear morphology, growth, and chromosome aberrations (CA) shortly after irradiation with doses up to 2.5Gy. In order to obtain an insight into the importance of DNA repair for CA induction, we included mutants for the non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, as well as Parp1-/- and p53+/- embryos. With the pUR288 shuttle vector assay, we determined the radiation sensitivity for point mutations and small deletions detected in young adults. We found increased numbers of abnormal nuclei 5h after irradiation; an indication of disturbed development was also observed around this time. Chromosome aberrations 7h after irradiation arose in all genotypes and were mainly of the chromatid type, in agreement with a cell cycle dominated by S-phase. Increased frequencies of CA were found for NHEJ and HR mutants. Gastrula embryos are unusual in that they are low in exchange induction, even after compromised HR. Gastrula embryos were radiation sensitive in the pUR288 shuttle vector assay, giving the highest mutation induction ever reported for this genetic toxicology model. On theoretical grounds, a delayed radiation response must be involved. The compromised developmental profile after doses up to 2.5Gy likely is caused by both apoptosis and later cell death due to large deletions. Our data indicate a distinct radiation-sensitive profile of gastrula embryos, including

  17. Regulatory roles of tankyrase 1 at telomeres and in DNA repair: suppression of T-SCE and stabilization of DNA-PKcs

    PubMed Central

    Dregalla, Ryan C.; Zhou, Junqing; Idate, Rupa R.; Battaglia, Christine L.R.; Liber, Howard L.; Bailey, Susan M.

    2010-01-01

    Intrigued by the dynamics of the seemingly contradictory yet integrated cellular responses to the requisites of preserving telomere integrity while also efficiently repairing damaged DNA, we investigated roles of the telomere associated poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) tankyrase 1 in both telomere function and the DNA damage response following exposure to ionizing radiation. Tankyrase 1 siRNA knockdown in human cells significantly elevated recombination specifically within telomeres, a phenotype with the potential of accelerating cellular senescence. Additionally, depletion of tankyrase 1 resulted in concomitant and rapid reduction of the nonhomologous end-joining protein DNA-PKcs, while Ku86 and ATM protein levels remained unchanged; DNA-PKcs mRNA levels were also unaffected. We found that the requirement of tankyrase 1 for DNA-PKcs protein stability reflects the necessity of its PARP enzymatic activity. We also demonstrated that depletion of tankyrase 1 resulted in proteasome-mediated DNA-PKcs degradation, explaining the associated defective damage response observed; i.e., increased sensitivity to ionizing radiation-induced cell killing, mutagenesis, chromosome aberration and telomere fusion. We provide the first evidence for regulation of DNA-PKcs by tankyrase 1 PARP activity and taken together, identify roles of tankyrase 1 with implications not only for DNA repair and telomere biology, but also for cancer and aging. PMID:21037379

  18. Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.

    PubMed

    Perfetti, Alessandra; Greco, Simona; Fasanaro, Pasquale; Bugiardini, Enrico; Cardani, Rosanna; Garcia-Manteiga, Jose M; Manteiga, Jose M Garcia; Riba, Michela; Cittaro, Davide; Stupka, Elia; Meola, Giovanni; Martelli, Fabio

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.

  19. Genome Wide Identification of Aberrant Alternative Splicing Events in Myotonic Dystrophy Type 2

    PubMed Central

    Fasanaro, Pasquale; Bugiardini, Enrico; Cardani, Rosanna; Manteiga, Jose M. Garcia.; Riba, Michela; Cittaro, Davide; Stupka, Elia; Meola, Giovanni; Martelli, Fabio

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis. PMID:24722564

  20. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang

    2017-11-01

    An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

  1. Ras regulation of DNA-methylation and cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Samir Kumar

    2008-04-01

    Genome wide hypomethylation and regional hypermethylation of cancer cells and tissues remain a paradox, though it has received a convincing confirmation that epigenetic switching systems, including DNA-methylation represent a fundamental regulatory mechanism that has an impact on genome maintenance and gene transcription. Methylated cytosine residues of vertebrate DNA are transmitted by clonal inheritance through the strong preference of DNA methyltransferase, DNMT1, for hemimethylated-DNA. Maintenance of methylation patterns is necessary for normal development of mice, and aberrant methylation patterns are associated with many human tumours. DNMT1 interacts with many proteins during cell cycle progression, including PCNA, p53, EZH2 and HP1. Rasmore » family of GTPases promotes cell proliferation by its oncogenic nature, which transmits signals by multiple pathways in both lipid raft dependent and independent fashion. DNA-methylation-mediated repression of DNA-repair protein O6-methylguanine DNA methyltransferase (MGMT) gene and increased rate of K-Ras mutation at codon for amino acids 12 and 13 have been correlated with a secondary role for Ras-effector homologues (RASSFs) in tumourigenesis. Lines of evidence suggest that DNA-methylation associated repression of tumour suppressors and apoptotic genes and ceaseless proliferation of tumour cells are regulated in part by Ras-signaling. Control of Ras GTPase signaling might reduce the aberrant methylation and accordingly may reduce the risk of cancer development.« less

  2. Mask-induced aberration in EUV lithography

    NASA Astrophysics Data System (ADS)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  3. Dimensions of aberrant driving behaviours in Tunisia: identifying the relation between Driver Behaviour Questionnaire results and accident data.

    PubMed

    Mohamed, Dhibi; Lotfi, Belkacem

    2016-12-01

    In this study, the Manchester Driver Behaviour Questionnaire (DBQ) was used to examine the self-reported driving behaviours of a group of Tunisian drivers (N = 900) and to collect socio-demographic data, driver behaviours and DBQ items. A sample of Tunisian drivers above 18 years was selected. The aim of the present study was to investigate the factorial structure of the DBQ in Tunisia. The principal component analysis identified three factor solutions: inattention errors, dangerous errors and dangerous violations. Logistic regression analysis showed that dangerous errors, dangerous violations and speeding preference factors predicted crash involvement in Tunisia. Speeding is the most common form of aberrant behaviour reported by drivers in the current sample. It remains one of the major road safety concerns.

  4. Initial analysis of sperm DNA methylome in Holstein bulls

    USDA-ARS?s Scientific Manuscript database

    Aberrant DNA methylation patterns have been associated with abnormal semen parameters, idiopathic male infertility and early embryonic loss in mammals. Using Holstein bulls with high (Bull1) or low (Bull2) fertility rates, we created two representative sperm DNA methylomes at a single-base resolutio...

  5. Late-onset spastic paraplegia: Aberrant SPG11 transcripts generated by a novel splice site donor mutation.

    PubMed

    Kawarai, Toshitaka; Miyamoto, Ryosuke; Mori, Atsuko; Oki, Ryosuke; Tsukamoto-Miyashiro, Ai; Matsui, Naoko; Miyazaki, Yoshimichi; Orlacchio, Antonio; Izumi, Yuishin; Nishida, Yoshihiko; Kaji, Ryuji

    2015-12-15

    We identified a novel homozygous mutation in the splice site donor (SSD) of intron 30 (c.5866+1G>A) in consanguineous Japanese SPG11 siblings showing late-onset spastic paraplegia using the whole-exome sequencing. Phenotypic variability was observed, including age-at-onset, dysarthria and pes cavus. Coding DNA sequencing revealed that the mutation affected the recognition of the constitutive SSD of intron 30, splicing upstream onto a nearby cryptic SSD in exon 30. The use of constitutive splice sites of intron 29 was confirmed by sequencing. The mutant transcripts are mostly subject to degradation by the nonsense-mediated mRNA decay system. SPG11 transcripts, escaping from the nonsense-mediated mRNA decay pathway, would generate a truncated protein (p.Tyr1900Phefs5X) containing the first 1899 amino acids and followed by 4 aberrant amino acids. This study showed a successful clinical application of whole-exome sequencing in spastic paraplegia and demonstrated a further evidence of allelic heterogeneity in SPG11. The confirmation of aberrant transcript by splice site mutation is a prerequisite for a more precise molecular diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Comparison of cell repair mechanisms by means of chromosomal aberration induced by proton and gamma irradiation - preliminary results

    NASA Astrophysics Data System (ADS)

    Kowalska, A.; Czerski, K.; Kaczmarski, M.; Lewocki, M.; Masojć, B.; Łukowiak, A.

    2015-03-01

    DNA damage of peripheral blood lymphocytes exposed to gamma and proton irradiation is studied by means of chromosome aberrations to validate the efficiency of the repair mechanisms of individual cells. A new method based on an observed deviation from the Poisson statistics of the chromosome aberration number is applied for estimation of a repair factor ( RF) defined as a ratio between originally damaged cells to the amount of finally observed aberrations. The repair factors are evaluated by studying the variance of individual damage factors in a collective of healthy persons at a given dose as well as by using the chi-square analysis for the dose-effect curves. The blood samples from fifteen donors have been irradiated by Co60 gamma rays and from nine persons by 150 MeV protons with different doses up to 2 Gy. A standard extraction of lymphocyte has been used whereby dicentrics, acentrics and rings have been scored under a microscope. The RF values determined for the proton radiation are slightly larger than for gamma rays, indicating that up to 70% DNA double strand breaks can be repaired.

  7. Camera processing with chromatic aberration.

    PubMed

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  8. Unrepaired clustered DNA lesions induce chromosome breakage in human cells

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Chen, David J.

    2011-01-01

    Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720

  9. Canine urothelial carcinoma: genomically aberrant and comparatively relevant

    PubMed Central

    Shapiro, S. G.; Raghunath, S.; Williams, C.; Motsinger-Reif, A. A.; Cullen, J. M.; Liu, T.; Albertson, D.; Ruvolo, M.; Lucas, A. Bergstrom; Jin, J.; Knapp, D. W.; Schiffman, J. D.

    2015-01-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97% and 84% of cases, respectively, and losses on CFA 19 were present in 77% of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes key to

  10. Canine urothelial carcinoma: genomically aberrant and comparatively relevant.

    PubMed

    Shapiro, S G; Raghunath, S; Williams, C; Motsinger-Reif, A A; Cullen, J M; Liu, T; Albertson, D; Ruvolo, M; Bergstrom Lucas, A; Jin, J; Knapp, D W; Schiffman, J D; Breen, M

    2015-06-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97 % and 84 % of cases, respectively, and losses on CFA 19 were present in 77 % of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes

  11. DNA Barcode for Identifying Folium Artemisiae Argyi from Counterfeits.

    PubMed

    Mei, Quanxi; Chen, Xiaolu; Xiang, Li; Liu, Yue; Su, Yanyan; Gao, Yuqiao; Dai, Weibo; Dong, Pengpeng; Chen, Shilin

    2016-01-01

    Folium Artemisiae Argyi is an important herb in traditional Chinese medicine. It is commonly used in moxibustion, medicine, etc. However, identifying Artemisia argyi is difficult because this herb exhibits similar morphological characteristics to closely related species and counterfeits. To verify the applicability of DNA barcoding, ITS2 and psbA-trnH were used to identify A. argyi from 15 closely related species and counterfeits. Results indicated that total DNA was easily extracted from all the samples and that both ITS2 and psbA-trnH fragments can be easily amplified. ITS2 was a more ideal barcode than psbA-trnH and ITS2+psbA-trnH to identify A. argyi from closely related species and counterfeits on the basis of sequence character, genetic distance, and tree methods. The sequence length was 225 bp for the 56 ITS2 sequences of A. argyi, and no variable site was detected. For the ITS2 sequences, A. capillaris, A. anomala, A. annua, A. igniaria, A. maximowicziana, A. princeps, Dendranthema vestitum, and D. indicum had single nucleotide polymorphisms (SNPs). The intraspecific Kimura 2-Parameter distance was zero, which is lower than the minimum interspecific distance (0.005). A. argyi, the closely related species, and counterfeits, except for Artemisia maximowicziana and Artemisia sieversiana, were separated into pairs of divergent clusters by using the neighbor joining, maximum parsimony, and maximum likelihood tree methods. Thus, the ITS2 sequence was an ideal barcode to identify A. argyi from closely related species and counterfeits to ensure the safe use of this plant.

  12. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP- primary glioblastoma.

    PubMed

    Zhang, Wei; Yan, Wei; You, Gan; Bao, Zhaoshi; Wang, Yongzhi; Liu, Yanwei; You, Yongping; Jiang, Tao

    2013-01-01

    To date, the aberrations in the DNA methylation patterns that are associated with different prognoses of G-CIMP- primary GBMs remain to be elucidated. Here, DNA methylation profiling of primary GBM tissues from 13 long-term survivors (LTS; overall survival ⩾18months) and 20 short-term survivors (STS; overall survival ⩽9months) was performed. Then G-CIMP+ samples were excluded. The differentially expressed CpG loci were identified between residual 18 STS and 9 LTS G-CIMP- samples. Methylation levels of 11 CpG loci (10genes) were statistically significantly lower, and 43 CpG loci (40genes) were statistically significantly higher in the tumor tissues of LTS than those of STS G-CIMP- samples (P<0.01). Of the 43 CpG loci that were hypermethylated in LTS G-CIMP- samples, 3 CpG loci localized in the promoter of ALDH1A3. Furthermore, using an independent validation cohort containing 37 primary GBM samples without IDH1 mutation and MGMT promoter methylation, the hypermethylation status of ALDH1A3 promoter predicted a better prognosis with an accompanied low expression of ALDH1A3 protein. Taken together, our results defined prognosis-related methylation signatures systematically for the first time in G-CIMP- primary GBMs. ALDH1A3 promoter methylation conferred a favorable prognosis in G-CIMP- primary GBMs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  14. Effect of americium-241 alpha-particles on the dose-response of chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridization.

    PubMed

    Barquinero, J F; Stephan, G; Schmid, E

    2004-02-01

    To evaluate by the fluorescent in-situ hybridization (FISH) technique the dose-response and intercellular distribution of alpha-particle-induced chromosome aberrations. In particular, the validity of using the yield of characteristic types of chromosome abnormalities in stable cells as quantitative indicators for retrospective dose reconstruction has been evaluated. Monolayers of human peripheral lymphocytes were exposed at doses from 0.02 to 1 Gy to alpha-particles emitted from a source of americium-241. The most probable energy of the alpha-particles entering the cells was 2.7 MeV. FISH painting was performed using DNA probes for chromosomes 2, 4 and 8 in combination with a pan-centromeric probe. In complete first-division cells, identified by harlequin staining, aberrations involving painted target chromosomal material were recorded as well as aberrations involving only unpainted chromosomal material. In total, the percentage of complex aberrations was about 35% and no dose dependence was observed. When complex-type exchanges were reduced to simple base types, the different cell distributions were clearly over-dispersed, and the linear coefficients of the dose-effect curves for translocations were significantly higher than for dicentrics. For past dose reconstruction, only a few complex aberrations were in stable cells. The linear coefficient obtained for transmissible aberrations in stable cells was more than seven times lower than that obtained in all analysed cells, i.e. including unstable cells. FISH-based analysis of complex rearrangements allows discrimination between partial-body exposures to low-linear energy transfer radiation and high-linear energy transfer exposures. In assessing past or chronic exposure to alpha-particles, the use of a dose-effect curve obtained by FISH-based translocation data, which had not excluded data determined in unstable cells, would underestimate the dose. Insertions are ineffective biomarkers because their frequency is too

  15. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  16. Identifying DNA Methylation Features that Underlie Prostate Cancer Disparities

    DTIC Science & Technology

    2016-10-01

    Report We will continue to recruit African American patients and bank their prostate tissue . We will continue dissecting tumor samples into tumor...in prostate tumors and adjacent normal tissue derived from both AA and EA individuals. We will determine if DNA methylation patterns in prostate... tissue (both cancerous and normal tissue ) differ between AA and EA individuals. We will also identify methylation features that differ between tumor

  17. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors.

    PubMed

    Klajic, Jovana; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise; Tost, Jörg; Kristensen, Vessela N

    2013-10-05

    Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above.

  18. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    PubMed Central

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy. PMID:23471360

  19. Aberrant tendinous chords with tethering of the tricuspid leaflets: a congenital anomaly causing severe tricuspid regurgitation.

    PubMed

    Kobza, R; Kurz, D J; Oechslin, E N; Prêtre, R; Zuber, M; Vogt, P; Jenni, R

    2004-03-01

    To define the entity of tricuspid regurgitation caused by tethering of the tricuspid valve leaflets by aberrant tendinous chords. Retrospective study. Tertiary care centre (university teaching hospital). 10 patients with unexplained severe tricuspid regurgitation. The last 13 500 echocardiographic studies from our facility were reviewed to identify patients with severe unexplained tricuspid regurgitation. Tethering was defined by the presence of aberrant tendinous chords to the tricuspid valve leaflets limiting the mobility of the tricuspid leaflet and resulting in incomplete coaptation and apical displacement of the regurgitant jet origin. Aberrant tendinous chords were defined as those inserting at the clear zone of the tricuspid leaflet and not originating from the papillary muscle. Patients fulfilling the diagnostic criteria for Ebstein's anomaly were excluded. 10 patients with aberrant tendinous chords tethering one or more tricuspid valve leaflets were identified. There were short non-aberrant tendinous chords in seven patients, five of whom also had right ventricular or tricuspid annulus dilatation. Tethering of the tricuspid valve leaflets by aberrant tendinous chords can be the sole mechanism of congenital tricuspid regurgitation. It is often associated with short non-aberrant tendinous chords, which may develop secondary to right ventricular or tricuspid annulus dilatation. Awareness of tethering as a cause of tricuspid regurgitation may be important in planning reconstructive surgery.

  20. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  1. Methylation of TFPI2 in Stool DNA: A Potential Novel Biomarker for the Detection of Colorectal Cancer

    PubMed Central

    Glöckner, Sabine C.; Dhir, Mashaal; Yi, Joo Mi; McGarvey, Kelly E.; Van Neste, Leander; Louwagie, Joost; Chan, Timothy A.; Kleeberger, Wolfram; de Bruïne, Adriaan P.; Smits, Kim M.; Khalid-de Bakker, Carolina A.J.; Jonkers, Daisy M.A.E.; Stockbrügger, Reinhold W.; Meijer, Gerrit A.; Oort, Frank A.; Iacobuzio-Donahue, Christine; Bierau, Katja; Herman, James G.; Baylin, Stephen B.; Van Engeland, Manon; Schuebel, Kornel E.; Ahuja, Nita

    2011-01-01

    We have used a gene expression array–based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)–marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115). We further explored the potential of TFPI2 as a biomarker for the early detection of CRC using stool DNA–based assays in patients with nonmetastatic CRC and average-risk noncancer controls who were candidates for screening. TFPI2 methylation was detected in stool DNA from stage I to III CRC patients with a sensitivity of 76% to 89% and a specificity of 79% to 93%. Detection of TFPI2 methylation in stool DNA may act as a useful adjunct to the noninvasive strategies for screening of CRCs in the future. PMID:19435926

  2. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53{sup −/−} cancer cells, in which PLK1 protein wasmore » suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.« less

  3. Identification of Copy Number Aberrations in Breast Cancer Subtypes Using Persistence Topology

    PubMed Central

    Arsuaga, Javier; Borrman, Tyler; Cavalcante, Raymond; Gonzalez, Georgina; Park, Catherine

    2015-01-01

    DNA copy number aberrations (CNAs) are of biological and medical interest because they help identify regulatory mechanisms underlying tumor initiation and evolution. Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task, because they are frequently hidden by CNAs that are the product of random events that take place during tumor evolution. Experimental detection of CNAs is commonly accomplished through array comparative genomic hybridization (aCGH) assays followed by supervised and/or unsupervised statistical methods that combine the segmented profiles of all patients to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for the identification of CNAs that is based on a topological representation of the data. Our method associates a two-dimensional (2D) point cloud with each aCGH profile and generates a sequence of simplicial complexes, mathematical objects that generalize the concept of a graph. This representation of the data permits segmenting the data at different resolutions and identifying CNAs by interrogating the topological properties of these simplicial complexes. We tested our approach on a published dataset with the goal of identifying specific breast cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated with each subtype was performed by analyzing each subtype separately from the others and by taking the rest of the subtypes as the control. Our results found a new amplification in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations in the Luminal B subtype were found only upon removal of the basal-like subtype from the control set. Under those conditions, all regions found in the original publication, except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and 12q were confirmed in the basal-like subtype. These two chromosome arms, however, were detected only upon removal of three patients

  4. Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes

    PubMed Central

    Tokar, Tomas; Pastrello, Chiara; Ramnarine, Varune R.; Zhu, Chang-Qi; Craddock, Kenneth J.; Pikor, Larrisa A.; Vucic, Emily A.; Vary, Simon; Shepherd, Frances A.; Tsao, Ming-Sound; Lam, Wan L.; Jurisica, Igor

    2018-01-01

    In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status. PMID:29507679

  5. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments

    PubMed Central

    Sun, Kun; Jiang, Peiyong; Chan, K. C. Allen; Wong, John; Cheng, Yvonne K. Y.; Liang, Raymond H. S.; Chan, Wai-kong; Ma, Edmond S. K.; Chan, Stephen L.; Cheng, Suk Hang; Chan, Rebecca W. Y.; Tong, Yu K.; Ng, Simon S. M.; Wong, Raymond S. M.; Hui, David S. C.; Leung, Tse Ngong; Leung, Tak Y.; Lai, Paul B. S.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis

    2015-01-01

    Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541

  6. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  7. Induction of numerical chromosomal aberrations during DNA synthesis using the fungicides nimrod and rubigan-4 in root tips of Vicia faba L.

    PubMed

    Shahin, S A; el-Amoodi, K H

    1991-11-01

    The 2 fungicides nimrod and rubigan-4 were tested for genotoxicity using Vicia faba root tips as the biological test system. Treating lateral roots with different concentrations of each fungicide for different periods showed that both fungicides were able to produce numerical but not structural chromosomal aberrations. The percentage of total aberrations in root tips exposed to nimrod reached 54.39% at 250 ppm for 4 h, and 64.69% in root tips exposed to rubigan-4 at 250 ppm for 6 h. The types of numerical chromosomal aberrations produced by both fungicides included: binucleate cells, c-metaphases, sticky chromosomes, polyploid cells, and laggards. Recovery experiments for 24, 48, and 96 h showed no significant differences between the percentage of total aberrations in treated and control groups.

  8. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells.

    PubMed

    Holm, Karolina; Staaf, Johan; Lauss, Martin; Aine, Mattias; Lindgren, David; Bendahl, Pär-Ola; Vallon-Christersson, Johan; Barkardottir, Rosa Bjork; Höglund, Mattias; Borg, Åke; Jönsson, Göran; Ringnér, Markus

    2016-02-29

    Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized. Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states. We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern

  9. OF TRYPANOSOMATIDS. ENDOTRANSFORMATIONS AND ABERRATIONS].

    PubMed

    Frolov, A O; Malysheva, M N; Kostygov, A Yu

    2016-01-01

    Endotransformations and aberrations of the life cycle in the evolutionary history of trypanosomatids (Kinetoplastea: Trypanosomatidae) are analyzed. We treat the term "endotransformations" as evolutionarily fixed changes of phases and/or developmental stages of parasites. By contrast, we treat aberrations as evolutionary unstable, periodically arising deformations of developmental phases of trypanosomatids, never leading to life cycle changes. Various examples of life cycle endotransformations and aberrations in representatives of the family Trypanosomatidae are discussed.

  10. Aberrant tendinous chords with tethering of the tricuspid leaflets: a congenital anomaly causing severe tricuspid regurgitation

    PubMed Central

    Kobza, R; Kurz, D J; Oechslin, E N; Prêtre, R; Zuber, M; Vogt, P; Jenni, R

    2004-01-01

    Objective: To define the entity of tricuspid regurgitation caused by tethering of the tricuspid valve leaflets by aberrant tendinous chords. Design: Retrospective study. Setting: Tertiary care centre (university teaching hospital). Patients: 10 patients with unexplained severe tricuspid regurgitation. Methods: The last 13 500 echocardiographic studies from our facility were reviewed to identify patients with severe unexplained tricuspid regurgitation. Tethering was defined by the presence of aberrant tendinous chords to the tricuspid valve leaflets limiting the mobility of the tricuspid leaflet and resulting in incomplete coaptation and apical displacement of the regurgitant jet origin. Aberrant tendinous chords were defined as those inserting at the clear zone of the tricuspid leaflet and not originating from the papillary muscle. Patients fulfilling the diagnostic criteria for Ebstein’s anomaly were excluded. Results: 10 patients with aberrant tendinous chords tethering one or more tricuspid valve leaflets were identified. There were short non-aberrant tendinous chords in seven patients, five of whom also had right ventricular or tricuspid annulus dilatation. Conclusions: Tethering of the tricuspid valve leaflets by aberrant tendinous chords can be the sole mechanism of congenital tricuspid regurgitation. It is often associated with short non-aberrant tendinous chords, which may develop secondary to right ventricular or tricuspid annulus dilatation. Awareness of tethering as a cause of tricuspid regurgitation may be important in planning reconstructive surgery. PMID:14966058

  11. A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis

    PubMed Central

    Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.

    2014-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  12. A novel low energy electron microscope for DNA sequencing and surface analysis.

    PubMed

    Mankos, M; Shadman, K; Persson, H H J; N'Diaye, A T; Schmid, A K; Davis, R W

    2014-10-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  13. A novel low energy electron microscope for DNA sequencing and surface analysis

    DOE PAGES

    Mankos, M.; Shadman, K.; Persson, H. H. J.; ...

    2014-01-31

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts.more » The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the

  14. DNA Methylation and Cancer Diagnosis

    PubMed Central

    Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

    2013-01-01

    DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

  15. Monochromatic ocular wave aberrations in young monkeys

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Roorda, Austin; Smith, Earl L.

    2006-01-01

    High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye’s overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization. PMID:16750549

  16. Method for isolating chromosomal DNA in preparation for hybridization in suspension

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.

  17. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  18. Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label.

    PubMed

    Liu, Ke; Pan, Dun; Wen, Yanqin; Zhang, Honglu; Chao, Jie; Wang, Lihua; Song, Shiping; Fan, Chunhai; Shi, Yongyong

    2018-02-01

    The hepatitis B virus (HBV) genotyping may profoundly affect the accurate diagnosis and antiviral treatment of viral hepatitis. Existing genotyping methods such as serological, immunological, or molecular testing are still suffered from substandard specificity and low sensitivity in laboratory or clinical application. In a previous study, a set of high-efficiency hybridizable DNA origami-based shape ID probes to target the templates through which genetic variation could be determined in an ultrahigh resolution of atomic force microscopy (AFM) nanomechanical imaging are established. Here, as a further confirmatory research to explore the sensitivity and applicability of this assay, differentially predesigned DNA origami shape ID probes are also developed for precisely HBV genotyping. Through the specific identification of visualized DNA origami nanostructure with clinical HBV DNA samples, the genetic variation information of genotypes can be directly identified under AFM. As a proof-of-concept, five genotype B and six genotype C are detected in 11 HBV-infected patients' blood DNA samples of Han Chinese population in the single-blinded test. The AFM image-based DNA origami shape ID genotyping approach shows high specificity and sensitivity, which could be promising for virus infection diagnosis and precision medicine in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Genome-wide identification of significant aberrations in cancer genome.

    PubMed

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is

  20. Chromosomal aberrations evaluated by CGH, FISH and GTG-banding in a case of AIDS-related Burkitt's lymphoma.

    PubMed

    Zunino, A; Viaggi, S; Ottaggio, L; Fronza, G; Schenone, A; Roncella, S; Abbondandolo, A

    2000-03-01

    We have previously reported on a complex chromosome rearrangement [der(17)] in a B-cell line, BRG A, established from an AIDS patient with Burkitt's lymphoma (BL). The aim of the present study was the definition of der(17) composition and the identification of complete or partial chromosome gains and losses in two cell clones (BRG A and BRG M) derived from this patient. We applied comparative genome hybridization (CGH) to detect the DNA misrepresentations in the genome of the two cell clones. Findings from CGH and banding analysis could then direct the choice of probes for chromosome painting experiments to elucidate der(17) composition. CGH analysis identified gains of chromosomes 1q, 7q, 12q, 13q, 15q, 17p, 20p,q and losses of chromosomes 3p and 5q in BRG A and gain of chromosome 1q and loss in chromosome 6q in BRG M. Some of the detected alterations had already been described in lymphomas, while others appeared to be new. The combination of these techniques allowed a precise definition of der(17), composed by translocated regions from chromosomes 12 and 15. We demonstrated CGH to be a powerful tool in the identification of recurrent chromosome aberrations in an AIDS-related BL and in ascertaining the origin of marker chromosomes. We were also able to identify a different pattern of aberrations and assess an independent sequence of events leading to the 1p gain in the two subclones.

  1. A parallel SNP array study of genomic aberrations associated with mental retardation in patients and general population in Estonia.

    PubMed

    Männik, Katrin; Parkel, Sven; Palta, Priit; Zilina, Olga; Puusepp, Helen; Esko, Tõnu; Mägi, Reedik; Nõukas, Margit; Veidenberg, Andres; Nelis, Mari; Metspalu, Andres; Remm, Maido; Ounap, Katrin; Kurg, Ants

    2011-01-01

    The increasing use of whole-genome array screening has revealed the important role of DNA copy-number variations in the pathogenesis of neurodevelopmental disorders and several recurrent genomic disorders have been defined during recent years. However, some variants considered to be pathogenic have also been observed in phenotypically normal individuals. This underlines the importance of further characterization of genomic variants with potentially variable expressivity in both patient and general population cohorts to clarify their phenotypic consequence. In this study whole-genome SNP arrays were used to investigate genomic rearrangements in 77 Estonian families with idiopathic mental retardation. In addition to this family-based approach, phenotype and genotype data from a cohort of 1000 individuals in the general population were used for accurate interpretation of aberrations found in mental retardation patients. Relevant structural aberrations were detected in 18 of the families analyzed (23%). Fifteen of those were in genomic regions where clinical significance has previously been established. In 3 families, 4 novel aberrations associated with intellectual disability were detected in chromosome regions 2p25.1-p24.3, 3p12.1-p11.2, 7p21.2-p21.1 and Xq28. Carriers of imbalances in 15q13.3, 16p11.2 and Xp22.31 were identified among reference individuals, affirming the variable phenotypic consequence of rare variants in some genomic regions considered as pathogenic. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  2. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.

    PubMed

    Plamadeala, Cristina; Wojcik, Andrzej; Creanga, Dorina

    2015-03-01

    An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.

