Science.gov

Sample records for identifies chromosomal regions

  1. Region-specific cosmids and STRPs identified by chromosome microdissection and FISH

    SciTech Connect

    Flejter, W.L.; Bennett-Baker, P.; Barcroft, C.L.

    1995-01-20

    A strategy for identifying short tandem repeat (STR)-containing cosmid clones from a specific chromosomal region is described. The approach is based an the use of uncloned, PCR-amplified DNA derived from chromosome microdissection and pooled groups of STR sequences as hybridization probes to screen a cosmid library. Cosmid clones that display a positive signal common to both hybridizations are then characterized for repeat length polymorphisms. This method has been applied to chromosome bands 17q12-q21, a region that includes a gene (BRCA1) involved in early onset familial breast and ovarian cancer. Of 1536 chromosome 17-specific cosmid clones tested, 38 were identified by the dual screening procedure. Fluorescence in situ hybridization revealed that 19 cosmids originated from the microdissected target region. Thirteen of the 19 cosmids were mapped between markers flanking the BRCA1 region and selected for further characterization. Tetranucleotide repeats were identified in 10 of these 13 cosmids. Primers designed for each marker were tested on a panel of 80 CEPH parents for allele sizes, frequencies, and observed heterozygosities. From these studies six polymorphic and one nonpolymorphic STRs were identified. A similar approach should be applicable for screening whole genomic or chromosome-specific cosmid libraries in efforts to isolate new polymorphic markers from any chromosomal region of interest. 32 refs., 3 figs., 2 tabs.

  2. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat.

    PubMed

    Le Gouis, J; Bordes, J; Ravel, C; Heumez, E; Faure, S; Praud, S; Galic, N; Remoué, C; Balfourier, F; Allard, V; Rousset, M

    2012-02-01

    The modification of flowering date is considered an important way to escape the current or future climatic constraints that affect wheat crops. A better understanding of its genetic bases would enable a more efficient and rapid modification through breeding. The objective of this study was to identify chromosomal regions associated with earliness in wheat. A 227-wheat core collection chosen to be highly contrasted for earliness was characterized for heading date. Experiments were conducted in controlled conditions and in the field for 3 years to break down earliness in the component traits: photoperiod sensitivity, vernalization requirement and narrow-sense earliness. Whole-genome association mapping was carried out using 760 molecular markers and taking into account the five ancestral group structure. We identified 62 markers individually associated to earliness components corresponding to 33 chromosomal regions. In addition, we identified 15 other significant markers and seven more regions by testing marker pair interactions. Co-localizations were observed with the Ppd-1, Vrn-1 and Rht-1 candidate genes. Using an independent set of lines to validate the model built for heading date, we were able to explain 34% of the variation using the structure and the significant markers. Results were compared with already published data using bi-parental populations giving an insight into the genetic architecture of flowering time in wheat.

  3. Genomewide Scan for Anal Atresia in Swine Identifies Linkage and Association With a Chromosome Region on Sus scrofa Chromosome 1

    PubMed Central

    Wiedemann, Sabine; Fries, Ruedi; Thaller, Georg

    2005-01-01

    Anal atresia is a rare and severe disorder in swine occurring with an incidence of 0.1–1.0%. A whole-genome scan based on affected half-sibs was performed to identify susceptibility loci for anal atresia. The analysis included 27 families with a total of 95 animals and 65 affected piglets among them. Animals were genotyped for 126 microsatellite markers distributed across the 18 autosomal porcine chromosomes and the X chromosome, covering an estimated 2080 cM. Single-point and multipoint nonparametric linkage scores were calculated using the computer package ALLEGRO 1.0. Significant linkage results were obtained for chromosomes 1, 3, and 12. Markers on these chromosomes and additionally on chromosomes for which candidate genes have been postulated in previous studies were subjected to the transmission disequilibrium test (TDT). The test statistic exceeded the genomewide significance level for adjacent markers SW1621 (P = 7 × 10−7) and SW1902 (P = 3 × 10−3) on chromosome 1, supporting the results of the linkage analysis. A specific haplotype associated with anal atresia that could prove useful for selection against the disorder was revealed. Suggestive linkage and association were also found for markers S0081 on chromosome 9 and SW957 on chromosome 12. PMID:16020797

  4. A Family-Based Paradigm to Identify Candidate Chromosomal Regions for Isolated Congenital Diaphragmatic Hernia

    PubMed Central

    Arrington, Cammon B.; Bleyl, Steven B.; Matsunami, Nori; Bowles, Neil E.; Leppert, Tami I.; Demarest, Bradley L.; Osborne, Karen; Yoder, Bradley A.; Byrne, Janice L.; Schiffman, Joshua D.; Null, Donald M.; DiGeronimo, Robert; Rollins, Michael; Faix, Roger; Comstock, Jessica; Camp, Nicola J.; Leppert, Mark F.; Yost, H. Joseph; Brunelli, Luca

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is a developmental defect of the diaphragm that causes high newborn mortality. Isolated or non-syndromic CDH is considered a multifactorial disease, with strong evidence implicating genetic factors. As low heritability has been reported in isolated CDH, family-based genetic methods have yet to identify the genetic factors associated with the defect. Using the Utah Population Database, we identified distantly related patients from several extended families with a high incidence of isolated CDH. Using high-density genotyping, seven patients were analyzed by homozygosity exclusion rare allele mapping (HERAM) and phased haplotype sharing (HapShare), two methods we developed to map shared chromosome regions. Our patient cohort shared three regions not previously associated with CDH, i.e. 2q11.2-q12.1, 4p13 and 7q11.2, and two regions previously involved in CDH, i.e. 8p23.1 and 15q26.2. The latter regions contain GATA4 and NR2F2, two genes implicated in diaphragm formation in mice. Interestingly, three patients shared the 8p23.1 locus and one of them also harbored the 15q26.2 segment. No coding variants were identified in GATA4 or NR2F2, but a rare shared variant was found in intron 1 of GATA4. This work shows the role of heritability in isolated CDH. Our family-based strategy uncovers new chromosomal regions possibly associated with disease, and suggests that non-coding variants of GATA4 and NR2F2 may contribute to the development of isolated CDH. This approach could speed up the discovery of the genes and regulatory elements causing multifactorial diseases, such as isolated CDH. PMID:23165927

  5. Genome-Wide Association Study Identified a Narrow Chromosome 1 Region Associated with Chicken Growth Traits

    PubMed Central

    Zhang, Chengguang; Zhang, Rong; Tang, Jun; Nie, Qinghua; Ma, Li; Hu, Xiaoxiang; Li, Ning; Da, Yang; Zhang, Xiquan

    2012-01-01

    Chicken growth traits are important economic traits in broilers. A large number of studies are available on finding genetic factors affecting chicken growth. However, most of these studies identified chromosome regions containing putative quantitative trait loci and finding causal mutations is still a challenge. In this genome-wide association study (GWAS), we identified a narrow 1.5 Mb region (173.5–175 Mb) of chicken (Gallus gallus) chromosome (GGA) 1 to be strongly associated with chicken growth using 47,678 SNPs and 489 F2 chickens. The growth traits included aggregate body weight (BW) at 0–90 d of age measured weekly, biweekly average daily gains (ADG) derived from weekly body weight, and breast muscle weight (BMW), leg muscle weight (LMW) and wing weight (WW) at 90 d of age. Five SNPs in the 1.5 Mb KPNA3-FOXO1A region at GGA1 had the highest significant effects for all growth traits in this study, including a SNP at 8.9 Kb upstream of FOXO1A for BW at 22–48 d and 70 d, a SNP at 1.9 Kb downstream of FOXO1A for WW, a SNP at 20.9 Kb downstream of ENSGALG00000022732 for ADG at 29–42 d, a SNP in INTS6 for BW at 90 d, and a SNP in KPNA3 for BMW and LMW. The 1.5 Mb KPNA3-FOXO1A region contained two microRNA genes that could bind to messenger ribonucleic acid (mRNA) of IGF1, FOXO1A and KPNA3. It was further indicated that the 1.5 Mb GGA1 region had the strongest effects on chicken growth during 22–42 d. PMID:22359555

  6. Haplotype Kernel Association Test as a Powerful Method to Identify Chromosomal Regions Harboring Uncommon Causal Variants

    PubMed Central

    Lin, Wan-Yu; Yi, Nengjun; Lou, Xiang-Yang; Zhi, Degui; Zhang, Kui; Gao, Guimin; Tiwari, Hemant K.; Liu, Nianjun

    2014-01-01

    For most complex diseases, the fraction of heritability that can be explained by the variants discovered from genome-wide association studies is minor. Although the so-called ‘rare variants’ (minor allele frequency [MAF] < 1%) have attracted increasing attention, they are unlikely to account for much of the ‘missing heritability’ because very few people may carry these rare variants. The genetic variants that are likely to fill in the ‘missing heritability’ include uncommon causal variants (MAF < 5%), which are generally untyped in association studies using tagging single-nucleotide polymorphisms (SNPs) or commercial SNP arrays. Developing powerful statistical methods can help to identify chromosomal regions harboring uncommon causal variants, while bypassing the genome-wide or exome-wide next-generation sequencing. In this work, we propose a haplotype kernel association test (HKAT) that is equivalent to testing the variance component of random effects for distinct haplotypes. With an appropriate weighting scheme given to haplotypes, we can further enhance the ability of HKAT to detect uncommon causal variants. With scenarios simulated according to the population genetics theory, HKAT is shown to be a powerful method for detecting chromosomal regions harboring uncommon causal variants. PMID:23740760

  7. Sensitized phenotypic screening identifies gene dosage sensitive region on chromosome 11 that predisposes to disease in mice

    PubMed Central

    Ermakova, Olga; Piszczek, Lukasz; Luciani, Luisa; Cavalli, Florence M G; Ferreira, Tiago; Farley, Dominika; Rizzo, Stefania; Paolicelli, Rosa Chiara; Al-Banchaabouchi, Mumna; Nerlov, Claus; Moriggl, Richard; Luscombe, Nicholas M; Gross, Cornelius

    2011-01-01

    The identification of susceptibility genes for human disease is a major goal of current biomedical research. Both sequence and structural variation have emerged as major genetic sources of phenotypic variability and growing evidence points to copy number variation as a particularly important source of susceptibility for disease. Here we propose and validate a strategy to identify genes in which changes in dosage alter susceptibility to disease-relevant phenotypes in the mouse. Our approach relies on sensitized phenotypic screening of megabase-sized chromosomal deletion and deficiency lines carrying altered copy numbers of ∼30 linked genes. This approach offers several advantages as a method to systematically identify genes involved in disease susceptibility. To examine the feasibility of such a screen, we performed sensitized phenotyping in five therapeutic areas (metabolic syndrome, immune dysfunction, atherosclerosis, cancer and behaviour) of a 0.8 Mb reciprocal chromosomal duplication and deficiency on chromosome 11 containing 27 genes. Gene dosage in the region significantly affected risk for high-fat diet-induced metabolic syndrome, antigen-induced immune hypersensitivity, ApoE-induced atherosclerosis, and home cage activity. Follow up studies on individual gene knockouts for two candidates in the region showed that copy number variation in Stat5 was responsible for the phenotypic variation in antigen-induced immune hypersensitivity and metabolic syndrome. These data demonstrate the power of sensitized phenotypic screening of segmental aneuploidy lines to identify disease susceptibility genes. PMID:21204268

  8. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    PubMed Central

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  9. Identifying crossover-rich regions and their effect on meiotic homologous interactions by partitioning chromosome arms of wheat and rye.

    PubMed

    Valenzuela, Nohelia T; Perera, Esther; Naranjo, Tomás

    2013-08-01

    Chiasmata are usually formed in the distal half of cereal chromosomes. Previous studies showed that the crossover-rich region displays a more active role in homologous recognition at early meiosis than crossover-poor regions in the long arm of rye chromosome 1R, but not in the long arm of chromosome 5R. In order to determine what happens in other chromosomes of rye and wheat, we have partitioned, by wheat-rye translocations of variable-size, the distal fourth part of chromosome arms 1BS and 2BL of wheat and 1RS and 2RL of rye. Synapsis and chiasma formation in chromosome pairs with homologous (wheat-wheat or rye-rye) and homoeologous (wheat-rye) stretches, positioned distally and proximally, respectively, or vice versa, have been studied by rye chromatin labelling using fluorescence in situ hybridisation. Chromosome arm partitioning showed that the distal 12 % of 1BS form one crossover in 50 % of the cells, while the distal 6.7 % of 2RL and the distal 10.5 % of 2BL account for 94 % and 81 % of chiasmata formed in these arms. Distal homoeologous segments reduce the frequency of chiasmata and the possibility of interaction between the intercalary/proximal homologous segments. Such a reduction is related to the size of the homoeologous (translocated) segment. The effect on synapsis and chiasma formation was much lower in chromosome constructions with distal homology and proximal homoeology. All of these data support that among wheat and rye chromosomes, recombining regions are more often involved in homologous recognition and pairing than crossover-poor regions.

  10. Copy-number variations in Y-chromosomal azoospermia factor regions identified by multiplex ligation-dependent probe amplification.

    PubMed

    Saito, Kazuki; Miyado, Mami; Kobori, Yoshitomo; Tanaka, Yoko; Ishikawa, Hiromichi; Yoshida, Atsumi; Katsumi, Momori; Saito, Hidekazu; Kubota, Toshiro; Okada, Hiroshi; Ogata, Tsutomu; Fukami, Maki

    2015-03-01

    Although copy-number variations (CNVs) in Y-chromosomal azoospermia factor (AZF) regions have been associated with the risk of spermatogenic failure (SF), the precise frequency, genomic basis and clinical consequences of these CNVs remain unclear. Here we performed multiplex ligation-dependent probe amplification (MLPA) analysis of 56 Japanese SF patients and 65 control individuals. We compared the results of MLPA with those of conventional sequence-tagged site PCR analyses. Eleven simple and complex CNVs, including three hitherto unreported variations, were identified by MLPA. Seven of the 11 CNVs were undetectable by conventional analyses. CNVs were widely distributed in AZF regions and shared by ~60% of the patients and ~40% of the controls. Most breakpoints resided within locus-specific repeats. The majority of CNVs, including the most common gr/gr deletion, were identified in the patient and control groups at similar frequencies, whereas simple duplications were observed exclusively in the patient group. The results imply that AZF-linked CNVs are more frequent and heterogeneous than previously reported. Non-allelic homologous recombination likely underlies these CNVs. Our data confirm the functional neutrality of the gr/gr deletion in the Japanese population. We also found a possible association between AZF-linked simple duplications and SF, which needs to be evaluated in future studies.

  11. Genome-wide association study to identify chromosomal regions associated with antibody response to Mycobacterium avium subspecies paratuberculosis in milk of Dutch Holstein-Friesians.

    PubMed

    van Hulzen, K J E; Schopen, G C B; van Arendonk, J A M; Nielen, M; Koets, A P; Schrooten, C; Heuven, H C M

    2012-05-01

    Heritability of susceptibility to Johne's disease in cattle has been shown to vary from 0.041 to 0.159. Although the presence of genetic variation involved in susceptibility to Johne's disease has been demonstrated, the understanding of genes contributing to the genetic variance is far from complete. The objective of this study was to contribute to further understanding of genetic variation involved in susceptibility to Johne's disease by identifying associated chromosomal regions using a genome-wide association approach. Log-transformed ELISA test results of 265,290 individual Holstein-Friesian cows from 3,927 herds from the Netherlands were analyzed to obtain sire estimated breeding values for Mycobacterium avium subspecies paratuberculosis (MAP)-specific antibody response in milk using a sire-maternal grandsire model with fixed effects for parity, year of birth, lactation stage, and herd; a covariate for milk yield on test day; and random effects for sire, maternal grandsire, and error. For 192 sires with estimated breeding values with a minimum reliability of 70%, single nucleotide polymorphism (SNP) typing was conducted by a multiple SNP analysis with a random polygenic effect fitting 37,869 SNP simultaneously. Five SNP associated with MAP-specific antibody response in milk were identified distributed over 4 chromosomal regions (chromosome 4, 15, 18, and 28). Thirteen putative SNP associated with MAP-specific antibody response in milk were identified distributed over 10 chromosomes (chromosome 4, 14, 16, 18, 19, 20, 21, 26, 27, and 29). This knowledge contributes to the current understanding of genetic variation involved in Johne's disease susceptibility and facilitates control of Johne's disease and improvement of health status by breeding.

  12. Family-based association analysis of 42 hereditary prostate cancer families identifies the Apolipoprotein L3 region on chromosome 22q12 as a risk locus.

    PubMed

    Johanneson, Bo; McDonnell, Shannon K; Karyadi, Danielle M; Quignon, Pascale; McIntosh, Laura; Riska, Shaun M; FitzGerald, Liesel M; Johnson, Gregory; Deutsch, Kerry; Williams, Gabrielle; Tillmans, Lori S; Stanford, Janet L; Schaid, Daniel J; Thibodeau, Stephen N; Ostrander, Elaine A

    2010-10-01

    Multiple genome-wide scans for hereditary prostate cancer (HPC) have identified susceptibility loci on nearly every chromosome. However, few results have been replicated with statistical significance. One exception is chromosome 22q, for which five independent linkage studies yielded strong evidence for a susceptibility locus in HPC families. Previously, we refined this region to a 2.53 Mb interval, using recombination mapping in 42 linked pedigrees. We now refine this locus to a 15 kb interval, spanning Apolipoprotein L3 (APOL3), using family-based association analyses of 150 total prostate cancer (PC) cases from two independent family collections with 506 unrelated population controls. Analysis of the two independent sets of PC cases highlighted single nucleotide polymorphisms (SNPs) within the APOL3 locus showing the strongest associations with HPC risk, with the most robust results observed when all 150 cases were combined. Analysis of 15 tagSNPs across the 5' end of the locus identified six SNPs with P-values < or =2 × 10(-4). The two independent sets of HPC cases highlight the same 15 kb interval at the 5' end of the APOL3 gene and provide strong evidence that SNPs within this 15 kb interval, or in strong linkage disequilibrium with it, contribute to HPC risk. Further analyses of this locus in an independent population-based, case-control study revealed an association between an SNP within the APOL3 locus and PC risk, which was not confirmed in the Cancer Genetic Markers of Susceptibility data set. This study further characterizes the 22q locus in HPC risk and suggests that the role of this region in sporadic PC warrants additional studies.

  13. Linkage and association analyses identify a candidate region for apoB level on chromosome 4q32.3 in FCHL families.

    PubMed

    Wijsman, Ellen M; Rothstein, Joseph H; Igo, Robert P; Brunzell, John D; Motulsky, Arno G; Jarvik, Gail P

    2010-06-01

    Familial combined hyperlipidemia (FCHL) is a complex trait leading to cardiovascular disease (CVD) risk. Elevated levels and size of apolipoprotein B (apoB) and low-density lipoprotein (LDL) are associated with FCHL, which is genetically heterogeneous and is likely caused by rare variants. We carried out a linkage-based genome scan of four large FCHL pedigrees for apoB level that is independent of LDL: apoB level that is adjusted for LDL level and size. Follow-up included SNP genotyping in the region with the strongest evidence of linkage. Several regions with the evidence of linkage in individual pedigrees support the rare variant model. Evidence of linkage was strongest on chromosome 4q, with multipoint analysis in one pedigree giving LOD = 3.1 with a parametric model, and a log Bayes Factor = 1.5 from a Bayesian oligogenic approach. Of the 293 SNPs spanning the implicated region on 4q, rs6829588 completely explained the evidence of linkage. This SNP accounted for 39% of the apoB phenotypic variance, with heterozygotes for this SNP having a trait value that was approximately 30% higher than that of the high-frequency homozygote, thus identifying and considerably refining a strong candidate region. These results illustrate the advantage of using large pedigrees in the search for rare variants: reduced genetic heterogeneity within single pedigrees coupled with the large number of individuals segregating otherwise-rare single variants leads to high power to implicate such variants.

  14. Genome-wide association analysis of juvenile idiopathic arthritis identifies a new susceptibility locus at chromosomal region 3q13

    PubMed Central

    Thompson, Susan D.; Marion, Miranda C.; Sudman, Marc; Ryan, Mary; Tsoras, Monica; Howard, Timothy D.; Barnes, Michael G.; Ramos, Paula S.; Thomson, Wendy; Hinks, Anne; Haas, Johannes P.; Prahalad, Sampath; Bohnsack, John F.; Wise, Carol A.; Punaro, Marilynn; Rosé, Carlos D.; Pajewski, Nicholas M.; Spigarelli, Michael; Keddache, Mehdi; Wagner, Michael; Langefeld, Carl D.; Glass, David N.

    2012-01-01

    Objective We have conducted a GWAS in a Caucasian cohort of juvenile idiopathic arthritis (JIA) patients and have previously published findings limited to autoimmune loci shared with other diseases. The goal of this study was to identify novel JIA predisposing loci using genome-wide approaches. Methods The Discovery cohort consisted of Caucasian JIA cases (814) and local controls (658) genotyped on the Affymetrix SNP 6.0 Array along with 2400 out-of-study controls. A replication study consisted of 10 SNPs genotyped in 1744 cases and 7010 controls from the US and Europe. Results Analysis within the Discovery cohort provided evidence of associations at 3q13 within C3orf1 and near CD80 (rs4688011, OR=1.37, P=1.88×10−6), and 10q21 near the gene JMJD1C [rs6479891, odds ratio (OR) =1.59, P=6.1×10−8; rs12411988, OR=1.57, P=1.16×10−7 and rs10995450, OR = 1.31, P=6.74×10−5]. Meta-analysis continued to provide evidence for association for these 4 SNPs (rs4688011, P=3.6×10−7, rs6479891, P=4.33×10−5; rs12411988, P=2.71×10−5; and rs10995450, 5.39×10−5;). Gene expression data from 68 JIA cases and 23 local controls showed cis eQTL associations for C3orf1 SNP rs4688011 (P=0.024 or P=0.034, depending on probe set) and the JMJD1C SNPs rs6479891 and rs12411988 (P=0.01 and P=0.008, respectively). A variance component liability model estimated that common SNP variation accounts for ~1/3 of JIA susceptibility. Conclusions Genetic association results and correlated gene expression findings provide evidence of association at 3q13 and 10q21 for JIA and offer novel genes as plausible candidates in disease pathology. PMID:22354554

  15. A tripartite paternally methylated region within the Gpr1-Zdbf2 imprinted domain on mouse chromosome 1 identified by meDIP-on-chip

    PubMed Central

    Hiura, Hitoshi; Sugawara, Atsushi; Ogawa, Hidehiko; John, Rosalind M.; Miyauchi, Naoko; Miyanari, Yusuke; Horiike, Tokumasa; Li, Yufeng; Yaegashi, Nobuo; Sasaki, Hiroyuki; Kono, Tomohiro; Arima, Takahiro

    2010-01-01

    The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs. PMID:20385583

  16. Identifying chromosomal selection-sweep regions in facial eczema selection-line animals using an ovine 50K-SNP array.

    PubMed

    Phua, S H; Brauning, R; Baird, H J; Dodds, K G

    2014-04-01

    Facial eczema (FE) is a hepato-mycotoxicosis found mainly in New Zealand sheep and cattle. When genetics was found to be a factor in FE susceptibility, resistant and susceptible selection lines of Romney sheep were established to enable further investigations of this disease trait. Using the Illumina OvineSNP50 BeadChip, we conducted a selection-sweep experiment on these FE genetic lines. Two analytical methods were used to detect selection signals, namely the Peddrift test (Dodds & McEwan, 1997) and fixation index FST (Weir & Hill, 2002). Of 50 975 single nucleotide polymorphism (SNP) markers tested, there were three that showed highly significant allele frequency differences between the resistant and susceptible animals (Peddrift nominal P < 0.000001). These SNP loci are located on chromosomes OAR1, OAR11 and OAR12 that coincide precisely with the three highest genomic FST peaks. In addition, there are nine less significant Peddrift SNPs (nominal P ≤ 0.000009) on OAR6 (n = 2), OAR9 (n = 2), OAR12, OAR19 (n = 2), OAR24 and OAR26. In smoothed FST (five-SNP moving average) plots, the five most prominent peaks are on OAR1, OAR6, OAR7, OAR13 and OAR19. Although these smoothed FST peaks do not coincide with the three most significant Peddrift SNP loci, two (on OAR6 and OAR19) overlap with the set of less significant Peddrift SNPs above. Of these 12 Peddrift SNPs and five smoothed FST regions, none is close to the FE candidate genes catalase and ABCG2; however, two on OAR1 and one on OAR13 fall within suggestive quantitative trait locus regions identified in a previous genome screen experiment. The present studies indicated that there are at least eight genomic regions that underwent a selection sweep in the FE lines. PMID:24521158

  17. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, T.; Pinkel, D.; Gray, J.W.

    1995-12-05

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20. 3 figs.

  18. Detection of amplified or deleted chromosomal regions

    SciTech Connect

    Stokke, Trond; Pinkel, Daniel; Gray, Joe W.

    1995-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  19. Detection Of Amplified Or Deleted Chromosomal Regions

    SciTech Connect

    Stokke, Trond , Pinkel, Daniel , Gray, Joe W.

    1997-05-27

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  20. Allelic expression imbalance screening of genes in chromosome 1q21–24 region to identify functional variants for Type 2 diabetes susceptibility

    PubMed Central

    Mondal, Ashis K.; Sharma, Neeraj K.; Elbein, Steven C.

    2013-01-01

    Type 2 diabetes (T2D)-associated SNPs are more likely to be expression quantitative trait loci (eQTLs). The allelic expression imbalance (AEI) analysis is the measure of relative expression between two allelic transcripts and is the most sensitive measurement to detect cis-regulatory effects. We performed AEI screening to detect cis-regulators for genes expressed in transformed lymphocytes of 190 Caucasian (CA) and African American (AA) subjects to identify functional variants for T2D susceptibility in the chromosome 1q21–24 region of linkage. Among transcribed SNPs studied in 115 genes, significant AEI (P < 0.001) occurred in 28 and 30 genes in CA and AA subjects, respectively. Analysis of the effect of selected AEI-SNPs (≥10% mean AEI) on total gene expression further established the cis-eQTLs in thioesterase superfamily member-4 (THEM4) (rs13320, P = 0.027), and IGSF8 (rs1131891, P = 0.02). Examination of published genome-wide association data identified significant associations (P < 0.01) of three AEI-SNPs with T2D in the DIAGRAM-v3 dataset. Six AEI single nucleotide polymorphisms, including rs13320 (P = 1.35E-04) in THEM4, were associated with glucose homeostasis traits in the MAGIC dataset. Evaluation of AEI-SNPs for association with glucose homeostasis traits in 611 nondiabetic subjects showed lower AIRG (P = 0.005) in those with TT/TC genotype for rs13320. THEM4 expression in adipose was higher (P = 0.005) in subjects carrying the T allele; in vitro analysis with luciferase construct confirmed the higher expression of the T allele. Resequencing of THEM4 exons in 192 CA subjects revealed four coding nonsynonymous variants, but did not explain transmission of T2D in 718 subjects from 67 Caucasian pedigrees. Our study indicates the role of a cis-regulatory SNP in THEM4 that may influence T2D predisposition by modulating glucose homeostasis. PMID:23673729

  1. A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis.

    PubMed

    Wu, Ling Juan; Errington, Jeff

    2002-08-01

    The cis-acting sequences required for chromosome segregation are poorly understood in most organisms, including bacteria. Sporulating cells of Bacillus subtilis undergo an unusual asymmetric cell division during which the origin of DNA replication (oriC) region of the chromosome migrates to an extreme polar position. We have now characterized the sequences required for this migration. We show that the previously characterized soj-spo0J chromosome segregation system is not essential for chromosome movement to the cell pole, so this must be driven by an additional segregation mechanism. Observations on a large set of precisely engineered chromosomal inversions and translocations have identified a polar localization region (PLR), which lies approximately 150-300 kbp to the left of oriC. Surprisingly, oriC itself has no involvement in this chromosome segregation system. Dissection of the PLR showed that it has internal functional redundancy, reminiscent of the large diffuse centromeres of most eukaryotic cells.

  2. A genome-wide association study identifies a region at chromosome 12 as a potential susceptibility locus for restenosis after percutaneous coronary intervention

    PubMed Central

    Sampietro, M. Lourdes; Trompet, Stella; Verschuren, Jeffrey J.W.; Talens, Rudolf P.; Deelen, Joris; Heijmans, Bastiaan T.; de Winter, Robbert J.; Tio, Rene A.; Doevendans, Pieter A.F.M.; Ganesh, Santhi K.; Nabel, Elizabeth G.; Westra, Harm-Jan; Franke, Lude; van den Akker, Erik B.; Westendorp, Rudi G.J.; Zwinderman, Aeilko H.; Kastrati, Adnan; Koch, Werner; Slagboom, P.Eline; de Knijff, Peter; Jukema, J. Wouter

    2011-01-01

    Percutaneous coronary intervention (PCI) has become an effective therapy to treat obstructive coronary artery diseases (CAD). However, one of the major drawbacks of PCI is the occurrence of restenosis in 5–25% of all initially treated patients. Restenosis is defined as the re-narrowing of the lumen of the blood vessel, resulting in renewed symptoms and the need for repeated intervention. To identify genetic variants that are associated with restenosis, a genome-wide association study (GWAS) was conducted in 295 patients who developed restenosis (cases) and 571 who did not (controls) from the GENetic Determinants of Restenosis (GENDER) study. Analysis of ∼550 000 single nucleotide polymorphisms (SNPs) in GENDER was followed by a replication phase in three independent case–control populations (533 cases and 3067 controls). A potential susceptibility locus for restenosis at chromosome 12, including rs10861032 (Pcombined = 1.11 × 10−7) and rs9804922 (Pcombined = 1.45 × 10−6), was identified in the GWAS and replication phase. In addition, both SNPs were also associated with coronary events (rs10861032, Padditive = 0.005; rs9804922, Padditive = 0.023) in a trial based cohort set of elderly patients with (enhanced risk of) CAD (PROSPER) and all-cause mortality in PROSPER (rs10861032, Padditive = 0.007; rs9804922, Padditive = 0.013) and GENDER (rs10861032, Padditive = 0.005; rs9804922, Padditive = 0.023). Further analysis suggests that this locus could be involved in regulatory functions. PMID:21878436

  3. Mosaic supernumerary ring chromosome 19 identified by comparative genomic hybridisation.

    PubMed Central

    Ghaffari, S R; Boyd, E; Connor, J M; Jones, A M; Tolmie, J L

    1998-01-01

    We report the use of comparative genomic hybridisation (CGH) to define the origin of a supernumerary ring chromosome which conventional cytogenetic banding and fluorescence in situ hybridisation (FISH) methods had failed to identify. Targeted FISH using whole chromosome 19 library arm and site specific probes then confirmed the CGH results. This study shows the feasibility of using CGH for the identification of supernumerary marker chromosomes, even in fewer than 50% of cells, where no clinical or cytogenetic clues are present. Images PMID:9783708

  4. Rapid generation of region-specific probes by chromosome microdissection: Application to the identification of chromosomal rearrangements

    SciTech Connect

    Trent, J.M.; Guan, X.Y.; Zang, J.; Meltzer, P.S. )

    1993-01-01

    The authors present results using a novel strategy for chromosome microdissection and direct in vitro amplification of specific chromosomal regions, to identify cryptic chromosome alterations, and to rapidly generate region-specific genomic probes. First, banded chromosomes are microdissected and directly PCR amplified by a procedure which eliminates microchemistry (Meltzer, et al., Nature Genetics, 1:24, 1992). The resulting PCR product can be used for several applications including direct labeling for fluorescent in situ hybridization (FISH) to normal metaphase chromosomes. A second application of this procedure is the extremely rapid generation of chromosome region-specific probes. This approach has been successfully used to determine the derivation of chromosome segments unidentifiable by standard chromosome banding analysis. In selected instances these probes have also been used on interphase nuclei and provides the potential for assessing chromosome abnormalities in a variety of cell lineages. The microdissection probes (which can be generated in <24 hours) have also been utilized in direct library screening and provide the possibility of acquiring a significant number of region-specific probes for any chromosome band. This procedure extends the limits of conventional cytogenetic analysis by providing an extremely rapid source of numerous band-specific probes, and by enabling the direct analysis of essentially any unknown chromosome region.

  5. A Syntenic Region Conserved from Fish to Mammalian X Chromosome

    PubMed Central

    Guan, Guijun; Yi, Meisheng; Kobayashi, Tohru; Hong, Yunhan; Nagahama, Yoshitaka

    2014-01-01

    Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes. PMID:25506037

  6. Quantitative linkage analysis to the autism endophenotype social responsiveness identifies genome-wide significant linkage to two regions on chromosome 8

    PubMed Central

    Lowe, Jennifer K.; Werling, Donna M.; Constantino, John N.; Cantor, Rita M.; Geschwind, Daniel H.

    2015-01-01

    Objective Autism Spectrum Disorder (ASD) is characterized by deficits in social function and the presence of repetitive and restrictive behaviors. Following a previous test of principle, we adopted a quantitative approach to discovering genes contributing to the broader autism phenotype by using social responsiveness as an endophenotype for ASD. Method Linkage analyses using scores from the Social Responsiveness Scale (SRS) were performed in 590 families from AGRE, a largely multiplex ASD cohort. Regional and genome-wide association analyses were performed to search for common variants contributing to social responsiveness. Results SRS is unimodally distributed in male offspring from multiplex autism families, in contrast with a bimodal distribution observed in females. In correlated analyses differing by SRS respondent, genome-wide significant linkage for social responsiveness was identified at chr8p21.3 (multi-point LOD=4.11; teacher/parent scores) and chr8q24.22 (multi-point LOD=4.54; parent-only scores), respectively. Genome-wide or linkage-directed association analyses did not detect common variants contributing to social responsiveness. Conclusions The sex-differential distributions of SRS in multiplex autism families likely reflect mechanisms contributing to the sex ratio for autism observed in the general population and form a quantitative signature of reduced penetrance of inherited liability to ASD among females. The identification of two strong loci for social responsiveness validates the endophenotype approach for the identification of genetic variants contributing to complex traits such as ASD. While causal mutations have yet to be identified, these findings are consistent with segregation of rare genetic variants influencing social responsiveness and underscore the increasingly recognized role of rare inherited variants in the genetic architecture of ASD. PMID:25727539

  7. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33.

    PubMed

    Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C; Sampson, Joshua N; Hoskins, Jason W; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S; Abnet, Christian C; Adjei, Andrew A; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E; Ambrosone, Christine B; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L; Arici, Cecilia; Arslan, Alan A; Austin, Melissa A; Baris, Dalsu; Barkauskas, Donald A; Bassig, Bryan A; Beane Freeman, Laura E; Berg, Christine D; Berndt, Sonja I; Bertazzi, Pier Alberto; Biritwum, Richard B; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M; Brennan, Paul; Brinton, Louise A; Brotzman, Michelle; Bueno-de-Mesquita, H Bas; Buring, Julie E; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P; Chu, Lisa W; Clavel-Chapelon, Francoise; Colditz, Graham A; Colt, Joanne S; Conti, David; Cook, Michael B; Cortessis, Victoria K; Crawford, E David; Cussenot, Olivier; Davis, Faith G; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P; Di Stefano, Anna Luisa; Diver, W Ryan; Duell, Eric J; Elena, Joanne W; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D; Flanagan, Adrienne M; Fraumeni, Joseph F; Freedman, Neal D; Fridley, Brooke L; Fuchs, Charles S; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M; Gaziano, J Michael; Gerhard, Daniela S; Giffen, Carol A; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H; Gross, Myron; Grossman, H Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A; Hallmans, Goran; Hankinson, Susan E; Harris, Curtis C; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B; He, Qincheng; Helman, Lee; Henderson, Brian E; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A; Hong, Yun-Chul; Hoover, Robert N; Hosgood, H Dean; Hsiao, Chin-Fu; Hsing, Ann W; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J; Inskip, Peter D; Ito, Hidemi; Jacobs, Eric J; Jacobs, Kevin B; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M; Klein, Alison P; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N; Kooperberg, Charles; Kratz, Christian P; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P; Le Marchand, Loic; Lerner, Seth P; Li, Donghui; Liao, Linda M; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A; McKean-Cowdin, Roberta; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Meltzer, Paul S; Mensah, James E; Miao, Xiaoping; Michaud, Dominique S; Mondul, Alison M; Moore, Lee E; Muir, Kenneth; Niwa, Shelley; Olson, Sara H; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H M; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Picci, Piero; Pike, Malcolm C; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A; Rodabough, Rebecca J; Rothman, Nathaniel; Ruder, Avima M; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R; Schwartz, Ann G; Schwartz, Kendra L; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T; Simon, Matthias; Southey, Melissa C; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C; Stevens, Victoria L; Stolzenberg-Solomon, Rachael Z; Stram, Daniel O; Strom, Sara S; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R; Tettey, Yao; Thomas, David M; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S; Toro, Jorge R; Travis, Ruth C; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S; Weiderpass, Elisabete; Weinstein, Stephanie J; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K; Wolk, Alicja; Wolpin, Brian M; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A; Kraft, Peter; Chanock, Stephen J; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T

    2014-12-15

    Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.

  8. Tyramide Signal Amplification: Fluorescence In Situ Hybridization for Identifying Homoeologous Chromosomes.

    PubMed

    Fominaya, Araceli; Loarce, Yolanda; González, Juan M; Ferrer, Esther

    2016-01-01

    Tyramide signal amplification (TSA) fluorescence in situ hybridization (FISH) has been shown as a valuable molecular tool for visualizing specific amplified DNA sequences in chromosome preparations. This chapter describes how to perform TSA-FISH, paying special interest to its two critical steps: probe generation and metaphase plate generation. The potential of physically mapping 12S-globulin sequences by TSA-FISH as a means of identifying homeology among chromosome regions of Avena species was tested and is discussed. PMID:27511165

  9. Single nucleotide polymorphism array profiling identifies distinct chromosomal aberration patterns across colorectal adenomas and carcinomas.

    PubMed

    Zarzour, Peter; Boelen, Lies; Luciani, Fabio; Beck, Dominik; Sakthianandeswaren, Anuratha; Mouradov, Dmitri; Sieber, Oliver M; Hawkins, Nicholas J; Hesson, Luke B; Ward, Robyn L; Wong, Jason W H

    2015-05-01

    The progression of benign colorectal adenomas into cancer is associated with the accumulation of chromosomal aberrations. Even though patterns and frequencies of chromosomal aberrations have been well established in colorectal carcinomas, corresponding patterns of aberrations in adenomas are less well documented. The aim of this study was to profile chromosomal aberrations across colorectal adenomas and carcinomas to provide a better insight into key changes during tumor initiation and progression. Single nucleotide polymorphism array analysis was performed on 216 colorectal tumor/normal matched pairs, comprising 60 adenomas and 156 carcinomas. While many chromosomal aberrations were specific to carcinomas, those with the highest frequency in carcinomas (amplification of chromosome 7, 13q, and 20q; deletion of 17p and chromosome 18; LOH of 1p, chromosome 4, 5q, 8p, 17p, chromosome 18, and 20p) were also identified in adenomas. Hierarchical clustering using chromosomal aberrations revealed three distinct subtypes. Interestingly, these subtypes were only partially dependent on tumor staging. A cluster of colorectal cancer patients with frequent chromosomal deletions had the least favorable prognosis, and a number of adenomas (n = 9) were also present in the cluster suggesting that, at least in some tumors, the chromosomal aberration pattern is determined at a very early stage of tumor formation. Finally, analysis of LOH events revealed that copy-neutral/gain LOH (CN/G-LOH) is frequent (>10%) in carcinomas at 5q, 11q, 15q, 17p, chromosome 18, 20p, and 22q. Deletion of the corresponding region is sometimes present in adenomas, suggesting that LOH at these loci may play an important role in tumor initiation.

  10. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33.

    PubMed

    Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C; Sampson, Joshua N; Hoskins, Jason W; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S; Abnet, Christian C; Adjei, Andrew A; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E; Ambrosone, Christine B; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L; Arici, Cecilia; Arslan, Alan A; Austin, Melissa A; Baris, Dalsu; Barkauskas, Donald A; Bassig, Bryan A; Beane Freeman, Laura E; Berg, Christine D; Berndt, Sonja I; Bertazzi, Pier Alberto; Biritwum, Richard B; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M; Brennan, Paul; Brinton, Louise A; Brotzman, Michelle; Bueno-de-Mesquita, H Bas; Buring, Julie E; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P; Chu, Lisa W; Clavel-Chapelon, Francoise; Colditz, Graham A; Colt, Joanne S; Conti, David; Cook, Michael B; Cortessis, Victoria K; Crawford, E David; Cussenot, Olivier; Davis, Faith G; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P; Di Stefano, Anna Luisa; Diver, W Ryan; Duell, Eric J; Elena, Joanne W; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D; Flanagan, Adrienne M; Fraumeni, Joseph F; Freedman, Neal D; Fridley, Brooke L; Fuchs, Charles S; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M; Gaziano, J Michael; Gerhard, Daniela S; Giffen, Carol A; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H; Gross, Myron; Grossman, H Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A; Hallmans, Goran; Hankinson, Susan E; Harris, Curtis C; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B; He, Qincheng; Helman, Lee; Henderson, Brian E; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A; Hong, Yun-Chul; Hoover, Robert N; Hosgood, H Dean; Hsiao, Chin-Fu; Hsing, Ann W; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J; Inskip, Peter D; Ito, Hidemi; Jacobs, Eric J; Jacobs, Kevin B; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M; Klein, Alison P; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N; Kooperberg, Charles; Kratz, Christian P; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P; Le Marchand, Loic; Lerner, Seth P; Li, Donghui; Liao, Linda M; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A; McKean-Cowdin, Roberta; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Meltzer, Paul S; Mensah, James E; Miao, Xiaoping; Michaud, Dominique S; Mondul, Alison M; Moore, Lee E; Muir, Kenneth; Niwa, Shelley; Olson, Sara H; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H M; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Picci, Piero; Pike, Malcolm C; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A; Rodabough, Rebecca J; Rothman, Nathaniel; Ruder, Avima M; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R; Schwartz, Ann G; Schwartz, Kendra L; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T; Simon, Matthias; Southey, Melissa C; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C; Stevens, Victoria L; Stolzenberg-Solomon, Rachael Z; Stram, Daniel O; Strom, Sara S; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R; Tettey, Yao; Thomas, David M; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S; Toro, Jorge R; Travis, Ruth C; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S; Weiderpass, Elisabete; Weinstein, Stephanie J; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K; Wolk, Alicja; Wolpin, Brian M; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A; Kraft, Peter; Chanock, Stephen J; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T

    2014-12-15

    Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. PMID:25027329

  11. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33

    PubMed Central

    Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C.; Sampson, Joshua N.; Hoskins, Jason W.; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S.; Abnet, Christian C.; Adjei, Andrew A.; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E.; Ambrosone, Christine B.; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L.; Arici, Cecilia; Arslan, Alan A.; Austin, Melissa A.; Baris, Dalsu; Barkauskas, Donald A.; Bassig, Bryan A.; Beane Freeman, Laura E.; Berg, Christine D.; Berndt, Sonja I.; Bertazzi, Pier Alberto; Biritwum, Richard B.; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Brennan, Paul; Brinton, Louise A.; Brotzman, Michelle; Bueno-de-Mesquita, H. Bas; Buring, Julie E.; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E.; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P.; Chu, Lisa W.; Clavel-Chapelon, Francoise; Colditz, Graham A.; Colt, Joanne S.; Conti, David; Cook, Michael B.; Cortessis, Victoria K.; Crawford, E. David; Cussenot, Olivier; Davis, Faith G.; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P.; Di Stefano, Anna Luisa; Diver, W. Ryan; Duell, Eric J.; Elena, Joanne W.; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D.; Flanagan, Adrienne M.; Fraumeni, Joseph F.; Freedman, Neal D.; Fridley, Brooke L.; Fuchs, Charles S.; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M.; Gaziano, J. Michael; Gerhard, Daniela S.; Giffen, Carol A.; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M.; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H.; Gross, Myron; Grossman, H. Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B.; He, Qincheng; Helman, Lee; Henderson, Brian E.; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hosgood, H. Dean; Hsiao, Chin-Fu; Hsing, Ann W.; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J.; Inskip, Peter D.; Ito, Hidemi; Jacobs, Eric J.; Jacobs, Kevin B.; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M.; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M.; Klein, Alison P.; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N.; Kooperberg, Charles; Kratz, Christian P.; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C.; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C.; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P.; Le Marchand, Loic; Lerner, Seth P.; Li, Donghui; Liao, Linda M.; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S.; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A.; McKean-Cowdin, Roberta; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Meltzer, Paul S.; Mensah, James E.; Miao, Xiaoping; Michaud, Dominique S.; Mondul, Alison M.; Moore, Lee E.; Muir, Kenneth; Niwa, Shelley; Olson, Sara H.; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V.; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H. M.; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Picci, Piero; Pike, Malcolm C.; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A.; Rodabough, Rebecca J.; Rothman, Nathaniel; Ruder, Avima M.; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R.; Schwartz, Ann G.; Schwartz, Kendra L.; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D.; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T.; Simon, Matthias; Southey, Melissa C.; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael Z.; Stram, Daniel O.; Strom, Sara S.; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R.; Tettey, Yao; Thomas, David M.; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S.; Toro, Jorge R.; Travis, Ruth C.; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A.; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K.; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S.; Weiderpass, Elisabete; Weinstein, Stephanie J.; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolk, Alicja; Wolpin, Brian M.; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P.; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D.; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A.; Kraft, Peter; Chanock, Stephen J.; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T.

    2014-01-01

    Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10−39; Region 3: rs2853677, P = 3.30 × 10−36 and PConditional = 2.36 × 10−8; Region 4: rs2736098, P = 3.87 × 10−12 and PConditional = 5.19 × 10−6, Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10−6; and Region 6: rs10069690, P = 7.49 × 10−15 and PConditional = 5.35 × 10−7) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10−18 and PConditional = 7.06 × 10−16). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. PMID:25027329

  12. Cytogenetic Analysis of Chromosome Region 73ad of Drosophila Melanogaster

    PubMed Central

    Belote, J. M.; Hoffmann, F. M.; McKeown, M.; Chorsky, R. L.; Baker, B. S.

    1990-01-01

    The 73AD salivary chromosome region of Drosophila melanogaster was subjected to mutational analysis in order to (1) generate a collection of chromosome breakpoints that would allow a correlation between the genetic, cytological and molecular maps of the region and (2) define the number and gross organization of complementation groups within this interval. Eighteen complementation groups were defined and mapped to the 73A2-73B7 region, which is comprised of 17 polytene bands. These complementation groups include the previously known scarlet (st), transformer (tra) and Dominant temperature-sensitive lethal-5 (DTS-5) genes, as well as 13 new recessive lethal complementation groups and one male and female sterile locus. One of the newly identified lethal complementation groups corresponds to the molecularly identified abl locus, and another gene is defined by mutant alleles that exhibit an interaction with with the abl mutants. We also recovered several mutations in the 73C1-D1.2 interval, representing two lethal complementation groups, one new visible mutant, plucked (plk), and a previously known visible, dark body (db). There is no evidence of a complex of sex determination genes in the region near tra. PMID:2118870

  13. Preparative in situ hybridization: Selection of chromosome region-specific libraries on mitotic chromosomes

    SciTech Connect

    Hozier, J.; Graham, R.; Westfall, T.; Davis, L. ); Siebert, P. )

    1994-02-01

    The authors have developed preparative in situ hybridization (Prep-ISH) of complex DNA populations to mitotic chromosomes as a means of generating chromosome region-specific DNA subpopulations. Prep-ISH is a combination of two cytogenetic techniques: in situ hybridization of DNA molecules to mitotic chromosomes and chromosome microdissection. Here, they present test cases demonstrating the feasibility of this approach on mouse and human genomes, using single nuclei, single chromosomes, or single chromosomal subregions to assess sensitivity, specificity, and representation of the Prep-ISH technique. Prep-ISH has a number of applications in studies of gene expression and genome organization, including efficient cytogenetic sorting of tissue-specific cDNAs and genomic DNA libraries. In addition, Prep-ISH is likely to dramatically reduce the number of candidate genes to aid in gene discovery efforts and to improve efficiency of developing transcription maps and YAC and cosmid contigs through defined cytogenetic regions. 34 refs., 4 figs.

  14. Genetic and Molecular Mapping of Chromosome Region 85a in Drosophila Melanogaster

    PubMed Central

    Jones, W. K.; Rawls-Jr., J. M.

    1988-01-01

    Chromosome region 85A contains at least 12 genetic complementation groups, including the genes dhod, pink and hunchback. In order to better understand the organization of this chromosomal segment and to permit molecular studies of these genes, we have carried out a genetic analysis coupled with a chromosome walk to isolate the DNA containing these genes. Complementation tests with chromosomal deficiencies permitted unambiguous ordering of most of the complementation groups identified within the 85A region. Recombinant bacteriophage clones were isolated that collectively span over 120 kb of 85A DNA and these were used to produce a molecular map of the region. The breakpoint sites of a number of 85A chromosome rearrangements were localized on the molecular map, thereby delimiting regions of the DNA that contain the various genetic complementation groups. PMID:2852138

  15. Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape.

    PubMed

    Snowdon, R J; Wittkop, B; Rezaidad, A; Hasan, M; Lipsa, F; Stein, A; Friedt, W

    2010-11-01

    This study describes the use of regional association analyses to delineate a sequenced region of a Brassica napus chromosome with a significant effect on antinutritive seed meal compounds in oilseed rape. A major quantitative trait locus (QTL) influencing seed colour, fibre content, and phenolic compounds was mapped to the same position on B. napus chromosome A9 in biparental mapping populations from two different yellow-seeded × black-seeded B. napus crosses. Sequences of markers spanning the QTL region identified synteny to a sequence contig from the corresponding chromosome A9 in Brassica rapa. Remapping of sequence-derived markers originating from the B. rapa sequence contig confirmed their position within the QTL. One of these markers also mapped to a seed colour and fibre QTL on the same chromosome in a black-seeded × black-seeded B. napus cross. Consequently, regional association analysis was performed in a genetically diverse panel of dark-seeded, winter-type oilseed rape accessions. For this we used closely spaced simple sequence repeat (SSR) markers spanning the sequence contig covering the QTL region. Correction for population structure was performed using a set of genome-wide SSR markers. The identification of QTL-derived markers with significant associations to seed colour, fibre content, and phenolic compounds in the association panel enabled the identification of positional and functional candidate genes for B. napus seed meal quality within a small segment of the B. rapa genome sequence.

  16. Applying deep learning technology to automatically identify metaphase chromosomes using scanning microscopic images: an initial investigation

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Lu, Xianglan; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Li, Shibo; Liu, Hong; Zheng, Bin

    2016-03-01

    Automated high throughput scanning microscopy is a fast developing screening technology used in cytogenetic laboratories for the diagnosis of leukemia or other genetic diseases. However, one of the major challenges of using this new technology is how to efficiently detect the analyzable metaphase chromosomes during the scanning process. The purpose of this investigation is to develop a computer aided detection (CAD) scheme based on deep learning technology, which can identify the metaphase chromosomes with high accuracy. The CAD scheme includes an eight layer neural network. The first six layers compose of an automatic feature extraction module, which has an architecture of three convolution-max-pooling layer pairs. The 1st, 2nd and 3rd pair contains 30, 20, 20 feature maps, respectively. The seventh and eighth layers compose of a multiple layer perception (MLP) based classifier, which is used to identify the analyzable metaphase chromosomes. The performance of new CAD scheme was assessed by receiver operation characteristic (ROC) method. A number of 150 regions of interest (ROIs) were selected to test the performance of our new CAD scheme. Each ROI contains either interphase cell or metaphase chromosomes. The results indicate that new scheme is able to achieve an area under the ROC curve (AUC) of 0.886+/-0.043. This investigation demonstrates that applying a deep learning technique may enable to significantly improve the accuracy of the metaphase chromosome detection using a scanning microscopic imaging technology in the future.

  17. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1991-01-01

    We have made important progress since the beginning of the current grant year. We have further developed the microdissection and PCR- assisted microcloning techniques using the linker-adaptor method. We have critically evaluated the microdissection libraries constructed by this microtechnology and proved that they are of high quality. We further demonstrated that these microdissection clones are useful in identifying corresponding YAC clones for a thousand-fold expansion of the genomic coverage and for contig construction. We are also improving the technique of cloning the dissected fragments in test tube by the TDT method. We are applying both of these PCR cloning technique to human chromosomes 2 and 5 to construct region-specific libraries for physical mapping purposes of LLNL and LANL. Finally, we are exploring efficient procedures to use unique sequence microclones to isolate cDNA clones from defined chromosomal regions as valuable resources for identifying expressed gene sequences in the human genome. We believe that we are making important progress under the auspices of this DOE human genome program grant and we will continue to make significant contributions in the coming year. 4 refs., 4 figs.

  18. Regional mapping of loci from human chromosome 2q to sheep chromosome 2q

    SciTech Connect

    Ansari, H.A.; Pearce, P.D.; Maher, D.W.; Malcolm, A.A.; Wood, N.J.; Phua, S.H.; Broad, T.E. )

    1994-03-01

    The human chromosome 2q loci, fibronectin 1 (FN1), the [alpha]1 chain of type III collagen (COL3A1), and the [delta] subunit of the muscle acetylcholine receptor (CHRND) have been regionally assigned to sheep chromosome 2q by in situ hybridization. COL3A1 is pericentromeric (2q12-q21), while FN1 and CHRND are in the subterminal region at 2q41-q44 and 2q42-qter, respectively. The mapping of FN1 assigns the sheep synthenic group U11, which contains FN1, villin 1 (VIL1), isocitrate dehydrogenase 1 (IDH1), and [gamma] subunit of the muscle acetylcholine receptor (CHRNG), to sheep chromosome 2q. Inhibin-[alpha] (INHA) is also assigned to sheep chromosome 2q as FN1 and INHA compose sheep linkage group 3. These seven loci are members of a conserved chromosomal segment in human, mouse, and sheep. 23 refs., 2 figs., 1 tab.

  19. Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes.

    PubMed

    Schmid, Michael; Steinlein, Claus; Yano, Cassia F; Cioffi, Marcelo B

    2015-01-01

    Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.

  20. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    1999-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  1. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1999-03-30

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  2. Phenotypic consequences of a mosaic marker chromosome identified by fluorescence in situ hybridization (FISH) as being derived from chromosome 16

    SciTech Connect

    Ray, J.H.; Zhou, X.; Pletcher, B.A.

    1994-09-01

    De novo marker chromosomes are detected in 1 in 2500 amniotic fluid samples and are associated with a 10-15% risk for phenotypic abnormality. FISH can be utilized as a research tool to identify the origins of marker chromosomes. The phenotypic consequences of a marker chromosome derived from the short arm of chromosome 16 are described. A 26-year-old woman underwent amniocentesis at 28 weeks gestation because of a prenatally diagnosed tetralogy of Fallot. Follow-up ultrasounds also showed ventriculomegaly and cleft lip and palate. 32 of 45 cells had the karyotype 47,XY,+mar; the remaining cells were 46,XY. The de novo marker chromosome was C-band positive and non-satellited and failed to stain with distamycin A/DAPI. At birth the ultrasound findings were confirmed and dysmorphic features and cryptorchidism were noted. Although a newborn blood sample contained only normal cells, mosaicism was confirmed in 2 skin biopsies. FISH using whole-chromosome painting and alpha-satellite DNA probes showed that the marker chromosome had originated from chromosome 16. As proximal 16q is distamycin A/DAPI positive, the marker is apparently derived from proximal 16p. At 15 months of age, this child is hypotonic, globally delayed and is gavage-fed. His physical examination is significant for microbrachycephaly, a round face, sparse scalp hair, ocular hypertelorism, exotropia, a flat, wide nasal bridge and tip, mild micrognathia, and tapered fingers with lymphedema of hands and feet. Inguinal hernias have been repaired. His features are consistent with those described for patients trisomic for most or all of the short arm of chromosome 16. Marker chromosomes derived from the short arm of chromosome 16 appear to have phenotypic consequences. As the origin of more marker chromosomes are identified using FISH, their karyotype/phenotype correlations will become more apparent, which will permit more accurate genetic counseling.

  3. Identification of wheat chromosomal regions containing expressed resistance genes.

    PubMed Central

    Dilbirligi, Muharrem; Erayman, Mustafa; Sandhu, Devinder; Sidhu, Deepak; Gill, Kulvinder S

    2004-01-01

    The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA fingerprinting and data mining, we identified 184 putative expressed R genes of wheat. These include 87 NB/LRR types, 16 receptor-like kinases, and 13 Pto-like kinases. The remaining were seven Hm1 and two Hs1(pro-1) homologs, 17 pathogenicity related, and 42 unique NB/kinases. About 76% of the expressed R-gene candidates were rare transcripts, including 42 novel sequences. Physical mapping of 121 candidate R-gene sequences using 339 deletion lines localized 310 loci to 26 chromosomal regions encompassing approximately 16% of the wheat genome. Five major R-gene clusters that spanned only approximately 3% of the wheat genome but contained approximately 47% of the candidate R genes were observed. Comparative mapping localized 91% (82 of 90) of the phenotypically characterized R genes to 18 regions where 118 of the R-gene sequences mapped. PMID:15020436

  4. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    SciTech Connect

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M. ); Riggs, A.D. )

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  5. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation.

    PubMed

    Watson, J M; Spencer, J A; Riggs, A D; Graves, J A

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. We conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  6. Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data

    PubMed Central

    Hahn, Seungsoo; Kim, Dongsup

    2015-01-01

    Chromosome conformation capture (3C)-based techniques have recently been used to uncover the mystic genomic architecture in the nucleus. These techniques yield indirect data on the distances between genomic loci in the form of contact frequencies that must be normalized to remove various errors. This normalization process determines the quality of data analysis. In this study, we describe two systematic errors that result from the heterogeneous local density of restriction sites and different local chromatin states, methods to identify and remove those artifacts, and three previously described sources of systematic errors in 3C-based data: fragment length, mappability, and local DNA composition. To explain the effect of systematic errors on the results, we used three different published data sets to show the dependence of the results on restriction enzymes and experimental methods. Comparison of the results from different restriction enzymes shows a higher correlation after removing systematic errors. In contrast, using different methods with the same restriction enzymes shows a lower correlation after removing systematic errors. Notably, the improved correlation of the latter case caused by systematic errors indicates that a higher correlation between results does not ensure the validity of the normalization methods. Finally, we suggest a method to analyze random error and provide guidance for the maximum reproducibility of contact frequency maps. PMID:26717152

  7. Isolation, characterization, and regional mapping of microclones from a human chromosome 21 microdissection library

    SciTech Connect

    Yu, J.; Hartz, J.; Yisheng Xu; Gemmill, R.M.; Patterson, D.; Kao, Faten ); Gemmill, R.M.; Patterson, D.; Kao, Fa-Ten ); Korenberg, J.R. )

    1992-08-01

    Thirty-four unique-sequence microclones were isolated from a previously described microdissection library of human chromosome 21 and were regionally mapped using a cell hybrid mapping panel which consists of six cell hybrids and divides chromosome 21 into eight regions. The mapping results showed that the microclones were unevenly distributed along chromosome 21, with the majority of microclones located in the distal half portion of the long arm, between 21q21.3 and 21qter. The number of unique-sequence clones began to decrease significantly from 21q21.2 to centromere and extending to the short arm. This finding is consistent with those reported in other chromosome 21 libraries. Thus, it may be inferred that the proximal portion of the long arm of chromosome 21 contains higher proportions of repetitive sequences, rather than unique sequences of genes. The microclones were also characterized for insert size and were used to identify the corresponding genomic fragments generated by HindIII. In addition, the authors demonstrated that the microclones with short inserts can be efficiently used to identify YAC (yeast artificial chromosome) clones with large inserts, for increased genomic coverage for high-resolution physical mapping. They also used 200 unique-sequence microclones to screen a human liver cDNA library and identified two cDNA clones which were regionally assigned to the 21q21.3-q22.1 region. Thus, generation of unique-sequence microclones from chromosome 21 appears to be useful to isolate and regionally map many cDNA clones, among which will be candidate genes for important diseases on chromosome 21, including Down syndrome, Alzheimer disease, amyotrophic lateral sclerosis, and one form of epilepsy.