  3. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells

    PubMed Central

    PLAMADEALA, Cristina; WOJCIK, Andrzej; CREANGA, Dorina

    2015-01-01

    Background: An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. Methods: In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. Results: The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Conclusion: Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes (i=(1,5)¯) - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest. PMID:25905075

  4. DNA methylation profiling of esophageal adenocarcinoma using Methylation Ligation-dependent Macroarray (MLM).

    PubMed

    Guilleret, Isabelle; Losi, Lorena; Chelbi, Sonia T; Fonda, Sergio; Bougel, Stéphanie; Saponaro, Sara; Gozzi, Gaia; Alberti, Loredana; Braunschweig, Richard; Benhattar, Jean

    2016-10-14

    Most types of cancer cells are characterized by aberrant methylation of promoter genes. In this study, we described a rapid, reproducible, and relatively inexpensive approach allowing the detection of multiple human methylated promoter genes from many tissue samples, without the need of bisulfite conversion. The Methylation Ligation-dependent Macroarray (MLM), an array-based analysis, was designed in order to measure methylation levels of 58 genes previously described as putative biomarkers of cancer. The performance of the design was proven by screening the methylation profile of DNA from esophageal cell lines, as well as microdissected formalin-fixed and paraffin-embedded (FFPE) tissues from esophageal adenocarcinoma (EAC). Using the MLM approach, we identified 32 (55%) hypermethylated promoters in EAC, and not or rarely methylated in normal tissues. Among them, 21promoters were found aberrantly methylated in more than half of tumors. Moreover, seven of them (ADAMTS18, APC, DKK2, FOXL2, GPX3, TIMP3 and WIF1) were found aberrantly methylated in all or almost all the tumor samples, suggesting an important role for these genes in EAC. In addition, dysregulation of the Wnt pathway with hypermethylation of several Wnt antagonist genes was frequently observed. MLM revealed a homogeneous pattern of methylation for a majority of tumors which were associated with an advanced stage at presentation and a poor prognosis. Interestingly, the few tumors presenting less methylation changes had a lower pathological stage. In conclusion, this study demonstrated the feasibility and accuracy of MLM for DNA methylation profiling of FFPE tissue samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Identification of DNA copy number aberrations by array comparative genomic hybridization in patients with ruptured intracranial aneurysms.

    PubMed

    Choi, Jin Soo; Kim, Seong-Rim; Jeon, Yang-Whan; Lee, Kweon-Haeng; Rha, Hyoung Kyun

    2009-02-01

    We aimed to use array comparative genomic hybridization (CGH) to identify chromosomal loci that contribute to the pathogenesis of ruptured intracranial aneurysms (IAs) in a Korean population and to confirm the results using real-time polymerase chain reaction (PCR). Twenty-three patients with ruptured IAs were enrolled in this study. Array CGH revealed copy number aberrations in 19 chromosomal regions. Chromosomal gains were identified at a high frequency in regions 1p12, 4q24, 5p15.31, 5p15.33, 6p12.2, 6q22.33, 7p21.1, 9q22.1, 10q24.32, 10q26.3, 12q13.13, 17p12, 18q12.3, 18q23, 19p13.3, 20q13.33, 21q11.2, and 21q22.3, whereas chromosomal losses were identified at 15q11.2 and 22q11.21. Real-time PCR confirmed the results of the array CGH studies of the COL6A2, GRIN3B, MUC17, and PRODH genes. This is the first study to identify candidate regions by array CGH in patients with IAs. The identification of genes that may predispose an individual to the development of IAs may lead to a better understanding of the mechanism of IA formation. Multicenter studies comparing cohorts of patients of different ethnicities are needed to better understand the mechanism of IA formation.

  6. Useful DNA polymorphisms are identified by snapback, a midrepetitive element in Tribolium castaneum.

    PubMed

    Stuart, J J; De Gortari, M J; Hall, P S; Maxwell, M E; Mocelin, G; Brown, S J; Muir, W M

    1996-06-01

    The red flour bettle, Tribolium castaneum, is both a pest of stored grain products and an important experimental organism. To improve its facility as a genetic model, we are developing DNA fingerprinting methods for this insect. A Tribolium DNA fragment, snapback-1 (SBI), identified among sequences that reassociate before a Cot of 0.03 mol.s/L, was found to produce a banding pattern in restriction endonuclease digested genomic DNA that is characteristic of a midrepetitive element. DNA fingerprints of individual beetles demonstrated that unvarying inherited DNA polymorphism is revealed, and that polymorphism is inherited in a dominant Mendelian fashion. Linkage between bands was minimal. The sequence of SBI was determined, and hybridization experiments indicated that SBI is a fragment of a larger midrepetitive element. Fingerprinting individuals with known inbreeding coefficients indicated that SBI loci have relatively high mutation rates. The possibility that SBI is a fragment of a transposable element is discussed.

  7. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    PubMed

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  8. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  9. RNA-Seq profiling reveals aberrant RNA splicing in patient with adult acute myeloid leukemia during treatment.

    PubMed

    Li, X-y; Yao, X; Li, S-n; Suo, A-l; Ruan, Z-p; Liang, X; Kong, Y; Zhang, W-g; Yao, Y

    2014-01-01

    Multiple genetic alterations that affect the process of acute myeloid leukemia (AML) have been discovered, and more evidence also indicates that aberrant splicing plays an important role in cancer. We present a RNA-Seq profiling of an AML patient with complete remission after treatment, to analyze the aberrant splicing of genes during treatment. We sequenced 3.97 and 3.32 Gbp clean data of the AML and remission sample, respectively. Firstly, by analyzing biomarkers associated with AML, to assist normal clinical tests, we confirmed that the patient was anormal karyo type, with NPM1 and IDH2 mutations and deregulation patterns of related genes, such as BAALC, ERG, MN1 and HOX family. Then, we performed alternative splicing detection of the AML and remission sample. We detected 91 differentially splicing events in 68 differentially splicing genes (DSGs) by mixture of isoforms (MISO). Considering Psi values (Ψ) and confidence intervals, 25 differentially expressed isoforms were identified as more confident isoforms, which were associated with RNA processing, cellular macromolecule catabolic process and DNA binding according to GO enrichment analysis. An exon2-skipping event in oncogene FOS (FBJ murine osteosarcoma viral oncogene homolog) were detected and validated in this study. FOS has a critical function in regulating cell proliferation, differentiation and transformation. The exon2-skipping isoform of FOS was increased significantly after treatment. All the data and information of RNA-Seq provides highly accurate and comprehensive supplements to conventional clinical tests of AML. Moreover, the splicing aberrations would be another source for biomarker and even therapeutic target discovery. More information of splicing may also assist the better understanding of leukemogenesis.

  10. On the Definition of Aberration

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Wang, Guangli

    2014-12-01

    There was a groundbreaking step in the history of astronomy in 1728 when the effect of aberration was discovered by James Bradley (1693-1762). Recently, the solar acceleration, due to the variations in the aberrational effect of extragalactic sources caused by it, has been determined from VLBI observations with an uncertainty of about 0.5 mm{\\cdot}{s^{-1}}{\\cdot}{yr^{-1}} level. As a basic concept in astrometry with a nearly 300-year history, the definition of aberration, however, is still equivocal and discordant in the literature. It has been under continuing debate whether it depends on the relative motion between the observer and the observed source or only on the motion of the observer with respect to the frame of reference. In this paper, we will review the debate and the inconsistency in the definition of the aberration since the last century, and then discuss its definition in detail, which involves the discussions on the planetary aberration, the stellar aberration, the proper motion of an object during the travel time of light from the object to the observer, and the way of selecting the reference frame to express and distinguish the motions of the source and the observer. The aberration is essentially caused by the transformation between coordinate systems, and consequently quantified by the velocity of the observer with respect to the selected reference frame, independent of the motion of the source. Obviously, this nature is totally different from that of the definition given by the IAU WG NFA (Capitaine, 2007) in 2006, which is stated as, ``the apparent angular displacement of the observed position of a celestial object from its geometric position, caused by the finite velocity of light in combination with the motions of the observer and of the observed object.''

  11. Chromosomal aberrations in lymphocytes of employees in transformer and generator production exposed to electromagnetic fields and mineral oil.

    PubMed

    Skyberg, K; Hansteen, I L; Vistnes, A I

    2001-04-01

    The objective was to study the risk of cytogenetic damage among high voltage laboratory workers exposed to electromagnetic fields and mineral oil. This is a cross sectional study of 24 exposed and 24 matched controls in a Norwegian transformer factory. The exposure group included employees in the high voltage laboratory and in the generator soldering department. Electric and magnetic fields and oil mist and vapor were measured. Blood samples were analyzed for chromosomal aberrations in cultured lymphocytes. In addition to conventional cultures, the lymphocytes were also treated with hydroxyurea and caffeine. This procedure inhibits DNA synthesis and repair in vitro, revealing in vivo genotoxic lesions that are repaired during conventional culturing. In conventional cultures, the exposure group and the controls showed similar values for all cytogenetic parameters. In the DNA synthesis- and repair-inhibited cultures, generator welders showed no differences compared to controls. Among high voltage laboratory testers, compared to the controls, the median number of chromatid breaks was doubled (5 vs. 2.5 per 50 cells; P<0.05) the median number of chromosome breaks was 2 vs. 0.5 (P>0.05) and the median number of aberrant cells was 5 vs. 3.5 (P<0.05). Further analysis of the inhibited culture data from this and a previous study indicated that years of exposure and smoking increase the risk of aberrations. We conclude that there was no increase in cytogenetic damage among exposed workers compared to controls in the conventional lymphocyte assay. In inhibited cultures, however, there were indications that electromagnetic fields in combination with mineral oil exposure may produce chromosomal aberrations. Copyright 2001 Wiley-Liss, Inc.

  12. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    PubMed

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

  13. Effect of monochromatic aberrations on photorefractive patterns

    NASA Astrophysics Data System (ADS)

    Campbell, Melanie C. W.; Bobier, W. R.; Roorda, A.

    1995-08-01

    Photorefractive methods have become popular in the measurement of refractive and accommodative states of infants and children owing to their photographic nature and rapid speed of measurement. As in the case of any method that measures the refractive state of the human eye, monochromatic aberrations will reduce the accuracy of the measurement. Monochromatic aberrations cannot be as easily predicted or controlled as chromatic aberrations during the measurement, and accordingly they will introduce measurement errors. This study defines this error or uncertainty by extending the existing paraxial optical analyses of coaxial and eccentric photorefraction. This new optical analysis predicts that, for the amounts of spherical aberration (SA) reported for the human eye, there will be a significant degree of measurement uncertainty introduced for all photorefractive methods. The dioptric amount of this uncertainty may exceed the maximum amount of SA present in the eye. The calculated effects on photorefractive measurement of a real eye with a mixture of spherical aberration and coma are shown to be significant. The ability, developed here, to predict photorefractive patterns corresponding to different amounts and types of monochromatic aberration may in the future lead to an extension of photorefractive methods to the dual measurement of refractive states and aberrations of individual eyes. aberration, retinal image quality,

  14. DNA Barcoding of Sigmodontine Rodents: Identifying Wildlife Reservoirs of Zoonoses

    PubMed Central

    Müller, Lívia; Gonçalves, Gislene L.; Cordeiro-Estrela, Pedro; Marinho, Jorge R.; Althoff, Sérgio L.; Testoni, André. F.; González, Enrique M.; Freitas, Thales R. O.

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments. PMID:24244670

  15. Aberrant expression of the PHF14 gene in biliary tract cancer cells

    PubMed Central

    AKAZAWA, TAKAKO; YASUI, KOHICHIROH; GEN, YASUYUKI; YAMADA, NOBUHISA; TOMIE, AKIRA; DOHI, OSAMU; MITSUYOSHI, HIRONORI; YAGI, NOBUAKI; ITOH, YOSHITO; NAITO, YUJI; YOSHIKAWA, TOSHIKAZU

    2013-01-01

    DNA copy number aberrations in human biliary tract cancer (BTC) cell lines were investigated using a high-density oligonucleotide microarray. A novel homozygous deletion was detected at chromosomal region 7p21.3 in the OZ cell line. Further validation experiments using genomic PCR revealed a homozygous deletion of a single gene, plant homeodomain (PHD) finger protein 14 (PHF14). No PHF14 mRNA or protein expression was detected, thus demonstrating the absence of PHF14 expression in the OZ cell line. Although the PHD finger protein is considered to be involved in chromatin-mediated transcriptional regulation, little is known about the function of PHF14 in cancer. The present study observed that the knock down of PHF14 using small interfering RNA (siRNA) enhanced the growth of the BTC cells. These observations suggest that aberrant PHF14 expression may have a role in the tumorigenesis of BTC. PMID:23833654

  16. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

    PubMed

    Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae

    2011-07-01

    Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.

  17. Development of fluorescent methods for DNA methyltransferase assay

    NASA Astrophysics Data System (ADS)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  18. Enhancement of Radiation Therapy in Prostate Cancer by DNA-PKcs Inhibitor

    DTIC Science & Technology

    2015-09-01

    hepatocellular carcinoma. Journal of Hepatology 2007; 46(4): 655-63. 23. Yano M, et al . Aberrant promoter methylation of human DAB2 interactive protein...hDAB2IPA in hepatocellular carcinoma. Journal of Hepatology 2007; 46(4): 655-63. 23. Yano M, et al . Aberrant promoter methylation of human DAB2...prostate remains normal (Tumati et al ). Therefore, we performed immuno histochemical analysis specifically looking at the DNA damage response after

  19. Aberrant DNA methylation of tumor-related genes in oral rinse: a noninvasive method for detection of oral squamous cell carcinoma.

    PubMed

    Nagata, Satoshi; Hamada, Tomofumi; Yamada, Norishige; Yokoyama, Seiya; Kitamoto, Sho; Kanmura, Yuji; Nomura, Masahiro; Kamikawa, Yoshiaki; Yonezawa, Suguru; Sugihara, Kazumasa

    2012-09-01

    The early detection of oral squamous cell carcinoma (OSCC) is important, and a screening test with high sensitivity and specificity is urgently needed. Therefore, in this study, the authors investigated the methylation status of tumor-related genes with the objective of establishing a noninvasive method for the detection of OSCC. Oral rinse samples were obtained from 34 patients with OSCC and from 24 healthy individuals (controls). The methylation status of 13 genes was determined by using methylation-specific polymerase chain reaction analysis and was quantified using a microchip electrophoresis system. Promoter methylation in each participant was screened by receiver operating characteristic analysis, and the utility of each gene's methylation status, alone and in combination with other genes, was evaluated as a tool for oral cancer detection. Eight of the 13 genes had significantly higher levels of DNA methylation in samples from patients with OSCC than in controls. The genes E-cadherin (ECAD), transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2), retinoic acid receptor beta (RARβ), and O-6 methylguanine DNA methyltransferase (MGMT) had high sensitivity (>75%) and specificity for the detection of oral cancer. OSCC was detected with 100% sensitivity and 87.5% specificity using a combination of ECAD, TMEFF2, RARβ, and MGMT and with 97.1% sensitivity and 91.7% specificity using a combination of ECAD, TMEFF2, and MGMT. The aberrant methylation of a combination of marker genes present in oral rinse samples was used to detect OSCC with >90% sensitivity and specificity. The detection of methylated marker genes from oral rinse samples has great potential for the noninvasive detection of OSCC. Copyright © 2012 American Cancer Society.

  20. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    PubMed

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  1. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  2. Next Generation Epigenetic Detection Technique: Identifying Methylated DNA using Graphene Nanopore

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Haraldsen, Jason T.; Zhu, Jian-Xin; Balatsky, A. V.

    2014-03-01

    DNA methylation plays a pivotal role in the genetic evolution of both embryonic and adult cells.Unusual methylation on CPG islands are identified as the prime causes for silencing the tumor suppressant genes. Early detection of such methylation can diagnose the potentially harmful oncogenic evolution of cells, and provide a promising guideline for cancer prevention.We propose a detection technique and calculate the transport current through punctured graphene as the cytosine and methylated cytosine translocate through the nanopore. We also calculate the transport properties for uracil and cyano-cytosine to compare. Our calculations of transmission, current and tunneling conductance show distinct signatures in their spectrum for each molecular type. Our theoretical study provides a next generation detection technique for identifying DNA methylation using graphene based nanopore device. This work was supported by U.S. DOE Office of Basic Energy Sciences, and by VR 621-2012-2983 and ERC 321031-DM. This work was, in part, supported by the Center for Integrated Nanotechnologies, a U.S. DOE BES user facility.

  3. Imaging characteristics of Zernike and annular polynomial aberrations.

    PubMed

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  4. Mouse chromosomal mapping of a murine leukemia virus integration region (Mis-1) first identified in rat thymic leukemia.

    PubMed Central

    Jolicoeur, P; Villeneuve, L; Rassart, E; Kozak, C

    1985-01-01

    We have previously identified a region of genomic DNA which constitutes the site of frequent provirus integration in rat thymomas induced by Moloney murine leukemia virus (Lemay and Jolicoeur, Proc. Natl. Acad. Sci. USA 81:38-42, 1984). This genetic locus is now designated Mis-1 (Moloney integration site). Cellular sequences homologous to Mis-1 are present in mouse DNA. Using a series of hamster-mouse somatic cell hybrids, we mapped the Mis-1 locus to mouse chromosome 15. Frequent chromosome 15 aberrations have been described in mouse thymomas. Mis-1 represents a putative new oncogene which might be involved in the initiation or maintenance or both of these neoplasms. Images PMID:4068142

  5. Nodal aberration theory applied to freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  6. Corneal spherical aberration in Saudi population

    PubMed Central

    Al-Sayyari, Tarfah M.; Fawzy, Samah M.; Al-Saleh, Ahmed A.

    2014-01-01

    Purpose To find out the mean corneal spherical aberration and its changes with age in Saudi population. Setting AlHokama Eye Specialist Center, Riyadh, Saudi Arabia. Methods Three hundred (300) eyes of 185 Saudi subjects (97 men and 88 women), whose age ranged from 15 to 85 years old, with matched refractive errors, were divided into three groups according to their age, 100 for each. All the subjects were included in measuring the spherical aberration (SA) using pentacam HR (OCULUS, Germany) at the 6-mm optical zone. Results The mean corneal spherical aberration (CSA) of the fourth order (Z40) of the whole groups was 0.252 ± 0.1154 μm. Patients from 15 to 35 years old have root mean square (RMS) of CSA of 0.2068 ± 0.07151 μm, 0.2370 ± 0.08023 μm was the RMS of CSA of the patients from 35 to 50 years old, while those from 50 to 85 years old have a CSA-RMS of 0.31511 ± 0.1503 μm (P < 0.0001). A positive correlation was found between the spherical aberration (Z40) and the progress of age (r = 0.3429, P < 0.0001). The high order aberration (HOA) presented 28.1% of the total corneal aberrations. While the fourth order corneal spherical aberration constituted 57% of the HOA and 16% of the total aberration. The pupil diameter shows a negative correlation with the increase in age (P = 0.0012). Conclusion Our results showed a CSA (Z40) that is varied among the population, comparable to other studies, and significantly correlates to the progress of age. PMID:25278799

  7. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    PubMed

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  8. Correlation approach to identify coding regions in DNA sequences

    NASA Technical Reports Server (NTRS)

    Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1994-01-01

    Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.

  9. Transcranial phase aberration correction using beam simulations and MR-ARFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focusedmore » ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.« less

  10. Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.

    PubMed

    Levy, Dan; Vazquez, Mariel; Cornforth, Michael; Loucas, Bradford; Sachs, Rainer K; Arsuaga, Javier

    2004-01-01

    Chromosome aberrations are large-scale illegitimate rearrangements of the genome. They are indicative of DNA damage and informative about damage processing pathways. Despite extensive investigations over many years, the mechanisms underlying aberration formation remain controversial. New experimental assays such as multiplex fluorescent in situ hybridyzation (mFISH) allow combinatorial "painting" of chromosomes and are promising for elucidating aberration formation mechanisms. Recently observed mFISH aberration patterns are so complex that computer and graph-theoretical methods are needed for their full analysis. An important part of the analysis is decomposing a chromosome rearrangement process into "cycles." A cycle of order n, characterized formally by the cyclic graph with 2n vertices, indicates that n chromatin breaks take part in a single irreducible reaction. We here describe algorithms for computing cycle structures from experimentally observed or computer-simulated mFISH aberration patterns. We show that analyzing cycles quantitatively can distinguish between different aberration formation mechanisms. In particular, we show that homology-based mechanisms do not generate the large number of complex aberrations, involving higher-order cycles, observed in irradiated human lymphocytes.

  11. A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer.

    PubMed

    Vollan, Hans Kristian Moen; Rueda, Oscar M; Chin, Suet-Feung; Curtis, Christina; Turashvili, Gulisa; Shah, Sohrab; Lingjærde, Ole Christian; Yuan, Yinyin; Ng, Charlotte K; Dunning, Mark J; Dicks, Ed; Provenzano, Elena; Sammut, Stephen; McKinney, Steven; Ellis, Ian O; Pinder, Sarah; Purushotham, Arnie; Murphy, Leigh C; Kristensen, Vessela N; Brenton, James D; Pharoah, Paul D P; Børresen-Dale, Anne-Lise; Aparicio, Samuel; Caldas, Carlos

    2015-01-01

    Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER-) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p < 0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PFS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER- disease. None of the expression-based predictors were prognostic in the ER- subset. We found that a model including CAAI and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAI. Inclusion of CAAI in the

  12. Use of DNA Microarrays to Identify Diagnostic Signature Transcription Profiles for Host Responses to Infectious Agents

    DTIC Science & Technology

    2004-10-01

    informative in this regard. Key signature genes will serve as the basis for rapid diagnostic approaches that could be accessed when an outbreak is suspected...AD Award Number: DAMD17-01-1-0787 TITLE: Use of DNA Microarrays to Identify Diagnostic Signature Transcription Profiles for Host Responses to...Sep 2004) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Use of DNA Microarrays to Identify Diagnostic Signature DAMD17-01-1-0787 Transcription Profiles for

  13. A Evaluation of Optical Aberrations in Underwater Hologrammetry

    NASA Astrophysics Data System (ADS)

    Kilpatrick, J. M.

    Available from UMI in association with The British Library. An iterative ray-trace procedure is developed in conjunction with semi-analytic expressions for spherical aberration, coma, and astigmatism in the reconstructed holographic images of underwater objects. An exact expression for the astigmatic difference is obtained, based on the geometry of the caustic for refraction. The geometrical characteristics of the aberrated images associated with axial and non-axial field positions are represented by ray intersection diagrams. A third order expression for the wavefront aberration introduced at a planar air/water boundary is given. The associated third order aberration coefficients are used to obtain analytic expressions for the aberrations observed in underwater hologrammetry. The results of the third order treatment are shown to give good agreement with the results obtained by geometrical ray tracing and by direct measurement on the reconstructed real image. The third order aberration coefficients are employed to estimate the limit of resolution in the presence of the aberrations associated with reconstruction in air. In concurrence with practical observations it is found that the estimated resolution is primarily limited by astigmatism. The limitations of the planar window in underwater imaging applications are outlined and various schemes are considered to effect a reduction in the extent of aberration. The analogous problems encountered in underwater photography are examined in order to establish the grounds for a common solution based on a conventional optical corrector. The performance of one such system, the Ivanoff Corrector, is investigated. The spherical aberration associated with axial image formation is evaluated. The equivalence of the third order wavefront aberration introduced at a planar air/water boundary to that introduced upon reconstruction by an appropriate wavelength change is shown to provide a basis for the compensation of aberrations in

  14. Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile▿†

    PubMed Central

    Forgetta, Vincenzo; Oughton, Matthew T.; Marquis, Pascale; Brukner, Ivan; Blanchette, Ruth; Haub, Kevin; Magrini, Vince; Mardis, Elaine R.; Gerding, Dale N.; Loo, Vivian G.; Miller, Mark A.; Mulvey, Michael R.; Rupnik, Maja; Dascal, Andre; Dewar, Ken

    2011-01-01

    Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains. PMID:21508155

  15. DNA methylation in adult diffuse gliomas.

    PubMed

    LeBlanc, Veronique G; Marra, Marco A

    2016-11-01

    Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand.

    PubMed

    Steel, Olivia; Kraberger, Simona; Sikorski, Alyssa; Young, Laura M; Catchpole, Ryan J; Stevens, Aaron J; Ladley, Jenny J; Coray, Dorien S; Stainton, Daisy; Dayaram, Anisha; Julian, Laurel; van Bysterveldt, Katherine; Varsani, Arvind

    2016-09-01

    In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    PubMed

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. © 2014 John Wiley & Sons Ltd.

  18. Phenotypic characterization of aberrant stem and progenitor cell populations in myelodysplastic syndromes.

    PubMed

    Ostendorf, Benjamin N; Flenner, Eva; Flörcken, Anne; Westermann, Jörg

    2018-01-01

    Recent reports have revealed myelodysplastic syndromes (MDS) to arise from cancer stem cells phenotypically similar to physiological hematopoietic stem cells. Myelodysplastic hematopoiesis maintains a hierarchical organization, but the proportion of several hematopoietic compartments is skewed and multiple surface markers are aberrantly expressed. These aberrant antigen expression patterns hold diagnostic and therapeutic promise. However, eradication of MDS requires targeting of early myelodysplasia propagating stem cells. This warrants an exact assessment of the differentiation stage at which aberrant expression occurs in transformed hematopoiesis. Here, we report results on the prospective and extensive dissection of the hematopoietic hierarchy in 20 patients with either low-risk MDS or MDS with excess blasts and compare it to hematopoiesis in patients with non-malignancy-associated cytopenia or B cell lymphoma without bone marrow infiltration. We found patients with MDS with excess blasts to exhibit characteristic expansions of specific immature progenitor compartments. We also identified the aberrant expression of several markers including ALDH, CLL-1, CD44, and CD47 to be specific features of hematopoiesis in MDS with excess blasts. We show that amongst these, aberrant CLL-1 expression manifested at the early uncommitted hematopoietic stem cell level, suggesting a potential role as a therapeutic target.

  19. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer

    PubMed Central

    Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine

    2017-01-01

    Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820

  20. Prognostic value of DNA repair based stratification of hepatocellular carcinoma

    PubMed Central

    Lin, Zhuo; Xu, Shi-Hao; Wang, Hai-Qing; Cai, Yi-Jing; Ying, Li; Song, Mei; Wang, Yu-Qun; Du, Shan-Jie; Shi, Ke-Qing; Zhou, Meng-Tao

    2016-01-01

    Aberrant activation of DNA repair is frequently associated with tumor progression and response to therapy in hepatocellular carcinoma (HCC). Bioinformatics analyses of HCC data in the Cancer Genome Atlas (TCGA) were performed to define DNA repair based molecular classification that could predict the prognosis of patients with HCC. Furthermore, we tested its predictive performance in 120 independent cases. Four molecular subgroups were identified on the basis of coordinate DNA repair cluster (CDRC) comprising 15 genes in TCGA dataset. Increasing expression of CDRC genes were significantly associated with TP53 mutation. High CDRC was significantly correlated with advanced tumor grades, advanced pathological stage and increased vascular invasion rate. Multivariate Cox regression analysis indicated that the molecular subgrouping was an independent prognostic parameter for both overall survival (p = 0.004, hazard ratio (HR): 2.989) and tumor-free survival (p = 0.049, HR: 3.366) in TCGA dataset. Similar results were also obtained by analyzing the independent cohort. These data suggest that distinct dysregulation of DNA repair constituents based molecular classes in HCC would be useful for predicting prognosis and designing clinical trials for targeted therapy. PMID:27174663

  1. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.

    PubMed

    Song, H; Fraanje, R; Schitter, G; Kroese, H; Vdovin, G; Verhaegen, M

    2010-11-08

    In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N=9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N+5=14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N+4=13 intensity measurements.

  2. Aberrated laser beams in terms of Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Alda, Javier; Alonso, Jose; Bernabeu, Eusebio

    1996-11-01

    The characterization of light beams has devoted a lot of attention in the past decade. Several formalisms have been presented to treat the problem of parameter invariance and characterization in the propagation of light beam along ideal, ABCD, optical systems. The hard and soft apertured optical systems have been treated too. Also some aberrations have been analyzed, but it has not appeared a formalism able to treat the problem as a whole. In this contribution we use a classical approach to describe the problem of aberrated, and therefore apertured, light beams. The wavefront aberration is included in a pure phase term expanded in terms of the Zernike polynomials. Then, we can use the relation between the lower order Zernike polynomia and the Seidel or third order aberrations. We analyze the astigmatism, the spherical aberration and the coma, and we show how higher order aberrations can be taken into account. We have calculated the divergence, and the radius of curvature of such aberrated beams and the influence of these aberrations in the quality of the light beam. Some numerical simulations have been done to illustrate the method.

  3. Structural centrosome aberrations promote non-cell-autonomous invasiveness.

    PubMed

    Ganier, Olivier; Schnerch, Dominik; Oertle, Philipp; Lim, Roderick Yh; Plodinec, Marija; Nigg, Erich A

    2018-05-02

    Centrosomes are the main microtubule-organizing centers of animal cells. Although centrosome aberrations are common in tumors, their consequences remain subject to debate. Here, we studied the impact of structural centrosome aberrations, induced by deregulated expression of ninein-like protein (NLP), on epithelial spheres grown in Matrigel matrices. We demonstrate that NLP-induced structural centrosome aberrations trigger the escape ("budding") of living cells from epithelia. Remarkably, all cells disseminating into the matrix were undergoing mitosis. This invasive behavior reflects a novel mechanism that depends on the acquisition of two distinct properties. First, NLP-induced centrosome aberrations trigger a re-organization of the cytoskeleton, which stabilizes microtubules and weakens E-cadherin junctions during mitosis. Second, atomic force microscopy reveals that cells harboring these centrosome aberrations display increased stiffness. As a consequence, mitotic cells are pushed out of mosaic epithelia, particularly if they lack centrosome aberrations. We conclude that centrosome aberrations can trigger cell dissemination through a novel, non-cell-autonomous mechanism, raising the prospect that centrosome aberrations contribute to the dissemination of metastatic cells harboring normal centrosomes. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  4. Whole eye wavefront aberrations in Mexican male subjects.

    PubMed

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.

  5. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunctionmore » due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.« less

  6. Accommodation to wavefront vergence and chromatic aberration.

    PubMed

    Wang, Yinan; Kruger, Philip B; Li, James S; Lin, Peter L; Stark, Lawrence R

    2011-05-01

    Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In this study, we examined the effect of pupil size and LCA on accommodation. Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m) and two artificial pupil conditions (3 and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less.

  7. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  8. Sixth-order wave aberration theory of ultrawide-angle optical systems.

    PubMed

    Lu, Lijun; Cao, Yiqing

    2017-10-20

    In this paper, we develop sixth-order wave aberration theory of ultrawide-angle optical systems like fisheye lenses. Based on the concept and approach to develop wave aberration theory of plane-symmetric optical systems, we first derive the sixth-order intrinsic wave aberrations and the fifth-order ray aberrations; second, we present a method to calculate the pupil aberration of such kind of optical systems to develop the extrinsic aberrations; third, the relation of aperture-ray coordinates between adjacent optical surfaces is fitted with the second-order polynomial to improve the calculation accuracy of the wave aberrations of a fisheye lens with a large acceptance aperture. Finally, the resultant aberration expressions are applied to calculate the aberrations of two design examples of fisheye lenses; the calculation results are compared with the ray-tracing ones with Zemax software to validate the aberration expressions.

  9. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes.

    PubMed

    George, K; Durante, M; Willingham, V; Cucinotta, F A

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel

  10. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Willingham, V.; Cucinotta, F. A.

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel.

  11. MethylMix 2.0: an R package for identifying DNA methylation genes. | Office of Cancer Genomics

    Cancer.gov

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes.

  12. A leukocyte activation test identifies food items which induce release of DNA by innate immune peripheral blood leucocytes.

    PubMed

    Garcia-Martinez, Irma; Weiss, Theresa R; Yousaf, Muhammad N; Ali, Ather; Mehal, Wajahat Z

    2018-01-01

    Leukocyte activation (LA) testing identifies food items that induce a patient specific cellular response in the immune system, and has recently been shown in a randomized double blinded prospective study to reduce symptoms in patients with irritable bowel syndrome (IBS). We hypothesized that test reactivity to particular food items, and the systemic immune response initiated by these food items, is due to the release of cellular DNA from blood immune cells. We tested this by quantifying total DNA concentration in the cellular supernatant of immune cells exposed to positive and negative foods from 20 healthy volunteers. To establish if the DNA release by positive samples is a specific phenomenon, we quantified myeloperoxidase (MPO) in cellular supernatants. We further assessed if a particular immune cell population (neutrophils, eosinophils, and basophils) was activated by the positive food items by flow cytometry analysis. To identify the signaling pathways that are required for DNA release we tested if specific inhibitors of key signaling pathways could block DNA release. Foods with a positive LA test result gave a higher supernatant DNA content when compared to foods with a negative result. This was specific as MPO levels were not increased by foods with a positive LA test. Protein kinase C (PKC) inhibitors resulted in inhibition of positive food stimulated DNA release. Positive foods resulted in CD63 levels greater than negative foods in eosinophils in 76.5% of tests. LA test identifies food items that result in release of DNA and activation of peripheral blood innate immune cells in a PKC dependent manner, suggesting that this LA test identifies food items that result in release of inflammatory markers and activation of innate immune cells. This may be the basis for the improvement in symptoms in IBS patients who followed an LA test guided diet.

  13. Roles of nibrin and AtM/ATR kinases on the G2 checkpoint under endogenous or radio-induced DNA damage.

    PubMed

    Marcelain, Katherine; De La Torre, Consuelo; González, Patricio; Pincheira, Juana

    2005-01-01

    Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy) in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.

  14. Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling

    PubMed Central

    Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype. PMID:24416132

  15. Genome-wide analysis of DNA methylation variations caused by chronic glucolipotoxicity in beta-cells.

    PubMed

    Hu, Y; Xu, X-H; He, K; Zhang, L-L; Wang, S-K; Pan, Y-Q; He, B-S; Feng, T-T; Mao, X-M

    2014-02-01

    There is a growing body of literature suggesting the role of interactions between genes and the environment in development of type 2 diabetes mellitus (T2DM). However, the interplay between environment and genetic in developing and progressing T2MD is not fully understood. To determine the effects of high-glucose-lipid on the status of DNA methylation in beta cells, and clarify the mechanism of glucolipotoxicity on beta-cell deterioration, the DNA methylation profile was detected in beta-cells cultured with high-glucose-lipid medium.We utilized a high throughput NimbleGen RN34 CpG Island & Promoter Microarray to investigate the DNA methylation profile in beta-cells cultured with high-glucose-lipid medium. To validate the results of microarray, the immunoprecipitation (MeDIP) PCR was used to test the methylation status of some selected genes. The mRNA and protein expression of insulin and Tcf7l2 in these cells were quantified by RT-PCR and western blot, respectively.We have identified a lot of loci which experienced aberrant DNA methylation in beta-cells cultured with high-glucose-lipid medium. The results of MeDIP PCR were consistency to the microarray. An opposite regulation in transcription and translation of Tcf7l2 gene was found. Furthermore, the insulin mRNA and protein expression in beta-cells also decreased after cultured with high-glucose-lipid medium compared with the control cells.We conclude that chronic glucolipotoxicity could induce aberrant DNA methylation of some genes and may affect these genes expression in beta-cells, which might contribute to beta-cell function failure in T2DM and be helpful to explain, at least partially, the mechanism of glucolipotoxicity on beta-cells deterioration. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  16. Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells.

    PubMed

    Tassano, Marcos; Oddone, Natalia; Fernández, Marcelo; Porcal, Williams; García, María Fernanda; Martínez-López, Wilner; Benech, Juan Claudio; Cabral, Pablo

    2018-06-19

    To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with 188 ReO 4 - . Biodistribution was performed administrating 188 Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of 188 Re-dendrimer in melanoma cells. Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of 188 Re-dendrimer for 24 h. 188 Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.

  17. Spherical aberrations of human astigmatic corneas.

    PubMed

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P<.05 was considered statistically significant. Mean patient age was 42.6±11 years. Astigmatic corneas had an average astigmatic power of 0.78±0.58 D and mean spherical aberration was 0.25±0.13 μm for the entire population and approximately the same (0.27 μm) for individual groups, ranging from 0.23 to 0.29 μm (P>.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  18. Genomic aberrations in spitzoid tumours and their implications for diagnosis, prognosis and therapy

    PubMed Central

    Wiesner, Thomas; Kutzner, Heinz; Cerroni, Lorenzo; Mihm, Martin J.; Busam, Klaus J.; Murali, Rajmohan

    2016-01-01

    Summary Histopathological evaluation of melanocytic tumours usually allows reliable distinction of benign melanocytic naevi from melanoma. More difficult is the histopathological classification of Spitz tumours, a heterogeneous group of tumours composed of large epithelioid or spindle-shaped melanocytes. Spitz tumours are biologically distinct from conventional melanocytic naevi and melanoma, as exemplified by their distinct patterns of genetic aberrations. Whereas conventional naevi and melanoma often harbour BRAF mutations, NRAS mutations, or inactivation of NF1, Spitz tumours show HRAS mutations, inactivation of BAP1 (often combined with BRAF mutations), or genomic rearrangements involving the kinases ALK, ROS1, NTRK1, BRAF, RET, and MET. In Spitz naevi, which lack significant histological atypia, all of these mitogenic driver aberrations trigger rapid cell proliferation, but after an initial growth phase, various tumour suppressive mechanisms stably block further growth. In some tumours, additional genomic aberrations may abrogate various tumour suppressive mechanisms, such as cell-cycle arrest, telomere shortening, or DNA damage response. The melanocytes then start to grow in a less organised fashion, may spread to regional lymph nodes, and are termed atypical Spitz tumours. Upon acquisition of even more aberrations, which often activate additional oncogenic pathways or reduce and alter cell differentiation, the neoplastic cells become entirely malignant and may colonise and take over distant organs (spitzoid melanoma). The sequential acquisition of genomic aberrations suggests that Spitz tumours represent a continuous biological spectrum, rather than a dichotomy of benign versus malignant, and that tumours with ambiguous histological features (atypical Spitz tumours) might be best classified as low-grade melanocytic tumours. The number of genetic aberrations usually correlates with the degree of histological atypia and explains why existing ancillary genetic

  19. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric, aberration correcting monofocal intraocular lens

    PubMed Central

    Kretz, Florian T A; Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd U

    2015-01-01

    AIM To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting, monofocal intraocular lens (IOL). METHODS Twenty-one patients (34 eyes) aged 50 to 83y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL (Tecnis ZCB00, Abbott Medical Optics). Three months after surgery they were examined for uncorrected (UDVA) and corrected distance visual acuity (CDVA), contrast sensitivity (CS) under photopic and mesopic conditions with and without glare source, ocular high order aberrations (HOA, Zywave II) and retinal straylight (C-Quant). RESULTS Postoperatively, patients achieved a postoperative CDVA of 0.0 logMAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27 (primary coma components) and -0.04±0.16 (spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed (P≥0.28). CONCLUSION The implantation of an aspherical aberration correcting monofocal IOL after cataract surgery resulted in very low residual higher order aberration (HOA) and normal straylight. PMID:26309872

  20. Accommodation to Wavefront Vergence and Chromatic Aberration

    PubMed Central

    Wang, Yinan; Kruger, Philip B.; Li, James S.; Lin, Peter L.; Stark, Lawrence R.

    2011-01-01

    Purpose Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In the present study, we examined the effect of pupil size and LCA on accommodation. Methods Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m2) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m2) and two artificial pupil conditions (3 mm and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). Results Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Conclusions Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less. PMID:21317666

  1. Comparison of Aberrations After Standard and Customized Refractive Surgery

    NASA Astrophysics Data System (ADS)

    Fang, L.; He, X.; Wang, Y.

    2013-09-01

    To detect possible differences in residual wavefront aberrations between standard and customized laser refractive surgery based onmathematical modeling, the residual optical aberrations after conventional and customized laser refractive surgery were compared accordingto the ablation profile with transition zone. The results indicated that ablation profile has a significant impact on the residual aberrations.The amount of residual aberrations for conventional correction is higher than that for customized correction. Additionally, the residualaberrations for high myopia eyes are markedly larger than those for moderate myopia eyes. For a 5 mm pupil, the main residual aberrationterm is coma and yet it is spherical aberration for a 7 mm pupil. When the pupil diameter is the same as optical zone or greater, themagnitudes of residual aberrations is obviously larger than that for a smaller pupil. In addition, the magnitudes of the residual fifth orsixth order aberrations are relatively large, especially secondary coma in a 6 mm pupil and secondary spherical aberration in a 7 mm pupil.Therefore, the customized ablation profile may be superior to the conventional correction even though the transition zone and treatmentdecentration are taken into account. However, the customized ablation profile will still induce significant amount of residual aberrations.

  2. Theoretical investigation of aberrations upon ametropic human eyes

    NASA Astrophysics Data System (ADS)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin

    2003-11-01

    The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.

  3. Anterior Corneal, Posterior Corneal, and Lenticular Contributions to Ocular Aberrations.

    PubMed

    Atchison, David A; Suheimat, Marwan; Mathur, Ankit; Lister, Lucas J; Rozema, Jos

    2016-10-01

    To determine the corneal surfaces and lens contributions to ocular aberrations. There were 61 healthy participants with ages ranging from 20 to 55 years and refractions -8.25 diopters (D) to +3.25 D. Anterior and posterior corneal topographies were obtained with an Oculus Pentacam, and ocular aberrations were obtained with an iTrace aberrometer. Raytracing through models of corneas provided total corneal and surface component aberrations for 5-mm-diameter pupils. Lenticular contributions were given as differences between ocular and corneal aberrations. Theoretical raytracing investigated influence of object distance on aberrations. Apart from defocus, the highest aberration coefficients were horizontal astigmatism, horizontal coma, and spherical aberration. Most correlations between lenticular and ocular parameters were positive and significant, with compensation of total corneal aberrations by lenticular aberrations for 5/12 coefficients. Anterior corneal aberrations were approximately three times higher than posterior corneal aberrations and usually had opposite signs. Corneal topographic centers were displaced from aberrometer pupil centers by 0.32 ± 0.19 mm nasally and 0.02 ± 0.16 mm inferiorly; disregarding corneal decentration relative to pupil center was significant for oblique astigmatism, horizontal coma, and horizontal trefoil. An object at infinity, rather than at the image in the anterior cornea, gave incorrect aberration estimates of the posterior cornea. Corneal and lenticular aberration magnitudes are similar, and aberrations of the anterior corneal surface are approximately three times those of the posterior surface. Corneal decentration relative to pupil center has significant effects on oblique astigmatism, horizontal coma, and horizontal trefoil. When estimating component aberrations, it is important to use correct object/image conjugates and heights at surfaces.

  4. DNA barcoding to identify leaf preference of leafcutting bees

    PubMed Central

    2016-01-01

    Leafcutting bees (Megachile: Megachilidae) cut leaves from various trees, shrubs, wildflowers and grasses to partition and encase brood cells in hollow plant stems, decaying logs or in the ground. The identification of preferred plant species via morphological characters of the leaf fragments is challenging and direct observation of bees cutting leaves from certain plant species are difficult. As such, data are poor on leaf preference of leafcutting bees. In this study, I use DNA barcoding of the rcbL and ITS2 regions to identify and compare leaf preference of three Megachile bee species widespread in Toronto, Canada. Nests were opened and one leaf piece from one cell per nest of the native M. pugnata Say (N=45 leaf pieces), and the introduced M. rotundata Fabricius (N=64) and M. centuncularis (L.) (N=65) were analysed. From 174 individual DNA sequences, 54 plant species were identified. Preference by M. rotundata was most diverse (36 leaf species, H′=3.08, phylogenetic diversity (pd)=2.97), followed by M. centuncularis (23 species, H′=2.38, pd=1.51) then M. pugnata (18 species, H′=1.87, pd=1.22). Cluster analysis revealed significant overlap in leaf choice of M. rotundata and M. centuncularis. There was no significant preference for native leaves, and only M. centuncularis showed preference for leaves of woody plants over perennials. Interestingly, antimicrobial properties were present in all but six plants collected; all these were exotic plants and none were collected by the native bee, M. pugnata. These missing details in interpreting what bees need offers valuable information for conservation by accounting for necessary (and potentially limiting) nesting materials. PMID:27069650

  5. DNA barcoding to identify leaf preference of leafcutting bees.

    PubMed

    MacIvor, J Scott

    2016-03-01

    Leafcutting bees (Megachile: Megachilidae) cut leaves from various trees, shrubs, wildflowers and grasses to partition and encase brood cells in hollow plant stems, decaying logs or in the ground. The identification of preferred plant species via morphological characters of the leaf fragments is challenging and direct observation of bees cutting leaves from certain plant species are difficult. As such, data are poor on leaf preference of leafcutting bees. In this study, I use DNA barcoding of the rcbL and ITS2 regions to identify and compare leaf preference of three Megachile bee species widespread in Toronto, Canada. Nests were opened and one leaf piece from one cell per nest of the native M. pugnata Say (N=45 leaf pieces), and the introduced M. rotundata Fabricius (N=64) and M. centuncularis (L.) (N=65) were analysed. From 174 individual DNA sequences, 54 plant species were identified. Preference by M. rotundata was most diverse (36 leaf species, H'=3.08, phylogenetic diversity (pd)=2.97), followed by M. centuncularis (23 species, H'=2.38, pd=1.51) then M. pugnata (18 species, H'=1.87, pd=1.22). Cluster analysis revealed significant overlap in leaf choice of M. rotundata and M. centuncularis. There was no significant preference for native leaves, and only M. centuncularis showed preference for leaves of woody plants over perennials. Interestingly, antimicrobial properties were present in all but six plants collected; all these were exotic plants and none were collected by the native bee, M. pugnata. These missing details in interpreting what bees need offers valuable information for conservation by accounting for necessary (and potentially limiting) nesting materials.

  6. Nodal aberration theory for wild-filed asymmetric optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  7. Aberration corrected STEM by means of diffraction gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.

    In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less

  8. Aberration corrected STEM by means of diffraction gratings

    DOE PAGES

    Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.; ...

    2017-06-12

    In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less

  9. Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster.

    PubMed

    Stallings, Dontarie M; Hepburn, Dion D D; Hannah, Meredith; Vincent, John B; O'Donnell, Janis

    2006-11-07

    Chromium picolinate, [Cr(pic)(3)], is a popular nutritional supplement found in a variety of consumer products. Despite its popularity, safety concerns over its use have arisen. The supplement has been shown to generate clastogenic damage, mitochondrial damage, oxidative damage, and mutagenic effects in cultured cells and oxidative DNA damage and lipid peroxidation in rats. Recently [Cr(pic)(3)] has been demonstrated to generate heritable genetic change and delays in progeny development in Drosophila melanogaster. Based on the damage to chromosomes of cultured cells and of animal models, similar chromosome damage appeared to be a likely source of the mutagenic effects of the supplement in Drosophila. The current three-part study examines the effects of several chromium-containing supplements and their components on hatching and eclosion rates and success of development of first generation progeny of adult Drosophila fed food containing these compounds. It further examines the effects of the compounds on longevity of virgin male and female adults. Finally, the chromosomes in the salivary glands of Drosophila late in the third instar larval stage, which were the progeny of Drosophila whose diets were supplemented with nutritional levels of [Cr(pic)(3)], are shown to contain on average over one chromosomal aberration per two identifiable chromosomal arms. No aberrations were observed in chromosomes of progeny of untreated flies. The results suggest that human consumption of the supplement should be a matter of concern and continued investigation to provide insight into the requirements of chromium-containing supplements to give rise to genotoxic effects.

  10. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  11. Interplay of space radiation and microgravity in DNA damage and DNA damage response.

    PubMed

    Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu

    2017-01-01

    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.

  12. Aberration correction for charged particle lithography

    NASA Astrophysics Data System (ADS)

    Munro, Eric; Zhu, Xieqing; Rouse, John A.; Liu, Haoning

    2001-12-01

    At present, the throughput of projection-type charge particle lithography systems, such as PREVAIL and SCALPEL, is limited primarily by the combined effects of field curvature in the projection lenses and Coulomb interaction in the particle beam. These are fundamental physical limitations, inherent in charged particle optics, so there seems little scope for significantly improving the design of such systems, using conventional rotationally symmetric electron lenses. This paper explores the possibility of overcoming the field aberrations of round electron lense, by using a novel aberration corrector, proposed by Professor H. Rose of University of Darmstadt, called a hexapole planator. In this scheme, a set of round lenses is first used to simultaneously correct distortion and coma. The hexapole planator is then used to correct the field curvature and astigmatism, and to create a negative spherical aberration. The size of the transfer lenses around the planator can then be adjusted to zero the residual spherical aberration. In a way, an electron optical projection system is obtained that is free of all primary geometrical aberrations. In this paper, the feasibility of this concept has been studied with a computer simulation. The simulations verify that this scheme can indeed work, for both electrostatic and magnetic projection systems. Two design studies have been carried out. The first is for an electrostatic system that could be used for ion beam lithography, and the second is for a magnetic projection system for electron beam lithography. In both cases, designs have been achieved in which all primary third-order geometrical aberrations are totally eliminated.

  13. Aberration Compensation in Aplanatic Solid Immersion Lens Microscopy

    DTIC Science & Technology

    2013-11-08

    model and ray tracing software ( Zemax ) to understand how much aberrations are in the system and how much can be compensated by the DM. Subsequently...aberration. Table 2 shows the Zemax simulation on this particular case. With aberration compensation, the finest resolvable group is at 252 nm

  14. Identifying species of moths (Lepidoptera) from Baihua Mountain, Beijing, China, using DNA barcodes

    PubMed Central

    Liu, Xiao F; Yang, Cong H; Han, Hui L; Ward, Robert D; Zhang, Ai-bing

    2014-01-01

    DNA barcoding has become a promising means for the identification of organisms of all life-history stages. Currently, distance-based and tree-based methods are most widely used to define species boundaries and uncover cryptic species. However, there is no universal threshold of genetic distance values that can be used to distinguish taxonomic groups. Alternatively, DNA barcoding can deploy a “character-based” method, whereby species are identified through the discrete nucleotide substitutions. Our research focuses on the delimitation of moth species using DNA-barcoding methods. We analyzed 393 Lepidopteran specimens belonging to 80 morphologically recognized species with a standard cytochrome c oxidase subunit I (COI) sequencing approach, and deployed tree-based, distance-based, and diagnostic character-based methods to identify the taxa. The tree-based method divided the 393 specimens into 79 taxa (species), and the distance-based method divided them into 84 taxa (species). Although the diagnostic character-based method found only 39 so-identifiable species in the 80 species, with a reduction in sample size the accuracy rate substantially improved. For example, in the Arctiidae subset, all 12 species had diagnostics characteristics. Compared with traditional morphological method, molecular taxonomy performed well. All three methods enable the rapid delimitation of species, although they have different characteristics and different strengths. The tree-based and distance-based methods can be used for accurate species identification and biodiversity studies in large data sets, while the character-based method performs well in small data sets and can also be used as the foundation of species-specific biochips. PMID:25360280

  15. Hypothermia modulates the DNA damage response to ionizing radiation in human peripheral blood lymphocytes.

    PubMed

    Lisowska, Halina; Cheng, Lei; Sollazzo, Alice; Lundholm, Lovisa; Wegierek-Ciuk, Aneta; Sommer, Sylwester; Lankoff, Anna; Wojcik, Andrzej

    2018-06-01

    Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage. It was suggested to be due to an effective transformation of DNA damage to chromosomal damage at low temperature. The purpose of the study was to analyze the kinetics of aberration formation during the first hours after exposing human peripheral blood lymphocytes to ionizing radiation at 0.8 °C and 37 °C. To this end, we applied the technique of premature chromosome condensation. In addition, DNA damage response was analyzed by measuring the levels of phosphorylated DNA damage responsive proteins ATM, DNA-PK and p53 and mRNA levels of the radiation-responsive genes BBC3, FDXR, GADD45A, XPC, MDM2 and CDKN1A. A consistently lower frequency of chromosomal breaks was observed in cells exposed at 0.8 °C as compared to 37 °C already after 30 minutes postexposure. This effect was accompanied by elevated levels of phosphorylated ATM and DNA-PK proteins and a reduced immediate level of phosphorylated p53 and of the responsive genes. Low temperature at exposure appears to promote DNA repair leading to reduced transformation of DNA damage to chromosomal aberrations.

  16. Frequent silencing of RASSF1A by DNA methylation in thymic neuroendocrine tumours.

    PubMed

    Kajiura, Koichiro; Takizawa, Hiromitsu; Morimoto, Yuki; Masuda, Kiyoshi; Tsuboi, Mitsuhiro; Kishibuchi, Reina; Wusiman, Nuliamina; Sawada, Toru; Kawakita, Naoya; Toba, Hiroaki; Yoshida, Mitsuteru; Kawakami, Yukikiyo; Naruto, Takuya; Imoto, Issei; Tangoku, Akira; Kondo, Kazuya

    2017-09-01

    Aberrant methylation of promoter CpG islands (CGIs) of tumour suppressor genes is a common epigenetic mechanism underlying cancer pathogenesis. The methylation patterns of thymic tumours have not been studied in detail since such tumours are rare. Herein, we sought to identify genes that could serve as epigenetic targets for thymic neuroendocrine tumour (NET) therapy. Genome-wide screening for aberrantly methylated CGIs was performed in three NET samples, seven thymic carcinoma (TC) samples, and eight type-B3 thymoma samples. The methylation status of thymic epithelial tumours (TETs) samples was validated by pyrosequencing in a larger cohort. The expression status was analysed by quantitative polymerase chain reaction (PCR) and immunohistochemistry. We identified a CGI on a novel gene, RASSF1A, which was strongly hypermethylated in NET, but not in thymic carcinoma or B3 thymoma. RASSF1A was identified as a candidate gene statistically and bibliographically, as it showed frequent CGI hypermethylation in NET by genome-wide screening. Pyrosequencing confirmed significant hypermethylation of a RASSF1A CGI in NET. Low-grade NET tissue was more strongly methylated than high-grade NET. Quantitative PCR and immunohistochemical staining revealed that RASSF1A mRNA and protein expression levels were negatively regulated by DNA methylation. RASSF1A is a tumour suppressor gene epigenetically dysregulated in NET. Aberrant methylation of RASSF1A has been reported in various tumours, but this is the first report of RASSF1A hypermethylation in TETs. RASSF1A may represent an epigenetic therapeutic target in thymic NET. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rooting Out Aberrant Behavior in Training.

    ERIC Educational Resources Information Center

    Kokalis, Jerry, Jr.; Paquin, Dave

    1989-01-01

    Discusses aberrant, or disruptive, behavior in an industrial/business, classroom-based, instructor-led training setting. Three examples of aberrant behavior are described, typical case studies are provided for each, and preventive (long-term) and corrective (on-the-spot) strategies for dealing with the problems are discussed. (LRW)

  18. Chromosome Aberrations in Cells Infected with Bovine Papillomavirus: Comparing Cutaneous Papilloma, Esophagus Papilloma, and Urinary Bladder Lesion Cells

    PubMed Central

    Campos, S. R. C.; Melo, T. C.; Assaf, S.; Araldi, R. P.; Mazzuchelli-de-Souza, J.; Sircili, M. P.; Carvalho, R. F.; Roperto, F.; Beçak, W.; Stocco, R. C.

    2013-01-01

    The majority of malignant cells present genetic instability with chromosome number changes plus segmental defects: these changes involve intact chromosomes and breakage-induced alterations. Some pathways of chromosomal instability have been proposed as random breakage, telomere fusion, and centromere fission. Chromosome alterations in tumor cells have been described in animal models and in vitro experiments. One important question is about possible discrepancies between animal models, in vitro studies, and the real events in cancer cells in vivo. Papillomaviruses are relevant agents in oncogenic processes related to action on host genome. Recently, many reports have discussed the presence of virus DNA in peripheral blood, in humans and in animals infected by papillomaviruses. The meaning of this event is of controversy: possible product of apoptosis occurring in cancer cells, metastasized cancer cells, or active DNA sequences circulating in bloodstream. This study compares chromosome aberrations detected in bovine cells, in peripheral blood cells, and in BPV lesion cells: the literature is poor in this type of study. Comparing chromosome aberrations described in the different cells, a common mechanism in their origin, can be suggested. Furthermore blood cells can be evaluated as an effective way of virus transmission. PMID:24298391

  19. DNA methylation array analysis identifies breast cancer associated RPTOR, MGRN1 and RAPSN hypomethylation in peripheral blood DNA.

    PubMed

    Tang, Qiuqiong; Holland-Letz, Tim; Slynko, Alla; Cuk, Katarina; Marme, Frederik; Schott, Sarah; Heil, Jörg; Qu, Bin; Golatta, Michael; Bewerunge-Hudler, Melanie; Sutter, Christian; Surowy, Harald; Wappenschmidt, Barbara; Schmutzler, Rita; Hoth, Markus; Bugert, Peter; Bartram, Claus R; Sohn, Christof; Schneeweiss, Andreas; Yang, Rongxi; Burwinkel, Barbara

    2016-09-27

    DNA methylation changes in peripheral blood DNA have been shown to be associated with solid tumors. We sought to identify methylation alterations in whole blood DNA that are associated with breast cancer (BC). Epigenome-wide DNA methylation profiling on blood DNA from BC cases and healthy controls was performed by applying Infinium HumanMethylation450K BeadChips. Promising CpG sites were selected and validated in three independent larger sample cohorts via MassARRAY EpiTyper assays. CpG sites located in three genes (cg06418238 in RPTOR, cg00736299 in MGRN1 and cg27466532 in RAPSN), which showed significant hypomethylation in BC patients compared to healthy controls in the discovery cohort (p < 1.00 x 10-6) were selected and successfully validated in three independent cohorts (validation I, n =211; validation II, n=378; validation III, n=520). The observed methylation differences are likely not cell-type specific, as the differences were only seen in whole blood, but not in specific sub cell-types of leucocytes. Moreover, we observed in quartile analysis that women in the lower methylation quartiles of these three loci had higher ORs than women in the higher quartiles. The combined AUC of three loci was 0.79 (95%CI 0.73-0.85) in validation cohort I, and was 0.60 (95%CI 0.54-0.66) and 0.62 (95%CI 0.57-0.67) in validation cohort II and III, respectively. Our study suggests that hypomethylation of CpG sites in RPTOR, MGRN1 and RAPSN in blood is associated with BC and might serve as blood-based marker supplements for BC if these could be verified in prospective studies.

  20. Human eyes do not need monochromatic aberrations for dynamic accommodation.

    PubMed

    Bernal-Molina, Paula; Marín-Franch, Iván; Del Águila-Carrasco, Antonio J; Esteve-Taboada, Jose J; López-Gil, Norberto; Kruger, Philip B; Montés-Micó, Robert

    2017-09-01

    To determine if human accommodation uses the eye's own monochromatic aberrations to track dynamic accommodative stimuli. Wavefront aberrations were measured while subjects monocularly viewed a monochromatic Maltese cross moving sinusoidally around 2D of accommodative demand with 1D amplitude at 0.2 Hz. The amplitude and phase (delay) of the accommodation response were compared to the actual vergence of the stimulus to obtain gain and temporal phase, calculated from wavefront aberrations recorded over time during experimental trials. The tested conditions were as follows: Correction of all the subject's aberrations except defocus (C); Correction of all the subject's aberrations except defocus and habitual second-order astigmatism (AS); Correction of all the subject's aberrations except defocus and odd higher-order aberrations (HOAs); Correction of all the subject's aberrations except defocus and even HOAs (E); Natural aberrations of the subject's eye, i.e., the adaptive-optics system only corrected the optical system's aberrations (N); Correction of all the subject's aberrations except defocus and fourth-order spherical aberration (SA). The correction was performed at 20 Hz and each condition was repeated six times in randomised order. Average gain (±2 standard errors of the mean) varied little across conditions; between 0.55 ± 0.06 (SA), and 0.62 ± 0.06 (AS). Average phase (±2 standard errors of the mean) also varied little; between 0.41 ± 0.02 s (E), and 0.47 ± 0.02 s (O). After Bonferroni correction, no statistically significant differences in gain or phase were found in the presence of specific monochromatic aberrations or in their absence. These results show that the eye's monochromatic aberrations are not necessary for accommodation to track dynamic accommodative stimuli. © 2017 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.

  1. DNA Damage Response Genes and the Development of Cancer Metastasis

    PubMed Central

    Broustas, Constantinos G.; Lieberman, Howard B.

    2014-01-01

    DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-) factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genomewide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo. PMID:24397478

  2. Third-rank chromatic aberrations of electron lenses.

    PubMed

    Liu, Zhixiong

    2018-02-01

    In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Transcription factors as readers and effectors of DNA methylation.

    PubMed

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2016-08-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

  4. Analysis of Radiation-Induced Chromosomal Aberrations on a Cell-by-Cell Basis after Alpha-Particle Microbeam Irradiation: Experimental Data and Simulations.

    PubMed

    Testa, Antonella; Ballarini, Francesca; Giesen, Ulrich; Gil, Octávia Monteiro; Carante, Mario P; Tello, John; Langner, Frank; Rabus, Hans; Palma, Valentina; Pinto, Massimo; Patrono, Clarice

    2018-06-01

    There is a continued need for further clarification of various aspects of radiation-induced chromosomal aberration, including its correlation with radiation track structure. As part of the EMRP joint research project, Biologically Weighted Quantities in Radiotherapy (BioQuaRT), we performed experimental and theoretical analyses on chromosomal aberrations in Chinese hamster ovary cells (CHO-K1) exposed to α particles with final energies of 5.5 and 17.8 MeV (absorbed doses: ∼2.3 Gy and ∼1.9 Gy, respectively), which were generated by the microbeam at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. In line with the differences in linear energy transfer (approximately 85 keV/μm for 5.5 MeV and 36 keV/μm for 17.8 MeV α particles), the 5.5 MeV α particles were more effective than the 17.8 MeV α particles, both in terms of the percentage of aberrant cells (57% vs. 33%) and aberration frequency. The yield of total aberrations increased by a factor of ∼2, although the increase in dicentrics plus centric rings was less pronounced than in acentric fragments. The experimental data were compared with Monte Carlo simulations based on the BIophysical ANalysis of Cell death and chromosomal Aberrations model (BIANCA). This comparison allowed interpretation of the results in terms of critical DNA damage [cluster lesions (CLs)]. More specifically, the higher aberration yields observed for the 5.5 MeV α particles were explained by taking into account that, although the nucleus was traversed by fewer particles (nominally, 11 vs. 25), each particle was much more effective (by a factor of ∼3) at inducing CLs. This led to an increased yield of CLs per cell (by a factor of ∼1.4), consistent with the increased yield of total aberrations observed in the experiments.