  8. Nucleolus organizer regions and B-chromosomes of wood mice (mammalia, rodentia, Apodemus)

    SciTech Connect

    Boeskorov, G.G.; Kartavtseva, I.V.; Zagorodnyuk, I.V.; Belyanin, A.N.; Lyapunova, E.A.

    1995-02-01

    Distribution of nucleolus organizer regions (NORs) in karyotypes was studied in 10 species of wood mice, including Apodemus flavicollis, A. sylvaticus, A. uralensis (=A. microps), A. fulvipectus (=A. falzfeini), A. ponticus, A. hyrcanicus, A. mystacinus, A. agrarius, A. peninsulae, and A. speciosus. Peculiarities of NOR location in karyotypes can be used in interspecific diagnostics of wood mice. Intraspecific polymorphism of A. sylvaticus, A. agrarius, and A. peninsulae in terms of the number of NORs and their localization in chromosomes can serve as evidence for karyological differentiation in certain populations of these species. The minimum number of active NORs in mice of the genus Apodemus is two to four. Two A. flavicollis wood mice with karyotypes containing one small acrocentric B-chromosome (2n = 49) were identified among animals captured in Estonia. In A. peninsulae, B-chromosomes were found among animals captured in the following regions: the vicinity of Kyzyl (one mouse with 17 microchromosomes, 2n = 65); the vicinity of Birakan (two mice with one metacentric chromosome each, 2n = 49); and in the Ussuri Nature Reserve (one mouse with five B-chromosomes, including three metacentric and two dotlike chromosomes; 2n = 53). In the latter animal, the presence of NORs on two metacentric B-chromosomes was revealed; this is the first case of identification of active NORs on extra chromosomes of mammals. 29 refs., 4 figs., 1 tab.

  9. The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5

    SciTech Connect

    Kirschner, M.A.; Arriza, J.L.; Amara, S.G.

    1994-08-01

    The gene for human excitatory amino acid transporter (EAAT1) was localized to the distal region of human chromosome 5p13 by in situ hybridization of metaphase chromosome spreads. Interspecific backcross analysis identified the mouse Eaat1 locus in a region of 5p13 homology on mouse chromosome 15. Markers that are linked with EAAT1 on both human and mouse chromosomes include the receptors for leukemia inhibitory factor, interleukin-7, and prolactin. The Eaat1 locus appears not be linked to the epilepsy mutant stg locus, which is also on chromosome 15. The EAAT1 locus is located in a region of 5p deletions that have been associated with mental retardation and microcephaly. 22 refs., 2 figs.

  10. Identification of chromosome regions associated with seedling vigor in rice.

    PubMed

    Huang, Zheng; Yu, Ting; Su, Li; Yu, Si-Bin; Zhang, Zhi-Hong; Zhu, Ying-Guo

    2004-06-01

    Seedling vigor is important for optimum stand establishment in rice cropping. In this paper,a set of 264 F12 recombinant inbred lines (RILs) derived by single seed descent from a cross between Lemont (japonica) and Teqing (indica) was phenotyped for three seedling vigor related traits, including seed germination rate (GR), seedling shoot length and dry weight by the rolled paper towel tests. The phenotype data and a linkage map consisting of 198 DNA markers were combined to map quantitative trait loci (QTL) for seedling vigor by using a computer program QTLMapper1.0. A total of 13 putative main-effect QTL were detected. All of these QTL had much smaller effects on the traits with a mean R2 of 6.2%, ranging from 2.9% to 12.7%. As for digenic interaction, 18 pairs of epistatic loci with R2 > or = 5% were resolved with a mean R2 of 6.9% ,ranging from 5.1% to 11.8%, which was slightly larger than that of the main-effect QTL identified for the traits. The majority of the main-effect and epistatic loci detected for seedling vigor related traits were clustered in a few chromosome regions. Together, seven such chromosome regions (CRs), each with three or more seedling vigor main-effect and epistatic loci, were found to be highly associated with seedling vigor. These CRs can be classified into three types, i.e. M-CRs, E-CRs and ME-CRs. For some CRs just like CR(SV-6), the QTL within one CR were found to interact simultaneously with QTL within more than one other CRs to affect different seedling vigor related traits. The above results revealed that seedling vigor in rice is controlled by many loci, most of which have relatively small effects. Comparatively, epistasis as a genetic factor would be more important than main-effects of QTL for seedling vigor in rice. Nevertheless, the effects of the QTL are still large enough to be detected and in fact several chromosome regions were found to be highly associated with seedling vigor in very different populations as compared with

  11. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    PubMed

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  12. Identification of chromosome 7 inversion breakpoints in an autistic family narrows candidate region for autism susceptibility.

    PubMed

    Cukier, Holly N; Skaar, David A; Rayner-Evans, Melissa Y; Konidari, Ioanna; Whitehead, Patrice L; Jaworski, James M; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2009-10-01

    Chromosomal breaks and rearrangements have been observed in conjunction with autism and autistic spectrum disorders. A chromosomal inversion has been previously reported in autistic siblings, spanning the region from approximately 7q22.1 to 7q31. This family is distinguished by having multiple individuals with autism and associated disabilities. The region containing the inversion has been strongly implicated in autism by multiple linkage studies, and has been particularly associated with language defects in autism as well as in other disorders with language components. Mapping of the inversion breakpoints by FISH has localized the inversion to the region spanning approximately 99-108.75 Mb of chromosome 7. The proximal breakpoint has the potential to disrupt either the coding sequence or regulatory regions of a number of cytochrome P450 genes while the distal region falls in a relative gene desert. Copy number variant analysis of the breakpoint regions detected no duplication or deletion that could clearly be associated with disease status. Association analysis in our autism data set using single nucleotide polymorphisms located near the breakpoints showed no significant association with proximal breakpoint markers, but has identified markers near the distal breakpoint ( approximately 108-110 Mb) with significant associations to autism. The chromosomal abnormality in this family strengthens the case for an autism susceptibility gene in the chromosome 7q22-31 region and targets a candidate region for further investigation.

  13. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18.

    PubMed Central

    Boghosian-Sell, L.; Mewar, R.; Harrison, W.; Shapiro, R. M.; Zackai, E. H.; Carey, J.; Davis-Keppen, L.; Hudgins, L.; Overhauser, J.

    1994-01-01

    In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, we have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. We have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical features and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals. Images Figure 1 Figure 3 PMID:8079991

  14. pain2: A neuropathic pain QTL identified on rat chromosome 2.

    PubMed

    Nissenbaum, Jonathan; Shpigler, Hagai; Pisanté, Anne; DelCanho, Sonia; Minert, Anne; Seltzer, Ze'ev; Devor, Marshall; Darvasi, Ariel

    2008-03-01

    We aimed to locate a chronic pain-associated QTL in the rat (Rattus norvegicus) based on previous findings of a QTL (pain1) on chromosome 15 of the mouse (Mus musculus). The work was based on rat selection lines HA (high autotomy) and LA (low autotomy) which show a contrasting pain phenotype in response to nerve injury in the neuroma model of neuropathic pain. An F(2) segregating population was generated from HA and LA animals. Phenotyped F(2) rats were genotyped on chromosome 7 and chromosome 2, regions that share a partial homology with mouse chromosome 15. Our interval mapping analysis revealed a LOD score value of 3.63 (corresponding to p=0.005 after correcting for multiple testing using permutations) on rat chromosome 2, which is suggestive of the presence of a QTL affecting the predisposition to neuropathic pain. This QTL was mapped to the 14-26cM interval of chromosome 2. Interestingly, this region is syntenic to mouse chromosome 13, rather than to the region of mouse chromosome 15 that contains pain1. This chromosomal position indicates that it is possibly a new QTL, and hence we name it pain2. Further work is needed to replicate and to uncover the underlying gene(s) in both species.

  15. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  16. Narrowing the genetic interval and yeast artificial chromosome map in the branchio-oto-renal region on chromosome 8q

    SciTech Connect

    Kumar, Shrawan; Kimberling, W.J.; Pinnt, J.

    1996-01-01

    Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial abnormality, hearing loss, and renal anomalies. Recently, the disease gene has been localized to chromosome 8q. Here, we report genetic studies that further refine the disease gene region to a smaller interval and identify several YACs from the critical region. We studied two large, clinically well-characterized BOR families with a set of 13 polymorphic markers spanning the D8S165-D8S275 interval from the chromosome 8q region. Based on multipoint analysis, the highest likelihood for the location of the BOR gene is between markers D8S543 and D8S530, a distance of about 2 cM. YACs that map in the BOR critical region have been identified and characterized by fluorescence in situ hybridization and pulsed-field gel electrophoresis. A YAC contig, based on the STS content map, that covers a minimum of 4 Mb of human DNA in the critical region of BOR is assembled. This lays the groundwork for the construction of a transcriptional map of this region and the eventual identification of genes involved in BOR syndrome. 40 refs., 4 figs., 1 tab.

  17. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    PubMed Central

    Bisognin, Andrea; Bortoluzzi, Stefania; Danieli, Gian Antonio

    2004-01-01

    Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers. PMID:15176974

  18. Chromosome Fragile Sites in Arabidopsis Harbor Matrix Attachment Regions That May Be Associated with Ancestral Chromosome Rearrangement Events

    PubMed Central

    dela Paz, Joelle S.; Stronghill, Patti E.; Douglas, Scott J.; Saravia, Sandy; Hasenkampf, Clare A.; Riggs, C. Daniel

    2012-01-01

    Mutations in the BREVIPEDICELLUS (BP) gene of Arabidopsis thaliana condition a pleiotropic phenotype featuring defects in internode elongation, the homeotic conversion of internode to node tissue, and downward pointing flowers and pedicels. We have characterized five mutant alleles of BP, generated by EMS, fast neutrons, x-rays, and aberrant T–DNA insertion events. Curiously, all of these mutagens resulted in large deletions that range from 140 kbp to over 900 kbp just south of the centromere of chromosome 4. The breakpoints of these mutants were identified by employing inverse PCR and DNA sequencing. The south breakpoints of all alleles cluster in BAC T12G13, while the north breakpoint locations are scattered. With the exception of a microhomology at the bp-5 breakpoint, there is no homology in the junction regions, suggesting that double-stranded breaks are repaired via non-homologous end joining. Southwestern blotting demonstrated the presence of nuclear matrix binding sites in the south breakpoint cluster (SBC), which is A/T rich and possesses a variety of repeat sequences. In situ hybridization on pachytene chromosome spreads complemented the molecular analyses and revealed heretofore unrecognized structural variation between the Columbia and Landsberg erecta genomes. Data mining was employed to localize other large deletions around the HY4 locus to the SBC region and to show that chromatin modifications in the region shift from a heterochromatic to euchromatic profile. Comparisons between the BP/HY4 regions of A. lyrata and A. thaliana revealed that several chromosome rearrangement events have occurred during the evolution of these two genomes. Collectively, the features of the region are strikingly similar to the features of characterized metazoan chromosome fragile sites, some of which are associated with karyotype evolution. PMID:23284301

  19. Fine Mapping and Evolution of a QTL Region on Cattle Chromosome 3

    ERIC Educational Resources Information Center

    Donthu, Ravikiran

    2009-01-01

    The goal of my dissertation was to fine map the milk yield and composition quantitative trait loci (QTL) mapped to cattle chromosome 3 (BTA3) by Heyen et al. (1999) and to identify candidate genes affecting these traits. To accomplish this, the region between "BL41" and "TGLA263" was mapped to the cattle genome sequence assembly Btau 3.1 and a…

  20. Chromosome 16-specific repetitive DNA sequences that map to chromosomal regions known to undergo breakage/rearrangement in leukemia cells.

    PubMed

    Stallings, R L; Doggett, N A; Okumura, K; Ward, D C

    1992-06-01

    Human chromosome 16-specific low-abundance repetitive (CH16LAR) DNA sequences have been identified during the course of constructing a physical map of this chromosome. At least three CH16LAR sequences exist and they are interspersed, in small clusters, over four regions that constitute more than 5% of the chromosome. CH16LAR sequences were observed in one unusually large cosmid contig (number 55), where the ordering of clones was difficult because these sequences led to false overlaps between noncontiguous clones. Contig 55 contains 78 clones, or approximately 2% of all the clones contained within the present cosmid contig physical map. Fluorescent in situ hybridization of multiple clones, including cosmid and YAC contig 55 clones, mapped the four CH16LAR-rich regions to bands p13, p12, p11, and q22. These regions are of biological interest since the pericentric inversion and the interhomologue translocation breakpoints commonly found in acute nonlymphocytic leukemia (ANLL) subtype M4 fall within these bands. Sequence analysis of a 2.2-kb HindIII fragment from a cosmid containing a CH16LAR sequence indicated that one of the CH16LAR elements is similar to a minisatellite sequence in that the core repeat is only 40 bp in length. Additional characterization of other repetitive elements is in progress.

  1. Chromosome Rearrangements That Involve the Nucleolus Organizer Region in Neurospora

    PubMed Central

    Perkins, D. D.; Raju, N. B.; Barry, E. G.; Butler, D. K.

    1995-01-01

    In ~3% of Neurospora crassa rearrangements, part of a chromosome arm becomes attached to the nucleolus organizer region (NOR) at one end of chromosome 2 (linkage group V). Investigations with one inversion and nine translocations of this type are reported here. They appear genetically to be nonreciprocal and terminal. When a rearrangement is heterozygous, about one-third of viable progeny are segmental aneuploids with the translocated segment present in two copies, one in normal position and one associated with the NOR. Duplications from many of the rearrangements are highly unstable, breaking down by loss of the NOR-attached segment to restore normal chromosome sequence. When most of the rearrangements are homozygous, attenuated strands can be seen extending through the unstained nucleolus at pachytene, joining the translocated distal segment to the remainder of chromosome 2. Although the rearrangements appear genetically to be nonreciprocal, molecular evidence shows that at least several of them are physically reciprocal, with a block of rDNA repeats translocated away from the NOR. Evidence that NOR-associated breakpoints are nonterminal is also provided by intercrosses between pairs of translocations that transfer different-length segments of the same donor-chromosome arm to the NOR. PMID:8582636

  2. A yeast artificial chromosome contig of the critical region for cri-du-chat syndrome

    SciTech Connect

    Goodart, S.A.; Rojas, K.; Overhauser, J.

    1994-11-01

    Cri-du-chat is a chromosomal deletion syndrome characterized by partial deletion of the short arm of chromosome 5. The clinical symptoms include growth and mental retardation, microcephaly, hypertelorism, epicanthal folds, hyptonia, and a high-pitched monochromatic cry that is usually considered diagnostic for the syndrome. Recently, a correlation between clinical features and the extent of the chromosome 5 deletions has identified two regions of the short arm that appear to be critical for the abnormal development manifested in this syndrome. Loss of a small region in 5p15.2 correlates with all of the clinical features of cri-du-chat with the exception of the cat-like cry, which maps to 5p15.3. Here the authors report the construction of a YAC contig that spans the chromosomal region in 5p15.2 that plays a major role in the etiology of the cri-du-chat syndrome. YACs that span the 2-Mb cri-du-chat critical region have been identified and characterized. This YAC contig lays the groundwork for the construction of a transcriptional map of this region and the eventual identification of genes involved in the clinical features associated with the cri-du-chat syndrome. It also provides a new diagnostic tool for cri-du-chat in the shape of a YAC clone that may span the entire critical region. 24 refs., 4 figs., 2 tabs.

  3. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  4. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  5. Identifying Potential Regions of Copy Number Variation for Bipolar Disorder

    PubMed Central

    Chen, Yi-Hsuan; Lu, Ru-Band; Hung, Hung; Kuo, Po-Hsiu

    2014-01-01

    Bipolar disorder is a complex psychiatric disorder with high heritability, but its genetic determinants are still largely unknown. Copy number variation (CNV) is one of the sources to explain part of the heritability. However, it is a challenge to estimate discrete values of the copy numbers using continuous signals calling from a set of markers, and to simultaneously perform association testing between CNVs and phenotypic outcomes. The goal of the present study is to perform a series of data filtering and analysis procedures using a DNA pooling strategy to identify potential CNV regions that are related to bipolar disorder. A total of 200 normal controls and 200 clinically diagnosed bipolar patients were recruited in this study, and were randomly divided into eight control and eight case pools. Genome-wide genotyping was employed using Illumina Human Omni1-Quad array with approximately one million markers for CNV calling. We aimed at setting a series of criteria to filter out the signal noise of marker data and to reduce the chance of false-positive findings for CNV regions. We first defined CNV regions for each pool. Potential CNV regions were reported based on the different patterns of CNV status between cases and controls. Genes that were mapped into the potential CNV regions were examined with association testing, Gene Ontology enrichment analysis, and checked with existing literature for their associations with bipolar disorder. We reported several CNV regions that are related to bipolar disorder. Two CNV regions on chromosome 11 and 22 showed significant signal differences between cases and controls (p < 0.05). Another five CNV regions on chromosome 6, 9, and 19 were overlapped with results in previous CNV studies. Experimental validation of two CNV regions lent some support to our reported findings. Further experimental and replication studies could be designed for these selected regions.

  6. Correlation approach to identify coding regions in DNA sequences

    NASA Technical Reports Server (NTRS)

    Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1994-01-01

    Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.

  7. Differentially methylated regions in maternal and paternal uniparental disomy for chromosome 7

    PubMed Central

    Hannula-Jouppi, Katariina; Muurinen, Mari; Lipsanen-Nyman, Marita; Reinius, Lovisa E; Ezer, Sini; Greco, Dario; Kere, Juha

    2014-01-01

    DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites. PMID:24247273

  8. High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Stallings, Raymond L; Nair, Prakash; Maris, John M; Catchpoole, Daniel; McDermott, Michael; O'Meara, Anne; Breatnach, Fin

    2006-04-01

    Although neuroblastoma is characterized by numerous recurrent, large-scale chromosomal imbalances, the genes targeted by such imbalances have remained elusive. We have applied whole-genome oligonucleotide array comparative genomic hybridization (median probe spacing 6 kb) to 56 neuroblastoma tumors and cell lines to identify genes involved with disease pathogenesis. This set of tumors was selected for having either 11q loss or MYCN amplification, abnormalities that define the two most common genetic subtypes of metastatic neuroblastoma. Our analyses have permitted us to map large-scale chromosomal imbalances and high-level amplifications at exon-level resolution and to identify novel microdeletions and duplications. Chromosomal breakpoints (n = 467) generating imbalances >2 Mb were mapped to intervals ranging between 6 and 50 kb in size, providing substantial information on each abnormality. For example, breakpoints leading to large-scale hemizygous loss of chromosome 11q were highly clustered and preferentially associated with segmental duplications. High-level amplifications of MYCN were extremely complex, often resulting in a series of discontinuous regions of amplification. Imbalances (n = 540) <2 Mb long were also detected. Although the majority (78%) of these imbalances mapped to segmentally duplicated regions and primarily reflect constitutional copy number polymorphisms, many subtle imbalances were detected that are likely somatically acquired alterations and include genes involved with tumorigenesis, apoptosis, or neural cell differentiation. The most frequent microdeletion involved the PTPRD locus, indicating a possible tumor suppressor function for this gene.

  9. The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes.

    PubMed Central

    Makunin, I V; Volkova, E I; Belyaeva, E S; Nabirochkina, E N; Pirrotta, V; Zhimulev, I F

    2002-01-01

    In many late-replicating euchromatic regions of salivary gland polytene chromosomes, DNA is underrepresented. A mutation in the SuUR gene suppresses underreplication and leads to normal levels of DNA polytenization in these regions. We identified the SuUR gene and determined its structure. In the SuUR mutant stock a 6-kb insertion was found in the fourth exon of the gene. A single SuUR transcript is present at all stages of Drosophila development and is most abundant in adult females and embryos. The SuUR gene encodes a protein of 962 amino acids whose putative sequence is similar to the N-terminal part of SNF2/SWI2 proteins. Staining of salivary gland polytene chromosomes with antibodies directed against the SuUR protein shows that the protein is localized mainly in late-replicating regions and in regions of intercalary and pericentric heterochromatin. PMID:11901119

  10. Comparative analysis of the gene-dense ACHE/TFR2 region on human chromosome 7q22 with the orthologous region on mouse chromosome 5

    PubMed Central

    Wilson, Michael D.; Riemer, Cathy; Martindale, Duane W.; Schnupf, Pamela; Boright, Andrew P.; Cheung, Tony L.; Hardy, Daniel M.; Schwartz, Scott; Scherer, Stephen W.; Tsui, Lap-Chee; Miller, Webb; Koop, Ben F.

    2001-01-01

    Chromosome 7q22 has been the focus of many cytogenetic and molecular studies aimed at delineating regions commonly deleted in myeloid leukemias and myelodysplastic syndromes. We have compared a gene-dense, GC-rich sub-region of 7q22 with the orthologous region on mouse chromosome 5. A physical map of 640 kb of genomic DNA from mouse chromosome 5 was derived from a series of overlapping bacterial artificial chromosomes. A 296 kb segment from the physical map, spanning Ache to Tfr2, was compared with 267 kb of human sequence. We identified a conserved linkage of 12 genes including an open reading frame flanked by Ache and Asr2, a novel cation-chloride cotransporter interacting protein Cip1, Ephb4, Zan and Perq1. While some of these genes have been previously described, in each case we present new data derived from our comparative sequence analysis. Adjacent unfinished sequence data from the mouse contains an orthologous block of 10 additional genes including three novel cDNA sequences that we subsequently mapped to human 7q22. Methods for displaying comparative genomic information, including unfinished sequence data, are becoming increasingly important. We supplement our printed comparative analysis with a new, Web-based program called Laj (local alignments with java). Laj provides interactive access to archived pairwise sequence alignments via the WWW. It displays synchronized views of a dot-plot, a percent identity plot, a nucleotide-level local alignment and a variety of relevant annotations. Our mouse–human comparison can be viewed at http://web.uvic.ca/~bioweb/laj.html. Laj is available at http://bio.cse.psu.edu/, along with online documentation and additional examples of annotated genomic regions. PMID:11239002

  11. [The comet assay as a method of identifying chromosomes instability].

    PubMed

    Czubaszek, Magdalena; Szostek, Małgorzata; Wójcik, Ewa; Andraszek, Katarzyna

    2014-06-02

    The basic method for analyzing the degree of DNA fragmentation caused by genotoxic factors is gel electrophoresis of single cells (single cell gel electrophoresis), also called the comet assay. The comet assay enables the analysis of the level of several different DNA modifications. The basic testing procedure has been only slightly modified. This method helps identify single-strand and double-strand DNA cracks, as well as any chemical and enzymatic modifications that can potentially turn into cracks in DNA or chromatids. The comet assay makes it possible to detect DNA damage at the level of single cells. It can be employed in analyses of any tissues which provide cellular suspensions. Analysed cells are submerged in agarose on a microscope slide. DNA is what is left after proteins have been broken down. The slide is then subjected to electrophoresis and stained with a fluorescent dye. A "comet-like" image is obtained. The "head" is the cell fixation site prior to lysis; the "tail" represents damaged DNA fragments. The extent of DNA damage is reflected in the length of the tail and the amount of DNA contained in it. The assay finds research applications in the following fields: genetic toxicology, monitoring of DNA repair following chemotherapy and radiotherapy, ecotoxicology, animal and human nourishment, biomonitoring of genotoxicity, epidemiology and assessment of material deposited in sperm and blood banks.

  12. [Chromosomal variation in Chironomus plumosus L. (Diptera, Chironomidae) from populations of Bryansk region, Saratov region (Russia), and Gomel region (Belarus)].

    PubMed

    Belyanina, S I

    2015-02-01

    Cytogenetic analysis was performed on samples of Chironomus plumosus L. (Diptera, Chironomidae) taken from waterbodies of various types in Bryansk region (Russia) and Gomel region (Belarus). Karyotypes of specimens taken from stream pools of the Volga were used as reference samples. The populations of Bryansk and Gomel regions (except for a population of Lake Strativa in Starodubskii district, Bryansk region) exhibit broad structural variation, including somatic mosaicism for morphotypes of the salivary gland chromosome set, decondensation of telomeric sites, and the presence of small structural changes, as opposed to populations of Saratov region. As compared with Saratov and Bryansk regions, the Balbiani ring in the B-arm of chromosome I is repressed in populations of Gomel region. It is concluded that the chromosome set of Ch. plumosus in a range of waterbodies of Bryansk and Gomel regions is unstable.

  13. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    USGS Publications Warehouse

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  14. Characterization of the OmyY1 Region on the Rainbow Trout Y Chromosome

    PubMed Central

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C. P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed. PMID:23671840

  15. Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    2001-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  16. Amplifications of chromosomal region 20q13 as a prognostic indicator in breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    1998-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  17. Identifying molecular signatures of hypoxia adaptation from sex chromosomes: A case for Tibetan Mastiff based on analyses of X chromosome

    PubMed Central

    Wu, Hong; Liu, Yan-Hu; Wang, Guo-Dong; Yang, Chun-Tao; Otecko, Newton O.; Liu, Fei; Wu, Shi-Fang; Wang, Lu; Yu, Li; Zhang, Ya-Ping

    2016-01-01

    Genome-wide studies on high-altitude adaptation have received increased attention as a classical case of organismal evolution under extreme environment. However, the current genetic understanding of high-altitude adaptation emanated mainly from autosomal analyses. Only a few earlier genomic studies paid attention to the allosome. In this study, we performed an intensive scan of the X chromosome of public genomic data generated from Tibetan Mastiff (TM) and five other dog populations for indications of high-altitude adaptation. We identified five genes showing signatures of selection on the X chromosome. Notable among these genes was angiomotin (AMOT), which is related to the process of angiogenesis. We sampled additional 11 dog populations (175 individuals in total) at continuous altitudes in China from 300 to 4,000 meters to validate and test the association between the haplotype frequency of AMOT gene and altitude adaptation. The results suggest that AMOT gene may be a notable candidate gene for the adaptation of TM to high-altitude hypoxic conditions. Our study shows that X chromosome deserves consideration in future studies of adaptive evolution. PMID:27713520

  18. Identification and Validation of Novel Chromosomal Integration and Expression Loci in Escherichia coli Flagellar Region 1

    PubMed Central

    Juhas, Mario; Ajioka, James W.

    2015-01-01

    Escherichia coli is used as a chassis for a number of Synthetic Biology applications. The lack of suitable chromosomal integration and expression loci is among the main hurdles of the E. coli engineering efforts. We identified and validated chromosomal integration and expression target sites within E. coli K12 MG1655 flagellar region 1. We analyzed five open reading frames of the flagellar region 1, flgA, flgF, flgG, flgI, and flgJ, that are well-conserved among commonly-used E. coli strains, such as MG1655, W3110, DH10B and BL21-DE3. The efficiency of the integration into the E. coli chromosome and the expression of the introduced genetic circuit at the investigated loci varied significantly. The integrations did not have a negative impact on growth; however, they completely abolished motility. From the investigated E. coli K12 MG1655 flagellar region 1, flgA and flgG are the most suitable chromosomal integration and expression loci. PMID:25816013

  19. Chromosome

    MedlinePlus

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  20. Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    SciTech Connect

    Akarsu, A.N.; Hossain, A.; Sarfarazi, M.

    1996-01-22

    Primary congenital glaucoma (gene symbol: GLC3) is characterized by an improper development of the aqueous outflow system. The reduced outflow of fluid results in an increased intraocular pressure leading to buphthalmos, optic nerve damage, and eventual visual impairment. GLC3 is a heterogeneous condition with an estimated incidence of 1:2,500 in Middle Eastern and 1:10,000 in Western countries. In many families, GLC3 is an autosomal recessive trait with presentation of an earlier age-of-onset, high intraocular pressure, enlarged cloudy cornea, buphthalmos, and a more aggressive course. The pathogenesis of GLC3 remains elusive despite extensive histologic efforts to identify a single anatomic defect. Recent advances in positional mapping and cloning of human disorders provided an opportunity to identify chromosome locations of the GLC3 phenotype. Our laboratory is currently involved in the mapping of this condition by using a combination of candidate chromosome regions associated with the GLC3 phenotype and by a general positional mapping strategy. 16 refs., 3 tabs.

  1. A physical map of the polytenized region (101EF-102F) of chromosome 4 in Drosophila melanogaster.

    PubMed

    Locke, J; Podemski, L; Aippersbach, N; Kemp, H; Hodgetts, R

    2000-07-01

    Chromosome 4, the smallest autosome ( approximately 5 Mb in length) in Drosophila melanogaster contains two major regions. The centromeric domain ( approximately 4 Mb) is heterochromatic and consists primarily of short, satellite repeats. The remaining approximately 1.2 Mb, which constitutes the banded region (101E-102F) on salivary gland polytene chromosomes and contains the identified genes, is the region mapped in this study. Chromosome walking was hindered by the abundance of moderately repeated sequences dispersed along the chromosome, so we used many entry points to recover overlapping cosmid and BAC clones. In situ hybridization of probes from the two ends of the map to polytene chromosomes confirmed that the cloned region had spanned the 101E-102F interval. Our BAC clones comprised three contigs; one gap was positioned distally in 102EF and the other was located proximally at 102B. Twenty-three genes, representing about half of our revised estimate of the total number of genes on chromosome 4, were positioned on the BAC contigs. A minimal tiling set of the clones we have mapped will facilitate both the assembly of the DNA sequence of the chromosome and a functional analysis of its genes.

  2. Localization of chromosome regions in potoroo nuclei ( Potorous tridactylus Marsupialia: Potoroinae).

    PubMed

    Rens, W; O'Brien, P C M; Graves, J A M; Ferguson-Smith, M A

    2003-08-01

    Chromosome paints of the rat kangaroo ( Aepyprymnus rufuscens, 2 n=32) were used to define chromosome regions in the long nosed potoroo ( Potorous tridactylus, 2 n=12 female, 13 male) karyotype and localize these regions in three-dimensionally preserved nuclei of the potoroo to test the hypothesis that marsupial chromosomes have a radial distribution. In human nuclei chromosomes are distributed in a proposed radial fashion. Gene-rich chromosomes in the human interphase nucleus are preferentially located in the central area while gene-poor chromosomes are found more at the periphery of the nucleus; this feature is conserved in primates and chicken. Chromosome ordering in nuclei of P. tridactylus is related to their size and centromere position. Its relationship with replication patterns in interphase nuclei and metaphase was studied. In addition it was observed that the nucleus was not a smooth entity but had projections occupied by specific chromosome regions.

  3. Comparative mapping in the beige-satin region of mouse chromosome 13

    SciTech Connect

    Perou, C.M.; Pryor, R.; Kaplan, J.

    1997-01-15

    The proximal end of mouse chromosome (Chr) 13 contains regions conserved on human chromosomes 1q42-q44, 6p23-p21, and 7p22-p13. This region also contains mutations that may be models for human disease, including beige (human Chediak-Higashi syndrome). An interspecific backcross of SB/Le and Mus spretus mice was used to generate a molecular genetic linkage map of mouse chromosome 13 with an emphasis on the proximal region including beige (bg) and satin (sa). This map provides the gene order of the two phenotypic markers bg and sa relative to restriction fragment length polymorphisms and simple sequence length polymorphisms in 131 backcross animals. In parallel, we have created a physical map of the region using Nidogen (Nid) as a molecular starting point for cloning a YAC contig that was used to identify the beige gene. The physical map provides the fine-structure order of genes and anonymous DNA fragments that was not resolved by the genetic linkage mapping. The results show that the bg region of mouse Chr 13 is highly conserved on human Chr 1q42-q44 and provide a starting point for a complete functional analysis of the entire bg-sa interval. 37 refs., 4 figs., 1 tab.

  4. Physical and transcription map of a 25 Mb region on human chromosome 7 (region q21-q22)

    SciTech Connect

    Scherer, S. |; Little, S.; Vandenberg, A.

    1994-09-01

    We are interested in the q21-q22 region of chromosome 7 because of its implication in a number of diseases. This region of about 25 Mb appears to be involved in ectrodactyly/ectodermal dysplasia/cleft plate (EEC) and split hand/split foot deformity (SHFD1), as well as myelodysplastic syndrome and acute non-lymphocyte leukemia. In order to identify the genes responsible for these and other diseases, we have constructed a physical map of this region. The proximal and distal boundaries of the region were operationally defined by the microsatellite markers D7S660 and D7S692, which are about 35 cM apart. This region between these two markers could be divided into 13 intervals on the basis of chromosome breakpoints contained in somatic cell hybrids. The map positions for 43 additional microsatellite markers and 25 cloned genes were determined with respect to these intervals. A physical map based on contigs of over 250 YACs has also been assembled. While the contigs encompass all of the known genetic markers mapped to the region and almost cover the entire 25-Mb region, there are 3 gaps on the map. One of these gaps spans a set of DNA markers for which no corresponding YAC clones could be identified. To connect the two adjacent contigs we have initiated cosmid walking with a chromosome 7-specific library (Lawrence Livermore Laboratory). A tiling path of 60 contiguous YAC clones has been assembled and used for direct cDNA selection. Over 300 cDNA clones have been isolated and characterized. They are being grouped into transcription units by Northern blot analysis and screening of full-length cDNA libraries. Further, exon amplification and direct cDNA library screening with evolutionarily conserved sequences are being performed for a 1-Mb region spanning the SHFD1 locus to ensure detection of all transcribed sequences.

  5. Modular sequence elements associated with origin regions in eukaryotic chromosomal DNA.

    PubMed Central

    Dobbs, D L; Shaiu, W L; Benbow, R M

    1994-01-01

    We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found. Images PMID:8041609

  6. Sex chromosome system ZZ/ZW in Apareiodon hasemani Eigenmann, 1916 (Characiformes, Parodontidae) and a derived chromosomal region.

    PubMed

    Bellafronte, Elisangela; Schemberger, Michelle Orane; Artoni, Roberto Ferreira; Filho, Orlando Moreira; Vicari, Marcelo Ricardo

    2012-12-01

    Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes. PMID:23271937

  7. Sex chromosome system ZZ/ZW in Apareiodon hasemani Eigenmann, 1916 (Characiformes, Parodontidae) and a derived chromosomal region.

    PubMed

    Bellafronte, Elisangela; Schemberger, Michelle Orane; Artoni, Roberto Ferreira; Filho, Orlando Moreira; Vicari, Marcelo Ricardo

    2012-12-01

    Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes.

  8. Genetic mapping of the BRCA1 region on chromosome 17q21

    SciTech Connect

    Albertson, H.; Plaetke, R.; Ballard, L.; Fujimoto, E.; Connolly, J.; Lawrence, E.; Rodriquez, P.; Robertson, M.; Bradley, P.; Milner, B. )

    1994-03-01

    Chromosome 17q21 harbors a gene (BRCA1) associated with a hereditary form of breast cancer. As a step toward identification of this gene itself the authors developed a number of simple-sequence-repeat (SSR) markers for chromosome 17 and constructed a high-resolution genetic map of a 40-cM region around 17q21. As part of this effort they captured genotypes from five of the markers by using an ABI sequencing instrument and stored them in a locally developed database, as a step toward automated genotyping. In addition, YACs that physically link some of the SSR markers were identified. The results provided by this study should facilitate physical mapping of the BRCA1 region and isolation of the BRCA1 gene. 31 refs., 3 figs., 21 tabs.

  9. The subtelomeric region is important for chromosome recognition and pairing during meiosis.

    PubMed

    Calderón, María del Carmen; Rey, María-Dolores; Cabrera, Adoración; Prieto, Pilar

    2014-10-01

    The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing.

  10. The subtelomeric region is important for chromosome recognition and pairing during meiosis

    PubMed Central

    Calderón, María del Carmen; Rey, María-Dolores; Cabrera, Adoración; Prieto, Pilar

    2014-01-01

    The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing. PMID:25270583

  11. Physical mapping of the congenital chloride diarrhea gene region in human chromosome 7

    SciTech Connect

    Kere, J.; Hoeglund, P.; Haila, S.

    1994-09-01

    The gene for congenital chloride diarrhea (CLD; MIM 214700) has been mapped to human chromosome 7 by a linkage study in Finnish families. The markers closest to the gene are D7S496 and D7S501, both with zero recombination fraction. In order to physically map the region and facilitate positional cloning, altogether 25 YAC clones have been isolated from the Washington University chromosome 7 collection of YACs. The clones form 2 contigs, 700 to 900 kb in size, around D7S496 and D7SS01. One YAC from the CEPH collection that bridges these contigs has been identified, but the link remains unconfirmed. Rare-cutter restriction mapping has identified as least 3 CpG islands within 50 to 200 kb of D7S496, supposed to map closest to CLD on the basis of linkage disequilibrium studies. Isolation of candidate cDNAs is in progress.

  12. The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain.

    PubMed

    Valens, Michèle; Thiel, Axel; Boccard, Frédéric

    2016-09-01

    The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼-¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed. PMID:27627105

  13. The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain

    PubMed Central

    Valens, Michèle; Thiel, Axel

    2016-01-01

    The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼–¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed. PMID:27627105

  14. A nuclease-hypersensitive region forms de novo after chromosome replication.

    PubMed

    Solomon, M J; Varshavsky, A

    1987-10-01

    Regular nucleosome arrays in eucaryotic chromosomes are punctuated at specific locations, such as active promoters and replication origins, by apparently nucleosome-free sites, also called nuclease-hypersensitive, or exposed, regions. The -400-base pair-exposed region within simian virus 40 (SV40) chromosomes is present in approximately 20% of the chromosomes in lytically infected cells and encompasses the replication origin, transcriptional enhancer, and both late and early SV40 promoters. We report that nearly all SV40 chromosomes lacked the exposed region during replication and that newly formed chromosomes acquired the exposed region of the same degree as did bulk SV40 chromosomes within 1 h after replication. Furthermore, a much lower but significant level of exposure was detectable in late SV40 replication intermediates, indicating that formation of the exposed region could start within minutes after passage of the replication fork. PMID:2824998

  15. Exclusion of primary congenital glaucoma (PCG) from two candidate regions of chromosomes 1 and 6

    SciTech Connect

    Sarfarazi, M.; Akarsu, A.N.; Barsoum-Homsy, M.

    1994-09-01

    PCG is a genetically heterogeneous condition in which a significant proportion of families inherit in an autosomally recessive fashion. Although association of PCG with chromosomal abnormalities has been repeatedly reported in the literature, the chromosomal location of this condition is still unknown. Therefore, this study is designed to identify the chromosomal location of the PCG locus by positional mapping. We have identified 80 PCG families with a total of 261 potential informative meiosis. A group of 19 pedigrees with a minimum of 2 affected children in each pedigree and consanguinity in most of the parental generation were selected as our initial screening panel. This panel consists of a total of 44 affected and 93 unaffected individuals giving a total of 99 informative meiosis, including 5 phase-known. We used polymerase chain reaction (PCR), denaturing polyacrylamide gels and silver staining to genotype our families. We first screened for markers on 1q21-q31, the reported location for juvenile primary open-angle glaucoma and excluded a region of 30 cM as the likely site for the PCG locus. Association of PCG with both ring chromosome 6 and HLA-B8 has also been reported. Therefore, we genotyped our PCG panel with PCR applicable markers from 6p21. Significant negative lod scores were obtained for D6S105 (Z = -18.70) and D6S306 (Z = -5.99) at {theta}=0.001. HLA class 1 region has also contained one of the tubulin genes (TUBB) which is an obvious candidate for PCG. Study of this gene revealed a significant negative lod score with PCG (Z = -16.74, {theta}=0.001). A multipoint linkage analysis of markers in this and other regions containing the candidate genes will be presented.

  16. Characterization of FRA7B, a human common fragile site mapped at the 7p chromosome terminal region.

    PubMed

    Bosco, Nazario; Pelliccia, Franca; Rocchi, Angela

    2010-10-01

    Common fragile sites (CFS) are specific regions of the mammalian chromosomes that are particularly prone to gaps and breaks. They are a cause of genome instability, and the location of many CFS correlates with breakpoints of aberrations recurrent in some cancers. The molecular characterization of some CFS has not clarified the causes of their fragility. In this work, by using fluorescence in situ hybridization analysis with BAC and PAC clones, we determined the DNA sequence of the CFS FRA7B. The FRA7B sequence was then analyzed to identify coding sequences and some structural features possibly involved in fragility. FRA7B spans about 12.2 megabases, and is therefore one of the largest CFS analyzed. It maps at the 7p21.3-22.3 chromosome bands, therefore at the interface of G- and R-band regions that are probably difficult to replicate. A 90-kilobase long sequence that presents very high flexibility values was identified at the very beginning of the more fragile CFS region. Three large genes (THSD7A, SDK1, and MAD1L1) and two miRNA genes (MIRN589 and MIRN339) map in the fragile region. The chromosome band 7p22 is a recurrent breakpoint in chromosome abnormalities in different types of neoplasm. FRA7B is the first characterized CFS located in a chromosome terminal region.

  17. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients

    PubMed Central

    Yu, Xiao-Wei; Wei, Zhen-Tong; Jiang, Yu-Ting; Zhang, Song-Ling

    2015-01-01

    Spermatogenesis is an essential reproductive process that is regulated by many Y chromosome specific genes. Most of these genes are located in a specific region known as the azoospermia factor region (AZF) in the long arm of the human Y chromosome. AZF microdeletions are recognized as the most frequent structural chromosomal abnormalities and are the major cause of male infertility. Assisted reproductive techniques (ART) such as intra-cytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) can overcome natural fertilization barriers and help a proportion of infertile couples produce children; however, these techniques increase the transmission risk of genetic defects. AZF microdeletions and their associated phenotypes in infertile males have been extensively studied, and different AZF microdeletion types have been identified by sequence-tagged site polymerase chain reaction (STS-PCR), suspension array technology (SAT) and array-comparative genomic hybridization (aCGH); however, each of these approaches has limitations that need to be overcome. Even though the transmission of AZF microdeletions has been reported worldwide, arguments correlating ART and the incidence of AZF microdeletions and explaining the occurrence of de novo deletions and expansion have not been resolved. Using the newest findings in the field, this review presents a systematic update concerning progress in understanding the functions of AZF regions and their associated genes, AZF microdeletions and their phenotypes and novel approaches for screening AZF microdeletions. Moreover, the transmission characteristics of AZF microdeletions and the future direction of research in the field will be specifically discussed. PMID:26628946

  18. Minute supernumerary ring chromosome 22 associated with cat eye syndrome: Further delineation of the critical region

    SciTech Connect

    Mears, A.J.; McDermid, H.E.; El-Shanti, H.

    1995-09-01

    Cat eye syndrome (CES) is typically associated with a supernumerary bisatellited marker chromosome (inv dup 22pter-22q11.2) resulting in four copies of this region. We describe an individual showing the inheritance of a minute supernumerary double ring chromosome 22, which resulted in expression of all cardinal features of CES. The size of the ring was determined by DNA dosage analysis and FISH analysis for five loci mapping to 22q11.2. The probes to the loci D22S9, D22S43, and ATP6E were present in four copies, whereas D22S57 and D22S181 were present in two copies. This finding further delineates the distal boundary of the critical region of CES, with ATP6E being the most distal duplicated locus identified. The phenotypically normal father and grandfather of the patient each had a small supernumerary ring chromosome and demonstrated three copies for the loci D22S9, D22S43, and ATP6E. Although three copies of this region have been reported in other cases with CES features, it is possible that the presence of four copies leads to greater susceptibility. 35 refs., 4 figs., 2 tabs.

  19. Organization of the und R chromosome region in maize

    SciTech Connect

    Kermicle, J.

    1989-07-01

    Maize is highly polymorphic in pattern of anthocyanin pigmentation. That portion of the total variation which is attributable to one gene is revealed when alleles from various sources are incorporated into a standard line by backcrossing before comparison under uniform environments. The variation associated with such collections of {und R} alleles is discontinuous, suggesting the presence of discrete units of function. Alleles comprising more than one such element constitute an allelic complex or gene family. An objective of the early years of investigation under this grant was to work out the arrangement of genic elements in such allelic complexes. Elements in a complex are identified by independent mutation and separability by recombination, the latter serving also to order them in the chromosome. Alleles having from one to three elements each were represented among five accessions of the colored-seed, colored-plant class ({und R-r}). Nine different genic elements were identified. This line of inquiry has been de-emphasized in recent years in deference to investigating the organization of individual genic elements. We have focused on a set of readily distinguished elements that were identified or produced in the analysis of allelic complexes. 7 refs., 1 tab.

  20. A second gene for cerulean cataracts maps to the {beta} crystallin region on chromosome 22

    SciTech Connect

    Kramer, P.; Yount, J.; Lovrien, E.

    1996-08-01

    Cogenital cataracts are one of the most common major eye abnormalities and often lead to blindness in infants. At least a third of all cases are familial. Within this group, highly penetrant, autosomal dominant forms of congenital cataracts (ADCC) are most common. ADCC is a genetically heterogeneous group of disorders, in which at least eight different loci have been identified for nine clinically distinct forms. Among these, Armitage et al. mapped a gene for cerulean blue cataracts to chromosome 17q24. Bodker et al. described a large family with cerulean blue cataracts, in which the affected daughter of affected first cousins was presumed to be homozygous for the purported gene. We report linkage in this family to the region on chromosome 22q that includes two {beta} crystallin genes (CRYBB2, CRYBB3) and one pseudogene (CRYBB2P1). The affected female in question is homozygous at all markers. 25 refs., 1 fig., 1 tab.

  1. Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19

    SciTech Connect

    Briggs, M.D.; Rasmussen, M.; Garber, P.; Rimoin, D.L.; Cohn, D.H. ); Weber, J.L. ); Yuen, J.; Reinker, K. )

    1993-12-01

    Pseudoachondroplasia (PSACH) is a dominantly inherited form of short-limb dwarfism characterized by dysplastic changes in the spine, epiphyses, and metaphyses and early onset osteoarthropathy. Chondrocytes from affected individuals accumulate an unusual appearing material in the rough endoplasmic reticulum, which has led to the hypothesis that a structural abnormality in a cartilage-specific protein produces the phenotype. The authors recently identified a large family with a mild form of pseudoachondroplasia. By genetic linkage to a dinucleotide repeat polymorphic marker (D19S199), they have localized the disease gene to chromosome 19 (maximum lod score of 7.09 at a recombination fraction of 0.03). Analysis of additional markers and recombinations between the linked markers and the phenotype suggests that the disease gene resides within a 6.3-cM interval in the immediate pericentromeric region of the chromosome. 39 refs., 2 figs., 1 tab.

  2. A genomewide screen for chronic rhinosinusitis genes identifies a locus on chromosome 7q

    PubMed Central

    Pinto, Jayant M.; Hayes, M. Geoffrey; Schneider, Daniel; Naclerio, Robert M.; Ober, Carole

    2014-01-01

    Background Chronic rhinosinusitis is an important public health problem with substantial impact on patient quality of life and health care costs. We hypothesized that genetic variation may be one factor that affects this disease. Objective To identify genetic variation underlying susceptibility to chronic rhinosinusitis using a genome-wide approach. Methods We studied a religious isolate that practices a communal lifestyle and shares common environmental exposures. Using physical examination, medical interviews, and a review of medical records, we identified 8 individuals with chronic rhinosinusitis out of 291 screened. These 8 individuals were related to each other in a single 60 member, 9 generation pedigree. A genome-wide screen for loci influencing susceptibility to chronic rhinosinusitis using 1123 genome-wide markers was conducted. Results The largest linkage peak (P = 0.0023; 127.15 cM, equivalent to LOD=2.01) was on chromosome 7q31.1-7q32.1, 7q31 (127.15 cM; 1-LOD support region: 115cM to 135cM) and included the CFTR locus. Genotyping of 38 mutations in the CFTR gene did not reveal variation accounting for this linkage signal. Conclusion Understanding the genes involved in chronic rhinosinusitis may lead to improvements in its diagnosis and treatment. Our results represent the first genome-wide screen for chronic rhinosinusitis and suggest that a locus on 7q31.1-7q32.1 influences disease susceptibility. This may be the CFTR gene or another nearby locus. PMID:18622306

  3. Crossover Interference on Nucleolus Organizing Region-Bearing Chromosomes in Arabidopsis

    PubMed Central

    Lam, Sandy Y.; Horn, Sarah R.; Radford, Sarah J.; Housworth, Elizabeth A.; Stahl, Franklin W.; Copenhaver, Gregory P.

    2005-01-01

    In most eukaryotes, crossovers are not independently distributed along the length of a chromosome. Instead, they appear to avoid close proximity to one another—a phenomenon known as crossover interference. Previously, for three of the five Arabidopsis chromosomes, we measured the strength of interference and suggested a model wherein some crossovers experience interference while others do not. Here we show, using the same model, that the fraction of interference-insensitive crossovers is significantly smaller on the remaining two chromosomes. Since these two chromosomes bear the Arabidopsis NOR domains, the possibility that these chromosomal regions influence interference is discussed. PMID:15802520

  4. Characterization of an autonomously replicating region from the Streptomyces lividans chromosome.

    PubMed Central

    Zakrzewska-Czerwińska, J; Schrempf, H

    1992-01-01

    The chromosomal replication origin of the plasmidless derivative (TK21) from Streptomyces lividans 66 has been cloned as an autonomously replicating minichromosome (pSOR1) by using the thiostrepton resistance gene as a selectable marker. pSOR1 could be recovered as a closed circular plasmid which shows high segregational instability. pSOR1 was shown to replicate in Streptomyces coelicolor A3(2) and in S. lividans 66 and hybridized with DNA from several different Streptomyces strains. Physical mapping revealed that oriC is located on a 330-kb AseI fragment of the S. coelicolor A3(2) chromosome. DNA sequence analyses showed that the cloned chromosomal oriC region contains numerous DnaA boxes which are arranged in two clusters. The preferred sequence identified in the oriC region of Escherichia coli and several other bacteria is TTATCCACA. In contrast, in S. lividans, which has a high GC content, the preferred sequence for DnaA boxes appears to be TTGTCCACA. Images PMID:1556087

  5. Conservation of Regional Variation in Sex-Specific Sex Chromosome Regulation

    PubMed Central

    Wright, Alison E.; Zimmer, Fabian; Harrison, Peter W.; Mank, Judith E.

    2015-01-01

    Regional variation in sex-specific gene regulation has been observed across sex chromosomes in a range of animals and is often a function of sex chromosome age. The avian Z chromosome exhibits substantial regional variation in sex-specific regulation, where older regions show elevated levels of male-biased expression. Distinct sex-specific regulation also has been observed across the male hypermethylated (MHM) region, which has been suggested to be a region of nascent dosage compensation. Intriguingly, MHM region regulatory features have not been observed in distantly related avian species despite the hypothesis that it is situated within the oldest region of the avian Z chromosome and is therefore orthologous across most birds. This situation contrasts with the conservation of other aspects of regional variation in gene expression observed on the avian sex chromosomes but could be the result of sampling bias. We sampled taxa across the Galloanserae, an avian clade spanning 90 million years, to test whether regional variation in sex-specific gene regulation across the Z chromosome is conserved. We show that the MHM region is conserved across a large portion of the avian phylogeny, together with other sex-specific regulatory features of the avian Z chromosome. Our results from multiple lines of evidence suggest that the sex-specific expression pattern of the MHM region is not consistent with nascent dosage compensation. PMID:26245831

  6. Linkage studies for T2D in Chop and C/EBPbeta chromosomal regions in Italians.

    PubMed

    Gragnoli, Claudia; Pierpaoli, Laura; Piumelli, Nunzia; Chiaramonte, Francesco

    2007-11-01

    The genes causing type 2 diabetes (T2D), a complex heterogeneous disorder, differ and/or overlap in various populations. Among others there are two loci in linkage to T2D, the chromosomes 20q12-13.1 and 12q15. These two regions harbor two genes, C/EBPbeta and CHOP, which are excellent candidate genes for T2D. In fact, C/EBPbeta protein cooperates with HNF4alpha (MODY1, monogenic form of diabetes) and 1alpha (MODY3, monogenic form of diabetes). C/EBPbeta mediates suppression of insulin gene transcription in hyperglycemia and may contribute to insulin-resistance. It interacts in a complex pathway with the CHOP protein. CHOP may play a role in altered beta-cell glucose metabolism, in beta-cell apoptosis, and in lack of beta-cell replication. Thus, both C/EBPbeta and CHOP genes may independently and interactively contribute to T2D. The chromosomal regions targeting C/EBPbeta and CHOP genes have never been previously explored in T2D. We planned to identify their potential contribution to T2D in Italians. We have genotyped a group of affected siblings/families with both late- and early-onset T2D around the C/EBPbeta and the CHOP genes. We have performed non-parametric linkage analysis in the total T2D group, in the late-onset and the early-onset group, separately. We have identified a suggestive linkage to T2D in the CHOP gene locus in the early-onset T2D group (P = 0.04). We identified the linkage to T2D in the chromosome 12q15 region in the early-onset T2D families and specifically target the CHOP gene. Our next step will be the identification of CHOP gene variants, which may contribute to the linkage to T2D in Italians. PMID:17620318

  7. Topological Organization of Multi-chromosomal Regions by Firre

    PubMed Central

    Hacisuleyman, Ezgi; Goff, Loyal A.; Trapnell, Cole; Williams, Adam; Henao-Mejia, Jorge; Sun, Lei; McClanahan, Patrick; Hendrickson, David G.; Sauvageau, Martin; Kelley, David R.; Morse, Michael; Engreitz, Jesse; Lander, Eric S.; Guttman, Mitch; Lodish, Harvey F.; Flavell, Richard; Raj, Arjun; Rinn, John L.

    2014-01-01

    RNA is known to be an abundant and important structural component of the nuclear matrix, including long noncoding RNAs (lncRNA). Yet the molecular identities, functional roles, and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear matrix factor hnRNPU, through a 156 bp repeating sequence and Firre localizes across a ~5 Mb domain on the X-chromosome. We further observed Firre localization across at least five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X-chromosome. Both genetic deletion of the Firre locus or knockdown of hnRNPU resulted in loss of co-localization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes. PMID:24463464

  8. Construction of a yeast artifical chromosome contig spanning the spinal muscular atrophy disease gene region

    SciTech Connect

    Kleyn, P.W.; Wang, C.H.; Vitale, E.; Pan, J.; Ross, B.M.; Grunn, A.; Palmer, D.A.; Warburton, D.; Brzustowicz, L.M.; Gilliam, T.G. ); Lien, L.L.; Kunkel, L.M. )

    1993-07-15

    The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene. 26 refs., 3 figs., 1 tab.

  9. Regions of the polytene chromosomes of Drosophila virilis carrying multiple dispersed p Dv 111 DNA sequences

    SciTech Connect

    Gubenko, I.S.; Evgen'ev, M.B.

    1986-09-01

    The cloned sequences of p Dv 111 DNA hybridized in situ with more than 170 regions of Drosophila virilis salivary gland chromosomes. Comparative autoradiography of in situ hybridization and the nature of pulse /sup 3/H-thymidine and /sup 3/H-deoxycytidine incorporation into the polytene chromosomes of D. virilis at the puparium formation stage showed that the hybridization sites of p Dv 111 are distributed not only in the heterochromatic regions but also in the euchromatic regions of the chromosomes that are not late replicating. Two distinct bands of hybridization of p Dv 111 /sup 3/H-DNA were observed in the region of the heat shock puff 20CD. The regions of the distal end of chromosome 2, in which breaks appeared during radiation-induced chromosomal rearrangements, hybridized with the p Dv 111 DNA.

  10. [The role of chromosomal regions anchored to the nuclear envelope in the functional organization of chromosomes].

    PubMed

    Shabarina, A N; Shostak, N G; Glazkov, M V

    2010-09-01

    The functional characteristics of the DNA fragments responsible for chromosome attachment to the nuclear envelope during the interphase (neDNAs) have been studied. The neDNAs flanking the transgene have been found to promote a steadily high rate of its expression, irrespective of the site of its insertion into the host chromosomes. At the same time, neDNAs themselves have no transcription regulatory functions. PMID:21061611

  11. Genomewide copy number analysis of Müllerian adenosarcoma identified chromosomal instability in the aggressive subgroup.

    PubMed

    Lee, Jen-Chieh; Lu, Tzu-Pin; Changou, Chun A; Liang, Cher-Wei; Huang, Hsien-Neng; Lauria, Alexandra; Huang, Hsuan-Ying; Lin, Chin-Yao; Chiang, Ying-Cheng; Davidson, Ben; Lin, Ming-Chieh; Kuo, Kuan-Ting

    2016-09-01

    Müllerian adenosarcomas are malignant gynecologic neoplasms. Advanced staging and sarcomatous overgrowth predict poor prognosis. Because the genomic landscape remains poorly understood, we conducted this study to characterize the genomewide copy number variations in adenosarcomas. Sixteen tumors, including eight with and eight without sarcomatous overgrowth, were subjected to a molecular inversion probe array analysis. Copy number variations, particularly losses, were significantly higher in cases with sarcomatous overgrowth. Frequent gains of chromosomal 12q were noted, often involving cancer-associated genes CDK4 (six cases), MDM2, CPM, YEATS4, DDIT3, GLI1 (five each), HMGA2 and STAT6 (four), without association with sarcomatous overgrowth status. The most frequent losses involved chromosomes 13q (five cases), 9p, 16q and 17q (four cases each) and were almost limited to cases with sarcomatous overgrowth. MDM2 and CDK4 amplification, as well as losses of RB1 (observed in two cases) and CDKN2A/B (one case), was verified by FISH. By immunohistochemistry, all MDM2/CDK4-coamplified cases were confirmed to overexpress both encoded proteins, whereas all four cases with (plus an additional four without) gain of HMGA2 overexpressed the HMGA2 protein. Both cases with RB1 loss were negative for the immunostaining of the encoded protein. Chromothripsis-like copy number profiles involving chromosome 12 or 14 were observed in three fatal cases, all of which harbored sarcomatous overgrowth. With whole chromosome painting and deconvolution fluorescent microscopy, dividing tumor cells in all three cases were shown to have scattered extrachromosomal materials derived from chromosomes involved by chromothripsis, suggesting that this phenomenon may serve as visual evidence for chromothripsis in paraffin tissue. In conclusion, we identified frequent chromosome 12q amplifications, including loci containing potential pharmacological targets. Global chromosomal instability and

  12. Isolation and refined regional mapping of expressed sequences from human chromosome 21

    SciTech Connect

    Kao, F.T.; Yu, J.; Patterson, D.

    1994-10-01

    To increase candidate genes from human chromosome 21 for the analysis of Down syndrome and other genetic diseases localized on this chromosome, we have isolated and studied 9 cDNA clones encoded by chromosome 21. For isolating cDNAs, single-copy microclones from a chromosome 21 microdissection library were used in direct screening of various cDNA libraries. Seven of the cDNA clones have been regionally mapped on chromosome 21 using a comprehensive hybrid mapping panel comprising 24 cell hybrids that divide the chromosome into 33 subregions. These cDNA clones with refined mapping positions should be useful for identification and cloning of genes responsible for the specific component phenotypes of Down syndrome and other diseases on chromosome 21, including progressive myoclonus epilepsy in 21q22.3. 12 refs., 2 figs., 1 tab.