  5. Comprehensive methylome analysis of ovarian tumors reveals hedgehog signaling pathway regulators as prognostic DNA methylation biomarkers.

    PubMed

    Huang, Rui-Lan; Gu, Fei; Kirma, Nameer B; Ruan, Jianhua; Chen, Chun-Liang; Wang, Hui-Chen; Liao, Yu-Ping; Chang, Cheng-Chang; Yu, Mu-Hsien; Pilrose, Jay M; Thompson, Ian M; Huang, Hsuan-Cheng; Huang, Tim Hui-Ming; Lai, Hung-Cheng; Nephew, Kenneth P

    2013-06-01

    Women with advanced stage ovarian cancer (OC) have a five-year survival rate of less than 25%. OC progression is associated with accumulation of epigenetic alterations and aberrant DNA methylation in gene promoters acts as an inactivating "hit" during OC initiation and progression. Abnormal DNA methylation in OC has been used to predict disease outcome and therapy response. To globally examine DNA methylation in OC, we used next-generation sequencing technology, MethylCap-sequencing, to screen 75 malignant and 26 normal or benign ovarian tissues. Differential DNA methylation regions (DMRs) were identified, and the Kaplan-Meier method and Cox proportional hazard model were used to correlate methylation with clinical endpoints. Functional role of specific genes identified by MethylCap-sequencing was examined in in vitro assays. We identified 577 DMRs that distinguished (p < 0.001) malignant from non-malignant ovarian tissues; of these, 63 DMRs correlated (p < 0.001) with poor progression free survival (PFS). Concordant hypermethylation and corresponding gene silencing of sonic hedgehog pathway members ZIC1 and ZIC4 in OC tumors was confirmed in a panel of OC cell lines, and ZIC1 and ZIC4 repression correlated with increased proliferation, migration and invasion. ZIC1 promoter hypermethylation correlated (p < 0.01) with poor PFS. In summary, we identified functional DNA methylation biomarkers significantly associated with clinical outcome in OC and suggest our comprehensive methylome analysis has significant translational potential for guiding the design of future clinical investigations targeting the OC epigenome. Methylation of ZIC1, a putative tumor suppressor, may be a novel determinant of OC outcome.

  6. Meta-analysis of aberrant lymphatic drainage in recurrent breast cancer.

    PubMed

    Ahmed, M; Baker, R; Rubio, I T

    2016-11-01

    Sentinel node biopsy (SNB) in recurrent breast cancer offers targeted axillary staging compared with axillary lymph node dissection (ALND) or no treatment. The evidence for lymphatic mapping in recurrent breast cancer is reviewed, focusing on aberrant drainage and its implications for patient management. A meta-analysis of studies evaluating lymphatic mapping in recurrent breast cancer was performed. Outcomes included sentinel node identification, aberrant lymphatic pathways and metastatic node rates in aberrant drainage and ipsilateral axilla. Pooled odds ratios (ORs) and 95 per cent confidence intervals (c.i.) were estimated using fixed-effect analyses, or random-effects analyses in the event of statistically significant heterogeneity. Seven studies reported data on lymphatic mapping in 1053 patients with recurrent breast cancer. The intraoperative sentinel node identification rate was 59·6 (95 per cent c.i. 56·7 to 62·6) per cent, and significantly greater when the original axillary surgery was SNB compared with ALND (OR 2·97, 95 per cent c.i. 1·66 to 5·32). The rate of aberrant lymphatic drainage identification was 25·7 (23·0 to 28·3) per cent, and significantly greater when the original axillary surgery was ALND (OR 0·27, 0·19 to 0·38). The metastatic sentinel node rate was 10·4 (8·6 to 12·3) per cent, and a significantly greater metastatic nodal burden was identified in the ipsilateral axilla (OR 6·31, 1·03 to 38·79). Lymphatic mapping is feasible in recurrent breast cancer. It avoids ALND in over 50 per cent of patients who have undergone SNB, and allows the 4 per cent of patients with metastatically involved aberrant nodes to receive targeted surgical and adjuvant therapies. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  7. Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.

    2007-01-01

    Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types

  8. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    PubMed Central

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  9. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    PubMed Central

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schröder, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinhäusel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma. Results: We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients' age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients. Conclusions: The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer. PMID:26335606

  10. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  11. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    PubMed

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.

  12. Methylation of DNA and chromatin as a mechanism of oncogenesis and therapeutic target in neuroblastoma.

    PubMed

    Ram Kumar, Ram Mohan; Schor, Nina Felice

    2018-04-24

    Neuroblastoma (NB), a developmental cancer, is often fatal, emphasizing the need to understand its pathogenesis and identify new therapeutic targets. The heterogeneous pathological and clinical phenotype of NB underscores the cryptic biological and genetic features of this tumor that result in outcomes ranging from rapid progression to spontaneous regression. Despite recent genome-wide mutation analyses, most primary NBs do not harbor driver mutations, implicating epigenetically-mediated gene regulatory mechanisms in the initiation and maintenance of NB. Aberrant epigenomic mechanisms, as demonstrated by global changes in DNA methylation signatures, acetylation, re-distribution of histone marks, and change in the chromatin architecture, are hypothesized to play a role in NB oncogenesis. This paper reviews the evidence for, putative mechanisms underlying, and prospects for therapeutic targeting of NB oncogenesis related to DNA methylation.

  13. Distortion of ultrashort pulses caused by aberrations

    NASA Astrophysics Data System (ADS)

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  14. Aberration-free intraocular lenses - What does this really mean?

    PubMed

    Langenbucher, Achim; Schröder, Simon; Cayless, Alan; Eppig, Timo

    2017-09-01

    So-called aberration-free intraocular lenses (IOLs) are well established in modern cataract surgery. Usually, they are designed to perfectly refract a collimated light beam onto the focal point. We show how much aberration can be expected with such an IOL in a convergent light beam such as that found anterior to the human cornea. Additionally, the aberration in a collimated beam is estimated for an IOL that has no aberrations in the convergent beam. The convergent beam is modelled as the pencil of rays corresponding to the spherical wavefront resulting from a typical corneal power of 43m -1 . The IOLs are modelled as infinitely thin phase plates with 20m -1 optical power placed 5mm behind the cornea. Their aberrations are reported in terms of optical path length difference and longitudinal spherical aberration (LSA) of the marginal rays, as well as nominal spherical aberration (SA) calculated based on a Zernike representation of the wavefront-error at the corneal plane within a 6mm aperture. The IOL designed to have no aberrations in a collimated light beam has an optical path length difference of -1.8μm, and LSA of 0.15m -1 in the convergent beam of a typical eye. The corresponding nominal SA is 0.065μm. The IOL designed to have no aberrations in a convergent light beam has an optical path length difference of 1.8μm, and LSA of -0.15m -1 in the collimated beam. An IOL designed to have no aberrations in a collimated light beam will increase the SA of a patient's eye after implantation. Copyright © 2017. Published by Elsevier GmbH.

  15. Genomic analyses identify molecular subtypes of pancreatic cancer.

    PubMed

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  16. Effect of aberrations in human eye on contrast sensitivity function

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.

  17. DNA repair mechanisms in cancer development and therapy

    PubMed Central

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy. PMID:25954303

  18. DNA repair mechanisms in cancer development and therapy.

    PubMed

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.

  19. Linear phase conjugation for atmospheric aberration compensation

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Stappaerts, Eddy A.

    1998-01-01

    Atmospheric induced aberrations can seriously degrade laser performance, greatly affecting the beam that finally reaches the target. Lasers propagated over any distance in the atmosphere suffer from a significant decrease in fluence at the target due to these aberrations. This is especially so for propagation over long distances. It is due primarily to fluctuations in the atmosphere over the propagation path, and from platform motion relative to the intended aimpoint. Also, delivery of high fluence to the target typically requires low beam divergence, thus, atmospheric turbulence, platform motion, or both results in a lack of fine aimpoint control to keep the beam directed at the target. To improve both the beam quality and amount of laser energy delivered to the target, Northrop Grumman has developed the Active Tracking System (ATS); a novel linear phase conjugation aberration compensation technique. Utilizing a silicon spatial light modulator (SLM) as a dynamic wavefront reversing element, ATS undoes aberrations induced by the atmosphere, platform motion or both. ATS continually tracks the target as well as compensates for atmospheric and platform motion induced aberrations. This results in a high fidelity, near-diffraction limited beam delivered to the target.

  20. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    PubMed

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  1. Wave aberrations in rhesus monkeys with vision-induced ametropias

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  2. Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes

    PubMed Central

    Wu, Yu; Steinbergs, Nora; Murray-Stewart, Tracy; Marton, Laurence J.; Casero, Robert A.

    2011-01-01

    Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys4 of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N1-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer. PMID:22132744

  3. Aberrations in stimulated emission depletion (STED) microscopy

    NASA Astrophysics Data System (ADS)

    Antonello, Jacopo; Burke, Daniel; Booth, Martin J.

    2017-12-01

    Like all methods of super-resolution microscopy, stimulated emission depletion (STED) microscopy can suffer from the effects of aberrations. The most important aspect of a STED microscope is that the depletion focus maintains a minimum, ideally zero, intensity point that is surrounded by a region of higher intensity. It follows that aberrations that cause a non-zero value of this minimum intensity are the most detrimental, as they inhibit fluorescence emission even at the centre of the depletion focus. We present analysis that elucidates the nature of these effects in terms of the different polarisation components at the focus for two-dimensional and three-dimensional STED resolution enhancement. It is found that only certain low-order aberration modes can affect the minimum intensity at the Gaussian focus. This has important consequences for the design of adaptive optics aberration correction systems.

  4. 3D resolved mapping of optical aberrations in thick tissues

    PubMed Central

    Zeng, Jun; Mahou, Pierre; Schanne-Klein, Marie-Claire; Beaurepaire, Emmanuel; Débarre, Delphine

    2012-01-01

    We demonstrate a simple method for mapping optical aberrations with 3D resolution within thick samples. The method relies on the local measurement of the variation in image quality with externally applied aberrations. We discuss the accuracy of the method as a function of the signal strength and of the aberration amplitude and we derive the achievable resolution for the resulting measurements. We then report on measured 3D aberration maps in human skin biopsies and mouse brain slices. From these data, we analyse the consequences of tissue structure and refractive index distribution on aberrations and imaging depth in normal and cleared tissue samples. The aberration maps allow the estimation of the typical aplanetism region size over which aberrations can be uniformly corrected. This method and data pave the way towards efficient correction strategies for tissue imaging applications. PMID:22876353

  5. Primary aberrations in focused radially polarized vortex beams

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  6. The Art of Optical Aberrations

    NASA Astrophysics Data System (ADS)

    Wylde, Clarissa Eileen Kenney

    Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.

  7. Transcription factors as readers and effectors of DNA methylation

    PubMed Central

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2017-01-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease. PMID:27479905

  8. An Internet-Accessible DNA Sequence Database for Identifying Fusaria from Human and Animal Infections

    USDA-ARS?s Scientific Manuscript database

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated wi...

  9. Population dynamics of aberrant chromosome 1 in mice.

    PubMed

    Sabantsev, I; Spitsin, O; Agulnik, S; Ruvinsky, A

    1993-05-01

    Natural populations of two semispecies of house mouse, Mus musculus domesticus and M.m. musculus, were found to be polymorphic for an aberrant chromosome 1 bearing a large inserted block of homogeneously staining heterochromatin. Strong meiotic drive for the aberrant chromosome from M.m. musculus was previously observed in heterozygous female mice. There are at least three meiotic drive levels determined by different allelic variants of distorter. Homozygotes had low viability and females showed low fertility. Both homo- and heterozygous males had normal fertility and their segregation patterns did not deviate from normal. Computer simulations were performed of the dynamics of aberrant chromosome 1 in demes and populations. The data demonstrate that a spontaneous mutation (inversion) of an aberrant chromosome 1, once arisen, has a high probability of spreading in a population at high coefficients of meiotic drive and migration. In the long-term, the population attains a stationary state which is determined by the drive level and migration intensity. The state of stable genotypic equilibrium is independent of deme and population size, as well as of the initial concentration of the aberrant chromosome. As populations initially polymorphic for the distorters approach the stationary state, the stronger distorter is eliminated. The frequencies of the aberrant chromosome determined by computer analysis agree well with those obtained for the studied Asian M.m. musculus populations. The evolutionary pathways for the origin and fixation of the aberrant chromosome in natural populations are considered.

  10. Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas.

    PubMed

    Henrich, Kai-Oliver; Bender, Sebastian; Saadati, Maral; Dreidax, Daniel; Gartlgruber, Moritz; Shao, Chunxuan; Herrmann, Carl; Wiesenfarth, Manuel; Parzonka, Martha; Wehrmann, Lea; Fischer, Matthias; Duffy, David J; Bell, Emma; Torkov, Alica; Schmezer, Peter; Plass, Christoph; Höfer, Thomas; Benner, Axel; Pfister, Stefan M; Westermann, Frank

    2016-09-15

    The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections.

    PubMed

    O'Donnell, Kerry; Sutton, Deanna A; Rinaldi, Michael G; Sarver, Brice A J; Balajee, S Arunmozhi; Schroers, Hans-Josef; Summerbell, Richard C; Robert, Vincent A R G; Crous, Pedro W; Zhang, Ning; Aoki, Takayuki; Jung, Kyongyong; Park, Jongsun; Lee, Yong-Hwan; Kang, Seogchan; Park, Bongsoo; Geiser, David M

    2010-10-01

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated with human or animal mycoses encountered in clinical microbiology laboratories. The database comprises partial sequences from three nuclear genes: translation elongation factor 1α (EF-1α), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2). These three gene fragments can be amplified by PCR and sequenced using primers that are conserved across the phylogenetic breadth of Fusarium. Phylogenetic analyses of the combined data set reveal that, with the exception of two monotypic lineages, all clinically relevant fusaria are nested in one of eight variously sized and strongly supported species complexes. The monophyletic lineages have been named informally to facilitate communication of an isolate's clade membership and genetic diversity. To identify isolates to the species included within the database, partial DNA sequence data from one or more of the three genes can be used as a BLAST query against the database which is Web accessible at FUSARIUM-ID (http://isolate.fusariumdb.org) and the Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Center (http://www.cbs.knaw.nl/fusarium). Alternatively, isolates can be identified via phylogenetic analysis by adding sequences of unknowns to the DNA sequence alignment, which can be downloaded from the two aforementioned websites. The utility of this database should increase significantly as members of the clinical microbiology community deposit in internationally accessible culture collections (e.g., CBS-KNAW or the Fusarium Research Center) cultures of novel mycosis-associated fusaria, along with associated, corrected sequence chromatograms and data, so that the

  12. Phenotypic characterization of an Arabidopsis T-DNA insertion line SALK_063500.

    PubMed

    Sng, Natasha J; Paul, Anna-Lisa; Ferl, Robert J

    2018-06-01

    In this article we report the identification of a homozygous lethal T-DNA (transfer DNA) line within the coding region of the At1G05290 gene in the genome of Arabidopsis thaliana (Arabidopsis) line, SALK_063500. The T-DNA insertion is found within exon one of the AT1G05290 gene, however a homozygous T-DNA allele is unattainable. In the heterozygous T-DNA allele the expression levels of AT1G05290 were compared to wild type Arabidopsis (Col-0, Columbia). Further analyses revealed an aberrant silique phenotype found in the heterozygous SALK_063500 plants that is attributed to the reduced rate of pollen tube germination. These data are original and have not been published elsewhere.

  13. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  14. HolT Hunter: Software for Identifying and Characterizing Low-Strain DNA Holliday Triangles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman W. B.

    2012-06-05

    Synthetic DNA nanostructures are most commonly held together via Holliday junctions. These junctions allow for a wide variety of different angles between the double helices they connect. Nevertheless, only constructs with a very limited selection of angles have been built, to date, because of the computational complexity of identifying structures that fit together with low strain at odd angles. I have developed an algorithm that finds over 95% of the possible solutions by breaking the problem down into two portions. First, there is a problem of how smooth rods can form triangles by lying across one another. This problem ismore » easily handled by numerical computation. Second, there is the question of how distorted DNA double helices would need to be to fit onto the rod structure. This strain is calculated directly. The algorithm has been implemented in a Mathematica 8 notebook called Holliday Triangle Hunter. A large database of solutions has been identified. Additional interface software is available to facilitate drawing and viewing models.« less

  15. The Repeat Expansion Diseases: the dark side of DNA repair?

    PubMed Central

    Zhao, Xiao-Nan; Usdin, Karen

    2015-01-01

    DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. PMID:26002199

  16. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia

    PubMed Central

    Geng, Huimin; Brennan, Sarah; Milne, Thomas A.; Chen, Wei-Yi; Li, Yushan; Hurtz, Christian; Kweon, Soo-Mi; Zickl, Lynette; Shojaee, Seyedmehdi; Neuberg, Donna; Huang, Chuanxin; Biswas, Debabrata; Xin, Yuan; Racevskis, Janis; Ketterling, Rhett P.; Luger, Selina M.; Lazarus, Hillard; Tallman, Martin S.; Rowe, Jacob M.; Litzow, Mark R.; Guzman, Monica L.; Allis, C. David; Roeder, Robert G.; Müschen, Markus; Paietta, Elisabeth; Elemento, Olivier; Melnick, Ari M.

    2012-01-01

    Genetic lesions such as BCR-ABL1, E2A-PBX1 and MLL rearrangements (MLLr) are associated with unfavorable outcomes in adult B-acute lymphoblastic leukemia (B-ALL). Leukemia oncoproteins may directly or indirectly disrupt cytosine methylation patterning to mediate the malignant phenotype. We postulated that DNA methylation signatures in these aggressive B-ALLs would point towards disease mechanisms and useful biomarkers and therapeutic targets. We therefore performed DNA methylation and gene expression profiling on a cohort of 215 adult B-ALL patients enrolled in a single phase III clinical trial (ECOG E2993) and normal control B-cells. In BCR-ABL1-positive B-ALL, aberrant cytosine methylation patterning centered around a cytokine network defined by hypomethylation and overexpression of IL2RA(CD25). The E2993 trial clinical data showed that CD25 expression was strongly associated with a poor outcome in ALL patients regardless of BCR-ABL1 status, suggesting CD25 as a novel prognostic biomarker for risk stratification in B-ALL. In E2A-PBX1-positive B-ALL, aberrant DNA methylation patterning was strongly associated with direct fusion protein binding as shown by the E2A-PBX1 ChIP sequencing (ChIP-seq), suggesting that E2A-PBX1 fusion protein directly remodels the epigenome to impose an aggressive B-ALL phenotype. MLLr B-ALL featured prominent cytosine hypomethylation, which was linked with MLL fusion protein binding, H3K79 dimethylation and transcriptional upregulation, affecting a set of known and newly identified MLL fusion direct targets with oncogenic activity such as FLT3 and BCL6. Notably, BCL6 blockade or loss of function suppressed proliferation and survival of MLLr leukemia cells, suggesting BCL6 targeted therapy as a new therapeutic strategy for MLLr B-ALL. PMID:23107779

  17. DNA analysis of ancient dogs of the Americas: identifying possible founding haplotypes and reconstructing population histories.

    PubMed

    Witt, Kelsey E; Judd, Kathleen; Kitchen, Andrew; Grier, Colin; Kohler, Timothy A; Ortman, Scott G; Kemp, Brian M; Malhi, Ripan S

    2015-02-01

    As dogs have traveled with humans to every continent, they can potentially serve as an excellent proxy when studying human migration history. Past genetic studies into the origins of Native American dogs have used portions of the hypervariable region (HVR) of mitochondrial DNA (mtDNA) to indicate that prior to European contact the dogs of Native Americans originated in Eurasia. In this study, we summarize past DNA studies of both humans and dogs to discuss their population histories in the Americas. We then sequenced a portion of the mtDNA HVR of 42 pre-Columbian dogs from three sites located in Illinois, coastal British Columbia, and Colorado, and identify four novel dog mtDNA haplotypes. Next, we analyzed a dataset comprised of all available ancient dog sequences from the Americas to infer the pre-Columbian population history of dogs in the Americas. Interestingly, we found low levels of genetic diversity for some populations consistent with the possibility of deliberate breeding practices. Furthermore, we identified multiple putative founding haplotypes in addition to dog haplotypes that closely resemble those of wolves, suggesting admixture with North American wolves or perhaps a second domestication of canids in the Americas. Notably, initial effective population size estimates suggest at least 1000 female dogs likely existed in the Americas at the time of the first known canid burial, and that population size increased gradually over time before stabilizing roughly 1200 years before present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  19. The effect of track structure on the induction of chromosomal aberrations in murine cells.

    PubMed

    Durante, M; Cella, L; Furusawa, Y; George, K; Gialanella, G; Grossi, G; Pugliese, M; Saito, M; Yang, T C

    1998-03-01

    To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  20. The effect of track structure on the induction of chromosomal aberrations in murine cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  1. Aberrant regeneration of the third cranial nerve.

    PubMed

    Shrestha, U D; Adhikari, S

    2012-01-01

    Aberrant regeneration of the third cranial nerve is most commonly due to its damage by trauma. A ten-month old child presented with the history of a fall from a four-storey building. She developed traumatic third nerve palsy and eventually the clinical features of aberrant regeneration of the third cranial nerve. The adduction of the eye improved over time. She was advised for patching for the strabismic amblyopia as well. Traumatic third nerve palsy may result in aberrant regeneration of the third cranial nerve. In younger patients, motility of the eye in different gazes may improve over time. © NEPjOPH.

  2. Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL).

    PubMed

    Koestler, Devin C; Jones, Meaghan J; Usset, Joseph; Christensen, Brock C; Butler, Rondi A; Kobor, Michael S; Wiencke, John K; Kelsey, Karl T

    2016-03-08

    Confounding due to cellular heterogeneity represents one of the foremost challenges currently facing Epigenome-Wide Association Studies (EWAS). Statistical methods leveraging the tissue-specificity of DNA methylation for deconvoluting the cellular mixture of heterogenous biospecimens offer a promising solution, however the performance of such methods depends entirely on the library of methylation markers being used for deconvolution. Here, we introduce a novel algorithm for Identifying Optimal Libraries (IDOL) that dynamically scans a candidate set of cell-specific methylation markers to find libraries that optimize the accuracy of cell fraction estimates obtained from cell mixture deconvolution. Application of IDOL to training set consisting of samples with both whole-blood DNA methylation data (Illumina HumanMethylation450 BeadArray (HM450)) and flow cytometry measurements of cell composition revealed an optimized library comprised of 300 CpG sites. When compared existing libraries, the library identified by IDOL demonstrated significantly better overall discrimination of the entire immune cell landscape (p = 0.038), and resulted in improved discrimination of 14 out of the 15 pairs of leukocyte subtypes. Estimates of cell composition across the samples in the training set using the IDOL library were highly correlated with their respective flow cytometry measurements, with all cell-specific R (2)>0.99 and root mean square errors (RMSEs) ranging from [0.97 % to 1.33 %] across leukocyte subtypes. Independent validation of the optimized IDOL library using two additional HM450 data sets showed similarly strong prediction performance, with all cell-specific R (2)>0.90 and R M S E<4.00 %. In simulation studies, adjustments for cell composition using the IDOL library resulted in uniformly lower false positive rates compared to competing libraries, while also demonstrating an improved capacity to explain epigenome-wide variation in DNA methylation within two large

  3. Age-Related DNA Methylation Changes and Neoplastic Transformation of the Human Prostate

    DTIC Science & Technology

    2009-07-01

    transcriptional silencing by aberrant CpG m ethylation of C pG-rich promoter regions. 5, 6 Aberrant promoter methylation of GSTP1 , e ncoding the π-class...during prostate cancer developm ent.7 Since the recogni tion that the GSTP1 Cp G was frequently hypermethylated in prostate cancer, more than 40 genes...8 genes; SPARC, RARb2, AR, TIMP3, GSTP1 , NKX2 .5, RASSF1 A and CYP27B1 in DNA sa mples fro m African American (AA) and Caucasian (C au) m en as a

  4. Hydronephrosis by an Aberrant Renal Artery: A Case Report

    PubMed Central

    Park, Byoung Seok; Jeong, Taek Kyun; Ma, Seong Kwon; Kim, Soo Wan; Kim, Nam Ho; Choi, Ki Chul; Jeong, Yong Yeon

    2003-01-01

    Ureteropelvic junction obstruction is usually intrinsic and is most common in children. Aberrant renal arteries are present in about 30% of individuals. Aberrant renal arteries to the inferior pole cross anteriorly to the ureter and may cause hydronephrosis. To the best of our knowledge, although there are some papers about aberrant renal arteries producing ureteropelvic junction obstruction, there is no report of a case which is diagnosed by the new modalities, such as computed tomography angiogram (CTA) or magnetic resonance angiogram (MRA). We describe a 36-year-old woman with right hydronephrosis. Kidney ultrasonogram and excretory urogram revealed right hydronephrosis. CTA and MRA clearly displayed an aberrant renal artery and hydronephrosis. The patient underwent surgical exploration. For the evaluation of hydronephrosis by an aberrant renal artery, use of CTA and MRA is advocated. PMID:12760271

  5. Ocular higher-order aberrations in a school children population.

    PubMed

    Papamastorakis, George; Panagopoulou, Sophia; Tsilimbaris, Militadis K; Pallikaris, Ioannis G; Plainis, Sotiris

    2015-01-01

    The primary objective of the study was to explore the statistics of ocular higher-order aberrations in a population of primary and secondary school children. A sample of 557 children aged 10-15 years were selected from two primary and two secondary schools in Heraklion, Greece. Children were classified by age in three subgroups: group I (10.7±0.5 years), group II (12.4±0.5 years) and group III (14.5±0.5 years). Ocular aberrations were measured using a wavefront aberrometer (COAS, AMO Wavefront Sciences, USA) at mesopic light levels (illuminance at cornea was 4lux). Wavefront analysis was achieved for a 5mm pupil. Statistical analysis was carried out for the right eye only. The average coefficient of most high-order aberrations did not differ from zero with the exception of vertical (0.076μm) and horizontal (0.018μm) coma, oblique trefoil (-0.055μm) and spherical aberration (0.018μm). The most prominent change between the three groups was observed for the spherical aberration, which increased from 0.007μm (SE 0.005) in group I to 0.011μm (SE 0.004) in group II and 0.030μm (SE 0.004) in group III. Significant differences were also found for the oblique astigmatism and the third-order coma aberrations. Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  6. Ocular higher-order aberrations in a school children population

    PubMed Central

    Papamastorakis, George; Panagopoulou, Sophia; Tsilimbaris, Militadis K.; Pallikaris, Ioannis G.; Plainis, Sotiris

    2014-01-01

    Purpose The primary objective of the study was to explore the statistics of ocular higher-order aberrations in a population of primary and secondary school children. Methods A sample of 557 children aged 10–15 years were selected from two primary and two secondary schools in Heraklion, Greece. Children were classified by age in three subgroups: group I (10.7 ± 0.5 years), group II (12.4 ± 0.5 years) and group III (14.5 ± 0.5 years). Ocular aberrations were measured using a wavefront aberrometer (COAS, AMO Wavefront Sciences, USA) at mesopic light levels (illuminance at cornea was 4 lux). Wavefront analysis was achieved for a 5 mm pupil. Statistical analysis was carried out for the right eye only. Results The average coefficient of most high-order aberrations did not differ from zero with the exception of vertical (0.076 μm) and horizontal (0.018 μm) coma, oblique trefoil (−0.055 μm) and spherical aberration (0.018 μm). The most prominent change between the three groups was observed for the spherical aberration, which increased from 0.007 μm (SE 0.005) in group I to 0.011 μm (SE 0.004) in group II and 0.030 μm (SE 0.004) in group III. Significant differences were also found for the oblique astigmatism and the third-order coma aberrations. Conclusions Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development. PMID:25288226

  7. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wenbin; Cui Zhihong; Ao Lin

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. Themore » prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.« less

  8. Multiparameter flow cytometry reveals myelodysplasia-related aberrant antigen expression in myelodysplastic/myeloproliferative neoplasms.

    PubMed

    Kern, Wolfgang; Bacher, Ulrike; Schnittger, Susanne; Alpermann, Tamara; Haferlach, Claudia; Haferlach, Torsten

    2013-05-01

    Within the myelodysplastic/myeloproliferative neoplasm (MDS/MPN) category of the WHO (2008), only chronic myelomonocytic leukemia was so far evaluated by multiparameter flow cytometry (MFC). To investigate the potential of MFC for MDS/MPNs, unclassifiable (MDS/MPNu), and refractory anemia associated with ring sideroblasts and marked thrombocytosis (RARS-T), we studied 91 patients with these entities (60 males/31 females; 35.3-87.4 years) for MDS-related aberrant immunophenotypes (≥ 2 different cell lineages with ≥ 3 aberrantly expressed antigens). Data were correlated with cytomorphology and cytogenetics. MFC identified MDS-related immunophenotypes in 54/91 (59.3%) of patients. Patients with or without MDS-related immunophenotype did not differ significantly by demographic characteristics, blood values, or median overall survival. MDS-related immunophenotype cases showed a higher number of aberrantly expressed antigens (mean ± SD, 4.9 ± 2.4 vs. 2.0 ± 1.4; P < 0.001). Aberrant karyotypes showed a similar frequency in patients with and without MDS-related immunophenotype (11/54; 20.4% vs. 7/37; 18.9%; P = n.s.). MDS-related immunophenotype are present in more than half of patients with MDS/MPNu and RARS-T. MFC therefore may be helpful to separate cases into more "MDS-like" or "MPN-like" subgroups. Copyright © 2012 International Clinical Cytometry Society.

  9. The histone variant H2A.Bbd is enriched at sites of DNA synthesis

    PubMed Central

    Sansoni, Viola; Casas-Delucchi, Corella S.; Rajan, Malini; Schmidt, Andreas; Bönisch, Clemens; Thomae, Andreas W.; Staege, Martin S.; Hake, Sandra B.; Cardoso, M. Cristina; Imhof, Axel

    2014-01-01

    Histone variants play an important role in shaping the mammalian epigenome and their aberrant expression is frequently observed in several types of cancer. However, the mechanisms that mediate their function and the composition of the variant-containing chromatin are still largely unknown. A proteomic interrogation of chromatin containing the different H2A variants macroH2A.1.2, H2A.Bbd and H2A revealed a strikingly different protein composition. Gene ontology analysis reveals a strong enrichment of splicing factors as well as components of the mammalian replisome in H2A.Bbd-containing chromatin. We find H2A.Bbd localizing transiently to sites of DNA synthesis during S-phase and during DNA repair. Cells that express H2A.Bbd have a shortened S-phase and are more susceptible to DNA damage, two phenotypes that are also observed in human Hodgkin's lymphoma cells that aberrantly express this variant. Based on our experiments we conclude that H2A.Bbd is targeted to newly synthesized DNA during replication and DNA repair. The transient incorporation of H2A.Bbd may be due to the intrinsic instability of nucleosomes carrying this variant or a faster chromatin loading. This potentially leads to a disturbance of the existing chromatin structure, which may have effects on cell cycle regulation and DNA damage sensitivity. PMID:24753410

  10. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors.

    PubMed

    Amatruda, James F; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh; Frazier, A Lindsay; Poynter, Jenny N

    2013-06-27

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy.

  11. Generalized Alvarez lens for correction of laser aberrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFortune, K N

    2004-12-02

    The Alvarez lens (US Patent No. 3,305,294 [1]) is a compact aberration corrector. The original design emphasized in the patent consists of a pair of adjacent optical elements that provide a variable focus. A lens system with a variable effective focal length is nothing new. Such systems are widely used in cameras, for example. It is the compactness and simplicity of operation that is the key advantage of the Alvarez lens. All of the complexity is folded into the design and fabrication of the optical elements. As mentioned in the Alvarez patent [1] and elaborated upon in Palusinski et al.more » [2], if one is willing to fold even more complexity into the optical elements, it is possible to correct higher-order aberrations as well. There is no theoretical limit to the number or degree of wavefront distortions that can be corrected. The only limitation is that there must be a fixed relative magnitude of the aberrations. Independent correction of each component of the higher-order aberrations can not be performed without additional elements and degrees of freedom [3]. Under some circumstances, coupling may be observed between different aberrations. This can be mitigated with the appropriate choice of design parameters. New methods are available today that increase the practicality of making higher-order aberration correctors [4,5,6].« less

  12. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    PubMed

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  13. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC

    PubMed Central

    Ibragimova, Ilsiya; Maradeo, Marie E.; Dulaimi, Essel; Cairns, Paul

    2013-01-01

    Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC. PMID:23644518

  14. The correction of aberrations computed in the aperture plane of multifrequency microwave radiometer antennas

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1984-01-01

    An analytical/numerical approach to identifying and correcting the aberrations introduced by a general displacement of the feed from the focal point of a single offset paraboloid antenna used in deployable radiometer systems is developed. A 15 meter reflector with 18 meter focal length is assumed for the analysis, which considers far field radiation pattern quality, focal region fields, and aberrations appearing in the aperture plane. The latter are obtained by ray tracing in the transmit mode and are expressed in terms of optical notation. Attention is given to the physical restraints imposed on corrective elements by real microwave systems and to the intermediate near field aspects of the problem in three dimensions. The subject of wave fronts and caustics in the receive mode is introduced for comparative purposes. Several specific examples are given for aberration reduction at eight beamwidths of scan at a frequency of 1.414 GHz.

  15. Repressive but not activating epigenetic modifications are aberrant on the inactive X chromosome in live cloned cattle.

    PubMed

    Geng-Sheng, Cao; Yu, Gao; Kun, Wang; Fang-Rong, Ding; Ning, Li

    2009-08-01

    X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements. © 2009 The Authors. Journal compilation © 2009 Japanese Society of Developmental Biologists.

  16. Satellite RNA Increases DNA Damage and Accelerates Tumor Formation in Mouse Models of Pancreatic Cancer.

    PubMed

    Kishikawa, Takahiro; Otsuka, Motoyuki; Suzuki, Tatsunori; Seimiya, Takahiro; Sekiba, Kazuma; Ishibashi, Rei; Tanaka, Eri; Ohno, Motoko; Yamagami, Mari; Koike, Kazuhiko

    2018-05-10

    Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo , we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase. Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.

  17. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada.

    PubMed

    Braukmann, Thomas W A; Kuzmina, Maria L; Sills, Jesse; Zakharov, Evgeny V; Hebert, Paul D N

    2017-01-01

    Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is

  18. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada

    PubMed Central

    Kuzmina, Maria L.; Sills, Jesse; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is

  19. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data

    USGS Publications Warehouse

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  20. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.

    PubMed

    Miller, Mark P; Knaus, Brian J; Mullins, Thomas D; Haig, Susan M

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  1. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Caballero, Otavia L.; Lo, Christine; Lister, Ryan; Pelizzola, Mattia; Valsesia, Armand; Ye, Zhen; Kuan, Samantha; Edsall, Lee E.; Camargo, Anamaria Aranha; Stevenson, Brian J.; Ecker, Joseph R.; Bafna, Vineet; Strausberg, Robert L.; Simpson, Andrew J.; Ren, Bing

    2012-01-01

    While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells. PMID:22156296

  2. Failure to Identify Borrelia burgdorferi in Southern California Ticks by DNA Amplification

    DTIC Science & Technology

    1993-01-01

    reverse if necessary and identify by block, number) F;Et.D . &P SUB-GROUP ric..ettsial diseases, Lyme borreliosis , polymerase chain re on, I~~ I...DNA sequences of B. bur~dorfrri (as a positiv e control. B. burg- would be useful in assessino the risk of Lyme borreliosis in ex- dorferi alone was...vector. %%ell-documnented cases of Lyme borreliosis remain to the revised Centers for Disease Control and Prevention case rare in southern California

  3. Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina.

    PubMed

    Gonzalo, Susana; Kreienkamp, Ray

    2016-01-01

    The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases.

  4. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    NASA Astrophysics Data System (ADS)

    Zhao, Hao-Xin; Xu, Bing; Xue, Li-Xia; Dai, Yun; Liu, Qian; Rao, Xue-Jun

    2008-04-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory.

  5. Aberrant ATRX protein expression is associated with poor overall survival in NF1-MPNST

    PubMed Central

    Lu, Hsiang-Chih; Eulo, Vanessa; Apicelli, Anthony J.; Pekmezci, Melike; Tao, Yu; Luo, Jingqin; Hirbe, Angela C.; Dahiya, Sonika

    2018-01-01

    Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive soft tissue sarcomas that can occur sporadically or in the setting of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. These tumors carry a dismal overall survival. Previous work in our lab had identified ATRX chromatin remodeler (ATRX), previously termed, Alpha Thalassemia/Mental Retardation Syndrome X Linked as a gene mutated in a subset of MPNSTs. Given the great need for novel biomarkers and therapeutic targets for MPNSTs, we sought to determine the expression of ATRX in a larger subset of sporadic and NF1 associated MPNSTs (NF1-MPNSTs). We performed immunohistochemistry (IHC) on 74 MPNSTs (43 NF1-associated and 31 sporadic), 21 plexiform neurofibromas, and 9 atypical neurofibromas. Using this approach, we have demonstrated that 58% (43/74) of MPNSTs have aberrant ATRX expression (<80% nuclear expression) compared to only 7% (2/30) of benign (plexiform and atypical) neurofibromas. Second, we demonstrated that 65% (28/43) of NF1-MPNSTs displayed aberrant ATRX expression as did 48% (15/31) of sporadic MPNSTs. Finally, we show that aberrant ATRX expression was associated with a significantly decreased overall survival for patients with NF1-MPNST (median OS of 17.9 months for aberrant expression and median OS not met (>120 months) for intact expression, p = 0.0276). In summary, we demonstrate that ATRX is aberrantly expressed in the majority of NF1-MPNSTs, but not plexiform or atypical neurofibromas. Additionally, aberrant ATRX expression is associated with decreased overall survival in NF1-MPNST, but not sporadic MPNST and may serve as a prognostic marker for patients with NF1-MPNST. PMID:29796169

  6. Detection of somatic mutations in the mitochondrial DNA control region D-loop in brain tumors: The first report in Malaysian patients.

    PubMed

    Mohamed Yusoff, Abdul Aziz; Mohd Nasir, Khairol Naaim; Haris, Khalilah; Mohd Khair, Siti Zulaikha Nashwa; Abdul Ghani, Abdul Rahman Izaini; Idris, Zamzuri; Abdullah, Jafri Malin

    2017-11-01

    Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.

  7. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.

    PubMed

    Mahajan, Virendra N

    2010-12-20

    The classical aberrations of an anamorphic optical imaging system, representing the terms of a power-series expansion of its aberration function, are separable in the Cartesian coordinates of a point on its pupil. We discuss the balancing of a classical aberration of a certain order with one or more such aberrations of lower order to minimize its variance across a rectangular pupil of such a system. We show that the balanced aberrations are the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point. The compound Legendre polynomials are orthogonal across a rectangular pupil and, like the classical aberrations, are inherently separable in the Cartesian coordinates of the pupil point. They are different from the balanced aberrations and the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil.

  8. DNA and histone methylation in gastric carcinogenesis

    PubMed Central

    Calcagno, Danielle Queiroz; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Burbano, Rommel Rodriguez; Smith, Marília de Arruda Cardoso

    2013-01-01

    Epigenetic alterations contribute significantly to the development and progression of gastric cancer, one of the leading causes of cancer death worldwide. Epigenetics refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches that target DNA methylation and histone modifications have emerged. A greater understanding of epigenetics and the therapeutic potential of manipulating these processes is necessary for gastric cancer treatment. Here, we review recent research on the effects of aberrant DNA and histone methylation on the onset and progression of gastric tumors and the development of compounds that target enzymes that regulate the epigenome. PMID:23482412

  9. Targeting DNA Methyltranferases in Urological Tumors

    PubMed Central

    Marques-Magalhães, Ângela; Graça, Inês; Henrique, Rui; Jerónimo, Carmen

    2018-01-01

    Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers. PMID:29706891

  10. Interactions of Ku70/80 with Double-Strand DNA: Energetic, Dynamics, and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2010-01-01

    Space radiation is a proficient inducer of DNA damage leading to mutation, aberrant cell signaling, and cancer formation. Ku is among the first responding proteins in nucleus to recognize and bind the DNA double strand breaks (DSBs) whenever they are introduced. Once loaded Ku works as a scaffold to recruit other repair factors of non-homologous end joining and facilitates the following repair processes. The crystallographic study of the Ku70/80 heterodimer indicate the core structure of this protein shows virtually no conformational change after binding with DNA. To investigate the dynamical features as well as the energetic characteristics of Ku-DNA binding, we conduct multi-nanosecond molecular dynamics simulations of a modeled Ku70/80 structure and several complexes with two 24-bp DNA duplexes. Free energy calculations show significant energy differences between the complexes with Ku bound at DSBs and those with Ku associated at an internal site of a chromosome. The results also reveal detailed interactions between different nucleotides and the amino acids along the DNA-binding cradle of Ku, indicating subtle binding preference of Ku at specific DNA sequences. The covariance matrix analyses along the trajectories demonstrate the protein is stimulated to undergo correlated motions of different domains once bound to DNA ends. Additionally, principle component analyses identify these low frequency collective motions suitable for binding with and translocation along duplex DNA. It is proposed that the modification of dynamical properties of Ku upon binding with DSBs may provide a signal for the further recruitment of other repair factors such as DNA-PKcs, XLF, and XRCC4.

  11. Structural and numerical chromosome aberration inducers in liver micronucleus test in rats with partial hepatectomy.

    PubMed

    Itoh, Satoru; Hattori, Chiharu; Nagata, Mayumi; Sanbuissho, Atsushi

    2012-08-30

    The liver micronucleus test is an important method to detect pro-mutagens such as active metabolites not reaching bone marrow due to their short lifespan. We have already reported that dosing of the test compound after partial hepatectomy (PH) is essential to detect genotoxicity of numerical chromosome aberration inducers in mice [Mutat. Res. 632 (2007) 89-98]. In naive animals, the proportion of binucleated cells in rats is less than half of that in mice, which suggests a species difference in the response to chromosome aberration inducers. In the present study, we investigated the responses to structural and numerical chromosome aberration inducers in the rat liver micronucleus test. Two structural chromosome aberretion inducers (diethylnitrosamine and 1,2-dimethylhydrazine) and two numerical chromosome aberration inducers (colchicine and carbendazim) were used in the present study. PH was performed a day before or after the dosing of the test compound in 8-week old male F344 rats and hepatocytes were isolated 4 days after the PH. As a result, diethylnitrosamine and 1,2-dimethylhydrazine, structural chromosome aberration inducers, exhibited significant increase in the incidence of micronucleated hepatocyte (MNH) when given either before and after PH. Colchicine and carbendazim, numerical chromosome aberration inducers, did not result in any toxicologically significant increase in MNH frequency when given before PH, while they exhibited MNH induction when given after PH. It is confirmed that dosing after PH is essential in order to detect genotoxicity of numerical chromosome aberration inducers in rats as well as in mice. Regarding the species difference, a different temporal response to colchicine was identified. Colchicine increased the incidence of MNH 4 days after PH in rats, although such induction in mice was observed 8-10 days after PH. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    EPA Science Inventory

    Human ATAD5 is an excellent biomarker for identifying genotoxic compounds because ATADS protein levels increase post-transcriptionally following exposure to a variety of DNA damaging agents. Here we report a novel quantitative high-throughput ATAD5-Iuciferase assay that can moni...

  13. Theory of aberration fields for general optical systems with freeform surfaces.

    PubMed

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  14. Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway

    PubMed Central

    Pang, L.Y.; Blacking, T.M.; Else, R.W.; Sherman, A.; Sang, H.M.; Whitelaw, B.A.; Hupp, T.R.; Argyle, D.J.

    2013-01-01

    Cancer stem cells were identified in a feline mammary carcinoma cell line by demonstrating expression of CD133 and utilising the tumour sphere assay. A population of cells was identified that had an invasive, mesenchymal phenotype, expressed markers of pluripotency and enhanced tumour formation in the NOD-SCID mouse and chick embryo models. This population of feline mammary carcinoma stem cells was resistant to chemotherapy and radiation, possibly due to aberrant activation of the ATM/p53 DNA damage pathway. Epithelial–mesenchymal transition was a feature of the invasive phenotype. These data demonstrate that cancer stem cells are a feature of mammary cancer in cats. PMID:23219486

  15. Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus.

    PubMed

    Sato, Koji; Fukata, Hideki; Kogo, Yasushi; Ohgane, Jun; Shiota, Kunio; Mori, Chisato

    2009-01-01

    Perinatal exposure to diethylstilbestrol (DES) can have numerous adverse effects on the reproductive organs later in life, such as vaginal clear-cell adenocarcinoma. Epigenetic processes including DNA methylation may be involved in the mechanisms. We subcutaneously injected DES to neonatal C57BL/6 mice. At days 5, 14, and 30, expressions of DNA methyltransferases (Dnmts) Dnmt1, Dnmt3a, and Dnmt3b, and transcription factors Sp1 and Sp3 were examined. We also performed restriction landmark genomic scanning (RLGS) to detect aberrant DNA methylation. Real-time RT-PCR revealed that expressions of Dnmt1, Dnmt3b, and Sp3 were decreased at day 5 in DES-treated mice, and that those of Dnmt1, Dnmt3a, and Sp1 were also decreased at day 14. RLGS analysis revealed that 5 genomic loci were demethylated, and 5 other loci were methylated by DES treatment. Two loci were cloned, and differential DNA methylation was quantified. Our results indicated that DES altered the expression levels of Dnmts and DNA methylation.

  16. Image based method for aberration measurement of lithographic tools

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa

    2018-01-01

    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  17. Minimum change in spherical aberration that can be perceived

    PubMed Central

    Manzanera, Silvestre; Artal, Pablo

    2016-01-01

    It is important to know the visual sensitivity to optical blur from both a basic science perspective and a practical point of view. Of particular interest is the sensitivity to blur induced by spherical aberration because it is being used to increase depth of focus as a component of a presbyopic solution. Using a flicker detection-based procedure implemented on an adaptive optics visual simulator, we measured the spherical aberration thresholds that produce just-noticeable differences in perceived image quality. The thresholds were measured for positive and negative values of spherical aberration, for best focus and + 0.5 D and + 1.0 D of defocus. At best focus, the SA thresholds were 0.20 ± 0.01 µm and −0.17 ± 0.03 µm for positive and negative spherical aberration respectively (referred to a 6-mm pupil). These experimental values may be useful in setting spherical aberration permissible levels in different ophthalmic techniques. PMID:27699113

  18. Surface geometry and optical aberrations of ex-vivo crystalline lenses

    NASA Astrophysics Data System (ADS)

    Bueno, Juan M.; Schwarz, Christina; Acosta, Eva; Artal, Pablo

    2010-02-01

    The shape of the surfaces of ex-vivo human crystalline lenses was measured using a shadow photography technique. From these data, the back-focal distance and the contribution of each surface to the main optical aberrations of the lenses were estimated. The aberrations of the lenses were measured separately with two complementary techniques: a Hartmann-Shack wavefront sensor and a point-diffraction interferometer. A laser scanning set-up was also used to measure the actual back-focal length as well as the phase aberration in one meridian section of the lenses. Measured and predicted back-focal length agreed well within the experimental errors. The lens aberrations computed with a ray-tracing approach from the measured surfaces and geometrical data only reproduce quantitatively the measured aberrations.

  19. Targeting HER2 Aberrations in Non-Small Cell Lung Cancer with Osimertinib.

    PubMed

    Liu, Shengwu; Li, Shuai; Hai, Josephine; Wang, Xiaoen; Chen, Ting; Quinn, Max M; Gao, Peng; Zhang, Yanxi; Ji, Hongbin; Cross, Darren A E; Wong, Kwok-Kin

    2018-01-03

    Purpose: HER2 (or ERBB2 ) aberrations, including both amplification and mutations, have been classified as oncogenic drivers that contribute to 2% to 6% of lung adenocarcinomas. HER2 amplification is also an important mechanism for acquired resistance to EGFR tyrosine kinase inhibitors (TKI). However, due to limited preclinical studies and clinical trials, currently there is still no available standard of care for lung cancer patients with HER2 aberrations. To fulfill the clinical need for targeting HER2 in patients with non-small cell lung cancer (NSCLC), we performed a comprehensive preclinical study to evaluate the efficacy of a third-generation TKI, osimertinib (AZD9291). Experimental Design: Three genetically modified mouse models (GEMM) mimicking individual HER2 alterations in NSCLC were generated, and osimertinib was tested for its efficacy against these HER2 aberrations in vivo Results: Osimertinib treatment showed robust efficacy in HER2 wt overexpression and EGFR del19/HER2 models, but not in HER2 exon 20 insertion tumors. Interestingly, we further identified that combined treatment with osimertinib and the BET inhibitor JQ1 significantly increased the response rate in HER2 -mutant NSCLC, whereas JQ1 single treatment did not show efficacy. Conclusions: Overall, our data indicated robust antitumor efficacy of osimertinib against multiple HER2 aberrations in lung cancer, either as a single agent or in combination with JQ1. Our study provides a strong rationale for future clinical trials using osimertinib either alone or in combination with epigenetic drugs to target aberrant HER2 in patients with NSCLC. Clin Cancer Res; 24(11); 1-11. ©2018 AACR. See related commentary by Cappuzzo and Landi, p. 2470 . ©2018 American Association for Cancer Research.

  20. Genotoxicity of mercury used in chromosome aberration tests.

    PubMed

    Akiyama, M; Oshima, H; Nakamura, M

    2001-01-01

    The purpose of this study was to investigate the genotoxic effects of Hg released from dental amalgams. The chromosome aberration test was conducted using original extracts and their diluted solutions of conventional type amalgam and high copper amalgam. The concentrations of Hg, Cu and Ag in the original extract of high copper amalgam were 17.64, 7.97 and 43.90 microM, respectively. Those in the original extract of conventional type amalgam were 20.63, 7.87 and 14.79 microM, respectively. 10 and 30 microM Hg(2+) were also used for comparison. The frequency of chromosome aberrations was below 5% with 0 microM Hg(2+) and with a triple dilution of high copper amalgam extract, containing 5.88 microM Hg, 14.63 microM Cu and 2.65 microM Ag. However, 9.5% of the cells showed chromosome aberrations with a quadruple dilution of conventional type amalgam, containing 5.15 microM Hg, 3.69 microM Cu and 1.96 microM Ag. The amount of Hg in the quadruple dilution of conventional type amalgam was less than that in the triple dilution of high copper amalgam extract and 10 microM Hg(2+). A concentration of 30 microM Hg(2+) caused 34.5% of the cells to show chromosome aberrations while with a two-thirds dilution of high copper amalgam extract, containing 11.76 microM Hg, 29.26 microM Cu and 5.31 microM Ag, 58.5% of the cells showed chromosome aberrations. A two-thirds dilution of high copper amalgam extract induced more chromosome aberrations than 30 microM Hg(2+), although the amount of Hg was less than 30 microM Hg(2+). A triple dilution of conventional type amalgam extract, original extracts of conventional type amalgam and high copper amalgam and 100 microM Hg(2+) were induced few metaphases. It was revealed that the conventional type amalgam induced chromosome aberrations with quadruple dilution where cell viability was about 80% and that the high copper amalgam induced a high level of chromosome aberrations with the two-thirds dilution. The effects of low level Hg on humans

  1. A new variant of aberrant left brachiocephalic trunk in mam: case report and literature review.

    PubMed

    Szpinda, Michał

    2005-02-01

    Importance is placed on aberrant arteries in the radiological and surgical literature. A normal left brachiocephalic trunk is characteristic for the right aortic arch. However, an aberrant left brachiocephalic trunk arising as the last branch of the aortic arch on the left side has not yet been described in the literature. Described here is a new variant of the retro-oesophageal aberrant left brachiocephalic trunk, occasionally observed in a patient during diagnostic investigation or surgical treatment for steno-obstructive involvement of the carotid district. The triple anomaly of the left aortic arch consisted of: 1. the presence of a hypoplastic left brachiocephalic trunk behind the oesophagus, 2. the absence of a brachiocephalic trunk on the right side and 3. separate origins of the arteries on the right side, with the right common artery preceding the right subclavian artery. In front of the trachea an 8-mm prosthetic PTFE was implanted from the proximal segment of the right subclavian artery to the junction of the left common carotid and left subclavian arteries. The author demonstrates the inadequacy of auxiliary investigations to detect aberrant arteries, which may only be identified precisely intra-operatively.

  2. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  3. Intragenic DNA methylation prevents spurious transcription initiation.

    PubMed

    Neri, Francesco; Rapelli, Stefania; Krepelova, Anna; Incarnato, Danny; Parlato, Caterina; Basile, Giulia; Maldotti, Mara; Anselmi, Francesca; Oliviero, Salvatore

    2017-03-02

    In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.

  4. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Taylor J.; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724; Novak, Petr

    2009-12-01

    Aberrant DNA methylation participates in carcinogenesis and is a molecular hallmark of a tumor cell. Tumor cells generally exhibit a redistribution of DNA methylation resulting in global hypomethylation with regional hypermethylation; however, the speed in which these changes emerge has not been fully elucidated and may depend on the temporal location of the cell in the path from normal, finite lifespan to malignant transformation. We used a model of arsenical-induced malignant transformation of immortalized human urothelial cells and DNA methylation microarrays to examine the extent and temporal nature of changes in DNA methylation that occur during the transition from immortalmore » to malignantly transformed. Our data presented herein suggest that during arsenical-induced malignant transformation, aberrant DNA methylation occurs non-randomly, progresses gradually at hundreds of gene promoters, and alters expression of the associated gene, and these changes are coincident with the acquisition of malignant properties, such as anchorage independent growth and tumor formation in immunocompromised mice. The DNA methylation changes appear stable, since malignantly transformed cells removed from the transforming arsenical exhibited no reversion in DNA methylation levels, associated gene expression, or malignant phenotype. These data suggest that arsenicals act as epimutagens and directly link their ability to induce malignant transformation to their actions on the epigenome.« less

  5. Optical aberrations, retinal image quality and eye growth: Experimentation and modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yibin

    2007-12-01

    Retinal image quality is important for normal eye growth. Optical aberrations are of interest for two reasons: first, they degrade retinal images; second, they might provide some cues to defocus. Higher than normal ocular aberrations have been previously associated with human myopia. However, these studies were cross-sectional in design, and only reported aberrations in terms of root mean square (RMS) errors of Zernike coefficients, a poor metric of optical quality. This dissertation presents results from investigations of ocular optical aberrations, retinal image quality and eye growth in chicks and humans. A number of techniques were utilized, including Shack-Hartmann aberrometry, high-frequency A-scan ultrasonography, ciliary nerve section (CNX), photorefractive keratectomy (PRK) as well as computer simulations and modeling. A technique to extract light scatter information from Shack-Hartmann images was also developed. The main findings of the dissertation are summarized below. In young chicks, most ocular aberrations decreased with growth in both normal and CNX eyes, and there were diurnal fluctuations in some aberrations. Modeling suggested active reduction in higher order aberrations (HOAs) during early development. Although CNX eyes manifested greater than normal HOAs, they showed near normal growth. Retinal image degradation varied greatly among individual eyes post-PRK in young chicks. Including light scatter information into analyses of retinal image quality better estimated the latter. Albino eyes showed more severe retinal image degradation than normal eyes, due to increased optical aberrations and light scatter, but their growth was similar to those of normal eyes, implying that they are relatively insensitive to retina image quality. Although the above results questioned the influence of optical aberrations on early ocular growth, some optical quality metrics, derived from optical aberrations data, could predict how much the eyes of young chicks

  6. Correcting highly aberrated eyes using large-stroke adaptive optics.

    PubMed

    Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung

    2007-11-01

    To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.

  7. Subjective face recognition difficulties, aberrant sensibility, sleeping disturbances and aberrant eating habits in families with Asperger syndrome

    PubMed Central

    Nieminen-von Wendt, Taina; Paavonen, Juulia E; Ylisaukko-Oja, Tero; Sarenius, Susan; Källman, Tiia; Järvelä, Irma; von Wendt, Lennart

    2005-01-01

    Background The present study was undertaken in order to determine whether a set of clinical features, which are not included in the DSM-IV or ICD-10 for Asperger Syndrome (AS), are associated with AS in particular or whether they are merely a familial trait that is not related to the diagnosis. Methods Ten large families, a total of 138 persons, of whom 58 individuals fulfilled the diagnostic criteria for AS and another 56 did not to fulfill these criteria, were studied using a structured interview focusing on the possible presence of face recognition difficulties, aberrant sensibility and eating habits and sleeping disturbances. Results The prevalence for face recognition difficulties was 46.6% in individuals with AS compared with 10.7% in the control group. The corresponding figures for subjectively reported presence of aberrant sensibilities were 91.4% and 46.6%, for sleeping disturbances 48.3% and 23.2% and for aberrant eating habits 60.3% and 14.3%, respectively. Conclusion An aberrant processing of sensory information appears to be a common feature in AS. The impact of these and other clinical features that are not incorporated in the ICD-10 and DSM-IV on our understanding of AS may hitherto have been underestimated. These associated clinical traits may well be reflected by the behavioural characteristics of these individuals. PMID:15826308

  8. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome

    PubMed Central

    Cohen, Andrea J.; Saiakhova, Alina; Corradin, Olivia; Luppino, Jennifer M.; Lovrenert, Katreya; Bartels, Cynthia F.; Morrow, James J.; Mack, Stephen C.; Dhillon, Gursimran; Beard, Lydia; Myeroff, Lois; Kalady, Matthew F.; Willis, Joseph; Bradner, James E.; Keri, Ruth A.; Berger, Nathan A.; Pruett-Miller, Shondra M.; Markowitz, Sanford D.; Scacheri, Peter C.

    2017-01-01

    In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival. PMID:28169291

  9. Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia

    PubMed Central

    Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.

    2015-01-01

    Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform for simultaneous evaluation of DNA methylation of multiple loci. PMID:24373919

  10. Electrochemical biosensing strategies for DNA methylation analysis.

    PubMed

    Hossain, Tanvir; Mahmudunnabi, Golam; Masud, Mostafa Kamal; Islam, Md Nazmul; Ooi, Lezanne; Konstantinov, Konstantin; Hossain, Md Shahriar Al; Martinac, Boris; Alici, Gursel; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-08-15

    DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Spectral estimation for characterization of acoustic aberration.

    PubMed

    Varslot, Trond; Angelsen, Bjørn; Waag, Robert C

    2004-07-01

    Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.

  12. Statistical virtual eye model based on wavefront aberration

    PubMed Central

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112

  13. Double-pass measurement of human eye aberrations: limitations and practical realization

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Belyakov, Alexey I.; Cherezova, Tatyana Y.; Kudryashov, Alexis V.

    2004-11-01

    The problem of correct eye aberrations measurement is very important with the rising widespread of a surgical procedure for reducing refractive error in the eye, so called, LASIK (laser-assisted in situ keratomileusis). The double-pass technique commonly used for measuring aberrations of a human eye involves some uncertainties. One of them is loosing the information about odd human eye aberrations. We report about investigations of the applicability limit of the double-pass measurements depending upon the aberrations status introduced by human eye and actual size of the entrance pupil. We evaluate the double-pass effects for various aberrations and different pupil diameters. It is shown that for small pupils the double-pass effects are negligible. The testing and alignment of aberrometer was performed using the schematic eye, developed in our lab. We also introduced a model of human eye based on bimorph flexible mirror. We perform calculations to demonstrate that our schematic eye is capable of reproducing spatial-temporal statistics of aberrations of living eye with normal vision or even myopic or hypermetropic or with high aberrations ones.

  14. Using aberrant behaviors as reinforcers for autistic children.

    PubMed Central

    Charlop, M H; Kurtz, P F; Casey, F G

    1990-01-01

    In a series of experiments, we assessed the efficacy of using autistic children's aberrant behaviors as reinforcers to increase their correct task responding. In Experiment 1, reinforcer conditions of stereotypy, food, and varied (food or stereotypy) were compared. In Experiment 2, the conditions were delayed echolalia, food, and varied (food or delayed echolalia), and in Experiment 3, perseverative behavior was compared with stereotypy and food as potential reinforcers. A multielement design was used for all comparisons, and side-effect measures were recorded during and after teaching sessions as well as at home. Results indicated that, in general, task performance was highest when brief opportunities to engage in aberrant behaviors were provided as reinforcers. Edibles were associated with the lowest performance. Furthermore, no negative side effects (e.g., an increase in aberrant behaviors) occurred. The results are discussed in terms of suggesting a more pragmatic treatment approach by addressing the contingent use of autistic children's aberrant behaviors as reinforcers. PMID:2373653

  15. Comparative DNA adduct formation and induction of colonic aberrant crypt foci in mice exposed to 2-amino-9H-pyrido[2,3-b]indole, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline and azoxymethane

    PubMed Central

    Kim, Sangyub; Guo, Jingshu; O’Sullivan, M. Gerald; Gallaher, Daniel D.; Turesky, Robert J.

    2015-01-01

    Considerable evidence suggests that environmental factors, including diet and cigarette smoke, are involved in the pathogenesis of colon cancer. Carcinogenic nitroso compounds (NOC), such as N-nitrosodimethylamine (NDMA), are present in tobacco and processed red meat, and NOC have been implicated in colon cancer. Azoxymethane (AOM), commonly used for experimental colon carcinogenesis, is an isomer of NDMA, and it produces the same DNA adducts as does NDMA. Heterocyclic aromatic amines (HAAs) formed during the combustion of tobacco and high-temperature cooking of meats are also associated with an elevated risk of colon cancer. The most abundant carcinogenic HAA formed in tobacco smoke is 2-amino-9H-pyrido[2,3-b]indole (AαC), whereas 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) is the most potent carcinogenic HAA formed during the cooking of meat and fish. However, the comparative tumor-initiating potential of AαC, MeIQ, and AOM is unknown. In this report, we evaluate the formation of DNA adducts as a measure of genotoxicity, and the induction of colonic aberrant crypt foci (ACF) and dysplastic ACF, as an early measure of carcinogenic potency of these compounds in the colon of male A/J mice. Both AαC and AOM induced a greater number of DNA adducts than MeIQ in the liver and colon. AOM induced a greater number of ACF and dysplastic ACF than either AαC or MeIQ. Conversely, based on adduct levels, MeIQ-DNA adducts were more potent than AαC- and AOM-DNA adducts at inducing ACF. Long-term feeding studies are required to relate levels of DNA adducts, induction of ACF, and colon cancer by these colon genotoxicants. PMID:26734915

  16. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    NASA Astrophysics Data System (ADS)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  17. Aberrant p15, p16, p53, and DAPK Gene Methylation in Myelomagenesis: Clinical and Prognostic Implications.