  13. Prenatal diagnosis of a small supernumerary, XIST-negative, mosaic ring X chromosome identified by fluorescence in situ hybridization in an abnormal male fetus.

    PubMed

    Le Caignec, C; Boceno, M; Joubert, M; Winer, N; Aubron, F; Fallet-Bianco, C; Rival, J M

    2003-02-01

    Marker or ring X [r(X)] chromosomes of varying size are often found in patients with Turner syndrome. Patients with very small r(X) chromosomes that did not include the X-inactivation locus (XIST) have been described with a more severe phenotype. Small r(X) chromosomes are rare in males and there are only five previous reports of such cases. We report the identification of a small supernumerary X chromosome in an abnormal male fetus. Cytogenetic analysis from chorionic villus sampling was performed because of fetal nuchal translucency thickness and it showed mosaicism 46,XY/47,XY,+r(X)/48,XY,+r(X),+r(X). Fluorescence in situ hybridizations (FISH) showed the marker to be of X-chromosome origin and not to contain the XIST locus. Additional specific probes showed that the r(X) included a euchromatic region in proximal Xq. At 20 weeks gestation, a second ultrasound examination revealed cerebral abnormalities. After genetic counselling, the pregnancy was terminated. The fetus we describe is the first male with a mosaic XIST-negative r(X) chromosome identified at prenatal diagnosis. The phenotype we observed was probably the result of functional disomy of the genes in the r(X) chromosome, secondary to loss of the XIST locus. PMID:12575022

  14. Local Search Methods for Tree Chromosome Structure in a GA to Identify Functions

    NASA Astrophysics Data System (ADS)

    Matayoshi, Mitsukuni; Nakamura, Morikazu; Miyagi, Hayao

    In this paper, Local search methods for “Tree Chromosome Structure in a Genetic Algorithm to Identify Functions" which succeeds in function identifications are proposed. The proposed method aims at the identification success rate improvement and shortening identification time. The target functions of identification are composed of algebraic functions, primary transcendental functions, time series functions include a chaos function, and user-defined one-variable funcions. In testing, Kepler's the third law is added to Matayoshi's test functions(7)-(9). When some functions are identified, the improvement of identification rate and shortening time are indicated. However, we also report some ineffectual results, and give considerations.

  15. Loss of the Y chromosome PAR2 region and additional rearrangements in two familial cases of satellited Y chromosomes: cytogenetic and molecular analysis.

    PubMed

    Velissariou, V; Sismani, C; Christopoulou, S; Kaminopetros, P; Hatzaki, A; Evangelidou, P; Koumbaris, G; Bartsocas, C S; Stylianidou, G; Skordis, N; Diakoumakos, A; Patsalis, P C

    2007-01-01

    Two cases of rare structural aberrations of the Y chromosome were detected: a del(Y) (q12) chromosome in a child with mild dysmorphic features, obesity and psychomotor delay, and two identical satellited Y chromosomes (Yqs) in a normal twin, which were originally observed during routine prenatal diagnosis. In both cases a Yqs chromosome was detected in the father which had arisen from a reciprocal translocation involving the short arm of chromosome 15 and the heterochromatin of the long arm of the Y chromosome (Yqh). Cytogenetic and molecular studies demonstrated that in the reciprocal product of chromosomes 15 and Y PAR2 could not be detected, showing that PAR2 had been deleted. It is discussed whether the translocation of the short arm of an acrocentric chromosome to the heterochromatin of the long arm of the Y chromosome causes instability of this region which results either in loss of genetic material or interference with the normal mechanism of disjunction.

  16. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories.

    PubMed

    Larkin, Denis M; Pape, Greg; Donthu, Ravikiran; Auvil, Loretta; Welge, Michael; Lewin, Harris A

    2009-05-01

    The persistence of large blocks of homologous synteny and a high frequency of breakpoint reuse are distinctive features of mammalian chromosomes that are not well understood in evolutionary terms. To gain a better understanding of the evolutionary forces that affect genome architecture, synteny relationships among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum, and chicken) were compared at <1 human-Mbp resolution. Homologous synteny blocks (HSBs; N = 2233) and chromosome evolutionary breakpoint regions (EBRs; N = 1064) were identified from pairwise comparisons of all genomes. Analysis of the size distribution of HSBs shared in all 10 species' chromosomes (msHSBs) identified three (>20 Mbp) that are larger than expected by chance. Gene network analysis of msHSBs >3 human-Mbp and EBRs <1 Mbp demonstrated that msHSBs are significantly enriched for genes involved in development of the central nervous and other organ systems, whereas EBRs are enriched for genes associated with adaptive functions. In addition, we found EBRs are significantly enriched for structural variations (segmental duplications, copy number variants, and indels), retrotransposed and zinc finger genes, and single nucleotide polymorphisms. These results demonstrate that chromosome breakage in evolution is nonrandom and that HSBs and EBRs are evolving in distinctly different ways. We suggest that natural selection acts on the genome to maintain combinations of genes and their regulatory elements that are essential to fundamental processes of amniote development and biological organization. Furthermore, EBRs may be used extensively to generate new genetic variation and novel combinations of genes and regulatory elements that contribute to adaptive phenotypes.

  17. Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group 5 of Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.; Endo, T. R.; Boyko, E. V.

    1996-01-01

    The distribution of genes and recombination in the wheat genome was studied by comparing physical maps with the genetic linkage maps. The physical maps were generated by mapping 80 DNA and two phenotypic markers on an array of 65 deletion lines for homoeologous group 5 chromosomes. The genetic maps were constructed for chromosome 5B in wheat and 5D in Triticum tauschii. No marker mapped in the proximal 20% chromosome region surrounding the centromere. More than 60% of the long arm markers were present in three major clusters that physically encompassed <18% of the arm. Because 48% of the markers were cDNA clones and the distributions of the cDNA and genomic clones were similar, the marker distribution may represent the distribution of genes. The gene clusters were identified and allocated to very small chromosome regions because of a higher number of deletions in their surrounding regions. The recombination was suppressed in the centromeric regions and mainly occurred in the gene-rich regions. The bp/cM estimates varied from 118 kb for gene-rich regions to 22 Mb for gene-poor regions. The wheat genes present in these clusters are, therefore, amenable to molecular manipulations parallel to the plants with smaller genomes like rice. PMID:8725245

  18. Construction of a chromosome specific library of human MARs and mapping of matrix attachment regions on human chromosome 19.

    PubMed

    Nikolaev, L G; Tsevegiyn, T; Akopov, S B; Ashworth, L K; Sverdlov, E D

    1996-04-01

    Using a novel procedure a representative human chromosome 19-specific library was constructed of short sequences, which bind preferentially to the nuclear matrix (matrix attachment regions, or MARs). Judging by 20 clones sequenced so far, the library contains > 50% of human inserts, about 90% of which are matrix-binding by the in vitro test. Computer analysis of sequences of eight human MARs did not reveal any significant homologies with the EMBL Nucleotide Data Base entries as well as between MARs themselves. Eight MARs were assigned to individual positions on the chromosome 19 physical map. The library constructed can serve as a good source of MAR sequences for comparative analysis and classification and for further chromosome mapping of MARs as well.

  19. Construction of a chromosome specific library of human MARs and mapping of matrix attachment regions on human chromosome 19.

    PubMed Central

    Nikolaev, L G; Tsevegiyn, T; Akopov, S B; Ashworth, L K; Sverdlov, E D

    1996-01-01

    Using a novel procedure a representative human chromosome 19-specific library was constructed of short sequences, which bind preferentially to the nuclear matrix (matrix attachment regions, or MARs). Judging by 20 clones sequenced so far, the library contains > 50% of human inserts, about 90% of which are matrix-binding by the in vitro test. Computer analysis of sequences of eight human MARs did not reveal any significant homologies with the EMBL Nucleotide Data Base entries as well as between MARs themselves. Eight MARs were assigned to individual positions on the chromosome 19 physical map. The library constructed can serve as a good source of MAR sequences for comparative analysis and classification and for further chromosome mapping of MARs as well. PMID:8614638

  20. Bovine chromosomal regions affecting rheological traits in acid-induced skim milk gels.

    PubMed

    Glantz, M; Gustavsson, F; Bertelsen, H P; Stålhammar, H; Lindmark-Månsson, H; Paulsson, M; Bendixen, C; Gregersen, V R

    2015-02-01

    The production of fermented milk products has increased worldwide during the last decade and is expected to continue to increase during the coming decade. The quality of these products may be optimized through breeding practices; however, the relations between cow genetics and technological properties of acid milk gels are not fully known. Therefore, the aim of this study was to identify chromosomal regions affecting acid-induced coagulation properties and possible candidate genes. Skim milk samples from 377 Swedish Red cows were rheologically analyzed for acid-induced coagulation properties using low-amplitude oscillation measurements. The resulting traits, including gel strength, coagulation time, and yield stress, were used to conduct a genome-wide association study. Single nucleotide polymorphisms (SNP) were identified using the BovineHD SNPChip (Illumina Inc., San Diego, CA), resulting in almost 621,000 segregating markers. The genome was scanned for putative quantitative trait loci (QTL) regions, haplotypes based on highly associated SNP were inferred, and the additive genetic effects of haplotypes within each QTL region were analyzed using mixed models. A total of 8 genomic regions were identified, with large effects of the significant haplotype explaining between 4.8 and 9.8% of the phenotypic variance of the studied traits. One major QTL was identified to overlap between gel strength and yield stress, the QTL identified with the most significant SNP closest to the gene coding for κ-casein (CSN3). In addition, a chromosome-wide significant region affecting yield stress on BTA 11 was identified to be colocated with PAEP, coding for β-lactoglobulin. Furthermore, the coagulation properties of the genetic variants within the 2 genes were compared with the coagulation properties identified by the patterns of the haplotypes within the regions, and it was discovered that the haplotypes were more diverse and in one case slightly better at explaining the

  1. Genetic divergence in domesticated and non-domesticated gene regions of barley chromosomes.

    PubMed

    Yan, Songxian; Sun, Dongfa; Sun, Genlou

    2015-01-01

    Little is known about the genetic divergence in the chromosomal regions with domesticated and non-domesticated genes. The objective of our study is to examine the effect of natural selection on shaping genetic diversity of chromosome region with domesticated and non-domesticated genes in barley using 110 SSR markers. Comparison of the genetic diversity loss between wild and cultivated barley for each chromosome showed that chromosome 5H had the highest divergence of 35.29%, followed by 3H, 7H, 4H, 2H, 6H. Diversity ratio was calculated as (diversity of wild type - diversity of cultivated type)/diversity of wild type×100%. It was found that diversity ratios of the domesticated regions on 5H, 1H and 7H were higher than those of non-domesticated regions. Diversity ratio of the domesticated region on 2H and 4H is similar to that of non-domesticated region. However, diversity ratio of the domesticated region on 3H is lower than that of non-domesticated region. Averaged diversity among six chromosomes in domesticated region was 33.73% difference between wild and cultivated barley, and was 27.56% difference in the non-domesticated region. The outcome of this study advances our understanding of the evolution of crop chromosomes. PMID:25812037

  2. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over occurs in distal sub-telomeric regions representing 40% of the...

  3. A direct screen identifies new flight muscle mutants on the Drosophila second chromosome.

    PubMed Central

    Nongthomba, U; Ramachandra, N B

    1999-01-01

    An ethyl methanesulfonate mutagenesis of Drosophila melanogaster was undertaken, and >3000 mutagenized second chromosomes were generated. More than 800 homozygous viable lines were established, and adults were screened directly under polarized light for muscle defects. A total of 16 mutant strains in which the indirect flight muscles were reduced in volume or disorganized or were otherwise abnormal were identified. These fell into seven recessive and one semidominant complementation groups. Five of these eight complementation groups, including the semidominant mutation, have been mapped using chromosomal deficiencies and meiotic recombination. Two complementation groups mapped close to the Myosin heavy chain gene, but they are shown to be in different loci. Developmental analysis of three mutations showed that two of these are involved in the early stages of adult myogenesis while the other showed late defects. This is the first report of results from a systematic and direct screen for recessive flight muscle defects. This mutant screen identifies genes affecting the flight muscles, which are distinct from those identified when screening for flightlessness. PMID:10471711

  4. Direct selection in the BRCA1 region of human chromosome 17q21

    SciTech Connect

    Osborne-Lawrence, S.L.; Welcsh, P.L.; Gallardo, T.D.

    1994-09-01

    Direct cDNA selection was used to obtain candidate genes within the region of human chromosome 17q21 associated with early onset familial breast and ovarian cancer (BRCA1). Four sets of pooled cosmids (10 to 25 per set) derived from this region were used in the selection of cDNAs from four complex human cDNA pools: placenta, fetal head, HeLa cells, and activated T cells. Two YACs within our contig were also used in a separate selection. A reporter gene, estradiol 17 beta-hydroxysteriod dehydrogenase (EDH17B), located on one of the cosmids in the contig of the region, was monitored to observe the efficiency of the selection. A >10,000-fold enrichment of EDH17B was seen after two rounds of selection based on the number of EDH17B clones found in the resultant selected library. Selected inserts were cloned into lambda gt10, amplified with the PCR using vector primers, and dot blotted. 200 inserts have been hybridized individually to cosmids from the contig and to the cDNA dot blots. Approximately 70% of these map back to specific cosmids or YACs in the region. These PCR products were sequenced directly and analyzed for homology against each other as well as against sequences within GenBank. At least 23 new genes have been identified and isolated from this region based on sequence and hybridization overlaps. Seventeen of these cDNAs appear to be unique, two are known genes previously mapped to the region, one has homology to a known known Drosophilia gene, one is homologous to a human non-histone chromosomal protein HMG-17, and two are new members of gene families. These cDNAs are being used for mutational analyses in affected women from families with multiple cases of breast and ovarian cancer.

  5. Identification and regional localization of DNA markers on chromosome 7 for the cloning of the cystic fibrosis gene

    PubMed Central

    Rommens, Johanna M.; Zengerling, Stefanie; Burns, Julie; Melmer, Georg; Kerem, Bat-sheva; Plavsic, Natasa; Zsiga, Martha; Kennedy, Dara; Markiewicz, Danuta; Rozmahel, Richard; Riordan, Jack R.; Buchwald, Manuel; Tsui, Lap-chee

    1988-01-01

    To facilitate mapping of the cystic fibrosis locus (CF) and to isolate the corresponding gene, we have screened a flow-sorted chromosome 7–specific library for additional DNA markers in the 7q31-q32 region. Unique (“single-copy”) DNA segments were selected from the library and used in hybridization analysis with a panel of somatic cell hybrids containing various portions of human chromosome 7 and patient cell lines with deletion of this chromosome. A total of 258 chromosome 7–specific single-copy DNA segments were identified, and most of them localized to subregions. Fifty three of these corresponded to DNA sequences in the 7q31-q32 region. Family and physical mapping studies showed that two of the DNA markers, D7S122 and D7S340, are in close linkage with CF. The data also showed that D7S122 and D7S340 map between MET and D7S8, the two genetic markers known to be on opposite sides of CF. The study thus reaffirms the general strategy in approaching a disease locus on the basis of chromosome location. ImagesFigure 2Figure 5 PMID:2903665

  6. Incompatibility Between X Chromosome Factor and Pericentric Heterochromatic Region Causes Lethality in Hybrids Between Drosophila melanogaster and Its Sibling Species

    PubMed Central

    Cattani, M. Victoria; Presgraves, Daven C.

    2012-01-01

    The Dobzhansky–Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F1 hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F1 hybrid females with D. melanogaster. As F1 hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhlmau. The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin. PMID:22446316

  7. Regional localization of the gene for thyroid peroxidase to human chromosome 2p25 and mouse chromosome 12C

    SciTech Connect

    Endo, Yuichi; Onogi, Satoshi; Fujita, Teizo

    1995-02-10

    Thyroid peroxidase (TPO) plays a central role in thyroid gland function. The enzyme catalyzes two important reactions of thyroid hormone synthesis, i.e., the iodination of tyrosine residues in thyroglobulin and phenoxy-ester formation between pairs of iodinated tyrosines to generate the thyroid hormones, thyroxine and triiodothyronine. Previously, we isolated the cDNAs encoding human and mouse TPOs and assigned the human TPO gene to the short arm of chromosome 2 by somatic cell hybrid mapping. By a similar analysis of DNA from somatic cell hybrids, the human TPO gene was mapped to 2pter-p12. The mouse TPO gene was localized to chromosome 12 using a rat TPO cDNA as a probe to hybridize with mouse-hamster somatic cell hybrids. In this study, we used fluorescence in situ hybridization (FISH) to confirm the localization of human and mouse TPO genes to human chromosome 2 and mouse chromosome 12 and to assign them regionally to 2p25 and 12C, respectively. 7 refs., 1 fig.

  8. Physical localization of eed: A region of mouse chromosome 7 required for gastrulation

    SciTech Connect

    Holdener, B.C.; Thomas, J.W.; Schumacher, A.

    1995-06-10

    In the mouse, the embryonic ectoderm development (eed) region is defined by deletions encompassing the albino (c) locus of chromosome 7. The region is located 1-2 cM distal to the c locus and was of undetermined size. Embryos homozygous for deletions removing eed display defects in axial organization during gastrulation. Two loci, identified by chemical mutagenesis, are known to map within the eed interval. One, {ell}7Rn5, probably represents the gene required for gastrulation. The second, {ell}7Rn6, is required for survival after birth. fit1, a third locus identified by chemical mutagenesis, maps distal to the eed interval and is also required for survival after birth. A 900-kb YAC contig has been constructed, and deletion breakpoints defining the limits of the regions containing these loci have been localized. Their positions place the eed region within a maximum 150-kb interval at the proximal end of the contig, while fit1 maps to a 360-kb interval within the middle of the contig. Several clusters of rare-cutting restriction sites map within these regions and represent potential locations of candidate genes. 26 refs., 6 figs., 2 tabs.

  9. Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat

    SciTech Connect

    Foote, T.; Roberts, M.; Kurata, N.

    1997-10-01

    Detailed physical mapping of markers from rich chromosome 9, and from syntenous (at the genetic level) regions of other cereal genomes, has resulted in rice yeast artificial chromosome (YAC) contigs spanning parts of rice 9. This physical mapping, together with comparative genetic mapping, has demonstrated that synteny has been largely maintained between the genomes of several cereals at the level of contiged YACs. Markers located in one region of rice chromosome 9 encompassed by the YAC contigs have exhibited restriction fragment length polymorphism (RFLP) using deletion lines for the Ph1 locus. This has allowed demarcation of the region of rice chromosome 9 syntenous with the phlb and phlc deletions in wheat chromosome 5B. A group of probes located in wheat homoeologous group 5 and barley chromosome 5H, however, have synteny with rice chromosomes other than 9. This suggests that the usefulness of comparative trait analysis and of the rice genome as a tool to facilitate gene isolation will differ from one region to the next, and implies that the rice genome is more ancestral in structure than those of the Triticeae. 38 refs., 2 figs., 1 tab.

  10. An integrated radiation hybrid map of bovine chromosome 18 that refines a critical region associated with multiple ocular defects in cattle.

    PubMed

    Abbasi, A R; Geriletoya; Ihara, N; Khalaj, M; Sugimoto, Y; Kunieda, T

    2006-02-01

    Congenital multiple ocular defects (MOD) of Japanese black cattle is a hereditary ocular disorder with an autosomal recessive mode of inheritance showing developmental defects of the lens, retina and iris, persistent embryonic eye vascularization and microphthalmia. The MOD locus has been mapped by linkage analysis to a 6.6-cM interval on the proximal end of bovine chromosome 18, which corresponds to human chromosome 16q and mouse chromosome 8. To refine the MOD region in cattle, we constructed an integrated radiation hybrid (RH) map of the proximal region of bovine chromosome 18, which consisted of 17 genes and 10 microsatellite markers, using the SUNbRH7000 panel. Strong conservation of gene order was found among the corresponding chromosomal regions in cattle, human and mouse. The MOD-critical region was fine mapped to a 59.5-cR region that corresponds to a 6.3-Mb segment of human chromosome 16 and a 4.8-Mb segment of mouse chromosome 8. Several positional candidate genes, including FOXC2 and USP10, were identified in this region.

  11. High-resolution G-banding and nucleolus-organizer regions of chromosomes of vole Microtus kirgisorum

    SciTech Connect

    Mazurok, N.A.; Rubtsov, N.B.; Ovechkina, Y.Y.

    1995-08-01

    The use of G-banding of chromosomes in combination with the pipette method of chromosome preparation at the early metaphase made it possible to distinguish about 520 segments in the haploid chromosome set of vole Microtus kirgisorum. The idiogram of M. kirgisorum chromosomes was obtained on the basis of detailed investigation of chromosomes at different condensation levels. Data of the localization and the number of nucleolus-organizer regions are given. 16 refs., 3 figs.

  12. Paternal Transmission of Small Supernumerary Marker Chromosome 15 Identified in Prenatal Diagnosis Due to Advanced Maternal Age.

    PubMed

    Melo, Bruna C S; Portocarrero, Ana; Alves, Cláudia; Sampaio, André; Mota-Vieira, Luisa

    2015-01-01

    The detection of supernumerary marker chromosomes (SMCs) in prenatal diagnosis is always a challenge. In this study, we report a paternally inherited case of a small SMC(15) that was identified in prenatal diagnosis due to advanced maternal age. A 39-year-old woman underwent amniocentesis at 16 weeks of gestation. A fetal abnormal karyotype - 47,XX,+mar - with one sSMC was detected in all metaphases. Since this sSMC was critical in the parental decision to continue or interrupt this pregnancy, we proceeded to study the fetus and their parents. Cytogenetic and molecular analyses revealed a fetal karyotype 47,XX,+mar pat.ish idic(15)(ql2)(D15Zl++,SNRPN-), in which the sSMC(15) was a paternally inherited inverted duplicated chromosome and did not contain the critical region of Prader-Willi/Angelman syndromes. Moreover, fetal uniparental disomy was excluded. Based on this information and normal obstetric ultrasounds, the parents decided to proceed with the pregnancy and a phenotypically normal girl was born at 39 weeks of gestation. In conclusion, the clinical effects of sSMCs need to be investigated, especially when sSMCs are encountered at prenatal diagnosis. Here, although the paternal sSMC(15) was not associated with an abnormal phenotype, its characterization allows more accurate genetic counseling for the family progeny. PMID:26523119

  13. Loss of heterozygosity for defined regions on chromosomes 3, 11 and 17 in carcinomas of the uterine cervix.

    PubMed Central

    Kersemaekers, A. M.; Hermans, J.; Fleuren, G. J.; van de Vijver, M. J.

    1998-01-01

    Loss of heterozygosity (LOH) frequently occurs in squamous cell carcinomas of the uterine cervix and indicates the probable sites of tumour-suppressor genes that play a role in the development of this tumour. To define the localization of these tumour-suppressor genes, we studied loss of heterozygosity in 64 invasive cervical carcinomas (stage IB and IIA) using the polymerase chain reaction with 24 primers for polymorphic repeats of known chromosomal localization. Chromosomes 3, 11, 13, 16 and 17, in particular, were studied. LOH was frequently found on chromosome 11, in particular at 11q22 (46%) and 11q23.3 (43%). LOH on chromosome 11p was not frequent. On chromosome 17p13.3, a marker (D17S513) distal to p53 showed 38% LOH, whereas p53 itself showed only 20% LOH. On the short arm of chromosome 3, LOH was frequently found (41%) at 3p21.1. The beta-catenin gene is located in this chromosomal region. Therefore, expression of beta-catenin protein was studied in 39 cases using immunohistochemistry. Staining of beta-catenin at the plasma membrane of tumour cells was present in 38 cases and completely absent in only one case. The tumour-suppressor gene on chromosome 3p21.1 may be beta-catenin in this one case, but (an)other tumour-suppressor gene(s) must also be present in this region. For the other chromosomes studied, 13q (BRCA-2) and 16q (E-cadherin), only sporadic losses (< 15% of cases) were found. Expression of E-cadherin was found in all of 37 cases but in six cases the staining was very weak. No correlation was found between clinical and histological parameters and losses on chromosome 3p, 11q and 17p. In addition to LOH, microsatellite instability was found in one tumour for almost all loci and in eight tumours for one to three loci. In conclusion, we have identified three loci with frequent LOH, which may harbour new tumour-suppressor genes, and found microsatellite instability in 14% of cervical carcinomas. Images Figure 1 Figure 4 Figure 5 PMID:9460988

  14. A new region of conservation is defined between human and mouse X chromosomes

    SciTech Connect

    Dinulos, M.B.; Disteche, C.M.; Bassi, M.T.

    1996-07-01

    Comparative mapping of the X chromosome in eutherian mammals have revealed distinct regions of conservation as well as evolutionary rearrangements between human and mouse. Recently, we and others mapped the murine homologue of CLCN4 (Chloride channel 4) to band F4 of the X chromosome in Mus spretus but to chromosome 7 in laboratory strains. We now report the mapping of the murine homologues of APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), two genes that are located on the human X chromosome at band p22.3 and in close proximity to CLCN4. Interestingly, Oa1 and Apxl map to bands F2-F3 in both M. spretus and the laboratory strain C57BL/6J, defining a new rearrangement between human and mouse X chromosomes. 17 refs., 2 figs., 1 tab.

  15. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5.

    PubMed

    Park, J Y; Koo, D H; Hong, C P; Lee, S J; Jeon, J W; Lee, S H; Yun, P Y; Park, B S; Kim, H R; Bang, J W; Plaha, P; Bancroft, I; Lim, Y P

    2005-12-01

    We constructed a bacterial artificial chromosome (BAC) library, designated as KBrH, from high molecular weight genomic DNA of Brassica rapa ssp. pekinensis (Chinese cabbage). This library, which was constructed using HindIII-cleaved genomic DNA, consists of 56,592 clones with average insert size of 115 kbp. Using a partially duplicated DNA sequence of Arabidopsis, represented by 19 and 9 predicted genes on chromosome 4 and 5, respectively, and BAC clones from the KBrH library, we studied conservation and microsynteny corresponding to the Arabidopsis regions in B. rapa ssp. pekinensis. The BAC contigs assembled according to the Arabidopsis homoeologues revealed triplication and rearrangements in the Chinese cabbage. In general, collinearity of genes in the paralogous segments was maintained, but gene contents were highly variable with interstitial losses. We also used representative BAC clones, from the assembled contigs, as probes and hybridized them on mitotic (metaphase) and/or meiotic (leptotene/pachytene/metaphase I) chromosomes of Chinese cabbage using bicolor fluorescence in situ hybridization. The hybridization pattern physically identified the paralogous segments of the Arabidopsis homoeologues on B. rapa ssp. pekinensis chromosomes. The homoeologous segments corresponding to chromosome 4 of Arabidopsis were located on chromosomes 2, 8 and 7, whereas those of chromosome 5 were present on chromosomes 6, 1 and 4 of B. rapa ssp. pekinensis.

  16. Whole genomewide linkage screen for neural tube defects reveals regions of interest on chromosomes 7 and 10

    PubMed Central

    Rampersaud, E; Bassuk, A; Enterline, D; George, T; Siegel, D; Melvin, E; Aben, J; Allen, J; Aylsworth, A; Brei, T; Bodurtha, J; Buran, C; Floyd, L; Hammock, P; Iskandar, B; Ito, J; Kessler, J; Lasarsky, N; Mack, P; Mackey, J; McLone, D; Meeropol, E; Mehltretter, L; Mitchell, L; Oakes, W; Nye, J; Powell, C; Sawin, K; Stevenson, R; Walker, M; West, S; Worley, G; Gilbert, J; Speer, M

    2005-01-01

    Neural tube defects (NTDs) are the second most common birth defects (1 in 1000 live births) in the world. Periconceptional maternal folate supplementation reduces NTD risk by 50–70%; however, studies of folate related and other developmental genes in humans have failed to definitively identify a major causal gene for NTD. The aetiology of NTDs remains unknown and both genetic and environmental factors are implicated. We present findings from a microsatellite based screen of 44 multiplex pedigrees ascertained through the NTD Collaborative Group. For the linkage analysis, we defined our phenotype narrowly by considering individuals with a lumbosacral level myelomeningocele as affected, then we expanded the phenotype to include all types of NTDs. Two point parametric analyses were performed using VITESSE and HOMOG. Multipoint parametric and nonparametric analyses were performed using ALLEGRO. Initial results identified chromosomes 7 and 10, both with maximum parametric multipoint lod scores (Mlod) >2.0. Chromosome 7 produced the highest score in the 24 cM interval between D7S3056 and D7S3051 (parametric Mlod 2.45; nonparametric Mlod 1.89). Further investigation demonstrated that results on chromosome 7 were being primarily driven by a single large pedigree (parametric Mlod 2.40). When this family was removed from analysis, chromosome 10 was the most interesting region, with a peak Mlod of 2.25 at D10S1731. Based on mouse human synteny, two candidate genes (Meox2, Twist1) were identified on chromosome 7. A review of public databases revealed three biologically plausible candidates (FGFR2, GFRA1, Pax2) on chromosome 10. The results from this screen provide valuable positional data for prioritisation of candidate gene assessment in future studies of NTDs. PMID:15831595

  17. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X.

    PubMed

    Cheng, Ching-Yu; Kao, W H Linda; Patterson, Nick; Tandon, Arti; Haiman, Christopher A; Harris, Tamara B; Xing, Chao; John, Esther M; Ambrosone, Christine B; Brancati, Frederick L; Coresh, Josef; Press, Michael F; Parekh, Rulan S; Klag, Michael J; Meoni, Lucy A; Hsueh, Wen-Chi; Fejerman, Laura; Pawlikowska, Ludmila; Freedman, Matthew L; Jandorf, Lina H; Bandera, Elisa V; Ciupak, Gregory L; Nalls, Michael A; Akylbekova, Ermeg L; Orwoll, Eric S; Leak, Tennille S; Miljkovic, Iva; Li, Rongling; Ursin, Giske; Bernstein, Leslie; Ardlie, Kristin; Taylor, Herman A; Boerwinckle, Eric; Zmuda, Joseph M; Henderson, Brian E; Wilson, James G; Reich, David

    2009-05-01

    The prevalence of obesity (body mass index (BMI) > or =30 kg/m(2)) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (rho = -0.042, P = 1.6x10(-7)). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = -3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = -4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.

  18. 3. 6-Mb genomic and YAC physical map of the Down syndrome chromosome region on chromosome 21

    SciTech Connect

    Dufresne-Zacharia, M.C.; Dahmane, N.; Theophile, D.; Orti, R.; Chettouh, Z.; Sinet, P.M.; Delabar, J.M. )

    1994-02-01

    The Down syndrome chromosome region (DCR) on chromosome 21 has been shown to contain a gene(s) important in the pathogenesis of Down syndrome. The authors constructed a long-range restriction map of the D21S55-D21S65 region covering the proximal part of the DCR. Pulsed-field gel electrophoresis of lymphocyte DNA digested with three rare cutting enzymes, NotI, NruI, and Mlu1, was used to establish two physical linkage groups of 5 and 7 markers, respectively, spanning 4.6 Mb on the NotI map. Mapping analysis of 40 YACs allowed the selection of 13 YACs covering 95% of the D21S55-D21S65 region and spanning 3.6 Mb. The restriction maps of these YACs and their positioning on the genomic map allowed 19 markers to be ordered, including 4 NotI linking clones, 9 polymorphic markers, the CBR gene, and the AML1 gene. The distances between markers could also be estimated. This physical map and the location of eight NotI sites between D21S55 and D21S17 should facilitate the isolation of previously unidentified genes in this region. 34 refs., 2 figs., 2 tabs.

  19. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    PubMed

    Artemov, Gleb; Bondarenko, Semen; Sapunov, Gleb; Stegniy, Vladimir

    2015-01-01

    Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC) and 3R chromosomes (32D) attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  20. Identifying X- and Y-chromosome-bearing sperm by DNA content: retrospective perspectives and prospective opinions

    SciTech Connect

    Gledhill, B.L.; Pinkel, D.; Garner, D.L.

    1982-03-05

    Theoretically, since DNA should be the most constant component, quantitatively, of normal sperm, then genotoxic agents arising from energy production and consumption, and chemical and physical mutagens, could be identified by measuring variability in the DNA content of individual sperm from exposed men or test animals. The difference between the DNA content of X and Y sperm seemed a biologically significant benchmark for the measurement technology. Several methods are available for determining the genetic activity of agents in male germ cells, but these tests are generally laborious. Sperm-based methods provide an attractive alternate since they are not invasive, and are directly applicable to the study of human exposure. Slide-based assay of DNA content suggests that human sperm with X, Y, or YY chromosome constitutions can be distinguished by their fluorescence with quinacrine. Subsequent measurement of the dry mass of human sperm heads is performed. Dry mass is proportional to DNA content. While the study showed that human sperm with none and one quinacrine-fluorescent spot are X- and Y-bearing, respectively, the dry mass measurements indicated that many of the sperm with two quinacrine-fluorescent spots are not YY-bearing. While several reports on the initial application of flow cytometry of sperm to the investigation of mammalian infertility have appeared recently, emphasis here has been on the development of an in vivo sperm-based flow cytometric bioassay for mutations, and has not centered on andrological applications. In this review, the ability to differentiate between two equally sized populations of sperm, one bearing X and the other Y chromosomes with mean DNA content differing by about 3 to 4% is described. It has direct application to the preselection of sex of offspring, and could likely have a profound impact on animal improvement. (ERB)

  1. Adipose and muscle tissue expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. We previously identified genetic ...

  2. Adipose and muscle tissue gene expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. Previously identified genetic mark...

  3. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya

    PubMed Central

    Zhang, Wenli; Wang, Xiue; Yu, Qingyi; Ming, Ray; Jiang, Jiming

    2008-01-01

    Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2–3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans ∼13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution. PMID:18593814

  4. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya.

    PubMed

    Zhang, Wenli; Wang, Xiue; Yu, Qingyi; Ming, Ray; Jiang, Jiming

    2008-12-01

    Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2-3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans approximately 13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution.

  5. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes.

    PubMed

    Lunyak, Victoria V; Burgess, Robert; Prefontaine, Gratien G; Nelson, Charles; Sze, Sing-Hoi; Chenoweth, Josh; Schwartz, Phillip; Pevzner, Pavel A; Glass, Christopher; Mandel, Gail; Rosenfeld, Michael G

    2002-11-29

    The molecular mechanisms by which central nervous system-specific genes are expressed only in the nervous system and repressed in other tissues remain a central issue in developmental and regulatory biology. Here, we report that the zinc-finger gene-specific repressor element RE-1 silencing transcription factor/neuronal restricted silencing factor (REST/NRSF) can mediate extraneuronal restriction by imposing either active repression via histone deacetylase recruitment or long-term gene silencing using a distinct functional complex. Silencing of neuronal-specific genes requires the recruitment of an associated corepressor, CoREST, that serves as a functional molecular beacon for the recruitment of molecular machinery that imposes silencing across a chromosomal interval, including transcriptional units that do not themselves contain REST/NRSF response elements.

  6. Erratum: Letter to the Editor: Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    SciTech Connect

    1996-03-01

    This {open_quotes}Letter to the Editor{close_quotes} is the reprint of a corrected table from a previous paper about the exclusion of primary congenital glaucoma from two candidate regions of chromosome arm 6p and chromosome 11.

  7. Genotype–phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21

    PubMed Central

    Lyle, Robert; Béna, Frédérique; Gagos, Sarantis; Gehrig, Corinne; Lopez, Gipsy; Schinzel, Albert; Lespinasse, James; Bottani, Armand; Dahoun, Sophie; Taine, Laurence; Doco-Fenzy, Martine; Cornillet-Lefèbvre, Pascale; Pelet, Anna; Lyonnet, Stanislas; Toutain, Annick; Colleaux, Laurence; Horst, Jürgen; Kennerknecht, Ingo; Wakamatsu, Nobuaki; Descartes, Maria; Franklin, Judy C; Florentin-Arar, Lina; Kitsiou, Sophia; Aït Yahya-Graison, Emilie; Costantine, Maher; Sinet, Pierre-Marie; Delabar, Jean M; Antonarakis, Stylianos E

    2009-01-01

    Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype. PMID:19002211

  8. A Genetic and Molecular Analysis of the 46c Chromosomal Region Surrounding the Fmrfamide Neuropeptide Gene in Drosophila Melanogaster

    PubMed Central

    O'Brien, M. A.; Roberts, M. S.; Taghert, P. H.

    1994-01-01

    We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes. PMID:8056304

  9. Multiple blood pressure loci with opposing blood pressure effects on rat chromosome 1 in a homologous region linked to hypertension on human chromosome 15.

    PubMed

    Mell, Blair; Abdul-Majeed, Shakila; Kumarasamy, Sivarajan; Waghulde, Harshal; Pillai, Resmi; Nie, Ying; Joe, Bina

    2015-01-01

    Genetic dissection of blood pressure (BP) quantitative trait loci (QTLs) in rats has facilitated the fine-mapping of regions linked to the inheritance of hypertension. The goal of the current study was to further fine-map one such genomic region on rat chromosome 1 (BPQTL1b1), the homologous region of which on human chromosome 15 harbors BP QTLs, as reported by four independent studies. Of the six substrains constructed and studied, the systolic BP of two of the congenic strains were significantly lower by 36 and 27 mm Hg than that of the salt-sensitive (S) rat (P < 0.0001, P = 0.0003, respectively). The congenic segments of these two strains overlapped between 135.12 and 138.78 Mb and contained eight genes and two predicted miRNAs. None of the annotations had variants within expressed sequences. These data taken together with the previous localization resolved QTL1b1 with a 70% improvement from the original 7.39 Mb to the current 2.247 Mb interval. Furthermore, the systolic BP of one of the congenic substrains was significantly higher by 20 mm Hg (P < 0.0001) than the BP of the S rat. The limits of this newly identified QTL with a BP increasing effect (QTL1b1a) were between 134.12 and 135.76 Mb, spanning 1.64 Mb, containing two protein-coding genes, Mctp2 and Rgma, and a predicted miRNA. There were four synonymous variants within Mctp2. These data provide evidence for two independent BP QTLs with opposing BP effects within the previously identified BP QTL1b1 region. Additionally, these findings illustrate the complexity underlying the genetic mechanisms of BP regulation, wherein inherited elements beyond protein-coding sequences or known regulatory regions could be operational. PMID:25231251

  10. [Chromosomal polymorphism and cytotypes Endochironomus tendens F. (Diptera, Chironomidae) from reservoirs in the Saratov and Samara Regions].

    PubMed

    Durnova, N A

    2009-01-01

    Chromosomal polymorphism of phytophilous chironomidae, Endochironomus tendens F., from reservoirs in the Saratov and Samara Regions has been studied. Cytophotomaps of polytene chromosomes of the species have been worked out in details, and the found chromosomal sequences cadastre has been established. E. tendens F. cytotypes (karyomorphs I and II) have been analyzed. PMID:19764651

  11. Directed isolation and mapping of microsatellites from swine Chromosome 1q telomeric region through microdissection and RH mapping.

    PubMed

    Sarker, N; Hawken, R J; Takahashi, S; Alexander, L J; Awata, T; Schook, L B; Yasue, H

    2001-07-01

    Several quantitative trait loci (QTLs) (vertebrate number, birth weight, age at puberty, growth rate, gestation length, and backfat depth) have been independently mapped to the distal region of swine Chromosome (SSC) 1q in several resource populations. In order to improve the map resolution and refine these QTLs more precisely on SSC1q, we have isolated and mapped additional microsatellites (ms), using chromosome microdissection and radiation hybrid (RH) mapping. Five copies of the telomeric region of SSC1q were microdissected from metaphase spreads and pooled. The chromosomal fragment DNA was randomly amplified by using degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR), enriched for ms, and subcloned into a PCR vector. Screening of subsequent clones with ms probes identified 23 unique ms sequences. Fifteen of these (65%) were subjected to radiation hybrid (RH) mapping by using the INRA-University of Minnesota porcine RH panel (IMpRH); and the remaining eight were not suited for the RH mapping. Twelve microsatellites were assigned to SSC1q telomeric region of IMpRH map (LOD >6), and three remain unlinked (LOD <6). Out of the 15 microsatellite markers, 9 were polymorphic in NIAI reference population based on the Meishan and Göttingen miniature pig. In summary, we have used microdissection and radiation hybrid mapping to clone and map 12 new microsatellites to the swine gene map to increase the resolution of SSC1q in the region of known QTLs.

  12. Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes.

    PubMed

    Mizuno, Hiroshi; Ito, Kazue; Wu, Jianzhong; Tanaka, Tsuyoshi; Kanamori, Hiroyuki; Katayose, Yuichi; Sasaki, Takuji; Matsumoto, Takashi

    2006-12-31

    The genomic sequences derived from rice centromeric regions were analyzed to facilitate the comprehensive understanding of the rice genome. A rice centromere-specific satellite sequence, RCS2/TrsD/CentO, was used to screen P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) genomic libraries derived from Oryza sativa L. ssp. japonica cultivar Nipponbare. Physical maps of the centromeric regions were constructed by DNA fingerprinting methods and the aligned clones were analyzed by end sequencing. BLAST analysis revealed the composition of genes, centromeric satellites and other repetitive elements, such as RIRE7/CRR, RIRE8, Squiq, Anaconda, CACTA and miniature inverted-repeat transposable elements. Fiber-fluorescent in situ hybridization analysis also indicated the presence of distinct clusters of RCS2/TrsD/CentO satellite interspersed with other elements, instead of a long homogeneous region. Several expressed genes, sequences representative of ancestral organellar insertions, relatively long simple sequence repeats (SSRs), and sequences corresponding to 5S and 45S ribosomal RNA genes were also identified. Thirty-one gene sequences showed high-similarity to rice full-length cDNA sequences that had not been matched to the published rice genome sequence in silico. These results suggest the presence of expressed genes within and around the clusters of RCS2/TrsD/CentO satellites in unsequenced centromeric regions of the rice chromosomes.

  13. Isolation of candidate genes and physical mapping in the Familial Dysautonomia region of chromosome 9q31

    SciTech Connect

    Slaugenhaupt, S.A.; Liebert, C.B.; Monahan, M.

    1994-09-01

    Familial Dysautonomia is an autosomal recessive disorder characterized by the developmental loss of both sensory and autonomic neurons. We have mapped the DYS gene to human chromosome 9q31-33 by genetic linkage analysis of 26 Ashkenazi Jewish pedigrees. The gene is located in a 3 cM interval between D9S310 and D9S105. We have examined several new SSCP and repeat polymorphisms and have successfully narrowed the minimum candidate region to approximately 300 kb using linkage disequilibrium. A YAC contig that spans 1.5 Mb has been constructed using both Alu-PCR and STS screening methods. In addition, the YACs were used to isolate cosmids by direct hybridization to the Lawrence Livermore National Laboratory chromosome 9 flow-sorted cosmid library. Having cloned the minimal candidate region, we are now constructing a detailed transcription map of the DYS region of chromosome 9. Using exon amplification, we have rapidly identified exon sequences and have used these as probes to isolate three candidate genes. These genes are currently being sequenced and will be assessed for mutations using both SSCP analysis and direct sequencing. A detailed physical map of the DYS region, as well as sequence and homology information for DYS candidate genes, will be presented.

  14. A 3 Mb YAC contig in the region of Usher Ib on chromosome 11q

    SciTech Connect

    Kelley, P.M.; Overbeck, L.; Weston, M.

    1994-09-01

    Under syndrome type Ib, a recessive disorder characterized by deafness, retinitis pigmentosa, and vestibular dysfunction has been mapped to chromosome 11q13. A 3 Mb YAC contig has been constructed covering the critical region of Usher Ib and spanning over eight loci: D11S1321, D11S527, D11S533, OMP, D11S906, D11S911, D11S937, and D11S918. This contig was constructed by PCR screening using the above described DNA markers of the CEPH mega YAC library. Additional YACs were identified by data presented in the Genethon physical map. A long-range restriction map has been constructed from both YAC and genomic DNA using STS markers as probes. Cosmid libraries from a subset of YACs have been screened for the location of CpG islands. In addition, potential transcribed regions have been identified by 3{prime} exon trapping of cosmid pools and placed on the YAC physical map.

  15. Localization of the tight junction protein gene TJP1 to human chromosome 15q13, distal to the Prader-Willi/Angelman region, and to mouse chromosome 7

    SciTech Connect

    Mohandas, T.K.; Chen, X.N.; Korenberg, J.R.

    1995-12-10

    The gene encoding the tight junction (zonula occludens) protein, TJP1, was mapped to human chromosome 15q13 by fluorescence in situ hybridization (FISH) using a cDNA probe. The Jackson Laboratory backcross DNA panel derived from the cross (C57BL/6JEi X SPRET/Ei) F1 females X SPRET/Ei males was used to map the mouse Tjp1 to chromosome 7 near position 30 on the Chromosome Committee Map, a region with conserved homology to human chromosome 15q13. FISH studies on metaphases from patients with the Prader-Willi (PWS) or the Angelman syndrome (AS) showed that TJP1 maps close but distal to the PWS/AS chromosome region. 13 refs., 2 figs.

  16. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  17. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer.

    PubMed

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B; Kim, Jung-Hyun; Ang, J Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P; Andrews, Brenda; Boerkoel, Cornelius F; Hieter, Philip

    2016-09-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1 Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  18. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

    PubMed Central

    Cho, Michael H.; Castaldi, Peter J.; Wan, Emily S.; Siedlinski, Mateusz; Hersh, Craig P.; Demeo, Dawn L.; Himes, Blanca E.; Sylvia, Jody S.; Klanderman, Barbara J.; Ziniti, John P.; Lange, Christoph; Litonjua, Augusto A.; Sparrow, David; Regan, Elizabeth A.; Make, Barry J.; Hokanson, John E.; Murray, Tanda; Hetmanski, Jacqueline B.; Pillai, Sreekumar G.; Kong, Xiangyang; Anderson, Wayne H.; Tal-Singer, Ruth; Lomas, David A.; Coxson, Harvey O.; Edwards, Lisa D.; MacNee, William; Vestbo, Jørgen; Yates, Julie C.; Agusti, Alvar; Calverley, Peter M.A.; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Gulsvik, Amund; Crapo, James D.; Beaty, Terri H.; Silverman, Edwin K.

    2012-01-01

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior. PMID:22080838

  19. Deletion of chromosomal region 13q14.3 in childhood acute lymphoblastic leukemia.

    PubMed

    Cavé, H; Avet-Loiseau, H; Devaux, I; Rondeau, G; Boutard, P; Lebrun, E; Méchinaud, F; Vilmer, E; Grandchamp, B

    2001-03-01

    Deletion of the 13q14 chromosomal region is frequent in B cell chronic lymphocytic leukemia (B-CLL) and is believed to inactivate a tumor supressor gene (TSG) next to RB1. We studied microsatellite markers spanning the 13q14 chromosomal region in 138 children with acute lymphoblastic leukemia (ALL). Allelic loss was demonstrated in six cases (4.3%). Deletion did not include RB1 in two cases. In five patients, the deleted region overlapped that described in B-CLL. A sixth patient harbored a smaller deletion, slightly more telomeric than minimal deleted regions reported in B-CLL. Apparent differences in the delineation of the minimal deleted region could be due to the fact that the putative TSG is a very large gene, with some deletions affecting only a part of it. Our present findings suggest that at least some of its exons lie within a region of less than 100 kb more telomeric that previously thought.

  20. Genetic mapping of the Mx influenza virus resistance gene within the region of mouse chromosome 16 that is homologous to human chromosome 21

    SciTech Connect

    Reeves, R.H.; O'Hara, B.F.; Pavan, W.J.; Gearhart, J.D.; Haller, O.

    1988-11-01

    A total of 318 progeny from four backcrosses involving different laboratory strains and subspecies of Mus musculus were analyzed to map the Mx gene to the region of mouse chromosome 16 (MMU 16) which is homologous to human chromosome 21 (HSA 21). This result suggests that Mx will be found in the region of HSA 21 which has been implicated in Down syndrome when inherited in three copies.

  1. Random search for shared chromosomal regions in four affected individuals: the assignment of a new hereditary ataxia locus

    SciTech Connect

    Nikali, K.; Suomalainen, A.; Koskinen, T.; Peltonen, L.; Terwilliger, J.; Weissenbach, J.

    1995-05-01

    Infantile-onset spinocerebellar ataxia (IOSCA) is an autosomal recessively inherited progressive neurological disorder of unknown etiology. This ataxia, identified so far only in the genetically isolated Finnish population, does not share gene locus with any of the previously identified hereditary ataxias, and a random mapping approach was adopted to assign the IOSCA locus. Based on the assumption of one founder mutation, a primary screening of the genome was performed using samples from just four affected individuals in two consanguineous pedigrees. The identification of a shared chromosomal region in these four patients provided the first evidence that the IOSCA gene locus is on chromosome 10q23.3-q24.1, which was confirmed by conventional linkage analysis in the complete family material. Strong linkage disequilibrium observed between IOSCA and the linked markers was utilized to define accurately the critical chromosomal region. The results showed the power of linkage disequilibrium in the locus assignment of diseases with very limited family materials. 30 refs., 3 figs., 2 tabs.

  2. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    SciTech Connect

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. )

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  3. A radiation hybrid map of the BRCA1 region of chromosome 17q12-q21

    SciTech Connect

    Abel, K.J.; Boehnke, M.; Prahalad, M.; Flejter, W.L.; Watkins, M.; Chandrasekharappa, S.C.; Glover, T.W. Howard Hughes Medical Institute, Ann Arbor, MI ); Ho, P.; VanderStoep, J.; Weber, B.L. ); Collins, F.S. Michigan Human Genome Center, Ann Arbor, MI Howard Hughes Medical Institute, Ann Arbor, MI )

    1993-09-01

    The chromosomal region 17q12-q21 contains a gene (BRCA1) conferring susceptibility to early-onset familial breast and ovarian cancer. An 8000-rad radiation-reduced hybrid (RH) panel was constructed to provide a resource for long-range mapping of this region. A large fraction of the hybrids ([approximately]90%) retained detectable human chromosome 17 sequences. The complete panel of 76 hybrids was scored for the presence or absence of 22 markers from this chromosomal region, including 14 cloned genes, seven microsatellite repeats, and one anonymous DNA segment. Statistical analysis of the marker retention data employing multipoint methods provided both comprehensive and framework maps of this chromosomal region, including distance estimates between adjacent markers. The comprehensive RH map includes 17 loci and spans 179 cRays[sub (8000)]. Likelihood ratios of at least 1000:1 support the 10-locus framework order: cen-D17S250-ERBB2-(THRA1, TOP2A)-D17S855-PPY-D17S190-MTBT1-GP3A-BTR-D17S588-tel. The order obtained from RH mapping, when used in conjunction with other methods, will be useful in linkage analysis of breast cancer families and will facilitate the development of a physical map of this region. 42 refs., 3 figs., 2 tabs.

  4. Variations of chromosomal structures in Caluromys philander (Didelphimorphia: Didelphidae) from the Amazon region.

    PubMed

    Souza, Erica Martinha Silva de; Faresin e Silva, Carlos Eduardo; Eler, Eduardo Schmidt; Silva, Maria Nazareth F da; Feldberg, Eliana

    2013-03-01

    Caluromys is considered to be one of the most ancient genera of extant marsupials and is positioned among the basal taxa of the family Didelphidae. At least two species occur in Brazil, C. philander and C. lanatus, both of which have 2n = 14 chromosomes. For the first time, we present evidence of an intrapopulation polymorphism of the sexual chromosome pair in C. philander females from the Central Amazon region. Detailed cytogenetic results of animals from three localities on the Amazon region were analyzed using classical cytogenetics (NOR, C-Band and G-Band) and molecular techniques (18S rDNA and telomere probes). Similar to other conspecific individuals, the diploid number of these animals is 2n = 14, and their fundamental number is 24, with NOR present on the 6th autosomal pair. The X chromosome presented variation detectable by G banding, suggesting a pericentric inversion.

  5. Characterization of a panel of somatic cell hybrids for regional mapping of the mouse X chromosome

    SciTech Connect

    Avner, P.; Arnaud, D.; Amar, L.; Cambrou, J.; Winking, H.; Russell, L.B.

    1987-08-01

    A panel of five hybrid cell lines containing mouse X chromosomes with various deletions has been obtained by fusing splenocytes from male mice carrying one of a series of reciprocal X-autosome translocations with the azaguanine-resistant Chinese hamster cell line CH3g. These hybrids have been extensively characterized by using the allozymes hypoxanthine/guanine phosphoribosyltransferase (encoded by the Hprt locus) and ..cap alpha..-galactosidase (Ags) and a series of 11 X-chromosome-specific DNA probes whose localization had been previously established by linkage studies. Such studies have established the genetic breakpoints of the T(X;12)13R1 and T(X;2)14R1 X-autosome translocations on the X chromosome and provided additional information as to the X-chromosome genetic breakpoints of the T(X;16)16H, T(X;4)7R1, and T(X;7)6R1 translocations. The data establish clearly that both the T(X;7)5RI and T(X;12)13R1 X-chromosome breakpoints are proximal to Hprt, the breakpoint of the former being more centromeric, lying as it does in the 9-centimorgan interval between the ornithine transcarbamoylase (Otc) and DXPas7 (M2C) loci. These five hybrid cell lines provide, with the previously characterized EBS4 hybrid cell line, a nested series of seven mapping intervals distributed along the length of the mouse X chromosome. Their characterization not only allows further correlation of the genetic and cytological X-chromosome maps but also should permit the rapid identification of DNA probes specific for particular regions of the mouse X chromosome.

  6. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    PubMed Central

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  7. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    PubMed

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-05-27

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears.

  8. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    PubMed

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-07-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  9. Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility.

    PubMed

    Wang, Jia-Chi; Ross, Leslie; Mahon, Loretta W; Owen, Renius; Hemmat, Morteza; Wang, Boris T; El Naggar, Mohammed; Kopita, Kimberly A; Randolph, Linda M; Chase, John M; Matas Aguilera, Maria J; Siles, Juan López; Church, Joseph A; Hauser, Natalie; Shen, Joseph J; Jones, Marilyn C; Wierenga, Klaas J; Jiang, Zhijie; Haddadin, Mary; Boyar, Fatih Z; Anguiano, Arturo; Strom, Charles M; Sahoo, Trilochan

    2015-05-01

    Copy neutral segments with allelic homozygosity, also known as regions of homozygosity (ROHs), are frequently identified in cases interrogated by oligonucleotide single-nucleotide polymorphism (oligo-SNP) microarrays. Presence of ROHs may be because of parental relatedness, chromosomal recombination or rearrangements and provides important clues regarding ancestral homozygosity, consanguinity or uniparental disomy. In this study of 14 574 consecutive cases, 832 (6%) were found to harbor one or more ROHs over 10 Mb, of which 651 cases (78%) had multiple ROHs, likely because of identity by descent (IBD), and 181 cases (22%) with ROHs involving a single chromosome. Parental relatedness was predicted to be first degree or closer in 5%, second in 9% and third in 19%. Of the 181 cases, 19 had ROHs for a whole chromosome revealing uniparental isodisomy (isoUPD). In all, 25 cases had significant ROHs involving a single chromosome; 5 cases were molecularly confirmed to have a mixed iso- and heteroUPD15 and 1 case each with segmental UPD9pat and segmental UPD22mat; 17 cases were suspected to have a mixed iso- and heteroUPD including 2 cases with small supernumerary marker and 2 cases with mosaic trisomy. For chromosome 15, 12 (92%) of 13 molecularly studied cases had either Prader-Willi or Angelman syndrome. Autosomal recessive disorders were confirmed in seven of nine cases from eight families because of the finding of suspected gene within a ROH. This study demonstrates that ROHs are much more frequent than previously recognized and often reflect parental relatedness, ascertain autosomal recessive diseases or unravel UPD in many cases. PMID:25118026

  10. Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility.

    PubMed

    Wang, Jia-Chi; Ross, Leslie; Mahon, Loretta W; Owen, Renius; Hemmat, Morteza; Wang, Boris T; El Naggar, Mohammed; Kopita, Kimberly A; Randolph, Linda M; Chase, John M; Matas Aguilera, Maria J; Siles, Juan López; Church, Joseph A; Hauser, Natalie; Shen, Joseph J; Jones, Marilyn C; Wierenga, Klaas J; Jiang, Zhijie; Haddadin, Mary; Boyar, Fatih Z; Anguiano, Arturo; Strom, Charles M; Sahoo, Trilochan

    2015-05-01

    Copy neutral segments with allelic homozygosity, also known as regions of homozygosity (ROHs), are frequently identified in cases interrogated by oligonucleotide single-nucleotide polymorphism (oligo-SNP) microarrays. Presence of ROHs may be because of parental relatedness, chromosomal recombination or rearrangements and provides important clues regarding ancestral homozygosity, consanguinity or uniparental disomy. In this study of 14 574 consecutive cases, 832 (6%) were found to harbor one or more ROHs over 10 Mb, of which 651 cases (78%) had multiple ROHs, likely because of identity by descent (IBD), and 181 cases (22%) with ROHs involving a single chromosome. Parental relatedness was predicted to be first degree or closer in 5%, second in 9% and third in 19%. Of the 181 cases, 19 had ROHs for a whole chromosome revealing uniparental isodisomy (isoUPD). In all, 25 cases had significant ROHs involving a single chromosome; 5 cases were molecularly confirmed to have a mixed iso- and heteroUPD15 and 1 case each with segmental UPD9pat and segmental UPD22mat; 17 cases were suspected to have a mixed iso- and heteroUPD including 2 cases with small supernumerary marker and 2 cases with mosaic trisomy. For chromosome 15, 12 (92%) of 13 molecularly studied cases had either Prader-Willi or Angelman syndrome. Autosomal recessive disorders were confirmed in seven of nine cases from eight families because of the finding of suspected gene within a ROH. This study demonstrates that ROHs are much more frequent than previously recognized and often reflect parental relatedness, ascertain autosomal recessive diseases or unravel UPD in many cases.

  11. DDX3Y, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation.

    PubMed

    Vakilian, Haghighat; Mirzaei, Mehdi; Sharifi Tabar, Mehdi; Pooyan, Paria; Habibi Rezaee, Lida; Parker, Lindsay; Haynes, Paul A; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-01

    Although it is apparent that chromosome complement mediates sexually dimorphic expression patterns of some proteins that lead to functional differences, there has been insufficient evidence following the manipulation of the male-specific region of the Y chromosome (MSY) gene expression during neural development. In this study, we profiled the expression of 23 MSY genes and 15 of their X-linked homologues during neural cell differentiation of NTERA-2 human embryonal carcinoma cell line (NT2) cells in three different developmental stages using qRT-PCR, Western blotting, and immunofluorescence. The expression level of 12 Y-linked genes significantly increased over neural differentiation, including RBMY1, EIF1AY, DDX3Y, HSFY1, BPY2, PCDH11Y, UTY, RPS4Y1, USP9Y, SRY, PRY, and ZFY. We showed that siRNA-mediated knockdown of DDX3Y, a DEAD box RNA helicase enzyme, in neural progenitor cells impaired cell cycle progression and increased apoptosis, consequently interrupting differentiation. Label-free quantitative shotgun proteomics based on a spectral counting approach was then used to characterize the proteomic profile of the cells after DDX3Y knockdown. Among 917 reproducibly identified proteins detected, 71 proteins were differentially expressed following DDX3Y siRNA treatment compared with mock treated cells. Functional grouping indicated that these proteins were involved in cell cycle, RNA splicing, and apoptosis, among other biological functions. Our results suggest that MSY genes may play an important role in neural differentiation and demonstrate that DDX3Y could play a multifunctional role in neural cell development, probably in a sexually dimorphic manner.