    PubMed

    Geraldes, Catarina; Gonçalves, Ana Cristina; Cortesão, Emília; Pereira, Marta Isabel; Roque, Adriana; Paiva, Artur; Ribeiro, Letícia; Nascimento-Costa, José Manuel; Sarmento-Ribeiro, Ana Bela

    2016-12-01

    Aberrant DNA methylation is considered a crucial mechanism in the pathogenesis of monoclonal gammopathies. We aimed to investigate the contribution of hypermethylation of 4 tumor suppressor genes to the multistep process of myelomagenesis. The methylation status of p15, p16, p53, and DAPK genes was evaluated in bone marrow samples from 94 patients at diagnosis: monoclonal gammopathy of uncertain significance (MGUS) (n = 48), smoldering multiple myeloma (SMM) (n = 8) and symptomatic multiple myeloma (MM) (n = 38), and from 8 healthy controls by methylation-specific polymerase chain reaction analysis. Overall, 63% of patients with MM and 39% of patients with MGUS presented at least 1 hypermethylated gene (P < .05). No aberrant methylation was detected in normal bone marrow. The frequency of methylation for individual genes in patients with MGUS, SMM, and MM was p15, 15%, 50%, 21%; p16, 15%, 13%, 32%; p53, 2%, 12,5%, 5%, and DAPK, 19%, 25%, 39%, respectively (P < .05). No correlation was found between aberrant methylation and immunophenotypic markers, cytogenetic features, progression-free survival, and overall survival in patients with MM. The current study supports a relevant role for p15, p16, and DAPK hypermethylation in the genesis of the plasma cell neoplasm. DAPK hypermethylation also might be an important step in the progression from MGUS to MM. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    PubMed

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  19. Factor Analysis of the Aberrant Behavior Checklist in Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Brinkley, Jason; Nations, Laura; Abramson, Ruth K.; Hall, Alicia; Wright, Harry H.; Gabriels, Robin; Gilbert, John R.; Pericak-Vance, Margaret A. O.; Cuccaro, Michael L.

    2007-01-01

    Exploratory factor analysis (varimax and promax rotations) of the aberrant behavior checklist-community version (ABC) in 275 individuals with Autism spectrum disorder (ASD) identified four- and five-factor solutions which accounted for greater than 70% of the variance. Confirmatory factor analysis (Lisrel 8.7) revealed indices of moderate fit for…

  20. Glioblastoma cells deficient in DNA-dependent protein kinase are resistant to cell death.

    PubMed

    Chen, George G; Sin, Fanny L F; Leung, Billy C S; Ng, Ho K; Poon, Wai S

    2005-04-01

    DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli. 2004 Wiley-Liss, Inc.

  1. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  2. Using DNA Barcodes to Identify Road-Killed Animals in Two Atlantic Forest Nature Reserves, Brazil

    PubMed Central

    Klippel, Angélica H.; Oliveira, Pablo V.; Britto, Karollini B.; Freire, Bárbara F.; Moreno, Marcel R.; dos Santos, Alexandre R.; Banhos, Aureo; Paneto, Greiciane G.

    2015-01-01

    Road mortality is the leading source of biodiversity loss in the world, especially due to fragmentation of natural habitats and loss of wildlife. The survey of the main species victims of roadkill is of fundamental importance for the better understanding of the problem, being necessary, for this, the correct species identification. The aim of this study was to verify if DNA barcodes can be applied to identify road-killed samples that often cannot be determined morphologically. For this purpose, 222 vertebrate samples were collected in a stretch of the BR-101 highway that crosses two Discovery Coast Atlantic Forest Natural Reserves, the Sooretama Biological Reserve and the Vale Natural Reserve, in Espírito Santo, Brazil. The mitochondrial COI gene was amplified, sequenced and confronted with the BOLD database. It was possible to identify 62.16% of samples, totaling 62 different species, including Pyrrhura cruentata, Chaetomys subspinosus, Puma yagouaroundi and Leopardus wiedii considered Vulnerable in the National Official List of Species of Endangered Wildlife. The most commonly identified animals were a bat (Molossus molossus), an opossum (Didelphis aurita) and a frog (Trachycephalus mesophaeus) species. Only one reptile was identified using the technique, probably due to lack of reference sequences in BOLD. These data may contribute to a better understanding of the impact of roads on species biodiversity loss and to introduce the DNA barcode technique to road ecology scenarios. PMID:26244644

  3. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    PubMed

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples).

  4. A Novel Mini-DNA Barcoding Assay to Identify Processed Fins from Internationally Protected Shark Species

    PubMed Central

    Fields, Andrew T.; Abercrombie, Debra L.; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D.

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA (“processed fins”). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples). PMID:25646789

  5. Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis.

    PubMed Central

    Melton, T; Peterson, R; Redd, A J; Saha, N; Sofro, A S; Martinson, J; Stoneking, M

    1995-01-01

    Polynesian genetic affinities to populations of Asia were studied using mtDNA markers. A total of 1,037 individuals from 12 populations were screened for a 9-bp deletion in the intergenic region between the COII and tRNA(Lys) genes that approaches fixation in Polynesians. Sequence-specific oligonucleotide probes that identify specific mtDNA control region nucleotide substitutions were used to describe variation in individuals with the 9-bp deletion. The 9-bp deletion was not observed in northern Indians, Bangladeshis, or Pakistanis but was seen at low to moderate frequencies in the nine other Southeast Asian populations. Three substitutions in the control region at positions 16217, 16247, and 16261 have previously been observed at high frequency in Polynesian mtDNAs; this "Polynesian motif" was observed in 20% of east Indonesians with the 9-bp deletion but was observed in only one additional individual. mtDNA types related to the Polynesian motif are highest in frequency in the corridor from Taiwan south through the Philippines and east Indonesia, and the highest diversity for these types is in Taiwan. These results are consistent with linguistic evidence of a Taiwanese origin for the proto-Polynesian expansion, which spread throughout Oceania by way of Indonesia. PMID:7668267

  6. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review).

    PubMed

    Jiménez-Wences, Hilda; Peralta-Zaragoza, Oscar; Fernández-Tilapa, Gloria

    2014-06-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53.

  7. The multidimensional nature of metabolic syndrome in schizophrenia: lessons from studies of one-carbon metabolism and DNA methylation.

    PubMed

    Misiak, Blazej; Frydecka, Dorota; Piotrowski, Patryk; Kiejna, Andrzej

    2013-06-01

    Large data sets indicate that the prevalence of metabolic syndrome (MetS) is significantly higher in patients with schizophrenia in comparison with the general population. Given that interactions between genes and the environment may underlie the etiology of MetS in subjects with schizophrenia, it is feasible that epigenetic phenomena can serve as the etiological consensus between genetic and environmental factors. However, there is still a striking scarcity of studies aimed at investigating the role of aberrant DNA methylation in the development of MetS in this group of patients. This article provides an update on the epigenetics of schizophrenia and reviews studies on the role of one-carbon metabolism and aberrant DNA methylation in the development of MetS.

  8. Ocular Chromatic Aberrations and Their Effects on Polychromatic Retinal Image Quality

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao

    Previous studies of ocular chromatic aberrations have concentrated on chromatic difference of focus (CDF). Less is known about the chromatic difference of image position (CDP) in the peripheral retina and no experimental attempt has been made to measure the ocular chromatic difference of magnification (CDM). Consequently, theoretical modelling of human eyes is incomplete. The insufficient knowledge of ocular chromatic aberrations is partially responsible for two unsolved applied vision problems: (1) how to improve vision by correcting ocular chromatic aberration? (2) what is the impact of ocular chromatic aberration on the use of isoluminance gratings as a tool in spatial-color vision?. Using optical ray tracing methods, MTF analysis methods of image quality, and psychophysical methods, I have developed a more complete model of ocular chromatic aberrations and their effects on vision. The ocular CDM was determined psychophysically by measuring the tilt in the apparent frontal parallel plane (AFPP) induced by interocular difference in image wavelength. This experimental result was then used to verify a theoretical relationship between the ocular CDM, the ocular CDF and the entrance pupil of the eye. In the retinal image after correcting the ocular CDF with existing achromatizing methods, two forms of chromatic aberration (CDM and chromatic parallax) were examined. The CDM was predicted by theoretical ray tracing and measured with the same method used to determine ocular CDM. The chromatic parallax was predicted with a nodal ray model and measured with the two-color vernier alignment method. The influence of these two aberrations on polychromatic MTF were calculated. Using this improved model of ocular chromatic aberration, luminance artifacts in the images of isoluminance gratings were calculated. The predicted luminance artifacts were then compared with experimental data from previous investigators. The results show that: (1) A simple relationship exists between

  9. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma.

    PubMed

    Wiestler, Benedikt; Capper, David; Sill, Martin; Jones, David T W; Hovestadt, Volker; Sturm, Dominik; Koelsche, Christian; Bertoni, Anna; Schweizer, Leonille; Korshunov, Andrey; Weiß, Elisa K; Schliesser, Maximilian G; Radbruch, Alexander; Herold-Mende, Christel; Roth, Patrick; Unterberg, Andreas; Hartmann, Christian; Pietsch, Torsten; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard; Platten, Michael; Pfister, Stefan M; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-10-01

    The outcome of patients with anaplastic gliomas varies considerably. Whether a molecular classification of anaplastic gliomas based on large-scale genomic or epigenomic analyses is superior to histopathology for reflecting distinct biological groups, predicting outcomes and guiding therapy decisions has yet to be determined. Epigenome-wide DNA methylation analysis, using a platform which also allows the detection of copy-number aberrations, was performed in a cohort of 228 patients with anaplastic gliomas (astrocytomas, oligoastrocytomas, and oligodendrogliomas), including 115 patients of the NOA-04 trial. We further compared these tumors with a group of 55 glioblastomas. Unsupervised clustering of DNA methylation patterns revealed two main groups correlated with IDH status: CpG island methylator phenotype (CIMP) positive (77.5 %) or negative (22.5 %). CIMP(pos) (IDH mutant) tumors showed a further separation based on copy-number status of chromosome arms 1p and 19q. CIMP(neg) (IDH wild type) tumors showed hallmark copy-number alterations of glioblastomas, and clustered together with CIMP(neg) glioblastomas without forming separate groups based on WHO grade. Notably, there was no molecular evidence for a distinct biological entity representing anaplastic oligoastrocytoma. Tumor classification based on CIMP and 1p/19q status was significantly associated with survival, allowing a better prediction of outcome than the current histopathological classification: patients with CIMP(pos) tumors with 1p/19q codeletion (CIMP-codel) had the best prognosis, followed by patients with CIMP(pos) tumors but intact 1p/19q status (CIMP-non-codel). Patients with CIMP(neg) anaplastic gliomas (GBM-like) had the worst prognosis. Collectively, our data suggest that anaplastic gliomas can be grouped by IDH and 1p/19q status into three molecular groups that show clear links to underlying biology and a significant association with clinical outcome in a prospective trial cohort.

  10. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.

    PubMed

    Mahajan, Virendra N

    2012-06-20

    In a recent paper, we considered the classical aberrations of an anamorphic optical imaging system with a rectangular pupil, representing the terms of a power series expansion of its aberration function. These aberrations are inherently separable in the Cartesian coordinates (x,y) of a point on the pupil. Accordingly, there is x-defocus and x-coma, y-defocus and y-coma, and so on. We showed that the aberration polynomials orthonormal over the pupil and representing balanced aberrations for such a system are represented by the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point; for example, L(l)(x)L(m)(y), where l and m are positive integers (including zero) and L(l)(x), for example, represents an orthonormal Legendre polynomial of degree l in x. The compound two-dimensional (2D) Legendre polynomials, like the classical aberrations, are thus also inherently separable in the Cartesian coordinates of the pupil point. Moreover, for every orthonormal polynomial L(l)(x)L(m)(y), there is a corresponding orthonormal polynomial L(l)(y)L(m)(x) obtained by interchanging x and y. These polynomials are different from the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil. In this paper, we show that the orthonormal aberration polynomials for an anamorphic system with a circular pupil, obtained by the Gram-Schmidt orthogonalization of the 2D Legendre polynomials, are not separable in the two coordinates. Moreover, for a given polynomial in x and y, there is no corresponding polynomial obtained by interchanging x and y. For example, there are polynomials representing x-defocus, balanced x-coma, and balanced x-spherical aberration, but no corresponding y-aberration polynomials. The missing y-aberration terms are contained in other polynomials. We emphasize that the Zernike circle polynomials, although orthogonal over a circular pupil, are not suitable for an anamorphic system as

  11. Methodological Variables in the Analysis of Cell-Free DNA.

    PubMed

    Bronkhorst, Abel Jacobus; Aucamp, Janine; Pretorius, Piet J

    2016-01-01

    In recent years, cell-free DNA (cfDNA) analysis has received increasing amounts of attention as a potential non-invasive screening tool for the early detection of genetic aberrations and a wide variety of diseases, especially cancer. However, except for some prenatal tests and BEAMing, a technique used to detect mutations in various genes of cancer patients, cfDNA analysis is not yet routinely applied in clinical practice. Although some confusing biological factors inherent to the in vivo setting play a key part, it is becoming increasingly clear that this struggle is mainly due to the lack of an analytical consensus, especially as regards quantitative analyses of cfDNA. In order to use quantitative analysis of cfDNA with confidence, process optimization and standardization are crucial. In this work we aim to elucidate the most confounding variables of each preanalytical step that must be considered for process optimization and equivalence of procedures.

  12. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices.

    PubMed

    Zohrabi, Mo; Cormack, Robert H; Mccullough, Connor; Supekar, Omkar D; Gibson, Emily A; Bright, Victor M; Gopinath, Juliet T

    2017-12-11

    We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm.

  13. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.

    PubMed

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-06-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Identifying mild and severe preeclampsia in asymptomatic pregnant women by levels of cell-free fetal DNA.

    PubMed

    Jakobsen, Tanja Roien; Clausen, Frederik Banch; Rode, Line; Dziegiel, Morten Hanefeld; Tabor, Ann

    2013-09-01

    The objective was to investigate whether women who develop preeclampsia can be identified in a routine analysis when determining fetal RHD status at 25 weeks' gestation in combination with PAPP-A levels at the first-trimester combined risk assessment for Trisomy 21. D- women participating in the routine antenatal RHD screening program in the capital region of Denmark were retrospectively studied. We used a standard dilution curve to quantify the amounts of cell-free fetal DNA (cffDNA) and divided women into groups according to cffDNA levels. PAPP-A was measured at 11 to 14 weeks. Information about pregnancy outcome and complications was obtained from the National Fetal Medicine Database, medical charts, and discharge letters. The odds ratio (OR) of developing severe preeclampsia given a cffDNA level above the 90th percentile compared to cffDNA below the 90th percentile was 8.1 (95% confidence interval [CI], 2.6-25.5). The OR of developing mild preeclampsia given a cffDNA level below the 5th percentile compared to cffDNA levels above the 5th percentile was 3.6 (95% CI, 1.1-11.7). PAPP-A levels below the 5th percentile were associated with mild preeclampsia, but adding it to the analysis did not increase the detection rate (DR). Women with cffDNA levels below the 5th percentile and above the 90th percentile quantified at 25 weeks' gestation are at increased risk of developing preeclampsia. Adding PAPP-A levels to the analysis did not increase the DR of preeclampsia. © 2013 American Association of Blood Banks.

  15. Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood.

    PubMed

    Rosa, Maria José; Just, Allan C; Guerra, Marco Sánchez; Kloog, Itai; Hsu, Hsiao-Hsien Leon; Brennan, Kasey J; García, Adriana Mercado; Coull, Brent; Wright, Rosalind J; Téllez Rojo, Martha María; Baccarelli, Andrea A; Wright, Robert O

    2017-01-01

    Changes in mitochondrial DNA (mtDNA) can serve as a marker of cumulative oxidative stress (OS) due to the mitochondria's unique genome and relative lack of repair systems. In utero particulate matter ≤2.5μm (PM 2.5 ) exposure can enhance oxidative stress. Our objective was to identify sensitive windows to predict mtDNA damage experienced in the prenatal period due to PM 2.5 exposure using mtDNA content measured in cord blood. Women affiliated with the Mexican social security system were recruited during pregnancy in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study. Mothers with cord blood collected at delivery and complete covariate data were included (n=456). Mothers' prenatal daily exposure to PM 2.5 was estimated using a satellite-based spatio-temporally resolved prediction model and place of residence during pregnancy. DNA was extracted from umbilical cord leukocytes. Quantitative real-time polymerase chain reaction (qPCR) was used to determine mtDNA content. A distributive lag regression model (DLM) incorporating weekly averages of daily PM 2.5 predictions was constructed to plot the association between exposure and OS over the length of pregnancy. In models that included child's sex, mother's age at delivery, prenatal environmental tobacco smoke exposure, birth year, maternal education, and assay batch, we found significant associations between higher PM 2.5 exposure during late pregnancy (35-40weeks) and lower mtDNA content in cord blood. Increased PM 2.5 during a specific prenatal window in the third trimester was associated with decreased mtDNA content suggesting heightened sensitivity to PM-induced OS during this life stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Stability of corneal topography and wavefront aberrations in young Singaporeans.

    PubMed

    Zhu, Mingxia; Collins, Michael J; Yeo, Anna C H

    2013-09-01

    The aim was to investigate the differences between and variations across time in corneal topography and ocular wavefront aberrations in young Singaporean myopes and emmetropes. We used a videokeratoscope and wavefront sensor to measure the ocular surface topography and wavefront aberrations of the total-eye optics in the morning, midday and late afternoon on two separate days. Topographic data were used to derive the corneal surface wavefront aberrations. Both the corneal and total wavefronts were analysed up to the fourth radial order of the Zernike polynomial expansion and were centred on the entrance pupil (5.0 mm). The participants included 12 young progressing myopes, 13 young stable myopes and 15 young age-matched emmetropes. For all subjects considered together, there were significant changes in some of the aberrations across the day, such as spherical aberration ( Z(4 0)) and vertical coma ( Z (3 - 1)) (repeated measures analysis of variance, p < 0.05). The magnitude of positive spherical aberration ( Z(4 0)) was significantly lower in the progressing myopic group than in the stable myopic (p = 0.04) and emmetropic (p = 0.02) groups. There were also significant interactions between refractive group and time of day for with and against-the-rule astigmatism ( Z(2 2)). Significantly lower fourth-order root mean square of ocular wavefront aberrations were found in the progressing myopic group compared with the stable myopes and emmetropes (p < 0.01). These differences and variations in the corneal and total aberrations may have significance for our understanding of refractive error development and for clinical applications requiring accurate wavefront measurements. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  17. Chromosomal aberrations in 2000 couples of Indian ethnicity with reproductive failure.

    PubMed

    Gada Saxena, S; Desai, K; Shewale, L; Ranjan, P; Saranath, D

    2012-08-01

    Constitutional chromosomal aberrations contribute to infertility and repeated miscarriage leading to reproductive failure in couples. These aberrations may show no obvious clinical manifestations and remain undetected across multiple generations. However, infertility or recurrent spontaneous pregnancy loss, and/or genotypic/phenotypic aberrations may be manifested in the progeny during gametogenesis. The current study was a retrospective analysis to examine the chromosomal aberrations and prevalence in 2000 couples of Indian ethnicity with reproductive failure. Cytogenetic analysis via conventional G-band karyotyping analysis was carried out on phytohaemagglutinin stimulated peripheral blood lymphocytes, cultured in RPMI1640 medium. The chromosomes were enumerated as per International System for Human Cytogenetic Nomenclature at 500-550 band resolution, and recorded in the screening sheets. Chromosomal aberrations were detected in a total of 110 (2.78%) couples, with structural chromosomal aberrations in 88 cases including reciprocal translocations in 56 cases, Robertsonian translocations in 16 cases, inversions in eight cases, deletions in three cases, derivative chromosomes in five cases and numerical chromosome aberrations in 23 cases. The study emphasizes the importance of cytogenetic work up in both the partners associated with a history of reproductive failure. Genetic counselling with an option of prenatal diagnosis should be offered to couples with chromosomal aberrations. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Dimensions of driving anger and their relationships with aberrant driving.

    PubMed

    Zhang, Tingru; Chan, Alan H S; Zhang, Wei

    2015-08-01

    The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A specific DNA probe which identifies Babesia bovis in whole blood.

    PubMed

    Petchpoo, W; Tan-ariya, P; Boonsaeng, V; Brockelman, C R; Wilairat, P; Panyim, S

    1992-05-01

    A genomic library of Babesia bovis DNA from the Mexican strain M was constructed in plasmid pUN121 and cloned in Escherichia coli. Several recombinants which hybridized strongly to radioactively labeled B. bovis genomic DNA in an in situ screening were selected and further analyzed for those which specifically hybridized to B. bovis DNA. It was found that pMU-B1 had the highest sensitivity, detecting 25 pg of purified B. bovis DNA, and 300 parasites in 10 microliters of whole infected blood, or 0.00025% parasitemia. pMU-B1 contained a 6.0 kb B. bovis DNA insert which did not cross-hybridize to Babesia bigemina, Trypanosoma evansi, Plasmodium falciparum, Anaplasma marginale, Boophilus microplus and cow DNA. In the Southern blot analysis of genomic DNA, pMU-B1 could differentiate between two B. bovis geographic isolates, Mexican strain M and Thai isolate TS4. Thus, the pMU-B1 probe will be useful in the diagnosis of Babesia infection in cattle and ticks, and in the differentiation of B. bovis strains.

  20. Current trends in electrochemical sensing and biosensing of DNA methylation.

    PubMed

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech

    2017-11-15

    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ocular wavefront aberration and refractive error in pre-school children

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Fleck, Andre; Lakshminarayanan, Vasudevan; Bobier, William R.

    2011-11-01

    Hartmann-Shack images taken from an archived collection of SureSight refractive measurements of pre-school children in Oxford County, Ontario, Canada were retrieved and re-analyzed. Higher-order aberrations were calculated over the age range of 3 to 6 years. These higher-order aberrations were compared with respect to magnitudes of ametropia. Subjects were classified as emmetropic (range -0.5 to + 0.5D), low hyperopic (+ 0.5 to +2D) and high hyperopic (+2D or more) based upon the resulting spherical equivalent. Higher-order aberrations were found to increase with higher levels of hyperopia (p < 0.01). The strongest effect was for children showing more than +2.00D of hyperopia. The correlation coefficients were small in all of the higher-order aberrations; however, they were significant (p < 0.01). These analyses indicate a weak association between refractive error and higher-order aberrations in pre-school children.

  2. Dynamic accommodation with simulated targets blurred with high order aberrations

    PubMed Central

    Gambra, Enrique; Wang, Yinan; Yuan, Jing; Kruger, Philip B.; Marcos, Susana

    2010-01-01

    High order aberrations have been suggested to play a role in determining the direction of accommodation. We have explored the effect of retinal blur induced by high order aberrations on dynamic accommodation by measuring the accommodative response to sinusoidal variations in accommodative demand (1–3 D). The targets were blurred with 0.3 and 1 μm (for a 3-mm pupil) of defocus, coma, trefoil and spherical aberration. Accommodative gain decreased significantly when 1-μm of aberration was induced. We found a strong correlation between the relative accommodative gain (and phase lag) and the contrast degradation imposed on the target at relevant spatial frequencies. PMID:20600230

  3. Aberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer

    PubMed Central

    Stefanou, Dimitra T.; Bamias, Aristotelis; Episkopou, Hara; Kyrtopoulos, Soterios A.; Likka, Maria; Kalampokas, Theodore; Photiou, Stylianos; Gavalas, Nikos; Sfikakis, Petros P.; Dimopoulos, Meletios A.; Souliotis, Vassilis L.

    2015-01-01

    Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that

  4. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples

    PubMed Central

    Arulandhu, Alfred J.; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M.; Prins, Theo W.; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B.; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara

    2017-01-01

    Abstract DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. PMID:29020743

  5. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples.

    PubMed

    Arulandhu, Alfred J; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M; Prins, Theo W; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara; Kok, Esther

    2017-10-01

    DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. © The Authors 2017. Published by Oxford University Press.

  6. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    PubMed

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  7. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    PubMed Central

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  8. Comparison of wavefront aberrations under cycloplegic, scotopic and photopic conditions using WaveScan.

    PubMed

    Fan, Rong; He, Tao; Qiu, Yan; Di, Yu-Lan; Xu, Su-yun; Li, Yao-yu

    2012-01-01

    To evaluate the differences of wavefront aberrations under cycloplegic, scotopic and photopic conditions. A total of 174 eyes of 105 patients were measured using the wavefront sensor (WaveScan® 3.62) under different pupil conditions: cycloplegic 8.58 ± 0.54 mm (6.4 mm - 9.5 mm), scotopic 7.53 ± 0.69 mm (5.7 mm - 9.1 mm) and photopic 6.08 ± 1.14 mm (4.1 mm - 8.8 mm). The pupil diameter, standard Zernike coefficients, root mean square of higher-order aberrations and dominant aberrations were compared between cycloplegic and scotopic conditions, and between scotopic and photopic conditions. The pupil diameter was 7.53 ± 0.69 mm under the scotopic condition, which reached the requirement of about 6.5 mm optical zone design in the wavefront-guided surgery and prevented measurement error due to the pupil centroid shift caused by mydriatics. Pharmacological pupil dilation induced increase of standard Zernike coefficients Z(3)(-3), Z(4)(0) and Z(5)(-5). The higher-order aberrations, third-order aberration, fourth-order aberration, fifth-order aberration, sixth-order aberration, and spherical aberration increased statistically significantly, compared to the scotopic condition (P<0.010). When the scotopic condition shifted to the photopic condition, the standard Zernike coefficients Z(4)(0), Z(4)(2), Z(6)(-4), Z(6)(-2), Z(6)(2) decreased and all the higher-order aberrations decreased statistically significantly (P<0.010), demonstrating that accommodative miosis can significantly improve vision under the photopic condition. Under the three conditions, the vertical coma aberration appears the most frequently within the dominant aberrations without significant effect by pupil size variance, and the proportion of spherical aberrations decreased with the decrease of the pupil size. The wavefront aberrations are significantly different under cycloplegic, scotopic and photopic conditions. Using the wavefront sensor (VISX WaveScan) to measure scotopic wavefront aberrations is

  9. TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses.

    PubMed

    Kotsiou, Eleni; Okosun, Jessica; Besley, Caroline; Iqbal, Sameena; Matthews, Janet; Fitzgibbon, Jude; Gribben, John G; Davies, Jeffrey K

    2016-07-07

    Donor T-cell immune responses can eradicate lymphomas after allogeneic hematopoietic stem cell transplantation (AHSCT), but can also damage healthy tissues resulting in harmful graft-versus-host disease (GVHD). Next-generation sequencing has recently identified many new genetic lesions in follicular lymphoma (FL). One such gene, tumor necrosis factor receptor superfamily 14 (TNFRSF14), abnormal in 40% of FL patients, encodes the herpes virus entry mediator (HVEM) which limits T-cell activation via ligation of the B- and T-lymphocyte attenuator. As lymphoma B cells can act as antigen-presenting cells, we hypothesized that TNFRSF14 aberrations that reduce HVEM expression could alter the capacity of FL B cells to stimulate allogeneic T-cell responses and impact the outcome of AHSCT. In an in vitro model of alloreactivity, human lymphoma B cells with TNFRSF14 aberrations had reduced HVEM expression and greater alloantigen-presenting capacity than wild-type lymphoma B cells. The increased immune-stimulatory capacity of lymphoma B cells with TNFRSF14 aberrations had clinical relevance, associating with higher incidence of acute GVHD in patients undergoing AHSCT. FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to reduce harmful GVHD after transplantation. Importantly, this study is the first to demonstrate the impact of an acquired genetic lesion on the capacity of tumor cells to stimulate allogeneic T-cell immune responses which may have wider consequences for adoptive immunotherapy strategies. © 2016 by The American Society of Hematology.

  10. Aberrant Salience, Self-Concept Clarity, and Interview-Rated Psychotic-Like Experiences

    PubMed Central

    Cicero, David C.; Docherty, Anna R.; Becker, Theresa M.; Martin, Elizabeth A.; Kerns, John G.

    2014-01-01

    Many social-cognitive models of psychotic-like symptoms posit a role for self-concept and aberrant salience. Previous work has shown that the interaction between aberrant salience and self-concept clarity is associated with self-reported psychotic-like experiences. In the current research with two structured interviews, the interaction between aberrant salience and self-concept clarity was found to be associated withinterview-rated psychotic-like experiences. The interaction was associated withpsychotic-like experiences composite scores, delusional ideation, grandiosity, and perceptual anomalies. In all cases, self-concept clarity was negatively associated with psychotic-like experiences at high levels of aberrant salience, but unassociated with psychotic-like experiences at low levels of aberrant salience. The interaction was specific to positive psychotic-like experiences and not present for negative or disorganized ratings. The interaction was not mediated by self-esteem levels. These results provide further evidence that aberrant salience and self-concept clarity play an important role in the generation of psychotic-like experiences. PMID:25102085

  11. Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma

    PubMed Central

    Mehdi, Ali; Riazalhosseini, Yasser

    2017-01-01

    Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC. PMID:28812986

  12. Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma.

    PubMed

    Mehdi, Ali; Riazalhosseini, Yasser

    2017-08-16

    Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau ( VHL ) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1 , SETD2 and BAP1 , are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.

  13. Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs.

    PubMed

    Morin, Alexander M; Gatev, Evan; McEwen, Lisa M; MacIsaac, Julia L; Lin, David T S; Koen, Nastassja; Czamara, Darina; Räikkönen, Katri; Zar, Heather J; Koenen, Karestan; Stein, Dan J; Kobor, Michael S; Jones, Meaghan J

    2017-01-01

    Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing.

  14. Recurrent branchial sinus tract with aberrant extension.

    PubMed

    Barret, J P

    2004-01-01

    Second branchial cysts are the commonest lesions among congenital lateral neck anomalies. Good knowledge of anatomy and embryology are necessary for proper treatment. Surgical treatment involves resection of all branchial remnants, which extend laterally in the neck, medial to the sternocleidomastoid muscle with cranial extension to the pharynx and ipsilateral tonsillar fosa. However, infections and previous surgery can distort anatomy, making the approach to branchial anomalies more difficult. We present a case of a 17-year-old patient who presented with a second branchial tract anomaly with an aberrant extension to the midline and part of the contralateral neck. Previous surgical interventions and chronic infections may have been the primary cause for this aberrant tract. All head and neck surgeons should bear in mind that aberrant presentations may exist when reoperating on chronic branchial cysts fistulas.

  15. Chromosomal aberrations in peripheral lymphocytes of train engine drivers.

    PubMed

    Nordenson, I; Mild, K H; Järventaus, H; Hirvonen, A; Sandström, M; Wilén, J; Blix, N; Norppa, H

    2001-07-01

    Studies of Swedish railway employees have indicated that railroad engine drivers have an increased cancer morbidity and incidence of chronic lymphatic leukemia. The drivers are exposed to relatively high magnetic fields (MF), ranging from a few to over a hundred microT. Although the possible genotoxic potential of MF is unclear, some earlier studies have indicated that occupational exposure to MF may increase chromosome aberrations in blood lymphocytes. Since an increased level of chromosomal aberrations has been suggested to predict elevated cancer risk, we performed a cytogenetic analysis on cultured (48 h) peripheral lymphocytes of Swedish train engine drivers. A pilot study of 18 engine drivers indicated a significant difference in the frequency of cells with chromosomal aberrations (gaps included or excluded) in comparison with seven concurrent referents (train dispatchers) and a control group of 16 office workers. The engine drivers had about four times higher frequency of cells with chromosome-type aberrations (excluding gaps) than the office workers (P < 0.01) and the dispatchers (P < 0.05). Seventy-eight percent of the engine drivers showed at least one cell per 100 with chromosome-type aberrations compared with 29% among the dispatchers and 31% among the office workers. In a follow-up study, another 30 engine drivers showed an increase (P < 0.05) in the frequency of cells with chromosome-type aberrations (gaps excluded) as compared with 30 referent policemen. Sixty percent of the engine drivers had one or more cells (per 100 cells) with chromosome-type aberrations compared with 30% among the policemen. In conclusion, the results of the two studies support the hypothesis that exposure to MF at mean intensities of 2-15 microT can induce chromosomal damage. Copyright 2001 Wiley-Liss, Inc.

  16. In vivo longitudinal chromatic aberration of pseudophakic eyes.

    PubMed

    Siedlecki, Damian; Jóźwik, Agnieszka; Zając, Marek; Hill-Bator, Aneta; Turno-Kręcicka, Anna

    2014-02-01

    To present the results of longitudinal chromatic aberration measurements on two groups of pseudophakic eyes in comparison to healthy eyes. The longitudinal chromatic aberration of the eye, defined as chromatic difference of refraction with disabled accommodation, was measured with the use of a visual refractometer with a custom-designed target illuminator consisting of a narrow-band RGB diode (blue λb = 470 ± 15 nm; green λg = 525 ± 18 nm; red λr = 660 ± 10 nm). The measurements were performed on nine eyes implanted with AcrySof IQ SN60WF, 14 eyes implanted with AcrySof SA60AT, and 10 phakic eyes under cycloplegia. The mean values of the longitudinal chromatic aberration between 470 and 660 nm for the control group was 1.12 ± 0.14 D. For SA60AT group, it was 1.45 ± 0.42 D whereas for SN60WF it was 1.17 ± 0.52 D. The statistical test showed significant difference between SA60AT and the control group (p < 0.05) and no significant difference between SN60WF and the control groups (p = 0.64). The study showed that the longitudinal chromatic aberration in vivo can be easily and reliably estimated with an adapted visual refractometer. The two groups of pseudophakic eyes measured in this study showed different values of chromatic aberration. Its magnitude for SA60AT group was significantly larger than for the control group whereas for SN60WF the difference was not significant. The optical material used for intraocular lens design may have significant influence on the magnitude of the chromatic aberration of the pseudophakic eye, and therefore on its optical and visual performance in polychromatic light.

  17. Modified Matching Ronchi Test to Visualize Lens Aberrations

    ERIC Educational Resources Information Center

    Hassani, Kh; Ziafi, H. Hooshmand

    2011-01-01

    We introduce a modification to the matching Ronchi test to visualize lens aberrations with simple and inexpensive equipment available in educational optics labs. This method can help instructors and students to observe and estimate lens aberrations in real time. It is also a semi-quantitative tool for primary tests in research labs. In this work…

  18. Sextupole system for the correction of spherical aberration

    DOEpatents

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  19. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  20. Persistence of Early Emerging Aberrant Behavior in Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Green, Vanessa A.; O'Reilly, Mark; Itchon, Jonathan; Sigafoos, Jeff

    2005-01-01

    This study examined the persistence of early emerging aberrant behavior in 13 preschool children with developmental disabilities. The severity of aberrant behavior was assessed every 6 months over a 3-year period. Teachers completed the assessments using the Aberrant Behavior Checklist [Aman, M. G., & Singh, N. N. (1986). "Aberrant…

  1. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  2. A model of distributed phase aberration for deblurring phase estimated from scattering.

    PubMed

    Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2010-01-01

    Correction of aberration in ultrasound imaging uses the response of a point reflector or its equivalent to characterize the aberration. Because a point reflector is usually unavailable, its equivalent is obtained using statistical methods, such as processing reflections from multiple focal regions in a random medium. However, the validity of methods that use reflections from multiple points is limited to isoplanatic patches for which the aberration is essentially the same. In this study, aberration is modeled by an offset phase screen to relax the isoplanatic restriction. Methods are developed to determine the depth and phase of the screen and to use the model for compensation of aberration as the beam is steered. Use of the model to enhance the performance of the noted statistical estimation procedure is also described. Experimental results obtained with tissue-mimicking phantoms that implement different models and produce different amounts of aberration are presented to show the efficacy of these methods. The improvement in b-scan resolution realized with the model is illustrated. The results show that the isoplanatic patch assumption for estimation of aberration can be relaxed and that propagation-path characteristics and aberration estimation are closely related.

  3. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells.

    PubMed

    Rajabi, H; Tagde, A; Alam, M; Bouillez, A; Pitroda, S; Suzuki, Y; Kufe, D

    2016-12-15

    Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.

  4. Chromosome aberrations in the blood lymphocytes of astronauts after space flight.

    PubMed

    George, K; Durante, M; Wu, H; Willingham, V; Badhwar, G; Cucinotta, F A

    2001-12-01

    Cytogenetic analysis of the lymphocytes of astronauts provides a direct measurement of space radiation damage in vivo, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. Chromosome exchanges were measured in the blood lymphocytes of eight crew members after their respective space missions, using fluorescence in situ hybridization (FISH) with chromosome painting probes. Significant increases in aberrations were observed after the long-duration missions. The in vivo dose was derived from the frequencies of translocations and total exchanges using calibration curves determined before flight, and the RBE was estimated by comparison with individually measured physical absorbed doses. The values for average RBE were compared to the average quality factor (Q) from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. The ratio of aberrations identified as complex was slightly higher after flight, which is thought to be an indication of exposure to high-LET radiation. To determine whether the frequency of complex aberrations measured in metaphase spreads after exposure to high-LET radiation was influenced by a cell cycle delay, chromosome damage was analyzed in prematurely condensed chromosome samples collected from two crew members before and after a short-duration mission. The frequency of complex exchanges after flight was higher in prematurely condensed chromosomes than in metaphase cells for one crew member.

  5. Chromosome aberrations in the blood lymphocytes of astronauts after space flight

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Wu, H.; Willingham, V.; Badhwar, G.; Cucinotta, F. A.

    2001-01-01

    Cytogenetic analysis of the lymphocytes of astronauts provides a direct measurement of space radiation damage in vivo, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. Chromosome exchanges were measured in the blood lymphocytes of eight crew members after their respective space missions, using fluorescence in situ hybridization (FISH) with chromosome painting probes. Significant increases in aberrations were observed after the long-duration missions. The in vivo dose was derived from the frequencies of translocations and total exchanges using calibration curves determined before flight, and the RBE was estimated by comparison with individually measured physical absorbed doses. The values for average RBE were compared to the average quality factor (Q) from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. The ratio of aberrations identified as complex was slightly higher after flight, which is thought to be an indication of exposure to high-LET radiation. To determine whether the frequency of complex aberrations measured in metaphase spreads after exposure to high-LET radiation was influenced by a cell cycle delay, chromosome damage was analyzed in prematurely condensed chromosome samples collected from two crew members before and after a short-duration mission. The frequency of complex exchanges after flight was higher in prematurely condensed chromosomes than in metaphase cells for one crew member.

  6. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    PubMed Central

    van Haaften, Gijs; Vastenhouw, Nadine L.; Nollen, Ellen A. A.; Plasterk, Ronald H. A.; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect the germ line against DNA double-strand breaks. Besides known DNA-repair proteins such as the C. elegans orthologs of TopBP1, RPA2, and RAD51, eight genes previously unassociated with a double-strand-break response were identified. Knockdown of these genes increased sensitivity to ionizing radiation and camptothecin and resulted in increased chromosomal nondisjunction. All genes have human orthologs that may play a role in human carcinogenesis. PMID:15326288

  7. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.

    PubMed

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita

    2017-07-01

    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R 2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R 2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R 2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R 2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  8. Surgical and healing changes to ocular aberrations following refractive surgery

    NASA Astrophysics Data System (ADS)

    Straub, Jochen; Schwiegerling, Jim

    2003-07-01

    Purpose: To measure ocular aberrations before and at several time periods after LASIK surgery to determine the change to the aberration structure of the eye. Methods: A Shack-Hartmann wavefront sensor was used to measure 88 LASIK patients pre-operatively and at 1 week and 12 months following surgery. Reconstructed wavefront errors are compared to look at induced differences. Manifest refraction was measured at 1 week, 1 month, 3 months, 6 months and 12 months following surgery. Sphere, cylinder, spherical aberration, and pupil diameter are analyzed. Results: A dramatic elevation in spherical aberration is seen following surgery. This elevation appears almost immediately and remains for the duration of the study. A temporary increase in pupil size is seen following surgery. Conclusions: LASIK surgery dramatically reduces defocus and astigmatism in the eye, but simultaneously increases spherical aberration levels. This increase occurs at the time of surgery and is not an effect of the healing response.

  9. Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Ji; Mu, Guo-Guang; Wang, Zhao-Qi; Wang-Yan

    2006-06-01

    Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correlation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.

  10. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  11. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans.

    PubMed

    Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki

    2009-02-01

    Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.

  12. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer

    PubMed Central

    Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya

    2017-01-01

    Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed. PMID:28440489

  13. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer.

    PubMed

    Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya

    2017-06-01

    Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed.

  14. Wavefront aberration changes caused by a gradient of increasing accommodation stimuli

    PubMed Central

    Zhou, X-Y; Wang, L; Zhou, X-T; Yu, Z-Q

    2015-01-01

    Purpose The aim of this study was to investigate the wavefront aberration changes in human eyes caused by a gradient of increasing accommodation stimuli. Design This is a prospective, single-site study. Methods Healthy volunteers (n=22) aged 18–28 years whose refraction states were emmetropia or mild myopia, with astigmatism <1 diopter (D), were included in this study. After dilating the right pupil with 0.5% phenylephrine drops, the wavefront aberration of the right eye was measured continuously either without or with 1, 2, 3, 4, 5, or 6D accommodation stimuli (WFA1000B psychophysical aberrometer). The root mean square (RMS) values of the total wavefront aberrations, higher-order aberrations, and 35 individual Zernike aberrations under different accommodation stimuli were calculated and compared. Results The average induced accommodations using 1, 2, 3, 4, 5, or 6D accommodation stimuli were 0.848, 1.626, 2.375, 3.249, 4.181, or 5.085 D, respectively. The RMS of total wavefront aberrations, as well as higher-order aberrations, showed no significant effects with 1–3 D accommodation stimuli, but increased significantly under 4, 5, and 6 D accommodation stimuli compared with relaxed accommodation. Zernike coefficients of significantly decreased with increasing levels of accommodation. Conclusion Higher-order wavefront aberrations in human eyes changed with increased accommodation. These results are consistent with Schachar's accommodation theory. PMID:25341432

  15. Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model.

    PubMed

    Liu, Shiyuan; Xu, Shuang; Wu, Xiaofei; Liu, Wei

    2012-06-18

    This paper proposes an iterative method for in situ lens aberration measurement in lithographic tools based on a quadratic aberration model (QAM) that is a natural extension of the linear model formed by taking into account interactions among individual Zernike coefficients. By introducing a generalized operator named cross triple correlation (CTC), the quadratic model can be calculated very quickly and accurately with the help of fast Fourier transform (FFT). The Zernike coefficients up to the 37th order or even higher are determined by solving an inverse problem through an iterative procedure from several through-focus aerial images of a specially designed mask pattern. The simulation work has validated the theoretical derivation and confirms that such a method is simple to implement and yields a superior quality of wavefront estimate, particularly for the case when the aberrations are relatively large. It is fully expected that this method will provide a useful practical means for the in-line monitoring of the imaging quality of lithographic tools.

  16. [Corn plant DNA methylation pattern changes upon fractional UV-C irradiation].

    PubMed

    Kravets, A P; Sokolova, D A; Vengzhen, G S; Grodzinskiĭ, D M

    2013-01-01

    Relationship of changes of methylation pattern of functionally different parts of DNA and chromosomal aberration yield was studied at the conditions of the fractionating of UV-C irradiation. Combination of restriction analysis (Hpall, MspI, MboI enzymes) with the subsequent raising of PCR (internal transcribed space ITS1, 1TS4 and inter simple sequence repeat - ISSR, 14b primers) was used. The got results testify to the changes in methylation pattern of satellite and transcription active part of DNA atan irradiation in the mode of fractionating and depending on fraction time ranges. The role of the methylation DNA pattern change in development of radiation damage and induction of organism protective reactions was discussed.

  17. Retroviral DNA Integration Directed by HIV Integration Protein in Vitro

    NASA Astrophysics Data System (ADS)

    Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert

    1990-09-01

    Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.

  18. An aberrant carotid artery in the temporal bone with fatal complication.

    PubMed

    Kimura, Yurika; Makino, Nao; Kobayashi, Hitome; Kitamura, Ken

    2016-06-01

    We report the case of an 84-year-old female presenting with an aberrant ICA with cerebral air embolization caused by Eustachian tube air inflation (ETAI). High pressure of air inflation developed because of an aberrant ICA blocking the tympanic orifice of the Eustachian tube, with release of the high-pressure air into the aberrant ICA. It must be kept in mind that complications may occur not only during transtympanic treatment, but also in any treatment, such as ETAI, in aberrant ICA cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The pitfalls of platform comparison: DNA copy number array technologies assessed

    PubMed Central

    2009-01-01

    Background The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance. Results By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms. Conclusion Although there are substantial differences in the design, density, and number of replicate probes, the

  20. Lesion Generation Through Ribs Using Histotripsy Therapy Without Aberration Correction

    PubMed Central

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A.

    2012-01-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction. PMID:22083767

  1. Lesion generation through ribs using histotripsy therapy without aberration correction.

    PubMed

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A

    2011-11-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction.

  2. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  3. Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion.

    PubMed

    Ganier, Olivier; Schnerch, Dominik; Nigg, Erich A

    2018-06-01

    Centrosome aberrations disrupt tissue architecture and may confer invasive properties to cancer cells. Here we show that structural centrosome aberrations, induced by overexpression of either Ninein-like protein (NLP) or CEP131/AZI1, sensitize polarized mammalian epithelia to basal cell extrusion. While unperturbed epithelia typically dispose of damaged cells through apical dissemination into luminal cavities, certain oncogenic mutations cause a switch in directionality towards basal cell extrusion, raising the potential for metastatic cell dissemination. Here we report that NLP-induced centrosome aberrations trigger the preferential extrusion of damaged cells towards the basal surface of epithelial monolayers. This switch in directionality from apical to basal dissemination coincides with a profound reorganization of the microtubule cytoskeleton, which in turn prevents the contractile ring repositioning that is required to support extrusion towards the apical surface. While the basal extrusion of cells harbouring NLP-induced centrosome aberrations requires exogenously induced cell damage, structural centrosome aberrations induced by excess CEP131 trigger the spontaneous dissemination of dying cells towards the basal surface from MDCK cysts. Thus, similar to oncogenic mutations, structural centrosome aberrations can favour basal extrusion of damaged cells from polarized epithelia. Assuming that additional mutations may promote cell survival, this process could sensitize epithelia to disseminate potentially metastatic cells. © 2018 The Authors.

  4. Ocular wavefront aberrations in patients with macular diseases

    PubMed Central

    Bessho, Kenichiro; Bartsch, Dirk-Uwe G.; Gomez, Laura; Cheng, Lingyun; Koh, Hyoung Jun; Freeman, William R.

    2009-01-01

    Background There have been reports that by compensating for the ocular aberrations using adaptive optical systems it may be possible to improve the resolution of clinical retinal imaging systems beyond what is now possible. In order to develop such system to observe eyes with retinal disease, understanding of the ocular wavefront aberrations in individuals with retinal disease is required. Methods 82 eyes of 66 patients with macular disease (epiretinal membrane, macular edema, macular hole etc.) and 85 eyes of 51 patients without retinal disease were studied. Using a ray-tracing wavefront device, each eye was scanned at both small and large pupil apertures and Zernike coefficients up to 6th order were acquired. Results In phakic eyes, 3rd order root mean square errors (RMS) in macular disease group were statistically greater than control, an average of 12% for 5mm and 31% for 3mm scan diameters (p<0.021). In pseudophakic eyes, there also was an elevation of 3rd order RMS, on average 57% for 5mm and 51% for 3mm scan diameters (p<0.031). Conclusion Higher order wavefront aberrations in eyes with macular disease were greater than in control eyes without disease. Our study suggests that such aberrations may result from irregular or multiple reflecting retinal surfaces. Modifications in wavefront sensor technology will be needed to accurately determine wavefront aberration and allow correction using adaptive optics in eyes with macular irregularities. PMID:19574950

  5. Distinct functions of human RecQ helicases during DNA replication.

    PubMed

    Urban, Vaclav; Dobrovolna, Jana; Janscak, Pavel

    2017-06-01

    DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Foci of aberrant crypts in the colons of mice and rats exposed to carcinogens associated with foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudek, B.; Bird, R.P.; Bruce, W.R.

    1989-03-01

    Aberrant crypt foci can be identified in the colons of rodents treated 3 wk earlier with azoxymethane, a known colon carcinogen. These crypts can easily be visualized in the unsectioned methylene blue-stained colons under light microscopy, where they are distinguished by their increased size, more prominent epithelial cells, and pericryptal space. They occur as single aberrant crypts or as two, three, or four aberrant crypts in a cluster. We compared the reported ability of carcinogens associated with the human diet to induce colon cancer with the measured rate of induction of aberrant crypts in female CF1 mice and Sprague-Dawley rats.more » The carcinogens used were 1,2-dimethylhydrazine, methyl nitrosourea, N-nitrosodimethylamine, benzo(a)pyrene, aflatoxin B1, 2-amino-6-methyldipyrido(1,2-alpha:3',2'-d)imidazole, 2-amino-3-methylimidazo(4,5-P)quinoline, 2-amino-3,4-dimethylimidazo(4,5-P)quinoline, and 3-amino-1-methyl-5H-pyrido(4,3-b)indole. Graded doses of these compounds were given to the animals by gavage twice with a 4-day interval, and the animals were terminated 3 wk later. All colon carcinogens induced aberrant crypts in a dose-related fashion. N-Nitrosodimethylamine and 3-amino-1-methyl-5H-pyrido(4,3-b)indole, carcinogenic compounds that do not induce colon cancer, did not induce them. The ability of the studied compounds to induce aberrant crypts was species specific; e.g., aflatoxin B1 and 2-amino-3,4-dimethylimidazo(4,5-P)quinoline induce about 20 times more in rats than mice. This relationship was consistent with their reported ability to induce colon cancer in these species. Results of the present study support the use of the aberrant crypt assays to screen colon-specific carcinogens and to study the process of colon carcinogenesis.« less

  7. Expression of aberrant CD markers in acute leukemia: a study of 100 cases with immunophenotyping by multiparameter flowcytometry.

    PubMed

    Sarma, Anupam; Hazarika, Munlima; Das, Debabrata; Kumar Rai, Avdhesh; Sharma, Jagannath Dev; Bhuyan, Chidananda; Kataki, Amal Chandra

    2015-01-01

    Acute leukemia is a heterogenous disease having diverse phenotypes. Immunophenotyping by flowcytometry is essential for diagnosis of myeloid and lymphoid subtypes. Aberrant phenotype incidence is controversial and dissimilar results have been reported by different groups. Purpose of the study was to determine the incidence of aberrant phenotypes in North East Indian patients with acute leukemia. We analysed a total of 100 cases (AML = 36, ALL = 61, MPAL = 3) by multiparametric flow cytometry using an acute panel of monoclonal antibodies (MoAbs). The MoAbs were selected to identify differentiation-associated antigens of both myeloid and lymphoid lineages. Aberrant phenotypes were found in 21 (58.3%) cases of AML, 36 (59.2%) cases of B-ALL and 6 (66.7%) cases of T-ALL. CD7 was the most frequent lymphoid associated antigen found in 33% of AML cases while CD117 was the myeloid antigen most frequently detected in ALL (54%) cases. Aberrant expression of CD 117 is highly significant by Fischer's exact test (P< 0.0001). We conclude that aberrant phenotypes are present in a great majority of acute leukemia patients of North East India. Future studies will be directed to correlate of these markers with prognosis and therapeutic response.

  8. Platinum-Based Chemotherapy Induces Methylation Changes in Blood DNA Associated with Overall Survival in Patients with Ovarian Cancer.

    PubMed

    Flanagan, James M; Wilson, Angela; Koo, Chail; Masrour, Nahal; Gallon, John; Loomis, Erick; Flower, Kirsty; Wilhelm-Benartzi, Charlotte; Hergovich, Alexander; Cunnea, Paula; Gabra, Hani; Braicu, Elena Ioana; Sehouli, Jalid; Darb-Esfahani, Silvia; Vanderstichele, Adriaan; Vergote, Ignace; Kreuzinger, Caroline; Castillo-Tong, Dan Cacsire; Wisman, G Bea A; Berns, Els Mjj; Siddiqui, Nadeem; Paul, James; Brown, Robert

    2017-05-01

    Purpose: DNA damage repair can lead to epigenetic changes. DNA mismatch repair proteins bind to platinum DNA adducts and at sites of DNA damage can recruit the DNA methylating enzyme DNMT1, resulting in aberrant methylation. We hypothesised that DNA damage repair during platinum-based chemotherapy may cause aberrant DNA methylation in normal tissues of patients such as blood. Experimental Design: We used Illumina 450k methylation arrays and bisulphite pyrosequencing to investigate methylation at presentation and relapse in blood DNA from patients with ovarian cancer enrolled in the SCOTROC1 trial ( n = 247) and in a cohort of ovarian tumor DNA samples collected at first relapse ( n = 46). We used an ovarian cancer cell line model to investigate the role of the DNA mismatch repair gene MLH1 in platinum-induced methylation changes. Results: Specific CpG methylation changes in blood at relapse are observed following platinum-based chemotherapy and are associated with patient survival, independent of other clinical factors [hazard ratio, 3.7; 95% confidence interval, 1.8-7.6, P = 2.8 × 10 -4 ]. Similar changes occur in ovarian tumors at relapse, also associated with patient survival (hazard ratio, 2.6; 95% confidence interval, 1.0-6.8, P = 0.048). Using an ovarian cancer cell line model, we demonstrate that functional mismatch repair increases the frequency of platinum-induced methylation. Conclusions: DNA methylation in blood at relapse following chemotherapy, and not at presentation, is informative regarding survival of patients with ovarian cancer. Functional DNA mismatch repair increases the frequency of DNA methylation changes induced by platinum. DNA methylation in blood following chemotherapy could provide a noninvasive means of monitoring patients' epigenetic responses to treatment without requiring a tumor biopsy. Clin Cancer Res; 23(9); 2213-22. ©2016 AACR . ©2016 American Association for Cancer Research.

  9. Interocular high-order corneal wavefront aberration symmetry

    NASA Astrophysics Data System (ADS)

    Lombardo, Marco; Lombardo, Giuseppe; Serrao, Sebastiano

    2006-04-01

    The interocular symmetry of the high-order corneal wavefront aberration (WA) in a population of myopic eyes was analyzed before and after photorefractive keratectomy (PRK). The preoperative and one-year postoperative corneal aberration data (from third to seventh Zernike orders) for 4- and 7-mm pupils from right and left eyes were averaged after correcting for the effects of enantiomorphism to test for mirror symmetry. Also, the mean corneal point-spread function (PSF) for right and left eyes was calculated. Preoperatively, a moderate and high degree of correlation in the high-order corneal WA between eyes was found for 4- and 7-mm pupils, respectively. Myopic PRK did not significantly change the interocular symmetry of corneal high-order aberrations. No discernible differences in the orientation PSF between eyes were observed one year after surgery in comparison with the preoperative state over the two analyzed pupils.

  10. The aberration characteristics in a misaligned three-mirror anastigmatic (TMA) system

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Fan; Ye, Yutang

    2016-09-01

    To realize the efficient alignment of the TMA system, the aberrations in a misaligned TMA system had been analyzed theoretically in this paper. Firstly, based on the nodal aberration theory (NAT), the aberration types and characteristics in the misaligned TMA system had been concluded; Secondly, a simulation validation had been carried out to testify the analysis results, the simulation results validates the aberration characteristics; Finally, the alignment procedures were determined according to the aberration characteristics: adjust the axial spacing of the mirrors in terms of Z9 in the center field of TMA system first; and then, adjust the decenters and tilts of the mirrors in terms of Z5 - Z8 in the edge field of TMA system. This method is helpful for the alignment of the TMA telescope.

  11. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  12. EG-05COMBINATION OF GENE COPY GAIN AND EPIGENETIC DEREGULATION ARE ASSOCIATED WITH THE ABERRANT EXPRESSION OF A STEM CELL RELATED HOX-SIGNATURE IN GLIOBLASTOMA

    PubMed Central

    Kurscheid, Sebastian; Bady, Pierre; Sciuscio, Davide; Samarzija, Ivana; Shay, Tal; Vassallo, Irene; Van Criekinge, Wim; Domany, Eytan; Stupp, Roger; Delorenzi, Mauro; Hegi, Monika

    2014-01-01

    We previously reported a stem cell related HOX gene signature associated with resistance to chemo-radiotherapy (TMZ/RT- > TMZ) in glioblastoma. However, underlying mechanisms triggering overexpression remain mostly elusive. Interestingly, HOX genes are neither involved in the developing brain, nor expressed in normal brain, suggestive of an acquired gene expression signature during gliomagenesis. HOXA genes are located on CHR 7 that displays trisomy in most glioblastoma which strongly impacts gene expression on this chromosome, modulated by local regulatory elements. Furthermore we observed more pronounced DNA methylation across the HOXA locus as compared to non-tumoral brain (Human methylation 450K BeadChip Illumina; 59 glioblastoma, 5 non-tumoral brain sampes). CpG probes annotated for HOX-signature genes, contributing most to the variability, served as input into the analysis of DNA methylation and expression to identify key regulatory regions. The structural similarity of the observed correlation matrices between DNA methylation and gene expression in our cohort and an independent data-set from TCGA (106 glioblastoma) was remarkable (RV-coefficient, 0.84; p-value < 0.0001). We identified a CpG located in the promoter region of the HOXA10 locus exerting the strongest mean negative correlation between methylation and expression of the whole HOX-signature. Applying this analysis the same CpG emerged in the external set. We then determined the contribution of both, gene copy aberration (CNA) and methylation at the selected probe to explain expression of the HOX-signature using a linear model. Statistically significant results suggested an additive effect between gene dosage and methylation at the key CpG identified. Similarly, such an additive effect was also observed in the external data-set. Taken together, we hypothesize that overexpression of the stem-cell related HOX signature is triggered by gain of trisomy 7 and escape from compensatory DNA methylation at

  13. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  14. Aberrant cervical vasculature anastomosis as cause of neck pain and successful treatment with embolization technique.

    PubMed

    He, Lucy; Ladner, Travis R; Cobb, Mark; Mocco, J

    2016-01-27

    We report a patient with non-dermatomal radiating neck pain without focal neurologic deficit. Traditional workup could not identify an anatomic or biomechanical cause. Imaging showed a deep cervical vessel centered in the region of pain. Angiography later identified an aberrant anastomosis of this vessel with the occipital artery. Subsequent endovascular embolization of this arterial trunk resulted in complete pain relief. 2016 BMJ Publishing Group Ltd.

  15. [Identification of a novel aberrant spliceosome of MPL gene (MPLL391-V392ins12)in patients with myeloproliferative neoplasms].

    PubMed

    Tian, Ruiyuan; Chen, Xiuhua; Chang, Jianmei; Zhang, Na; Tan, Yanhong; Xu, Zhifang; Ren, Fanggang; Zhao, Junxia; Pan, Jie; Guo, Haixiu; Wang, Xiaojuan; Wang, Hongwei

    2015-07-01

    To identify the MPL L391-V392ins12 spliceosome and analyze its frequencies in patients with myeloproliferative neoplasms (MPN). MPL aberrant spliceosome was identified through reverse transcription polymerase chain reaction (RT-PCR)combined with cloning sequencing. The mutation of this spliceosome in 248 MPN patients and 200 normal people was determined by allele-specific polymerase chain reaction (AS-PCR). A novel aberrant spliceosome of MPL gene (MPL L391-V392ins12)was identified, i.e. 36 bp intron was retained between exon7 and exon8, and there were 12 amino acids (EGLKLLPADIPV)inserted. MPL L391-V392ins12 mutation was detected in 19 (7.66%)of the 248 patients with MPN, including 1 (1.92%) of 52 patients with PV, 14 (9.66%) of 145 with ET, and 4 (7.84%) of 51 with PMF. And the mutation was not detected in the group of 200 normal people. MPL L391-V392ins12 spliceosome is an aberrant spliceosome present in the MPN. It can be detected in PV, ET and PMF, and more frequently in ET and PMF. This mutation may play an important role in the process of MPN.

  16. Corneal Aberrations in Former Preterm Infants: Results From The Wiesbaden Prematurity Study.

    PubMed

    Fieß, Achim; Schuster, Alexander K; Kölb-Keerl, Ruth; Knuf, Markus; Kirchhof, Bernd; Muether, Philipp S; Bauer, Jacqueline

    2017-12-01

    To compare corneal aberrations in former preterm infants to that of full-term infants. A prospective cross-sectional study was carried out measuring the corneal shape with Scheimpflug imaging in former preterm infants of gestational age (GA) ≤32 weeks and full-term infants with GA ≥37 weeks now being aged between 4 to 10 years. The main outcome measures were corneal aberrations including astigmatism (Zernike: Z2-2; Z22), coma (Z3-1; Z31), trefoil (Z3-3; Z33), spherical aberration (Z40) and root-mean square of higher-order aberrations (RMS HOA). Multivariable analysis was performed to assess independent associations of gestational age groups and of retinopathy of prematurity (ROP) occurrence with corneal aberrations adjusting for sex and age at examination. A total of 259 former full-term and 226 preterm infants with a mean age of 7.2 ± 2.0 years were included in this study. Statistical analysis revealed an association of extreme prematurity (GA ≤28 weeks) with higher-order and lower-order aberrations of the total cornea. Vertical coma was higher in extreme prematurity (P < 0.001), due to the shape of the anterior corneal surface, while there was no association with trefoil and spherical aberration. ROP was not associated with higher-order aberrations when adjusted for gestational age group. This study demonstrated that specific corneal aberrations were associated with extreme prematurity rather than with ROP occurrence.