  12. A Chromosomal Region on ECA13 Is Associated with Maxillary Prognathism in Horses

    PubMed Central

    Signer-Hasler, Heidi; Neuditschko, Markus; Koch, Christoph; Froidevaux, Sylvie; Flury, Christine; Burger, Dominik; Leeb, Tosso; Rieder, Stefan

    2014-01-01

    Hereditary variations in head morphology and head malformations are known in many species. The most common variation encountered in horses is maxillary prognathism. Prognathism and brachygnathism are syndromes of the upper and lower jaw, respectively. The resulting malocclusion can negatively affect teeth wear, and is considered a non-desirable trait in breeding programs. We performed a case-control analysis for maxillary prognathism in horses using 96 cases and 763 controls. All horses had been previously genotyped with a commercially available 50 k SNP array. We analyzed the data with a mixed-model considering the genomic relationships in order to account for population stratification. Two SNPs within a region on the distal end of chromosome ECA 13 reached the Bonferroni corrected genome-wide significance level. There is no known prognathism candidate gene located within this region. Therefore, our findings in the horse offer the possibility of identifying a novel gene involved in the complex genetics of prognathism that might also be relevant for humans and other livestock species. PMID:24466169

  13. Association of chromosomal regions 3p21.2, 10p13, and 16p13.3 with nonsyndromic cleft lip and palate.

    PubMed

    Blanton, Susan H; Bertin, Terry; Serna, Maria E; Stal, Samuel; Mulliken, John B; Hecht, Jacqueline T

    2004-02-15

    Approximately 4,000 babies with nonsyndromic cleft lip with or without cleft palate (NSCLP) are born each year in the United States. Because NSCLP exhibits both etiologic and genetic heterogeneity, attempts to identify the underlying genetic causes have met with limited success and the pursuit of early promising findings have yielded mixed results. Two recent genomic scans identified a number of suggestive regions; some of these results have been supported by our lab and others in subsequent studies. Using our NSCLP multiplex family population, we were able to provide additional supportive evidence for association to the regions 2q37, 11p12-14, 12q13, and 16p13.11-p12 that were identified in the genomic scans. However, there remains a number of additional viable candidate genes and regions that have not been sufficiently investigated. These include chromosomal translocations in patients with NSCLP, growth factor genes, metalloproteinase (MMP) and transcription factor (patterning) genes, including those in the WNT family. Here, we present results from screening the 10p13 chromosomal translocation region associated with NSCLP, MMP genes clustered on chromosomes 1p36, 11q22.3, 16p13.3, and 16q12-13, and the region containing the WNT5A gene on chromosome 3p21. Markers from three of the regions, 10p13, 16p13.3 (MMP25), and 3p21.2, yielded findings that are sufficiently significant to warrant closer investigation.

  14. Southwest Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    The Educational Technical Assistance Act of 2002, authorized the Southwest Regional Advisory Committee (RAC), whose members represent the states of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas, to identify and prioritize the region's educational needs and recommend how those needs can be met. The Southwest RAC conducted three public…

  15. 40 CFR 255.24 - Procedure for identifying interstate regions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Procedure for identifying interstate regions. 255.24 Section 255.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for...

  16. Southeast Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report presents the deliberations of the Southeast Regional Advisory Committee (RAC), one of 10 RACs established by the U.S. Department of Education, identifying educational challenges across the six states in the region: Alabama, Florida, Georgia, Mississippi, North Carolina and South Carolina. Committee deliberations took place May 23,…

  17. Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions

    PubMed Central

    Hitchins, M.; Stanier, P.; Preece, M.; Moore, G.

    2001-01-01

    The main features of Silver-Russell syndrome (SRS) are pre- and postnatal growth restriction and a characteristic small, triangular face. SRS is also accompanied by other dysmorphic features including fifth finger clinodactyly and skeletal asymmetry. The disorder is clinically and genetically heterogeneous, and various modes of inheritance and abnormalities involving chromosomes 7, 8, 15, 17, and 18 have been associated with SRS and SRS-like cases. However, only chromosomes 7 and 17 have been consistently implicated in patients with a strict clinical diagnosis of SRS. Two cases of balanced translocations with breakpoints in 17q23.3-q25 and two cases with a hemizygous deletion of the chorionic somatomammatropin gene (CSH1) on 17q24.1 have been associated with SRS, strongly implicating this region. Maternal uniparental disomy for chromosome 7 (mUPD(7)) occurs in up to 10% of SRS patients, with disruption of genomic imprinting underlying the disease status in these cases. Recently, two SRS patients with a maternal duplication of 7p11.2-p13, and a single proband with segmental mUPD for the region 7q31-qter, were described. These key patients define two separate candidate regions for SRS on both the p and q arms of chromosome 7. Both the 7p11.2-p13 and 7q31-qter regions are subject to genomic imprinting and the homologous regions in the mouse are associated with imprinted growth phenotypes. This review provides an overview of the genetics of SRS, and focuses on the newly defined candidate regions on chromosome 7. The analyses of imprinted candidate genes within 7p11.2-p13 and 7q31-qter, and gene candidates on distal 17q, are discussed.


Keywords: Silver-Russell syndrome; imprinting; mUPD(7); candidates PMID:11748303

  18. Narrowing a region on rat chromosome 13 that protects against hypertension in Dahl SS-13BN congenic strains.

    PubMed

    Moreno, Carol; Williams, Jan M; Lu, Limin; Liang, Mingyu; Lazar, Jozef; Jacob, Howard J; Cowley, Allen W; Roman, Richard J

    2011-04-01

    Transfer of chromosome 13 from the Brown Norway (BN) rat onto the Dahl salt-sensitive (SS) genetic background attenuates the development of hypertension, but the genes involved remain to be identified. The purpose of the present study was to confirm by telemetry that a congenic strain [SS.BN-(D13Hmgc37-D13Got22)/Mcwi, line 5], carrying a 13.4-Mb segment of BN chromosome 13 from position 32.4 to 45.8 Mb, is protected from the development of hypertension and then to narrow the region of interest by creating and phenotyping 11 additional subcongenic strains. Mean arterial pressure (MAP) rose from 118 ± 1 to 186 ± 5 mmHg in SS rats fed a high-salt diet (8.0% NaCl) for 3 wk. Protein excretion increased from 56 ± 11 to 365 ± 37 mg/day. In contrast, MAP only increased to 152 ± 9 mmHg in the line 5 congenic strain. Six subcongenic strains carrying segments of BN chromosome 13 from 32.4 and 38.2 Mb and from 39.9 to 45.8 Mb were not protected from the development of hypertension. In contrast, MAP was reduced by ∼30 mmHg in five strains, carrying a 1.9-Mb common segment of BN chromosome 13 from 38.5 to 40.4 Mb. Proteinuria was reduced by ∼50% in these strains. Sequencing studies did not identify any nonsynonymous single nucleotide polymorphisms in the coding region of the genes in this region. RT-PCR studies indicated that 4 of the 13 genes in this region were differentially expressed in the kidney of two subcongenic strains that were partially protected from hypertension vs. those that were not. These results narrow the region of interest on chromosome 13 from 13.4 Mb (159 genes) to a 1.9-Mb segment containing only 13 genes, of which 4 are differentially expressed in strains partially protected from the development of hypertension. PMID:21257920

  19. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    SciTech Connect

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  20. Definition of a Critical Region on Chromosome 18 for Congenital Aural Atresia by ArrayCGH

    PubMed Central

    Veltman, Joris A.; Jonkers, Yvonne; Nuijten, Inge; Janssen, Irene; van der Vliet, Walter; Huys, Erik; Vermeesch, Joris; Van Buggenhout, Griet; Fryns, Jean-Pierre; Admiraal, Ronald; Terhal, Paulien; Lacombe, Didier; van Kessel, Ad Geurts; Smeets, Dominique; Schoenmakers, Eric F. P. M.; van Ravenswaaij-Arts, Conny M.

    2003-01-01

    Deletions of the long arm of chromosome 18 occur in ∼1 in 10,000 live births. Congenital aural atresia (CAA), or narrow external auditory canals, occurs in ∼66% of all patients who have a terminal deletion 18q. The present report describes a series of 20 patients with CAA, of whom 18 had microscopically visible 18q deletions. The extent and nature of the chromosome-18 deletions were studied in detail by array-based comparative genomic hybridization (arrayCGH). High-resolution chromosome-18 profiles were obtained for all patients, and a critical region of 5 Mb that was deleted in all patients with CAA could be defined on 18q22.3-18q23. Therefore, this region can be considered as a candidate region for aural atresia. The array-based high-resolution copy-number screening enabled a refined cytogenetic diagnosis in 12 patients. Our approach appeared to be applicable to the detection of genetic mosaicisms and, in particular, to a detailed delineation of ring chromosomes. This study clearly demonstrates the power of the arrayCGH technology in high-resolution molecular karyotyping. Deletion and amplification mapping can now be performed at the submicroscopic level and will allow high-throughput definition of genomic regions harboring disease genes. PMID:12740760

  1. High-resolution comparative mapping of the proximal region of the mouse X chromosome

    SciTech Connect

    Blair, H.J.; Boyd, Y.; Ho, M.; Monaco, A.P.

    1995-07-20

    The murine homologues of the loci for McLeod syndrome (XK), Dent`s disease (ClCN5), and synaptophysin (SYP) have been mapped to the proximal region of the mouse X chromosome and positioned with respect to other conserved loci in this region using a total of 948 progeny from two separate Mus musculus x Mus spretus backcrosses. In the mouse, the order of loci and evolutionary breakpoints (EB) has been established as centromere-(DXWas70, DXHXF34h)-EB-Clen5-(Syp, DXMit55, DXMit26)-Tfe3-Gata1-EB-Xk-Cybb-telomere. In the proximal region of the human X chromosome short arm, the position of evolutionary breakpoints with respect to key loci has been established as DMD-EB-XK-PFC-EB-GATA1-C1CN5-EB-DXS1272E-ALAS2-EB-DXF34-centromere. These data have enabled us to construct a high-resolution genetic map for the {approximately}3-cM interval between DXWas70 and Cybb on the mouse X chromosome, which encompasses 10 loci. This detailed map demonstrates the power of high-resolution genetic mapping in the mouse as a means of determining locus order in a small chromosomal region and of providing an accurate framework for the construction of physical maps. 31 refs., 4 figs., 1 tab.

  2. An intron capture strategy used to identify and map a lysyl oxidase-like gene on chromosome 9 in the mouse

    SciTech Connect

    Wydner, K.S.; Passmore, H.C.; Kim, Houngho; Csiszar, K.; Boyd, C.D.

    1997-03-01

    An intron capture strategy involving use of polymerase chain reaction was used to identify and map the mouse homologue of a human lysyl oxidase-like gene (LOXL). Oligonucleotides complementary to conserved domains within exons 4 and 5 of the human lysyl oxidase-like gene were used to amplify the corresponding segment from mouse genomic DNA. Sequencing of the resulting mouse DNA fragment of approximately 1 kb revealed that the exon sequences at the ends of the amplified fragment are highly homologous (90% nucleotide identity) to exons 4 and 5 of the human lysyl oxidase-like gene. An AluI restriction site polymorphism within intron 4 was used to map the mouse lysyl oxidase-like gene (Loxl) to mouse Chromosome 9 in a region that shares linkage conservation with human chromosome 15q24, to which the LOXL was recently mapped. 22 refs., 3 figs.

  3. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease.

    PubMed

    Zheng, Xiaojing; Demirci, F Yesim; Barmada, M Michael; Richardson, Gale A; Lopez, Oscar L; Sweet, Robert A; Kamboh, M Ilyas; Feingold, Eleanor

    2014-01-01

    Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis. PMID:25379732

  4. XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region.

    PubMed Central

    Hassold, T J; Sherman, S L; Pettay, D; Page, D C; Jacobs, P A

    1991-01-01

    To assess the possible association between aberrant recombination and XY chromosome nondisjunction, we compared pseudoautosomal region recombination rates in male meiosis resulting in 47,XXY offspring with those resulting in 46,XY and 46,XX offspring. Forty-one paternally derived 47,XXYs and their parents were tested at six polymorphic loci spanning the pseudoautosomal region. We were able to detect crossing-over in only six of 39 cases informative for the telomeric DXYS14/DXYS20 locus. Subsequently, we used the data to generate a genetic linkage map of the pseudoautosomal region and found it to be significantly shorter than the normal male map of the region. From these analyses we conclude that most paternally derived 47,XXYs result from meiosis in which the X and Y chromosomes did not recombine. Images Figure 1 PMID:1867189

  5. Type 1 diabetes and the control of dexamethazone-induced apoptosis in mice maps to the same region on chromosome 6

    SciTech Connect

    Penha-Goncalves, C.; Leijon, K.; Persson, L.

    1995-08-10

    Quantitative trait loci mapping was used to identify the chromosomal location of genes that contribute to increase the resistance to apoptosis induced in immature CD4{sup +}8{sup +} thymocytes. An F2 intercross of the nonobese diabetic (NOD) mouse (displaying an apoptosis-resistance phenotype) and the C57BL/6 mouse (displaying a nonresistance phenotype) was phenotypically analyzed and genotyped for 32 murine microsatellite polymorphisms. Maximum likelihood methods identified a region on the distal part of chromosome 6 that is linked to dexamethazone-induced apoptosis (lod score = 3.46) and accounts for 14% of the phenotypic variation. This chromosomal region contains the diabetes susceptibility locus Idd6, suggesting that the apoptosis-resistance phenotype constitutes a pathogenesis factor in IDDM of NOD mice. 29 refs., 4 figs.

  6. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    PubMed Central

    2008-01-01

    Background The Azoospermia Factor c (AZFc) region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ) gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL) gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes. PMID:18366765

  7. Psychosocial Responses to being Identified as a Balanced Chromosomal Translocation Carrier: a Qualitative Investigation of Parents in Japan.

    PubMed

    Kaneko, Mikiko; Ohashi, Hirofumi; Takamura, Tomoko; Kawame, Hiroshi

    2015-12-01

    Undergoing chromosome analysis and receiving the results may have various psychosocial effects. To identify the impact on balanced translocation carriers identified through affected offspring, we conducted semi-structured interviews with eleven parents at Saitama Children's Medical Center. The results of the interviews were analyzed qualitatively by the KJ (Kawakita Jiro) method. Categories and subcategories of the various thoughts, emotions and responses experienced by balanced chromosomal translocation carriers were extracted. Participants' reactions were mixed, and appeared to be interrelated in some cases. Parents' reactions were sometimes ambivalent with regard to effects on reproductive issues and disclosure of test results. We recommend genetic counseling before and after carrier testing to help parents cope with the mixed and complex thoughts and feelings that arise upon being identified as a carrier.

  8. The organisation of repetitive sequences in the pericentromeric region of human chromosome 10.

    PubMed

    Jackson, M S; Slijepcevic, P; Ponder, B A

    1993-12-25

    Three satellite DNA families are present in the pericentromeric region of chromosome 10; the alpha satellite and two 5 bp satellite families defined here as satellites 2 and 3. Pulsed field gel electrophoresis (PFGE) demonstrates that these sequences are organised into five discrete arrays which are linked within a region of approximately 5.3 Megabases (Mb) of DNA. The alpha satellite is largely confined to a 2.2 Mb array which is flanked on its p arm side by two 100-150 kb satellite 3 arrays and on its q arm side by a 900 kb satellite 2 array and a further 320 kb satellite 3 array. This linear order is corroborated by fluorescent in situ hybridisation analyses. In total, these arrays account for 3.6 Mb of DNA in the pericentromeric region of chromosome 10. These data provide both physical information on sequences which may be involved in centromere function and a map across the centromere which has the potential to link yeast artificial chromosome (YAC) contigs currently being developed on both arms of this chromosome.

  9. Linkage disequilibrium patterns vary with chromosomal location: A case study from the von Willebrand factor region

    SciTech Connect

    Watkins, W.S.; Zenger, R.; O'Brien, E.; Jorde, L.B. ); Nyman, D. ); Eriksson, A.W. ); Renlund, M.

    1994-08-01

    Linkage disequilibrium analysis has been used as a tool for analyzing marker order and locating disease genes. Under appropriate circumstances, disequilibrium patterns reflect recombination events that have occurred throughput a population's history. As a result, disequilibrium mapping may be useful in genomic regions of <1 cM where the number of informative meioses needed to detect recombinant individuals within pedigrees is exceptionally high. Its utility for refining target areas for candidate disease genes before initiating chromosomal walks and cloning experiments will be enhanced as the relationship between linkage disequilibrium and physical distance is better understood. To address this issue, the authors have characterized linkage disequilibrium in a 144-kb region of the von Willebrand factor gene on chromosome 12. Sixty CEPH and 12 von Willebrand disease families were genotypes for five PCR-based markers, which include two microsatellite repeats and three single-base-pair substitutions. Linkage disequilibrium and physical distance between polymorphisms are highly correlated (r[sub m] = -.76; P<.05) within this region. None of the five markers showed significant disequilibrium with the von Willebrand disease phenotype. The linkage disequilibrium/physical distance relationship was also analyzed as a function of chromosomal location for this and eight previously characterized regions. This analysis revealed a general trend in which linkage disequilibrium dissipates more rapidly with physical distance in telomeric regions than in centromeric regions. This trend is consistent with higher recombination rates near telomeres. 52 refs., 3 figs., 4 tabs.

  10. Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis.

    PubMed

    Nakano, Hiroshi; Funasaka, Tatsuyoshi; Hashizume, Chieko; Wong, Richard W

    2010-04-01

    Gain or loss of whole chromosomes is often observed in cancer cells and is thought to be due to aberrant chromosome segregation during mitosis. Proper chromosome segregation depends on a faithful interaction between spindle microtubules and kinetochores. Several components of the nuclear pore complex/nucleoporins play critical roles in orchestrating the rapid remodeling events that occur during mitosis. Our recent studies revealed that the nucleoporin, Rae1, plays critical roles in maintaining spindle bipolarity. Here, we show association of another nucleoporin, termed Tpr (translocated promoter region), with the molecular motors dynein and dynactin, which both orchestrate with the spindle checkpoints Mad1 and Mad2 during cell division. Overexpression of Tpr enhanced multinucleated cell formation. RNA interference-mediated knockdown of Tpr caused a severe lagging chromosome phenotype and disrupted spindle checkpoint proteins expression and localization. Next, we performed a series of rescue and dominant negative experiments to confirm that Tpr orchestrates proper chromosome segregation through interaction with dynein light chain. Our data indicate that Tpr functions as a spatial and temporal regulator of spindle checkpoints, ensuring the efficient recruitment of checkpoint proteins to the molecular motor dynein to promote proper anaphase formation.

  11. Prenatal diagnosis of chromosome 15 abnormalities in the Prader-Willi/Angelman syndrome region by traditional and molecular cytogenetics

    SciTech Connect

    Toth-Fejel, S.; Magenis, R.E.; Leff, S.

    1995-02-13

    With improvements in culturing and banding techniques, amniotic fluid studies now achieve a level of resolution at which the Prader-Willi syndrome (PWS) and Angelman syndrome (AS) region may be questioned. Chromosome 15 heteromorphisms, detected with Q- and R-banding and used in conjunction with PWS/AS region-specific probes, can confirm a chromosome deletion and establish origin to predict the clinical outcome. We report four de novo cases of an abnormal-appearing chromosome 15 in amniotic fluid samples referred for advanced maternal age or a history of a previous chromosomally abnormal child. The chromosomes were characterized using G-, Q-, and R-banding, as well as isotopic and fluorescent in situ hybridization of DNA probes specific for the proximal chromosome 15 long arm. In two cases, one chromosome 15 homolog showed a consistent deletion of the ONCOR PWS/AS region A and B. In the other two cases, one of which involved an inversion with one breakpoint in the PWS/AS region, all of the proximal chromosome 15 long arm DNA probes used in the in situ hybridization were present on both homologs. Clinical follow-up was not available on these samples, as in all cases the parents chose to terminate the pregnancies. These cases demonstrate the ability to prenatally diagnose chromosome 15 abnormalities associated with PWS/AS. In addition, they highlight the need for a better understanding of this region for accurate prenatal diagnosis. 41 refs., 5 figs.

  12. Identification of critical regions and candidate genes for cardiovascular malformations and cardiomyopathy associated with deletions of chromosome 1p36.

    PubMed

    Zaveri, Hitisha P; Beck, Tyler F; Hernández-García, Andrés; Shelly, Katharine E; Montgomery, Tara; van Haeringen, Arie; Anderlid, Britt-Marie; Patel, Chirag; Goel, Himanshu; Houge, Gunnar; Morrow, Bernice E; Cheung, Sau Wai; Lalani, Seema R; Scott, Daryl A

    2014-01-01

    Cardiovascular malformations and cardiomyopathy are among the most common phenotypes caused by deletions of chromosome 1p36 which affect approximately 1 in 5000 newborns. Although these cardiac-related abnormalities are a significant source of morbidity and mortality associated with 1p36 deletions, most of the individual genes that contribute to these conditions have yet to be identified. In this paper, we use a combination of clinical and molecular cytogenetic data to define five critical regions for cardiovascular malformations and two critical regions for cardiomyopathy on chromosome 1p36. Positional candidate genes which may contribute to the development of cardiovascular malformations associated with 1p36 deletions include DVL1, SKI, RERE, PDPN, SPEN, CLCNKA, ECE1, HSPG2, LUZP1, and WASF2. Similarly, haploinsufficiency of PRDM16-a gene which was recently shown to be sufficient to cause the left ventricular noncompaction-SKI, PRKCZ, RERE, UBE4B and MASP2 may contribute to the development of cardiomyopathy. When treating individuals with 1p36 deletions, or providing prognostic information to their families, physicians should take into account that 1p36 deletions which overlie these cardiac critical regions may portend to cardiovascular complications. Since several of these cardiac critical regions contain more than one positional candidate gene-and large terminal and interstitial 1p36 deletions often overlap more than one cardiac critical region-it is likely that haploinsufficiency of two or more genes contributes to the cardiac phenotypes associated with many 1p36 deletions.

  13. Differential Management of the Replication Terminus Regions of the Two Vibrio cholerae Chromosomes during Cell Division

    PubMed Central

    Demarre, Gaëlle; Galli, Elisa; Muresan, Leila; Paly, Evelyne; David, Ariane; Possoz, Christophe; Barre, François-Xavier

    2014-01-01

    The replication terminus region (Ter) of the unique chromosome of most bacteria locates at mid-cell at the time of cell division. In several species, this localization participates in the necessary coordination between chromosome segregation and cell division, notably for the selection of the division site, the licensing of the division machinery assembly and the correct alignment of chromosome dimer resolution sites. The genome of Vibrio cholerae, the agent of the deadly human disease cholera, is divided into two chromosomes, chrI and chrII. Previous fluorescent microscopy observations suggested that although the Ter regions of chrI and chrII replicate at the same time, chrII sister termini separated before cell division whereas chrI sister termini were maintained together at mid-cell, which raised questions on the management of the two chromosomes during cell division. Here, we simultaneously visualized the location of the dimer resolution locus of each of the two chromosomes. Our results confirm the late and early separation of chrI and chrII Ter sisters, respectively. They further suggest that the MatP/matS macrodomain organization system specifically delays chrI Ter sister separation. However, TerI loci remain in the vicinity of the cell centre in the absence of MatP and a genetic assay specifically designed to monitor the relative frequency of sister chromatid contacts during constriction suggest that they keep colliding together until the very end of cell division. In contrast, we found that even though it is not able to impede the separation of chrII Ter sisters before septation, the MatP/matS macrodomain organization system restricts their movement within the cell and permits their frequent interaction during septum constriction. PMID:25255436

  14. Meta-analysis of GWAS on two Chinese populations followed by replication identifies novel genetic variants on the X chromosome associated with systemic lupus erythematosus.

    PubMed

    Zhang, Yan; Zhang, Jing; Yang, Jing; Wang, Yongfei; Zhang, Lu; Zuo, Xianbo; Sun, Liangdan; Pan, Hai-Feng; Hirankarn, Nattiya; Wang, Tingyou; Chen, Ruoyan; Ying, Dingge; Zeng, Shuai; Shen, Jiangshan Jane; Lee, Tsz Leung; Lau, Chak Sing; Chan, Tak Mao; Leung, Alexander Moon Ho; Mok, Chi Chiu; Wong, Sik Nin; Lee, Ka Wing; Ho, Marco Hok Kung; Lee, Pamela Pui Wah; Chung, Brian Hon-Yin; Chong, Chun Yin; Wong, Raymond Woon Sing; Mok, Mo Yin; Wong, Wilfred Hing Sang; Tong, Kwok Lung; Tse, Niko Kei Chiu; Li, Xiang-Pei; Avihingsanon, Yingyos; Rianthavorn, Pornpimol; Deekajorndej, Thavatchai; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk; Ying, Shirley King Yee; Fung, Samuel Ka Shun; Lai, Wai Ming; Wong, Chun-Ming; Ng, Irene Oi Lin; Garcia-Barcelo, Maria-Merce; Cherny, Stacey S; Tam, Paul Kwong-Hang; Sham, Pak Chung; Yang, Sen; Ye, Dong Qing; Cui, Yong; Zhang, Xue-Jun; Lau, Yu Lung; Yang, Wanling

    2015-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that affects mainly females. What role the X chromosome plays in the disease has always been an intriguing question. In this study, we examined the genetic variants on the X chromosome through meta-analysis of two genome-wide association studies (GWAS) on SLE on Chinese Han populations. Prominent association signals from the meta-analysis were replicated in 4 additional Asian cohorts, with a total of 5373 cases and 9166 matched controls. We identified a novel variant in PRPS2 on Xp22.3 as associated with SLE with genome-wide significance (rs7062536, OR = 0.84, P = 1.00E-08). Association of the L1CAM-MECP2 region with SLE was reported previously. In this study, we identified independent contributors in this region in NAA10 (rs2071128, OR = 0.81, P = 2.19E-13) and TMEM187 (rs17422, OR = 0.75, P = 1.47E-15), in addition to replicating the association from IRAK1-MECP2 region (rs1059702, OR = 0.71, P = 2.40E-18) in Asian cohorts. The X-linked susceptibility variants showed higher effect size in males than that in females, similar to results from a genome-wide survey of associated SNPs on the autosomes. These results suggest that susceptibility genes identified on the X chromosome, while contributing to disease predisposition, might not contribute significantly to the female predominance of this prototype autoimmune disease. PMID:25149475

  15. Genomewide Linkage Study in 1,176 Affected Sister Pair Families Identifies a Significant Susceptibility Locus for Endometriosis on Chromosome 10q26

    PubMed Central

    Treloar, Susan A.; Wicks, Jacqueline; Nyholt, Dale R.; Montgomery, Grant W.; Bahlo, Melanie; Smith, Vicki; Dawson, Gary; Mackay, Ian J.; Weeks, Daniel E.; Bennett, Simon T.; Carey, Alisoun; Ewen-White, Kelly R.; Duffy, David L.; O’Connor, Daniel T.; Barlow, David H.; Martin, Nicholas G.; Kennedy, Stephen H.

    2005-01-01

    Endometriosis is a common gynecological disease that affects up to 10% of women in their reproductive years. It causes pelvic pain, severe dysmenorrhea, and subfertility. The disease is defined as the presence of tissue resembling endometrium in sites outside the uterus. Its cause remains uncertain despite >50 years of hypothesis-driven research, and thus the therapeutic options are limited. Disease predisposition is inherited as a complex genetic trait, which provides an alternative route to understanding the disease. We seek to identify susceptibility loci, using a positional-cloning approach that starts with linkage analysis to identify genomic regions likely to harbor these genes. We conducted a linkage study of 1,176 families (931 from an Australian group and 245 from a U.K. group), each with at least two members—mainly affected sister pairs—with surgically diagnosed disease. We have identified a region of significant linkage on chromosome 10q26 (maximum LOD score [MLS] of 3.09; genomewide P = .047) and another region of suggestive linkage on chromosome 20p13 (MLS = 2.09). Minor peaks (with MLS > 1.0) were found on chromosomes 2, 6, 7, 8, 12, 14, 15, and 17. This is the first report of linkage to a major locus for endometriosis. The findings will facilitate discovery of novel positional genetic variants that influence the risk of developing this debilitating disease. Greater understanding of the aberrant cellular and molecular mechanisms involved in the etiology and pathophysiology of endometriosis should lead to better diagnostic methods and targeted treatments. PMID:16080113

  16. Organization of the R chromosome region in maize

    SciTech Connect

    Not Available

    1983-01-01

    Alleles of R govern the presence, intensity and time of anthocyanin pigmentation, plant part by plant part. A given allele often comprises more than one unit of independent function. One objective has been to characterize alleles in terms of genic element composition. What is the number, arrangement and tissue-specific domain of the elements comprising particular alleles were the questions posed. Various patterns of organization have been uncovered among alleles carried in cultivated races of maize. Some especially complex alleles have yet to be resolved fully in these terms. New patterns of organization undoubtedly remain to be discovered. We nevertheless relegated this line of inquiry to a position of secondary emphasis over the course of the past three years. Primary attention was shifted to analysis of individual genic elements. Two approaches utilize given elements which have been fractionated from allelic complexes or which occur singly in cultivated races. Recombinational tests of single element heterozygotes focuses on the components which confer tissue specific differences. An alternative approach makes use of phenotypically null mutations of single element alleles. Such are combined in heterozygotes with elements of contrasting tissue effect to recombine a functional form of the mutant allele. The resynthesis of elements in this manner appears to provide a systematic means of identifying components that are essential for an element's function but which are not responsible for its tissue specific action. The nature of genetic instabilities continues as another major area of interest. The kernel-spotting allele R-stippled is associated with two sorts of instabilities. Its somatic and germinal reversion to uniform strong color is attributable to a transposable unit. Its capacity to reduce the functional level of sensitive alleles in heterozygotes (paramutation) has a different basis. Organization of its paramutagenic potential is reported.

  17. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases.

    PubMed Central

    Le Beau, M M; Espinosa, R; Neuman, W L; Stock, W; Roulston, D; Larson, R A; Keinanen, M; Westbrook, C A

    1993-01-01

    Loss of a whole chromosome 5 or a deletion of its long arm (5q) is a recurring abnormality in malignant myeloid neoplasms. To determine the location of genes on 5q that may be involved in leukemogenesis, we examined the deleted chromosome 5 homologs in a series of 135 patients with malignant myeloid diseases. By comparing the breakpoints, we identified a small segment of 5q, consisting of band 5q31, that was deleted in each patient. This segment has been termed the critical region. Distal 5q contains a number of genes encoding growth factors, hormone receptors, and proteins involved in signal transduction or transcriptional regulation. These include several genes that are good candidates for a tumor-suppressor gene, as well as the genes encoding five hematopoietic growth factors (CSF2, IL3, IL4, IL5, and IL9). By using fluorescence in situ hybridization, we have refined the localization of these genes to 5q31.1 and have determined the order of these genes and of other markers within 5q31. By hybridizing probes to metaphase cells with overlapping deletions involving 5q31, we have narrowed the critical region to a small segment of 5q31 containing the EGR1 gene. The five hematopoietic growth factor genes and seven other genes are excluded from this region. The EGR1 gene was not deleted in nine other patients with acute myeloid leukemia who did not have abnormalities of chromosome 5. By physical mapping, the minimum size of the critical region was estimated to be 2.8 megabases. This cytogenetic map of 5q31, together with the molecular characterization of the critical region, will facilitate the identification of a putative tumor-suppressor gene in this band. PMID:8516290

  18. Co-regulation analysis of closely linked genes identifies a highly recurrent gain on chromosome 17q25.3 in prostate cancer

    PubMed Central

    Bermudo, Raquel; Abia, David; Ferrer, Berta; Nayach, Iracema; Benguria, Alberto; Zaballos, Ángel; del Rey, Javier; Miró, Rosa; Campo, Elías; Martínez-A, Carlos; Ortiz, Ángel R; Fernández, Pedro L; Thomson, Timothy M

    2008-01-01

    Background Transcriptional profiling of prostate cancer (PC) has unveiled new markers of neoplasia and allowed insights into mechanisms underlying this disease. Genomewide analyses have also identified new chromosomal abnormalities associated with PC. The combination of both classes of data for the same sample cohort might provide better criteria for identifying relevant factors involved in neoplasia. Here we describe transcriptional signatures identifying distinct normal and tumoral prostate tissue compartments, and the inference and demonstration of a new, highly recurrent copy number gain on chromosome 17q25.3. Methods We have applied transcriptional profiling to tumoral and non-tumoral prostate samples with relatively homogeneous epithelial representations as well as pure stromal tissue from peripheral prostate and cultured cell lines, followed by quantitative RT-PCR validations and immunohistochemical analysis. In addition, we have performed in silico colocalization analysis of co-regulated genes and validation by fluorescent in situ hybridization (FISH). Results The transcriptomic analysis has allowed us to identify signatures corresponding to non-tumoral luminal and tumoral epithelium, basal epithelial cells, and prostate stromal tissue. In addition, in silico analysis of co-regulated expression of physically linked genes has allowed us to predict the occurrence of a copy number gain at chromosomal region 17q25.3. This computational inference was validated by fluorescent in situ hybridization, which showed gains in this region in over 65% of primary and metastatic tumoral samples. Conclusion Our approach permits to directly link gene copy number variations with transcript co-regulation in association with neoplastic states. Therefore, transcriptomic studies of carefully selected samples can unveil new diagnostic markers and transcriptional signatures highly specific of PC, and lead to the discovery of novel genomic abnormalities that may provide additional

  19. A novel human phosphoglucomutase (PGM5) maps to the centromeric region of chromosome 9

    SciTech Connect

    Edwards, Y.H.; Putt, W.; Fox, M.; Ives, J.H.

    1995-11-20

    The phophoglucomutases (PGM1-3) in humans are surrounded by three genes, PGM1, PGM2, and PGM3. These enzymes are central to carbohydrate metabolism. All three isozymes show genetic variation, and PGM1 has achieved prominence as a key marker in genetic linkage mapping and in forensic science. The human PGM genes are assumed to have arisen by gene duplication since their products are broadly similar in structure and function; however, direct proof of their evolutionary relationship is not available because only PGM1 has been cloned. During a search for other members of the PGM family, a novel sequence with homology to PGM1 was identified. Mapping using fluorescence in situ hybridization and somatic cell hybrids locates this gene to the centromeric region of chromosome 9. RT-PCR and Northern analysis indicate that this is an expressed PGM gene with widespread distribution in adult and fetal tissues. We propose that this gene be designated PGM5 and that it represents a novel member of the PGM family. 19 refs., 2 figs.

  20. Fine mapping of the human pentraxin gene region on chromosome 1q23

    SciTech Connect

    Walsh, M.T.; Whitehead, A.S.; Divane, A.

    1996-12-31

    The 1q21 to 25 region of human chromosome 1 contains genes which encode proteins with immune- and inflammation-associated functions. These include the pentraxin genes, for C-reactive protein (CRP), serum amyloid P(SAP) protein (APCS), and a CRP pseudogene (CRPP1). The region of chromosome 1 containing this cluster is syntenic with distal mouse chromosome 1. We constructed an approximately 1.4 megabase yeast artificial chromosome (YAC) contig with the pentraxin genes at its core. This four-YAC contig includes other genes with immune functions including the FCER1A gene, which encodes the {alpha}-subunit of the IgE high-affinity Fc receptor and the 1F1-16 gene, an interferon-{gamma}-induced gene. In addition, it contains the histone H3F2 and H4F2 genes and the gene for erythroid {alpha}-spectrin (SPTA1). The gene order is cen.-SPTA1-H4F2-H3F2-1F1-16-CRP-CRPP1-APCS-FCERIA-tel. The contig thus consists of a cluster of genes whose products either have immunological importance, bind DNA, or both. 68 refs., 3 figs., 2 tabs.

  1. Genetic map of the spinocerebellar ataxia type 2 (SCA2) region on chromosome 12

    SciTech Connect

    Nechiporuk, A.; Frederick, T.; Pulst, S.M.

    1994-09-01

    The autosomal dominant ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive ataxia. At least four gene loci have been identified: SCA1 on chromosome (CHR) 6, SCA2 on CHR12, Machado-Joseph disease on CHR14, and SCA families that are not linked to any of the above loci. In addition, the gene causing dentato-rubro-pallido-luysian atrophy has been identified as an expanded CAG repeat on CHR 12p. As a necessary step in identifying the gene for SCA2, we now identified closer flanking markers. To do this we ordered microsatellite markers in the now identified closer flanking markers. To do this we ordered microsatellite markers in the region and then determined pairwise and multipoint lod scores between the markers and SCA2 in three large pedigrees with SCA. The following order was established with odds > 1,000:1 using six non-SCA pedigrees: D12S101-7.1cM-D12S58-0cM-IGF1-3.6cM-D12S78-1.4cM-D12S317-3.7cM-D12S84-0cM-D12S105-7.2cM-D12S79-7.0cM-PLA2. Using this ordered set of markers we examined linkage to SCA2 in three pedigrees of Italian, Austrian and French-Canadian descent. Pairwise linkage analysis resulted in significant positive lod scores for all markers. The highest pairwise lod score was obtained with D12S84/D12S105 (Z{sub max}=7.98, theta{sub max}=0.05). To further define the location of SCA2, we performed multipoint linkage analysis using the genetic map established above. The highest location score was obtained between D12S317 and D12S84/D12S105. A location of SCA2 between these loci was favored with odds > 100:1. These data likely narrow the SCA2 candidate region to approximately 3.7 cM. The relatively large large number of markers tightly linked to SCA2 will facilitate the assignment of additional SCA pedigrees to CHR12, and will help in the presymptomatic diagnosis of individuals in families with proven linkage to CHR12.

  2. Physical mapping in the Cri du Chat region on human chromosome 5

    SciTech Connect

    Church, D.M.; Bengtsson, U.; Niebuhr, E.

    1994-09-01

    The Cri du Chat syndrome is a segmental aneusomy associated with deletions in the short arm of human chromosome 5. More specifically, the cytogenetic band 5p15.2 must be deleted in order to manifest the typical phenotypic signs. We have studied several cell lines from individuals who have chromosomal abnormalities within this cytogenetic band but who do not have typical Cri du Chat syndrome. In fact, several individual studied have no discernible features of this syndrome. Using fluorescent in situ hybridization (FISH) analysis and PCR analysis on somatic cell hybrids we have mapped the breakpoints relative to each other within this band. There is a great degree of phenotypic heterogeneity between several of the patients, even those which share common breakpoints. This heterogeneity makes it very difficult to narrow the region of interest to a very small (<1 Mb) region. In order to more thoroughly analyze this region, we have assembled a yeast artificial chromosome (YAC) contig of part of this region. This contig has been analyzed for STS content and covers approximately a 1.5-2.0 Mb region within 5p15.2. In addition, we have constructed a radiation hybrid map of the region. The YACs contained within the minimal contig have been used as hybridization probes to isolate corresponding cosmid clones within the region of interest. These cosmids, in turn, are being utilized to obtain potential exons using exon amplification. Several cosmids within this region have been isolated by STS content and potential exons have been isolated from them. These exons have been used as probes to isolate cDNA clones from the region. It is our hope that isolation of genes throughout the region of interest will allow a better understanding of the etiology of Cri du Chat.

  3. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    PubMed

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc.

  4. Mapping of the chromosome 1p36 region surrounding the Charcot-Marie-Tooth disease type 2A locus

    SciTech Connect

    Denton, P.; Gere, S.; Wolpert, C.

    1994-09-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy. Although CMT2 is clinically indistinguishable from CMT1, the two forms can be differentiated by pathological and neurophysiological methods. We have established one locus, CMT2A on chromosome 1p36, and have established genetic heterogeneity. This locus maps to the region of the deletions associated with neuroblastoma. We have now identified an additional 11 CMT2 families. Three families are linked to chromosome 1p36 while six families are excluded from this region. Another six families are currently under analysis and collection. To date the CMT2A families represent one third of those CMT2 families examined. We have established a microdissection library of the 1p36 region which is currently being characterized for microsatellite repeats and STSs using standard hybridization techniques and a modified degenerate primer method. In addition, new markers (D1S253, D1S450, D1S489, D1S503, GATA27E04, and GATA4H04) placed in this region are being mapped using critical recombinants in the CEPH reference pedigrees. Fluorescent in situ hybridization (FISH) has been used to confirm mapping. A YAC contig is being assembled from the CEPH megabase library using STSs to isolate key YACs which are extended by vectorette end clone and Alu-PCR. These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrates further heterogeneity in the CMT phenotype.

  5. A region of maize chromosome 2 affects response to downy mildew pathogens.

    PubMed

    Sabry, Ahmed; Jeffers, Dan; Vasal, S K; Frederiksen, Richard; Magill, Clint

    2006-07-01

    Quantitative trait loci (QTLs) for downy mildew resistance in maize were identified based on co-segregation with linked restriction fragment length polymorphisms or simple sequence repeats in 220 F2 progeny from a cross between susceptible and resistant parents. Disease response was assessed on F3 families in nurseries in Egypt, Thailand, and South Texas and after inoculation in a controlled greenhouse test. Heritability of the disease reaction was high (around 93% in Thailand). One hundred and thirty polymorphic markers were assigned to the ten chromosomes of maize with LOD scores exceeding 4.9 and covering about 1,265 cM with an average interval length between markers of 9.5 cM. About 90% of the genome is located within 10 cM of the nearest marker. Three putative QTLs were detected in association with resistance to downy mildew in different environments using composite interval mapping. Despite environmental and symptom differences, one locus on chromosome 2 had a major effect and explained up to 70% of the phenotypic variation in Thailand where disease pressure was the highest. The other two QTLs on chromosome 3 and chromosome 9 had minor effects; each explained no more than 4% of the phenotypic variation. The three QTLs appeared to have additive effects on resistance, identifying one major gene and two minor genes that contribute to downy mildew resistance.

  6. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou

    2016-09-01

    Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines. PMID:27374913

  7. A yeast artificial chromosome (YAC) contig encompassing the critical region of the X-linked lymphoproliferative disease (XLP) locus.

    PubMed

    Lanyi, A; Li, B; Li, S; Talmadge, C B; Brichacek, B; Davis, J R; Kozel, B A; Trask, B; van den Engh, G; Uzvolgyi, E; Stanbridge, E J; Nelson, D L; Chinault, C; Heslop, H; Gross, T G; Seemayer, T A; Klein, G; Purtilo, D T; Sumegi, J

    1997-01-01

    X-linked lymphoproliferative disease (XLP) is characterized by a marked vulnerability to Epstein-Barr virus (EBV) infection. Infection of XLP patients with EBV invariably results in fatal mononucleosis, agammaglobulinemia, or malignant lymphoma. Initially the XLP gene was assigned to a 10-cM region in Xq25 between DXS42 and DXS37. Subsequently, an interstitial, cytogenetically visible deletion in Xq25 was identified in one XLP family, 43. In this study we estimated the deletion in XLP patient 43-004 by dual-laser flow karyotyping to involve 2% of the X chromosome, or approximately 3 Mb of DNA sequence. From a human chromosome Xq25-specific yeast artificial chromosome (YAC) sublibrary, five YACs containing DNA sequences deleted in patient 43-004 have been isolated. Sequence-tagged sites (STSs) from these YACs have been used to identify interstitial deletions in unrelated XLP patients. Three more families with interstitial deletions were found. Two of the patients (63-003 and 73-032) carried an interstitial deletion of 3.0 Mb overlapping the 43-004 deletion. In one XLP patient (30-011) who exhibited the characteristic postinfectious mononucleosis phenotype of XLP with hypogammaglobulinemia and malignant lymphoma, a deletion of approximately 250 kb was detected overlapping the deletion detected in patients 43-004, 63-003, and 73-032. A YAC contig of 2.2 Mb spanning the XLP critical region, whose orientation on chromosome X was determined by double-color fluorescence in situ hybridization and which consists of 15 overlapping YAC clones, has been constructed. A detailed restriction enzyme map of the region has been constructed. YAC insert sizes were determined by counter-clamped homogenous electric field gel electrophoresis. Chimerism of YACs was determined by FISH and restriction mapping. On the basis of lambda subclones, YAC end-derived plasmids, and STSs with an average spacing of 100 kb, a long-range physical map was constructed using 5 rare-cutter restriction

  8. Regional chromosomal assignments for four members of the myocyte-specific enhancer-binding factor 2 (MEF2) gene family to human chromosomes 15q, 19q, 5q, and 1q

    SciTech Connect

    Hobson, G.M.; Funanage, V.L.; Krahe, R.

    1994-09-01

    MEF2 genes belong to the MADS box family of transcription factors and encode proteins that bind as homo- and heterodimers to a consensus CTA(T/A){sub 4}TAG/A sequence present in the regulatory regions of numerous muscle-specific and growth inducible genes. Sequence analysis of human MEF2 cDNA clones suggested that they arose from alternatively spliced transcripts of four different genes, termed MEF2A-D. We have mapped the MEF2 genes to human chromosomal regions by identifying unique sequences in the 5{prime} or 3{prime} untranslated regions of each clone and using these sequences as PCR primers on the DNA of a human-rodent hybrid clone panel informative for different regions of the human genome. The localization of MEF2A to chromosome 15q, MEF2B to 19q, MEF2C to 5q, and MEF2D to 1q verifies the existence of at least four distinct loci for members of this gene family. The same PCR primers were used to identify individual YAC clones for each gene. Such isolated clones are now being used for fluorescence in situ hybridization for high resolution chromosomal regional assignment.

  9. Sorting the Wheat from the Chaff: Identifying miRNAs in Genomic Survey Sequences of Triticum aestivum Chromosome 1AL

    PubMed Central

    Lucas, Stuart J.; Budak, Hikmet

    2012-01-01

    Individual chromosome-based studies of bread wheat are beginning to provide valuable structural and functional information about one of the world’s most important crops. As new genome sequences become available, identifying miRNA coding sequences is arguably as important a task as annotating protein coding sequences, but one that is not as well developed. We compared conservation-based identification of conserved miRNAs in 1.5× coverage survey sequences of wheat chromosome 1AL with a predictive method based on pre-miRNA hairpin structure alone. In total, 42 sequences expected to encode conserved miRNAs were identified on chromosome 1AL, including members of several miRNA families that have not previously been reported to be expressed in T. aestivum. In addition, we demonstrate that a number of sequences previously annotated as novel wheat miRNAs are closely related to transposable elements, particularly Miniature Inverted Terminal repeat Elements (MITEs). Some of these TE-miRNAs may well have a functional role, but separating true miRNA coding sequences from TEs in genomic sequences is far from straightforward. We propose a strategy for annotation to minimize the risk of mis-identifying TE sequences as miRNAs. PMID:22815845

  10. Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE

    PubMed Central

    Nava, C; Lamari, F; Héron, D; Mignot, C; Rastetter, A; Keren, B; Cohen, D; Faudet, A; Bouteiller, D; Gilleron, M; Jacquette, A; Whalen, S; Afenjar, A; Périsse, D; Laurent, C; Dupuits, C; Gautier, C; Gérard, M; Huguet, G; Caillet, S; Leheup, B; Leboyer, M; Gillberg, C; Delorme, R; Bourgeron, T; Brice, A; Depienne, C

    2012-01-01

    The striking excess of affected males in autism spectrum disorders (ASD) suggests that genes located on chromosome X contribute to the etiology of these disorders. To identify new X-linked genes associated with ASD, we analyzed the entire chromosome X exome by next-generation sequencing in 12 unrelated families with two affected males. Thirty-six possibly deleterious variants in 33 candidate genes were found, including PHF8 and HUWE1, previously implicated in intellectual disability (ID). A nonsense mutation in TMLHE, which encodes the ɛ-N-trimethyllysine hydroxylase catalyzing the first step of carnitine biosynthesis, was identified in two brothers with autism and ID. By screening the TMLHE coding sequence in 501 male patients with ASD, we identified two additional missense substitutions not found in controls and not reported in databases. Functional analyses confirmed that the mutations were associated with a loss-of-function and led to an increase in trimethyllysine, the precursor of carnitine biosynthesis, in the plasma of patients. This study supports the hypothesis that rare variants on the X chromosome are involved in the etiology of ASD and contribute to the sex-ratio disequilibrium. PMID:23092983

  11. Molecular cloning of the breakpoints of a complex Philadelphia chromosome translocation: identification of a repeated region on chromosome 17.

    PubMed Central

    McKeithan, T W; Warshawsky, L; Espinosa, R; LeBeau, M M

    1992-01-01

    Complex translocations in chronic myelogenous leukemia involve various chromosomes, in addition to chromosomes 9 and 22, in a nonrandom fashion. We have analyzed the DNA from leukemia cells characterized by a complex translocation, t(9;22;10;17)(q34;q11;p13;q21), by using the techniques of Southern blot hybridization, in situ hybridization, and molecular cloning; one of the breakpoints is at 17q21, a band that is frequently involved in complex 9;22 translocations. All of the breakpoint junctions and the corresponding normal sequences from the four involved chromosomes have been molecularly cloned. Restriction mapping is consistent with a simple concerted exchange of chromosomal material among the four chromosomes, except that additional changes appeared to have occurred within the chromosome 17 sequences. The cloned sequences on chromosome 17 at band q21 were found to be repeated in normal cells. By fluorescence in situ hybridization, a strong signal is seen at 17q21, but a weaker signal is also present at 17q23. By comparison with other primate species, an inversion in chromosome 17 during evolution appears to be responsible for the splitting of the cluster of repeat units in normal human cells. Images PMID:1594595

  12. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  13. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  14. Oligonucleotide Probes for ND-FISH Analysis to Identify Rye and Wheat Chromosomes.

    PubMed

    Fu, Shulan; Chen, Lei; Wang, Yangyang; Li, Meng; Yang, Zujun; Qiu, Ling; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2015-05-21

    Genomic in situ hybridization (GISH) has been widely used to detect rye (Secale cereale L.) chromosomes in wheat (Triticum aestivum L.) introgression lines. The routine procedure of GISH using genomic DNA of rye as a probe is time-consuming and labor-intensive because of the preparation and labeling of genomic DNA of rye and denaturing of chromosomes and probes. In this study, new oligonucleotide probes Oligo-1162, Oligo-pSc200 and Oligo-pSc250 were developed. The three new probes can be used for non-denaturing fluorescence in situ hybridization (ND-FISH) assays and replace genomic DNA of rye as a probe to discriminate rye chromosomes in wheat backgrounds. In addition, previously developed oligonucleotide probes Oligo-pSc119.2-1, Oligo-pSc119.2-2, Oligo-pTa535-1, Oligo-pTa535-2, Oligo-pTa71-2, Oligo-pAWRC.1 and Oligo-CCS1 can also be used for ND-FISH of wheat and rye. These probes have provided an easier, faster and more cost-effective method for the FISH analysis of wheat and hybrids derived from wheat × rye.

  15. Assembly and analysis of cosmid contigs in the CEA-gene family region of human chromosome 19.

    PubMed Central

    Tynan, K; Olsen, A; Trask, B; de Jong, P; Thompson, J; Zimmermann, W; Carrano, A; Mohrenweiser, H

    1992-01-01

    The carcinoembryonic antigen (CEA)-like genes are members of a large gene family which is part of the immunoglobulin superfamily. The CEA family is divided into two major subgroups, the CEA-subgroup and the pregnancy-specific glycoprotein (PSG)-subgroup. In the course of an effort to develop a set of overlapping cosmids spanning human chromosome 19, we identified 245 cosmids in a human chromosome 19 cosmid library (6-7X redundant) by hybridization with an IgC-like domain fragment of the CEA gene. A fluorescence-based restriction enzyme digest fingerprinting strategy was used to assemble 212 probe-positive cosmids, along with 115 additional cosmids from a collection of approximately 8,000 randomly selected cosmids, into five contigs. Two of the contigs contain CEA-subgroup genes while the remaining three contigs contain PSG-subgroup genes. These five contigs range in size from 100 kb to over 300 kb and span an estimated 1 Mb. The CEA-like gene family was determined by fluorescence in situ hybridization to map in the q13.1-q13.2 region of human chromosome 19. Analysis of the two CEA-subgroup contigs provided verification of the contig assembly strategy and insight into the organization of 9 CEA-subgroup genes. PMID:1579453

  16. Nucleolar organizer regions in Sittasomus griseicapillus and Lepidocolaptes angustirostris (Aves, Dendrocolaptidae): Evidence of a chromosome inversion.

    PubMed

    de Oliveira Barbosa, Marcelo; da Silva, Rubens Rodrigues; de Sena Correia, Vanessa Carolina; Dos Santos, Luana Pereira; Garnero, Analía Del Valle; Gunski, Ricardo José

    2013-03-01

    Cytogenetic studies in birds are still scarce compared to other vertebrates. Woodcreepers (Dendrocolaptidae) are part of a highly specialized group within the Suboscines of the New World. They are forest birds exclusive to the Neotropical region and similar to woodpeckers, at a comparable evolutionary stage. This paper describes for the first time the karyotypes of the Olivaceous and the Narrow-billed Woodcreeper using conventional staining with Giemsa and silver nitrate staining of the nucleolar organizer regions (Ag-NORs). Metaphases were obtained by fibular bone marrow culture. The chromosome number of the Olivaceous Woodcreeper was 2n = 82 and of the Narrow-billed Woodcreeper, 2n = 82. Ag-NORs in the largest macrochromosome pair and evidence of a chromosome inversion are described herein for the first time for this group.

  17. Fine mapping of variants associated with endometriosis in the WNT4 region on chromosome 1p36.

    PubMed

    Luong, Hien Tt; Painter, Jodie N; Shakhbazov, Konstantin; Chapman, Brett; Henders, Anjali K; Powell, Joseph E; Nyholt, Dale R; Montgomery, Grant W

    2013-01-01

    Genome-wide association studies show strong evidence of association with endometriosis for markers on chromosome 1p36 spanning the potential candidate genes WNT4, CDC42 and LINC00339. WNT4 is involved in development of the uterus, and the expression of CDC42 and LINC00339 are altered in women with endometriosis. We conducted fine mapping to examine the role of coding variants in WNT4 and CDC42 and determine the key SNPs with strongest evidence of association in this region. We identified rare coding variants in WNT4 and CDC42 present only in endometriosis cases. The frequencies were low and cannot account for the common signal associated with increased risk of endometriosis. Genotypes for five common SNPs in the region of chromosome 1p36 show stronger association signals when compared with rs7521902 reported in published genome scans. Of these, three SNPs rs12404660, rs3820282, and rs55938609 were located in DNA sequences with potential functional roles including overlap with transcription factor binding sites for FOXA1, FOXA2, ESR1, and ESR2. Functional studies will be required to identify the gene or genes implicated in endometriosis risk.

  18. Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes.

    PubMed Central

    Sandhu, D; Champoux, J A; Bondareva, S N; Gill, K S

    2001-01-01

    The short arm of Triticeae homeologous group 1 chromosomes is known to contain many agronomically important genes. The objectives of this study were to physically localize gene-containing regions of the group 1 short arm, enrich these regions with markers, and study the distribution of genes and recombination. We focused on the major gene-rich region ("1S0.8 region") and identified 75 useful genes along with 93 RFLP markers by comparing 35 different maps of Poaceae species. The RFLP markers were tested by gel blot DNA analysis of wheat group 1 nullisomic-tetrasomic lines, ditelosomic lines, and four single-break deletion lines for chromosome arm 1BS. Seventy-three of the 93 markers mapped to group 1 and detected 91 loci on chromosome 1B. Fifty-one of these markers mapped to two major gene-rich regions physically encompassing 14% of the short arm. Forty-one marker loci mapped to the 1S0.8 region and 10 to 1S0.5 region. Two cDNA markers mapped in the centromeric region and the remaining 24 loci were on the long arm. About 82% of short arm recombination was observed in the 1S0.8 region and 17% in the 1S0.5 region. Less than 1% recombination was observed for the remaining 85% of the physical arm length. PMID:11290727

  19. Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato (Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions

    PubMed Central

    Rigano, Maria Manuela; Raiola, Assunta; Docimo, Teresa; Ruggieri, Valentino; Calafiore, Roberta; Vitaglione, Paola; Ferracane, Rosalia; Frusciante, Luigi; Barone, Amalia

    2016-01-01

    Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux toward the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82. These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways toward the biosynthesis of phenolic acids in the pyramided lines

  20. Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads

    PubMed Central

    Dong, Jiaqiang; Feng, Yaping; Kumar, Dibyendu; Zhang, Wei; Zhu, Tingting; Luo, Ming-Cheng; Messing, Joachim

    2016-01-01

    Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41–48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups. PMID:27354512

  1. Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance

    PubMed Central

    Tsai, Kevin J.; Lu, Mei-Yeh Jade; Yang, Kai-Jung; Li, Mengyun; Teng, Yuchuan; Chen, Shihmay; Ku, Maurice S. B.; Li, Wen-Hsiung

    2016-01-01

    The diploid C4 plant foxtail millet (Setaria italica L. Beauv.) is an important crop in many parts of Africa and Asia for the vast consumption of its grain and ability to grow in harsh environments, but remains understudied in terms of complete genomic architecture. To date, there have been only two genome assembly and annotation efforts with neither assembly reaching over 86% of the estimated genome size. We have combined de novo assembly with custom reference-guided improvements on a popular cultivar of foxtail millet and have achieved a genome assembly of 477 Mbp in length, which represents over 97% of the estimated 490 Mbp. The assembly anchors over 98% of the predicted genes to the nine assembled nuclear chromosomes and contains more functional annotation gene models than previous assemblies. Our annotation has identified a large number of unique gene ontology terms related to metabolic activities, a region of chromosome 9 with several growth factor proteins, and regions syntenic with pearl millet or maize genomic regions that have been previously shown to affect growth. The new assembly and annotation for this important species can be used for detailed investigation and future innovations in growth for millet and other grains. PMID:27734962

  2. YAC contigs of the Rab1 and wobbler (wr) spinal muscular atrophy gene region on proximal mouse chromosome 11 and of the homologous region on human chromosome 2p

    SciTech Connect

    Wedemeyer, N.; Lengeling, A.; Ronsiek, M.

    1996-03-05

    Despite rapid progress in the physical characterization of murine and human genomes, little molecular information is available on certain regions, e.g., proximal mouse chromosome 11 (Chr 11) and human chromosome 2p (Chr2p). We have localized the wobbler spinal atrophy gene wr to proximal mouse Chr 11, tightly linked to Rab1, a gene coding for a small GTP-binding protein, and Glns-ps1, an intronless pseudogene of the glutamine synthetase gene. We have not used these markers to construct a 1.3-Mb yeast artificial chromosome (YAC) contig of the Rab1 region on mouse Chr 11. Four YAC clones isolated from two independent YAC libraries were characterized by rare-cutting analysis, fluorescence in situ hybridization (FISH), and sequence-tagged site (STS) isolation and mapping. Rab1 and Glns-ps1 were found to be only 200 kb apart. A potential CpG island near a methylated NarI site and a trapped exon, ETG1.1, were found over 250 kb from Rab1. Two overlapping YACs were identified that contained a 150-kb region of human Chr 2p, comprising the RAB1 locus, AHY1.1, and the human homologue of ETG1.1, indicating a high degree of conservation of this region in the two species. We mapped AHY1.1 and thus human RAB1 on Chr 2p13.4-p14 using somatic cell hybrids and a radiation hybrid panel, thus extending a known region of conserved synteny between mouse Chr 11 and human Chr 2p. Recently, the gene LMGMD2B for a human recessive neuromuscular disease, limb girdle muscular dystrophy type 2B, has been mapped to 2p13-p16. The conservation between the mouse Rab1 and human RAB1 regions will be helpful in identifying candidate genes for the wobbler spinal muscular atrophy and in clarifying a possible relationship between wr and LMGMD2B. 33 refs., 7 figs., 3 tabs.

  3. [Estimation of the methylation status of the promoter region of the cell cycle gene P14ARF in placental tissues of spontaneous abortuses with chromosomal mosaicism].

    PubMed

    Kashevarova, A A; Tolmacheva, E N; Sukhanova, N N; Sazhenova, E A; Lebedev, I N

    2009-06-01

    The methylation status of the promoter region of the cell cycle gene P14ARF was studied in the extraembryonic mesoderm and in the chorion cytotrophoblast of 46 human spontaneous abortuses with chromosomal mosaicism. Aberrant methylation of alleles of this gene was revealed for the first time in placental tissues of 9% of embryos. The identified epimutations were found to be characteristic of embryos with aneuploid cell clones of postzygotic origin. It is suggested that epigenetic inactivation of loci responsible for the regulation of cell division and for segregation of chromosomes is associated with the occurrence of mosaic forms of the karyotype at early stages of human embryonic development. PMID:19639877

  4. A 4-Mb deletion in the region Xq27.3-q28 is associated with non-random inactivation of the non-mutant X chromosome

    SciTech Connect

    Clarke, J.T.R.; Han, L.P.; Michalickova, K.

    1994-09-01

    A girl with severe Hunter disease was found to have a submicroscopic deletion distrupting the IDS locus in the region Xq27.3-q28 together with non-random inactivation of the non-mutant X chromosome. Southern analysis of DNA from the parents and from hamster-patient somatic cell hybrids containing only the mutant X chromosome revealed that the deletion represented a de novo mutation involving the paternal X chromosome. Methylation-sensitive RFLP analysis of DNA from maternal fibroblasts and lymphocytes showed methylation patterns consistent with random X-inactivation, indicating that the non-random X-inactivation in the patient was not inherited and was likely a direct result of the Xq27.3-q28 deletion. A 15 kb EcoRI junction fragment, identified in patient DNA using IDS cDNA probes, was cloned from a size-selected patient DNA library. Clones containing the deletion junction were restriction mapped and fragments were subcloned and used to isolate normal sequence on either side of the deletion from normal X chromosome libraries. Comparison of the sequences from normal and mutant X chromosome clones straddling the deletion breakpoint showed that the mutation had occurred by recombination between Alu repeats. Screening of YAC contigs containing normal X chromosome sequence from the region of the mutation, using probes from either side of the deletion breakpoint, showed that the deletion was approximately 4 Mb in size. Probing of mutant DNA with 16 STSs distributed throughout the region of the deletion confirmed that the mutation is a simple deletion with no complex rearrangements of islands of retained DNA. A search for sequences at Xq27.3-q28 involved in X chromosome inactivation is in progress.

  5. Chromosomal protein HMG-14 gene maps to the Down syndrome region of human chromosome 21 and is overexpressed in mouse trisomy 16

    SciTech Connect

    Pash, J.; Popescu, N.; Matocha, M.; Rapoport, S.; Bustin, M. )

    1990-05-01

    The gene for human high-mobility-group (HMG) chromosomal protein HMG-14 is located in region 21q22.3, a region associated with the pathogenesis of Down syndrome, one of the most prevalent human birth defects. The expression of this gene is analyzed in mouse embryos that are trisomic in chromosome 16 and are considered to be an animal model for Down syndrome. RNA blot-hybridization analysis and detailed analysis of HMG-14 protein levels indicate that mouse trisomy 16 embryos have approximately 1.5 times more HMG-14 mRNA and protein than their normal littermates, suggesting a direct gene dosage effect. The HMG-14 gene may be an additional marker for the Down syndrome. Chromosomal protein HMG-14 is a nucleosomal binding protein that may confer distinct properties to the chromatin structure of transcriptionally active genes and therefore may be a contributing factor in the etiology of the syndrome.

  6. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Thatcher, Louise F; Lyons, Rebecca; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2015-05-19

    Pathogens and hosts are in an ongoing arms race and genes involved in host-pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host-pathogen interactions for experimental verification.

  7. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    PubMed Central

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  8. Physical map and functional studies of the juxtacentromeric region of chromosome 13

    SciTech Connect

    Dupont, J.M.; Dode, C.; Piccolo, F.

    1994-09-01

    The structure of the juxtacentromeric region of chromosome 13 has been analyzed in order to investigate a putative position effect of the centromeric heterochromatin and to provide a physical landmark needed in the positional cloning of the autosomal recessive muscular dystrophy gene (SCARMD1). A genomic fragment corresponding to the insertion of a L1 sequence in juxtacentromeric block of satellite 3 has been cloned after PCR amplification of a somatic hybrid containing human chromosome 13 only. The sequence defines a new family of satellite 3 DNA and belongs to the heterochromatin region of chromosome 13. Human satellite 2 and 3 sequences are methylated in every cell except in the germ cell line and extra-embryonic tissues. In ICF syndrome, the alteration of the chromatin structure is associated with a deficit or complete absence of methylation of satellite 2 and 3 sequences. Cloning junctional euchromatic sequences immediately adjacent to heterochromatin will help to characterize the methylation pattern of non-satellite heterochromatized sequences in normal cells and methylation-deficient patients.

  9. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H.

    PubMed

    Aliyeva-Schnorr, Lala; Beier, Sebastian; Karafiátová, Miroslava; Schmutzer, Thomas; Scholz, Uwe; Doležel, Jaroslav; Stein, Nils; Houben, Andreas

    2015-10-01

    Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.

  10. Exclusion of candidate genes from the chromosome 1q juvenile glaucoma region and mapping of the peripheral cannabis receptor gene (CNR2) to chromosome 1

    SciTech Connect

    Sunden, S.L.F.; Nichols, B.E.; Alward, W.L.M.

    1994-09-01

    Juvenile onset primary open angle glaucoma has been mapped by linkage to 1q21-q31. Several candidate genes were evaluated in the same family used to identify the primary linkage. Atrionatriuretic peptide receptor A (NPR1) and laminin C1 (LAMC1) have been previously mapped to this region and could putatively play a role in the pathogenesis of glaucoma. A third gene, the peripheral cannabis receptor (CNR2) was not initially mapped in humans but was a candidate because of the relief that cannabis affords some patients with primary open angle glaucoma. Microsatellites associated with NPR1 and LAMC1 revealed multiple recombinations in affected members of this pedigree. CNR2 was shown to be on chromosome 1 by PCR amplification of a 150 bp fragment of the 3{prime} untranslated region in monochromosomal somatic cell hybrids (NIGMS panel No. 2). These primers also revealed a two allele single strand conformation polymorphism which showed multiple recombinants with juvenile onset primary open angle glaucoma in large pedigrees, segregating this disorder. The marker was then mapped to 1p34-p36 by linkage, with the most likely location between liver alkaline phosphatase (ALPL) and alpha-L-1 fucosidase (FUCA1).

  11. Cloning of the alpha-adducin gene from the Huntington's disease candidate region of chromosome 4 by exon amplification.

    PubMed

    Taylor, S A; Snell, R G; Buckler, A; Ambrose, C; Duyao, M; Church, D; Lin, C S; Altherr, M; Bates, G P; Groot, N

    1992-11-01

    We have applied the technique of exon amplification to the isolation of genes from the chromosome 4p16.3 Huntington's disease (HD) candidate region. Exons recovered from cosmid Y24 identified cDNA clones corresponding to the alpha-subunit of adducin, a calmodulin-binding protein that is thought to promote assembly of spectrin-actin complexes in the formation of the membrane cytoskeleton, alpha-adducin is widely expressed and, at least in brain, is encoded by alternatively spliced mRNAs. The alpha-adducin gene maps immediately telomeric to D4S95, in a region likely to contain the HD defect, and must be scrutinized to establish whether it is the site of the HD mutation.

  12. A Meiotic Drive Element in the Maize Pathogen Fusarium verticillioides Is Located Within a 102 kb Region of Chromosome V

    PubMed Central

    Pyle, Jay; Patel, Tejas; Merrill, Brianna; Nsokoshi, Chabu; McCall, Morgan; Proctor, Robert H.; Brown, Daren W.; Hammond, Thomas M.

    2016-01-01

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (SkK) that causes nearly all surviving meiotic progeny from an SkK × Spore killer-susceptible (SkS) cross to inherit the SkK allele. SkK has been mapped to chromosome V but the genetic element responsible for meiotic drive has yet to be identified. In this study, we used cleaved amplified polymorphic sequence markers to genotype individual progeny from an SkK × SkS mapping population. We also sequenced the genomes of three progeny from the mapping population to determine their single nucleotide polymorphisms. These techniques allowed us to refine the location of SkK to a contiguous 102 kb interval of chromosome V, herein referred to as the Sk region. Relative to SkS genotypes, SkK genotypes have one extra gene within this region for a total of 42 genes. The additional gene in SkK genotypes, herein named SKC1 for Spore Killer Candidate 1, is the most highly expressed gene from the Sk region during early stages of sexual development. The Sk region also has three hyper-variable regions, the longest of which includes SKC1. The possibility that SKC1, or another gene from the Sk region, is an essential component of meiotic drive and spore killing is discussed. PMID:27317777

  13. A Meiotic Drive Element in the Maize Pathogen Fusarium verticillioides Is Located Within a 102 kb Region of Chromosome V.

    PubMed

    Pyle, Jay; Patel, Tejas; Merrill, Brianna; Nsokoshi, Chabu; McCall, Morgan; Proctor, Robert H; Brown, Daren W; Hammond, Thomas M

    2016-08-09

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (Sk(K)) that causes nearly all surviving meiotic progeny from an Sk(K) × Spore killer-susceptible (Sk(S)) cross to inherit the Sk(K) allele. Sk(K) has been mapped to chromosome V but the genetic element responsible for meiotic drive has yet to be identified. In this study, we used cleaved amplified polymorphic sequence markers to genotype individual progeny from an Sk(K) × Sk(S) mapping population. We also sequenced the genomes of three progeny from the mapping population to determine their single nucleotide polymorphisms. These techniques allowed us to refine the location of Sk(K) to a contiguous 102 kb interval of chromosome V, herein referred to as the Sk region. Relative to Sk(S) genotypes, Sk(K) genotypes have one extra gene within this region for a total of 42 genes. The additional gene in Sk(K) genotypes, herein named SKC1 for Spore Killer Candidate 1, is the most highly expressed gene from the Sk region during early stages of sexual development. The Sk region also has three hyper-variable regions, the longest of which includes SKC1 The possibility that SKC1, or another gene from the Sk region, is an essential component of meiotic drive and spore killing is discussed.

  14. A Meiotic Drive Element in the Maize Pathogen Fusarium verticillioides Is Located Within a 102 kb Region of Chromosome V.

    PubMed

    Pyle, Jay; Patel, Tejas; Merrill, Brianna; Nsokoshi, Chabu; McCall, Morgan; Proctor, Robert H; Brown, Daren W; Hammond, Thomas M

    2016-01-01

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (Sk(K)) that causes nearly all surviving meiotic progeny from an Sk(K) × Spore killer-susceptible (Sk(S)) cross to inherit the Sk(K) allele. Sk(K) has been mapped to chromosome V but the genetic element responsible for meiotic drive has yet to be identified. In this study, we used cleaved amplified polymorphic sequence markers to genotype individual progeny from an Sk(K) × Sk(S) mapping population. We also sequenced the genomes of three progeny from the mapping population to determine their single nucleotide polymorphisms. These techniques allowed us to refine the location of Sk(K) to a contiguous 102 kb interval of chromosome V, herein referred to as the Sk region. Relative to Sk(S) genotypes, Sk(K) genotypes have one extra gene within this region for a total of 42 genes. The additional gene in Sk(K) genotypes, herein named SKC1 for Spore Killer Candidate 1, is the most highly expressed gene from the Sk region during early stages of sexual development. The Sk region also has three hyper-variable regions, the longest of which includes SKC1 The possibility that SKC1, or another gene from the Sk region, is an essential component of meiotic drive and spore killing is discussed. PMID:27317777

  15. Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions

    PubMed Central

    Lopez, Virginia; Barinova, Natalja; Onishi, Masayuki; Pobiega, Sabrina; Pringle, John R.; Dubrana, Karine

    2015-01-01

    Dicentric chromosomes are unstable products of erroneous DNA repair events that can lead to further genome rearrangements and extended gene copy number variations. During mitosis, they form anaphase bridges, resulting in chromosome breakage by an unknown mechanism. In budding yeast, dicentrics generated by telomere fusion break at the fusion, a process that restores the parental karyotype and protects cells from rare accidental telomere fusion. Here, we observed that dicentrics lacking telomere fusion preferentially break within a 25- to 30-kb-long region next to the centromeres. In all cases, dicentric breakage requires anaphase exit, ruling out stretching by the elongated mitotic spindle as the cause of breakage. Instead, breakage requires cytokinesis. In the presence of dicentrics, the cytokinetic septa pinch the nucleus, suggesting that dicentrics are severed after actomyosin ring contraction. At this time, centromeres and spindle pole bodies relocate to the bud neck, explaining how cytokinesis can sever dicentrics near centromeres. PMID:25644606

  16. Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus.

    PubMed

    Snowdon, R. J.; Friedrich, T.; Friedt, W.; Köhler, W.

    2002-03-01

    Oilseed rape ( Brassica napus L.) is an amphidiploid species that originated from a spontaneous hybridisation of Brassica rapa L. (syn. campestris) and Brassica oleracea L., and contains the complete diploid chromosome sets of both parental genomes. The metaphase chromosomes of the highly homoeologous A genome of B. rapa and the C genome of B. oleracea cannot be reliably distinguished in B. napus because of their morphological similarity. Fluorescence in situ hybridisation (FISH) with 5S and 25S ribosomal DNA probes to prometaphase chromosomes, in combination with DAPI staining, allows more dependable identification of Brassica chromosomes. By comparing rDNA hybridisation and DAPI staining patterns from B. rapa and B. oleracea prometaphase chromosomes with those from B. napus, we were able to identify the putative homologues of B. napus chromosomes in the diploid chromosome sets of B. rapa and B. oleracea, respectively. In some cases, differences were observed between the rDNA hybridisation patterns of chromosomes in the diploid species and their putative homologue in B. napus, indicating locus losses or alterations in rDNA copy number. The ability to reliably identify A and C genome chromosomes in B. napus is discussed with respect to evolutionary and breeding aspects.

  17. Determination and regional assignment of grouped sets of microclones in chromosome 1pter-p35

    SciTech Connect

    Barnas, C.M.; Onyango, P.; Ellmeier, W.

    1995-10-10

    In an approach to mapping physically the most distal 30 Mb of human chromosome 1p, region-specific clone libraries were generated by microdissection and microcloning, PFGE blot hybridization of single or low-copy microclones against rare-cutter digests of genomic DNA revealed physical linkage for groups of markers. Supplementary PFGE analysis of 31 1p36-p35-specific probes for genetically mapped loci established a total of 15 grouped sets, consisting of altogether 69 markers. Twelve of the grouped sets were located in 1pter-p36.12, as revealed by microcell hybrid mapping; the remaining three were localized proximal to 1p36.12. Regional assignment and ordering of most grouped sets was achieved either by evaluating the included genetic markers or by fluorescence in situ hybridization of representative probes. The genomic extent of individual grouped sets encompassed between 1100 and 2100 kb, covering a total of approximately 22 Mb of the distal chromosome 1p region. One particular grouped set was shown to contain seven polymorphic marker loci that were previously suggested to be distributed across the entire 1pter-p35 region. The increase in the number of hybridization marker probes in 1p36 and their physical mapping is expected to facilitate positional cloning experiments in this region; in particular, the construction of clone contigs may be greatly facilitated. 44 refs., 3 figs., 3 tabs.

  18. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    SciTech Connect

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.; Summers, K.M.; Robinson, T.J.; Nakamura, Yusuke; Wolff, R.; White, R.; Barker, D.F.; Wallace, M.R.; Collins, F.S.; Dobyns, W.B. )

    1989-07-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be <15 kb apart. Three overlapping cosmids spanning >100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region.

  19. Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome.

    PubMed

    Krsticevic, Flavia J; Schrago, Carlos G; Carvalho, A Bernardo

    2015-06-01

    The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295-307) found 18 Y-linked copies of Mst77F ("Mst77Y"), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction-induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. PMID:25858959

  20. Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome.

    PubMed

    Krsticevic, Flavia J; Schrago, Carlos G; Carvalho, A Bernardo

    2015-04-09

    The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295-307) found 18 Y-linked copies of Mst77F ("Mst77Y"), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction-induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes.

  1. Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome

    PubMed Central

    Krsticevic, Flavia J.; Schrago, Carlos G.; Carvalho, A. Bernardo

    2015-01-01

    The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295−307) found 18 Y-linked copies of Mst77F (“Mst77Y”), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction−induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. PMID:25858959

  2. Fine Mapping of a GWAS-Derived Obesity Candidate Region on Chromosome 16p11.2

    PubMed Central

    Jarick, Ivonne; Pütter, Carolin; Göbel, Maria; Horn, Lucie; Struve, Christoph; Haas, Katharina; Knoll, Nadja; Grallert, Harald; Illig, Thomas; Reinehr, Thomas; Wang, Hai-Jun; Hebebrand, Johannes; Hinney, Anke

    2015-01-01

    Introduction Large-scale genome-wide association studies (GWASs) have identified 97 chromosomal loci associated with increased body mass index in population-based studies on adults. One of these SNPs, rs7359397, tags a large region (approx. 1MB) with high linkage disequilibrium (r²>0.7), which comprises five genes (SH2B1, APOBR, sulfotransferases: SULT1A1 and SULT1A2, TUFM). We had previously described a rare mutation in SH2B1 solely identified in extremely obese individuals but not in lean controls. Methods The coding regions of the genes APOBR, SULT1A1, SULT1A2, and TUFM were screened for mutations (dHPLC, SSCP, Sanger re-sequencing) in 95 extremely obese children and adolescents. Detected non-synonymous variants were genotyped (TaqMan SNP Genotyping, MALDI TOF, PCR-RFLP) in independent large study groups (up to 3,210 extremely obese/overweight cases, 485 lean controls and 615 obesity trios). In silico tools were used for the prediction of potential functional effects of detected variants. Results Except for TUFM we detected non-synonymous variants in all screened genes. Two polymorphisms rs180743 (APOBR p.Pro428Ala) and rs3833080 (APOBR p.Gly369_Asp370del9) showed nominal association to (extreme) obesity (uncorrected p = 0.003 and p = 0.002, respectively). In silico analyses predicted a functional implication for rs180743 (APOBR p.Pro428Ala). Both APOBR variants are located in the repetitive region with unknown function. Conclusion Variants in APOBR contributed as strongly as variants in SH2B1 to the association with extreme obesity in the chromosomal region chr16p11.2. In silico analyses implied no functional effect of several of the detected variants. Further in vitro or in vivo analyses on the functional implications of the obesity associated variants are warranted. PMID:25955518

  3. Investigation of QTL regions on Chromosome 17 for genes associated with meat color in the pig.

    PubMed

    Fan, B; Glenn, K L; Geiger, B; Mileham, A; Rothschild, M F

    2008-08-01

    Previous studies have uncovered several significant quantitative trait loci (QTL) relevant to meat colour traits mapped at the end of SSC17 in the pig. Furthermore, results released from the porcine genome sequencing project have identified genes underlying the entire QTL regions and can further contribute to mining the region for likely causative genes. Ten protein coding genes or novel transcripts located within the QTL regions were screened for single nucleotide polymorphisms (SNPs). Linkage mapping and association studies were carried out in the ISU Berkshire x Yorkshire (B x Y) pig resource family. The total length of the new SSC17 linkage map was 126.6 cM and additional markers including endothelin 3 (EDN3) and phosphatase and actin regulator 3 (PHACTR3) genes were assigned at positions 119.4 cM and 122.9 cM, respectively. A new QTL peak was noted at approximately 120 cM, close to the EDN3 gene, and for some colour traits QTL exceeded the 5% chromosome-wise significance threshold. The association analyses in the B x Y family showed that the EDN3 BslI and PHACTR3 PstI polymorphisms were strongly associated with the subjective colour score and objective colour reflectance measures in the loin, as well as average drip loss percentage and pH value. The RNPC1 DpnII and CTCFL HpyCH4III polymorphisms were associated with some meat colour traits. No significant association between CBLN4, TFAP2C, and four novel transcripts and meat colour traits were detected. The association analyses conducted in one commercial pig line found that both EDN3 BslI and PHACTR3 PstI polymorphisms were associated with meat colour reflectance traits such as centre loin hue angle and Minolta Lightness score. The present findings suggested that the EDN3 and PHACTR3 genes might have potential effects on meat colour in pigs, and molecular mechanisms of their functions are worth exploring.

  4. High-resolution physical mapping of a 250-kb region of human chromosome 11q24 by genomic sequence sampling (GSS)

    SciTech Connect

    Selleri, L.; Smith, M.W.; Holmsen, A.L.

    1995-04-10

    A physical map of the region of human chromosome 11q24 containing the FLI1 gene, disrupted by the t(11;22) translocation in Ewing sarcoma and primitive neuroectodermal tumors, was analyzed by genomic sequence sampling. Using a 4- to 5-fold coverage chromosome 11-specific library, 22 region-specific cosmid clones were identified by phenol emulsion reassociation hybridization, with a 245-kb yeast artificial chromosome clone containing the FLI1 gene, and by directed {open_quotes}walking{close_quotes} techniques. Cosmid contigs were constructed by individual clone fingerprinting using restriction enzyme digestion and assembly with the Genome Reconstruction and AsseMbly (GRAM) computer algorithm. The relative orientation and spacing of cosmid contigs with respect to the chromosome were determined by the structural analysis of cosmid clones and by direct visual in situ hybridization mapping. Each cosmid clone in the contig was subjected to {open_quotes}one-pass{close_quotes} end sequencing, and the resulting ordered sequence fragments represent {approximately}5% of the complete DNA sequence, making the entire region accessible by PCR amplification. The sequence samples were analyzed for putative exons, repetitive DNAs, and simple sequence repeats using a variety of computer algorithms. Based upon the computer predictions, Southern and Northern blot experiments led to the independent identification and localization of the FLI1 gene as well as a previously unknown gene located in this region of chromosome 11q24. This approach to high-resolution physical analysis of human chromosomes allows the assembly of detailed sequence-based maps. 62 refs., 7 figs.

  5. The IL-9 receptor gene (IL9R): Genomic structure, chromosomal localization in the pseudoautosomal region of the long arm of sex chromosomes, and identification of IL9R pseudogenes at 9qter, 10pter, 16pter, 18pter

    SciTech Connect

    Kermouni, A.; Godelaine, D.; Lurquin, C.; Szikora, J.P.

    1995-09-20

    Cosmids containing the human IL-9 receptor (R) gene (IL9R) have been isolated from a genomic library using the IL9R cDNA as a probe. We have shown that the human IL9R gene is composed of 11 exons and 10 introns, stretching over {approx} 17 kb, and is located within the pseudoautosomal region of the Xq and Yq chromosome, in the vicinity of the telomere. Analysis of the 5` flanking region revealed multiple transcription initiation sites as well as potential binding motifs for AP1, AP2, AP3, Sp1, and NF-kB, although this region lacks a TATA box. Using the human IL9R cosmid as a probe to perform fluorescence in situ hybridization, additional signals were identified in the subtelomeric regions of chromosomes 9q, 10p, 16p, and 18p. IL9R homologs located on chromosomes 9 and 18 were partially characterized, while those located on chromosomes 16 and 10 were completely sequenced. Although they are similiar to the IL9R gene ({approx} 90% identity), none of these copies encodes a functional receptor: none of them contains sequences homologous to the 5` flanking region or exon 1 of the IL9R gene, and the remaining ORFs have been inactivated by various point mutations and deletions. Taken together, our results indicate that the IL9R gene is located at Xq28 and Yq12, in the long arm pseudoautosomal region, and that four IL9R pseudogenes are located on 9q34, 10p15, 16p13.3 and 18p11.3, probably dispersed as the result of translocations during evolution. 42 refs., 6 figs., 3 tabs.

  6. Fine-Scale Heterogeneity in Crossover Rate in the garnet-scalloped Region of the Drosophila melanogaster X Chromosome

    PubMed Central

    Singh, Nadia D.; Stone, Eric A.; Aquadro, Charles F.; Clark, Andrew G.

    2013-01-01

    Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity. PMID:23410829

  7. Physical mapping of DNA markers in the q13-q22 region of the human X chromosome

    SciTech Connect

    Philippe, C.; Chery, M.; Abbadi, N.; Gilgenkrantz, S. ); Cremers, F.P.M.; Bach, I.; Ropers, H.H. )

    1993-07-01

    DNA probe screening of somatic cell hybrids derived from females with X; autosome translocations has enabled definition of eight new breakpoints within the Xq13-q22 region. Together with other X-chromosome rearrangements that have been described earlier, these breakpoints subdivide the Xq21-q22 region into 20 intervals. This panel refines the physical assignment of 40 probes in the Xq21-q22 segment. Thus, these X-chromosome rearrangements are useful tools for ordering X-linked markers and genes on the proximal long arm of the human X chromosome. 26 refs., 3 figs., 3 tabs.

  8. Admixture mapping identifies introgressed genomic regions in North American canids.

    PubMed

    vonHoldt, Bridgett M; Kays, Roland; Pollinger, John P; Wayne, Robert K

    2016-06-01

    Hybrid zones typically contain novel gene combinations that can be tested by natural selection in a unique genetic context. Parental haplotypes that increase fitness can introgress beyond the hybrid zone, into the range of parental species. We used the Affymetrix canine SNP genotyping array to identify genomic regions tagged by multiple ancestry informative markers that are more frequent in an admixed population than expected. We surveyed a hybrid zone formed in the last 100 years as coyotes expanded their range into eastern North America. Concomitant with expansion, coyotes hybridized with wolves and some populations became more wolflike, such that coyotes in the northeast have the largest body size of any coyote population. Using a set of 3102 ancestry informative markers, we identified 60 differentially introgressed regions in 44 canines across this admixture zone. These regions are characterized by an excess of exogenous ancestry and, in northeastern coyotes, are enriched for genes affecting body size and skeletal proportions. Further, introgressed wolf-derived alleles have penetrated into Southern US coyote populations. Because no wolves currently exist in this area, these alleles are unlikely to have originated from recent hybridization. Instead, they probably originated from intraspecific gene flow or ancient admixture. We show that grey wolf and coyote admixture has far-reaching effects and, in addition to phenotypically transforming admixed populations, allows for the differential movement of alleles from different parental species to be tested in new genomic backgrounds.

  9. Admixture mapping identifies introgressed genomic regions in North American canids.

    PubMed

    vonHoldt, Bridgett M; Kays, Roland; Pollinger, John P; Wayne, Robert K

    2016-06-01

    Hybrid zones typically contain novel gene combinations that can be tested by natural selection in a unique genetic context. Parental haplotypes that increase fitness can introgress beyond the hybrid zone, into the range of parental species. We used the Affymetrix canine SNP genotyping array to identify genomic regions tagged by multiple ancestry informative markers that are more frequent in an admixed population than expected. We surveyed a hybrid zone formed in the last 100 years as coyotes expanded their range into eastern North America. Concomitant with expansion, coyotes hybridized with wolves and some populations became more wolflike, such that coyotes in the northeast have the largest body size of any coyote population. Using a set of 3102 ancestry informative markers, we identified 60 differentially introgressed regions in 44 canines across this admixture zone. These regions are characterized by an excess of exogenous ancestry and, in northeastern coyotes, are enriched for genes affecting body size and skeletal proportions. Further, introgressed wolf-derived alleles have penetrated into Southern US coyote populations. Because no wolves currently exist in this area, these alleles are unlikely to have originated from recent hybridization. Instead, they probably originated from intraspecific gene flow or ancient admixture. We show that grey wolf and coyote admixture has far-reaching effects and, in addition to phenotypically transforming admixed populations, allows for the differential movement of alleles from different parental species to be tested in new genomic backgrounds. PMID:27106273

  10. Specific features in linear and spatial organizations of pericentromeric heterochromatin regions in polytene chromosomes of the closely related species Drosophila virilis and D. kanekoi (Diptera: Drosophilidae).

    PubMed

    Wasserlauf, Irina; Usov, Konstantin; Artemov, Gleb; Anan'ina, Tatyana; Stegniy, Vladimir

    2015-06-01

    Heterochromatin plays an important role in the spatial arrangement and evolution of the eukaryotic genetic apparatus. The closely related species Drosophila virilis (phyla virilis) and D. kanekoi (phyla montana) differ in the amount of heterochromatin along the chromosomes as well as by the presence of the metacentric chromosome 2, which emerged as a result of a pericentric inversion during speciation, in the D. kanekoi karyotype. The purpose of this study was to establish if chromosome rearrangements have any influence on the linear redistribution of centromeric heterochromatin in polytene chromosomes and the spatial organization of chromosomes in the nuclei of nurse cell. We have microdissected the chromocenter of D. virilis salivary gland polytene chromosomes; obtained a DNA library of this region (DvirIII); and hybridized (FISH) DvirIII to the salivary gland and nurse cell polytene chromosomes of D. virilis and D. kanekoi. We demonstrated that DvirIII localizes to the pericentromeric heterochromatin regions of all chromosomes and peritelomeric region of chromosome 5 in both species. Unlike D. virilis, the DvirIII signal in D. kanekoi chromosomes is detectable in the telomeric region of chromosome 2. We have also conducted a 3D FISH of DvirIII probe to the D. virilis and D. kanekoi nurse cell chromosomes. In particular, the DvirIII signal in D. virilis was observed in the local chromocenter at one pole of the nucleus, while the signal belonging to the telomeric region of chromosome 5 was detectable at the other pole. In contrast, in D. kanekoi there exist two separate DvirIII-positive regions. One of these regions belongs to the pericentromeric region of chromosome 2 and the other, to pericentromeric regions of the remaining chromosomes. These results suggest that chromosome rearrangements play an important role in the redistribution of heterochromatin DNA sequences in the genome, representing a speciation mechanism, which, in general, could also affect the

  11. Transgenic mouse model of hemifacial microsomia: Cloning and characterization of insertional mutation region on chromosome 10

    SciTech Connect

    Naora, Hiroyuki; Otani, Hiroki; Tanaka, Osamu

    1994-10-01

    The 643 transgenic mouse line carries an autosomal dominant insertional mutation that results in hemifacial microsomia (HFM), including microtia and/or abnormal biting. In this paper, we characterize the transgene integration site in transgenic mice and preintegration site of wildtype mice. The locus, designated Hfm (hemifacial microsomia-associated locus), was mapped to chromosome 10, B1-3, by chromosome in situ hybridization. We cloned the transgene insertion site from the transgenic DNA library. By using the 5{prime} and 3{prime} flanking sequences, the preintegration region was isolated. The analysis of these regions showed that a deletion of at least 23 kb DNA occurred in association with the transgene integration. Evolutionarily conserved regions were detected within and beside the deleted region. The result of mating between hemizygotes suggests that the phenotype of the homozygote is lethality in the prenatal period. These results suggests that the Hfm locus is necessary for prenatal development and that this strain is a useful animal model for investigating the genetic predisposition to HFM in humans.

  12. Dynamics of rye chromosome 1R regions with high or low crossover frequency in homology search and synapsis development.

    PubMed

    Valenzuela, Nohelia T; Perera, Esther; Naranjo, Tomás

    2012-01-01

    In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv)) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv) during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and

  13. Identification of Chromosome Abnormalities in Subtelomeric Regions by Microarray Analysis: A Study of 5,380 Cases

    PubMed Central

    Shao, Lina; Shaw, Chad A.; Lu, Xin-Yan; Sahoo, Trilochan; Bacino, Carlos A.; Lalani, Seema R.; Stankiewicz, Pawel; Yatsenko, Svetlana A.; Li, Yinfeng; Neill, Sarah; Pursley, Amber N.; Chinault, A. Craig; Patel, Ankita; Beaudet, Arthur L.; Lupski, James R.; Cheung, Sau W.

    2009-01-01

    Subtelomeric imbalances are a significant cause of congenital disorders. Screening for these abnormalities has traditionally utilized GTG-banding analysis, fluorescence in situ hybridization (FISH) assays, and multiplex ligation-dependent probe amplification. Microarray-based comparative genomic hybridization (array-CGH) is a relatively new technology that can identify microscopic and submicroscopic chromosomal imbalances. It has been proposed that an array with extended coverage at subtelomeric regions could characterize subtelomeric aberrations more efficiently in a single experiment. The targeted arrays for chromosome microarray analysis (CMA), developed by Baylor College of Medicine, have on average 12 BAC/PAC clones covering 10 Mb of each of the 41 subtelomeric regions. We screened 5,380 consecutive clinical patients using CMA. The most common reasons for referral included developmental delay (DD), and/or mental retardation (MR), dysmorphic features (DF), multiple congenital anomalies (MCA), seizure disorders (SD), and autistic, or other behavioral abnormalities. We found pathogenic rearrangements at subtelomeric regions in 236 patients (4.4%). Among these patients, 103 had a deletion, 58 had a duplication, 44 had an unbalanced translocation, and 31 had a complex rearrangement. The detection rates varied among patients with a normal karyotype analysis (2.98%), with an abnormal karyotype analysis (43.4%), and with an unavailable or no karyotype analysis (3.16%). Six patients out of 278 with a prior normal subtelomere-FISH analysis showed an abnormality including an interstitial deletion, two terminal deletions, two interstitial duplications, and a terminal duplication. In conclusion, genomic imbalances at subtelomeric regions contribute significantly to congenital disorders. Targeted array-CGH with extended coverage (up to 10 Mb) of subtelomeric regions will enhance the detection of subtelomeric imbalances, especially for submicroscopic imbalances. PMID

  14. Nerve growth factor receptor gene is at human chromosome region 17q12-17q22, distal to the chromosome 17 breakpoint in acute leukemias

    SciTech Connect

    Huebner, K.; Isobe, M.; Chao, M.; Bothwell, M.; Ross, A.H.; Finan, J.; Hoxie, J.A.; Sehgal, A.; Buck, C.R.; Lanahan, A.

    1986-03-01

    Genomic and cDNA clones for the human nerve growth factor receptor have been used in conjunction with somatic cell hybrid analysis and in situ hybridization to localize the nerve growth factor receptor locus to human chromosome region 17q12-q22. Additionally, part, if not all, of the nerve growth factor receptor locus is present on the translocated portion of 17q (17q21-qter) from a poorly differential acute leukemia in which the chromosome 17 breakpoint was indistinguishable cytogenetically from the 17 breakpoint observed in the t(15;17)(q22;q21) translocation associated with acute promyelocytic leukemia. Thus the nerve growth factor receptor locus may be closely distal to the acute promyelocytic leukemia-associated chromosome 17 breakpoint at 17q21.

  15. Trace Species Identified in Saturn's Northern Storm Region

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon L.; Hesman, B. E.; Achterberg, R. K.

    2011-01-01

    The massive storm at 40degN on Saturn that began in December 2010 has produced significant and lasting effects in the northern hemisphere on temperature and species abundances [I}. The northern storm region was observed at 0.5/cm spectral resolution in March 2011 by Cassini's Composite Infrared Spectrometer (CIRS). Temperatures in the stratosphere as high as 190 K were derived from CIRS spectra in warm regions referred to as "beacons". Other longitudes exhibit cold temperatures in the upper troposphere. These unusual conditions allow us to identify rare species such as C4H2, C3H4, and CO2 in the stratosphere, as well as to measure changes in the abundance of phosphine (PH3) in the troposphere. Phosphine is a disequilibrium species whose abundance is a tracer of upwelling from the deep atmosphere.

  16. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape.

    PubMed

    Niemelä, Tarja; Seppänen, Mervi; Badakshi, Farah; Rokka, Veli-Matti; Heslop-Harrison, J S Pat

    2012-04-01

    In spring turnip rape (Brassica rapa L. spp. oleifera), the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homolog of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using genomic in situ hybridization (GISH) and bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in subterminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future, this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.

  17. Identification of Regions of the Chromosome of Neisseria meningitidis and Neisseria gonorrhoeae Which Are Specific to the Pathogenic Neisseria Species

    PubMed Central

    Perrin, Agnes; Nassif, Xavier; Tinsley, Colin

    1999-01-01

    Neisseria meningitidis and Neisseria gonorrhoeae give rise to dramatically different diseases. Their interactions with the host, however, do share common characteristics: they are both human pathogens which do not survive in the environment and which colonize and invade mucosa at their port of entry. It is therefore likely that they have common properties that might not be found in nonpathogenic bacteria belonging to the same genetically related group, such as Neisseria lactamica. Their common properties may be determined by chromosomal regions found only in the pathogenic Neisseria species. To address this issue, we used a previously described technique (C. R. Tinsley and X. Nassif, Proc. Natl. Acad. Sci. USA 93:11109–11114, 1996) to identify sequences of DNA specific for pathogenic neisseriae and not found in N. lactamica. Sequences present in N. lactamica were physically subtracted from the N. meningitidis Z2491 sequence and also from the N. gonorrhoeae FA1090 sequence. The clones obtained from each subtraction were tested by Southern blotting for their reactivity with the three species, and only those which reacted with both N. meningitidis and N. gonorrhoeae (i.e., not specific to either one of the pathogens) were further investigated. In a first step, these clones were mapped onto the chromosomes of both N. meningitidis and N. gonorrhoeae. The majority of the clones were arranged in clusters extending up to 10 kb, suggesting the presence of chromosomal regions common to N. meningitidis and N. gonorrhoeae which distinguish these pathogens from the commensal N. lactamica. The sequences surrounding these clones were determined from the N. meningitidis genome-sequencing project. Several clones corresponded to previously described factors required for colonization and survival at the port of entry, such as immunoglobulin A protease and PilC. Others were homologous to virulence-associated proteins in other bacteria, demonstrating that the subtractive clones are

  18. Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes.

    PubMed Central

    Heslop-Harrison, J S; Murata, M; Ogura, Y; Schwarzacher, T; Motoyoshi, F

    1999-01-01

    A highly abundant repetitive DNA sequence family of Arabidopsis, AtCon, is composed of 178-bp tandemly repeated units and is located at the centromeres of all five chromosome pairs. Analysis of multiple copies of AtCon showed 95% conservation of nucleotides, with some alternative bases, and revealed two boxes, 30 and 24 bp long, that are 99% conserved. Sequences at the 3' end of these boxes showed similarity to yeast CDEI and human CENP-B DNA-protein binding motifs. When oligonucleotides from less conserved regions of AtCon were hybridized in situ and visualized by using primer extension, they were detected on specific chromosomes. When used for polymerase chain reaction with genomic DNA, single primers or primer pairs oriented in the same direction showed negligible amplification, indicating a head-to-tail repeat unit organization. Most primer pairs facing in opposite directions gave several strong bands corresponding to their positions within AtCon. However, consistent with the primer extension results, some primer pairs showed no amplification, indicating that there are chromosome-specific variants of AtCon. The results are significant because they elucidate the organization, mode of amplification, dispersion, and evolution of one of the major repeated sequence families of Arabidopsis. The evidence presented here suggests that AtCon, like human alpha satellites, plays a role in Arabidopsis centromere organization and function. PMID:9878630

  19. A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome.

    PubMed

    Wang, Sidney H; Nan, Ruth; Accardo, Maria C; Sentmanat, Monica; Dimitri, Patrizio; Elgin, Sarah C R

    2014-01-01

    Heterochromatin assembly and its associated phenotype, position effect variegation (PEV), provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats) of the Y chromosome short arm (Ys). Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV) show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR)3-9, but no sensitivity to Su(z)2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.

  20. Regional assignment of the human homebox-containing gene EN1 to chromosome 2q13-q21

    SciTech Connect

    Koehler, A.; Muenke, M. ); Logan, C. ); Joyner, A.L. Samuel Lunenfeld Research Institute, Toronto )

    1993-01-01

    The human homeobox-containing genes EN1 and EN2 are closely related to the Drosophila pattern formation gene engrailed (en), which may be important in brain development, as shown by gene expression studies during mouse embryogenesis. Here, we have refined the localization of EN1 to human chromosome 2q13-q21 using a mapping panel of rodent/human cell hybrids containing different regions of chromosome 2 and a lymphoblastoid cell line with an interstitial deletion, del(2) (q21-q23.2). This regional assignment of EN1 increases to 22 the number of currently known genes on human chromosome 2q that have homologs on the proximal region of mouse chromosome 1. 15 refs., 2 figs.

  1. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    PubMed

    Niranjan, Tejasvi S; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  2. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    PubMed Central

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders. PMID:25679214

  3. Marker development for the EPM1 region of human chromosome 21, q22.3

    SciTech Connect

    Warrington, I.A.; O`Connor, K.; Hebert, S.

    1994-09-01

    New STSs have been developed for a 0.9 Mb region of chromosome 21 that is not represented in existing YAC libraries using an efficient method that is generally applicable to any region of the genome. The region, 21q22.3, is of particular interest because the gene for progressive myoclonic epilepsy of the Unverricht-Lundborg type (EPM1) maps to this region. Until recently there were only three probes for the 1.3 Mb surrounding the EPM1 gene (D21S141,LJ112, LB2T). This very limited number of probes is problematic for obtaining clone coverage and for confirming map position of newly developed markers in the EPM1 region. To develop new markers, a somatic cell hybrid containing chromosome 21 as its only human complement (GMO8854) was digested with NOT1 and hybridized with D21S141. The fragment hybridizing with D21S141 was excised, amplified by Alu-PCR and the amplification products were cloned and sequenced. Of the fifteen clones sequenced, four were duplicates and one consisted entirely of repeat sequences. STSs were developed for the remaining ten unique clones. To determine the map position of the new STSs, quantitive PCR was used in conjunction with whole genome radiation hybrid (RH) mapping. Quantitative PCR confirmed that the STSs mapped to appropriately sized PFGE fragments and whole genome RH mapping showed that the makers were linked and gave order and distance information. Three of the new STSs are in the EPM1 region, providing additional starting points for obtaining clone coverage and gene isolation. This combination of techniques for developing markers and confirming map position is an effective approach for obtaining probes and has general applicability for regions of the genome not represented in YAC or cosmid libraries.

  4. Molecular characterization of an intragenic minisatellite (VNTR) polymorphism in the human parathyroid hormone-related peptide gene in chromosome region 12p12. 1-p11. 2

    SciTech Connect

    Pausova, Z.; Morgan, K.; Fujiwara, M.; Bourdon, J.; Goltzman, D.; Hendy, G.N. )

    1993-07-01

    The human parathyroid hormone-related peptide (hPTHrP) gene in chromosome region 12p12.1-p11.2 plays an important role in mammalian development and specifically in skeletogenesis. The authors have characterized a VNTR polymorphism in the hPTHrP gene that is located in an intron 100-bp downstream of exon VI that encodes a 3[prime] untranslated region. By PCR analysis eight different alleles were identified in a group of 112 unrelated individuals. All eight alleles were sequenced and the repeat unit was identified as the general sequence [G(TA)[sub n]C][sub N], where n = 4 to 11 and N = 3 to 17. This polymorphic sequence-tagged site will be useful for mapping chromosome 12p and will aid in testing for linkage of genetic diseases to the hPTHrP gene. 3 refs., 2 figs.

  5. Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions

    PubMed Central

    Gordon, Laurie; Yang, Shan; Tran-Gyamfi, Mary; Baggott, Dan; Christensen, Mari; Hamilton, Aaron; Crooijmans, Richard; Groenen, Martien; Lucas, Susan; Ovcharenko, Ivan; Stubbs, Lisa

    2007-01-01

    The chicken genome draft sequence has provided a valuable resource for studies of an important agricultural and experimental model species and an important data set for comparative analysis. However, some of the most gene-rich segments are missing from chicken genome draft assemblies, limiting the analysis of a substantial number of genes and preventing a closer look at regions that are especially prone to syntenic rearrangements. To facilitate the functional and evolutionary analysis of one especially gene-rich, rearrangement-prone genomic region, we analyzed sequence from BAC clones spanning chicken microchromosome GGA28; as a complement we also analyzed a gene-sparse, stable region from GGA11. In these two regions we documented the conservation and lineage-specific gain and loss of protein-coding genes and precisely mapped the locations of 31 major human-chicken syntenic breakpoints. Altogether, we identified 72 lineage-specific genes, many of which are found at or near syntenic breaks, implicating evolutionary breakpoint regions as major sites of genetic innovation and change. Twenty-two of the 31 breakpoint regions have been reused repeatedly as rearrangement breakpoints in vertebrate evolution. Compared with stable GC-matched regions, GGA28 is highly enriched in CpG islands, as are break-prone intervals identified elsewhere in the chicken genome; evolutionary breakpoints are further enriched in GC content and CpG islands, highlighting a potential role for these features in genome instability. These data support the hypothesis that chromosome rearrangements have not occurred randomly over the course of vertebrate evolution but are focused preferentially within “fragile” regions with unusual DNA sequence characteristics. PMID:17921355

  6. Simple Model for Identifying Critical Regions in Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.

    2015-01-01

    Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.

  7. Chromosome analysis of Endochironomus albipennis Meigen, 1830 and morphologically similar Endochironomus sp. (Diptera, Chironomidae) from water bodies of the Volga region, Russia.

    PubMed

    Durnova, Natalya; Sigareva, Ludmila; Sinichkina, Olga

    2015-01-01

    Based upon the detailed chromosome map of polytene chromosomes of the eurybiont species Endochironomus albipennis Meigen, 1830, the localization of the centromere regions using a C-banding technique is defined. Chromosomal polymorphism in populations from two water bodies in the Volga region has been studied, 17 sequences are described. Polytene chromosomes of Endochironomus sp. (2n=6), having larvae morphologically similar to those of Endochironomus albipennis Meigen, 1830 (2n=6) are described for the first time. PMID:26752268

  8. Chromosome analysis of Endochironomus albipennis Meigen, 1830 and morphologically similar Endochironomus sp. (Diptera, Chironomidae) from water bodies of the Volga region, Russia

    PubMed Central

    Durnova, Natalya; Sigareva, Ludmila; Sinichkina, Olga

    2015-01-01

    Abstract Based upon the detailed chromosome map of polytene chromosomes of the eurybiont species Endochironomus albipennis Meigen, 1830, the localization of the centromere regions using a C-banding technique is defined. Chromosomal polymorphism in populations from two water bodies in the Volga region has been studied, 17 sequences are described. Polytene chromosomes of Endochironomus sp. (2n=6), having larvae morphologically similar to those of Endochironomus albipennis Meigen, 1830 (2n=6) are described for the first time. PMID:26752268

  9. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus.

    PubMed

    Conner, Joann A; Goel, Shailendra; Gunawan, Gunawati; Cordonnier-Pratt, Marie-Michele; Johnson, Virgil Ed; Liang, Chun; Wang, Haiming; Pratt, Lee H; Mullet, John E; DeBarry, Jeremy; Yang, Lixing; Bennetzen, Jeffrey L; Klein, Patricia E; Ozias-Akins, Peggy

    2008-07-01

    Apomixis, asexual reproduction through seed, is widespread among angiosperm families. Gametophytic apomixis in Pennisetum squamulatum and Cenchrus ciliaris is controlled by the apospory-specific genomic region (ASGR), which is highly conserved and macrosyntenic between these species. Thirty-two ASGR bacterial artificial chromosomes (BACs) isolated from both species and one ASGR-recombining BAC from P. squamulatum, which together cover approximately 2.7 Mb of DNA, were used to investigate the genomic structure of this region. Phrap assembly of 4,521 high-quality reads generated 1,341 contiguous sequences (contigs; 730 from the ASGR and 30 from the ASGR-recombining BAC in P. squamulatum, plus 580 from the C. ciliaris ASGR). Contigs containing putative protein-coding regions unrelated to transposable elements were identified based on protein similarity after Basic Local Alignment Search Tool X analysis. These putative coding regions were further analyzed in silico with reference to the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes using the resources at Gramene (www.gramene.org) and Phytozome (www.phytozome.net) and by hybridization against sorghum BAC filters. The ASGR sequences reveal that the ASGR (1) contains both gene-rich and gene-poor segments, (2) contains several genes that may play a role in apomictic development, (3) has many classes of transposable elements, and (4) does not exhibit large-scale synteny with either rice or sorghum genomes but does contain multiple regions of microsynteny with these species. PMID:18508959

  10. Evidence for a chromosomal breakage hotspot in a 3 Mb region of Xp11.21

    SciTech Connect

    Wolff, D.J.; Willard, H.F.; Miller, A.P. |

    1994-09-01

    In order to evaluate the molecular basis for X chromosomal rearrangements, we have analyzed a series of i(Xq)s, small mar (X)s, and X;autosome translocations using fluorescence in situ hybridization (FISH). The breakpoints of 5 of 8 cytogenetically monocentric i(Xq)s and 5 of 9 Xp breakpoints resulting in mar(X)s were initially localized to Xp11.21 using cosmids for the genes ZXDA and DXS423E. In order to more precisely define the breakpoints of these abnormal Xs, as well as a series of translocated Xs, we have used yeast artificial chromosomes (YACs) derived from a contig spanning 5 Mb of DNA in Xp11.21-Xp11.22 which contains 112 YACs mapped with 51 markers, including 10 genes. Based on the FISH results, the chromosomal breakpoints could be assigned to 5 different intervals in Xp11.21. One i(Xq) has a breakpoint in the most proximal interval which is located 1 Mb from the centromere. A 300 kb region just distal to the duplicated gene ZXDB contains breakpoints for a mar(X) and a t(X;19). A third interval, which lies {approximately}300 kb further distal, contains breakpoints for 2 Incontinentia Pigmenti type 1 (IPI) translocations, 2 i(Xq)s, and 1 mar(X). One mar(X) breakpoint is localized to <200 kb of DNA proximal to DXS991, and the most distal interval, containing 2 i(Xq) breakpoints, is defined by <500 kb of DNA at the ALAS2 locus. Thus all of the breakpoints examined map to the region between ZXDA and ALAS2, which contains only 3 Mb of DNA, indicating that there is a hotspot for chromosomal breakage in proximal Xp11.21. We hypothesize that this high frequency of aberrations (representing a mutation frequency of >10{sup 5} based on the frequency of i(Xq) and mar(X)s in surveys of liveborn) may result from misalignment and/or exchanges due to the presence of inverted repeat sequences, directly duplicated gene sequences, or one or more inversion polymorphisms in the pericentromeric region.

  11. High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis.

    PubMed

    Akiyama, Yukio; Conner, Joann A; Goel, Shailendra; Morishige, Daryl T; Mullet, John E; Hanna, Wayne W; Ozias-Akins, Peggy

    2004-04-01

    Gametophytic apomixis is asexual reproduction as a consequence of parthenogenetic development of a chromosomally unreduced egg. The trait leads to the production of embryos with a maternal genotype, i.e. progeny are clones of the maternal plant. The application of the trait in agriculture could be a tremendous tool for crop improvement through conventional and nonconventional breeding methods. Unfortunately, there are no major crops that reproduce by apomixis, and interspecific hybridization with wild relatives has not yet resulted in commercially viable germplasm. Pennisetum squamulatum is an aposporous apomict from which the gene(s) for apomixis has been transferred to sexual pearl millet by backcrossing. Twelve molecular markers that are linked with apomixis coexist in a tight linkage block called the apospory-specific genomic region (ASGR), and several of these markers have been shown to be hemizygous in the polyploid genome of P. squamulatum. High resolution genetic mapping of these markers has not been possible because of low recombination in this region of the genome. We now show the physical arrangement of bacterial artificial chromosomes containing apomixis-linked molecular markers by high resolution fluorescence in situ hybridization on pachytene chromosomes. The size of the ASGR, currently defined as the entire hemizygous region that hybridizes with apomixis-linked bacterial artificial chromosomes, was estimated on pachytene and mitotic chromosomes to be approximately 50 Mbp (a quarter of the chromosome). The ASGR includes highly repetitive sequences from an Opie-2-like retrotransposon family that are particularly abundant in this region of the genome.

  12. Transcriptionally Active Regions Are the Preferred Targets for Chromosomal HPV Integration in Cervical Carcinogenesis

    PubMed Central

    Christiansen, Irene Kraus; Sandve, Geir Kjetil; Schmitz, Martina; Dürst, Matthias; Hovig, Eivind

    2015-01-01

    Integration of human papillomavirus (HPV) into the host genome is regarded as a determining event in cervical carcinogenesis. However, the exact mechanism for integration, and the role of integration in stimulating cancer progression, is not fully characterized. Although integration sites are reported to appear randomly distributed over all chromosomes, fragile sites, translocation break points and transcriptionally active regions have all been suggested as being preferred sites for integration. In addition, more recent studies have reported integration events occurring within or surrounding essential cancer-related genes, raising the question whether these may reflect key events in the molecular genesis of HPV induced carcinomas. In a search for possible common denominators of the integration sites, we utilized the chromosomal coordinates of 121 viral-cellular fusion transcripts, and examined for statistical overrepresentation of integration sites with various features of ENCODE chromatin information data, using the Genomic HyperBrowser. We find that integration sites coincide with DNA that is transcriptionally active in mucosal epithelium, as judged by the relationship of integration sites to DNase hypersensitivity and H3K4me3 methylation data. Finding an association between integration and transcription is highly informative with regard to the spatio-temporal characteristics of the integration process. These results suggest that integration is an early event in carcinogenesis, more than a late product of chromosomal instability. If the viral integrations were more likely to occur in destabilized regions of the DNA, a completely random distribution of the integration sites would be expected. As a by-product of integration in actively transcribing DNA, a tendency of integration in or close to genes is likely to be observed. This increases the possibility of viral signals to modulate the expression of these genes, potentially contributing to the progression towards

  13. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes.

    PubMed

    Fukui, K; Nakayama, S; Ohmido, N; Yoshiaki, H; Yamabe, M

    1998-03-01

    Chromosomes of the three diploid Brassica species, B. rapa (AA), B. nigra (BB) and B. oleracea (CC), were identified based on their morphological characteristics, especially on the condensation pattern appearing at the somatic pro-metaphase stage. The morphological features of the pro-metaphase chromosomes of the three Brassica spp. were quantified by imaging methods using chromosome image analyzing system II (CHIAS 2). As a result, quantitative chromosome maps or idiograms of the three diploid Brassica spp. were developed. The fluorescence in situ hybridization (FISH) method revealed the location of 45s rDNA (the 26s-5.8s-18s ribosomal RNA gene cluster) on the chromosomes involved. The number of 45s rDNA loci in the B. rapa, B. nigra and B. oleracea are five, three and two, respectively. The loci detected were systematically mapped on the idiograms of the three Brassica spp.

  14. Different genetic components in the Ethiopian population, identified by mtDNA and Y-chromosome polymorphisms.

    PubMed Central

    Passarino, G; Semino, O; Quintana-Murci, L; Excoffier, L; Hammer, M; Santachiara-Benerecetti, A S

    1998-01-01

    Seventy-seven Ethiopians were investigated for mtDNA and Y chromosome-specific variations, in order to (1) define the different maternal and paternal components of the Ethiopian gene pool, (2) infer the origins of these maternal and paternal lineages and estimate their relative contributions, and (3) obtain information about ancient populations living in Ethiopia. The mtDNA was studied for the RFLPs relative to the six classical enzymes (HpaI, BamHI, HaeII, MspI, AvaII, and HincII) that identify the African haplogroup L and the Caucasoid haplogroups I and T. The sample was also examined at restriction sites that define the other Caucasoid haplogroups (H, U, V, W, X, J, and K) and for the simultaneous presence of the DdeI10394 and AluI10397 sites, which defines the Asian haplogroup M. Four polymorphic systems were examined on the Y chromosome: the TaqI/12f2 and the 49a,f RFLPs, the Y Alu polymorphic element (DYS287), and the sY81-A/G (DYS271) polymorphism. For comparison, the last two Y polymorphisms were also examined in 87 Senegalese previously classified for the two TaqI RFLPs. Results from these markers led to the hypothesis that the Ethiopian population (1) experienced Caucasoid gene flow mainly through males, (2) contains African components ascribable to Bantu migrations and to an in situ differentiation process from an ancestral African gene pool, and (3) exhibits some Y-chromosome affinities with the Tsumkwe San (a very ancient African group). Our finding of a high (20%) frequency of the "Asian" DdeI10394AluI10397 (++) mtDNA haplotype in Ethiopia is discussed in terms of the "out of Africa" model. PMID:9463310

  15. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH).

    PubMed

    Wessendorf, S; Barth, T F E; Viardot, A; Mueller, A; Kestler, H A; Kohlhammer, H; Lichter, P; Bentz, M; Döhner, H; Möller, P; Schwaenen, C

    2007-12-01

    Primary mediastinal B-cell lymphoma (PMBL) is an aggressive extranodal B-cell non-Hodgkin's lymphoma with specific clinical, histopathological and genomic features. To characterize further the genotype of PMBL, we analyzed 37 tumor samples and PMBL cell lines Med-B1 and Karpas1106P using array-based comparative genomic hybridization (matrix- or array-CGH) to a 2.8k genomic microarray. Due to a higher genomic resolution, we identified altered chromosomal regions in much higher frequencies compared with standard CGH: for example, +9p24 (68%), +2p15 (51%), +7q22 (32%), +9q34 (32%), +11q23 (18%), +12q (30%) and +18q21 (24%). Moreover, previously unknown small interstitial chromosomal low copy number alterations (for example, -6p21, -11q13.3) and a total of 19 DNA amplifications were identified by array-CGH. For 17 chromosomal localizations (10 gains and 7 losses), which were altered in more than 10% of the analyzed cases, we delineated minimal consensus regions based on genomic base pair positions. These regions and selected immunohistochemistries point to candidate genes that are discussed in the context of NF-kappaB transcription activation, human leukocyte antigen class I/II defects, impaired apoptosis and Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation. Our data confirm the genomic uniqueness of this tumor and provide physically mapped genomic regions of interest for focused candidate gene analysis. PMID:17728785

  16. Wattles in goats are associated with the FMN1/GREM1 region on chromosome 10.

    PubMed

    Reber, I; Keller, I; Becker, D; Flury, C; Welle, M; Drögemüller, C

    2015-06-01

    The presence of congenital appendages (wattles) on the throat of goats is supposed to be under genetic control with a dominant mode of inheritance. Wattles contain a cartilaginous core covered with normal skin resembling early stages of extremities. To map the dominant caprine wattles (W) locus, we collected samples of 174 goats with wattles and 167 goats without wattles from nine different Swiss goat breeds. The samples were genotyped with the 53k goat SNP chip for a subsequent genome-wide association study. We obtained a single strong association signal on chromosome 10 in a region containing functional candidate genes for limb development and outgrowth. We sequenced the whole genomes of an informative family trio containing an offspring without wattles and its heterozygous parents with wattles. In the associated goat chromosome 10 region, a total of 1055 SNPs and short indels perfectly co-segregate with the W allele. None of the variants were perfectly associated with the phenotype after analyzing the genome sequences of eight additional goats. We speculate that the causative mutation is located in one of the numerous gaps in the current version of the goat reference sequence and/or represents a larger structural variant which influences the expression of the FMN1 and/or GREM1 genes. Also, we cannot rule out possible genetic or allelic heterogeneity. Our genetic findings support earlier assumptions that wattles are rudimentary developed extremities.

  17. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas.

    PubMed

    Lassmann, Silke; Weis, Roland; Makowiec, Frank; Roth, Jasmine; Danciu, Mihai; Hopt, Ulrich; Werner, Martin

    2007-03-01

    DNA copy number changes represent molecular fingerprints of solid tumors and are as such relevant for better understanding of tumor development and progression. In this study, we applied genome-wide array comparative genomic hybridization (aCGH) to identify gene-specific DNA copy number changes in chromosomal (CIN)- and microsatellite (MIN)-unstable sporadic colorectal cancers (sCRC). Genomic DNA was extracted from microdissected, matching normal colorectal epithelium and invasive tumor cells of formalin-fixed and paraffin-embedded tissues of 22 cases with colorectal cancer (CIN = 11, MIN = 11). DNA copy number changes were determined by aCGH for 287 target sequences in tumor cell DNAs, using pooled normal DNAs as reference. aCGH data of tumor cell DNAs was confirmed by fluorescence in situ hybridization (FISH) for three genes on serial tissues as those used for aCGH. aCGH revealed DNA copy number changes previously described by metaphase CGH (gains 7, 8q, 13q, and 20q; losses 8p, 15q, 18q, and 17p). However, chromosomal regions 20q, 13q, 7, and 17p were preferentially altered in CIN-type tumors and included DNA amplifications of eight genes on chromosome 20q (TOP1, AIB1, MYBL2, CAS, PTPN1, STK15, ZNF217, and CYP24), two genes on chromosome 13q (BRCA2 and D13S25), and three genes on chromosome 7 (IL6, CYLN2, and MET) as well as DNA deletions of two genes on chromosome 17p (HIC1 and LLGL1). Finally, additional CIN-tumor-associated DNA amplifications were identified for EXT1 (8q24.11) and MYC (8q24.12) as well as DNA deletions for MAP2K5 (15q23) and LAMA3 (18q11.2). In contrast, distinct MIN-tumor-associated DNA amplifications were detected for E2F5 (8p22-q21.3), GARP (11q13.5-q14), ATM (11q22.3), KAL (Xp22.3), and XIST (Xq13.2) as well as DNA deletions for RAF1 (3p25), DCC (18q21.3), and KEN (21q tel). aCGH revealed distinct DNA copy number changes of oncogenes and tumor suppressor genes in CIN- and MIN-type sporadic colorectal carcinomas. The identified candidate

  18. Chromosome region-specific libraries for human genome analysis. Final progress report, 1 March 1991--28 February 1994

    SciTech Connect

    Kao, F.T.

    1994-04-01

    The objectives of this grant proposal include (1) development of a chromosome microdissection and PCR-mediated microcloning technology, (2) application of this microtechnology to the construction of region-specific libraries for human genome analysis. During this grant period, the authors have successfully developed this microtechnology and have applied it to the construction of microdissection libraries for the following chromosome regions: a whole chromosome 21 (21E), 2 region-specific libraries for the long arm of chromosome 2, 2q35-q37 (2Q1) and 2q33-q35 (2Q2), and 4 region-specific libraries for the entire short arm of chromosome 2, 2p23-p25 (2P1), 2p21-p23 (2P2), 2p14-p16 (wP3) and 2p11-p13 (2P4). In addition, 20--40 unique sequence microclones have been isolated and characterized for genomic studies. These region-specific libraries and the single-copy microclones from the library have been used as valuable resources for (1) isolating microsatellite probes in linkage analysis to further refine the disease locus; (2) isolating corresponding clones with large inserts, e.g. YAC, BAC, P1, cosmid and phage, to facilitate construction of contigs for high resolution physical mapping; and (3) isolating region-specific cDNA clones for use as candidate genes. These libraries are being deposited in the American Type Culture Collection (ATCC) for general distribution.

  19. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  20. Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1.

    PubMed Central

    Avramova, Z; SanMiguel, P; Georgieva, E; Bennetzen, J L

    1995-01-01

    We provide evidence for the location of matrix attachment sites along a contiguous region of 280 kb on maize chromosome 1. We define nine potential loops that vary in length from 6 kb to > 75 kb. The distribution of the different classes of DNA within this continuum with respect to the predicted structural loops reveals an interesting correlation: the long stretches of mixed classes of highly repetitive DNAs are often segregated into topologically sequestered units, whereas low-copy-number DNAs (including the alcohol dehydrogenase1 [adh1] gene) are positioned in separate loops. Contrary to expectations, several classes of highly repeated elements with representatives in this region were found to be transcribed, and some of these exhibited tissue-specific patterns of expression. PMID:7580257

  1. Characterization of the breakpoint regions of a pericentric inversion on chromosome 6

    SciTech Connect

    Gastier, J.M.; Brody, T.; Charfat, O.

    1994-09-01

    We are attempting to clone the breakpoints of a pericentric inversion [inv(6)(p23q23.1)] which segregates in a three generation family. Phenotypic abnormalities associated with this chromosome anomaly include senori-neural hearing loss, eye (anterior segment) abnormalities, dental anomalies, and mild mental retardation. The breakpoints have been microdissected and a small insert library was created. More than 100 sequence tagged sites (STSs) have been developed from these clones for screening of the CEPH mega-YAC library. This work will yield a high density physical map of the breakpoint regions for further characterization of the loci. YACs from the region are being screened by fluorescence in situ hybridization (FISH) to obtain a YAC which crosses the breakpoint as an initial step in defining the molecular basis of the disease phenotype. Progress towards cloning of the breakpoints will be described.

  2. Characterization of a gene from the EDM1-PSACH region of human chromosome 19p

    SciTech Connect

    Lennon, G.G.; Giorgi, D.; Martin, J.R.

    1994-09-01

    Genetic linkage mapping has indicated that both multiple epiphyseal dysplasia (EDM1), a dominantly inherited chondrodysplasia, and pseudoachondroplasia (PSACH), a skeletal disorder associated with dwarfism, map to a 2-3 Mb region of human chromosome 19p. We have isolated a partial cDNA from this region using hybrid selection, and report on progress towards the characterization of the genomic structure and transcription of the corresponding gene. Sequence analysis of the cDNA to date indicates that this gene is likely to be expressed within extracellular matrix tissues. Defects in this gene or neighboring gene family members may therefore lead to EDM1, PSACH, or other connective tissue and skeletal disorders.

  3. Genome-based identification of chromosomal regions specific for Salmonella spp.

    PubMed

    Hansen-Wester, Imke; Hensel, Michael

    2002-05-01

    Acquisition of genomic elements by horizontal gene transfer represents an important mechanism in the evolution of bacterial species. Pathogenicity islands are a subset of horizontally acquired elements present in various pathogens. These elements are frequently located adjacent to tRNA genes. We performed a comparative genome analysis of Salmonella enterica serovars Typhi and Typhimurium and Escherichia coli and scanned tRNA loci for the presence of species-specific, horizontally acquired genomic elements. A large number of species-specific elements were identified. Here, we describe the characteristics of four large chromosomal insertions at tRNA genes of Salmonella spp. The tRNA-associated elements harbor various genes previously identified as single virulence genes, indicating that these genes have been acquired with large chromosomal insertions. Southern blot analyses confirmed that the tRNA-associated elements are specific to Salmonella and also indicated a heterogeneous distribution within the salmonellae. Systematic scanning for insertions at tRNA genes thus represents a tool for the identification of novel pathogenicity islands.

  4. Fine mapping of a region on chromosome 21q21.11–q22.3 showing linkage to type 1 diabetes

    PubMed Central

    Bergholdt, R; Nerup, J; Pociot, F

    2005-01-01

    Background: Results of a Scandinavian genome scan in type 1 diabetes mellitus (T1D) have recently been reported. Among the novel, not previously reported chromosomal regions showing linkage to T1D was a region on chromosome 21. Objective: To fine map this region on chromosome 21. Methods and results: The linked region was initially narrowed by linkage analysis typing microsatellite markers. Linkage was significantly increased, with a peak NPL score of 3.61 (p = 0.0002), suggesting the presence of one or several T1D linked genes in the region. The support interval for linkage of 6.3 Mb was then studied by linkage disequilibrium (LD) mapping with gene based single nucleotide polymorphisms (SNPs). Thirty two candidate genes were identified in this narrowed region, and LD mapping was carried out with SNPs in coding regions (cSNPs) of all these genes. However, none of the SNPs showed association to T1D in the complete material, whereas some evidence for association to T1D of variants of the TTC3, OLIG2, KCNE1, and CBR1 genes was observed in conditioned analyses. The disease related LD was further assessed by a haplotype based association study, in which several haplotypes showed distorted transmission to diabetic offspring, substantiating a possible T1D association of the region. Conclusions: Although a single gene variant responsible for the observed linkage could not be identified, there was evidence for several combinations of markers, and for association of markers in conditioned analyses, supporting the existence of T1D susceptibility genes in the region. PMID:15635070

  5. A map of nuclear matrix attachment regions within the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1.

    PubMed

    Shaposhnikov, Sergey A; Akopov, Sergey B; Chernov, Igor P; Thomsen, Preben D; Joergensen, Claus; Collins, Andrew R; Frengen, Eirik; Nikolaev, Lev G

    2007-03-01

    There is abundant evidence that the DNA in eukaryotic cells is organized into loop domains that represent basic structural and functional units of chromatin packaging. To explore the DNA domain organization of the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1, we have identified a significant portion of the scaffold/matrix attachment regions (S/MARs) within this region. Forty independent putative S/MAR elements were assigned within the 16q22.1 locus. More than 90% of these S/MARs are AT rich, with GC contents as low as 27% in 2 cases. Thirty-nine (98%) of the S/MARs are located within genes and 36 (90%) in gene introns, of which 15 are in first introns of different genes. The clear tendency of S/MARs from this region to be located within the introns suggests their regulatory role. The S/MAR resource constructed may contribute to an understanding of how the genes in the region are regulated and of how the structural architecture and functional organization of the DNA are related. PMID:17188460

  6. A YAC-, P1, and cosmid-based physical map of the BRCA1 region on chromosome 17q21

    SciTech Connect

    Couch, F.J.; Castilla, L.H.; Brody, L.C.

    1995-01-01

    A familial early-onset breast cancer gene (BRCA1) has been localized to chromosome 17q21. To characterize this region and to aid in the identification of the BRCA1 gene, a physical map of a region of 1.0-1.5 Mb between the EDH17B1 and the PPY loci on chromosome 17q21 was generated. The physical map is composed of a yeast artificial chromosome (YAC) and P1 phage contig with one gap. The majority of the interval has also been converted to a cosmid contig. Twenty-three PCR-based sequence-tagged sites (STSs) were mapped to these contigs, thereby confirming the order and overlap of individual clones. This complex physical map of the BRCA1 region was used to isolate genes by a number of gene identification techniques and to generate transcript maps of the region. 32 refs., 4 figs.

  7. Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes.

    PubMed

    Sarahan, Kari A; Fisler, Janis S; Warden, Craig H

    2011-09-22

    We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions.

  8. Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes

    PubMed Central

    Sarahan, Kari A.; Fisler, Janis S.

    2011-01-01

    We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions. PMID:21730028

  9. A melanocyte-specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10 and is in a syntenic region on human chromosome 12

    SciTech Connect

    Kwon, B.S.; Chintamaneni, C.; Kobayashi, Y.; Kim, K.K. ); Kozak, C.A. ); Copeland, N.G.; Gilbert, D.J.; Jenkins, N. ); Barton, D.; Francke, U. )

    1991-10-15

    Melanocytes preferentially express an mRNA species, Pmel 17, whose protein product cross-reacts with anti-tyrosinase antibodies and whose expression correlates with the melanin content. The authors have now analyzed the deduced protein structure and mapped its chromosomal location in mouse and human. The amino acid sequence deduced from the nucleotide sequence of the Pmel 17 cDNA showed that the protein is composed of 645 amino acids with a molecular weight of 68,600. The Pmel 17 protein contains a putative leader sequence and a potential membrane anchor segment, which indicates that this may be a membrane-associated protein in melanocytes. The deduced protein contains five potential N-glycosylation sites and relatively high levels of serine and threonine. Three repeats of a 26-amino acid motif appear in the middle of the molecule. The human Pmel 17 gene, designated D12S53E, maps to chromosome 12, region 12pter-q21; and the mouse homologue, designated D12S53Eh, maps to the distal region of mouse chromosome 10, a region also known to carry the coat color locus si (silver).

  10. Molecular topography of the secondary constriction region (qh) of human chromosome 9 with an unusual euchromatic band

    SciTech Connect

    Verma, R.S.; Luk, S.; Brennan, J.P.; Mathews, T.; Conte, R.A.; Macera, M.J. )

    1993-05-01

    Heterochromatin confined to pericentromeric (c) and secondary constriction (qh) regions plays a major role in morphological variation of chromosome 9, because of its size and affinity for pericentric inversion. Consequently, pairing at pachytene may lead to some disturbances between homologous chromosomes having such extreme variations and may result in abnormalities involving bands adjacent to the qh region. The authors encountered such a case, where a G-positive band has originated de nova, suggesting a maternal origin from the chromosome 9 that has had a complete pericentric inversion. In previously reported cases, the presence of an extra G-positive band within the 9qh region has been familial, and in the majority of those cases it was not associated with any clinical consequences. Therefore, this anomaly has been referred to as a [open quotes]rare[close quotes] variant. The qh region consists of a mixture of various tandemly repeated DNA sequences, and routine banding techniques have failed to characterize the origin of this extra genetic material. By the chromosome in situ suppression hybridization technique using whole chromosome paint, the probe annealed with the extra G-band, suggesting a euchromatic origin from chromosome 9, presumably band p12. By the fluorescence in situ hybridization technique using alpha- and beta-satellite probes, the dicentric nature was further revealed, supporting the concept of unequal crossing-over during maternal meiosis I, which could account for a duplication of the h region. The G-positive band most likely became genetically inert when it was sandwiched between two blocks of heterochromatin, resulting in a phenotypically normal child. Therefore, an earlier hypothesis, suggesting its origin from heterochromatin through so-called euchromatinization, is refuted here. If the proband's progeny inherit this chromosome, it shall be envisaged as a rare familial variant whose clinical consequences remain obscure. 52 refs., 3 figs.

  11. Physical mapping of the Bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1

    SciTech Connect

    Straughen, J.; Groden, J.; Ciocci, S.

    1996-07-01

    The gene for Bloom syndrome (BLM) has been mapped to human chromosome 15 band q26.1 by homozygosity mapping. Further refinement of the location of BLM has relied upon linkage-disequilibrium mapping and somatic intragenic recombination. In combination with these mapping approaches and to identify novel DNA markers and probes for the BLM candidate region, a contiguous representation of the 2-Mb region that contains the BLM gene was generated and is presented here. YAC and P1 clones from the region have been identified and ordered by using previously available genetic markers in the region along with newly developed sequence-tagged sites from radiation-restriction map of the 2-Mb region that allowed estimation of the distance between polymorphic microsatellite loci is also reported. This map and the DNA markers derived from it were instrumental in the recent identification of the BLM gene. 25 refs., 3 figs., 3 tabs.

  12. Natural Variation in a Subtelomeric Region of Arabidopsis: Implications for the Genomic Dynamics of a Chromosome End

    PubMed Central

    Kuo, Hui-Fen; Olsen, Kenneth M.; Richards, Eric J.

    2006-01-01

    We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (∼3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini. PMID:16547105

  13. Molecular evolution of the Escherichia coli chromosome. VI. Two regions of high effective recombination.

    PubMed Central

    Milkman, Roger; Jaeger, Erich; McBride, Ryan D

    2003-01-01

    Two 6- to 8-min regions, centered respectively near 45 min (O-antigen region) and 99 min (restriction-modification region) on the Escherichia coli chromosome, display unusually high variability among 11 otherwise very similar strains. This variation, revealed by restriction fragment length polymorphism (RFLP) and nucleotide sequence comparisons, appears to be due to a great local increase in the retention frequency of recombinant replacements. We infer a two-step mechanism. The first step is the acquisition of a small stretch of DNA from a phylogenetically distant source. The second is the successful retransmission of the imported DNA, together with flanking native DNA, to other strains of E. coli. Each cell containing the newly transferred DNA has a very high selective advantage until it reaches a high frequency and (in the O-antigen case) is recognized by the new host's immune system. A high selective advantage increases the probability of retention greatly; the effective recombination rate is the product of the basic recombination rate and the probability of retention. Nearby nucleotide sequences clockwise from the O-antigen (rfb) region are correlated with specific O antigens, confirming local hitchhiking. Comparable selection involving imported restriction endonuclease genes is proposed for the region near 99 min. PMID:12618387

  14. Physical mapping of the chromosome 7 breakpoint region in an SLOS patient with t(7;20)X(q32.1;q13.2)

    SciTech Connect

    Alley, T.L.; Wallace, M.R.; Scherer, S.W.

    1997-01-31

    Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder characterized by multiple congenital anomalies and mental retardation. SLOS has an associated defect in cholesterol biosynthesis, but the molecular genetic basis of this condition has not yet been elucidated. Previously our group reported a patient with a de novo balanced translocation [t(7;20)(q32.1;q13.2)] fitting the clinical and biochemical profile of SLOS. Employing fluorescence in situ hybridization (FISH), a 1.8 Mb chromosome 7-specific yeast artificial chromosome (YAC) was identified which spanned the translocation breakpoint in the reported patient. The following is an update of the on-going pursuit to physically and genetically map the region further, as well as the establishment of candidate genes in the 7q32.1 breakpoint region. 11 refs., 1 fig.

  15. Genetic linkage mapping of multiple epiphyseal dysplasia to the pericentromeric region of chromosome 19

    SciTech Connect

    Oehlmann, R.; Summerville, G.P.; Yeh, G.; Weaver, E.J.; Jimenez, S.A.; Knowlton, R.G. )

    1994-01-01

    Multiple epiphyseal dysplasia (MED) is an inherited chondrodystrophy that results in deformity of articular surfaces and in subsequent degenerative joint disease. The disease is inherited as an autosomal dominant trait with high penetrance. An MED mutation has been mapped by genetic linkage analysis of DNA polymorphisms in a single large pedigree. Close linkage of MED to 130 tested chromosomal markers was ruled out by discordant inheritance patterns. However, strong evidence for linkage of MED to markers in the pericentromeric region of chromosome 19 was obtained. The most closely linked marker was D19S215, with a maximum LOD score of 6.37 at [theta] = .05. Multipoint linkage analysis indicated that MED is located between D19S212 and D19S215, a map interval of 1.7 cM. Discovery of the map location of MED in this family will facilitate identification of the mutant gene. The closely linked DNA polymorphisms will also provide the means to determine whether other inherited chondrodystrophies have underlying defects in the same gene. 29 refs., 3 figs., 1 tab.

  16. Chromosomes Emission of Planet Candidate Host Stars: A Way to Identify False Positives

    NASA Astrophysics Data System (ADS)

    Karoff, Christoffer; Albrecht, Simon; Bonanno, Alfio; Faurschou Knudsen, Mads

    2016-10-01

    It has been hypothesized that the presence of closely orbiting giant planets is associated with enhanced chromospheric emission of their host stars. The main cause for such a relation would likely be enhanced dynamo action induced by the planet. We present measurements of chromospheric emission in 234 planet candidate systems from the Kepler mission. This ensemble includes 37 systems with giant-planet candidates, which show a clear emission enhancement. The enhancement, however, disappears when systems that are also identified as eclipsing binary candidates are removed from the ensemble. This suggests that a large fraction of the giant-planet candidate systems with chromospheric emission stronger than the Sun are not giant-planet systems, but false positives. Such false-positive systems could be tidally interacting binaries with strong chromospheric emission. This hypothesis is supported by an analysis of 188 eclipsing binary candidates that show increasing chromospheric emission as function of decreasing orbital period.

  17. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats

    PubMed Central

    Molnár, István; Cifuentes, Marta; Schneider, Annamária; Benavente, Elena; Molnár-Láng, Márta

    2011-01-01

    Background and Aims Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. Methods The chromosomal localization of (ACG)n and (GAA)n microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH. Key Results Single pericentromeric (ACG)n signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)n sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7Ub–7Mb reciprocal translocations and one had a 7Ub–1Mb rearrangement, while two Ae. geniculata accessions carried 7Ug–1Mg or 5Ug–5Mg translocations. Conspicuous (ACG)n and/or (GAA)n clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them. Conclusions Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)n and (GAA)n SSR motifs serve as additional chromosome markers

  18. Homologous Recombination within Large Chromosomal Regions Facilitates Acquisition of β-Lactam and Vancomycin Resistance in Enterococcus faecium

    PubMed Central

    Lebreton, Francois; McLaughlin, Robert E.; Whiteaker, James D.; Gilmore, Michael S.; Rice, Louis B.

    2016-01-01

    The transfer of DNA between Enterococcus faecium strains has been characterized both by the movement of well-defined genetic elements and by the large-scale transfer of genomic DNA fragments. In this work, we report on the whole-genome analysis of transconjugants resulting from mating events between the vancomycin-resistant E. faecium C68 strain and the vancomycin-susceptible D344RRF strain to discern the mechanism by which the transferred regions enter the recipient chromosome. Vancomycin-resistant transconjugants from five independent matings were analyzed by whole-genome sequencing. In all cases but one, the penicillin binding protein 5 (pbp5) gene and the Tn5382 vancomycin resistance transposon were transferred together and replaced the corresponding pbp5 region of D344RRF. In one instance, Tn5382 inserted independently downstream of the D344RRF pbp5 gene. Single nucleotide variant (SNV) analysis suggested that entry of donor DNA into the recipient chromosome occurred by recombination across regions of homology between donor and recipient chromosomes, rather than through insertion sequence-mediated transposition. The transfer of genomic DNA was also associated with the transfer of C68 plasmid pLRM23 and another putative plasmid. Our data are consistent with the initiation of transfer by cointegration of a transferable plasmid with the donor chromosome, with subsequent circularization of the plasmid-chromosome cointegrant in the donor prior to transfer. Entry into the recipient chromosome most commonly occurred across regions of homology between donor and recipient chromosomes. PMID:27431230

  19. Investigation of the Chromosome Regions with Significant Affinity for the Nuclear Envelope in Fruit Fly – A Model Based Approach

    PubMed Central

    Kinney, Nicholas Allen; Sharakhov, Igor V.; Onufriev, Alexey V.

    2014-01-01

    Three dimensional nuclear architecture is important for genome function, but is still poorly understood. In particular, little is known about the role of the “boundary conditions” – points of attachment between chromosomes and the nuclear envelope. We describe a method for modeling the 3D organization of the interphase nucleus, and its application to analysis of chromosome-nuclear envelope (Chr-NE) attachments of polytene (giant) chromosomes in Drosophila melanogaster salivary glands. The model represents chromosomes as self-avoiding polymer chains confined within the nucleus; parameters of the model are taken directly from experiment, no fitting parameters are introduced. Methods are developed to objectively quantify chromosome territories and intertwining, which are discussed in the context of corresponding experimental observations. In particular, a mathematically rigorous definition of a territory based on convex hull is proposed. The self-avoiding polymer model is used to re-analyze previous experimental data; the analysis suggests 33 additional Chr-NE attachments in addition to the 15 already explored Chr-NE attachments. Most of these new Chr-NE attachments correspond to intercalary heterochromatin – gene poor, dark staining, late replicating regions of the genome; however, three correspond to euchromatin – gene rich, light staining, early replicating regions of the genome. The analysis also suggests 5 regions of anti-contact, characterized by aversion for the NE, only two of these correspond to euchromatin. This composition of chromatin suggests that heterochromatin may not be necessary or sufficient for the formation of a Chr-NE attachment. To the extent that the proposed model represents reality, the confinement of the polytene chromosomes in a spherical nucleus alone does not favor the positioning of specific chromosome regions at the NE as seen in experiment; consequently, the 15 experimentally known Chr-NE attachment positions do not appear to

  20. A gene responsible for profound congenital nonsyndromal recessive deafness maps to the pericentromeric region of chromosome 17

    SciTech Connect

    Friedman, T.B.; Liang, Y.; Asher, J.H. Jr.

    1994-09-01

    Autosomal recessive deafness is the most common form of human hereditary hearing loss. Two percent of the 2,185 residents of Bengkala, Bali, Indonesia have profound congenital neurosensory nonsyndromal hereditary deafness due to a fully penetrant autosomal recessive mutation (NARD1). Families, identified through children with profound congenital deafness having hearing parents, give the expected 25% deaf progeny when corrected for ascertainment bias. Congenitally deaf individuals from Bengkala show no response to pure tone audiological examination. Obligate heterozygotes for autosomal recessive deafness in Bengkala have normal or borderline normal hearing. A chromosomal location for NARD1 was assigned directly using a linkage strategy that combines allele-frequency dependent homozygosity mapping (AHM) followed by an analysis of historical recombinants to position NARD1 relative to flanking markers. Thirteen deaf Bengkala villagers of hearing parents were typed initially for 148 STRPs distributed across the human genome and a cluster of tightly linked 17p markers with a significantly higher number of homozygotes than expected under Hardy-Weinberg and linkage equilibrium were identified. NARD1 maps closest to STRPs for D17S261 (Mfd41) and D17S805 (AFM234ta1) that are 3.2 cM apart. Recombinant genotypes for the flanking markers, D17S122 (VAW409) and D17S783 (AFM026vh7), in individuals homozygous for NARD1 place NARD1 in a 5.3 cM interval of the pericentromeric region of chromosome 17 on a refined 17p-17q12 genetic map.

  1. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    PubMed Central

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  2. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer.

    PubMed

    Morrison, Carl D; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C; Johnson, Candace S; Trump, Donald L

    2014-02-11

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer.

  3. [Comparative Analysis of DNA Sequences of Regions of X-Chromosome Attachment to the Nuclear Envelope of Nurse Cells Anopheles messeae Fall].

    PubMed

    Artemov, G N; Vasil'eva, O Yu; Stegniy, V N

    2015-07-01

    Polytene chromosomes of ovarian nurse cells of Anopheles mosquitoes form strong contacts with the nuclear envelope. The presence of contacts, their position at nurse cell chromosomes, and their morphological features are species-specific in malaria mosquitoes. It is important to determine the nature of these interspecies differences in the nuclear architecture, both to understand the function of the nucleus and to assess the role of the spatial organization of chromosomes in evolution. Using dot-blot hybridization, we compared DNA sequences of the clone library from the X-chromosome attachment region to the nuclear envelope of ovarian nurse cells of Anopheles messeae with DNA-probes: (1) of the X-chromosome attachment region of An. atroparvus, (2) of the 3R chromosome attachment region ofAn. messeae, and (3) of the chromosome 2 pericentromeric region of An. messeae, without expressed contacts with the nuclear envelope. It has been shown that the chromosome attachment regions have a significantly higher number of homologous DNA sequences as compared with the pericentromeric region of chromosome 2. Sequences that are common for attachment regions are largely potentially able to participate in the formation of chromatin loop domains and to interact with some nucleus frameworks, according to the analysis in the ChrClass program. The obtained results support the important role of DNA in the formation of strong chromosomal attachments to the nuclear envelope in nurse cells of Anopheles mosquitoes.

  4. Localisation of the gene for achondroplasia to the telomeric region of chromosome 4p

    SciTech Connect

    Stoilov, I.; Velinov, M.; Kilpatrick, M.W.

    1994-09-01

    Achondroplasia (ACH), the most common type of genetic dwarfism, is characterized by a variety of skeletal anomalies including disproportionate short stature and rhizomelic shortening of the extremities. The disorder is inherited as an autosomal dominant trait, with a prevalence of 1-15 per 100,000 live births. The etiology of ACH remains unknown, although evidence points to a defect in the maturation of the chondrocytes in the growth plate of the cartilage. To determine the location of the gene responsible for ACH, a panel of 14 families with a total of 43 meioses was genotyped for 40 polymorphic markers for loci randomly distributed throughout the genome. The first significant positive Lod score was obtained for the locus D4S127 (Zmax=3.65 at {theta}=0.03). A series of 20 markers for chromosome 4p16.3 loci were then used to determine the most likely position of the ACH gene. Two additional loci, D4S412 and IDUA, showed strong linkage to the disease (Zmax=3.34 at {theta}=0.03 and Zmax=3.35 at {theta}=0.0, respectively). Multipoint analysis and direct counting of recombinants places the ACH gene in a 2.5 cM region between the marker D4S43 and the chromosome 4p telomere. No evidence was found for genetic heterogeneity. The ACH region contains a number of genes, including that for the fibroblast growth factor receptor FGFR3, which are being evaluated as candidates for the ACH gene. This identification of tightly linked polymorphic markers, as well as being the first step in the characterization of the ACH gene, offers the possibility of DNA based prenatal diagnosis of this disorder.

  5. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q

    PubMed Central

    Heit, John A.; Armasu, Sebastian M.; Asmann, Yan W.; Cunningham, Julie M.; Matsumoto, Martha E.; Petterson, Tanya M.; de Andrade, Mariza

    2012-01-01

    Summary Objectives To identify venous thromboembolism (VTE) disease-susceptibility genes. Patients/Methods We performed in silico genome wide association (GWAS) analyses using genotype data imputed to ~2.5 million single nucleotide polymorphisms (SNPs) from adults with objectively-diagnosed VTE (n=1503), and controls frequency-matched on age and sex (n=1459; discovery population). SNPs exceeding genome-wide significance were replicated in a separate population (VTE cases, n=1407; controls, n=1418). Genes associated with VTE were resequenced. Results Seven SNPs exceeded genome-wide significance (P < 5 × 10-8); four on chromosome 1q24.2 (F5 rs6025 [Factor V Leiden], BLZF1 rs7538157, NME7 rs16861990 and SLC19A2 rs2038024) and three on chromosome 9q34.2 (ABO rs2519093 [ABO intron 1], rs495828, rs8176719 [ABO blood type O allele]). The replication study confirmed a significant association of F5, NME7, and ABO with VTE. However, F5 was the main signal on 1q24.2 as only ABO SNPs remained significantly associated with VTE after adjusting for F5 rs6025. This 1q24.2 region was shown to be inherited as a haplotype block. ABO resequencing identified 15 novel single nucleotide variations (SNV) in ABO intron 6 and the ABO 3’ UTR that were strongly associated with VTE (P < 10-4) and belonged to three distinct linkage disequilibrium (LD) blocks; none were in LD with ABO rs8176719 or rs2519093. Our sample size provided 80% power to detect odds ratios=2.0 and 1.51 for minor allele frequencies=0.05 and 0.5, respectively (α=1 × 10-8; 1% VTE prevalence). Conclusions Aside from F5 rs6025, ABO rs8176719 and rs2519093, and F2 rs1799963, additional common and high VTE-risk SNPs among whites are unlikely. PMID:22672568

  6. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse

    SciTech Connect

    Lundin, L.G. )

    1993-04-01

    Gene constellations on several human chromosomes are interpreted as indications of large regional duplications that took place during evolution of the vertebrate genome. Four groups of paralogous chromosomal regions in man and the house mouse are suggested and are believed to be conserved remnants of the two or three rounds of tetraploidization that are likely to have occurred during evolution of the vertebrates. The phenomenon of differential silencing of genes is described. The importance of conservation of linkage of particular genes is discussed in relation to genetic regulation and cell differentiation. 120 refs., 5 tabs.

  7. Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17

    SciTech Connect

    Tomasetto, C.; Regnier, C.; Basset, P.

    1995-08-10

    We have performed differential screening of a human metastatic lymph node cDNA library to identify genes possibly involved during breast cancer progression. We have identified four novel genes overexpressed in malignant tissues. They were all located between q11 and q21.3, a region known to contain the c-erbB-2 oncogene and the BRCA1 breast carcinomas, and overexpression of three of them was dependent on gene amplification in breast cancer cell lines. These findings further support the concept that human chromosome 17 specifically carries genes possibly involved in breast cancer progression. 61 refs., 3 figs., 4 tabs.

  8. Direct selection of expressed sequences within a 1-Mb region flanking BRCA1 on human chromosome 17q21

    SciTech Connect

    Osborne-Lawrence, S.; Welcsh, P.L.; Spillman, M.

    1995-01-01

    Direct selection of genes within the interval of chromosome 17q21 containing BRCA1 was performed. YAC and cosmid contigs spanning the BRCA1 region were used to select cDNA clones from pools of cDNAs derived from human placenta, HeLa cells, activated T cells, and fetal head. A minimum set of 48 fragments of nonoverlapping cDNAs that unequivocally mapped within a 1-Mb region was identified, although it is not yet known how many of these are derived from the same transcript. DNA sequence analyses revealed that 4 of these cDNAs were derived from known genes (EDH17B2, glucose-6-phosphatase, IAI.3B, and E1AF), 1 is a member of a previously described gene family (EMG-17), and 7 share substantial identity with previously described genes from human or other species. The remainder showed no significant homology to known genes. Limited PCR-based expression profiles of a set of 13 of the genes were performed, and all gave positive results with at least some cDNA sources supporting the contention that they truly represent transcribed sequences. A comparison between genes obtained from this region by direct selection with those obtained by direct screening or exon trapping revealed that over 90% of the genes identified by exon trapping were represented in the selected material and that at least two additional genes that appear to represent low abundance transcripts with restricted expression profiles were identified by selection but not by other means. 39 refs., 3 figs., 2 tabs.

  9. Towards the cloning of imprinted genes in the Prader-Willi/Angelman region of chromosome 15q11-q13

    SciTech Connect

    Nakao, M.; Sutcliffe, J.S.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct clinical phenotypes resulting from paternal and maternal deficiencies respectively in human chromosome 15q11-q13. The data suggest the presence of oppositely imprinted genes in the region, and the gene for small nuclear ribonucleoprotein-associated polypeptide N (SNRPN) has been identified as a candidate gene for PWS. Previous strategies for positional cloning identified a number of transcripts from the PWS/AS region, and two of them, PAR-5 (D15S226E) and PAR-1 (D15S227E), are paternally expressed in cultured human cells from patients deleted for 15q11-q13 as is SNRPN. Cosmid contig maps have been developed from the following YACs (contained loci in parentheses): 307A12 (D15S13), 457B4 (SNRPN), 132D4 (D15S10), A229A2, and 378A12 (D15S113), to facilitate molecular studies of PWS and AS. Exon trapping has been employed to isolate putative exons from these overlapping cosmids. Two trapped fragments from the D15S113 region and one fragment from the SNRPN region has been isolated. Sequence information is available for all of the fragments. In addition to imprinting analysis in cultured human cells, we have developed a method to detect imprinting in mouse and human using a GC-clamped denaturing gradient gel electrophoresis strategy, in combination with reverse transcription-polymerase chain reaction. The imprinting analyses of putative exons are in progress to investigate their possible candidacy for involvement in PWS or AS phenotypes.

  10. Forensic analysis of polymorphism and regional stratification of Y-chromosomal microsatellites in Belarus.

    PubMed

    Rebała, Krzysztof; Tsybovsky, Iosif S; Bogacheva, Anna V; Kotova, Svetlana A; Mikulich, Alexei I; Szczerkowska, Zofia

    2011-01-01

    Nine loci defining minimal haplotypes and four other Y-chromosomal short tandem repeats (Y-STRs) DYS437, DYS438, DYS439 and GATA H4.1 were analysed in 414 unrelated males residing in four regions of Belarus. Haplotypes of 328 males were further extended by 7 additional Y-STRs: DYS388, DYS426, DYS448, DYS456, DYS458, DYS460 and DYS635. The 13-locus haplotype diversity was 0.9978 and discrimination capacity was 78.7%, indicating presence of identical haplotypes among unrelated males. Seven additional Y-STRs enabled almost complete discrimination of undifferentiated 13-locus haplotypes, increasing haplotype diversity to 0.9998 and discrimination capacity to 97.9%. Analysis of molecular variance of minimal haplotypes excluded the use of a Y-STR database for Belarusians residing in northeastern Poland as representative for the Belarusian population in forensic practice, and revealed regional stratification within the country. However, four additional markers (DYS437, DYS438, DYS439 and GATA H4.1) were shown to eliminate the observed geographical substructure among Belarusian males. The results imply that in case of minimal and PowerPlex Y haplotypes, a separate frequency database should be used for northern Belarus to estimate Y-STR profile frequencies in forensic casework. In case of Yfiler haplotypes, regional stratification within Belarus may be neglected.

  11. Yeast artificial chromosome cloning in the glycerol kinase and adrenal hypoplasia congenita region of Xp21

    SciTech Connect

    Worley, K.C.; Ellison, K.A.; Zhang, Y.H.; Wang, D.F.; Mason, J.; Roth, E.J.; Adams, V.; Fogt, D.D.; Zhu, X.M.; Towbin, J.A.

    1993-05-01

    The adrenal hypoplasia congenita (AHC) and glycerol kinase (GK) loci are telomeric to the Duchenne muscular dystrophy locus in Xp21. The authors developed a pair of yeast artificial chromosome (YAC) contigs spanning at least 1.2 Mb and encompassing the region from the telomeric end of the Duchenne muscular dystrophy (DMD) locus to beyond YHX39 (DXS727), including the genes for AHC and GK. The centromeric contig consists of 13 YACs reaching more than 600 kb from DMD through GK. The telomeric contig group consists of 8 YACs containing more than 600 kb including the markers YHX39 (DXS727) and QST-59 (DXS319). Patient deletion breakpoints in the region of the two YAC contigs define at least eight intervals, and seven deletion breakpoints are contained within these contigs. In addition to the probes developed from YAC ends, they have mapped eight Alu-PCR probes amplified from a radiation-reduced somatic cell hybrid, two anonymous DNA probes, and one Alu-PCR product amplified from a cosmid end, for a total of 26 new markers within this region of 2 Mb or less. One YAC in the centromeric contig contains an insert encompassing the minimum interval for GK deficiency defined by patient deletion breakpoints, and this clone includes all or part of the GK gene. 33 refs., 3 figs., 5 tabs.

  12. Genetic linkage studies in familial partial epilepsy: Exclusion of the human chromosome regions syntenic to the El-1 mouse locus

    SciTech Connect

    Lopes-Cendes, I.; Mulley, J.C.; Andermann, E.

    1994-09-01

    Recently, six families with a familial form of partial epilepsy were described. All pedigrees showed autosomal dominant inheritance with incomplete penetrance. Affected individuals present with predominantly nocturnal seizures with frontal lobe semiology. In 1959, a genetic mouse model for partial epilepsy, the El mouse, was reported. In the El mouse, a major seizure susceptibility gene, El-1, segregates in an autosomal dominant fashion and has been localized to a region distal to the centromere of mouse chromosome 9. Comparative genetic maps between man and mouse have been used for prediction of localization of several human disease genes. Because the region of mouse chromosome 9 that is the most likely to contain the El-1 locus is syntenic to regions on human chromosomes 3q21-p22, 3q21-q23.3, 6q12 and 15q24, we adopted the candidate gene approach as an initial linkage strategy. Twenty-two polymorphic microsatellite markers covering these regions were used for genotyping individuals in the three larger families ascertained, two of which are Australian and one French-Canadian. Negative two-point lod scores were obtained separately for each family. The analysis of all three families combined significantly excludes the candidate regions on chromosomes 3, 6 and 15.

  13. How to identify Raoultella spp. including R. ornithinolytica isolates negative for ornithine decarboxylase? The reliability of the chromosomal bla gene.

    PubMed

    Walckenaer, Estelle; Leflon-Guibout, Véronique; Nicolas-Chanoine, Marie-Hélène

    2008-12-01

    Although Raoultella planticola and Raoultella ornithinolytica were described more than 20 years ago, identifying them remains difficult. The reliability of the chromosomal bla gene for this identification was evaluated in comparison with that of the 16S rDNA and rpoB genes in 35 Raoultella strains from different origins. Of the 26 strains previously identified as R. planticola by biochemical tests alone or in association with molecular methods, 21 harboured a bla gene with 99.8% identity with the bla gene of two reference R. ornithinolytica strains (bla(ORN) gene) and 5 harboured a bla gene with 99.2% identity with the bla gene of two reference R. planticola strains (bla(PLA) gene). The 9 isolates previously identified as R. ornithinolytica harboured a bla(ORN) gene. The bla gene-based identification was confirmed by 16S rDNA and rpoB sequencing. The 21 isolates newly identified as R. ornithinolytica had a test negative for ornithine decarboxylase (ODC). Molecular experiments suggested one copy of ODC-encoding gene in both ODC-negative R. ornithinolytica and R. planticola strains and two copies in ODC-positive R. orninthinolytica strains. Analysis of the 35 bla genes allowed us (i) to confirm an identity of only 94% between the bla genes of the two Raoultella species while this identity was > 98% for rpoB and > 99% for 16S rDNA genes and (ii) to develop and successfully apply a bla PCR RFLP assay for Raoultella spp. identification. Overall, this study allowed us to discover ODC-negative R. ornithinolytica and to provide a reliable Raoultella identification method widely available as not requiring sequencing equipment.

  14. Pacific Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report represents the deliberations of the Pacific Regional Advisory Committee (RAC), one of 10 RACs established under the Educational Technical Assistance Act of 2002 to assess the educational needs of the region. The committee's report outlines educational needs across the state, districts, and territories of Hawai'i, the Commonwealth of…

  15. Appalachian Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report presents the deliberations of the Appalachia Regional Advisory Committee (Appalachia RAC), one of 10 RACs established under the Educational Technical Assistance Act of 2002 (20 U.S.C. sections 9601 et. seq.) to assess the educational needs of the region. The Committee's report outlines the educational needs across the four states of…

  16. Follow-Up Association Studies of Chromosome Region 9q and Nonsyndromic Cleft Lip/Palate

    PubMed Central

    Letra, Ariadne; Menezes, Renato; Govil, Manika; Fonseca, Renata F.; McHenry, Toby; Granjeiro, José M.; Castilla, Eduardo E.; Orioli, Iêda M.; Marazita, Mary L.; Vieira, Alexandre R.

    2010-01-01

    Cleft lip/palate comprises a large fraction of all human birth defects, and is notable for its significant lifelong morbidity and complex etiology. Several studies have shown that genetic factors appear to play a significant role in the etiology of cleft lip/palate. Human chromosomal region 9q21 has been suggested in previous reports to contain putative cleft loci. Moreover, a specific region (9q22.3-34.1) was suggested to present a ∼45% probability of harboring a cleft susceptibility gene. Fine mapping of fifty SNPs across the 9q22.3-34.11 region was performed to test for association with cleft lip/palate in families from United States, Spain, Turkey, Guatemala, and China. We performed family-based analysis and found evidence of association of cleft lip/palate with STOM (rs306796) in Guatemalan families (P=0.004) and in all multiplex families pooled together (P=0.002). This same SNP also showed borderline association in the US families (P=0.04). Under a nominal value of 0.05, other SNPs also showed association with cleft lip/palate and cleft subgroups. SNPs in STOM and PTCH genes and nearby FOXE1 were further associated with cleft phenotypes in Guatemalan and Chinese families. Gene prioritization analysis revealed PTCH and STOM ranking among the top fourteen candidates for cleft lip/palate among 339 genes present in the region. Our results support the hypothesis that the 9q22.32-34.1 region harbors cleft susceptibility genes. Additional studies with other populations should focus on these loci to further investigate the participation of these genes in human clefting. PMID:20583170

  17. Chromosomal Flexibility

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    Scientists have shown that a genetic element on one chromosome may direct gene activity on another. Howard Hughes Medical Institute (HHMI) researchers report that a multitasking master-control region appears to over-see both a set of its own genes and a related gene on a nearby chromosome. The findings reinforce the growing importance of location…

  18. High-density genetic map of the BRCA1 region of chromosome 17q12-q21

    SciTech Connect

    Anderson, L.A.; Friedman, L.; Lynch, E.; King, M.C. ); Osborne-Lawrence, S.; Bowcock, A. ); Weissenbach, J. )

    1993-09-01

    To facilitate the positional cloning of the breast-ovarian cancer gene BRCA1, the authors constructed a high-density genetic map of the 8.3-cM interval between D17S250 and GIP on chromosome 17q12-q21. Markers were mapped by linkage in the CEPH and in extended kindreds in the breast cancer series. The map comprises 33 ordered polymorphisms, including 12 genes and 21 anonymous markers, yielding an average of one polymorphism every 250 kb. Twenty-five of the markers are PCR-based systems. The order of polymorphic genes and markers is cen-D17S250-D17S518-HER2-THRA1-RARA-D17S80-KRT10-[D17S800-D17S857]-GAS-D17S856-EDH17B-D17S855-D17S859-D17S858-[PPY-D17S78]-D17S183-EPB3-D17S579-D17S509-[D17S508-D17S190 = D17S810]-D17S791-[D17S181 = D17S806]-D17S797-HOX2B-GP3A-[D17S507 = GIP]-qter. BRCA1 lies in the middle of the interval, between THRA1 and D17S183. Markers from this map can be used to determine whether cancer is linked to BRCA1 in families, to evaluate whether tumors have lost heterozygosity at loci in the region, and to identify probes for characterizing chromosomal rearrangements from patients and from tumors. 21 refs., 1 fig., 3 tabs.

  19. Maternal uniparental meroisodisomy in the LAMB3 region of chromosome 1 results in lethal junctional epidermolysis bullosa.

    PubMed

    Takizawa, Y; Pulkkinen, L; Shimizu, H; Lin, L; Hagiwara, S; Nishikawa, T; Uitto, J

    1998-05-01

    Herlitz junctional epidermolysis bullosa (OMIM#226700) is a lethal, autosomal recessive blistering disorder caused by mutations in one of the three genes LAMA3, LAMB3, or LAMC2, encoding the constitutive polypeptide subunits of laminin 5. In this study, we describe a patient homozygous for a novel nonsense mutation Q936X in exon 19 of LAMB3, which has been mapped to chromosome 1q32. The patient was born with extensive blistering and demonstrated negative immunofluorescence staining for laminin 5, and transmission electron microscopy revealed tissue separation within lamina lucida of the dermal-epidermal junction, diagnostic of Herlitz junctional epidermolysis bullosa. The mother of the proband was found to be a heterozygous carrier for this mutation, whereas the father demonstrated the wild-type LAMB3 allele only. Nonpaternity was excluded by 13 microsatellite markers in six different chromosomes. Genotype analysis using 28 microsatellite markers spanning chromosome 1 revealed that the patient had maternal primary heterodisomy, as well as meroisodisomy within two regions of chromosome 1, one on 1p and the other one on 1q, the latter region containing the maternal LAMB3 mutation. These results suggest that Herlitz junctional epidermolysis bullosa in this patient developed as a result of reduction to homozygosity of the maternal LAMB3 mutation on chromosome 1q32. PMID:9579554

  20. Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining region.

    PubMed

    Tennessen, Jacob A; Govindarajulu, Rajanikanth; Liston, Aaron; Ashman, Tia-Lynn

    2016-09-01

    Recombination in ancient, heteromorphic sex chromosomes is typically suppressed at the sex-determining region (SDR) and proportionally elevated in the pseudoautosomal region (PAR). However, little is known about recombination dynamics of young, homomorphic plant sex chromosomes. We examine male and female function in crosses and unrelated samples of the dioecious octoploid strawberry Fragaria chiloensis in order to map the small and recently evolved SDR controlling both traits and to examine recombination patterns on the incipient ZW chromosome. The SDR of this ZW system is located within a 280 kb window, in which the maternal recombination rate is lower than the paternal one. In contrast to the SDR, the maternal PAR recombination rate is much higher than the rates of the paternal PAR or autosomes, culminating in an elevated chromosome-wide rate. W-specific divergence is elevated within the SDR and a single polymorphism is observed in high species-wide linkage disequilibrium with sex. Selection for recombination suppression within the small SDR may be weak, but fluctuating sex ratios could favor elevated recombination in the PAR to remove deleterious mutations on the W. The recombination dynamics of this nascent sex chromosome with a modestly diverged SDR may be typical of other dioecious plants.

  1. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    SciTech Connect

    Duggirala, R.; Stern, M.P.; Reinhart, L.J.

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  2. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines.

    PubMed

    Ritter, Anett; Voedisch, Bernd; Wienberg, Johannes; Wilms, Burkhard; Geisse, Sabine; Jostock, Thomas; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for large scale production of recombinant biopharmaceuticals. Although these cells have been extensively used, a demand to further increase the performance, for example, to facilitate the process of clone selection to isolate the highest producing cell lines that maintain stability of production over time is still existing. We compared gene expression profiles of high versus low producing CHO clones to identify regulated genes which can be used as biomarkers during clone selection or for cell line engineering. We present evidence that increased production rates and cell line stability are correlated with the loss of the telomeric region of the chromosome 8. A new parental CHO cell line lacking this region was generated and its capability for protein production was assessed. The average volumetric productivity of cells after gene transfer and selection was found to be several fold improved, facilitating the supply of early drug substance material to determine for example, quality. In addition, significantly more cell clones with a higher average productivity and higher protein production stability were obtained with the new host cell line after single cell cloning. This allows reduced efforts in single cell sorting, screening of fewer clones and raises the opportunity to circumvent time and labor-intensive stability studies.

  3. Congenital fibrosis of the extraocular muscles maps to the centromeric region of human chromosome 12 in multiple families

    SciTech Connect

    Engle, E.C.; Kunkel, L.M.; Beggs, A.H.

    1994-09-01

    Congenital fibrosis of the extraocular muscles (CFEOM) is an autosomal dominant, ocular disorder characterized by congenital, non-progressive bilateral ptosis and external ophthalmoplegia with a compensatory backward tilt of the head. The pathophysiology of this disorder is unknown and it is unclear if it has a primary neurogenic or myopathic etiology. Postmortem examination of one affected individual reveals normal brainstem, cranial nerves, and non-fibrotic extraocular muscle (EOM). EOM biopsies of several other affected individuals contain relatively normal fibers interspersed in connective tissue, possibly representing normal tendinous insertions. We recently reported linkage of this disease in two unrelated families to markers in the centromeric region of human chromosome 12. D12S59 did not recombine with the disease giving a two-point lod score of 12.5 ({theta}=0.00) while D12S87 and D12S85 flank the CFEOM locus with two-point lod scores of 8.9 ({theta}=0.03) and 5.4 ({theta}=0.03), respectively. Recent experiments with two additional families indicate that the disease in all four kindreds maps to the same locus. The use of several new markers has allowed us to identify a new flanking marker (CHLC, GATA5A09) reducing the size of the critical region to approximately 3.7 cM. Furthermore, D12S331 and D12S345 are nonrecombinant and apparently within the interval D12S87-GATA5A09.

  4. Adrenocorticotropin receptor/melanocortin receptor-2 maps within a reported susceptibility region for bipolar illness on chromosome 18

    SciTech Connect

    Detera-Wadleigh, S.D.; Yoon, Sung W.; Goldin, L.R.

    1995-08-14

    We have examined the possible linkage of adrenocorticotropin receptor/melanocortin receptor-2 (ACTHR/MC-2) to a reported putative susceptibility locus for bipolar illness (BP) in 20 affected pedigrees. Initially, allelic variants of the gene were identified by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) and the gene was genetically mapped using both the Centre d`Etudes du Polymorphisme Humain (CEPH) pedigrees and the BP pedigrees used in this study. We found that the ACTHR/MC-2 gene maps between D18S53 and D18S66. These loci span a region of chromosome 18 which, in a previous study revealed a putative predisposing locus to BP through nonparametric methods of analyses, although affected sib-pair (ASP) method revealed an increase in allele sharing among ill individuals, P=0.023. Since this receptor is within a potential linkage region, ACTHR/MC-2 could be considered a candidate gene for BP. 22 refs., 4 figs., 2 tabs.

  5. Chromosome region-specific libraries for human genome analysis. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Kao, Fa-Ten

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  6. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex.

    PubMed

    Brelsford, A; Dufresnes, C; Perrin, N

    2016-02-01

    Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits. PMID:26374238

  7. A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p

    SciTech Connect

    Kramer, P.L.; Gancher, S.T.; Nutt, J.G.

    1995-07-01

    Episodic ataxia (EA) is a rare neurological disorder characterized by attacks of generalized ataxia and near-normal neurological function between attacks. Most inherited cases are the result of an autosomal dominant condition with unknown neuropathology. It is heterogeneous and includes at least two distinct forms. In EA-1, attacks last minutes and interictal myokymia may be present. In EA-2, attacks may last hours and interictal nystagmus may occur. We reported linkage in four EA-1 families to chromosome 12p13 and identified mutations in these families in a potassium channel gene, KCNA1. Recently, we reported linkage in two EA-2 families to a 30-cM region on chromosome 19p. This report is based on members of the same two families and one additional kindred. 18 refs., 1 fig., 1 tab.

  8. Characterization of a DNA sequence family in the Prader-Willi/Angelman syndrome chromosome region in 15q11-q13

    SciTech Connect

    Dittrich, B.; Knoblauch, H.; Buiting, K.; Horsthemke, B. )

    1993-04-01

    IR4-3R (D15S11) is an anonymous DNA sequence from human chromosome 15. Using YAC cloning and restriction enzyme analysis, the authors have found that IR4-3R detects five related DNA sequences, which are spread over 700 kb within the Prader-Willi/Angelman syndrome chromosome region in 15q11-q 13. The RsaI and StyI polymorphisms, which were described previously, are associated with the most proximal copy of IR4-3R and are in strong linkage disequilibrium. IR4-3R represents the third DNA sequence family that has been identified in 15q11-q13. 14 refs., 2 figs., 1 tab.

  9. Fluorescence in situ hybridization mapping of the mouse platelet endothelial cell adhesion molecule-1 (PECAM1) to mouse chromosome 6, region F3-G1

    SciTech Connect

    Xie, Yong; Muller, W.A.

    1996-10-15

    Human platelet/endothelial cell adhesion molecule-1 (PECAM1), an important member of the immunoglobulin gene superfamily, is widely distributed on cells of the vascular system and mediates cellular interactions through both homophilic and heterophilic adhesive mechanisms. The function of PECAM1 in vitro has begun to be understood, but its function in vivo is yet to be established. To study the function of PECAM1 in vivo, its mouse counterpart was identified and its cDNA gene isolated and characterized. In this study, the mouse chromosomal localization was determined for the mouse gene encoding Pecam. Fluorescence in situ hybridization was used to map the Pecam gene on mouse chromosome 6, region F3-G1. 12 refs., 2 figs.

  10. Western Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    During a four-week period (May 23, 2011-June 21, 2011), the Western Regional Advisory Committee (RAC) held a series of public meetings to solicit input and deliberate on key educational needs facing the four states in the region--Arizona, California, Nevada, and Utah. A two-day, face-to-face, public meeting was held May 23-24, 2011 in Arlington,…

  11. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen.

    PubMed

    Puechberty, J; Laurent, A M; Gimenez, S; Billault, A; Brun-Laurent, M E; Calenda, A; Marçais, B; Prades, C; Ioannou, P; Yurov, Y; Roizès, G

    1999-03-15

    Human centromeres are poorly understood at both the genetic and the physical level. In this paper, we have been able to distinguish the alphoid centromeric sequences of chromosome 5 from those of chromosome 19. This result was obtained by pulsed-field gel electrophoresis after cutting genomic DNA with restriction endonucleases NcoI (chromosome 5) and BamHI (chromosome 19). We could thus define a highly polymorphic marker, representing length variations of the D5Z1 domain located at the q arm boundary of the chromosome 5 centromere. The centromeric region of chromosome 5 was then analyzed in full detail. We established an approximately 4.6-Mb physical map of the whole region with five rare-cutting enzymes by using nonchimeric YACs, two of which were shown to contain the very ends of 5cen on both sides. The p-arm side of 5cen was shown to contain an alphoid subset (D5Z12) different from those described thus far. Two genes and several putative cDNAs could be precisely located close to the centromere. Several L1 elements were shown to be present within alpha satellites at the boundary between alphoid and nonalphoid sequences on both sides of 5cen. They were used to define STSs that could serve as physical anchor points at the junction of 5cen with the p and q arms. Some STSs were placed on a radiation hybrid map. One was polymorphic and could therefore be used as a second centromeric genetic marker at the p arm boundary of 5cen. We could thus estimate recombination rates within and around the centromeric region of chromosome 5. Recombination is highly reduced within 5cen, with zero recombinants in 58 meioses being detected between the two markers located at the two extremities of the centromere. In its immediate vicinity, 5cen indeed exerts a direct negative effect on meiotic recombination within the proximal chromosomal DNA. This effect is, however, less important than expected and is polarized, as different rates are observed on both arms if one compares the 0 c

  12. Characterization of AFLP Sequences From Regions of Maize B Chromosome Defined by 12 B-10L Translocations

    PubMed Central

    Peng, Shu-Fen; Lin, Yao-Pin; Lin, Bor-yaw

    2005-01-01

    Maize B chromosome sequences have been previously cloned by microdissection, and all are proven to be highly repetitive, to be homologous to the normal complement, and to show no similarity to any published gene other than mobile elements. In this study, we isolated sequences from defined B regions. The strategy involved identification and then mapping of AFLP-derived B fragments before cloning. Of 14 B AFLPs, 13 were mapped by 12 B-10L translocations: 3 around the centromeric knob region, 3 in the proximal euchromatic, 1 around the border of proximal euchromatic and distal heterochromatic, and 6 in the distal heterochromatic region of the B long arm. The AFLP fragments were cloned and sequenced. Analogous to the microdissected sequences, all sequences were repetitive, and all but two were highly homologous to the A chromosomes. FISH signals of all but three clones appeared in pachytene B as well as in somatic A and B chromosomes. None of these clones exhibits identity to any published gene. Six clones displayed homology to two centromeric BACs, four to sequences of chromosomes 3, 4, 7, and 10, four to retrotransposons, and three to no sequence deposited in GenBank. Furthermore, flanking regions of two highly B-specific clones were characterized, showing extension of a B-exclusive nature. The possibility of the presence of novel B repeat(s) is discussed. PMID:15489531

  13. Lambda transducing bacteriophage carrying deletions of the argCBH-rpoBC region of the Escherichia coli chromosome.

    PubMed Central

    Linn, T; Goman, M; Scaife, J

    1979-01-01

    Deletions in the rpoBC region have been transferred to phage lambda and characterized in detail by genetic, structural, and functional tests. We thus extend and confirm knowledge of the organization of this part of the chromosome. The new phages are useful tools for studying the genes for the bacterial transcription and translation machinery. Images PMID:159290

  14. Excess functional copy of allele at chromosomal region 11p15 may cause Wiedemann-Beckwith (EMG) syndrome

    SciTech Connect

    Kubota, T.; Saitoh, S.; Jinno, Y.; Niikawa, N.; Matsumoto, T.; Narahara, K.; Fukushima, Y.

    1994-02-15

    Wiedemann-Beckwith syndrome (WBS) is a genetic disorder with overgrowth and predisposition to Wilms` tumor. The putative locus of the gene responsible for this syndrome is assigned to chromosome region 11p15.5, and genomic imprinting in this region has been proposed: the paternally derived gene(s) at 11p15.5 is selectively expressed, while the maternally transmitted gene(s) is inactive. The authors examined 18 patients for the parental origin of their 11p15 regions. DNA polymorphism analyses using 6 loci on chromosome 11 showed that 2 patients with duplications of 11p15 regions from their respective fathers and one from the mother, indicating the transmission of an excessive paternal gene at 11p15 to each patient. The result, together with the previous findings in karyotypically normal or abnormal patients and in overgrowth mouse experiments, are consistent with imprinting hypothesis that overexpression of paternally derived gene(s) at 11p15.5, probably the human insulin-like growth factor II (IFG-II) gene, may cause the phenotype. Total constitutional uniparental paternal disomy (UPD) or segmental UPD for the 6 loci examined of chromosome 11 was not observed in our 12 sporadic patients. In order to explain completely the inheritance of this syndrome in patients with various chromosomal constitutions, the authors propose an alternative imprinting mechanism involving the other locus that may be paternally imprinted and may suppress the expression of this gene. 28 refs., 3 figs., 1 tab.

  15. A high-resolution map of the chromosomal region surrounding the nude gene

    SciTech Connect

    Blackburn, C.C.; Griffith, J.; Morahan, G.

    1995-03-20

    The nude mutation produces the apparently disparate phenotypes of hairlessness and congenital thymic aplasia. These pleiotropic defects are the result of a single, autosomal recessive mutation that was previously mapped to a 9-cM region of murine chromosome 11 bounded by loci encoding the acetylcholine receptor P subunit and myeloperoxidase. In this study, exclusion mapping of a panel of congenic nude strains was used to place the nude locus between the microsatellite loci D11Nds1 and D11Mit8. The relative distance from nude to each of these loci was determined by analyzing a large segregating cross. Thus, nude lies 1.4 cM distal to D11Nds1 and is 0.5 cM proximal to D11Mit8. Mice that carried recombinational breakpoints between D11Nds1 and D11Mit8 were further analyzed at the loci Evi-2 and D11Mit34, which placed nu 0.2 cM proximal to these markers. D11Nds1 and Evi-2/D11Mit34 thus define the new proximal and distal boundaries, respectively, for the nu interval. We also report the typing of the above microsatellite markers in the AKXD, AKXL, BXD, CXB, and BXH recombinant inbred strains, which confirmed the relative order and separation of loci in this region. 47 refs., 3 figs., 1 tab.

  16. The ubiquitous mitochondrial creatine kinase gene maps to a conserved region on human chromosome 15q15 and mouse chromosome 2 bands F1-F3

    SciTech Connect

    Steeghs, K.; Wieringa, B.; Merkx, G.

    1994-11-01

    Members of the creatine kinase isoenzyme family (CKs; EC 2.7.3.2) are found in mitochondria and specialized subregions of the cytoplasm and catalyze the reversible exchange of high-energy phosphoryl between ATP and phosphocreatine. At least four functionally active genes, which encode the distinct CK subunits CKB, CKM, CKMT1 (ubiquitous), and CKMT2 (sarcomeric), and a variable number of CKB pseudogenes have been identified. Here, we report the use of a CKMT1 containing phage to map the CKMT1 gene by in situ hybridization on both human and mouse chromosomes.

  17. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae

    PubMed Central

    Carvalho, Natalia D. M.; Carmo, Edson; Neves, Rogerio O.; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Abstract Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by Cot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by Cot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using Cot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, Cot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of Cot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position. PMID:27551343

  18. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    PubMed

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position. PMID:27551343

  19. Microdissection and Chromosome Painting of the Alien Chromosome in an Addition Line of Wheat - Thinopyrum intermedium

    PubMed Central

    Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R.-C.; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrumintermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneriaspicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different genomes in

  20. A region on bovine chromosome 15 influences beef longissimus tenderness in steers.

    PubMed

    Keele, J W; Shackelford, S D; Kappes, S M; Koohmaraie, M; Stone, R T

    1999-06-01

    A genome scan was conducted using 196 microsatellite DNA markers spanning 29 autosomal bovine chromosomes and Warner-Bratzler shear force collected at d 2 and 14 postmortem on steaks from the longissimus muscle of 294 progeny from one Brahman x Hereford bull mated to Bos taurus cows to identify QTL for beef tenderness. One QTL was identified and located 28 cM (95% confidence interval is 17 to 40 cM) from the most centromeric marker on BTA15. The QTL interacted significantly with slaughter group. The difference in shear force of steaks aged 14 d postmortem between progeny with the Brahman paternally inherited allele vs those with Hereford was 1.19 phenotypic standard deviations (explained 26% of phenotypic variance) for one slaughter group and was not significant for three other slaughter groups. Apparently, unknown environmental factors present for three of the four slaughter groups were capable of masking the effect of this QTL. The sensitivity of the QTL effect to environmental factors may complicate utilization of markers for genetic improvement. Future research to elucidate the cause of the QTL x slaughter group interaction may lead to improved strategies for controlling variation in meat tenderness via marker-assisted selection, postmortem processing, or live animal management.

  1. Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event.

    PubMed

    Kodama, Miyako; Brieuc, Marine S O; Devlin, Robert H; Hard, Jeffrey J; Naish, Kerry A

    2014-09-01

    Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions.

  2. Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event.

    PubMed

    Kodama, Miyako; Brieuc, Marine S O; Devlin, Robert H; Hard, Jeffrey J; Naish, Kerry A

    2014-09-01

    Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions. PMID:25053705

  3. Assignment of the human dihydrofolate reductase gene to the q11. -->. q22 region of chromosome 5

    SciTech Connect

    Funanage, V.L.; Myoda, T.T.; Moses, P.A.; Cowell, H.R.

    1984-10-01

    Cells from a dihydrofolate reductase-deficit Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11..-->..q22 region.

  4. Evaluation of polymorphisms within the genes GSHR and SLC2A2 that are within a region on bovine chromosome 1 (BTA1) previously associated with feed intake and weight gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cost of feed is the largest expense incurred by cattle producers. The ability to select for animals with beneficial production traits using genetic markers may reduce expenses for producers. A large region on bovine chromosome 1 was identified as significant for average daily feed intake (ADFI) and ...

  5. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  6. Expansion of the Pseudo-autosomal Region and Ongoing Recombination Suppression in the Silene latifolia Sex Chromosomes

    PubMed Central

    Bergero, Roberta; Qiu, Suo; Forrest, Alan; Borthwick, Helen; Charlesworth, Deborah

    2013-01-01

    There are two very interesting aspects to the evolution of sex chromosomes: what happens after recombination between these chromosome pairs stops and why suppressed recombination evolves. The former question has been intensively studied in a diversity of organisms, but the latter has been studied largely theoretically. To obtain empirical data, we used codominant genic markers in genetic mapping of the dioecious plant Silene latifolia, together with comparative mapping of S. latifolia sex-linked genes in S. vulgaris (a related hermaphrodite species without sex chromosomes). We mapped 29 S. latifolia fully sex-linked genes (including 21 newly discovered from transcriptome sequencing), plus 6 genes in a recombining pseudo-autosomal region (PAR) whose genetic map length is ∼25 cM in both male and female meiosis, suggesting that the PAR may contain many genes. Our comparative mapping shows that most fully sex-linked genes in S. latifolia are located on a single S. vulgaris linkage group and were probably inherited from a single autosome of an ancestor. However, unexpectedly, our maps suggest that the S. latifolia PAR region expanded through translocation events. Some genes in these regions still recombine in S. latifolia, but some genes from both addition events are now fully sex-linked. Recombination suppression is therefore still ongoing in S. latifolia, and multiple recombination suppression events have occurred in a timescale of few million years, much shorter than the timescale of formation of the most recent evolutionary strata of mammal and bird sex chromosomes. PMID:23733786

  7. Genetic mapping of a locus for multiple ephiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene

    SciTech Connect

    Briggs, M.D.; Choi, HiChang; Warman, M.L.; Loughlin, J.A.; Wordsworth, P.; Sykes, B.C.; Irven, C.M.M.; Smith, M.; Wynne-Davies, R.; Lipson, M.H.

    1994-10-01

    Multiple epiphyseal dysplasia (MED) is a dominantly inherited chondrodysplasia characterized by mild short stature and early-onset osteoarthrosis. Some forms of MED clinically resemble another chondrodysplasia phenotype, the mild form of pseudoachondroplasia (PSACH). On the basis of their clinical similarities as well as similar ultra-structural and biochemical features in cartilage from some patients, it has been proposed that MED and PSACH belong to a single bone-dysplasia family. Recently, both mild and severe PSACH as well as a form of MED have been linked to the same interval on chromosome 19, suggesting that they may be allelic disorders. Linkage studies with the chromosome 19 markers were carried out in a large family with MED and excluded the previously identified interval. Using this family, we have identified a MED locus on the short arm of chromosome 1, in a region containing the gene (COL9A2) that encodes the {alpha}2 chain of type IX collagen, a structural component of the cartilage extracellular matrix. 39 refs., 3 figs., 3 tabs.

  8. Trisomy 8 syndrome owing to isodicentric 8p chromosomes: regional assignment of a presumptive gene involved in corpus callosum development.

    PubMed Central

    Digilio, M C; Giannotti, A; Floridia, G; Uccellatore, F; Mingarelli, R; Danesino, C; Dallapiccola, B; Zuffardi, O

    1994-01-01

    Two patients with trisomy 8 syndrome owing to an isodicentric 8p;8p chromosome are described. Case 1 had a 46,XX/46,XX,-8,+idic(8)(p23) karyotype while case 2, a male, had the same abnormal karyotype without evidence of mosaicism. In situ hybridisation, performed in case 1, showed that the isochromosome was asymmetrical. Agenesis of the corpus callosum (ACC), which is a feature of trisomy 8 syndrome, was found in both patients. Although ACC is associated with aneuploidies for different chromosomes, a review of published reports indicates that, when associated with chromosome 8, this defect is the result of duplication of a gene located within 8p21-pter. Molecular analysis in one of our patients led us to exclude the distal 23 Mb of 8p from this ACC region. Images PMID:8014974

  9. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains

    PubMed Central

    Brackley, Chris A.; Johnson, James; Kelly, Steven; Cook, Peter R.; Marenduzzo, Davide

    2016-01-01

    Biophysicists are modeling conformations of interphase chromosomes, often basing the strengths of interactions between segments distant on the genetic map on contact frequencies determined experimentally. Here, instead, we develop a fitting-free, minimal model: bivalent or multivalent red and green ‘transcription factors’ bind to cognate sites in strings of beads (‘chromatin’) to form molecular bridges stabilizing loops. In the absence of additional explicit forces, molecular dynamic simulations reveal that bound factors spontaneously cluster—red with red, green with green, but rarely red with green—to give structures reminiscent of transcription factories. Binding of just two transcription factors (or proteins) to active and inactive regions of human chromosomes yields rosettes, topological domains and contact maps much like those seen experimentally. This emergent ‘bridging-induced attraction’ proves to be a robust, simple and generic force able to organize interphase chromosomes at all scales. PMID:27060145

  10. Microsatellite and single nucleotide polymorphisms in the β-globin locus control region-hypersensitive Site 2: SPECIFICITY of Tunisian βs chromosomes.

    PubMed

    Ben Mustapha, Maha; Moumni, Imen; Zorai, Amine; Douzi, Kaïs; Ghanem, Abderraouf; Abbes, Salem

    2012-01-01

    The diversity of sickle cell disease severity is attributed to several cis acting factors, among them the single nucleotide polymorphisms (SNPs) and (AT) rich region in the β-locus control region (β-LCR). This contains five DNase I hypersensitive sites (HS) located 6 to 22 kb upstream to the ϵ gene. The most important of these is the HS2 (5' β-LCR-HS2), characterized by the presence of three different SNPs and a microsatellite region known to be in association with β(S) chromosomes in various populations. The aim of this study was to present the molecular investigation of the 5' β-LCR-HS2 site in normal and sickle cell disease individuals in order to determine if there is any correlation or specificity between these molecular markers, the β(S) Tunisian chromosomes and phenotypical expression of sickle cell disease. One hundred and twenty-four chromosomes from Tunisian individuals (49 β(S) carriers and 13 normal individuals) were screened by polymerase chain reaction (PCR) and sequencing for the polymorphic short tandem microsatellite repeats (AT)(X)N(12)(AT)(Y) and the three SNPs (rs7119428, rs9736333 and rs60240093) of the 5' β-LCR-HS2. Twelve configurations of the microsatellite motif were found with an ancestral configuration elaborated by ClustalW software. Normal and mutated alleles were observed at the homozygous and heterozygous states for the three SNPs. Correlation between microsatellites and SNPs suggests that mutant SNP alleles were mainly associated, in the homozygous sickle cell disease phenotype, with the (AT)(8)N(12)GT(AT)(7) configuration, whereas, normal SNP alleles were associated with the (AT)(X)N(12)(AT)(11) configurations in normal β(A) chromosomes. The correlation of these various configurations with Hb F expression was also investigated. The principal component analysis (PCA) showed the correlation between the homozygous sickle cell disease phenotype, mutated SNP alleles and the Benin microsatellite configuration (AT)(8)N(12)GT

  11. Diagnosis of four chromosome abnormalities of unknown origin by chromosome microdissection and subsequent reverse and forward painting

    SciTech Connect

    Coelho, K.E.F.A. de; Egashira, M.; Kato, R.

    1996-06-14

    A molecular cytogenetic method consisting of chromosome microdissection and subsequent reverse/forward chromosome painting is a powerful tool to identify chromosome abnormalities of unknown origin. We present 4 cases of chromosome structural abnormalities whose origins were ascertained by this method. In one MCA/MR patient with an add(5q)chromosome, fluorescence in situ hybridization (FISH), using probes generated from a microdissected additional segment of the add(5q) chromosome and then from a distal region of normal chromosome 5, confirmed that the patient had a tandem duplication for a 5q35-qter segment. Similarly, we ascertained that an additional segment of an add(3p) chromosome in another MCA/MR patient had been derived from a 7q32-qter segment. In a woman with a history of successive spontaneous abortions and with a minute marker chromosome, painting using microdissected probes from the whole marker chromosome revealed that it was i(15)(p10) or psu dic(15;15)(q11;q11). Likewise, a marker observed in a fetus was a ring chromosome derived from the paracentromeric region of chromosome 19. We emphasize the value of the microdissection-based chromosome painting method in the identification of unknown chromosomes, especially for marker chromosomes. The method may contribute to a collection of data among patients with similar or identical chromosome abnormalities, which may lead to a better clinical syndrome delineation. 15 refs., 2 figs.

  12. Identifying meteorite source regions through near-Earth object spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Binzel, Richard P.

    2010-02-01

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives important representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original Solar System formation locations for different meteorite classes. To forge possible links between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-μm and 2-μm Geometric Band Centers and their Band Area Ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in four classes: H, L, LL and HED. For each NEO spectrum, we assign a set of probabilities for it being related to each of these four meteorite classes. Our NEO-meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. While the ν6 resonance dominates the delivery for all four meteorite classes, an excess (significant at the 2.1-sigma level) source region signature is found for the H chondrites through the 3:1 mean motion resonance. This results suggest an H chondrite source with a higher than average delivery preference through the 3:1 resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites.

  13. Identifying Isotropic Events Using a Regional Moment Tensor Inversion

    SciTech Connect

    Dreger, D S; Ford, S R; Walter, W R

    2009-08-03

    In our previous work the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 4 collapses in the surrounding region of the western US, were calculated using a regional time-domain full waveform inversion for the complete moment tensor (Dreger et al., 2008; Ford et al., 2008; Ford et al., 2009a). The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We developed a new Network Sensitivity Solution (NSS) in which the fit of sources distributed over a source-type plot (Hudson et al., 1989) show the resolution of the source parameters. The NSS takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The NSS compares both a hypothetical pure source (for example an explosion or an earthquake) and the actual data with several thousand sets of synthetic data from a uniform distribution of all possible sources. The comparison with a hypothetical pure source provides the theoretically best-constrained source-type region for a given set of stations, and with it one can determine whether further analysis with the data is warranted. We apply the NSS to a NTS nuclear explosion, and earthquake, as well as the 2006 North Korean explosion, and a nearby earthquake. The results show that explosions and earthquakes are distinguishable, however the solution space depends strongly on the station coverage. Finally, on May 25, 2009 a second North Korean test took place. Our preliminary results show that the explosive nature of the event may be determined using the regional distance moment tensor method. Results indicate that

  14. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein.

    PubMed

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-09-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents.

  15. The linkage map of sheep Chromosome 6 compared with orthologous regions in other species.

    PubMed

    Lord, E A; Lumsden, J M; Dodds, K G; Henry, H M; Crawford, A M; Ansari, H A; Pearce, P D; Maher, D W; Stone, R T; Kappes, S M; Beattie, C W; Montgomery, G W

    1996-05-01

    The genetic linkage map of sheep Chromosome (Chr) 6 has been extended to include 35 loci with the addition of 11 RFLP and 12 microsatellite loci. The sex-averaged linkage map now spans 154 cM from phosphodiesterase cyclic GMP beta polypeptide (PDE6B) to OarCP125, an anonymous sheep microsatellite. The male and female map lengths, at 180 cM and 132 cM respectively, did not differ significantly. The physical assignment of PDE6B to Chr 6q33-qter orientates the linkage map on sheep Chr 6 with PDE6B near the telomere and OarCP125 towards the centromere. The order and genetic distances between loci are similar for the sheep Chr 6 and cattle Chr 6 maps, except for the position of the casein genes. The sheep Chr 6 linkage map is also comparable to portions of human Chr 4, mouse Chrs 5 and 3, and pig Chr 8. The synteny between sheep Chr 6 and human Chr 4 has been extended from PDE6B (4p16.3) to epidermal growth factor (EGF, 4q25-q27). However, a region from platelet-derived growth factor receptor alpha polypeptide (PDGFRA) to bone morphogenetic protein 3 (BMP3), which spans 19 cM on sheep Chr 6, appears to be inverted with respect to the human and mouse loci. Other differences in the gene order between sheep, pig, and mouse suggest more complex rearrangements.

  16. Organization of the R chromosome region in maize: Report of progress

    SciTech Connect

    Kermicle, J.

    1987-02-01

    The maize R gene exhibits various features of regulated gene expression. Alleles collected from diverse geographic sources govern the presence and distribution of anthocyanin pigmentation, plant part by plant part. Some alleles confer stable patterns of pigmentation, while others confer unstable somatic phenotypes with frequent germinal mutations. A remarkable change in expression occurs when certain alleles are combined as heterozygotes. Efficient analysis of such phenomena requires a basic understanding of allelic organization. R is organized on a modular basis, with polymorphism both for number and kind of unit. An allele may carry one such unit, or two or more associated with duplicated chromosome segments. When multiple, each unit mutates independently, with its variants constituting a single complementation group. Because such units behave as separate genes, they have been referred to as ''genic elements''. Alleles organized as gene complexes often have been utilized in the discovery and initial description of phenomena of R regulation. When this is so, subsequent analysis proceeds in two stages. The complex is first fractionated by recombination into simpler derivatives that manifest the phenomenon. Such derivatives, preferably carrying a single element, are then candidates for detailed analysis. For the present study, insertional mutagenesis using transposable sequences proved the most effective means of producing R variants for fine structure study. It was also necessary to describe the pattern of recombination that prevailed in this region when insertions were present. With the advent of molecular cloning of maize genes by transposon tagging, a more direct means of investigating R structure was envisioned. 12 refs.

  17. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-01-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents. PMID:26048327

  18. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae).

    PubMed

    Vijverberg, K; Van Der Hulst, R G M; Lindhout, P; Van Dijk, P J

    2004-02-01

    In this study, we mapped the diplosporous chromosomal region in Taraxacum officinale, by using amplified fragment length polymorphism technology (AFLP) in 73 plants from a segregating population. Taraxacum serves as a model system to investigate the genetics, ecology, and evolution of apomixis. The genus includes sexual diploid as well as apomictic polyploid, mostly triploid, plants. Apomictic Taraxacum is diplosporous, parthenogenetic, and has autonomous endosperm formation. Previous studies have indicated that these three apomixis elements are controlled by more than one locus in Taraxacum and that diplospory inherits as a dominant, monogenic trait ( Ddd; DIP). A bulked segregant analysis provided 34 AFLP markers that were linked to DIP and were, together with two microsatellite markers, used for mapping the trait. The map length was 18.6 cM and markers were found on both sides of DIP, corresponding to 5.9 and 12.7 cM, respectively. None of the markers completely co-segregated with DIP. Eight markers were selected for PCR-based marker development, of which two were successfully converted. In contrast to all other mapping studies of apomeiosis to date, our results showed no evidence for suppression of recombination around the DIP locus in Taraxacum. No obvious evidence for sequence divergence between the DIP and non- DIP homologous loci was found, and no hemizygosity at the DIP locus was detected. These results may indicate that apomixis is relatively recent in Taraxacum.

  19. Identifying Isotropic Events Using a Regional Moment Tensor Inversion

    SciTech Connect

    Ford, S R; Dreger, D S; Walter, W R

    2008-11-04

    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.

  20. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  1. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  2. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice

    PubMed Central

    2013-01-01

    Background The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo. Results In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. Conclusions We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression. PMID:24124870

  3. Mapping strategies: Chromosome 16 workshop

    SciTech Connect

    Not Available

    1989-01-01

    The following topics from a workshop on chromosome 16 are briefly discussed: genetic map of chromosome 16; chromosome breakpoint map of chromosome 16; integrated physical/genetic map of chromosome 16; pulsed field map of the 16p13.2--p13.3 region (3 sheets); and a report of the HGM10 chromosome 16 committee.

  4. A high-resolution map in the chromosomal region surrounding the Lps locus

    SciTech Connect

    Qureshi, S.T.; Lariviere, L.; Gros, P.

    1996-02-01

    The Lps locus on mouse chromosome 4 controls host responsiveness to lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria. The C3H/HeJ inbred mouse strain is characterized by a mutant Lps allele (Lps{sup d}) that renders it hyporesponsive to LPS and naturally tolerant of its lethal effects. To identify the Lps gene by a positional cloning strategy, we have analyzed a total of 1604 backcross mice from a preexisting interspecific backcross panel of 259 (Mus spretus x C57BL/6J)F1 x C57BL/6J and two novel panels of 597 (DBA/2J x C3H/HeJ)F1 x C3H/HeJ and 748 (C57BL/6J x C3H/HeJ)F1 x C3H/HeJ segregating at Lps. A total of 50 DNA markers have been mapped in a 11.8-cM span overlapping the Lps locus. This positions the Lps locus within a 1.1-cM interval, flanked proximally by a large cluster of markers, including three known genes (Cd30l, Hxb, and Ambp), and distally by two microsatellite markers (D4Mit7/D4Mit178). The localization of the Lps locus is several centimorgans proximal to that previously assigned. 52 refs., 5 figs., 2 tabs.

  5. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13) and refined localization of the SNRPN gene

    SciTech Connect

    Mutirangura, A.; Jayakumar, A.; Sutcliffe, J.S.; Nakao, M.; McKinney, M.J.; Beaudet, A.L.; Chinault, A.C.; Ledbetter, D.H. ); Buiting, K.; Horsthemke, B. )

    1993-12-01

    Since a previous report of a partial YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13), a complete contig spanning approximately 3.5 Mb has been developed. YACs were isolated from two human genomic libraries by PCR and hybridization screening methods. Twenty-three sequence-tagged sites (STSs) were mapped within the contig, a density of [approximately]1 per 200 kb. Overlaps between YAC clones were identified by Alu-PCR dot-blot analysis and confirmed by STS mapping or hybridization with ends of YAC inserts. The gene encoding small nuclear ribonucleoprotein-associated peptide N (SNRPN), recently identified as a candidate gene for Prader-Willi syndrome, was localized within this contig between markers PW71 and TD3-21. Loci mapped within and immediately flanking the Prader-Willi/Angelman chromosome region contig are ordered as follows: cen-IR39-ML34-IR4-3R-TD189-1-PW71-SNRPN-TD3-21-LS6-1-GABRB3,D15S97-GABRA5-IR10-1-CMW1-tel. This YAC contig will be a useful resource for more detailed physical mapping of the region, for generation of new DNA markers, and for mapping or cloning candidate genes for the Prader-Willi and Angelman syndromes. 36 refs., 2 figs., 2 tabs.

  6. Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics.

    PubMed

    Maduike, Nkabuije Z; Tehranchi, Ashley K; Wang, Jue D; Kreuzer, Kenneth N

    2014-01-01

    DNA replication in Escherichia coli is normally initiated at a single origin, oriC, dependent on initiation protein DnaA. However, replication can be initiated elsewhere on the chromosome at multiple ectopic oriK sites. Genetic evidence indicates that initiation from oriK depends on RNA-DNA hybrids (R-loops), which are normally removed by enzymes such as RNase HI to prevent oriK from misfiring during normal growth. Initiation from oriK sites occurs in RNase HI-deficient mutants, and possibly in wild-type cells under certain unusual conditions. Despite previous work, the locations of oriK and their impact on genome stability remain unclear. We combined 2D gel electrophoresis and whole genome approaches to map genome-wide oriK locations. The DNA copy number profiles of various RNase HI-deficient strains contained multiple peaks, often in consistent locations, identifying candidate oriK sites. Removal of RNase HI protein also leads to global alterations of replication fork migration patterns, often opposite to normal replication directions, and presumably eukaryote-like replication fork merging. Our results have implications for genome stability, offering a new understanding of how RNase HI deficiency results in R-loop-mediated transcription-replication conflict, as well as inappropriate replication stalling or blockage at Ter sites outside of the terminus trap region and at ribosomal operons.

  7. A polymorphic and hypervariable locus in the pseudoautosomal region of the CBA/H mouse sex chromosomes

    SciTech Connect

    Fennelly, J.; Laval, S.; Wright, E.; Plumb, M.

    1996-04-01

    We have identified a genomic locus (DXYH1) that is polymorphic and hypervariable within the CBA/H colony. Using a panel of C57BL/6 x Mus spretus backcross offspring, it was mapped to the distal end of the X chromosome. Pseudoautosomal inheritance was demonstrated through three generations of CBA/H x CBA/H and CBA/H x C57BL/6 crosses and confirmed through linkage to the Sxr locus in X/Y Sxr x 3H1 crosses. Meiotic recombination frequencies place DXYH1 {approximately}28% into the pseudoautosomal region from the boundary. The de novo generation of CBA/H variant DXYH1 restriction fragment length polymorphisms during spermatogenesis is suggestive of the germline instability associated with hypermutable human minisatellites. The absence of DXY1-related sequences in Mus spretus provides DNA sequence evidence to support the observed failure of X-Y pairing during meiosis and consequent hybrid infertility in C57BL/6 x Mus spretus male F1 offspring. 19 refs., 4 figs.

  8. Identifying isotropic events using a regional moment tensor inversion

    SciTech Connect

    Ford, S R; Dreger, D S; Walter, W R

    2008-07-16

    The deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, are calculated using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with a low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), but the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data has a good SNR. The sensitivity investigation is extended via the introduction of the network sensitivity solution, which takes

  9. Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group 1 of Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.; Endo, T. R.; Taylor, T.

    1996-01-01

    We studied the distribution of genes and recombination in wheat (Triticum aestivum) group 1 chromosomes by comparing high-density physical and genetic maps. Physical maps of chromosomes 1A, 1B, and 1D were generated by mapping 50 DNA markers on 56 single-break deletion lines. A consensus physical map was compared with the 1D genetic map of Triticum tauschii (68 markers) and a Triticeae group 1 consensus map (288 markers) to generate a cytogenetic ladder map (CLM). Most group 1 markers (86%) were present in five clusters that encompassed only 10% of the group 1 chromosome. This distribution may reflect that of genes because more than half of the probes were cDNA clones and 30% were PstI genomic. All 14 agronomically important genes in group 1 chromosomes were present in these clusters. Most recombination occurred in gene-cluster regions. Markers fell at an average distance of 244 kb in these regions. The CLM involving the Triticeae consensus genetic map revealed that the above distribution of genes and recombination is the same in other Triticeae species. Because of a significant number of common markers, our CLM can be used for comparative mapping and to estimate physical distances among markers in many Poaceae species including rice and maize. PMID:8978071

  10. Identifying Meteorite Source Regions Through Near-Earth Object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Binzel, R. P.

    2007-10-01

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs most likely gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source regions, we seek to gain insight into the original solar system sources for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects (NEOs). We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA IRTF. Using the Modified Gaussian Model (MGM) (Sunshine et al. 1993, JGR 98, 9075) as a mathematical tool (with no mineralogy interpretation), we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). We fit the continuum as a linear function in wavenumber space. We choose to include the geometric center of the band in this study in order to examine the asymmetry of the bands. Using this numerical data we can examine the differences of the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these classes, yielding probability distributions for our NEO data set being related to H, L, LL, and HED meteorites. Our meteorite correlation distribution is then convolved with an NEO source region model (Bottke et al. 2002, Icarus 156, 399) to shed light on connections between these meteorite classes and their asteroid belt origins.

  11. Linkage analyses of chromosome 18 markers do not identify a major susceptibility locus for bipolar affective disorder in the Old Order Amish

    SciTech Connect

    Pauls, D.L.; Paul, S.M. |; Allen, C.R.

    1995-09-01

    Previously reported linkage of bipolar affective disorder to DNA markers in the pericentromeric region of chromosome 18 was reexamined in a larger homogeneous sample of Old Order Amish families. Four markers (D18S21, D18S53, D18S44, and D18S40) were examined in three kindreds containing 31 bipolar I (BP I) individuals. Although linkage findings were replicated in the one previously studied Amish pedigree containing four BP I individuals, linkage to this region was excluded in the larger sample. If a susceptibility locus for bipolar disorder is located in this region of chromosome 18, it is of minor significance in this population. 40 refs., 1 fig., 5 tabs.

  12. Immunochip analysis identifies association of the RAD50/IL13 region with human longevity.

    PubMed

    Flachsbart, Friederike; Ellinghaus, David; Gentschew, Liljana; Heinsen, Femke-Anouska; Caliebe, Amke; Christiansen, Lene; Nygaard, Marianne; Christensen, Kaare; Blanché, Hélène; Deleuze, Jean-François; Derbois, Céline; Galan, Pilar; Büning, Carsten; Brand, Stephan; Peters, Anette; Strauch, Konstantin; Müller-Nurasyid, Martina; Hoffmann, Per; Nöthen, Markus M; Lieb, Wolfgang; Franke, Andre; Schreiber, Stefan; Nebel, Almut

    2016-06-01

    Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls. First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip-wide significant signal (PI mmunochip  = 7.01 × 10(-9) ) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PI mmunochip  < 5 × 10(-4) for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta-analysis of the combined French and Danish data after adjusting for multiple testing. In a meta-analysis of all three samples, rs2706372 reached a P-value of PI mmunochip+Repl  = 5.42 × 10(-7) (OR = 1.20; 95% CI = 1.12-1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life. PMID:27004735

  13. Immunochip analysis identifies association of the RAD50/IL13 region with human longevity.

    PubMed

    Flachsbart, Friederike; Ellinghaus, David; Gentschew, Liljana; Heinsen, Femke-Anouska; Caliebe, Amke; Christiansen, Lene; Nygaard, Marianne; Christensen, Kaare; Blanché, Hélène; Deleuze, Jean-François; Derbois, Céline; Galan, Pilar; Büning, Carsten; Brand, Stephan; Peters, Anette; Strauch, Konstantin; Müller-Nurasyid, Martina; Hoffmann, Per; Nöthen, Markus M; Lieb, Wolfgang; Franke, Andre; Schreiber, Stefan; Nebel, Almut

    2016-06-01

    Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls. First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip-wide significant signal (PI mmunochip  = 7.01 × 10(-9) ) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PI mmunochip  < 5 × 10(-4) for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta-analysis of the combined French and Danish data after adjusting for multiple testing. In a meta-analysis of all three samples, rs2706372 reached a P-value of PI mmunochip+Repl  = 5.42 × 10(-7) (OR = 1.20; 95% CI = 1.12-1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life.

  14. Brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Merino sheep maps to a 1.1-megabase region on ovine chromosome OAR2.

    PubMed

    Shariflou, M R; Wade, C M; Kijas, J; McCulloch, R; Windsor, P A; Tammen, I; Nicholas, F W

    2013-04-01

    A genome scan was conducted to map the autosomal recessive lethal disorder brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Poll Merino sheep. The scan involved 10 affected and 27 unaffected animals from a single Poll Merino/Merino sheep flock, which were genotyped with the Illumina Ovine SNP50 BeadChip. Association and homozygosity mapping analyses located the disorder in a region comprising 20 consecutive SNPs spanning 1.1 Mb towards the distal end of chromosome OAR2. All affected animals and none of the unaffected animals were homozygous for the associated haplotype in this region. These results provide the basis for identifying the causative mutation(s) and should enable the development of a DNA test to identify carriers in the Poll Merino sheep population. Understanding the molecular control of BCRHS may provide insight into the fundamental genetic control and regulation of the affected organ systems.

  15. Genetic mapping of the branchio-oto-renal syndrome and construction of YAC contig spanning the BOR region on chromosome 8q

    SciTech Connect

    Kumar, S.; Kimberling, W.J.; Bumegi, J.

    1994-09-01

    Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder which consists of external, middle and inner ear malformations, branchial cleft sinuses, cervical fistulas, mixed hearing loss and renal anomalies. The prevalence of BOR syndrome is approximately 1:40,000, and it has been reported to occur in about 2% of profoundly deaf children. The BOR syndrome has been localized to chromosome 8q. Initial localization results indicated a distance of about 15 cM between the flanking markers D8S87 and PENK for the BOR gene. This localization has been further refined, using new markers, to a distance of about 7 cM. The multipoint analysis was carried out using markers D8S285, PENK, D8S166, D8S260, D8S510, D8S553, D8S543, D8S530, D8S279, D8S164, D8S286 and D8S275. For cloning the BOR gene, an overlapping Yeast Artificial Chromosome (YAC) contig map of the critical region is being constructed. We have isolated eight YACs from the CEPH Mega YAC library and their size and quality are being characterized by PFGE and FISH analysis. Additional STSs and polymorphic markers developed from the region will be used to further refine the region and close the contig. The availability of this contig will be a useful resource for the systematic search for identifying transcribed sequences from this region.

  16. Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes.

    PubMed

    Musilova, Petra; Kubickova, Svatava; Horin, Petr; Vodicka, Roman; Rubes, Jiri

    2009-01-01

    Cross-species chromosome painting has been applied to most of the species making up the numerically small family Equidae. However, comparative mapping data were still lacking in Asiatic asses kulan (Equus hemionus kulan) and kiang (E. kiang). The set of horse arm-specific probes generated by laser microdissection was hybridized onto kulan (E. hemionus kulan) and kiang (E. kiang) chromosomes in order to establish a genome-wide chromosomal correspondence between these Asiatic asses and the horse. Moreover, region-specific probes were generated to determine fusion configuration and orientation of conserved syntenic blocks. The kulan karyotype (2n = 54) was ascertained to be almost identical to the previously investigated karyotype of onager E. h. onager (2n = 56). The only difference is in fusion/fission of chromosomes homologous to horse 2q/3q, which are involved in chromosome number polymorphism in many Equidae species. E. kiang karyotype differs from the karyotype of E. hemionus by two additional fusions 8q/15 and 7/25. Chromosomes equivalent to 2q and 3q are not fused in kiang individuals with 2n = 52. Several discrepancies in centromere positions among kulan, kiang and horse chromosomes have been described. Most of the chromosome fusions in Asiatic asses are of centromere-centromere type. Comparative chromosome painting in kiang completed the efforts to establish chromosomal homologies in all representatives of the family Equidae. Application of region-specific probes allows refinement comparative maps of Asiatic asses.

  17. Genetic isolation of a chromosome 1 region affecting susceptibility to hypertension-induced renal damage in the spontaneously hypertensive rat.

    PubMed

    St Lezin, E; Griffin, K A; Picken, M; Churchill, M C; Churchill, P C; Kurtz, T W; Liu, W; Wang, N; Kren, V; Zidek, V; Pravenec, M; Bidani, A K

    1999-08-01

    Linkage studies in the fawn-hooded hypertensive rat have suggested that genes influencing susceptibility to hypertension-associated renal failure may exist on rat chromosome 1q. To investigate this possibility in a widely used model of hypertension, the spontaneously hypertensive rat (SHR), we compared susceptibility to hypertension-induced renal damage between an SHR progenitor strain and an SHR congenic strain that is genetically identical except for a defined region of chromosome 1q. Backcross breeding with selection for the markers D1Mit3 and Igf2 on chromosome 1 was used to create the congenic strain (designated SHR.BN-D1Mit3/Igf2) that carries a 22 cM segment of chromosome 1 transferred from the normotensive Brown Norway rat onto the SHR background. Systolic blood pressure (by radiotelemetry) and urine protein excretion were measured in the SHR progenitor and congenic strains before and after the induction of accelerated hypertension by administration of DOCA-salt. At the same level of DOCA-salt hypertension, the SHR.BN-D1Mit3/Igf2 congenic strain showed significantly greater proteinuria and histologically assessed renal vascular and glomerular injury than the SHR progenitor strain. These findings demonstrate that a gene or genes that influence susceptibility to hypertension-induced renal damage have been trapped in the differential chromosome segment of the SHR.BN-D1Mit3/Igf2 congenic strain. This congenic strain represents an important new model for the fine mapping of gene(s) on chromosome 1 that affect susceptibility to hypertension-induced renal injury in the rat.

  18. Cloning and characterization of CpG islands of the human chromosome 1p36 region

    SciTech Connect

    Ellmeier, W.; Barnas, C.; Kobrna, A.

    1996-02-15

    This article reports on the localization of CpG islands to human chromosome 1p36 as a means for the isolation of genes using hybridization techniques. Two cDNA clones encode the human transcription factor E2F-2 and the dominant-negative helix-loop-helix gene ID3. Further information regarding the organization of human chromosome 1 was accomplished using electrophoresis. 11 refs., 3 figs.

  19. Identifying the Main Driver of Active Region Outflows

    NASA Astrophysics Data System (ADS)

    Baker, D.; van Driel-Gesztelyi, L.; Mandrini, C. H.; Démoulin, P.; Murray, M. J.

    2012-08-01

    Hinode's EUV Imaging Spectrometer (EIS) has discovered ubiquitous outflows of a few to 50 km s-1 from active regions (ARs). The characteristics of these outflows are very curious in that they are most prominent at the AR boundary and appear over monopolar magnetic areas. They are linked to strong non-thermal line broadening and are stronger in hotter EUV lines. The outflows persist for at least several days. Whereas red-shifted down flows observed in AR closed loops are well understood, to date there is no general consensus for the mechanism(s) driving blue-shifted AR-related outflows. We use Hinode EIS and X-Ray Telescope observations of AR 10942 coupled with magnetic modeling to demonstrate for the first time that the outflows originate from specific locations of the magnetic topology where field lines display strong gradients of magnetic connectivity, namely quasi-separatrix layers (QSLs), or in the limit of infinitely thin QSLs, separatrices. The strongest AR outflows were found to be in the vicinity of QSL sections located over areas of strong magnetic field. We argue that magnetic reconnection at QSLs, separating closed field lines of the AR and either large-scale externally connected or ‘open’ field lines, is a viable mechanism for driving AR outflows which are potentially sources of the slow solar wind. In fact, magnetic reconnection along QSLs (including separatricies) is the first theory to explain the most puzzling characteristics of the outflows, namely their occurrence over monopolar areas at the periphery of ARs and their longevity.

  20. Segment-Wise Genome-Wide Association Analysis Identifies a Candidate Region Associated with Schizophrenia in Three Independent Samples

    PubMed Central

    Rietschel, Marcella; Mattheisen, Manuel; Breuer, René; Schulze, Thomas G.; Nöthen, Markus M.; Levinson, Douglas; Shi, Jianxin; Gejman, Pablo V.; Cichon, Sven; Ophoff, Roel A.

    2012-01-01

    Recent studies suggest that variation in complex disorders (e.g., schizophrenia) is explained by a large number of genetic variants with small effect size (Odds Ratio∼1.05–1.1). The statistical power to detect these genetic variants in Genome Wide Association (GWA) studies with large numbers of cases and controls (∼15,000) is still low. As it will be difficult to further increase sample size, we decided to explore an alternative method for analyzing GWA data in a study of schizophrenia, dramatically reducing the number of statistical tests. The underlying hypothesis was that at least some of the genetic variants related to a common outcome are collocated in segments of chromosomes at a wider scale than single genes. Our approach was therefore to study the association between relatively large segments of DNA and disease status. An association test was performed for each SNP and the number of nominally significant tests in a segment was counted. We then performed a permutation-based binomial test to determine whether this region contained significantly more nominally significant SNPs than expected under the null hypothesis of no association, taking linkage into account. Genome Wide Association data of three independent schizophrenia case/control cohorts with European ancestry (Dutch, German, and US) using segments of DNA with variable length (2 to 32 Mbp) was analyzed. Using this approach we identified a region at chromosome 5q23.3-q31.3 (128–160 Mbp) that was significantly enriched with nominally associated SNPs in three independent case-control samples. We conclude that considering relatively wide segments of chromosomes may reveal reliable relationships between the genome and schizophrenia, suggesting novel methodological possibilities as well as raising theoretical questions. PMID:22723893

  1. SNPs in putative regulatory regions identified by human mouse comparative sequencing and transcription factor binding site data

    SciTech Connect

    Banerjee, Poulabi; Bahlo, Melanie; Schwartz, Jody R.; Loots, Gabriela G.; Houston, Kathryn A.; Dubchak, Inna; Speed, Terence P.; Rubin, Edward M.

    2002-01-01

    Genome wide disease association analysis using SNPs is being explored as a method for dissecting complex genetic traits and a vast number of SNPs have been generated for this purpose. As there are cost and throughput limitations of genotyping large numbers of SNPs and statistical issues regarding the large number of dependent tests on the same data set, to make association analysis practical it has been proposed that SNPs should be prioritized based on likely functional importance. The most easily identifiable functional SNPs are coding SNPs (cSNPs) and accordingly cSNPs have been screened in a number of studies. SNPs in gene regulatory sequences embedded in noncoding DNA are another class of SNPs suggested for prioritization due to their predicted quantitative impact on gene expression. The main challenge in evaluating these SNPs, in contrast to cSNPs is a lack of robust algorithms and databases for recognizing regulatory sequences in noncoding DNA. Approaches that have been previously used to delineate noncoding sequences with gene regulatory activity include cross-species sequence comparisons and the search for sequences recognized by transcription factors. We combined these two methods to sift through mouse human genomic sequences to identify putative gene regulatory elements and subsequently localized SNPs within these sequences in a 1 Megabase (Mb) region of human chromosome 5q31, orthologous to mouse chromosome 11 containing the Interleukin cluster.

  2. A large, dominant pedigree of atrioventricular septal defect (AVSD): Exclusion from the Down syndrome critical region on chromosome 21

    SciTech Connect

    Wilson, L.; Curtis, A.; Stephenson, A.; Goodship, J.; Burn, J. ); Korenberg, J.R.; Schipper, R.D. ); Allan, L. ); Chenevix-Trench, G. )

    1993-12-01

    The authors describe a large pedigree of individuals with autosomal dominant atrioventricular septal defect (AVSD). The pedigree includes affected individuals and individuals who have transmitted the defect but are not clinically affected. AVSDs are a rare congenital heart malformation that occurs as only 2.8% of isolated cardiac lesions. They are the predominant heart defect in children with Down syndrome, making chromosome 21 a candidate for genes involved in atrioventricular septal development. The authors have carried out a linkage study in the pedigree by using 10 simple-sequence polymorphisms from chromosome 21. Multipoint linkage analysis gives lod scores of less than [minus]2 for the region of trisomy 21 associated with heart defects, which excludes a locus within this region as the cause of the defect in this family. 34 refs., 5 figs.

  3. Chromosomal Q-heterochromatin regions in native highlanders of Pamir and Tien-Shan and in newcomers.

    PubMed

    Ibraimov, A I; Kurmanova, G U; Ginsburg, E Kh; Aksenovich, T I; Aksenrod, E I

    1990-01-01

    The variability of human chromosomal Q-heterochromatin regions (Q-HR) was studied in 385 newcomers well adapted to the extreme environmental conditions of Pamir and Tien-Shan, as well as in 284 representatives of the native population of these regions. Newcomers were found to represent a highly homogeneous group as regards all the quantitative characteristics of Q-HR variability, but at the same time they differed significantly from both native residents and individuals of similar nationality (Russians) living permanently at low altitude. Differences between these three groups in the amount of Q-HRs in their genome are discussed as evidence in favour of the hypothesis of the possible selective value of chromosomal Q-heterochromatin material in human adaptation to extreme environmental high-altitude conditions.

  4. Molecular and genetic studies on the region of translocation and duplication in the neuroblastoma cell line NGP at the 1p36.13-p36.32 chromosomal site.

    PubMed

    Casciano, I; Marchi, J V; Muresu, R; Volpi, E V; Rozzo, C; Opdenakker, G; Romani, M

    1996-05-16

    Cytogenetic and molecular studies suggest that chromosome 1p might contain oncosuppressor genes involved in the pathogenesis of neuroblastoma and other adult tumors. The isolation of these genes by the 'positional cloning' approach will be facilitated by the characterization of cell lines with well defined chromosomal aberrations. In the present report we provide molecular data on the NGP neuroblastoma cell line which contains a reciprocal t(1;15) translocation. Two regions, possibly hosting oncosuppressor genes, have been identified: one is distal to the ENO1 locus, the other one is comprised between PND and A12M2 and corresponds to that of a constitutional t(1;17) translocation described in a neuroblastoma patient. Genetic data also suggest that the NGP cell line, despite the presence of two chromosomes 1, might be hemizygous for the subtelomeric 1p region.

  5. CD28/CTLA-4 ligands: the gene encoding CD86 (B70/B7.2) maps to the same region as CD80 (B7/B7.1) gene in human chromosome 3q13-q23.

    PubMed

    Fernández-Ruiz, E; Somoza, C; Sánchez-Madrid, F; Lanier, L L

    1995-05-01

    CD86 (B70/B7.2) is an antigen of the immunoglobulin superfamily expressed on monocytes, dendritic cells and activated B, T, and natural killer cells. CD86 was recently identified as a second ligand for the T cell antigens CD28 and CTLA-4, and plays an important role in the co-stimulation of T cells in a primary immune response. We report here the assignment of the CD86 gene to human chromosome 3 using Southern blot analysis on a panel of hamster x human somatic cell hybrid genomic DNA. Fluorescence hybridization in situ on metaphase chromosomes coupled with GTG banding (G-bands by trypsin using Giemsa staining) confirmed this assignment and localized the CD86 gene to 3q13-q23 region. The CD86 gene is, therefore, located in the proximity of the CD80 (B7/B7.1) gene, the first identified ligand for CD28 and CTLA-4, previously mapped to chromosome 3q13.3-q21. Deletions, inversions and insertions of chromosome 3q21-q26, as well as translocations of 3q21 with other chromosomes have been described in many cases of acute myeloid leukemia (AML), acute non-lymphocytic leukemia (ANLL), chronic myeloid leukemia (CML) and myelodisplastic syndromes (MDS), suggesting that this region contains several genes involved in the leukemic process.

  6. Alteration of chromosome arm 6p is characteristic of primary mediastinal B-cell lymphoma, as identified by genome-wide allelotyping.

    PubMed

    Rigaud, G; Moore, P S; Taruscio, D; Scardoni, M; Montresor, M; Menestrina, F; Scarpa, A

    2001-06-01

    Five cases of primary mediastinal B-cell lymphoma (PMBL) each have been studied with 375 microsatellite markers from all 22 autosomes. Of the 151 genomic alterations among the 1,875 assays, only five were allelic losses. The remainder of the microsatellite alterations consisted of 114 allelic imbalances and 32 instabilities. Microsatellite alterations were found in all cases on chromosomal arms 6p and 9p. These allelic imbalances most likely are indicative of genetic amplification, a finding agreeing well with those of studies using either comparative genomic hybridization or arbitrarily primed polymerase chain reaction, in which amplification of chromosome arm 9p in PMBL has been found. The allelic imbalances on chromosome arm 6p always included marker D6S276 located at 6p21.3-p22.3, where the MHC class I genes reside. These allelic imbalances may be reflective of alterations in the expression of the MHC gene products, characteristic of PMBL. Allelic anomalies close to the MYB gene locus on 6q were detected in two cases and prompted the analysis of MYB rearrangements in a series of 30 lymphomas. One rearrangement was detected in one of 18 cases of PMBL and in none of 10 diffuse, large B-cell lymphomas and two T-cell lymphomas. Our genome-wide microsatellite analysis provides independent confirmation that PMBL is characterized by infrequent chromosomal losses and by frequent genetic alterations involving chromosomal arm 9p. For the first time, chromosomal arm 6p has been identified as a highly frequent target of genetic alterations in this tumor type. Finally, MYB may also be involved occasionally in PMBL pathogenesis.

  7. Two-dimensional electrophoretic mobility shift assay: identification and mapping of transcription factor CTCF target sequences within an FXYD5-COX7A1 region of human chromosome 19.

    PubMed

    Vetchinova, Anna S; Akopov, Sergey B; Chernov, Igor P; Nikolaev, Lev G; Sverdlov, Eugene D

    2006-07-01

    An approach for fast identification and mapping of transcription factor binding sites within long genomic sequences is proposed. Using this approach, 10 CCCTC-binding factor (CTCF) binding sites were identified within a 1-Mb FXYD5-COX7A1 human chromosome 19 region. In vivo binding of CTCF to these sites was verified by chromatin immunoprecipitation assay. CTCF binding sites were mapped within gene introns and intergenic regions, and some of them contained Alu-like repeated elements. PMID:16701069

  8. Bioinformatic Tools Identify Chromosome-Specific DNA Probes and Facilitate Risk Assessment by Detecting Aneusomies in Extra-embryonic Tissues

    PubMed Central

    Zeng, Hui; Weier, Jingly F; Wang, Mei; Kassabian, Haig J; Polyzos, Aris A; Baumgartner, Adolf; O’Brien, Benjamin; Weier, Heinz-Ulli G

    2012-01-01

    Despite their non-diseased nature, healthy human tissues may show a surprisingly large fraction of aneusomic or aneuploid cells. We have shown previously that hybridization of three to six non-isotopically labeled, chromosome-specific DNA probes reveals different proportions of aneuploid cells in individual compartments of the human placenta and the uterine wall. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes. Chromosome losses in placental or uterine tissues, on the other hand, were detected infrequently. A more thorough numerical analysis of all possible aneusomies occurring in these tissues and the investigation of their spatial as well as temporal distribution would further our understanding of the underlying biology, but it is hampered by the high cost of and limited access to DNA probes. Furthermore, multiplexing assays are difficult to set up with commercially available probes due to limited choices of probe labels. Many laboratories therefore attempt to develop their own DNA probe sets, often duplicating cloning and screening efforts underway elsewhere. In this review, we discuss the conventional approaches to the preparation of chromosome-specific DNA probes followed by a description of our approach using state-of-the-art bioinformatics and molecular biology tools for probe identification and manufacture. Novel probes that target gonosomes as well as two autosomes are presented as examples of rapid and inexpensive preparation of highly specific DNA probes for applications in placenta research and perinatal diagnostics. PMID:23450259

  9. Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane.

    PubMed

    Dufour, P; Grivet, L; D'Hont, A; Deu, M; Trouche, G; Glaszmann, J C; Hamon, P

    1996-06-01

    Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae. PMID:24166631

  10. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions

    PubMed Central

    Juhas, Mario; Ajioka, James W

    2015-01-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. PMID:26074421

  11. Evidence for positive selection of taurine genes within a QTL region on chromosome X associated with testicular size in Australian Brahman cattle

    PubMed Central

    2014-01-01

    Background Previous genome-wide association studies have identified significant regions of the X chromosome associated with reproductive traits in two Bos indicus-influenced breeds: Brahman cattle and Tropical Composites. Two QTL regions on this chromosome were identified in both breeds as strongly associated with scrotal circumference measurements, a reproductive trait previously shown to be useful for selection of young bulls. Scrotal circumference is genetically correlated with early age at puberty in both male and female offspring. These QTL were located at positions 69–77 and 81–92 Mb respectively, large areas each to which a significant number of potential candidate genes were mapped. Results To further characterise these regions, a bioinformatic approach was undertaken to identify novel non-synonymous SNP within the QTL regions of interest in Brahman cattle. After SNP discovery, we used conventional molecular assay technologies to perform studies of two candidate genes in both breeds. Non-synonymous SNP mapped to Testis-expressed gene 11 (Tex11) were associated (P < 0.001) with scrotal circumference in both breeds, and associations with percentage of normal sperm cells were also observed (P < 0.05). Evidence for recent selection was found as Tex11 SNP form a haplotype segment of Bos taurus origin that is retained within Brahman and Tropical Composite cattle with greatest reproductive potential. Conclusions Association of non-synonymous SNP presented here are a first step to functional genetic studies. Bovine species may serve as a model for studying the role of Tex11 in male fertility, warranting further in-depth molecular characterisation. PMID:24410912

  12. Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus.

    PubMed

    Teranishi, M; Shimada, Y; Hori, T; Nakabayashi, O; Kikuchi, T; Macleod, T; Pym, R; Sheldon, B; Solovei, I; Macgregor, H; Mizuno, S

    2001-01-01

    The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region. PMID:11321370

  13. Increased disomic homozygosity in the telomeric region of chromosome 21 among Down Syndrome individuals with duodenal atresia

    SciTech Connect

    Lamb, N.E.; Feingold, E.; Sherman, S.L.

    1994-09-01

    Although duodenal atresia (DA) is present in only 4-7% of all Down Syndrome (DS) individuals, 30-50% of all congenital duodenal atresias occur in the DS population, suggesting the presence of gene(s) on chromosome 21 that play an important role in intestinal development. We recently proposed a chromosome 21 gene dosage model to explain the phenotypic variance seen among DS individuals and presented a strategy to map genes involved in these phenotypic traits. We suggest that {open_quote}hyper-dosage{close_quote} resulting from normal allelic differences explains the phenotypic variation. A proportion of trisomic genotypes would exceed some activity threshold and express the trait. In affected individuals, this increase in expression is due to the presence of two identical copies of {open_quote}susceptibility{close_quote} allele, inherited from a heterozygous parent of origin. Individuals with trisomy 21 and a specific phenotypic defect should exhibit increased levels of disomic homozygosity in the region containing the gene involved in the defect`s etiology. These data can be used to map these genes. Using this approach, we have examined markers along the long arm of chromosome 21 among DS individuals with DA and determined the degree of disomic homozygosity at each marker. This frequency was compared to the level of disomic homozygosity among our entire DS study population consisting of approximately 380 DS families to test for linkage between DA and each marker. Preliminary analysis of 13 DS cases with DA indicates an increase in disomic homozygosity along the distal region of the chromosome, from HMG14 to D21S171, the most telomeric marker analyzed. An additional 15 cases are currently being analyzed to confirm and better define this candidate region.

  14. Constructing chromosome- and region-specific cosmid maps of the human genome.

    PubMed

    Carrano, A V; de Jong, P J; Branscomb, E; Slezak, T; Watkins, B W

    1989-01-01

    A chromosome-specific ordered set of cosmids would be a significant contribution toward understanding human chromosome structure and function. We are developing two parallel approaches for creating an ordered cosmid library of human chromosome 19 and other selected subregions of the human genome. The "bottom up" approach is used to establish sets of overlapping cosmids as islands or "contigs" along the chromosome, while the "top down" approach, using pulsed-field gel electrophoresis and yeast cloning, will establish a large-fragment map and close the inevitable gaps remaining from the "bottom up" approach. Source DNA consists of a single homolog of chromosome 19 from a hamster--human hybrid cell and human fragments cloned in yeast artificial chromosomes. We have constructed cosmid libraries in a vector that facilitates cloning small amounts of DNA, allows transcription of the insert termini, and contains unique sites for partial-digest mapping. Computer simulations of cosmid contig building suggest that near-optimal efficiency can be achieved with high-density restriction fragment digest schemes that can detect 20-30% overlap between cosmids. We developed the chemistry and data analysis tools to compare the ordering efficiencies of several cosmid restriction digest fingerprinting strategies. Restriction fragments from a four-cutter digest are labeled with a fluorochrome, separated by polyacrylamide gel electrophoresis, and detected after laser excitation as they traverse a fixed point in the gel. We have also developed the software to rapidly process the output signal to define and analyze the fragment peaks. Up to three cosmids (or three different digests of the same cosmid) plus a size standard are analyzed simultaneously in a single gel lane.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2698823

  15. Identification of the Ω4406 Regulatory Region, a Developmental Promoter of Myxococcus xanthus, and a DNA Segment Responsible for Chromosomal Position-Dependent Inhibition of Gene Expression

    PubMed Central

    Loconto, Jennifer; Viswanathan, Poorna; Nowak, Scott J.; Gloudemans, Monica; Kroos, Lee

    2005-01-01

    When starved, Myxococcus xanthus cells send signals to each other that coordinate their movements, gene expression, and differentiation. C-signaling requires cell-cell contact, and increasing contact brought about by cell alignment in aggregates is thought to increase C-signaling, which induces expression of many genes, causing rod-shaped cells to differentiate into spherical spores. C-signaling involves the product of the csgA gene. A csgA mutant fails to express many genes that are normally induced after about 6 h into the developmental process. One such gene was identified by insertion of Tn5 lac at site Ω4406 in the M. xanthus chromosome. Tn5 lac fused transcription of lacZ to the upstream Ω4406 promoter. In this study, the Ω4406 promoter region was identified by analyzing mRNA and by testing different upstream DNA segments for the ability to drive developmental lacZ expression in M. xanthus. The 5′ end of Ω4406 mRNA mapped to approximately 1.3 kb upstream of the Tn5 lac insertion. A 1.0-kb DNA segment from 0.8 to 1.8 kb upstream of the Tn5 lac insertion, when fused to lacZ and integrated at a phage attachment site in the M. xanthus chromosome, showed a similar pattern of developmental expression as Tn5 lac Ω4406. The DNA sequence upstream of the putative transcriptional start site was strikingly similar to promoter regions of other C-signal-dependent genes. Developmental lacZ expression from the 1.0-kb segment was abolished in a csgA mutant but was restored upon codevelopment of the csgA mutant with wild-type cells, which supply C-signal, demonstrating that the Ω4406 promoter responds to extracellular C-signaling. Interestingly, the 0.8-kb DNA segment immediately upstream of Tn5 lac Ω4406 inhibited expression of a downstream lacZ reporter in transcriptional fusions integrated at a phage attachment site in the chromosome but not at the normal Ω4406 location. To our knowledge, this is the first example in M. xanthus of a chromosomal position

  16. Exclusion of linkage between alcoholism and the MNS blood group region on chromosome 4q in multiplex families

    SciTech Connect

    Neiswanger, K.; Kaplan, B.; Hill, S.Y.

    1995-02-27

    Polymorphic DNA markers on the long arm of chromosome 4 were used to examine linkage to alcoholism in 20 multiplex pedigrees. Fifteen loci were determined for 124 individuals. Lod scores were calculated assuming both dominant and recessive disease modes of inheritance, utilizing incidence data by age and gender that allow for correction for variable age of onset and frequency of the disorder by gender. Under the assumption that alcoholism is homogeneous in this set of pedigrees, and that a recessive mode with age and gender correction is the most appropriate, the total lod scores for all families combined were uniformly lower than -2.0. This suggests an absence of linkage between the putative alcoholism susceptibility gene and markers in the region of the MNS blood group (4q28-31), a region for which we had previously found suggestive evidence of linkage to alcoholism. The 100 cM span of chromosome 4 studied includes the class I alcohol dehydrogenase (ADH) loci. Using the recessive mode, no evidence for linkage to alcoholism was found for the markers tested, which spanned almost the entire long arm of chromosome 4. Under the dominant mode, no evidence for linkage could be found for several of the markers. 36 refs., 1 fig., 3 tabs.

  17. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice

    PubMed Central

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-01-01

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs. PMID:27465821

  18. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice.

    PubMed

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-07-28

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs.

  19. Meiotic chromosome segregation mutants identified by insertional mutagenesis of fission yeast Schizosaccharomyces pombe; tandem-repeat, single-site integrations

    PubMed Central

    Davidson, Mari K.; Young, Nathan P.; Glick, Gloria G.; Wahls, Wayne P.

    2004-01-01

    Identification of genes required for segregation of chromosomes in meiosis (scm) is difficult because in most organisms high-fidelity chromosome segregation is essential to produce viable meiotic products. The biology of fission yeast Schizosaccharomyces pombe facilitates identification of such genes. Insertional mutagenesis was achieved by electroporation of linear ura4+ DNA into cells harboring a ura4 deletion. Approximately 1000 stable transformants were screened individually for the production of elevated frequencies of aneuploid spore colonies. Twenty-two candidates were subjected to a secondary screen for cytological defects. Five mutants exhibited significant levels of aberrant meiotic chromosome segregation, but were proficient for mating and completion of meiosis. Each mutant's phenotype cosegregated with its respective ura4+ transgene. The mutations were recessive and defined five complementation groups, revealing five distinct genes (scm1, scm2, scm3, scm4 and scm5). Southern blotting revealed single-site integration in each transformant, indicating that insertional mutagenesis is useful for generating single-locus scm mutations linked to a selectable marker. The transgene insertion points were refractory to analysis by inverse-PCR. Molecular and real-time PCR analyses revealed the presence of multiple, truncated copies of ura4+ at each integration site. Thus, electroporation-mediated insertional mutagenesis in S.pombe is preceded by exonucleolytic processing and concatomerization of the transforming DNA. PMID:15316103

  20. Meiotic chromosome segregation mutants identified by insertional mutagenesis of fission yeast Schizosaccharomyces pombe; tandem-repeat, single-site integrations.

    PubMed

    Davidson, Mari K; Young, Nathan P; Glick, Gloria G; Wahls, Wayne P

    2004-01-01

    Identification of genes required for segregation of chromosomes in meiosis (scm) is difficult because in most organisms high-fidelity chromosome segregation is essential to produce viable meiotic products. The biology of fission yeast Schizosaccharomyces pombe facilitates identification of such genes. Insertional mutagenesis was achieved by electroporation of linear ura4+ DNA into cells harboring a ura4 deletion. Approximately 1000 stable transformants were screened individually for the production of elevated frequencies of aneuploid spore colonies. Twenty-two candidates were subjected to a secondary screen for cytological defects. Five mutants exhibited significant levels of aberrant meiotic chromosome segregation, but were proficient for mating and completion of meiosis. Each mutant's phenotype cosegregated with its respective ura4+ transgene. The mutations were recessive and defined five complementation groups, revealing five distinct genes (scm1, scm2, scm3, scm4 and scm5). Southern blotting revealed single-site integration in each transformant, indicating that insertional mutagenesis is useful for generating single-locus scm mutations linked to a selectable marker. The transgene insertion points were refractory to analysis by inverse-PCR. Molecular and real-time PCR analyses revealed the presence of multiple, truncated copies of ura4+ at each integration site. Thus, electroporation-mediated insertional mutagenesis in S.pombe is preceded by exonucleolytic processing and concatomerization of the transforming DNA. PMID:15316103

  1. Chromosomal regions 22q13 and 3p25 may harbor quantitative trait loci influencing both age at menarche and bone mineral density.

    PubMed

    Pan, Feng; Xiao, Peng; Guo, Yan; Liu, Yong-Jun; Deng, Hong-Yi; Recker, Robert R; Deng, Hong-Wen

    2008-05-01

    Late age at menarche (AAM), an important type of endocrinopathy in females, is associated with lower bone mineral density (BMD), a major risk factor for osteoporosis. The correlation is mainly mediated through common genetic factors, which are largely unknown. A bivariate genome-wide linkage scan was conducted on 2,522 females from 414 Caucasian pedigrees to identify quantitative trait loci influencing both AAM and BMD. The strongest linkage signal was detected on chromosome 22q13. Other regions such as the 3q13, 3p25, 7p15, and 15q13 were also suggested. The inferred promising candidate genes in the linkage regions may contribute to our understanding of pathogenesis of endocrinopathy and osteoporosis in females.

  2. Characterisation of the Nevoid basal cell carcinoma (Gorlin`s) syndrome (NBCCS) gene region on chromosome 9q22-q31

    SciTech Connect

    Morris, D.J.; Digweed, M.; Sperling, K.

    1994-09-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominantly inherited malignancy-associated disease of unknown etiology. The gene has been mapped to chromosome 9q22-q31 by us and other groups, using linkage analysis and loss of heterozygosity studies. Subsequent linkage and haplotype analyses from 133 meioses in NBCCS families has refined the position of the gene between D9S12 and D9S287. Since the gene for Fanconi`s Anaemia type C (FAAC) has been assigned to the same 9q region, we have performed linkage analysis between FACC and NBCCCS in NBCCS families. No recombination has been observed between NBCCS and FACC and maximum lod scores of 34.98 and 11.94 occur for both diseases at the markers D9S196/D9S197. Southern blot analysis using an FACC cDNA probe has revealed no detectable rearrangements in our NBCCS patients. We have established a YAC contig spanning the region from D9S12 to D9S176 and STS content mapping in 22 YACs has allowed the ordering of 12 loci in the region, including the xeroderma pigmentosum type A (XPAC) gene, as follows: D9S151/D9S12P1 - D9S12P2 - D9S197 - D9S196 - D9S280 - FACC - D9S287/XPAC - D9S180 - D9S6 - D9S176. Using the contig we have been able to eliminate the {alpha}1 type XV collagen gene and the markers D9S119 and D9S297 from the NBCCS candidate region. Twelve YACs have been used to screen a chromosome 9 cosmid library and more than 1000 cosmids from the region have been identified to be used for the construction of a cosmid contig. A selection of these cosmids will be used for the isolation of coding sequencing from the region.

  3. Chromosomal Q-heterochromatin regions in the indigenous population of the northern part of West Siberia and in new migrants.

    PubMed

    Ibraimov, A I; Aksenrod, E I; Kurmanova, G U; Turapov, O A

    1991-01-01

    The variability of Q-heterochromatin regions (Q-HR) was studied in native residents of the northern part of West Siberia, viz Yakuts (n = 127), Selkups (n = 90) and Khants (n = 54), as well as in newcomers including oil-borers (n = 43) and children (n = 113) living permanently in this part of the USSR. The major quantitative characteristics of chromosomal Q-HR variability were shown to be very similar in oil-borers and natives, and this is considered to be the result of specific selection of individuals according to the amount of Q-HRs in their genome. The hypothesis on the possible selective value of chromosomal Q-HRs in human adaptation to extreme environmental conditions of the extreme north is discussed.

  4. The human FGF9 gene maps to chromosomal region 13q11-q12

    SciTech Connect

    Mattei, M.G. Penault-Llorca, F.; Coulier, F.; Birnbaum, D.

    1995-10-10

    The FGF gene family (fibroblast growth factor) currently comprises nine members: FGF1 to FGF9. FGFs are peptide regulatory factors acting through four distinct tyrosine kinase receptors and involved in various biological processes during embryogenesis and adult life, including implantation, morphogenesis, angiogenesis, and possibly tumorigensis. To date the chromosomal localizations of only seven human FGF and eight mouse Fgf genes are known. They are localized in various areas of the human and mouse genomes, except for FGF3 and FGF4, which are tandemly linked on chromosome 11 in humans and 7 in mice. The determination of the chromosomal localization of FGF and FGF receptor genes has often been instrumental in linking human disease or mouse spontaneous mutations to molecular alterations and is therefore of particular interest. Radioactive chromosomal in situ hybridization was used to map the most recently isolated member of the family, FGF9, in the human genome. The probe for FGF9 was pFGF9-FP, a plasmid containing a 0.5-kb product of amplification by polymerase chain reaction derived from our previous experiments and subcloned into a Bluescript vector. In situ hybridization was performed according to published procedures. 9 refs., 1 fig.

  5. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3

    SciTech Connect

    White, P.S.; Maris, J.M.; Beltinger, C.

    1995-06-06

    Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes-DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2-were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH. 31 refs., 4 figs.

  6. Physical map of mouse Chromosome 17 in the region relevant for positional cloning of the hybrid sterility 1 gene

    SciTech Connect

    Trachtulec, Z.; Vincek, V.; Hamvas, R.M.J.

    1994-09-01

    Hybrid sterility 1 (Hst1) is the major gene responsible for sterility of male hybrids between Mus musculus and certain laboratory strains. Thus, Hst1 is of importance in studying both postreproductive isolation of closely related species and male fertility. It has been mapped to mouse chromosome 17 in the region corresponding to the third inversion of the t haplotypes. The aim of the present study was to construct a physical map of the Hst1 region as the first step in an effort to clone the gene. Three yeast artificial chromosome (YAC) libraries (Princeton, Whitehead, and ICRF) were screened with polymerase chain reaction (PCR) oligonucleotide primers and DNA probes specific for loci previously mapped into the region of the third inversion. The isolated YAC clones were restriction mapped and arranged into contigs. Sixteen YAC clones were arranged into a single contig encompassing a region approximately 2000 kb long based on restriction mapping of highly overlapping but independently derived YAC clones. Five new loci in the region of the third inversion were mappd and the order and approximate physical distances of 12 loci established in this contig. The Hst1 gene maps approximately 0.2 cM proximal to the D17Ph1 locus encompassed by the YAC contig. Since the contig extends at least 1200 kb proximal to D17Ph1, it should contain the Hst1 gene.

  7. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci.

    PubMed

    Kachuri, Linda; Amos, Christopher I; McKay, James D; Johansson, Mattias; Vineis, Paolo; Bueno-de-Mesquita, H Bas; Boutron-Ruault, Marie-Christine; Johansson, Mikael; Quirós, J Ramón; Sieri, Sabina; Travis, Ruth C; Weiderpass, Elisabete; Le Marchand, Loic; Henderson, Brian E; Wilkens, Lynne; Goodman, Gary E; Chen, Chu; Doherty, Jennifer A; Christiani, David C; Wei, Yongyue; Su, Li; Tworoger, Shelley; Zhang, Xuehong; Kraft, Peter; Zaridze, David; Field, John K; Marcus, Michael W; Davies, Michael P A; Hyde, Russell; Caporaso, Neil E; Landi, Maria Teresa; Severi, Gianluca; Giles, Graham G; Liu, Geoffrey; McLaughlin, John R; Li, Yafang; Xiao, Xiangjun; Fehringer, Gord; Zong, Xuchen; Denroche, Robert E; Zuzarte, Philip C; McPherson, John D; Brennan, Paul; Hung, Rayjean J

    2016-01-01

    Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study were identified through a targeted deep sequencing (average depth of coverage greater than 4000×) of 576 individuals. Subsequently, 4652 SNPs, including 1108 novel SNPs, were genotyped in 5164 cases and 5716 controls of European ancestry. After adjusting for known risk loci, rs2736100 and rs401681, we identified a new, independent lung cancer susceptibility variant in LPCAT1: rs139852726 (OR = 0.46, P = 4.73×10(-9)), and three new adenocarcinoma risk variants in TERT: rs61748181 (OR = 0.53, P = 2.64×10(-6)), rs112290073 (OR = 1.85, P = 1.27×10(-5)), rs138895564 (OR = 2.16, P = 2.06×10(-5); among young cases, OR = 3.77, P = 8.41×10(-4)). In addition, we found that rs139852726 (P = 1.44×10(-3)) was associated with telomere length in a sample of 922 healthy individuals. The gene-based SKAT-O analysis implicated TERT as the most relevant gene in the 5p15.33 region for adenocarcinoma (P = 7.84×10(-7)) and lung cancer (P = 2.37×10(-5)) risk. In this largest fine-mapping study to investigate a large number of rare and novel variants within 5p15.33, we identified novel lung and adenocarcinoma susceptibility loci with large effects and provided support for the role of telomere length as the potential underlying mechanism.

  8. Loss of heterozygosity analysis of microsatellites on multiple chromosome regions in dysplasia and squamous cell carcinoma of the esophagus

    PubMed Central

    LIU, MING; ZHANG, FENG; LIU, SHEN; ZHAO, WEN; ZHU, JING; ZHANG, XIAOLI

    2011-01-01

    The objective of this study was to characterize the molecular events in the carcinogenesis of esophageal squamous cell carcinoma (ESCC) and to identify biomarkers for early detection of the disease. Matched precancerous and cancerous tissues resected from 34 esophageal cancer patients from Chongqing, southern China, were compared to evaluate the extent of loss of heterozygosity (LOH). Sixteen microsatellite markers on chromosome regions 3p, 4p, 5q, 8p, 9p, 9q, 11p, 13q and 17p were used for PCR-based LOH analysis. The overall frequency of LOH at the 16 microsatellite loci was significantly increased as the pathological status of the resection specimens changed from low-grade dysplasia (LGD) to high-grade dysplasia (HGD) and SCC (P<0.001). A total of 8 markers showed LOH in the LGD samples. In addition, heterozygosity was regained at 4 loci in the SCC samples of 4 patients, respectively, in comparison to the results for these loci in the HGD samples. The overall rate of LOH increased significantly with the deterioration of the lesions, indicating that tumorigenesis of the esophageal squamous epithelia is a progressive process involving accumulative changes in LOH. The 8 loci showing allelic loss in the LGD samples may be involved in the early-stage tumorigenesis of ESCC, and LOH analysis at these loci may help improve the early detection of this disease. Regain of heterozygosity found in certain patients suggests the possibility of genetic heterogeneity in the tumori-genesis of esophageal cancer. PMID:22977611

  9. An Unstable Trinucleotide-Repeat Region on Chromosome 13 Implicated in Spinocerebellar Ataxia: A Common Expansion Locus

    PubMed Central

    Vincent, John B; Neves-Pereira, Maria L.; Paterson, Andrew D.; Yamamoto, Etsuko; Parikh, Sagar V.; Macciardi, Fabio; Gurling, Hugh M.D.; Potkin, Steve G.; Pato, Carlos N.; Macedo, Antonio; Kovacs, Maria; Davies, Marilyn; Lieberman, Jeffrey A.; Meltzer, Herbert Y.; Petronis, Arturas; Kennedy, James L.

    2000-01-01

    Larger CAG/CTG trinucleotide-repeat tracts in individuals affected with schizophrenia (SCZ) and bipolar affective disorder (BPAD) in comparison with control individuals have previously been reported, implying a possible etiological role for trinucleotide repeats in these diseases. Two unstable CAG/CTG repeats, SEF2-1B and ERDA1, have recently been cloned, and studies indicate that the majority of individuals with large repeats as detected by repeat-expansion detection (RED) have large repeat alleles at these loci. These repeats do not show association of large alleles with either BPAD or SCZ. Using RED, we have identified a BPAD individual with a very large CAG/CTG repeat that is not due to expansion at SEF2-1B or ERDA1. From this individual’s DNA, we have cloned a highly polymorphic trinucleotide repeat consisting of (CTA)n (CTG)n, which is very long (∼1,800 bp) in this patient. The repeat region localizes to chromosome 13q21, within 1.2 cM of fragile site FRA13C. Repeat alleles in our sample were unstable in 13 (5.6%) of 231 meioses. Large alleles (>100 repeats) were observed in 14 (1.25%) of 1,120 patients with psychosis, borderline personality disorder, or juvenile-onset depression and in 5 (.7%) of 710 healthy controls. Very large alleles were also detected for Centre d’Etude Polymorphisme Humaine (CEPH) reference family 1334. This triplet expansion has recently been reported to be the cause of spinocerebellar ataxia type 8 (SCA8); however, none of our large alleles above the disease threshold occurred in individuals either affected by SCA or with known family history of SCA. The high frequency of large alleles at this locus is inconsistent with the much rarer occurrence of SCA8. Thus, it seems unlikely that expansion alone causes SCA8; other genetic mechanisms may be necessary to explain SCA8 etiology. PMID:10712198

  10. Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs.

    PubMed

    Riggio, V; Matika, O; Pong-Wong, R; Stear, M J; Bishop, S C

    2013-05-01

    The genetic architecture underlying nematode resistance and body weight in Blackface lambs was evaluated comparing genome-wide association (GWA) and regional heritability mapping (RHM) approaches. The traits analysed were faecal egg count (FEC) and immunoglobulin A activity against third-stage larvae from Teladorsagia circumcincta, as indicators of nematode resistance, and body weight in a population of 752 Scottish Blackface lambs, genotyped with the 50k single-nucleotide polymorphism (SNP) chip. FEC for both Nematodirus and Strongyles nematodes (excluding Nematodirus), as well as body weight were collected at approximately 16, 20 and 24 weeks of age. In addition, a weighted average animal effect was estimated for both FEC and body weight traits. After quality control, 44 388 SNPs were available for the GWA analysis and 42 841 for the RHM, which utilises only mapped SNPs. The same fixed effects were used in both analyses: sex, year, management group, litter size and age of dam, with day of birth as covariate. Some genomic regions of interest for both nematode resistance and body weight traits were identified, using both GWA and RHM approaches. For both methods, strong evidence for association was found on chromosome 14 for Nematodirus average animal effect, chromosome 6 for Strongyles FEC at 16 weeks and chromosome 6 for body weight at 16 weeks. Across the entire data set, RHM identified more regions reaching the suggestive level than GWA, suggesting that RHM is capable of capturing some of the variation not detected by GWA analyses.

  11. The First Cytogenetic Data on Strumigenys louisianae Roger, 1863 (Formicidae: Myrmicinae: Dacetini): The Lowest Chromosome Number in the Hymenoptera of the Neotropical Region

    PubMed Central

    Alves-Silva, Ana Paula; Barros, Luísa Antônia Campos; Chaul, Júlio Cézar Mário; Pompolo, Silvia das Graças

    2014-01-01

    In the present study, the first cytogenetic data was obtained for the ant species Strumigenys louisianae, from a genus possessing no previous cytogenetic data for the Neotropical region. The chromosome number observed was 2n = 4, all possessing metacentric morphology. Blocks rich in GC base pairs were observed in the interstitial region of the short arm of the largest chromosome pair, which may indicate that this region corresponds to the NORs. The referred species presented the lowest chromosome number observed for the subfamily Myrmicinae and for the Hymenoptera found in the Neotropical region. Observation of a low chromosome number karyotype has been described in Myrmecia croslandi, in which the occurrence of tandem fusions accounts for the most probable rearrangement for its formation. The accumulation of cytogenetic data may carry crucial information to ensure deeper understanding of the systematics of the tribe Dacetini. PMID:25379715

  12. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max).

    PubMed

    Mamidi, Sujan; Lee, Rian K; Goos, Jay R; McClean, Phillip E

    2014-01-01

    Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection.

  13. Genome-Wide Association Studies Identifies Seven Major Regions Responsible for Iron Deficiency Chlorosis in Soybean (Glycine max)

    PubMed Central

    Mamidi, Sujan; Lee, Rian K.; Goos, Jay R.; McClean, Phillip E.

    2014-01-01

    Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection. PMID:25225893

  14. Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13

    PubMed Central

    Lobo, Neil F; Behura, Susanta K; Aggarwal, Rajat; Chen, Ming-Shun; Collins, Frank H; Stuart, Jeff J

    2006-01-01

    Background To have an insight into the Mayetiola destructor (Hessian fly) genome, we performed an in silico comparative genomic analysis utilizing genetic mapping, genomic sequence and EST sequence data along with data available from public databases. Results Chromosome walking and FISH were utilized to identify a contig of 50 BAC clones near the telomere of the short arm of Hessian fly chromosome X2 and near the avirulence gene vH13. These clones enabled us to correlate physical and genetic distance in this region of the Hessian fly genome. Sequence data from these BAC ends encompassing a 760 kb region, and a fully sequenced and assembled 42.6 kb BAC clone, was utilized to perform a comparative genomic study. In silico gene prediction combined with BLAST analyses was used to determine putative orthology to the sequenced dipteran genomes of the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, and to infer evolutionary relationships. Conclusion This initial effort enables us to advance our understanding of the structure, composition and evolution of the genome of this important agricultural pest and is an invaluable tool for a whole genome sequencing effort. PMID:16412254

  15. Multiple Sex-Associated Regions and a Putative Sex Chromosome in Zebrafish Revealed by RAD Mapping and Population Genomics

    PubMed Central

    Anderson, Jennifer L.; Rodríguez Marí, Adriana; Braasch, Ingo; Amores, Angel; Hohenlohe, Paul; Batzel, Peter; Postlethwait, John H.

    2012-01-01

    Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome. PMID:22792396

  16. Polarity and Temporality of High-Resolution Y-Chromosome Distributions in India Identify Both Indigenous and Exogenous Expansions and Reveal Minor Genetic Influence of Central Asian Pastoralists

    PubMed Central

    Sengupta, Sanghamitra; Zhivotovsky, Lev A.; King, Roy; Mehdi, S. Q.; Edmonds, Christopher A.; Chow, Cheryl-Emiliane T.; Lin, Alice A.; Mitra, Mitashree; Sil, Samir K.; Ramesh, A.; Usha Rani, M. V.; Thakur, Chitra M.; Cavalli-Sforza, L. Luca; Majumder, Partha P.; Underhill, Peter A.

    2006-01-01

    Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000–15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era—not Indo-European—expansions have shaped the distinctive South Asian Y-chromosome landscape. PMID:16400607

  17. Genomic Regions Identified by Overlapping Clusters of Nominally-Positive SNPs from Genome-Wide Studies of Alcohol and Illegal Substance Dependence

    PubMed Central

    Johnson, Catherine; Drgon, Tomas; Walther, Donna; Uhl, George R.

    2011-01-01

    Declaring “replication” from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication is unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally-significant association in each of several independent samples. This approach provides one “nontemplate” approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 M SNP GWA results for dependence on: a) alcohol (including many individuals with dependence on other addictive substances) and b) at least one illegal substance (including many individuals dependent on alcohol). This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally-significant SNPs from samples of the same racial/ethnic background identify the same sets of chromosomal regions. It identifies several genes that are also reported in other independent alcohol-dependence GWA datasets. There is more modest confidence in: a) identification of individual chromosomal regions and genes that are not also identified by data from other independent samples, b) the more modest overlap between results from samples of different racial/ethnic backgrounds and c) the extent to which any gene not identified herein is excluded, since the power of each of these individual samples is modest. Nevertheless, the strong overlap identified among the samples with similar racial/ethnic backgrounds supports contributions to individual differences in vulnerability to addictions that come from newer

  18. Peopling of the North Circumpolar Region--insights from Y chromosome STR and SNP typing of Greenlanders.

    PubMed

    Olofsson, Jill Katharina; Pereira, Vania; Børsting, Claus; Morling, Niels

    2015-01-01

    The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 17 Y-chromosomal short tandem repeats (Y-STRs). Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343). Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766) and Q-NWT01 (xM265) were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA) of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a.) using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265) lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265) lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.

  19. Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22.

    PubMed

    Zhao, Z; Jin, L; Fu, Y X; Ramsay, M; Jenkins, T; Leskinen, E; Pamilo, P; Trexler, M; Patthy, L; Jorde, L B; Ramos-Onsins, S; Yu, N; Li, W H

    2000-10-10

    Human DNA sequence variation data are useful for studying the origin, evolution, and demographic history of modern humans and the mechanisms of maintenance of genetic variability in human populations, and for detecting linkage association of disease. Here, we report worldwide variation data from a approximately 10-kilobase noncoding autosomal region. We identified 75 variant sites in 64 humans (128 sequences) and 463 variant sites among the human, chimpanzee, and orangutan sequences. Statistical tests suggested that the region is selectively neutral. The average nucleotide diversity (pi) across the region was 0.088% among all of the human sequences obtained, 0.085% among African sequences, and 0.082% among non-African sequences, supporting the view of a low nucleotide diversity ( approximately 0.1%) in humans. The comparable pi value in non-Africans to that in Africans indicates no severe bottleneck during the evolution of modern non-Africans; however, the possibility of a mild bottleneck cannot be excluded because non-Africans showed considerably fewer variants than Africans. The present and two previous large data sets all show a strong excess of low frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The mutation rate was estimated to be 1.15 x 10(-9) per nucleotide per year. Estimates of the long-term effective population size N(e) by various statistical methods were similar to those in other studies. The age of the most recent common ancestor was estimated to be approximately 1.29 million years ago among all of the sequences obtained and approximately 634,000 years ago among the non-African sequences, providing the first evidence from a noncoding autosomal region for ancient human histories, even among non-Africans.

  20. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize.

    PubMed

    Almeida, Gustavo Dias; Nair, Sudha; Borém, Aluízio; Cairns, Jill; Trachsel, Samuel; Ribaut, Jean-Marcel; Bänziger, Marianne; Prasanna, Boddupalli M; Crossa, Jose; Babu, Raman

    2014-01-01

    Identifying quantitative trait loci (QTL) of sizeable effects that are expressed in diverse genetic backgrounds across contrasting water regimes particularly for secondary traits can significantly complement the conventional drought tolerance breeding efforts. We evaluated three tropical maize biparental populations under water-stressed and well-watered regimes for drought-related morpho-physiological traits, such as anthesis-silking interval (ASI), ears per plant (EPP), stay-green (SG) and plant-to-ear height ratio (PEH). In general, drought stress reduced the genetic variance of grain yield (GY), while that of morpho-physiological traits remained stable or even increased under drought conditions. We detected consistent genomic regions across different genetic backgrounds that could be target regions for marker-assisted introgression for drought tolerance in maize. A total of 203 QTL for ASI, EPP, SG and PEH were identified under both the water regimes. Meta-QTL analysis across the three populations identified six constitutive genomic regions with a minimum of two overlapping traits. Clusters of QTL were observed on chromosomes 1.06, 3.06, 4.09, 5.05, 7.03 and 10.04/06. Interestingly, a ~8-Mb region delimited in 3.06 harboured QTL for most of the morpho-physiological traits considered in the current study. This region contained two important candidate genes viz., zmm16 (MADS-domain transcription factor) and psbs1 (photosystem II unit) that are responsible for reproductive organ development and photosynthate accumulation, respectively. The genomic regions identified in this study partially explained the association of secondary traits with GY. Flanking single nucleotide polymorphism markers reported herein may be useful in marker-assisted introgression of drought tolerance in tropical maize.

  1. Inversion of the Chromosomal Region between Two Mating Type Loci Switches the Mating Type in Hansenula polymorpha

    PubMed Central

    Maekawa, Hiromi; Kaneko, Yoshinobu

    2014-01-01

    Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci. PMID:25412462

  2. Inversion of the chromosomal region between two mating type loci switches the mating type in Hansenula polymorpha.

    PubMed

    Maekawa, Hiromi; Kaneko, Yoshinobu

    2014-11-01

    Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci.

  3. Molecular cytogenetic analysis of Inv Dup(15) chromosomes, using probes specific for the Pradar-Willi/Angelman syndrome region: Clinical implications

    SciTech Connect

    Leana-Cox, J. ); Jenkins, L. ); Palmer, C.G.; Plattner, R. ); Sheppard, L. ); Flejter, W.L. ); Zackowski, J. ); Tsien, F. ); Schwartz, S. )

    1994-05-01

    Twenty-seven cases of inverted duplications of chromosome 15 (inv dup[15]) were investigated by FISH with two DNA probes specific for the Prader-Willi syndrome/Angelman syndrome (PWS/AS) region on proximal 15q. Sixteen of the marker chromosomes displayed two copies of each probe, while in the remaining 11 markers no hybridization was observed. A significant association was found between the presence of this region and an abnormal phenotype (P<.01). This is the largest study to date of inv dup(15) chromosomes, that uses molecular cytogenetic methods and is the first to report a significant association between the presence of a specific chromosomal region in such markers and an abnormal phenotype. 30 refs., 1 fig., 4 tabs.

  4. Expanded conserved linkage group between human 16p13 and the Scid region of the mouse chromosome 16

    SciTech Connect

    Deng, Z.M.; Siciliano, M.J.; Davisson, M.T.

    1994-09-01

    Knowledge of homologies between human and mouse chromosomes is essential for understanding chromosomal evolution and the development of experimental models for human disease. We have reported the identification of a conserved linkage group between human 16p13 and the centromeric portion of the mouse 16. Defining the extent of this linkage conservation has significant biomedical implications since that region of mouse genome contains the Scid mutation and the human 16p13 contains genes that are involved in DNA repair and certain types of human leukemia as well as other diseases such as Rubinstein-Taybi Syndrome. Here, this conserved linkage group has been defined and expanded. It now contains 5 genetic loci and spans more than 3 Mb in human and 23 cM in mouse. The 5 loci are PRM1,2 (protamine 1 and 2), NOP3 (a subclone of D16S237), GSPT1 (a gene involved in the regulation of G1 to S phase transition), MYH11 (a human smooth muscle myosin heavy chain gene) and MRP (multi-drug resistant-associated protein gene). Using a panel of human-rodent hybrids that are informative for different portions of human 16, we have established the following order on human 16p: telomere-NOP3-PRM1,2-GSPT1-(MYH11,MRP)-centromere. The genes were assigned to the mouse chromosome 16 by a mouse-Chinese hamster somatic cell hybrid panel informative for mouse chromosomes. Linkage analysis using backcross mice informative for the Scid mutation indicated the following order and genetic distance (in cM) in mouse: centromere-Nop3-11.7-Prm1-1.4-Gspt1-8.2-(Myh11,Mrp)-1.4-Scid-telomere.

  5. Mapping and cloning of the critical region for the spineocerebellar ataxia Type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1. 2 Mb

    SciTech Connect

    Banfi, S.; McCall, A.E.; Zoghbi, H.Y.; Kwiatkowski, T.J. Jr.; Chinault, A.C. ); Ranum, L.P.W.; Orr, H.T. )

    1993-12-01

    The gene responsible for spinocerebellar ataxia type 1 (SCA1) has been localized to a 6.7-cM region between the centromeric marker D6S109 and the telomeric marker D6S89. The authors screened two yeast artificial chromosome (YAC) libraries using sequence-tagged sites at D6S89 and at newly identified markers in 6p22-p23. Fifty YAC clones were identified and 34 insert termini were isolated from some of these YACs for detailed overlap mapping and long-range restriction analysis. A large YAC contig estimated to span 2.5 Mb was developed and genetic analysis in five large SCA1 kindreds using highly informative dinucleotide repeat polymorphisms mapped to this contig allowed the identification of D6S274 as the closest centromeric flanking marker for SCA1. Long-range restriction analysis determined the size for the critical SCA1 region, as defined by the two flanking markers D6S274 and D6S89, to be 1.2 Mb. This region is spanned by a minimum set of four nonchimeric YAC clones. The development of a 2.5-Mb YAC contig in 6p22-p23 provides valuable reagents for characterization of this genomic region and for the cloning of the SCA1 gene. 34 refs., 4 figs., 2 tabs.

  6. Coexpression networks identify brain region-specific enhancer RNAs in the human brain.

    PubMed

    Yao, Pu; Lin, Peijie; Gokoolparsadh, Akira; Assareh, Amelia; Thang, Mike W C; Voineagu, Irina

    2015-08-01

    Despite major progress in identifying enhancer regions on a genome-wide scale, the majority of available data are limited to model organisms and human transformed cell lines. We have identified a robust set of enhancer RNAs (eRNAs) expressed in the human brain and constructed networks assessing eRNA-gene coexpression interactions across human fetal brain and multiple adult brain regions. Our data identify brain region-specific eRNAs and show that enhancer regions expressing eRNAs are enriched for genetic variants associated with autism spectrum disorders.

  7. A pulsed-field gel electrophoresis map in the ataxia-telangiectasia region of chromosome 11q22. 3

    SciTech Connect

    Uhrhammer, N.; Huo, Y.; Gatti, R.A. ); Concannon, P. ); Nakamura, Yusuke )

    1994-03-15

    The authors interest in isolating the gene(s) for ataxia-telangiectasia has prompted construction of a physical map of chromosome 11q22.3 using markers localized to this region by linkage analysis and/or hybrid cell panels. Twenty-two markers have been analyzed by pulsed-field gel electrophoresis. Nine of these markers form an [approximately]2-Mb long-range contiguous map. An average distance of 200 kb between probes in this map should facilitate the isolation of new cDNAs, anonymous probes, and YACs in an orderly way. 15 refs., 2 figs.

  8. The mouse mutation sarcosinemia (sar) maps to chromosome 2 in a region homologous to human 9q33-q34

    SciTech Connect

    Brunialti, A.L.B.; Guenet, J.L.; Harding, C.O.; Wolff, J.A.

    1996-08-15

    The autosomal recessive mouse mutation sarcosinemia (sar), which was discovered segregating in the progeny of a male whose premeiotic germ cells had been treated with the mutagen ethylnitrosourea, is characterized by a deficiency in sarcosine dehydrogenase activity. Using an intersubspecific cross, we mapped the sar locus to mouse chromosome 2, approximately 15-18 cM from the centromere. The genetic localization of this locus in the mouse allows the identification of a candidate region in human (9q33-q34) where the homologous disease should map. 15 refs., 2 figs.

  9. The identification of exons from the MED/PSACH region of human chromosome 19

    SciTech Connect

    Li, Quan-Yi; Brook, J.D.; Lennon, G.G.

    1996-03-01

    We have used exon amplification to identify putative transcribed sequences from an 823-kb contig consisting of 28 cosmids that form a minimum tiling path from the interval 19p12-p13.1. This region contains the genes responsible for multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). We have trapped 66 exons (an average of 2.4 exons per cosmid) from pools of 2 or 3 cosmids. The majority of exons (51.5%) show only weak similarity or no similarity (36.3%) to sequences in current databases. Six of 8 exons examined from these groups, however, show cross-species sequence conservation, indicating that many of them probably represent authentic exons. Eight exons show identity or significant similarity to ESTs or known genes, including the human TNF receptor 3{prime}-flanking region gene, human epoxide hydrolase (EPHX), human growth/differentiation factor (GOF-1), human myocyte-specific enhancer factor 2, the rat neurocan gene, and the human cartilage oligomeric matrix protein gene (COMP). Mutations in this latter gene have recently been shown to be responsible for MED and PSACH. 33 refs., 4 figs., 2 tabs.

  10. The Friedreich Ataxia Critical Region Spans A 150-kb Interval on Chromosome 9q13

    PubMed Central

    Montermini, Laura; Rodius, François; Pianese, Luigi; Moltò, Maria Dolores; Cossée, Mireille; Campuzano, Victoria; Cavalcanti, Francesca; Monticelli, Antonella; Palau, Francisco; Gyapay, Gabor; Wenhert, Manfred; Zara, Federico; Patel, Pragna I.; Cocozza, Sergio; Koenig, Michel; Pandolfo, Massimo

    1995-01-01

    By analysis of crossovers in key recombinant families and by homozygosity analysis of inbred families, the Friedreich ataxia (FRDA) locus was localized in a 300-kb interval between the X104 gene and the microsatellite marker FR8 (D9S888). By homology searches of the sequence databases, we identified X104 as the human tight junction protein ZO-2 gene. We generated a largescale physical map of the FRDA region by pulsed-field gel electrophoresis analysis of genomic DNA and of three YAC clones derived from different libraries, and we constructed an uninterrupted cosmid contig spanning the FRDA locus. The cAMP-dependent protein kinase γ-catalytic subunit gene was identified within the critical FRDA interval, but it was excluded as candidate because of its biological properties and because of lack of mutations in FRDA patients. Six new polymorphic markers were isolated between FR2 (D9S886) and FR8 (D9S888), which were used for homozygosity analysis in a family in which parents of an affected child are distantly related. An ancient recombination involving the centromeric FRDA flanking markers had been previously demonstrated in this family. Homozygosity analysis indicated that the FRDA gene is localized in the telomeric 150 kb of the FR2-FR8 interval. ImagesFigure 2 PMID:7485155

  11. The Friedreich ataxia critical region spans a 150-kb interval on chromosome 9q13

    SciTech Connect

    Montermini, L.; Zara, F.; Patel, P.I.

    1995-11-01

    By analysis of crossovers in key recombinant families and by homozygosity analysis of inbred families, the Friedreich ataxia (FRDA) locus was localized in a 300-kb interval between the X104 gene and the microsatellite marker FR8 (D9S888). By homology searches of the sequence databases, we identified X104 as the human tight junction protein ZO-2 gene. We generated a large-scale physical map of the FRDA region by pulsed-field gel electrophoresis analysis of genomic DNA and of three YAC clones derived from different libraries, and we constructed an uninterrupted cosmid contig spanning the FRDA locus. The cAMP-dependent protein kinase {gamma}-catalytic subunit gene was identified within the critical FRDA interval, but it was excluded as candidate because of its biological properties and because of lack of mutations in FRDA patients. Six new polymorphic markers were isolated between FR2 (D9S886) and FR8 (D9S888), which were used for homozygosity analysis in a family in which parents of an affected child are distantly related. An ancient recombination involving the centromeric FRDA flanking markers had been previously demonstrated in this family. Homozygosity analysis indicated that the FRDA gene is localized in the telomeric 150 kb of the FR2-FR8 interval. 17 refs., 3 figs., 1 tab.

  12. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies.

    PubMed

    Willemsen, Marjolein H; de Leeuw, Nicole; de Brouwer, Arjan P M; Pfundt, Rolph; Hehir-Kwa, Jayne Y; Yntema, Helger G; Nillesen, Willy M; de Vries, Bert B A; van Bokhoven, Hans; Kleefstra, Tjitske

    2012-11-01

    Genome-wide array studies are now routinely being used in the evaluation of patients with cognitive disorders (CD) and/or congenital anomalies (CA). Therefore, inevitably each clinician is confronted with the challenging task of the interpretation of copy number variations detected by genome-wide array platforms in a diagnostic setting. Clinical interpretation of autosomal copy number variations is already challenging, but assessment of the clinical relevance of copy number variations of the X-chromosome is even more complex. This study provides an overview of the X-Chromosome copy number variations that we have identified by genome-wide array analysis in a large cohort of 4407 male and female patients. We have made an interpretation of the clinical relevance of each of these copy number variations based on well-defined criteria and previous reports in literature and databases. The prevalence of X-chromosome copy number variations in this cohort was 57/4407 (∼1.3%), of which 15 (0.3%) were interpreted as (likely) pathogenic.

  13. Three-region specific microdissection libraries for the long arm of human chromosome 2, regions q33-q35, q31-q32, and q23-q24

    SciTech Connect

    Yu, J.; Tong, S.; Whittier, A.

    1995-09-01

    Three region-specific libraries have been constructed from the long arm of human chromosome 2, including regions 2q33-35 (2Q2 library), 2q31-32 (2Q3) and 2q23-24 (2Q4). Chromosome microdissection and the MboI linker-adaptor microcloning techniques were used in constructing these libraries. The libraries comprised hundreds of thousands of microclones in each library. Approximately half of the microclones in the library contained unique or low-copy number sequence inserts. The insert sizes ranged between 50 and 800 bp, with a mean of 130-190 bp. Southern blot analysis of individual unique sequence microclones showed that 70-94% of the microclones were derived from the dissected region. 31 unique sequence microclones from the 2Q2 library, 31 from 2Q3, and 30 from 2Q4, were analyzed for insert sizes, the hybridizing genomic HindIII fragment sizes, and cross-hybridization to rodent species. These libraries and the short insert microclones derived from the libraries should be useful for high resolution physical mapping, sequence-ready reagents for large scale genomic sequencing, and positional cloning of disease-related genes assigned to these regions, e.g. the recessive familial amyotrophic lateral sclerosis assigned to 2q33-q35, and a type I diabetes susceptibility gene to 2q31-q33. 17 refs., 5 figs., 2 tabs.

  14. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    PubMed Central

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  15. Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis.

    PubMed

    Lou, Qunfeng; Zhang, Yunxia; He, Yuhua; Li, Ji; Jia, Li; Cheng, Chunyan; Guan, Wei; Yang, Shuqiong; Chen, Jinfeng

    2014-04-01

    Chromosome painting based on fluorescence in situ hybridization (FISH) has played an important role in chromosome identification and research into chromosome rearrangements, diagnosis of chromosome abnormalities and evolution in human and animal species. However, it has not been applied widely in plants due to the large amounts of dispersed repetitive sequences in chromosomes. In the present work, a chromosome painting method for single-copy gene pools in Cucumis sativus was successfully developed. Gene probes with sizes above 2 kb were detected consistently. A cucumber karyotype was constructed based on FISH using a cocktail containing chromosome-specific gene probes. This single-copy gene-based chromosome painting (ScgCP) technique was performed by PCR amplification, purification, pooling, labeling and hybridization onto chromosome spreads. Gene pools containing sequential genes with an interval less than 300 kb yielded painting patterns on pachytene chromosomes. Seven gene pools corresponding to individual chromosomes unambiguously painted each chromosome pair of C. sativus. Three mis-aligned regions on chromosome 4 were identified by the painting patterns. A probe pool comprising 133 genes covering the 8 Mb distal end of chromosome 4 was used to evaluate the potential utility of the ScgCP technique for chromosome rearrangement research through cross-species FISH in the Cucumis genus. Distinct painting patterns of this region were observed in C. sativus, C. melo and C. metuliferus species. A comparative chromosome map of this region was constructed between cucumber and melon. With increasing sequence resources, this ScgCP technique may be applied on any other sequenced species for chromosome painting research.

  16. Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis.

    PubMed

    Lou, Qunfeng; Zhang, Yunxia; He, Yuhua; Li, Ji; Jia, Li; Cheng, Chunyan; Guan, Wei; Yang, Shuqiong; Chen, Jinfeng

    2014-04-01

    Chromosome painting based on fluorescence in situ hybridization (FISH) has played an important role in chromosome identification and research into chromosome rearrangements, diagnosis of chromosome abnormalities and evolution in human and animal species. However, it has not been applied widely in plants due to the large amounts of dispersed repetitive sequences in chromosomes. In the present work, a chromosome painting method for single-copy gene pools in Cucumis sativus was successfully developed. Gene probes with sizes above 2 kb were detected consistently. A cucumber karyotype was constructed based on FISH using a cocktail containing chromosome-specific gene probes. This single-copy gene-based chromosome painting (ScgCP) technique was performed by PCR amplification, purification, pooling, labeling and hybridization onto chromosome spreads. Gene pools containing sequential genes with an interval less than 300 kb yielded painting patterns on pachytene chromosomes. Seven gene pools corresponding to individual chromosomes unambiguously painted each chromosome pair of C. sativus. Three mis-aligned regions on chromosome 4 were identified by the painting patterns. A probe pool comprising 133 genes covering the 8 Mb distal end of chromosome 4 was used to evaluate the potential utility of the ScgCP technique for chromosome rearrangement research through cross-species FISH in the Cucumis genus. Distinct painting patterns of this region were observed in C. sativus, C. melo and C. metuliferus species. A comparative chromosome map of this region was constructed between cucumber and melon. With increasing sequence resources, this ScgCP technique may be applied on any other sequenced species for chromosome painting research. PMID:24635663

  17. A 1.6-Mb P1-based physical map of the Down syndrome region on chromosome 21

    SciTech Connect

    Ohira, Miki; Suzuki, Kazunobu |; Ichikawa, Hitoshi

    1996-04-01

    The Down Syndrome (DS) region on chromosome 21, which is responsible for the main features of DS such as characteristic facial features, a congenital heart defect, and mental retardation, has been defined by molecular analysis of DS patients with partial trisomy 21. The 2.5-Mb region around the marker D21S55 between D21S17 and ERG in 21q22 is thought to be important, although contributions of other regions cannot be excluded. In this region, we focused on a 1.6-Mb region between a NotI site, LA68 (D21S396, which is mapped distal to D21S17) and ERG, because analysis of a Japanese DS family with partial trisomy 21 revealed that the proximal border of its triplicated region was distal to LA68. We constructed P1 contigs with 46 P1 clones covering more than 95% of the 1.6-Mb region. A high-resolution restriction map using BamHI was also constructed for more details analysis. Our P1 contig map supplements other physical maps previously reported and provides useful materials for further analysis including isolation and sequencing of the DS region. 31 refs., 7 figs., 1 tab.

  18. Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes

    SciTech Connect

    Greco, A.; Mariani, C.; Miranda, C.; Pagliardini, S.; Pierotti, M.A. )

    1993-11-01

    TRK oncogenes are created by chromosomal rearrangements linking the tyrosine-kinase domain of the NTRK1 gene (encoding one of the receptors for the nerve growth factor) to foreign activating sequences. TRK oncogenes are frequently detected in human papillary thyroid carcinoma, as a result of rearrangements involving at least three different activating genes. The authors have found that the rearrangements creating all the TRK oncogenes so far characterized fall within a 2.9-kb XbaI/SmaI restriction fragment of the NTRK1 gene. Here they report the nucleotide sequence and the exon organization of this fragment. 13 refs., 2 figs.

  19. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    SciTech Connect

    Burkin, D.J.; Jones, C. ); Kimbro, K.S.; Taylor, M.W. ); Barr, B.L.; Gupta, S.L. )

    1993-07-01

    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with the presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.

  20. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    SciTech Connect

    Arnold, N.; Wienberg, J.; Ermert, K.

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  1. Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial and Y-Chromosomal DNA Analyses

    PubMed Central

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka

    2015-01-01

    Background Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Results Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). Conclusions The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle. PMID:25992976

  2. Adjacent chromosomal regions can evolve at very different rates: evolution of the Drosophila 68C glue gene cluster.

    PubMed

    Meyerowitz, E M; Martin, C H

    1984-01-01

    The 68C puff is a highly transcribed region of the Drosophila melanogaster salivary gland polytene chromosomes. Three different classes of messenger RNA originate in a 5000-bp region in the puff; each class is translated to one of the salivary gland glue proteins sgs-3, sgs-7, or sgs-8. These messenger RNA classes are coordinately controlled, with each RNA appearing in the third larval instar and disappearing at the time of puparium formation. Their disappearance is initiated by the action of the steroid hormone ecdysterone. In the work reported here, we studied evolution of this hormone-regulated gene cluster in the melanogaster species subgroup of Drosophila. Genome blot hybridization experiments showed that five other species of this subgroup have DNA sequences that hybridize to D. melanogaster 68C sequences, and that these sequences are divided into a highly conserved region, which does not contain the glue genes, and an extraordinarily diverged region, which does. Molecular cloning of this DNA from D. simulans, D. erecta, D. yakuba, and D. teissieri confirmed the division of the region into a slowly and a rapidly evolving portion, and also showed that the rapidly evolving region of each species codes for third instar larval salivary gland RNAs homologous to the D. melanogaster glue mRNAs. The highly conserved region is at least 13,000 bp long, and is not known to code for any RNAs.

  3. Single nucleotide polymorphism association study for backfat and intramuscular fat content in the region between SW2098 and SW1881 on pig chromosome 6.

    PubMed

    Lee, K T; Byun, M J; Kang, K S; Hwang, H; Park, E W; Kim, J M; Kim, T H; Lee, S H

    2012-04-01

    This study was carried out to identify SNP associated with fatness traits on pig chromosome 6. In total, 11,067 putative genomic variations were detected in 125 complete bacterial artificial chromosome sequences corresponding to the region between SW2098 and SW1881, which harbors multiple QTL affecting intramuscular fat content (IMF) and backfat thickness (BFT). Among 173 putative SNP validated by MassArray, 120 SNP were used in an association study on 541 offspring produced by a cross of Korean native pig and Landrace breeds. The significance level of each SNP was determined using single marker regression analysis. Further, significant threshold values were determined using a false discovery rate. Nine out of 120 SNP showed significant effects on BFT or IMF or both. Of the 9 significant SNP, 4 were significantly associated with IMF, 7 were significantly related to BFT, and 2 SNP (Kps8172 and Kps6413) showed significant effects on both traits. Moreover, multiple regression analysis considering all significant SNP was used to correct spurious false positives due to linkage disequilibrium. Consequently, only 1 SNP (Kps6413) was significant for IMF, whereas 4 SNP including Kps6413 showed significant effects on BFT. The significant SNP had generally additive effects and on average explained 1.72% of the genetic variation for IMF and 3.92% for BFT, respectively. These markers can potentially be applied in pig breeding programs for improving IMF and BFT traits after validation in other populations.

  4. Tetralogy of Fallot associated with deletion in the DiGeorge region of chromosome 22 (22q11)

    SciTech Connect

    D`Angelo, J.A.; Pillers, D.M.; Jett, P.L.

    1994-09-01

    Cardiac conotruncal defects, such as Tetralogy of Fallot (TOF), are associated with DiGeorge syndrome which has been mapped to the q11 region of chromosome 22 and includes abnormalities of neural crest and branchial arch development. Patients with conotruncal defects and velo-cardio-facial syndrome may have defects in the 22q11 region but not show the complete DiGeorge phenotype consisting of cardiac, thymus, and parathyroid abnormalities. We report two neonates with TOF and small deletions in the DiGeorge region of chromosome 22 (46,XX,del(22)(q11.21q11.23) and 46,XY,del(22)(q11.2q11.2)) using both high-resolution cytogenetics and fluorescence in situ hybridization (FISH). The first patient is a female with TOF and a family history of congenital heart disease. The mother has pulmonic stenosis and a right-sided aortic arch, one brother has TOF, and a second brother has a large VSD. The patient had intrauterine growth retardation and had thrombocytopenia due to maternal IgG platelet-directed autoantibody. Lymphocyte populations, both T and B cells, were reduced in number but responded normally to stimulation. The findings were not attributed to a DiGeorge phenotype. Although she had transient neonatal hypocalcemia, her parathyroid hormone level was normal. The patient was not dysmorphic in the newborn period but her mother had features consistent with velo-cardio-facial syndrome. The second patient was a male with TOF who was not dysmorphic and had no other significant clinical findings and no family history of heart disease. Lymphocyte testing did not reveal a specific immunodeficiency. No significant postnatal hypocalcemia was noted. These cases illustrate that there is a wide spectrum of clinical features associated with defects of the 22q11 region. We recommend karyotype analysis, including FISH probes specific to the DiGeorge region, in any patient with conotruncal cardiac defects.

  5. “Replicated” genome wide association for dependence on illegal substances: genomic regions identified by overlapping clusters of nominally positive SNPs

    PubMed Central

    Drgon, Tomas; Johnson, Catherine; Nino, Michelle; Drgonova, Jana; Walther, Donna; Uhl, George R

    2010-01-01

    Declaring “replication” from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication may be unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally-significant association in each of several independent samples. This approach provides one “nontemplate” approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1M SNP Affymetrix and Illumina GWA results for dependence on illegal substances. This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally-significant SNPs from samples of the same racial/ethnic background identify the same chromosomal regions. There is more modest confidence in: a) identification of individual chromosomal regions and genes and b) overlap between results from samples of different racial/ethnic backgrounds. The strong overlap identified among the samples with similar racial/ethnic backgrounds, together with prior work that identified overlapping results in samples of different racial/ethnic backgrounds, support contributions to individual differences in vulnerability to addictions that come from both relatively older allelic variants that are common in many current human populations and newer allelic variants that are common in fewer current human populations. PMID:21302341

  6. Nephropathic cystinosis (CTNS-LSB): construction of a YAC contig comprising the refined critical region on chromosome 17p13.

    PubMed

    Peters, U; Senger, G; Rählmann, M; Du Chesne, I; Stec, I; Köhler, M R; Weissenbach, J; Leal, S M; Koch, H G; Deufel, T; Harms, E

    1997-01-01

    A yeast artificial chromosome (YAC) contig was constructed encompassing the entire region on chromosome 17p13 where the autosomal recessive disorder infantile nephropathic cystinosis (MIM 21980, CTNS-LSB) has been genetically mapped. It comprises seven clones ordered by their content of a series of six sequence-tagged sites (STSs). Fluorescence in situ hybridisation (FISH) revealed two chimaeric clones. The order of four polymorphic STSs mapped with the contig was consistent with that of the known genetic map with the exception of markers D17S1583 (AFMb307zg5) and D17S1798 (AFMa202xf5) where a telomeric location of D17S1583 was inferred from the contig; two non-polymorphic STSs were localised within the marker frame-work. From the analysis of recombination events in an unaffected individual as defined by leucocyte cystine levels we support the high-resolution mapping of this region to a small genetic interval and show that it is entirely represented on a single, non-chimaeric YAC clone in the contig.

  7. Delineation of a deletion region critical for corpus callosal abnormalities in chromosome 1q43–q44

    PubMed Central

    Nagamani, Sandesh C Sreenath; Erez, Ayelet; Bay, Carolyn; Pettigrew, Anjana; Lalani, Seema R; Herman, Kristin; Graham, Brett H; Nowaczyk, Malgorzata JM; Proud, Monica; Craigen, William J; Hopkins, Bobbi; Kozel, Beth; Plunkett, Katie; Hixson, Patricia; Stankiewicz, Pawel; Patel, Ankita; Cheung, Sau Wai

    2012-01-01

    Submicroscopic deletions involving chromosome 1q43–q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43–q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion. PMID:21934713

  8. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  9. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  10. polo Is Identified as a Suppressor of bubR1 Nondisjunction in a Deficiency Screen of the Third Chromosome in Drosophila melanogaster

    PubMed Central

    Sousa-Guimarães, Sofia; Sunkel, Claudio; Malmanche, Nicolas

    2011-01-01

    We have previously characterized an EMS-induced allele of the bubR1 gene (bubR1D1326N) that separates the two functions of BubR1, causing meiotic nondisjunction but retaining spindle assembly checkpoint activity during somatic cell division in Drosophila melanogaster. Using this allele, we demonstrate that bubR1 meiotic nondisjunction is dosage sensitive, occurs for both exchange and nonexchange homologous chromosomes, and is associated with decreased maintenance of sister chromatid cohesion and of the synaptonemal complex during prophase I progression. We took advantage of these features to perform a genetic screen designed to identify third chromosome deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes. We tested 65 deficiencies covering 60% of the third chromosome euchromatin. Among them, we characterized 24 deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes that we classified in two groups: (1) suppressor of nondisjunction and (2) enhancer of nondisjunction. Among these 24 deficiencies, our results show that deficiencies uncovering the polo locus act as suppressor of bubR1 nondisjunction by delaying meiotic prophase I progression and restoring chiasmata formation as observed by the loading of the condensin subunit SMC2. Furthermore, we identified two deficiencies inducing a lethal phenotype during embryonic development and thus affecting BubR1 kinase activity in somatic cells and one deficiency causing female sterility. Overall, our genetic screening strategy proved to be highly sensitive for the identification of modifiers of BubR1 kinase activity in both meiosis and mitosis. PMID:22384328

  11. Delineation of the critical deletion region for congenital heart defects, on chromosome 8p23.1.

    PubMed Central

    Devriendt, K; Matthijs, G; Van Dael, R; Gewillig, M; Eyskens, B; Hjalgrim, H; Dolmer, B; McGaughran, J; Bröndum-Nielsen, K; Marynen, P; Fryns, J P; Vermeesch, J R

    1999-01-01

    Deletions in the distal region of chromosome 8p (del8p) are associated with congenital heart malformations. Other major manifestations include microcephaly, intrauterine growth retardation, mental retardation, and a characteristic hyperactive, impulsive behavior. We studied genotype-phenotype correlations in nine unrelated patients with a de novo del8p, by using the combination of classic cytogenetics, FISH, and the analysis of polymorphic DNA markers. With the exception of one large terminal deletion, all deletions were interstitial. In five patients, a commonly deleted region of approximately 6 Mb was present, with breakpoints clustering in the same regions. One patient without a heart defect or microcephaly but with mild mental retardation and characteristic behavior had a smaller deletion within this commonly deleted region. Two patients without a heart defect had a more proximal interstitial deletion that did not overlap with the commonly deleted region. Taken together, these data allowed us to define the critical deletion regions for the major features of a del8p. PMID:10090897

  12. FISH-Based Analysis of Clonally Derived CHO Cell Populations Reveals High Probability for Transgene Integration in a Terminal Region of Chromosome 1 (1q13)

    PubMed Central

    Li, Shengwei; Gao, Xiaoping; Peng, Rui; Zhang, Sheng; Fu, Wei

    2016-01-01

    A basic goal in the development of recombinant proteins is the generation of cell lines that express the desired protein stably over many generations. Here, we constructed engineered Chinese hamster ovary cell lines (CHO-S) with a pCHO-hVR1 vector that carried an extracellular domain of a VEGF receptor (VR) fusion gene. Forty-five clones with high hVR1 expression were selected for karyotype analysis. Using fluorescence in situ hybridization (FISH) and G-banding, we found that pCHO-hVR1 was integrated into three chromosomes, including chromosomes 1, Z3 and Z4. Four clones were selected to evaluate their productivity under non-fed, non-optimized shake flask conditions. The results showed that clones 1 and 2 with integration sites on chromosome 1 revealed high levels of hVR1 products (shake flask of approximately 800 mg/L), whereas clones 3 and 4 with integration sites on chromosomes Z3 or Z4 had lower levels of hVR1 products. Furthermore, clones 1 and 2 maintained their productivity stabilities over a continuous period of 80 generations, and clones 3 and 4 showed significant declines in their productivities in the presence of selection pressure. Finally, pCHO-hVR1 localized to the same region at chromosome 1q13, the telomere region of normal chromosome 1. In this study, these results demonstrate that the integration of exogenous hVR1 gene on chromosome 1, band q13, may create a high protein-producing CHO-S cell line, suggesting that chromosome 1q13 may contain a useful target site for the high expression of exogenous protein. This study shows that the integration into the target site of chromosome 1q13 may avoid the problems of random integration that cause gene silencing or also overcome position effects, facilitating exogenous gene expression in CHO-S cells. PMID:27684722

  13. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3.

    PubMed

    Xu, Wenbo; Ahmad, Ayesha; Dagenais, Susan; Iyer, Ramaswamy K; Innis, Jeffrey W

    2012-03-01

    The 4q deletion syndrome is a rare chromosome deletion syndrome with a wide range of clinical phenotypes. There is limited clinical phenotype and molecular correlation for congenital heart defects (CHDs) reported so far for this region primarily because many cases are large deletions, often terminal, and because high-resolution array has not been reported in the evaluation of this group of patients. CHDs are reported in about 60% of patients with 4q deletion syndrome, occurring in the presence or absence of dHAND deletion, implying the existence of additional genes in 4q whose dosage influences cardiac development. We report an 8-month-old patient with a large mid-muscular to outlet ventricular septal defect (VSD), moderate-sized secundum-type atrial septal defect (ASD), thickened, dysplastic pulmonary valve with mild stenosis and moderate pulmonic regurgitation, and patent ductus arteriosus (PDA). Illumina CytoSNP array analysis disclosed a de novo, heterozygous, interstitial deletion of 11.6 Mb of genomic material from the long arm of chromosome 4, at 4q32.3-q34.3 (Chr4:167236114-178816031; hg18). The deleted region affects 37 RefSeq genes (hg18), including two provisional microRNA stemloops. Three genes in this region, namely TLL1 (Tolloid-like-1), HPGD (15-hydroxyprostaglandin dehydrogenase), and HAND2 (Heart and neural crest derivatives-expressed protein 2), are known to be involved in cardiac morphogenesis. This report narrows the critical region responsible for CHDs seen in 4q deletion syndrome. PMID:22302627

  14. A polymerase chain reaction assay for non-random X chromosome inactivation identifies monoclonal endometrial cancers and precancers.

    PubMed

    Mutter, G L; Chaponot, M L; Fletcher, J A

    1995-02-01