  17. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer

    PubMed Central

    Marzese, Diego M.; Hoon, Dave S.B.

    2015-01-01

    DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping were recently developed and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers. PMID:25797072

  18. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less

  19. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    DOE PAGES

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; ...

    2015-10-28

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less

  20. Detecting Aberrant Response Patterns in the Rasch Model. Rapport 87-3.

    ERIC Educational Resources Information Center

    Kogut, Jan

    In this paper, the detection of response patterns aberrant from the Rasch model is considered. For this purpose, a new person fit index, recently developed by I. W. Molenaar (1987) and an iterative estimation procedure are used in a simulation study of Rasch model data mixed with aberrant data. Three kinds of aberrant response behavior are…

  1. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    PubMed Central

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  2. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    PubMed

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  3. Quality factor analysis for aberrated laser beam

    NASA Astrophysics Data System (ADS)

    Ghafary, B.; Alavynejad, M.; Kashani, F. D.

    2006-12-01

    The quality factor of laser beams has attracted considerable attention and some different approaches have been reported to treat the problem. In this paper we analyze quality factor of laser beam and compare the effect of different aberrations on beam quality by expanding pure phase term of wavefront in terms of Zernike polynomials. Also we analyze experimentally the change of beam quality for different Astigmatism aberrations, and compare theoretical results with experimentally results. The experimental and theoretical results are in good agreement.

  4. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    PubMed

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-07

    The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  5. Optical aberrations measurement with a low cost optometric instrument

    NASA Astrophysics Data System (ADS)

    Furlan, Walter D.; Muñoz-Escrivá, L.; Pons, A.; Martínez-Corral, M.

    2002-08-01

    A simple experimental method for measuring optical aberrations of a single lens is proposed. The technique is based on the use of an optometric instrument employed for the assessment of the refractive state of the eye: the retinoscope. Experimental results for spherical aberration and astigmatism are obtained.

  6. Analysis of nodal aberration properties in off-axis freeform system design.

    PubMed

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.

  7. Identifying CpG sites associated with eczema via random forest screening of epigenome-scale DNA methylation.

    PubMed

    Quraishi, B M; Zhang, H; Everson, T M; Ray, M; Lockett, G A; Holloway, J W; Tetali, S R; Arshad, S H; Kaushal, A; Rezwan, F I; Karmaus, W

    2015-01-01

    The prevalence of eczema is increasing in industrialized nations. Limited evidence has shown the association of DNA methylation (DNA-M) with eczema. We explored this association at the epigenome-scale to better understand the role of DNA-M. Data from the first generation (F1) of the Isle of Wight (IoW) birth cohort participants and the second generation (F2) were examined in our study. Epigenome-scale DNA methylation of F1 at age 18 years and F2 in cord blood was measured using the Illumina Infinium HumanMethylation450 Beadchip. A total of 307,357 cytosine-phosphate-guanine sites (CpGs) in the F1 generation were screened via recursive random forest (RF) for their potential association with eczema at age 18. Functional enrichment and pathway analysis of resulting genes were carried out using DAVID gene functional classification tool. Log-linear models were performed in F1 to corroborate the identified CpGs. Findings in F1 were further replicated in F2. The recursive RF yielded 140 CpGs, 88 of which showed statistically significant associations with eczema at age 18, corroborated by log-linear models after controlling for false discovery rate (FDR) of 0.05. These CpGs were enriched among many biological pathways, including pathways related to creating transcriptional variety and pathways mechanistically linked to eczema such as cadherins, cell adhesion, gap junctions, tight junctions, melanogenesis, and apoptosis. In the F2 generation, about half of the 83 CpGs identified in F1 showed the same direction of association with eczema risk as in F1, of which two CpGs were significantly associated with eczema risk, cg04850479 of the PROZ gene (risk ratio (RR) = 15.1 in F1, 95 % confidence interval (CI) 1.71, 79.5; RR = 6.82 in F2, 95 % CI 1.52, 30.62) and cg01427769 of the NEU1 gene (RR = 0.13 in F1, 95 % CI 0.03, 0.46; RR = 0.09 in F2, 95 % CI 0.03, 0.36). Via epigenome-scaled analyses using recursive RF followed by log-linear models, we identified 88

  8. Effects of ocular aberrations on contrast detection in noise.

    PubMed

    Liang, Bo; Liu, Rong; Dai, Yun; Zhou, Jiawei; Zhou, Yifeng; Zhang, Yudong

    2012-08-06

    We use adaptive optics (AO) techniques to manipulate the ocular aberrations and elucidate the effects of these ocular aberrations on contrast detection in a noisy background. The detectability of sine wave gratings at frequencies of 4, 8, and 16 circles per degree (cpd) was measured in a standard two-interval force-choice staircase procedure against backgrounds of various levels of white noise. The observer's ocular aberrations were either corrected with AO or left uncorrected. In low levels of external noise, contrast detection thresholds are always lowered by AO correction, whereas in high levels of external noise, they are generally elevated by AO correction. Higher levels of external noise are required to make this threshold elevation observable when signal spatial frequencies increase from 4 to 16 cpd. The linear-amplifier-model fit shows that mostly sampling efficiency and equivalent noise both decrease with AO correction. Our findings indicate that ocular aberrations could be beneficial for contrast detection in high-level noises. The implications of these findings are discussed.

  9. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    PubMed

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed

  10. Sources of the monochromatic aberrations induced in human eyes after laser refractive surgery

    NASA Astrophysics Data System (ADS)

    Porter, Jason

    Laser in-situ keratomileusis (LASIK) procedures correct the eye's defocus and astigmatism but also introduce higher order monochromatic aberrations. Little is known about the origins of these induced aberrations. The advent of wavefront sensor technology has made it possible to measure accurately and quickly the aberrations of normal and postoperative LASIK eyes. The goal of this thesis was to exploit this technology to better understand some of the potential mechanisms by which aberrations could be introduced during LASIK. A first step towards investigating these sources was to characterize the aberration changes in post-LASIK eyes. Higher order rms wavefront error increased after conventional and customized LASIK surgery. On average, spherical aberration approximately doubled, and significant changes in vertical and horizontal coma were observed. We examined two sources of postoperative aberrations: the creation of a microkeratome flap and the subsequent laser ablation. Higher order rms increased slightly and there was a wide variation in the response of individual Zernike modes after cutting a flap. The majority of induced spherical aberration was due to the laser ablation and not the flap-cut. Aberrations are also induced by static and dynamic decentrations of the patient's pupil. We found that ablations were typically decentered in the superotemporal direction due to shifts in pupil center location between aberration measurement (dilated) and surgical (undilated) conditions in customized LASIK eyes. There was a weak correlation between the horizontal coma theoretically induced by this offset and that measured postoperatively. Finally, dynamic eye movements during the procedure induce higher order aberrations. We found that the most problematic decentrations during LASIK are relatively slow drifts in eye position. An eye-tracking system with a 2-Hz closed-loop bandwidth could compensate for most eye movements during LASIK. One solution for reducing the

  11. Studies of DNA and chromosome damage in skin fibroblasts and blood lymphocytes from psoriasis patients treated with 8-methoxypsoralen and UVA irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredberg, A.; Lambert, B.; Lindblad, A.

    1983-08-01

    Exposure of human lymphocytes and skin fibroblasts in vitro to a single, clinically used dose of PUVA, i.e., 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 0.9-4 J/cm2 of longwave ultraviolet radiation (UVA), lead to the formation of DNA damage as determined by alkaline elution, and to chromosome aberrations and sister chromatid exchanges (SCE). When lymphocyte-enriched plasma was obtained from psoriasis patients 2 h after oral intake of 8-MOP and then UVA irradiated (1.8-3.6 J/cm2) in vitro, an increased frequency of chromosome aberrations and SCE was observed. Normal levels of chromosome aberrations and SCE were found in lymphocytes of psoriasis patients aftermore » 3-30 weeks of PUVA treatment in vivo. A small but statistically significant increase in the SCE frequency was observed in the lymphocytes of psoriasis patients treated for 1-6 years with PUVA (mean 18.0 SCE/cell) as compared with before PUVA (mean 15.8, p less than 0.05). Skin fibroblasts of psoriasis patients analyzed 5 years after the start of PUVA treatment showed a normal number of SCE but a high fraction of filter-retained DNA in the alkaline elution assay, suggesting the presence of cross-linked DNA.« less

  12. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  13. Variability of higher order wavefront aberrations after blinks.

    PubMed

    Hagyó, Krisztina; Csákány, Béla; Lang, Zsolt; Németh, János

    2009-01-01

    To investigate the rapid alterations in value and fluctuation of ocular wavefront aberrations during the interblink interval. Forty-two volunteers were examined with a WASCA Wavefront Analyzer (Carl Zeiss Meditec AG) using modified software. For each subject, 150 images (about 6 frames/second) were registered during an interblink period. The outcome measures were spherical and cylindrical refraction and root-mean-square (RMS) values for spherical, coma, and total higher order aberrations. Fifth order polynomials were fitted to the data and the fluctuation trends of the parameters were determined. We calculated the prevalence of the trends with an early local minimum (type 1). The tear production status (Schirmer test) and tear film break-up time (BUT) were also measured. Fluctuation trends with an early minimum (type 1) were significantly more frequent than trends with an early local maximum (type 2) for total higher order aberrations RMS (P=.036). The incidence of type 1 fluctuation trends was significantly greater for coma and total higher order aberrations RMS (P=.041 and P=.003, respectively) in subjects with normal results in the BUT or Schirmer test than in those with abnormal results. In the normal subjects, the first minimum of type 1 RMS fluctuation trends occurred, on average, between 3.8 and 5.1 seconds after blink. We suggest that wavefront aberrations can be measured most accurately at the time after blink when they exhibit a decreased degree of dispersion. We recommend that a snapshot of wavefront measurements be made 3 to 5 seconds after blink.

  14. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    PubMed

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  15. Aberrant alternative splicing is another hallmark of cancer.

    PubMed

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  16. Hepatitis virus infection affects DNA methylation in mice with humanized livers.

    PubMed

    Okamoto, Yasuyuki; Shinjo, Keiko; Shimizu, Yasuhiro; Sano, Tsuyoshi; Yamao, Kenji; Gao, Wentao; Fujii, Makiko; Osada, Hirotaka; Sekido, Yoshitaka; Murakami, Shuko; Tanaka, Yasuhito; Joh, Takashi; Sato, Shinya; Takahashi, Satoru; Wakita, Takaji; Zhu, Jingde; Issa, Jean-Pierre J; Kondo, Yutaka

    2014-02-01

    Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas. Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells after hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (urokinase-type plasminogen activator/severe combined immunodeficient mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV, liver tissues were collected, and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of hepatocellular carcinomas and adjacent nontumor liver tissues from patients. No reproducible changes in DNA methylation were observed after infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected urokinase-type plasminogen activator/severe combined immunodeficient mice. There were changes in 160 ± 63 genes in HBV-infected and 237 ± 110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in hepatocellular carcinoma samples from patients compared with nontumor tissues. Expression of Ifng, which is expressed by natural killer cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced after administration of an inhibitor of natural killer cell function (anti-asialo GM1). In chimeric mice with humanized livers

  17. DNA Damage Repair and the Emerging Role of Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapeutics.

    PubMed

    Rabenau, Karen; Hofstatter, Erin

    2016-07-01

    As a result of improved understanding of DNA repair mechanisms, poly(ADP-ribose) polymerase inhibitors (PARPi) are increasingly recognized to play an important therapeutic role in the treatment of cancer. The aim of this article is to provide a review of PARPi function in DNA damage repair and synthetic lethality and to demonstrate how these mechanisms can be exploited to provide new PARPi-based therapies to patients with solid tumors. Literature from a range of sources, including PubMed and MEDLINE, were searched to identify recent reports regarding DNA damage repair and PARPi. DNA damage repair is central to cellular viability. The family of poly(ADP-ribose) polymerase proteins play multiple intracellular roles in DNA repair, but function primarily in the resolution of repair of single-strand DNA breaks. Insights through the discovery of germline BRCA1/2 mutations led to the understanding of synthetic lethality and the potential therapeutic role of PARPi in the treatment of cancer. Further understanding of DNA damage repair and the concept of BRCA-like tumors have catalyzed PARPi clinical investigation in multiple oncologic settings. PARPi hold great promise in the treatment of solid tumors, both as monotherapy and in combination with other cancer therapeutics. Multiple PARPi clinical trials are currently underway. Further understanding of aberrant DNA repair mechanisms in the germline and in the tumor genome will allow clinicians and researchers to apply PARPi most strategically in the era of personalized medicine. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  18. Genome-wide screening of DNA methylation associated with lymph node metastasis in esophageal squamous cell carcinoma.

    PubMed

    Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji

    2017-06-06

    Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC.

  19. Genome-wide screening of DNA methylation associated with lymph node metastasis in esophageal squamous cell carcinoma

    PubMed Central

    Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji

    2017-01-01

    Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC. PMID:28465481

  20. Identifying pelagic fish eggs in the southeast Yucatan Peninsula using DNA barcodes.

    PubMed

    Leyva-Cruz, E; Vásquez-Yeomans, L; Carrillo, L; Valdez-Moreno, M

    2016-12-01

    In the waters surrounding Banco Chinchorro in the Mexican Caribbean are spawning and nursery areas for many types of fish. In this natural environment, as opposed to under controlled laboratory conditions, it is almost impossible to link an individual egg to the adult that laid it. This makes identifying the species of the eggs difficult. However, DNA barcodes have made this easier. In the present study, 300 eggs were processed for molecular analysis, from which 139 sequences were obtained. We identified 42 taxa (33 species with their binomial names), 35 genera, and 24 families. The identified eggs included those from Ariomma melanum, which is the first recording of this species in the Mexican Caribbean. Eggs from economically important fish species were also identified, including frigate tuna (Auxis thazard), crevalle jack (Caranx hippos), common dolphinfish (Coryphaena hippurus), sailfish (Istiophorus platypterus), white marlin (Kajikia albida), skipjack tuna (Katsuwonus pelamis), blackfin tuna (Thunnus atlanticus), and swordfish (Xiphias gladius). We have also described new morphological characteristics and captured photographs for 21 species, as well as obtained new information about spawning locality and time for 16 species. This valuable information will provide the basis to develop more effective conservation measures for sustainable fisheries and protection of the Mesoamerican Barrier Reef System.

  1. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions.

    PubMed

    Villegas, Eloy A; Artal, Pablo

    2003-02-01

    To measure the wavefront aberration at different locations in progressive-power lenses (PPL's) isolated and in situ (PPL's plus eye). A Hartmann-Shack wavefront sensor was used to measure progressive-power lenses and human eyes either independently or in combination. In each selected zone, the lens was placed and tilted accordingly to simulate natural viewing conditions. We measured 21 relevant locations across an isolated PPL (plano lens of power addition of 2 D). In six of the locations, the wavefront aberration of the eye plus PPL were obtained in two ways: (1) by direct measurement of the system and (2) by adding the individual wavefront aberrations of the eye and the lens for each appropriate zone. In every case, we obtained the wavefront aberration as Zernike polynomials expansions, the root mean square error, the point-spread function, and the Strehl ratio. Along the corridor of the PPL, third-order coma and trefoil, and astigmatism were the dominant aberrations. In areas of the PPL outside the corridor, astigmatism increased, whereas other aberrations remained similar to the lens center. Small differences were found between the direct and calculated methods used to obtain the wavefront aberration of the eye with the lens, and the possible sources of errors were discussed. In some lenses zones, the aberrations of the lens may be compensated by the particular aberrations of the eye, yielding improved optical performance over that present in the lens alone. We designed and built a wavefront sensor to perform spatially resolved aberration measurements in ophthalmic lenses, in particular in PPL's, either isolated or in combination with the eye. The aberrations appearing in the PPL were compared with those in normal aged eyes.

  2. Holliday Triangle Hunter (HolT Hunter): Efficient Software for Identifying Low Strain DNA Triangular Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, W.B.

    2012-04-16

    Synthetic DNA nanostructures are typically held together primarily by Holliday junctions. One of the most basic types of structures possible to assemble with only DNA and Holliday junctions is the triangle. To date, however, only equilateral triangles have been assembled in this manner - primarily because it is difficult to figure out what configurations of Holliday triangles have low strain. Early attempts at identifying such configurations relied upon calculations that followed the strained helical paths of DNA. Those methods, however, were computationally expensive, and failed to find many of the possible solutions. I have developed a new approach to identifyingmore » Holliday triangles that is computationally faster, and finds well over 95% of the possible solutions. The new approach is based on splitting the problem into two parts. The first part involves figuring out all the different ways that three featureless rods of the appropriate length and diameter can weave over and under one another to form a triangle. The second part of the computation entails seeing whether double helical DNA backbones can fit into the shape dictated by the rods in such a manner that the strands can cross over from one domain to the other at the appropriate spots. Structures with low strain (that is, good fit between the rods and the helices) on all three edges are recorded as promising for assembly.« less

  3. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    PubMed

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  4. S-adenosylmethionine levels regulate the Schwann cell DNA methylome

    PubMed Central

    Varela-Rey, Marta; Iruarrizaga-Lejarreta, Marta; Lozano, Juan José; Aransay, Ana María; Fernandez, Agustín F.; Lavin, José Luis; Mósen-Ansorena, David; Berdasco, María; Turmaine, Marc; Luka, Zigmund; Wagner, Conrad; Lu, Shelly C.; Esteller, Manel; Mirsky, Rhona; Jessen, Kristján R.; Fraga, Mario F.; Martínez-Chantar, María L.; Mato, José M.; Woodhoo, Ashwin

    2014-01-01

    SUMMARY Axonal myelination is essential for rapid saltatory impulse conduction in the nervous system, and malformation or destruction of myelin sheaths leads to motor and sensory disabilities. DNA methylation is an essential epigenetic modification during mammalian development, yet its role in myelination remains obscure. Here, using high-resolution methylome maps, we show that DNA methylation could play a key gene regulatory role in peripheral nerve myelination and that S-adenosylmethionine (SAMe), the principal methyl donor in cytosine methylation, regulates the methylome dynamics during this process. Our studies also point to a possible role of SAMe in establishing the aberrant DNA methylation patterns in a mouse model of diabetic neuropathy, implicating SAMe in the pathogenesis of this disease. These critical observations establish a link between SAMe and DNA methylation status in a defined biological system, and provides a novel mechanism that could direct methylation changes during cellular differentiation and in diverse pathological situations. PMID:24607226

  5. Analysis of Fecal DNA Methylation to Detect Gastrointestinal Neoplasia

    PubMed Central

    Tanaka, Noriaki; Cullings, Harry M.; Sun, Dong-Sheng; Sasamoto, Hiromi; Uchida, Takuyuki; Koi, Minoru; Nishida, Naoshi; Naomoto, Yoshio; Boland, C. Richard; Matsubara, Nagahide; Goel, Ajay

    2009-01-01

    Background The development of noninvasive screening tests is important to reduce mortality from gastrointestinal neoplasia. We sought to develop such a test by analysis of DNA methylation from exfoliated cancer cells in feces. Methods We first analyzed methylation of the RASSF2 and SFRP2 gene promoters from 788 primary gastric and colorectal tissue specimens to determine whether methylation patterns could act as stage-dependent biomarkers of gastrointestinal tumorigenesis. Next, we developed a novel strategy that uses single-step modification of DNA with sodium bisulfite and fluorescence polymerase chain reaction methodology to measure aberrant methylation in fecal DNA. Methylation of the RASSF2 and SFRP2 promoters was analyzed in 296 fecal samples obtained from a variety of patients, including 21 with gastric tumors, 152 with colorectal tumors, and 10 with non-neoplastic or inflammatory lesions in the gastrointestinal lumen. Results Analysis of DNA from tissues showed presence of extensive methylation in both gene promoters exclusively in advanced gastric and colorectal tumors. The assay successfully identified one or more methylated markers in fecal DNA from 57.1% of patients with gastric cancer, 75.0% of patients with colorectal cancer, and 44.4% of patients with advanced colorectal adenomas, but only 10.6% of subjects without neoplastic or active diseases (difference, gastric cancer vs undiseased  =  46.5%, 95% confidence interval (CI)  =  24.6% to 68.4%, P < .001; difference, colorectal cancer vs undiseased = 64.4%, 95% CI = 53.5% to 75.2%, P < .001; difference, colorectal adenoma vs undiseased = 33.8%, 95% CI = 14.2% to 53.4%, P < .001). Conclusions Methylation of the RASSF2 and SFRP2 promoters in fecal DNA is associated with the presence of gastrointestinal tumors relative to non-neoplastic conditions. Our novel fecal DNA methylation assay provides a possible means to noninvasively screen not only for colorectal tumors but also for gastric tumors

  6. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses

    DOE PAGES

    Seiboth, Frank; Wittwer, Felix; Scholz, Maria; ...

    2018-01-01

    Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with σ¯ = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without priormore » lens characterization but simply based on the derived lens deformation. As a result, the performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.« less

  7. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors.

    PubMed

    Stefanoli, Michele; La Rosa, Stefano; Sahnane, Nora; Romualdi, Chiara; Pastorino, Roberta; Marando, Alessandro; Capella, Carlo; Sessa, Fausto; Furlan, Daniela

    2014-01-01

    The occurrence and clinical relevance of DNA hypermethylation and global hypomethylation in pancreatic neuroendocrine tumours (PanNETs) are still unknown. We evaluated the frequency of both epigenetic alterations in PanNETs to assess the relationship between methylation profiles and chromosomal instability, tumour phenotypes and prognosis. In a well-characterized series of 56 sporadic G1 and G2 PanNETs, methylation-sensitive multiple ligation-dependent probe amplification was performed to assess hypermethylayion of 33 genes and copy number alterations (CNAs) of 53 chromosomal regions. Long interspersed nucleotide element-1 (LINE-1) hypomethylation was quantified by pyrosequencing. Unsupervised hierarchical clustering allowed to identify a subset of 22 PanNETs (39%) exhibiting high frequency of gene-specific methylation and low CNA percentages. This tumour cluster was significantly associated with stage IV (p = 0.04) and with poor prognosis in univariable analysis (p = 0.004). LINE-1 methylation levels in PanNETs were significantly lower than in normal samples (p < 0.01) and were approximately normally distributed. 12 tumours (21%) were highly hypomethylated, showing variable levels of CNA. Interestingly, only 5 PanNETs (9%) were observed to show simultaneously LINE-1 hypomethylation and high frequency of gene-specific methylation. LINE-1 hypomethylation was strongly correlated with advanced stage (p = 0.002) and with poor prognosis (p < 0.0001). In the multivariable analysis, low LINE-1 methylation status and methylation clusters were the only independent significant predictors of outcome (p = 0.034 and p = 0.029, respectively). The combination of global DNA hypomethylation and gene hypermethylation analyses may be useful to define distinct subsets of PanNETs. Both alterations are common in PanNETs and could be directly correlated with tumour progression. © 2014 S. Karger AG, Basel.

  8. [Prenatal diagnostics of chromosomal aberrations Czech Republic: 1994-2007].

    PubMed

    Gregor, V; Sípek, A; Sípek, A; Horácek, J '; Langhammer, P; Petrzílková, L; Calda, P

    2009-02-01

    An analysis of prenatal diagnostics efficiency of selected types of chromosomal aberrations in the Czech Republic in 2007. Update of 1994-2007 data according to particular selected diagnoses. Retrospective epidemiological analysis of pre- and postnatal chromosomal aberrations diagnostics and its efficiency. Data on pre- and postnatally diagnosed birth defects in the Czech Republic during 1994-2007 were used. Data on prenatally diagnosed birth defects (and for terminated pregnancies) were collected from particular departments of prenatal diagnostics, medical genetics and ultrasound diagnostics in the Czech Republic, data on birth defects in births from the National Birth Defects Register (Institute for Health Information and Statistics). Total numbers over the period under the study, mean incidences of selected types of chromosomal aberrations and mean prenatal diagnostics efficiencies were analyzed. Following chromosomal aberrations were studied: Down, Edwards, Patau, Turner and Klinefelter syndromes and syndromes 47,XXX and 47,XYY. A relative proportion of Down, Edwards and Patau syndromes as well as other autosomal and gonosomal aberration is presented in figures. Recently, trisomies 13, 18 and 21 present around 70% of all chromosomal aberrations in selectively aborted fetuses, in other pregnancies, "other chromosomal aberrations" category (mostly balanced reciprocal translocations and inversions) present more than 2/3 of all diagnoses. During the period under the study, following total numbers, mean relative incidences (per 10,000 live births, in brackets) and mean prenatal diagnostics efficiency (in %) were found in following chromosomal syndromes: Down syndrome 2,244 (16.58) and 63.37%, Edwards syndrome 521 (3.85) and 79.93%, Patau syndrome 201 (1.49) and 68.87%, Turner syndrome 380 (2.81) and 79.89%, 47,XXX syndrome 61 (0.45) and 59.74%, Klinefelter syndrome 163 (1.20) and 73.65% and 47,XYY syndrome 22 (0.16) and 54.76%. The study gives updated results of

  9. The human intra-S checkpoint response to UVC-induced DNA damage.

    PubMed

    Kaufmann, William K

    2010-05-01

    The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.

  10. Integrative Analysis of DNA Methylation and Gene Expression Data Identifies EPAS1 as a Key Regulator of COPD

    PubMed Central

    Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Feronjy, Robert; Spira, Avrum; Schadt, Eric E.; Powell, Charles A.; Zhu, Jun

    2015-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. PMID:25569234

  11. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD.

    PubMed

    Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Foronjy, Robert F; Feronjy, Robert; Spira, Avrum; Schadt, Eric E; Powell, Charles A; Zhu, Jun

    2015-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.

  12. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    PubMed

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  13. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  14. Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients.

    PubMed

    Segers, H; Kersseboom, R; Alders, M; Pieters, R; Wagner, A; van den Heuvel-Eibrink, M M

    2012-11-01

    In 9-17% of Wilms tumour patients a predisposing syndrome is present, in particular WT1-associated syndromes and overgrowth syndromes. Constitutional WT1 mutations or epigenetic changes on chromosome 11p15 have also been described in Wilms tumour patients without phenotypic abnormalities. Thus, the absence of phenotypic abnormalities does not exclude the presence of a genetic predisposition, suggesting that more Wilms tumour patients may have a constitutional abnormality. Therefore, we investigated the frequency of constitutional aberrations in combination with phenotype. Clinical genetic assessment, as well as molecular analysis of WT1 and locus 11p15 was offered to a single-centre cohort of 109 childhood Wilms tumour patients. Twelve patients (11%) had a WT1 aberration and eight patients (8%) had an 11p15 aberration. Of the 12 patients with a WT1 aberration, four had WAGR syndrome (Wilms tumor, aniridia, genitourinary malformations and mental retardation), one had Denys-Drash syndrome, four had genitourinary anomalies without other syndromic features and three had bilateral disease with stromal-predominant histology at young age without congenital anomalies. Of the eight patients with an 11p15 aberration, four had Beckwith-Wiedemann syndrome (BWS), two had minor features of BWS and two had no stigmata of BWS or hemihypertrophy. Constitutional WT1 or 11p15 aberrations are frequent in Wilms tumour patients and careful clinical assessment can identify the majority of these patients. Therefore, we would recommend offering clinical genetic counselling to all Wilms tumour patients, as well as molecular analysis to patients with clinical signs of a syndrome or with features that may indicate a constitutional WT1 or 11p15 aberration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Modulation of DNA Damage and Repair Pathways by Human Tumour Viruses

    PubMed Central

    Hollingworth, Robert; Grand, Roger J

    2015-01-01

    With between 10% and 15% of human cancers attributable to viral infection, there is great interest, from both a scientific and clinical viewpoint, as to how these pathogens modulate host cell functions. Seven human tumour viruses have been identified as being involved in the development of specific malignancies. It has long been known that the introduction of chromosomal aberrations is a common feature of viral infections. Intensive research over the past two decades has subsequently revealed that viruses specifically interact with cellular mechanisms responsible for the recognition and repair of DNA lesions, collectively known as the DNA damage response (DDR). These interactions can involve activation and deactivation of individual DDR pathways as well as the recruitment of specific proteins to sites of viral replication. Since the DDR has evolved to protect the genome from the accumulation of deleterious mutations, deregulation is inevitably associated with an increased risk of tumour formation. This review summarises the current literature regarding the complex relationship between known human tumour viruses and the DDR and aims to shed light on how these interactions can contribute to genomic instability and ultimately the development of human cancers. PMID:26008701

  16. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  17. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells

    PubMed Central

    Bock, Christoph; Beerman, Isabel; Lien, Wen-Hui; Smith, Zachary D.; Gu, Hongcang; Boyle, Patrick; Gnirke, Andreas; Fuchs, Elaine; Rossi, Derrick J.; Meissner, Alexander

    2012-01-01

    DNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages. DNA methylation changes were locus-specific and relatively modest in magnitude. They frequently overlapped with lineage-associated transcription factors and their binding sites, suggesting that DNA methylation may protect cells from aberrant transcription factor activation. DNA methylation and gene expression provided complementary information, and combining the two enabled us to infer the cellular differentiation hierarchy of the blood lineage directly from genomic data. In summary, these results demonstrate that in vivo differentiation of adult stem cells is associated with small but informative changes in the genomic distribution of DNA methylation. PMID:22841485

  18. Evaluation of the mtDNA-COII Region Based Species Specific Assay for Identifying Members of the Anopheles culicifacies Species Complex

    PubMed Central

    Manonmani, Arulsamy Mary; Mathivanan, Ashok Kumar; Sadanandane, Candassamy; Jambulingam, Purushothaman

    2013-01-01

    Background: Anopheles culicifacies, a major malarial vector has been recognized as a complex of five sibling species, A, B, C, D and E. These sibling species exhibit varied vectorial capacity, host specificity and susceptibility to malarial parasites/ insecticides. In this study, a PCR assay developed earlier for distinguishing the five individual species was validated on samples of An. culicifacies collected from various parts of India. Methods: The samples were initially screened using the rDNA-ITS2 region based primers which categorised the samples into either A/D group or B/C/E group. A proportion of samples belonging to each group were subjected to the mtDNA-COII PCR assay for identifying individual species. Results: Among the 615 samples analysed by rDNA-ITS2 PCR assay, 303 were found to belong to A/D group and 299 to B/C/E group while 13 turned negative. Among 163 samples belonging to A/D group, only one sample displayed the profile characteristic of species A and among the 176 samples falling in the B/C/E group, 51 were identified as species B, 14 as species C and 41 as species E respectively by the mtDNA-COII PCR assay. Samples exhibiting products diagnostic of B/C/E, when subjected to PCR-RFLP assay identified 15 samples as species E. Conclusion: Validation of the mtDNA-COII PCR assay on large number of samples showed that this technique cannot be used universally to distinguish the 5 members of this species complex, as it has been designed based on minor/single base differences observed in the COII region. PMID:24409441

  19. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterationsmore » in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory

  20. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative