Sample records for identifies rare variants

  1. New insights into old methods for identifying causal rare variants.

    PubMed

    Wang, Haitian; Huang, Chien-Hsun; Lo, Shaw-Hwa; Zheng, Tian; Hu, Inchi

    2011-11-29

    The advance of high-throughput next-generation sequencing technology makes possible the analysis of rare variants. However, the investigation of rare variants in unrelated-individuals data sets faces the challenge of low power, and most methods circumvent the difficulty by using various collapsing procedures based on genes, pathways, or gene clusters. We suggest a new way to identify causal rare variants using the F-statistic and sliced inverse regression. The procedure is tested on the data set provided by the Genetic Analysis Workshop 17 (GAW17). After preliminary data reduction, we ranked markers according to their F-statistic values. Top-ranked markers were then subjected to sliced inverse regression, and those with higher absolute coefficients in the most significant sliced inverse regression direction were selected. The procedure yields good false discovery rates for the GAW17 data and thus is a promising method for future study on rare variants.

  2. The UK10K project identifies rare variants in health and disease.

    PubMed

    Walter, Klaudia; Min, Josine L; Huang, Jie; Crooks, Lucy; Memari, Yasin; McCarthy, Shane; Perry, John R B; Xu, ChangJiang; Futema, Marta; Lawson, Daniel; Iotchkova, Valentina; Schiffels, Stephan; Hendricks, Audrey E; Danecek, Petr; Li, Rui; Floyd, James; Wain, Louise V; Barroso, Inês; Humphries, Steve E; Hurles, Matthew E; Zeggini, Eleftheria; Barrett, Jeffrey C; Plagnol, Vincent; Richards, J Brent; Greenwood, Celia M T; Timpson, Nicholas J; Durbin, Richard; Soranzo, Nicole

    2015-10-01

    The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.

  3. Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    PubMed Central

    Lange, Leslie A.; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M.; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M.; Smith, Joshua D.; Turner, Emily H.; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A.; Holmen, Oddgeir L.; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A.; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C.; Correa, Adolfo; Griswold, Michael E.; Jakobsdottir, Johanna; Smith, Albert V.; Schreiner, Pamela J.; Feitosa, Mary F.; Zhang, Qunyuan; Huffman, Jennifer E.; Crosby, Jacy; Wassel, Christina L.; Do, Ron; Franceschini, Nora; Martin, Lisa W.; Robinson, Jennifer G.; Assimes, Themistocles L.; Crosslin, David R.; Rosenthal, Elisabeth A.; Tsai, Michael; Rieder, Mark J.; Farlow, Deborah N.; Folsom, Aaron R.; Lumley, Thomas; Fox, Ervin R.; Carlson, Christopher S.; Peters, Ulrike; Jackson, Rebecca D.; van Duijn, Cornelia M.; Uitterlinden, André G.; Levy, Daniel; Rotter, Jerome I.; Taylor, Herman A.; Gudnason, Vilmundur; Siscovick, David S.; Fornage, Myriam; Borecki, Ingrid B.; Hayward, Caroline; Rudan, Igor; Chen, Y. Eugene; Bottinger, Erwin P.; Loos, Ruth J.F.; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M.; Gabriel, Stacey B.; O’Donnell, Christopher J.; Post, Wendy S.; North, Kari E.; Reiner, Alexander P.; Boerwinkle, Eric; Psaty, Bruce M.; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P.; Cupples, L. Adrienne; Kooperberg, Charles; Wilson, James G.; Nickerson, Deborah A.; Abecasis, Goncalo R.; Rich, Stephen S.; Tracy, Russell P.; Willer, Cristen J.; Gabriel, Stacey B.; Altshuler, David M.; Abecasis, Gonçalo R.; Allayee, Hooman; Cresci, Sharon; Daly, Mark J.; de Bakker, Paul I.W.; DePristo, Mark A.; Do, Ron; Donnelly, Peter; Farlow, Deborah N.; Fennell, Tim; Garimella, Kiran; Hazen, Stanley L.; Hu, Youna; Jordan, Daniel M.; Jun, Goo; Kathiresan, Sekar; Kang, Hyun Min; Kiezun, Adam; Lettre, Guillaume; Li, Bingshan; Li, Mingyao; Newton-Cheh, Christopher H.; Padmanabhan, Sandosh; Peloso, Gina; Pulit, Sara; Rader, Daniel J.; Reich, David; Reilly, Muredach P.; Rivas, Manuel A.; Schwartz, Steve; Scott, Laura; Siscovick, David S.; Spertus, John A.; Stitziel, Nathaniel O.; Stoletzki, Nina; Sunyaev, Shamil R.; Voight, Benjamin F.; Willer, Cristen J.; Rich, Stephen S.; Akylbekova, Ermeg; Atwood, Larry D.; Ballantyne, Christie M.; Barbalic, Maja; Barr, R. Graham; Benjamin, Emelia J.; Bis, Joshua; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer; Budoff, Matthew; Burke, Greg; Buxbaum, Sarah; Carr, Jeff; Chen, Donna T.; Chen, Ida Y.; Chen, Wei-Min; Concannon, Pat; Crosby, Jacy; Cupples, L. Adrienne; D’Agostino, Ralph; DeStefano, Anita L.; Dreisbach, Albert; Dupuis, Josée; Durda, J. Peter; Ellis, Jaclyn; Folsom, Aaron R.; Fornage, Myriam; Fox, Caroline S.; Fox, Ervin; Funari, Vincent; Ganesh, Santhi K.; Gardin, Julius; Goff, David; Gordon, Ora; Grody, Wayne; Gross, Myron; Guo, Xiuqing; Hall, Ira M.; Heard-Costa, Nancy L.; Heckbert, Susan R.; Heintz, Nicholas; Herrington, David M.; Hickson, DeMarc; Huang, Jie; Hwang, Shih-Jen; Jacobs, David R.; Jenny, Nancy S.; Johnson, Andrew D.; Johnson, Craig W.; Kawut, Steven; Kronmal, Richard; Kurz, Raluca; Lange, Ethan M.; Lange, Leslie A.; Larson, Martin G.; Lawson, Mark; Lewis, Cora E.; Levy, Daniel; Li, Dalin; Lin, Honghuang; Liu, Chunyu; Liu, Jiankang; Liu, Kiang; Liu, Xiaoming; Liu, Yongmei; Longstreth, William T.; Loria, Cay; Lumley, Thomas; Lunetta, Kathryn; Mackey, Aaron J.; Mackey, Rachel; Manichaikul, Ani; Maxwell, Taylor; McKnight, Barbara; Meigs, James B.; Morrison, Alanna C.; Musani, Solomon K.; Mychaleckyj, Josyf C.; Nettleton, Jennifer A.; North, Kari; O’Donnell, Christopher J.; O’Leary, Daniel; Ong, Frank; Palmas, Walter; Pankow, James S.; Pankratz, Nathan D.; Paul, Shom; Perez, Marco; Person, Sharina D.; Polak, Joseph; Post, Wendy S.; Psaty, Bruce M.; Quinlan, Aaron R.; Raffel, Leslie J.; Ramachandran, Vasan S.; Reiner, Alexander P.; Rice, Kenneth; Rotter, Jerome I.; Sanders, Jill P.; Schreiner, Pamela; Seshadri, Sudha; Shea, Steve; Sidney, Stephen; Silverstein, Kevin; Smith, Nicholas L.; Sotoodehnia, Nona; Srinivasan, Asoke; Taylor, Herman A.; Taylor, Kent; Thomas, Fridtjof; Tracy, Russell P.; Tsai, Michael Y.; Volcik, Kelly A.; Wassel, Chrstina L.; Watson, Karol; Wei, Gina; White, Wendy; Wiggins, Kerri L.; Wilk, Jemma B.; Williams, O. Dale; Wilson, Gregory; Wilson, James G.; Wolf, Phillip; Zakai, Neil A.; Hardy, John; Meschia, James F.; Nalls, Michael; Singleton, Andrew; Worrall, Brad; Bamshad, Michael J.; Barnes, Kathleen C.; Abdulhamid, Ibrahim; Accurso, Frank; Anbar, Ran; Beaty, Terri; Bigham, Abigail; Black, Phillip; Bleecker, Eugene; Buckingham, Kati; Cairns, Anne Marie; Caplan, Daniel; Chatfield, Barbara; Chidekel, Aaron; Cho, Michael; Christiani, David C.; Crapo, James D.; Crouch, Julia; Daley, Denise; Dang, Anthony; Dang, Hong; De Paula, Alicia; DeCelie-Germana, Joan; Drumm, Allen DozorMitch; Dyson, Maynard; Emerson, Julia; Emond, Mary J.; Ferkol, Thomas; Fink, Robert; Foster, Cassandra; Froh, Deborah; Gao, Li; Gershan, William; Gibson, Ronald L.; Godwin, Elizabeth; Gondor, Magdalen; Gutierrez, Hector; Hansel, Nadia N.; Hassoun, Paul M.; Hiatt, Peter; Hokanson, John E.; Howenstine, Michelle; Hummer, Laura K.; Kanga, Jamshed; Kim, Yoonhee; Knowles, Michael R.; Konstan, Michael; Lahiri, Thomas; Laird, Nan; Lange, Christoph; Lin, Lin; Lin, Xihong; Louie, Tin L.; Lynch, David; Make, Barry; Martin, Thomas R.; Mathai, Steve C.; Mathias, Rasika A.; McNamara, John; McNamara, Sharon; Meyers, Deborah; Millard, Susan; Mogayzel, Peter; Moss, Richard; Murray, Tanda; Nielson, Dennis; Noyes, Blakeslee; O’Neal, Wanda; Orenstein, David; O’Sullivan, Brian; Pace, Rhonda; Pare, Peter; Parker, H. Worth; Passero, Mary Ann; Perkett, Elizabeth; Prestridge, Adrienne; Rafaels, Nicholas M.; Ramsey, Bonnie; Regan, Elizabeth; Ren, Clement; Retsch-Bogart, George; Rock, Michael; Rosen, Antony; Rosenfeld, Margaret; Ruczinski, Ingo; Sanford, Andrew; Schaeffer, David; Sell, Cindy; Sheehan, Daniel; Silverman, Edwin K.; Sin, Don; Spencer, Terry; Stonebraker, Jackie; Tabor, Holly K.; Varlotta, Laurie; Vergara, Candelaria I.; Weiss, Robert; Wigley, Fred; Wise, Robert A.; Wright, Fred A.; Wurfel, Mark M.; Zanni, Robert; Zou, Fei; Nickerson, Deborah A.; Rieder, Mark J.; Green, Phil; Shendure, Jay; Akey, Joshua M.; Bustamante, Carlos D.; Crosslin, David R.; Eichler, Evan E.; Fox, P. Keolu; Fu, Wenqing; Gordon, Adam; Gravel, Simon; Jarvik, Gail P.; Johnsen, Jill M.; Kan, Mengyuan; Kenny, Eimear E.; Kidd, Jeffrey M.; Lara-Garduno, Fremiet; Leal, Suzanne M.; Liu, Dajiang J.; McGee, Sean; O’Connor, Timothy D.; Paeper, Bryan; Robertson, Peggy D.; Smith, Joshua D.; Staples, Jeffrey C.; Tennessen, Jacob A.; Turner, Emily H.; Wang, Gao; Yi, Qian; Jackson, Rebecca; Peters, Ulrike; Carlson, Christopher S.; Anderson, Garnet; Anton-Culver, Hoda; Assimes, Themistocles L.; Auer, Paul L.; Beresford, Shirley; Bizon, Chris; Black, Henry; Brunner, Robert; Brzyski, Robert; Burwen, Dale; Caan, Bette; Carty, Cara L.; Chlebowski, Rowan; Cummings, Steven; Curb, J. David; Eaton, Charles B.; Ford, Leslie; Franceschini, Nora; Fullerton, Stephanie M.; Gass, Margery; Geller, Nancy; Heiss, Gerardo; Howard, Barbara V.; Hsu, Li; Hutter, Carolyn M.; Ioannidis, John; Jiao, Shuo; Johnson, Karen C.; Kooperberg, Charles; Kuller, Lewis; LaCroix, Andrea; Lakshminarayan, Kamakshi; Lane, Dorothy; Lasser, Norman; LeBlanc, Erin; Li, Kuo-Ping; Limacher, Marian; Lin, Dan-Yu; Logsdon, Benjamin A.; Ludlam, Shari; Manson, JoAnn E.; Margolis, Karen; Martin, Lisa; McGowan, Joan; Monda, Keri L.; Kotchen, Jane Morley; Nathan, Lauren; Ockene, Judith; O’Sullivan, Mary Jo; Phillips, Lawrence S.; Prentice, Ross L.; Robbins, John; Robinson, Jennifer G.; Rossouw, Jacques E.; Sangi-Haghpeykar, Haleh; Sarto, Gloria E.; Shumaker, Sally; Simon, Michael S.; Stefanick, Marcia L.; Stein, Evan; Tang, Hua; Taylor, Kira C.; Thomson, Cynthia A.; Thornton, Timothy A.; Van Horn, Linda; Vitolins, Mara; Wactawski-Wende, Jean; Wallace, Robert; Wassertheil-Smoller, Sylvia; Zeng, Donglin; Applebaum-Bowden, Deborah; Feolo, Michael; Gan, Weiniu; Paltoo, Dina N.; Sholinsky, Phyliss; Sturcke, Anne

    2014-01-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. PMID:24507775

  4. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.

    PubMed

    Lange, Leslie A; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M; Smith, Joshua D; Turner, Emily H; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-Ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A; Holmen, Oddgeir L; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C; Correa, Adolfo; Griswold, Michael E; Jakobsdottir, Johanna; Smith, Albert V; Schreiner, Pamela J; Feitosa, Mary F; Zhang, Qunyuan; Huffman, Jennifer E; Crosby, Jacy; Wassel, Christina L; Do, Ron; Franceschini, Nora; Martin, Lisa W; Robinson, Jennifer G; Assimes, Themistocles L; Crosslin, David R; Rosenthal, Elisabeth A; Tsai, Michael; Rieder, Mark J; Farlow, Deborah N; Folsom, Aaron R; Lumley, Thomas; Fox, Ervin R; Carlson, Christopher S; Peters, Ulrike; Jackson, Rebecca D; van Duijn, Cornelia M; Uitterlinden, André G; Levy, Daniel; Rotter, Jerome I; Taylor, Herman A; Gudnason, Vilmundur; Siscovick, David S; Fornage, Myriam; Borecki, Ingrid B; Hayward, Caroline; Rudan, Igor; Chen, Y Eugene; Bottinger, Erwin P; Loos, Ruth J F; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M; Gabriel, Stacey B; O'Donnell, Christopher J; Post, Wendy S; North, Kari E; Reiner, Alexander P; Boerwinkle, Eric; Psaty, Bruce M; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P; Cupples, L Adrienne; Kooperberg, Charles; Wilson, James G; Nickerson, Deborah A; Abecasis, Goncalo R; Rich, Stephen S; Tracy, Russell P; Willer, Cristen J

    2014-02-06

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Rare high-impact disease variants: properties and identifications.

    PubMed

    Park, Leeyoung; Kim, Ju Han

    2016-03-21

    Although many genome-wide association studies have been performed, the identification of disease polymorphisms remains important. It is now suspected that many rare disease variants induce the association signal of common variants in linkage disequilibrium (LD). Based on recent development of genetic models, the current study provides explanations of the existence of rare variants with high impacts and common variants with low impacts. Disease variants are neither necessary nor sufficient due to gene-gene or gene-environment interactions. A new method was developed based on theoretical aspects to identify both rare and common disease variants by their genotypes. Common disease variants were identified with relatively small odds ratios and relatively small sample sizes, except for specific situations in which the disease variants were in strong LD with a variant with a higher frequency. Rare disease variants with small impacts were difficult to identify without increasing sample sizes; however, the method was reasonably accurate for rare disease variants with high impacts. For rare variants, dominant variants generally showed better Type II error rates than recessive variants; however, the trend was reversed for common variants. Type II error rates increased in gene regions containing more than two disease variants because the more common variant, rather than both disease variants, was usually identified. The proposed method would be useful for identifying common disease variants with small impacts and rare disease variants with large impacts when disease variants have the same effects on disease presentation.

  6. DoEstRare: A statistical test to identify local enrichments in rare genomic variants associated with disease.

    PubMed

    Persyn, Elodie; Karakachoff, Matilde; Le Scouarnec, Solena; Le Clézio, Camille; Campion, Dominique; Consortium, French Exome; Schott, Jean-Jacques; Redon, Richard; Bellanger, Lise; Dina, Christian

    2017-01-01

    Next-generation sequencing technologies made it possible to assay the effect of rare variants on complex diseases. As an extension of the "common disease-common variant" paradigm, rare variant studies are necessary to get a more complete insight into the genetic architecture of human traits. Association studies of these rare variations show new challenges in terms of statistical analysis. Due to their low frequency, rare variants must be tested by groups. This approach is then hindered by the fact that an unknown proportion of the variants could be neutral. The risk level of a rare variation may be determined by its impact but also by its position in the protein sequence. More generally, the molecular mechanisms underlying the disease architecture may involve specific protein domains or inter-genic regulatory regions. While a large variety of methods are optimizing functionality weights for each single marker, few evaluate variant position differences between cases and controls. Here, we propose a test called DoEstRare, which aims to simultaneously detect clusters of disease risk variants and global allele frequency differences in genomic regions. This test estimates, for cases and controls, variant position densities in the genetic region by a kernel method, weighted by a function of allele frequencies. We compared DoEstRare with previously published strategies through simulation studies as well as re-analysis of real datasets. Based on simulation under various scenarios, DoEstRare was the sole to consistently show highest performance, in terms of type I error and power both when variants were clustered or not. DoEstRare was also applied to Brugada syndrome and early-onset Alzheimer's disease data and provided complementary results to other existing tests. DoEstRare, by integrating variant position information, gives new opportunities to explain disease susceptibility. DoEstRare is implemented in a user-friendly R package.

  7. Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease.

    PubMed

    Ognenovski, Mikhail; Renauer, Paul; Gensterblum, Elizabeth; Kötter, Ina; Xenitidis, Theodoros; Henes, Jörg C; Casali, Bruno; Salvarani, Carlo; Direskeneli, Haner; Kaufman, Kenneth M; Sawalha, Amr H

    2016-05-01

    Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice

  8. Rare variants and cardiovascular disease.

    PubMed

    Wain, Louise V

    2014-09-01

    Cardiovascular disease (CVD) is a leading cause of mortality and morbidity in the Western world. Large genome-wide association studies (GWASs) of coronary artery disease, myocardial infarction, stroke and dilated cardiomyopathy have identified a number of common genetic variants with modest effects on disease risk. Similarly, studies of important modifiable risk factors of CVD have identified a large number of predominantly common variant associations, for example, with blood pressure and blood lipid levels. In each case, despite the often large numbers of loci identified, only a small proportion of the phenotypic variance is explained. It has been hypothesised that rare variants with large effects may account for some of the missing variance but large-scale studies of rare variation are in their infancy for cardiovascular traits and have yet to produce fruitful results. Studies of monogenic CVDs, inherited disorders believed to be entirely driven by individual rare mutations, have highlighted genes that play a key role in disease aetiology. In this review, we discuss how findings from studies of rare variants in monogenic disease and GWAS of predominantly common variants are converging to provide further insight into biological disease mechanisms. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Resequencing the susceptibility gene, ITGAM, identifies two functionally deleterious rare variants in systemic lupus erythematosus cases

    PubMed Central

    2014-01-01

    Introduction The majority of the genetic variance of systemic lupus erythematosus (SLE) remains unexplained by the common disease-common variant hypothesis. Rare variants, which are not detectable by genome-wide association studies because of their low frequencies, are predicted to explain part of this ”missing heritability.” However, recent studies identifying rare variants within known disease-susceptibility loci have failed to show genetic associations because of their extremely low frequencies, leading to the questioning of the contribution of rare variants to disease susceptibility. A common (minor allele frequency = 17.4% in cases) nonsynonymous coding variant rs1143679 (R77H) in ITGAM (CD11b), which forms half of the heterodimeric integrin receptor, complement receptor 3 (CR3), is robustly associated with SLE and has been shown to impair CR3-mediated phagocytosis. Methods We resequenced ITGAM in 73 SLE cases and identified two previously unidentified, case-specific nonsynonymous variants, F941V and G1145S. Both variants were genotyped in 2,107 and 949 additional SLE cases, respectively, to estimate their frequencies in a disease population. An in vitro model was used to assess the impact of F941V and G1145S, together with two nonsynonymous ITGAM polymorphisms, A858V (rs1143683) and M441T (rs11861251), on CR3-mediated phagocytosis. A paired two-tailed t test was used to compare the phagocytic capabilities of each variant with that of wild-type CR3. Results Both rare variants, F941V and G1145S, significantly impair CR3-mediated phagocytosis in an in vitro model (61% reduction, P = 0.006; 26% reduction, P = 0.0232). However, neither of the common variants, M441T and A858V, had an effect on phagocytosis. Neither rare variant was observed again in the genotyping of additional SLE cases, suggesting that there frequencies are extremely low. Conclusions Our results add further evidence to the functional importance of ITGAM in SLE pathogenesis through impaired

  10. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    PubMed

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  11. Rare Variant Association Test with Multiple Phenotypes

    PubMed Central

    Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung

    2016-01-01

    Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of “missing heritability,” likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiply correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multi-variant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used Sequence Kernel Association Test (SKAT) for a single phenotype. We applied MAAUSS to Whole Exome Sequencing (WES) data from a Korean population of 1,058 subjects, to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases, had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability. PMID:28039885

  12. A Genome-Wide Linkage Study for Chronic Obstructive Pulmonary Disease in a Dutch Genetic Isolate Identifies Novel Rare Candidate Variants.

    PubMed

    Nedeljkovic, Ivana; Terzikhan, Natalie; Vonk, Judith M; van der Plaat, Diana A; Lahousse, Lies; van Diemen, Cleo C; Hobbs, Brian D; Qiao, Dandi; Cho, Michael H; Brusselle, Guy G; Postma, Dirkje S; Boezen, H M; van Duijn, Cornelia M; Amin, Najaf

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex and heritable disease, associated with multiple genetic variants. Specific familial types of COPD may be explained by rare variants, which have not been widely studied. We aimed to discover rare genetic variants underlying COPD through a genome-wide linkage scan. Affected-only analysis was performed using the 6K Illumina Linkage IV Panel in 142 cases clustered in 27 families from a genetic isolate, the Erasmus Rucphen Family (ERF) study. Potential causal variants were identified by searching for shared rare variants in the exome-sequence data of the affected members of the families contributing most to the linkage peak. The identified rare variants were then tested for association with COPD in a large meta-analysis of several cohorts. Significant evidence for linkage was observed on chromosomes 15q14-15q25 [logarithm of the odds (LOD) score = 5.52], 11p15.4-11q14.1 (LOD = 3.71) and 5q14.3-5q33.2 (LOD = 3.49). In the chromosome 15 peak, that harbors the known COPD locus for nicotinic receptors, and in the chromosome 5 peak we could not identify shared variants. In the chromosome 11 locus, we identified four rare (minor allele frequency (MAF) <0.02), predicted pathogenic, missense variants. These were shared among the affected family members. The identified variants localize to genes including neuroblast differentiation-associated protein ( AHNAK ), previously associated with blood biomarkers in COPD, phospholipase C Beta 3 ( PLCB3 ), shown to increase airway hyper-responsiveness, solute carrier family 22-A11 ( SLC22A11 ), involved in amino acid metabolism and ion transport, and metallothionein-like protein 5 ( MTL5 ), involved in nicotinate and nicotinamide metabolism. Association of SLC22A11 and MTL5 variants were confirmed in the meta-analysis of 9,888 cases and 27,060 controls. In conclusion, we have identified novel rare variants in plausible genes related to COPD. Further studies utilizing large sample

  13. Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk

    PubMed Central

    Permuth, Jennifer B.; Pirie, Ailith; Ann Chen, Y.; Lin, Hui-Yi; Reid, Brett M.; Chen, Zhihua; Monteiro, Alvaro; Dennis, Joe; Mendoza-Fandino, Gustavo; Anton-Culver, Hoda; Bandera, Elisa V.; Bisogna, Maria; Brinton, Louise; Brooks-Wilson, Angela; Carney, Michael E.; Chenevix-Trench, Georgia; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; D’Aloisio, Aimee A.; Anne Doherty, Jennifer; Earp, Madalene; Edwards, Robert P.; Fridley, Brooke L.; Gayther, Simon A.; Gentry-Maharaj, Aleksandra; Goodman, Marc T.; Gronwald, Jacek; Hogdall, Estrid; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Karlan, Beth Y.; Kelemen, Linda E.; Kjaer, Suzanne K.; Kraft, Peter; Le, Nhu D.; Levine, Douglas A.; Lissowska, Jolanta; Lubinski, Jan; Matsuo, Keitaro; Menon, Usha; Modugno, Rosemary; Moysich, Kirsten B.; Nakanishi, Toru; Ness, Roberta B.; Olson, Sara; Orlow, Irene; Pearce, Celeste L.; Pejovic, Tanja; Poole, Elizabeth M.; Ramus, Susan J.; Anne Rossing, Mary; Sandler, Dale P.; Shu, Xiao-Ou; Song, Honglin; Taylor, Jack A.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tworoger, Shelley S.; Webb, Penelope M.; Wentzensen, Nicolas; Wilkens, Lynne R.; Winham, Stacey; Woo, Yin-Ling; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Phelan, Catherine M.; Schildkraut, Joellen M.; Berchuck, Andrew; Goode, Ellen L.; Pharoah, Paul D. P.; Sellers, Thomas A.

    2016-01-01

    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P < 5.0 × 10 − 7). One of the most significant signals (Pall histologies = 1.01 × 10 − 13;Pserous = 3.54 × 10 − 14) occurred at 3q25.31 for rs62273959, a missense variant mapping to the LEKR1 gene that is in LD (r2 = 0.90) with a previously identified ‘best hit’ (rs7651446) mapping to an intron of TIPARP. Suggestive associations (5.0 × 10 − 5 > P≥5.0 ×10 − 7) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (PAML = 3.23 × 10 − 5; PSKAT-o = 9.23 × 10 − 4) and KRT13 (PAML = 1.67 × 10 − 4; PSKAT-o = 1.07 × 10 − 5), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed to further unravel the unexplained

  14. Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk.

    PubMed

    Permuth, Jennifer B; Pirie, Ailith; Ann Chen, Y; Lin, Hui-Yi; Reid, Brett M; Chen, Zhihua; Monteiro, Alvaro; Dennis, Joe; Mendoza-Fandino, Gustavo; Anton-Culver, Hoda; Bandera, Elisa V; Bisogna, Maria; Brinton, Louise; Brooks-Wilson, Angela; Carney, Michael E; Chenevix-Trench, Georgia; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; D'Aloisio, Aimee A; Anne Doherty, Jennifer; Earp, Madalene; Edwards, Robert P; Fridley, Brooke L; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Goodman, Marc T; Gronwald, Jacek; Hogdall, Estrid; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kjaer, Suzanne K; Kraft, Peter; Le, Nhu D; Levine, Douglas A; Lissowska, Jolanta; Lubinski, Jan; Matsuo, Keitaro; Menon, Usha; Modugno, Rosemary; Moysich, Kirsten B; Nakanishi, Toru; Ness, Roberta B; Olson, Sara; Orlow, Irene; Pearce, Celeste L; Pejovic, Tanja; Poole, Elizabeth M; Ramus, Susan J; Anne Rossing, Mary; Sandler, Dale P; Shu, Xiao-Ou; Song, Honglin; Taylor, Jack A; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tworoger, Shelley S; Webb, Penelope M; Wentzensen, Nicolas; Wilkens, Lynne R; Winham, Stacey; Woo, Yin-Ling; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Phelan, Catherine M; Schildkraut, Joellen M; Berchuck, Andrew; Goode, Ellen L; Pharoah, Paul D P; Sellers, Thomas A

    2016-08-15

    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P < 5.0 × 10  -   7 ). One of the most significant signals (P all histologies  =   1.01 × 10  -   13 ;P serous  =   3.54 × 10  -   14 ) occurred at 3q25.31 for rs62273959, a missense variant mapping to the LEKR1 gene that is in LD (r 2  =   0.90) with a previously identified 'best hit' (rs7651446) mapping to an intron of TIPARP. Suggestive associations (5.0 × 10  -   5  >   P≥5.0 ×10  -   7 ) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (P AML  =   3.23 × 10  -   5 ; P SKAT-o  =   9.23 × 10  -   4 ) and KRT13 (P AML  =   1.67 × 10  -   4 ; P SKAT-o  =   1.07 × 10  -   5 ), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed

  15. Poisson Approximation-Based Score Test for Detecting Association of Rare Variants.

    PubMed

    Fang, Hongyan; Zhang, Hong; Yang, Yaning

    2016-07-01

    Genome-wide association study (GWAS) has achieved great success in identifying genetic variants, but the nature of GWAS has determined its inherent limitations. Under the common disease rare variants (CDRV) hypothesis, the traditional association analysis methods commonly used in GWAS for common variants do not have enough power for detecting rare variants with a limited sample size. As a solution to this problem, pooling rare variants by their functions provides an efficient way for identifying susceptible genes. Rare variant typically have low frequencies of minor alleles, and the distribution of the total number of minor alleles of the rare variants can be approximated by a Poisson distribution. Based on this fact, we propose a new test method, the Poisson Approximation-based Score Test (PAST), for association analysis of rare variants. Two testing methods, namely, ePAST and mPAST, are proposed based on different strategies of pooling rare variants. Simulation results and application to the CRESCENDO cohort data show that our methods are more powerful than the existing methods. © 2016 John Wiley & Sons Ltd/University College London.

  16. Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer's disease.

    PubMed

    Nho, Kwangsik; Horgusluoglu, Emrin; Kim, Sungeun; Risacher, Shannon L; Kim, Dokyoon; Foroud, Tatiana; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W; Green, Robert C; Toga, Arthur W; Saykin, Andrew J

    2016-08-12

    Pathogenic mutations in PSEN1 are known to cause familial early-onset Alzheimer's disease (EOAD) but common variants in PSEN1 have not been found to strongly influence late-onset AD (LOAD). The association of rare variants in PSEN1 with LOAD-related endophenotypes has received little attention. In this study, we performed a rare variant association analysis of PSEN1 with quantitative biomarkers of LOAD using whole genome sequencing (WGS) by integrating bioinformatics and imaging informatics. A WGS data set (N = 815) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort was used in this analysis. 757 non-Hispanic Caucasian participants underwent WGS from a blood sample and high resolution T1-weighted structural MRI at baseline. An automated MRI analysis technique (FreeSurfer) was used to measure cortical thickness and volume of neuroanatomical structures. We assessed imaging and cerebrospinal fluid (CSF) biomarkers as LOAD-related quantitative endophenotypes. Single variant analyses were performed using PLINK and gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). A total of 839 rare variants (MAF < 1/√(2 N) = 0.0257) were found within a region of ±10 kb from PSEN1. Among them, six exonic (three non-synonymous) variants were observed. A single variant association analysis showed that the PSEN1 p. E318G variant increases the risk of LOAD only in participants carrying APOE ε4 allele where individuals carrying the minor allele of this PSEN1 risk variant have lower CSF Aβ1-42 and higher CSF tau. A gene-based analysis resulted in a significant association of rare but not common (MAF ≥ 0.0257) PSEN1 variants with bilateral entorhinal cortical thickness. This is the first study to show that PSEN1 rare variants collectively show a significant association with the brain atrophy in regions preferentially affected by LOAD, providing further support for a role of PSEN1 in LOAD

  17. A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression

    PubMed Central

    Knight, Helen M.; Pickard, Benjamin S.; Maclean, Alan; Malloy, Mary P.; Soares, Dinesh C.; McRae, Allan F.; Condie, Alison; White, Angela; Hawkins, William; McGhee, Kevin; van Beck, Margaret; MacIntyre, Donald J.; Starr, John M.; Deary, Ian J.; Visscher, Peter M.; Porteous, David J.; Cannon, Ronald E.; St Clair, David; Muir, Walter J.; Blackwood, Douglas H.R.

    2009-01-01

    Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of ∼80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders. PMID:19944402

  18. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies.

    PubMed

    Li, Dalin; Lewinger, Juan Pablo; Gauderman, William J; Murcray, Cassandra Elizabeth; Conti, David

    2011-12-01

    Variants identified in recent genome-wide association studies based on the common-disease common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare variants may, in part, explain some of the missing hereditability. Here, we explored the advantage of the extreme phenotype sampling in rare-variant analysis and refined this design framework for future large-scale association studies on quantitative traits. We first proposed a power calculation approach for a likelihood-based analysis method. We then used this approach to demonstrate the potential advantages of extreme phenotype sampling for rare variants. Next, we discussed how this design can influence future sequencing-based association studies from a cost-efficiency (with the phenotyping cost included) perspective. Moreover, we discussed the potential of a two-stage design with the extreme sample as the first stage and the remaining nonextreme subjects as the second stage. We demonstrated that this two-stage design is a cost-efficient alternative to the one-stage cross-sectional design or traditional two-stage design. We then discussed the analysis strategies for this extreme two-stage design and proposed a corresponding design optimization procedure. To address many practical concerns, for example measurement error or phenotypic heterogeneity at the very extremes, we examined an approach in which individuals with very extreme phenotypes are discarded. We demonstrated that even with a substantial proportion of these extreme individuals discarded, an extreme-based sampling can still be more efficient. Finally, we expanded the current analysis and design framework to accommodate the CMC approach where multiple rare-variants in the same gene region are analyzed jointly. © 2011 Wiley Periodicals, Inc.

  19. Using Extreme Phenotype Sampling to Identify the Rare Causal Variants of Quantitative Traits in Association Studies

    PubMed Central

    Li, Dalin; Lewinger, Juan Pablo; Gauderman, William J.; Murcray, Cassandra Elizabeth; Conti, David

    2014-01-01

    Variants identified in recent genome-wide association studies based on the common-disease common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare variants may, in part, explain some of the missing hereditability. Here, we explored the advantage of the extreme phenotype sampling in rare-variant analysis and refined this design framework for future large-scale association studies on quantitative traits. We first proposed a power calculation approach for a likelihood-based analysis method. We then used this approach to demonstrate the potential advantages of extreme phenotype sampling for rare variants. Next, we discussed how this design can influence future sequencing-based association studies from a cost-efficiency (with the phenotyping cost included) perspective. Moreover, we discussed the potential of a two-stage design with the extreme sample as the first stage and the remaining nonextreme subjects as the second stage. We demonstrated that this two-stage design is a cost-efficient alternative to the one-stage cross-sectional design or traditional two-stage design. We then discussed the analysis strategies for this extreme two-stage design and proposed a corresponding design optimization procedure. To address many practical concerns, for example measurement error or phenotypic heterogeneity at the very extremes, we examined an approach in which individuals with very extreme phenotypes are discarded. We demonstrated that even with a substantial proportion of these extreme individuals discarded, an extreme-based sampling can still be more efficient. Finally, we expanded the current analysis and design framework to accommodate the CMC approach where multiple rare-variants in the same gene region are analyzed jointly. PMID:21922541

  20. A method for rapid, targeted CNV genotyping identifies rare variants associated with neurocognitive disease.

    PubMed

    Mefford, Heather C; Cooper, Gregory M; Zerr, Troy; Smith, Joshua D; Baker, Carl; Shafer, Neil; Thorland, Erik C; Skinner, Cindy; Schwartz, Charles E; Nickerson, Deborah A; Eichler, Evan E

    2009-09-01

    Copy-number variants (CNVs) are substantial contributors to human disease. A central challenge in CNV-disease association studies is to characterize the pathogenicity of rare and possibly incompletely penetrant events, which requires the accurate detection of rare CNVs in large numbers of individuals. Cost and throughput issues limit our ability to perform these studies. We have adapted the Illumina BeadXpress SNP genotyping assay and developed an algorithm, SNP-Conditional OUTlier detection (SCOUT), to rapidly and accurately detect both rare and common CNVs in large cohorts. This approach is customizable, cost effective, highly parallelized, and largely automated. We applied this method to screen 69 loci in 1105 children with unexplained intellectual disability, identifying pathogenic variants in 3.1% of these individuals and potentially pathogenic variants in an additional 2.3%. We identified seven individuals (0.7%) with a deletion of 16p11.2, which has been previously associated with autism. Our results widen the phenotypic spectrum of these deletions to include intellectual disability without autism. We also detected 1.65-3.4 Mbp duplications at 16p13.11 in 1.1% of affected individuals and 350 kbp deletions at 15q11.2, near the Prader-Willi/Angelman syndrome critical region, in 0.8% of affected individuals. Compared to published CNVs in controls they are significantly (P = 4.7 x 10(-5) and 0.003, respectively) enriched in these children, supporting previously published hypotheses that they are neurocognitive disease risk factors. More generally, this approach offers a previously unavailable balance between customization, cost, and throughput for analysis of CNVs and should prove valuable for targeted CNV detection in both research and diagnostic settings.

  1. Investigation of the role of TCF4 rare sequence variants in schizophrenia.

    PubMed

    Basmanav, F Buket; Forstner, Andreas J; Fier, Heide; Herms, Stefan; Meier, Sandra; Degenhardt, Franziska; Hoffmann, Per; Barth, Sandra; Fricker, Nadine; Strohmaier, Jana; Witt, Stephanie H; Ludwig, Michael; Schmael, Christine; Moebus, Susanne; Maier, Wolfgang; Mössner, Rainald; Rujescu, Dan; Rietschel, Marcella; Lange, Christoph; Nöthen, Markus M; Cichon, Sven

    2015-07-01

    Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations. © 2015 Wiley Periodicals, Inc.

  2. Rare-Variant Association Analysis: Study Designs and Statistical Tests

    PubMed Central

    Lee, Seunggeung; Abecasis, Gonçalo R.; Boehnke, Michael; Lin, Xihong

    2014-01-01

    Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway to identify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research directions. PMID:24995866

  3. Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism.

    PubMed

    Chen, Rui; Davis, Lea K; Guter, Stephen; Wei, Qiang; Jacob, Suma; Potter, Melissa H; Cox, Nancy J; Cook, Edwin H; Sutcliffe, James S; Li, Bingshan

    2017-01-01

    Autism spectrum disorder (ASD) is one of the most highly heritable neuropsychiatric disorders, but underlying molecular mechanisms are still unresolved due to extreme locus heterogeneity. Leveraging meaningful endophenotypes or biomarkers may be an effective strategy to reduce heterogeneity to identify novel ASD genes. Numerous lines of evidence suggest a link between hyperserotonemia, i.e., elevated serotonin (5-hydroxytryptamine or 5-HT) in whole blood, and ASD. However, the genetic determinants of blood 5-HT level and their relationship to ASD are largely unknown. In this study, pursuing the hypothesis that de novo variants (DNVs) and rare risk alleles acting in a recessive mode may play an important role in predisposition of hyperserotonemia in people with ASD, we carried out whole exome sequencing (WES) in 116 ASD parent-proband trios with most (107) probands having 5-HT measurements. Combined with published ASD DNVs, we identified USP15 as having recurrent de novo loss of function mutations and discovered evidence supporting two other known genes with recurrent DNVs ( FOXP1 and KDM5B ). Genes harboring functional DNVs significantly overlap with functional/disease gene sets known to be involved in ASD etiology, including FMRP targets and synaptic formation and transcriptional regulation genes. We grouped the probands into High-5HT and Normal-5HT groups based on normalized serotonin levels, and used network-based gene set enrichment analysis (NGSEA) to identify novel hyperserotonemia-related ASD genes based on LoF and missense DNVs. We found enrichment in the High-5HT group for a gene network module (DAWN-1) previously implicated in ASD, and this points to the TGF-β pathway and cell junction processes. Through analysis of rare recessively acting variants (RAVs), we also found that rare compound heterozygotes (CHs) in the High-5HT group were enriched for loci in an ASD-associated gene set. Finally, we carried out rare variant group-wise transmission

  4. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population.

    PubMed

    Yousri, Noha A; Fakhro, Khalid A; Robay, Amal; Rodriguez-Flores, Juan L; Mohney, Robert P; Zeriri, Hassina; Odeh, Tala; Kader, Sara Abdul; Aldous, Eman K; Thareja, Gaurav; Kumar, Manish; Al-Shakaki, Alya; Chidiac, Omar M; Mohamoud, Yasmin A; Mezey, Jason G; Malek, Joel A; Crystal, Ronald G; Suhre, Karsten

    2018-01-23

    Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.

  5. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma

    PubMed Central

    Shi, Jianxin; Yang, Xiaohong R.; Ballew, Bari; Rotunno, Melissa; Calista, Donato; Fargnoli, Maria Concetta; Ghiorzo, Paola; Paillerets, Brigitte Bressac-de; Nagore, Eduardo; Avril, Marie Francoise; Caporaso, Neil E.; McMaster, Mary L.; Cullen, Michael; Wang, Zhaoming; Zhang, Xijun; Bruno, William; Pastorino, Lorenza; Queirolo, Paola; Banuls-Roca, Jose; Garcia-Casado, Zaida; Vaysse, Amaury; Mohamdi, Hamida; Riazalhosseini, Yasser; Foglio, Mario; Jouenne, Fanélie; Hua, Xing; Hyland, Paula L.; Yin, Jinhu; Vallabhaneni, Haritha; Chai, Weihang; Minghetti, Paola; Pellegrini, Cristina; Ravichandran, Sarangan; Eggermont, Alexander; Lathrop, Mark; Peris, Ketty; Scarra, Giovanna Bianchi; Landi, Giorgio; Savage, Sharon A.; Sampson, Joshua N.; He, Ji; Yeager, Meredith; Goldin, Lynn R.; Demenais, Florence; Chanock, Stephen J.; Tucker, Margaret A.; Goldstein, Alisa M.; Liu, Yie; Landi, Maria Teresa

    2014-01-01

    Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin POT1 gene (g.7:124493086 C>T, Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere length and elevated fragile telomeres suggesting that this variant perturbs telomere maintenance. Two additional rare POT1 variants were identified in all cases sequenced in two other Italian families, yielding a frequency of POT1 variants comparable to that of CDKN2A mutations in this population. These variants were not found in public databases or in 2,038 genotyped Italian controls. We also identified two rare recurrent POT1 variants in American and French familial melanoma cases. Our findings suggest that POT1 is a major susceptibility gene for familial melanoma in several populations. PMID:24686846

  6. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci.

    PubMed

    Aung, Tin; Ozaki, Mineo; Lee, Mei Chin; Schlötzer-Schrehardt, Ursula; Thorleifsson, Gudmar; Mizoguchi, Takanori; Igo, Robert P; Haripriya, Aravind; Williams, Susan E; Astakhov, Yury S; Orr, Andrew C; Burdon, Kathryn P; Nakano, Satoko; Mori, Kazuhiko; Abu-Amero, Khaled; Hauser, Michael; Li, Zheng; Prakadeeswari, Gopalakrishnan; Bailey, Jessica N Cooke; Cherecheanu, Alina Popa; Kang, Jae H; Nelson, Sarah; Hayashi, Ken; Manabe, Shin-Ichi; Kazama, Shigeyasu; Zarnowski, Tomasz; Inoue, Kenji; Irkec, Murat; Coca-Prados, Miguel; Sugiyama, Kazuhisa; Järvelä, Irma; Schlottmann, Patricio; Lerner, S Fabian; Lamari, Hasnaa; Nilgün, Yildirim; Bikbov, Mukharram; Park, Ki Ho; Cha, Soon Cheol; Yamashiro, Kenji; Zenteno, Juan C; Jonas, Jost B; Kumar, Rajesh S; Perera, Shamira A; Chan, Anita S Y; Kobakhidze, Nino; George, Ronnie; Vijaya, Lingam; Do, Tan; Edward, Deepak P; de Juan Marcos, Lourdes; Pakravan, Mohammad; Moghimi, Sasan; Ideta, Ryuichi; Bach-Holm, Daniella; Kappelgaard, Per; Wirostko, Barbara; Thomas, Samuel; Gaston, Daniel; Bedard, Karen; Greer, Wenda L; Yang, Zhenglin; Chen, Xueyi; Huang, Lulin; Sang, Jinghong; Jia, Hongyan; Jia, Liyun; Qiao, Chunyan; Zhang, Hui; Liu, Xuyang; Zhao, Bowen; Wang, Ya-Xing; Xu, Liang; Leruez, Stéphanie; Reynier, Pascal; Chichua, George; Tabagari, Sergo; Uebe, Steffen; Zenkel, Matthias; Berner, Daniel; Mossböck, Georg; Weisschuh, Nicole; Hoja, Ursula; Welge-Luessen, Ulrich-Christoph; Mardin, Christian; Founti, Panayiota; Chatzikyriakidou, Anthi; Pappas, Theofanis; Anastasopoulos, Eleftherios; Lambropoulos, Alexandros; Ghosh, Arkasubhra; Shetty, Rohit; Porporato, Natalia; Saravanan, Vijayan; Venkatesh, Rengaraj; Shivkumar, Chandrashekaran; Kalpana, Narendran; Sarangapani, Sripriya; Kanavi, Mozhgan R; Beni, Afsaneh Naderi; Yazdani, Shahin; Lashay, Alireza; Naderifar, Homa; Khatibi, Nassim; Fea, Antonio; Lavia, Carlo; Dallorto, Laura; Rolle, Teresa; Frezzotti, Paolo; Paoli, Daniela; Salvi, Erika; Manunta, Paolo; Mori, Yosai; Miyata, Kazunori; Higashide, Tomomi; Chihara, Etsuo; Ishiko, Satoshi; Yoshida, Akitoshi; Yanagi, Masahide; Kiuchi, Yoshiaki; Ohashi, Tsutomu; Sakurai, Toshiya; Sugimoto, Takako; Chuman, Hideki; Aihara, Makoto; Inatani, Masaru; Miyake, Masahiro; Gotoh, Norimoto; Matsuda, Fumihiko; Yoshimura, Nagahisa; Ikeda, Yoko; Ueno, Morio; Sotozono, Chie; Jeoung, Jin Wook; Sagong, Min; Park, Kyu Hyung; Ahn, Jeeyun; Cruz-Aguilar, Marisa; Ezzouhairi, Sidi M; Rafei, Abderrahman; Chong, Yaan Fun; Ng, Xiao Yu; Goh, Shuang Ru; Chen, Yueming; Yong, Victor H K; Khan, Muhammad Imran; Olawoye, Olusola O; Ashaye, Adeyinka O; Ugbede, Idakwo; Onakoya, Adeola; Kizor-Akaraiwe, Nkiru; Teekhasaenee, Chaiwat; Suwan, Yanin; Supakontanasan, Wasu; Okeke, Suhanya; Uche, Nkechi J; Asimadu, Ifeoma; Ayub, Humaira; Akhtar, Farah; Kosior-Jarecka, Ewa; Lukasik, Urszula; Lischinsky, Ignacio; Castro, Vania; Grossmann, Rodolfo Perez; Sunaric Megevand, Gordana; Roy, Sylvain; Dervan, Edward; Silke, Eoin; Rao, Aparna; Sahay, Priti; Fornero, Pablo; Cuello, Osvaldo; Sivori, Delia; Zompa, Tamara; Mills, Richard A; Souzeau, Emmanuelle; Mitchell, Paul; Wang, Jie Jin; Hewitt, Alex W; Coote, Michael; Crowston, Jonathan G; Astakhov, Sergei Y; Akopov, Eugeny L; Emelyanov, Anton; Vysochinskaya, Vera; Kazakbaeva, Gyulli; Fayzrakhmanov, Rinat; Al-Obeidan, Saleh A; Owaidhah, Ohoud; Aljasim, Leyla Ali; Chowbay, Balram; Foo, Jia Nee; Soh, Raphael Q; Sim, Kar Seng; Xie, Zhicheng; Cheong, Augustine W O; Mok, Shi Qi; Soo, Hui Meng; Chen, Xiao Yin; Peh, Su Qin; Heng, Khai Koon; Husain, Rahat; Ho, Su-Ling; Hillmer, Axel M; Cheng, Ching-Yu; Escudero-Domínguez, Francisco A; González-Sarmiento, Rogelio; Martinon-Torres, Frederico; Salas, Antonio; Pathanapitoon, Kessara; Hansapinyo, Linda; Wanichwecharugruang, Boonsong; Kitnarong, Naris; Sakuntabhai, Anavaj; Nguyn, Hip X; Nguyn, Giang T T; Nguyn, Trình V; Zenz, Werner; Binder, Alexander; Klobassa, Daniela S; Hibberd, Martin L; Davila, Sonia; Herms, Stefan; Nöthen, Markus M; Moebus, Susanne; Rautenbach, Robyn M; Ziskind, Ari; Carmichael, Trevor R; Ramsay, Michele; Álvarez, Lydia; García, Montserrat; González-Iglesias, Héctor; Rodríguez-Calvo, Pedro P; Fernández-Vega Cueto, Luis; Oguz, Çilingir; Tamcelik, Nevbahar; Atalay, Eray; Batu, Bilge; Aktas, Dilek; Kasım, Burcu; Wilson, M Roy; Coleman, Anne L; Liu, Yutao; Challa, Pratap; Herndon, Leon; Kuchtey, Rachel W; Kuchtey, John; Curtin, Karen; Chaya, Craig J; Crandall, Alan; Zangwill, Linda M; Wong, Tien Yin; Nakano, Masakazu; Kinoshita, Shigeru; den Hollander, Anneke I; Vesti, Eija; Fingert, John H; Lee, Richard K; Sit, Arthur J; Shingleton, Bradford J; Wang, Ningli; Cusi, Daniele; Qamar, Raheel; Kraft, Peter; Pericak-Vance, Margaret A; Raychaudhuri, Soumya; Heegaard, Steffen; Kivelä, Tero; Reis, André; Kruse, Friedrich E; Weinreb, Robert N; Pasquale, Louis R; Haines, Jonathan L; Thorsteinsdottir, Unnur; Jonasson, Fridbert; Allingham, R Rand; Milea, Dan; Ritch, Robert; Kubota, Toshiaki; Tashiro, Kei; Vithana, Eranga N; Micheal, Shazia; Topouzis, Fotis; Craig, Jamie E; Dubina, Michael; Sundaresan, Periasamy; Stefansson, Kari; Wiggs, Janey L; Pasutto, Francesca; Khor, Chiea Chuen

    2017-07-01

    Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 × 10 -14 ) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10 -8 ). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.

  7. Rare variants and autoimmune disease.

    PubMed

    Massey, Jonathan; Eyre, Steve

    2014-09-01

    The study of rare variants in monogenic forms of autoimmune disease has offered insight into the aetiology of more complex pathologies. Research in complex autoimmune disease initially focused on sequencing candidate genes, with some early successes, notably in uncovering low-frequency variation associated with Type 1 diabetes mellitus. However, other early examples have proved difficult to replicate, and a recent study across six autoimmune diseases, re-sequencing 25 autoimmune disease-associated genes in large sample sizes, failed to find any associated rare variants. The study of rare and low-frequency variation in autoimmune diseases has been made accessible by the inclusion of such variants on custom genotyping arrays (e.g. Immunochip and Exome arrays). Whole-exome sequencing approaches are now also being utilised to uncover the contribution of rare coding variants to disease susceptibility, severity and treatment response. Other sequencing strategies are starting to uncover the role of regulatory rare variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and RNF186 That Are Associated with Ulcerative Colitis

    PubMed Central

    Boucher, Gabrielle; Lo, Ken Sin; Rivas, Manuel A.; Stevens, Christine; Alikashani, Azadeh; Ladouceur, Martin; Ellinghaus, David; Törkvist, Leif; Goel, Gautam; Lagacé, Caroline; Annese, Vito; Bitton, Alain; Begun, Jakob; Brant, Steve R.; Bresso, Francesca; Cho, Judy H.; Duerr, Richard H.; Halfvarson, Jonas; McGovern, Dermot P. B.; Radford-Smith, Graham; Schreiber, Stefan; Schumm, Philip L.; Sharma, Yashoda; Silverberg, Mark S.; Weersma, Rinse K.; D'Amato, Mauro; Vermeire, Severine; Franke, Andre; Lettre, Guillaume; Xavier, Ramnik J.; Daly, Mark J.; Rioux, John D.

    2013-01-01

    Genome-wide association studies and follow-up meta-analyses in Crohn's disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of disease variance (∼14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci. PMID:24068945

  9. Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane.

    PubMed

    Corominas, Jordi; Colijn, Johanna M; Geerlings, Maartje J; Pauper, Marc; Bakker, Bjorn; Amin, Najaf; Lores Motta, Laura; Kersten, Eveline; Garanto, Alejandro; Verlouw, Joost A M; van Rooij, Jeroen G J; Kraaij, Robert; de Jong, Paulus T V M; Hofman, Albert; Vingerling, Johannes R; Schick, Tina; Fauser, Sascha; de Jong, Eiko K; van Duijn, Cornelia M; Hoyng, Carel B; Klaver, Caroline C W; den Hollander, Anneke I

    2018-04-26

    Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. Genome-wide case-control association study of WES data. One thousand one hundred twenty-five AMD patients and 1361 control participants. A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. Genetic variants associated with AMD. We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10 -5 ). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation

  10. Using whole-exome sequencing to identify variants inherited from mosaic parents

    PubMed Central

    Rios, Jonathan J; Delgado, Mauricio R

    2015-01-01

    Whole-exome sequencing (WES) has allowed the discovery of genes and variants causing rare human disease. This is often achieved by comparing nonsynonymous variants between unrelated patients, and particularly for sporadic or recessive disease, often identifies a single or few candidate genes for further consideration. However, despite the potential for this approach to elucidate the genetic cause of rare human disease, a majority of patients fail to realize a genetic diagnosis using standard exome analysis methods. Although genetic heterogeneity contributes to the difficulty of exome sequence analysis between patients, it remains plausible that rare human disease is not caused by de novo or recessive variants. Multiple human disorders have been described for which the variant was inherited from a phenotypically normal mosaic parent. Here we highlight the potential for exome sequencing to identify a reasonable number of candidate genes when dominant disease variants are inherited from a mosaic parent. We show the power of WES to identify a limited number of candidate genes using this disease model and how sequence coverage affects identification of mosaic variants by WES. We propose this analysis as an alternative to discover genetic causes of rare human disorders for which typical WES approaches fail to identify likely pathogenic variants. PMID:24986828

  11. Possible role of rare variants in Trace amine associated receptor 1 in schizophrenia.

    PubMed

    John, Jibin; Kukshal, Prachi; Bhatia, Triptish; Chowdari, K V; Nimgaonkar, V L; Deshpande, S N; Thelma, B K

    2017-11-01

    Schizophrenia (SZ) is a chronic mental illness with behavioral abnormalities. Recent common variant based genome wide association studies and rare variant detection using next generation sequencing approaches have identified numerous variants that confer risk for SZ, but etiology remains unclear propelling continuing investigations. Using whole exome sequencing, we identified a rare heterozygous variant (c.545G>T; p.Cys182Phe) in Trace amine associated receptor 1 gene (TAAR1 6q23.2) in three affected members in a small SZ family. The variant predicted to be damaging by 15 prediction tools, causes breakage of a conserved disulfide bond in this G-protein-coupled receptor. On screening this intronless gene for additional variant(s) in ~800 sporadic SZ patients, we identified six rare protein altering variants (MAF<0.001) namely p.Ser47Cys, p.Phe51Leu, p.Tyr294Ter, p.Leu295Ser in four unrelated north Indian cases (n=475); p.Ala109Thr and p.Val250Ala in two independent Caucasian/African-American patients (n=310). Five of these variants were also predicted to be damaging. Besides, a rare synonymous variant was observed in SZ patients. These rare variants were absent in north Indian healthy controls (n=410) but significantly enriched in patients (p=0.036). Conversely, three common coding SNPs (rs8192621, rs8192620 and rs8192619) and a promoter SNP (rs60266355) tested for association with SZ in the north Indian cohort were not significant (P>0.05). TAAR1 is a modulator of monoaminergic pathways and interacts with AKT signaling pathways. Substantial animal model based pharmacological and functional data implying its relevance in SZ are also available. However, this is the first report suggestive of the likely contribution of rare variants in this gene to SZ. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    PubMed Central

    Christophersen, Ingrid E.; Rienstra, Michiel; Roselli, Carolina; Yin, Xiaoyan; Geelhoed, Bastiaan; Barnard, John; Lin, Honghuang; Arking, Dan E.; Smith, Albert V.; Albert, Christine M.; Chaffin, Mark; Tucker, Nathan R.; Li, Molong; Klarin, Derek; Bihlmeyer, Nathan A; Low, Siew-Kee; Weeke, Peter E.; Müller-Nurasyid, Martina; Smith, J. Gustav; Brody, Jennifer A.; Niemeijer, Maartje N.; Dörr, Marcus; Trompet, Stella; Huffman, Jennifer; Gustafsson, Stefan; Schurman, Claudia; Kleber, Marcus E.; Lyytikäinen, Leo-Pekka; Seppälä, Ilkka; Malik, Rainer; Horimoto, Andrea R. V. R.; Perez, Marco; Sinisalo, Juha; Aeschbacher, Stefanie; Thériault, Sébastien; Yao, Jie; Radmanesh, Farid; Weiss, Stefan; Teumer, Alexander; Choi, Seung Hoan; Weng, Lu-Chen; Clauss, Sebastian; Deo, Rajat; Rader, Daniel J.; Shah, Svati; Sun, Albert; Hopewell, Jemma C.; Debette, Stephanie; Chauhan, Ganesh; Yang, Qiong; Worrall, Bradford B.; Paré, Guillaume; Kamatani, Yoichiro; Hagemeijer, Yanick P.; Verweij, Niek; Siland, Joylene E.; Kubo, Michiaki; Smith, Jonathan D.; Van Wagoner, David R.; Bis, Joshua C.; Perz, Siegfried; Psaty, Bruce M.; Ridker, Paul M.; Magnani, Jared W.; Harris, Tamara B.; Launer, Lenore J.; Shoemaker, M. Benjamin; Padmanabhan, Sandosh; Haessler, Jeffrey; Bartz, Traci M.; Waldenberger, Melanie; Lichtner, Peter; Arendt, Marina; Krieger, Jose E.; Kähönen, Mika; Risch, Lorenz; Mansur, Alfredo J.; Peters, Annette; Smith, Blair H.; Lind, Lars; Scott, Stuart A.; Lu, Yingchang; Bottinger, Erwin B.; Hernesniemi, Jussi; Lindgren, Cecilia M.; Wong, Jorge; Huang, Jie; Eskola, Markku; Morris, Andrew P.; Ford, Ian; Reiner, Alex P.; Delgado, Graciela; Chen, Lin Y.; Chen, Yii-Der Ida; Sandhu, Roopinder K.; Li, Man; Boerwinkle, Eric; Eisele, Lewin; Lannfelt, Lars; Rost, Natalia; Anderson, Christopher D.; Taylor, Kent D.; Campbell, Archie; Magnusson, Patrik K.; Porteous, David; Hocking, Lynne J.; Vlachopoulou, Efthymia; Pedersen, Nancy L.; Nikus, Kjell; Orho-Melander, Marju; Hamsten, Anders; Heeringa, Jan; Denny, Joshua C.; Kriebel, Jennifer; Darbar, Dawood; Newton-Cheh, Christopher; Shaffer, Christian; Macfarlane, Peter W.; Heilmann, Stefanie; Almgren, Peter; Huang, Paul L.; Sotoodehnia, Nona; Soliman, Elsayed Z.; Uitterlinden, Andre G.; Hofman, Albert; Franco, Oscar H.; Völker, Uwe; Jöckel, Karl-Heinz; Sinner, Moritz F.; Lin, Henry J.; Guo, Xiuqing; Dichgans, Martin; Ingelsson, Erik; Kooperberg, Charles; Melander, Olle; Loos, Ruth J. F.; Laurikka, Jari; Conen, David; Rosand, Jonathan; van der Harst, Pim; Lokki, Marja-Liisa; Kathiresan, Sekar; Pereira, Alexandre; Jukema, J. Wouter; Hayward, Caroline; Rotter, Jerome I.; März, Winfried; Lehtimäki, Terho; Stricker, Bruno H.; Chung, Mina K.; Felix, Stephan B.; Gudnason, Vilmundur; Alonso, Alvaro; Roden, Dan M.; Kääb, Stefan; Chasman, Daniel I.; Heckbert, Susan R.; Benjamin, Emelia J.; Tanaka, Toshihiro; Lunetta, Kathryn L.; Lubitz, Steven A.; Ellinor, Patrick T.

    2017-01-01

    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death.1,2 Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups.3–7 To further define the genetic basis of atrial fibrillation, we performed large-scale, multi-racial meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 18,398 individuals with atrial fibrillation and 91,536 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,806 cases and 132,612 referents. We identified 12 novel genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate new potential targets for drug discovery.8 PMID:28416818

  13. Rare Variants in RTEL1 Are Associated with Familial Interstitial Pneumonia

    PubMed Central

    Cogan, Joy D.; Zhao, Min; Mitchell, Daphne B.; Rives, Lynette; Markin, Cheryl; Garnett, Errine T.; Montgomery, Keri H.; Mason, Wendi R.; McKean, David F.; Powers, Julia; Murphy, Elissa; Olson, Lana M.; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R.; Lancaster, Lisa H.; Steele, Mark P.; Brown, Kevin K.; Schwarz, Marvin I.; Fingerlin, Tasha E.; Schwartz, David A.; Lawson, William E.; Loyd, James E.; Zhao, Zhongming; Phillips, John A.; Blackwell, Timothy S.

    2015-01-01

    Rationale: Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. Objectives: To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Methods: Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. Measurements and Main Results: We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Conclusions: Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis. PMID:25607374

  14. Rare variants in RTEL1 are associated with familial interstitial pneumonia.

    PubMed

    Cogan, Joy D; Kropski, Jonathan A; Zhao, Min; Mitchell, Daphne B; Rives, Lynette; Markin, Cheryl; Garnett, Errine T; Montgomery, Keri H; Mason, Wendi R; McKean, David F; Powers, Julia; Murphy, Elissa; Olson, Lana M; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R; Lancaster, Lisa H; Steele, Mark P; Brown, Kevin K; Schwarz, Marvin I; Fingerlin, Tasha E; Schwartz, David A; Lawson, William E; Loyd, James E; Zhao, Zhongming; Phillips, John A; Blackwell, Timothy S

    2015-03-15

    Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.

  15. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability.

    PubMed

    Hunt, Karen A; Mistry, Vanisha; Bockett, Nicholas A; Ahmad, Tariq; Ban, Maria; Barker, Jonathan N; Barrett, Jeffrey C; Blackburn, Hannah; Brand, Oliver; Burren, Oliver; Capon, Francesca; Compston, Alastair; Gough, Stephen C L; Jostins, Luke; Kong, Yong; Lee, James C; Lek, Monkol; MacArthur, Daniel G; Mansfield, John C; Mathew, Christopher G; Mein, Charles A; Mirza, Muddassar; Nutland, Sarah; Onengut-Gumuscu, Suna; Papouli, Efterpi; Parkes, Miles; Rich, Stephen S; Sawcer, Steven; Satsangi, Jack; Simmonds, Matthew J; Trembath, Richard C; Walker, Neil M; Wozniak, Eva; Todd, John A; Simpson, Michael A; Plagnol, Vincent; van Heel, David A

    2013-06-13

    Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.

  16. From Common to Rare Variants: The Genetic Component of Alzheimer Disease.

    PubMed

    Nicolas, Gaël; Charbonnier, Camille; Campion, Dominique

    2016-01-01

    Alzheimer disease (AD) is a remarkable example of genetic heterogeneity. Extremely rare variants in the APP, PSEN1, or PSEN2 genes, or duplications of the APP gene cause autosomal dominant forms, generally with complete penetrance by the age of 65 years. Nonautosomal dominant forms are considered as a complex disorder with a high genetic component, whatever the age of onset. Although genetically heterogeneous, AD is defined by the same neuropathological criteria in all configurations. According to the amyloid cascade hypothesis, the Aβ peptide, which aggregates in AD brains, is a key player. APP, PSEN1, or PSEN2 gene mutations increase the production of more aggregation-prone forms of the Aβ peptide, triggering the pathological process. Several risk factors identified in association studies hit genes involved in Aβ production/secretion, aggregation, clearance, or toxicity. Among them, the APOE ε4 allele is a rare example of a common allele with a large effect size, the ORs ranging from 4 to 11-14 for heterozygous and homozygous carriers, respectively. In addition, genome-wide association studies have identified more than two dozen loci with a weak but significant association, the OR of the at-risk allele ranging from 1.08 to 1.30. Recently, the use of massive parallel sequencing has enabled the analysis of rare variants in a genome-wide manner. Two rare variants have been nominally associated with AD risk or protection (TREM2 p.R47H, MAF approximately 0.002, OR approximately 4 and APP p.A673T, MAF approximately 0.0005, OR approximately 0.2). Association analyses at the gene level identified rare loss-of-function and missense, predicted damaging, variants (MAF <0.01) in the SORL1 and ABCA7 genes associated with a moderate relative risk (OR approximately 5 and approximately 2.8, respectively). Although the latter analyses revealed association signals with moderately rare variants by collapsing them, the power to detect genes hit by extremely rare variants is

  17. Regularized rare variant enrichment analysis for case-control exome sequencing data.

    PubMed

    Larson, Nicholas B; Schaid, Daniel J

    2014-02-01

    Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.

  18. Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression.

    PubMed

    Sirkis, Daniel W; Bonham, Luke W; Aparicio, Renan E; Geier, Ethan G; Ramos, Eliana Marisa; Wang, Qing; Karydas, Anna; Miller, Zachary A; Miller, Bruce L; Coppola, Giovanni; Yokoyama, Jennifer S

    2016-09-02

    Rare variation in TREM2 has been associated with greater risk for Alzheimer's disease (AD). TREM2 encodes a cell surface receptor expressed on microglia and related cells, and the R47H variant associated with AD appears to affect the ability of TREM2 to bind extracellular ligands. In addition, other rare TREM2 mutations causing early-onset neurodegeneration are thought to impair cell surface expression. Using a sequence kernel association (SKAT) analysis in two independent AD cohorts, we found significant enrichment of rare TREM2 variants not previously characterized at the protein level. Heterologous expression of the identified variants showed that novel variants S31F and R47C displayed significantly reduced cell surface expression. In addition, we identified rare variant R136Q in a patient with language-predominant AD that also showed impaired surface expression. The results suggest rare TREM2 variants enriched in AD may be associated with altered TREM2 function and that AD risk may be conferred, in part, from altered TREM2 surface expression.

  19. RareVariantVis: new tool for visualization of causative variants in rare monogenic disorders using whole genome sequencing data.

    PubMed

    Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M

    2016-10-01

    The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Estimating genetic effects and quantifying missing heritability explained by identified rare-variant associations.

    PubMed

    Liu, Dajiang J; Leal, Suzanne M

    2012-10-05

    Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner's curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner's curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies.

    PubMed

    Lin, Jhih-Rong; Zhang, Quanwei; Cai, Ying; Morrow, Bernice E; Zhang, Zhengdong D

    2017-12-01

    Rare variants of major effect play an important role in human complex diseases and can be discovered by sequencing-based genome-wide association studies. Here, we introduce an integrated approach that combines the rare variant association test with gene network and phenotype information to identify risk genes implicated by rare variants for human complex diseases. Our data integration method follows a 'discovery-driven' strategy without relying on prior knowledge about the disease and thus maintains the unbiased character of genome-wide association studies. Simulations reveal that our method can outperform a widely-used rare variant association test method by 2 to 3 times. In a case study of a small disease cohort, we uncovered putative risk genes and the corresponding rare variants that may act as genetic modifiers of congenital heart disease in 22q11.2 deletion syndrome patients. These variants were missed by a conventional approach that relied on the rare variant association test alone.

  2. Establishing the role of rare coding variants in known Parkinson's disease risk loci.

    PubMed

    Jansen, Iris E; Gibbs, J Raphael; Nalls, Mike A; Price, T Ryan; Lubbe, Steven; van Rooij, Jeroen; Uitterlinden, André G; Kraaij, Robert; Williams, Nigel M; Brice, Alexis; Hardy, John; Wood, Nicholas W; Morris, Huw R; Gasser, Thomas; Singleton, Andrew B; Heutink, Peter; Sharma, Manu

    2017-11-01

    Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A variational Bayes discrete mixture test for rare variant association

    PubMed Central

    Logsdon, Benjamin A.; Dai, James Y.; Auer, Paul L.; Johnsen, Jill M.; Ganesh, Santhi K.; Smith, Nicholas L.; Wilson, James G.; Tracy, Russell P.; Lange, Leslie A.; Jiao, Shuo; Rich, Stephen S.; Lettre, Guillaume; Carlson, Christopher S.; Jackson, Rebecca D.; O’Donnell, Christopher J.; Wurfel, Mark M.; Nickerson, Deborah A.; Tang, Hua; Reiner, Alexander P.; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that “aggregate” tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute’s Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans. PMID:24482836

  4. A variational Bayes discrete mixture test for rare variant association.

    PubMed

    Logsdon, Benjamin A; Dai, James Y; Auer, Paul L; Johnsen, Jill M; Ganesh, Santhi K; Smith, Nicholas L; Wilson, James G; Tracy, Russell P; Lange, Leslie A; Jiao, Shuo; Rich, Stephen S; Lettre, Guillaume; Carlson, Christopher S; Jackson, Rebecca D; O'Donnell, Christopher J; Wurfel, Mark M; Nickerson, Deborah A; Tang, Hua; Reiner, Alexander P; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that "aggregate" tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans.

  5. What can we learn about lipoprotein metabolism and coronary heart disease from studying rare variants?

    PubMed

    Jeff, Janina M; Peloso, Gina M; Do, Ron

    2016-04-01

    Rare variant association studies (RVAS) target the class of genetic variation with frequencies less than 1%. Recently, investigators have used exome sequencing in RVAS to identify rare alleles responsible for Mendelian diseases but have experienced greater difficulty discovering such alleles for complex diseases. In this review, we describe what we have learned about lipoprotein metabolism and coronary heart disease through the conduct of RVAS. Rare protein-altering genetic variation can provide important insights that are not as easily attainable from common variant association studies. First, RVAS can facilitate gene discovery by identifying novel rare protein-altering variants in specific genes that are associated with disease. Second, rare variant associations can provide supportive evidence for putative drug targets for novel therapies. Finally, rare variants can uncover new pathways and reveal new biologic mechanisms. The field of human genetics has already made tremendous progress in understanding lipoprotein metabolism and the causes of coronary heart disease in the context of rare variants. As next generation sequencing becomes more cost-effective, RVAS with larger sample sizes will be conducted. This will lead to more novel rare variant discoveries and the translation of genomic data into biological knowledge and clinical insights for cardiovascular disease.

  6. Meta-analysis of gene-level associations for rare variants based on single-variant statistics.

    PubMed

    Hu, Yi-Juan; Berndt, Sonja I; Gustafsson, Stefan; Ganna, Andrea; Hirschhorn, Joel; North, Kari E; Ingelsson, Erik; Lin, Dan-Yu

    2013-08-08

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Rare genetic variants and the risk of cancer.

    PubMed

    Bodmer, Walter; Tomlinson, Ian

    2010-06-01

    There are good reasons to expect that common genetic variants do not explain all of the inherited risk of the common cancers, not least of these being the relatively low proportion of familial relative risk that common cancer SNPs currently explain. One promising source of the unexplained risk is rare, low-penetrance genetic variants, a class that ranges from low-frequency polymorphisms (allele frequency < 5%) through subpolymorphic variants (frequency 0.1-1.0%) to very low frequency or 'private' variants with frequencies of 0.1% or less. Examples of rare cancer variants include breast cancer susceptibility loci CHEK2, BRIP1 and PALB2. There are considerable challenges associated with the discovery and testing of rare predisposition alleles, many of which are illustrated by the issues associated with variants of unknown significance in the Mendelian cancer predisposition genes. However, whilst cost constraints remain, the technological barriers to rare variant discovery and large-scale genotyping no longer exist. If each individual carries many disease-causing rare variants, the so-called missing heritability of cancer might largely be explained. Whether or not rare variants do end up filling the heritability gap, it is imperative to look for them along side common variants.

  8. Utilizing population controls in rare-variant case-parent association tests.

    PubMed

    Jiang, Yu; Satten, Glen A; Han, Yujun; Epstein, Michael P; Heinzen, Erin L; Goldstein, David B; Allen, Andrew S

    2014-06-05

    There is great interest in detecting associations between human traits and rare genetic variation. To address the low power implicit in single-locus tests of rare genetic variants, many rare-variant association approaches attempt to accumulate information across a gene, often by taking linear combinations of single-locus contributions to a statistic. Using the right linear combination is key-an optimal test will up-weight true causal variants, down-weight neutral variants, and correctly assign the direction of effect for causal variants. Here, we propose a procedure that exploits data from population controls to estimate the linear combination to be used in an case-parent trio rare-variant association test. Specifically, we estimate the linear combination by comparing population control allele frequencies with allele frequencies in the parents of affected offspring. These estimates are then used to construct a rare-variant transmission disequilibrium test (rvTDT) in the case-parent data. Because the rvTDT is conditional on the parents' data, using parental data in estimating the linear combination does not affect the validity or asymptotic distribution of the rvTDT. By using simulation, we show that our new population-control-based rvTDT can dramatically improve power over rvTDTs that do not use population control information across a wide variety of genetic architectures. It also remains valid under population stratification. We apply the approach to a cohort of epileptic encephalopathy (EE) trios and find that dominant (or additive) inherited rare variants are unlikely to play a substantial role within EE genes previously identified through de novo mutation studies. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Family studies to find rare high risk variants in migraine.

    PubMed

    Hansen, Rikke Dyhr; Christensen, Anne Francke; Olesen, Jes

    2017-12-01

    Migraine has long been known as a common complex disease caused by genetic and environmental factors. The pathophysiology and the specific genetic susceptibility are poorly understood. Common variants only explain a small part of the heritability of migraine. It is thought that rare genetic variants with bigger effect size may be involved in the disease. Since migraine has a tendency to cluster in families, a family approach might be the way to find these variants. This is also indicated by identification of migraine-associated loci in classical linkage-analyses in migraine families. A single migraine study using a candidate-gene approach was performed in 2010 identifying a rare mutation in the TRESK potassium channel segregating in a large family with migraine with aura, but this finding has later become questioned. The technologies of next-generation sequencing (NGS) now provides an affordable tool to investigate the genetic variation in the entire exome or genome. The family-based study design using NGS is described in this paper. We also review family studies using NGS that have been successful in finding rare variants in other common complex diseases in order to argue the promising application of a family approach to migraine. PubMed was searched to find studies that looked for rare genetic variants in common complex diseases through a family-based design using NGS, excluding studies looking for de-novo mutations, or using a candidate-gene approach and studies on cancer. All issues from Nature Genetics and PLOS genetics 2014, 2015 and 2016 (UTAI June) were screened for relevant papers. Reference lists from included and other relevant papers were also searched. For the description of the family-based study design using NGS an in-house protocol was used. Thirty-two successful studies, which covered 16 different common complex diseases, were included in this paper. We also found a single migraine study. Twenty-three studies found one or a few family specific

  10. FAVR (Filtering and Annotation of Variants that are Rare): methods to facilitate the analysis of rare germline genetic variants from massively parallel sequencing datasets

    PubMed Central

    2013-01-01

    Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software

  11. Targeted deep sequencing identifies rare loss-of-function variants in IFNGR1 for risk of atopic dermatitis complicated by eczema herpeticum.

    PubMed

    Gao, Li; Bin, Lianghua; Rafaels, Nicholas M; Huang, Lili; Potee, Joseph; Ruczinski, Ingo; Beaty, Terri H; Paller, Amy S; Schneider, Lynda C; Gallo, Rich; Hanifin, Jon M; Beck, Lisa A; Geha, Raif S; Mathias, Rasika A; Barnes, Kathleen C; Leung, Donald Y M

    2015-12-01

    A subset of atopic dermatitis is associated with increased susceptibility to eczema herpeticum (ADEH+). We previously reported that common single nucleotide polymorphisms (SNPs) in the IFN-γ (IFNG) and IFN-γ receptor 1 (IFNGR1) genes were associated with the ADEH+ phenotype. We sought to interrogate the role of rare variants in interferon pathway genes for the risk of ADEH+. We performed targeted sequencing of interferon pathway genes (IFNG, IFNGR1, IFNAR1, and IL12RB1) in 228 European American patients with AD selected according to their eczema herpeticum status, and severity was measured by using the Eczema Area and Severity Index. Replication genotyping was performed in independent samples of 219 European American and 333 African American subjects. Functional investigation of loss-of-function variants was conducted by using site-directed mutagenesis. We identified 494 single nucleotide variants encompassing 105 kb of sequence, including 145 common, 349 (70.6%) rare (minor allele frequency <5%), and 86 (17.4%) novel variants, of which 2.8% were coding synonymous, 93.3% were noncoding (64.6% intronic), and 3.8% were missense. We identified 6 rare IFNGR1 missense variants, including 3 damaging variants (Val14Met [V14M], Val61Ile, and Tyr397Cys [Y397C]) conferring a higher risk for ADEH+ (P = .031). Variants V14M and Y397C were confirmed to be deleterious, leading to partial IFNGR1 deficiency. Seven common IFNGR1 SNPs, along with common protective haplotypes (2-7 SNPs), conferred a reduced risk of ADEH+ (P = .015-.002 and P = .0015-.0004, respectively), and both SNP and haplotype associations were replicated in an independent African American sample (P = .004-.0001 and P = .001-.0001, respectively). Our results provide evidence that both genetic variants in the gene encoding IFNGR1 are implicated in susceptibility to the ADEH+ phenotype. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder.

    PubMed

    Steinberg, Karyn Meltz; Ramachandran, Dhanya; Patel, Viren C; Shetty, Amol C; Cutler, David J; Zwick, Michael E

    2012-09-28

    Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3' UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects.

  13. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder

    PubMed Central

    2012-01-01

    Background Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. Methods We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. Results We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3’ UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. Conclusions These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects. PMID:23020841

  14. Meta-analysis of gene-level tests for rare variant association.

    PubMed

    Liu, Dajiang J; Peloso, Gina M; Zhan, Xiaowei; Holmen, Oddgeir L; Zawistowski, Matthew; Feng, Shuang; Nikpay, Majid; Auer, Paul L; Goel, Anuj; Zhang, He; Peters, Ulrike; Farrall, Martin; Orho-Melander, Marju; Kooperberg, Charles; McPherson, Ruth; Watkins, Hugh; Willer, Cristen J; Hveem, Kristian; Melander, Olle; Kathiresan, Sekar; Abecasis, Gonçalo R

    2014-02-01

    The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays.

  15. Targeted Deep Sequencing Identifies Rare ‘loss-of-function’ Variants in IFNGR1 for Risk of Atopic Dermatitis Complicated by Eczema Herpeticum

    PubMed Central

    Gao, Li; Rafaels, Nicholas M; Huang, Lili; Potee, Joseph; Ruczinski, Ingo; Beaty, Terri H.; Paller, Amy S.; Schneider, Lynda C.; Gallo, Rich; Hanifin, Jon M.; Beck, Lisa A.; Geha, Raif S.; Mathias, Rasika A.; Leung, Donald Y. M.

    2015-01-01

    Background A subset of atopic dermatitis (AD) is associated with increased susceptibility to eczema herpeticum (ADEH+). We previously reported that common single nucleotide polymorphisms (SNPs) in interferon-gamma (IFNG) and receptor 1 (IFNGR1) were associated with ADEH+ phenotype. Objective To interrogate the role of rare variants in IFN-pathway genes for risk of ADEH+. Methods We performed targeted sequencing of interferon-pathway genes (IFNG, IFNGR1, IFNAR1 and IL12RB1) in 228 European American (EA) AD patients selected according to their EH status and severity measured by Eczema Area and Severity Index (EASI). Replication genotyping was performed in independent samples of 219 EA and 333 African Americans (AA). Functional investigation of ‘loss-of-function’ variants was conducted using site-directed mutagenesis. Results We identified 494 single nucleotide variants (SNVs) encompassing 105kb of sequence, including 145 common, 349 (70.6%) rare (minor allele frequency (MAF) <5%) and 86 (17.4%) novel variants, of which 2.8% were coding-synonymous, 93.3% were non-coding (64.6% intronic), and 3.8% were missense. We identified six rare IFNGR1 missense including three damaging variants (Val14Met (V14M), Val61Ile and Tyr397Cys (Y397C)) conferring a higher risk for ADEH+ (P=0.031). Variants V14M and Y397C were confirmed to be deleterious leading to partial IFNGR1 deficiency. Seven common IFNGR1 SNPs, along with common protective haplotypes (2 to 7-SNPs) conferred a reduced risk of ADEH+ (P=0.015-0.002, P=0.0015-0.0004, respectively), and both SNP and haplotype associations were replicated in an independent AA sample (P=0.004-0.0001 and P=0.001-0.0001, respectively). Conclusion Our results provide evidence that both genetic variants in the gene encoding IFNGR1 are implicated in susceptibility to the ADEH+ phenotype. CAPSULE SUMMARY We provided the first evidence that rare functional IFNGR1 mutations contribute to a defective systemic IFN-γ immune response that accounts

  16. Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue

    PubMed Central

    Rochette, Claire; Jullien, Nicolas; Saveanu, Alexandru; Caldagues, Emmanuelle; Bergada, Ignacio; Braslavsky, Debora; Pfeifer, Marija; Reynaud, Rachel; Herman, Jean-Paul; Barlier, Anne; Brue, Thierry; Enjalbert, Alain; Castinetti, Frederic

    2015-01-01

    LHX4 is a LIM homeodomain transcription factor involved in the early steps of pituitary ontogenesis. To date, 8 heterozygous LHX4 mutations have been reported as responsible of combined pituitary hormone deficiency (CPHD) in Humans. We identified 4 new LHX4 heterozygous allelic variants in patients with congenital hypopituitarism: W204X, delK242, N271S and Q346R. Our objective was to determine the role of LHX4 variants in patients’ phenotypes. Heterologous HEK293T cells were transfected with plasmids encoding for wild-type or mutant LHX4. Protein expression was analysed by Western Blot, and DNA binding by electro-mobility shift assay experiments. Target promoters of LHX4 were cotransfected with wild type or mutant LHX4 to test the transactivating abilities of each variant. Our results show that the W204X mutation was associated with early GH and TSH deficiencies and later onset ACTH deficiency. It led to a truncated protein unable to bind to alpha-Gsu promoter binding consensus sequence. W204X was not able to activate target promoters in vitro. Cotransfection experiments did not favour a dominant negative effect. In contrast, all other mutants were able to bind the promoters and led to an activation similar as that observed with wild type LHX4, suggesting that they were likely polymorphisms. To conclude, our study underlines the need for functional in vitro studies to ascertain the role of rare allelic variants of LHX4 in disease phenotypes. It supports the causative role of the W204X mutation in CPHD and adds up childhood onset ACTH deficiency to the clinical spectrum of the various phenotypes related to LHX4 mutations. PMID:25955177

  17. RNF213 Rare Variants in Slovakian and Czech Moyamoya Disease Patients.

    PubMed

    Kobayashi, Hatasu; Brozman, Miroslav; Kyselová, Kateřina; Viszlayová, Daša; Morimoto, Takaaki; Roubec, Martin; Školoudík, David; Petrovičová, Andrea; Juskanič, Dominik; Strauss, Jozef; Halaj, Marián; Kurray, Peter; Hranai, Marián; Harada, Kouji H; Inoue, Sumiko; Yoshida, Yukako; Habu, Toshiyuki; Herzig, Roman; Youssefian, Shohab; Koizumi, Akio

    2016-01-01

    RNF213/Mysterin has been identified as a susceptibility gene for moyamoya disease, a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The p.R4810K (rs112735431) variant is a founder polymorphism that is strongly associated with moyamoya disease in East Asia. Many non-p.R4810K rare variants of RNF213 have been identified in white moyamoya disease patients, although the ethnic mutations have not been investigated in this population. In the present study, we screened for RNF213 variants in 19 Slovakian and Czech moyamoya disease patients. A total of 69 RNF213 coding exons were directly sequenced in 18 probands and one relative who suffered from moyamoya disease in Slovakia and the Czech Republic. We previously reported one proband harboring RNF213 p.D4013N. Results from the present study identified four rare variants other than p.D4013N (p.R4019C, p.E4042K, p.V4146A, and p.W4677L) in four of the patients. P.V4146A was determined to be a novel de novo mutation, and p.R4019C and p.E4042K were identified as double mutations inherited on the same allele. P.W4677L, found in two moyamoya disease patients and an unaffected subject in the same pedigree, was a rare single nucleotide polymorphism. Functional analysis showed that RNF213 p.D4013N, p.R4019C and p.V4146A-transfected human umbilical vein endothelial cells displayed significant lowered migration, and RNF213 p.V4146A significantly reduced tube formation, indicating that these are disease-causing mutations. Results from the present study identified RNF213 rare variants in 22.2% (4/18 probands) of Slovakian and Czech moyamoya disease patients, confirming that RNF213 may also be a major causative gene in a relative large population of white patients.

  18. RNF213 Rare Variants in Slovakian and Czech Moyamoya Disease Patients

    PubMed Central

    Kyselová, Kateřina; Viszlayová, Daša; Morimoto, Takaaki; Roubec, Martin; Školoudík, David; Petrovičová, Andrea; Juskanič, Dominik; Strauss, Jozef; Halaj, Marián; Kurray, Peter; Hranai, Marián; Harada, Kouji H.; Inoue, Sumiko; Yoshida, Yukako; Habu, Toshiyuki; Herzig, Roman; Youssefian, Shohab; Koizumi, Akio

    2016-01-01

    RNF213/Mysterin has been identified as a susceptibility gene for moyamoya disease, a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The p.R4810K (rs112735431) variant is a founder polymorphism that is strongly associated with moyamoya disease in East Asia. Many non-p.R4810K rare variants of RNF213 have been identified in white moyamoya disease patients, although the ethnic mutations have not been investigated in this population. In the present study, we screened for RNF213 variants in 19 Slovakian and Czech moyamoya disease patients. A total of 69 RNF213 coding exons were directly sequenced in 18 probands and one relative who suffered from moyamoya disease in Slovakia and the Czech Republic. We previously reported one proband harboring RNF213 p.D4013N. Results from the present study identified four rare variants other than p.D4013N (p.R4019C, p.E4042K, p.V4146A, and p.W4677L) in four of the patients. P.V4146A was determined to be a novel de novo mutation, and p.R4019C and p.E4042K were identified as double mutations inherited on the same allele. P.W4677L, found in two moyamoya disease patients and an unaffected subject in the same pedigree, was a rare single nucleotide polymorphism. Functional analysis showed that RNF213 p.D4013N, p.R4019C and p.V4146A-transfected human umbilical vein endothelial cells displayed significant lowered migration, and RNF213 p.V4146A significantly reduced tube formation, indicating that these are disease-causing mutations. Results from the present study identified RNF213 rare variants in 22.2% (4/18 probands) of Slovakian and Czech moyamoya disease patients, confirming that RNF213 may also be a major causative gene in a relative large population of white patients. PMID:27736983

  19. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition

    PubMed Central

    Ramsey, Laura B.; Bruun, Gitte H.; Yang, Wenjian; Treviño, Lisa R.; Vattathil, Selina; Scheet, Paul; Cheng, Cheng; Rosner, Gary L.; Giacomini, Kathleen M.; Fan, Yiping; Sparreboom, Alex; Mikkelsen, Torben S.; Corydon, Thomas J.; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2012-01-01

    Methotrexate is used to treat autoimmune diseases and malignancies, including acute lymphoblastic leukemia (ALL). Inter-individual variation in clearance of methotrexate results in heterogeneous systemic exposure, clinical efficacy, and toxicity. In a genome-wide association study of children with ALL, we identified SLCO1B1 as harboring multiple common polymorphisms associated with methotrexate clearance. The extent of influence of rare versus common variants on pharmacogenomic phenotypes remains largely unexplored. We tested the hypothesis that rare variants in SLCO1B1 could affect methotrexate clearance and compared the influence of common versus rare variants in addition to clinical covariates on clearance. From deep resequencing of SLCO1B1 exons in 699 children, we identified 93 SNPs, 15 of which were non-synonymous (NS). Three of these NS SNPs were common, with a minor allele frequency (MAF) >5%, one had low frequency (MAF 1%–5%), and 11 were rare (MAF <1%). NS SNPs (common or rare) predicted to be functionally damaging were more likely to be found among patients with the lowest methotrexate clearance than patients with high clearance. We verified lower function in vitro of four SLCO1B1 haplotypes that were associated with reduced methotrexate clearance. In a multivariate stepwise regression analysis adjusting for other genetic and non-genetic covariates, SLCO1B1 variants accounted for 10.7% of the population variability in clearance. Of that variability, common NS variants accounted for the majority, but rare damaging NS variants constituted 17.8% of SLCO1B1's effects (1.9% of total variation) and had larger effect sizes than common NS variants. Our results show that rare variants are likely to have an important effect on pharmacogenetic phenotypes. PMID:22147369

  20. Rare and low-frequency coding variants alter human adult height

    PubMed Central

    Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas GD; Ng, Maggie CY; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Borst, Gert J.; de Denus, Simon; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G. Kees; Howson, Joanna MM; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela AF; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R.B.; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; Hart, Leen M ‘t; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth JF; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume

    2016-01-01

    Summary Height is a highly heritable, classic polygenic trait with ∼700 common associated variants identified so far through genome-wide association studies. Here, we report 83 height-associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways. PMID:28146470

  1. A Unified Mixed-Effects Model for Rare-Variant Association in Sequencing Studies

    PubMed Central

    Sun, Jianping; Zheng, Yingye; Hsu, Li

    2013-01-01

    For rare-variant association analysis, due to extreme low frequencies of these variants, it is necessary to aggregate them by a prior set (e.g., genes and pathways) in order to achieve adequate power. In this paper, we consider hierarchical models to relate a set of rare variants to phenotype by modeling the effects of variants as a function of variant characteristics while allowing for variant-specific effect (heterogeneity). We derive a set of two score statistics, testing the group effect by variant characteristics and the heterogeneity effect. We make a novel modification to these score statistics so that they are independent under the null hypothesis and their asymptotic distributions can be derived. As a result, the computational burden is greatly reduced compared with permutation-based tests. Our approach provides a general testing framework for rare variants association, which includes many commonly used tests, such as the burden test [Li and Leal, 2008] and the sequence kernel association test [Wu et al., 2011], as special cases. Furthermore, in contrast to these tests, our proposed test has an added capacity to identify which components of variant characteristics and heterogeneity contribute to the association. Simulations under a wide range of scenarios show that the proposed test is valid, robust and powerful. An application to the Dallas Heart Study illustrates that apart from identifying genes with significant associations, the new method also provides additional information regarding the source of the association. Such information may be useful for generating hypothesis in future studies. PMID:23483651

  2. Oncodomains: A protein domain-centric framework for analyzing rare variants in tumor samples

    PubMed Central

    Peterson, Thomas A.; Park, Junyong

    2017-01-01

    The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide sequencing studies have shown that individual malignancies contain many mutations that range from those commonly found in tumor genomes to rare somatic variants present only in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic mutations in cancer, yet efforts to correlate somatic mutations found in one or few individuals with functional roles have been largely unsuccessful. Traditional methods for identifying somatic variants that drive cancer are ‘gene-centric’ in that they consider only somatic variants within a particular gene and make no comparison to other similar genes in the same family that may play a similar role in cancer. In this work, we present oncodomain hotspots, a new ‘domain-centric’ method for identifying clusters of somatic mutations across entire gene families using protein domain models. Our analysis confirms that our approach creates a framework for leveraging structural and functional information encapsulated by protein domains into the analysis of somatic variants in cancer, enabling the assessment of even rare somatic variants by comparison to similar genes. Our results reveal a vast landscape of somatic variants that act at the level of domain families altering pathways known to be involved with cancer such as protein phosphorylation, signaling, gene regulation, and cell metabolism. Due to oncodomain hotspots’ unique ability to assess rare variants, we expect our method to become an important tool for the analysis of sequenced tumor genomes, complementing existing methods. PMID:28426665

  3. A power set-based statistical selection procedure to locate susceptible rare variants associated with complex traits with sequencing data.

    PubMed

    Sun, Hokeun; Wang, Shuang

    2014-08-15

    Existing association methods for rare variants from sequencing data have focused on aggregating variants in a gene or a genetic region because of the fact that analysing individual rare variants is underpowered. However, these existing rare variant detection methods are not able to identify which rare variants in a gene or a genetic region of all variants are associated with the complex diseases or traits. Once phenotypic associations of a gene or a genetic region are identified, the natural next step in the association study with sequencing data is to locate the susceptible rare variants within the gene or the genetic region. In this article, we propose a power set-based statistical selection procedure that is able to identify the locations of the potentially susceptible rare variants within a disease-related gene or a genetic region. The selection performance of the proposed selection procedure was evaluated through simulation studies, where we demonstrated the feasibility and superior power over several comparable existing methods. In particular, the proposed method is able to handle the mixed effects when both risk and protective variants are present in a gene or a genetic region. The proposed selection procedure was also applied to the sequence data on the ANGPTL gene family from the Dallas Heart Study to identify potentially susceptible rare variants within the trait-related genes. An R package 'rvsel' can be downloaded from http://www.columbia.edu/∼sw2206/ and http://statsun.pusan.ac.kr. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. A rare coding variant in TREM2 increases risk for Alzheimer's disease in Han Chinese.

    PubMed

    Jiang, Teng; Tan, Lan; Chen, Qi; Tan, Meng-Shan; Zhou, Jun-Shan; Zhu, Xi-Chen; Lu, Huan; Wang, Hui-Fu; Zhang, Ying-Dong; Yu, Jin-Tai

    2016-06-01

    Two recent studies have identified that a rare coding variant (p.R47H) in exon 2 of triggering receptor expressed on myeloid cells 2 (TREM2) gene is associated with Alzheimer's disease (AD) susceptibility in Caucasians. This association was not successfully replicated in Han Chinese, where this variant was rare or even absent. Previously, we resequenced TREM2 exon 2 to investigate whether additional rare variants conferred risk to AD in our cohort. Although several new variants had been identified, none of them was significantly associated with disease susceptibility. Here, to test whether TREM2 is truly a susceptibility gene of AD in Han Chinese, we extend our previous study by sequencing the other four exons of TREM2 in 988 AD patients and 1,354 healthy controls. We provided the first evidence that a rare coding variant (p.H157Y) in TREM2 exon 3 conferred a considerable risk of AD in our cohort (Pcorrected = 0.02, odds ratio = 11.01, 95% confidence interval: 1.38-88.05). This finding indicates that rare coding variants of TREM2 may play an important role in AD in Han Chinese. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mining the LIPG Allelic Spectrum Reveals the Contribution of Rare and Common Regulatory Variants to HDL Cholesterol

    PubMed Central

    Raghavan, Avanthi; Neeli, Hemanth; Jin, Weijun; Badellino, Karen O.; Demissie, Serkalem; Manning, Alisa K.; DerOhannessian, Stephanie L.; Wolfe, Megan L.; Cupples, L. Adrienne; Li, Mingyao; Kathiresan, Sekar; Rader, Daniel J.

    2011-01-01

    Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5′ UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5′ UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci. PMID:22174694

  6. How important are rare variants in common disease?

    PubMed

    Saint Pierre, Aude; Génin, Emmanuelle

    2014-09-01

    Genome-wide association studies have uncovered hundreds of common genetic variants involved in complex diseases. However, for most complex diseases, these common genetic variants only marginally contribute to disease susceptibility. It is now argued that rare variants located in different genes could in fact play a more important role in disease susceptibility than common variants. These rare genetic variants were not captured by genome-wide association studies using single nucleotide polymorphism-chips but with the advent of next-generation sequencing technologies, they have become detectable. It is now possible to study their contribution to common disease by resequencing samples of cases and controls or by using new genotyping exome arrays that cover rare alleles. In this review, we address the question of the contribution of rare variants in common disease by taking the examples of different diseases for which some resequencing studies have already been performed, and by summarizing the results of simulation studies conducted so far to investigate the genetic architecture of complex traits in human. So far, empirical data have not allowed the exclusion of many models except the most extreme ones involving only a small number of rare variants with large effects contributing to complex disease. To unravel the genetic architecture of complex disease, case-control data will not be sufficient, and alternative study designs need to be proposed together with methodological developments. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Impact of rare variants in ARHGAP29 to the etiology of oral clefts: role of loss-of-function vs missense variants.

    PubMed

    Savastano, C P; Brito, L A; Faria, Á C; Setó-Salvia, N; Peskett, E; Musso, C M; Alvizi, L; Ezquina, S A M; James, C; GOSgene; Beales, P; Lees, M; Moore, G E; Stanier, P; Passos-Bueno, M R

    2017-05-01

    Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a prevalent, complex congenital malformation. Genome-wide association studies (GWAS) on NSCL/P have consistently identified association for the 1p22 region, in which ARHGAP29 has emerged as the main candidate gene. ARHGAP29 re-sequencing studies in NSCL/P patients have identified rare variants; however, their clinical impact is still unclear. In this study we identified 10 rare variants in ARHGAP29, including five missense, one in-frame deletion, and four loss-of-function (LoF) variants, in a cohort of 188 familial NSCL/P cases. A significant mutational burden was found for LoF (Sequence Kernel Association Test, p = 0.0005) but not for missense variants in ARHGAP29, suggesting that only LoF variants contribute to the etiology of NSCL/P. Penetrance was estimated as 59%, indicating that heterozygous LoF variants in ARHGAP29 confer a moderate risk to NSCL/P. The GWAS hits in IRF6 (rs642961) and 1p22 (rs560426 and rs4147811) do not seem to contribute to the penetrance of the phenotype, based on co-segregation analysis. Our data show that rare variants leading to haploinsufficiency of ARHGAP29 represent an important etiological clefting mechanism, and genetic testing for this gene might be taken into consideration in genetic counseling of familial cases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Knowledge-driven binning approach for rare variant association analysis: application to neuroimaging biomarkers in Alzheimer's disease.

    PubMed

    Kim, Dokyoon; Basile, Anna O; Bang, Lisa; Horgusluoglu, Emrin; Lee, Seunggeun; Ritchie, Marylyn D; Saykin, Andrew J; Nho, Kwangsik

    2017-05-18

    Rapid advancement of next generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer's disease (LOAD). For rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total of 750 non-Hispanic Caucasian participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort who had both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype. SKAT was used for a genome-wide gene- and region-based association analysis of rare variants (MAF (minor allele frequency) < 0.05) and potential confounding factors (age, gender, years of education, intracranial volume (ICV) and MRI field strength) for entorhinal cortex thickness were used as covariates. Significant associations were determined using FDR adjustment for multiple comparisons. Our knowledge-driven binning approach identified 16 functional exonic rare variants in FANCC significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In addition, the approach identified 7 evolutionary conserved regions, which were mapped to FAF1, RFX7, LYPLAL1 and GOLGA3, significantly associated

  9. Study designs for identification of rare disease variants in complex diseases: the utility of family-based designs.

    PubMed

    Ionita-Laza, Iuliana; Ottman, Ruth

    2011-11-01

    The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as Alzheimer's disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio, sequencing unselected affected individuals may be preferable.

  10. Rare ATAD5 missense variants in breast and ovarian cancer patients.

    PubMed

    Maleva Kostovska, Ivana; Wang, Jing; Bogdanova, Natalia; Schürmann, Peter; Bhuju, Sabin; Geffers, Robert; Dürst, Matthias; Liebrich, Clemens; Klapdor, Rüdiger; Christiansen, Hans; Park-Simon, Tjoung-Won; Hillemanns, Peter; Plaseska-Karanfilska, Dijana; Dörk, Thilo

    2016-06-28

    ATAD5/ELG1 is a protein crucially involved in replication and maintenance of genome stability. ATAD5 has recently been identified as a genomic risk locus for both breast and ovarian cancer through genome-wide association studies. We aimed to investigate the spectrum of coding ATAD5 germ-line mutations in hospital-based series of patients with triple-negative breast cancer or serous ovarian cancer compared with healthy controls. The ATAD5 coding and adjacent splice site regions were analyzed by targeted next-generation sequencing of DNA samples from 273 cancer patients, including 114 patients with triple-negative breast cancer and 159 patients with serous epithelial ovarian cancer, and from 276 healthy females. Among 42 different variants identified, twenty-two were rare missense substitutions, of which 14 were classified as pathogenic by at least one in silico prediction tool. Three of four novel missense substitutions (p.S354I, p.H974R and p.K1466N) were predicted to be pathogenic and were all identified in ovarian cancer patients. Overall, rare missense variants with predicted pathogenicity tended to be enriched in ovarian cancer patients (14/159) versus controls (11/276) (p = 0.05, 2df). While truncating germ-line variants in ATAD5 were not detected, it remains possible that several rare missense variants contribute to genetic susceptibility toward epithelial ovarian carcinomas. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Screening for rare variants in the PNPLA3 gene in obese liver biopsy patients.

    PubMed

    Zegers, Doreen; Verrijken, An; Francque, Sven; de Freitas, Fenna; Beckers, Sigri; Aerts, Evi; Ruppert, Martin; Hubens, Guy; Michielsen, Peter; Van Hul, Wim; Van Gaal, Luc F

    2016-12-01

    Previous research has clearly implicated the PNPLA3 gene in the etiology of nonalcoholic fatty liver disease as a polymorphism in the gene was found to be robustly associated to the disease. However, data on the involvement of rare PNPLA3 variants in the development of nonalcoholic fatty liver disease (NAFLD) is currently limited. Therefore, we performed an extensive mutation analysis study on a cohort of obese liver biopsy patients to determine PNPLA3 variation and its correlation with fatty liver disease. We screened the entire coding region of the PNPLA3 gene in DNA samples of 393 obese liver biopsy patients with varying degrees of fatty liver disease. Mutation analysis was performed by high-resolution melting curve analysis in combination with direct sequencing. We identified several common polymorphisms as well as one rare synonymous variant (c.867G>A rs139896256), one rare intronic variant (c.979+13C>T) and 3 nonsynonymous coding variants (p.A76T, p.A104V and p.T200M) in the PNPLA3 gene. In silico analysis indicated that the p.A104V variant will probably have no functional effect, whereas for the p.A76T and p.T200M variant a possible pathogenic effect is suggested. Overall, we showed that novel variants in PNPLA3 are very rare in our liver biopsy cohort, thereby indicating that their impact on the etiology of NAFLD is probably limited. Nevertheless, for the three rare coding variants that were identified in patients with advanced liver disease, further functional characterization will be essential to verify their potential disease causality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Functional characterization of rare FOXP2 variants in neurodevelopmental disorder.

    PubMed

    Estruch, Sara B; Graham, Sarah A; Chinnappa, Swathi M; Deriziotis, Pelagia; Fisher, Simon E

    2016-01-01

    Heterozygous disruption of FOXP2 causes a rare form of speech and language impairment. Screens of the FOXP2 sequence in individuals with speech/language-related disorders have identified several rare protein-altering variants, but their phenotypic relevance is often unclear. FOXP2 encodes a transcription factor with a forkhead box DNA-binding domain, but little is known about the functions of protein regions outside this domain. We performed detailed functional analyses of seven rare FOXP2 variants found in affected cases, including three which have not been previously characterized, testing intracellular localization, transcriptional regulation, dimerization, and interaction with other proteins. To shed further light on molecular functions of FOXP2, we characterized the interaction between this transcription factor and co-repressor proteins of the C-terminal binding protein (CTBP) family. Finally, we analysed the functional significance of the polyglutamine tracts in FOXP2, since tract length variations have been reported in cases of neurodevelopmental disorder. We confirmed etiological roles of multiple FOXP2 variants. Of three variants that have been suggested to cause speech/language disorder, but never before been characterized, only one showed functional effects. For the other two, we found no effects on protein function in any assays, suggesting that they are incidental to the phenotype. We identified a CTBP-binding region within the N-terminal portion of FOXP2. This region includes two amino acid substitutions that occurred on the human lineage following the split from chimpanzees. However, we did not observe any effects of these amino acid changes on CTBP binding or other core aspects of FOXP2 function. Finally, we found that FOXP2 variants with reduced polyglutamine tracts did not exhibit altered behaviour in cellular assays, indicating that such tracts are non-essential for core aspects of FOXP2 function, and that tract variation is unlikely to be a

  13. Rare and low-frequency coding variants alter human adult height.

    PubMed

    Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas G D; Ng, Maggie C Y; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul I W; de Borst, Gert J; de Denus, Simon; de Groot, Mark C H; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna M M; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L R; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela A F; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin N A; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R B; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; 't Hart, Leen M; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume

    2017-02-09

    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.

  14. Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects

    PubMed Central

    Oussalah, Abderrahim; Bosco, Paolo; Anello, Guido; Spada, Rosario; Guéant-Rodriguez, Rosa-Maria; Chery, Céline; Rouyer, Pierre; Josse, Thomas; Romano, Antonino; Elia, Maurizzio; Bronowicki, Jean-Pierre; Guéant, Jean-Louis

    2015-01-01

    Abstract Genome-wide association studies (GWASs) have identified loci contributing to total serum bilirubin level. However, no exome-wide approaches have been performed to address this question. Using exome-wide approach, we assessed the influence of protein-coding variants on unconjugated, conjugated, and total serum bilirubin levels in a well-characterized cohort of 773 ambulatory elderly subjects from Italy. Coding variants were replicated in 227 elderly subjects from the same area. We identified 4 missense rare (minor allele frequency, MAF < 0.5%) and low-frequency (MAF, 0.5%–5%) coding variants located in the first exon of the UGT1A1 gene, which encodes for the substrate-binding domain (rs4148323 [MAF = 0.06%; p.Gly71Arg], rs144398951 [MAF = 0.06%; p.Ile215Val], rs35003977 [MAF = 0.78%; p.Val225Gly], and rs57307513 [MAF = 0.06%; p.Ser250Pro]). These variants were in strong linkage disequilibrium with 3 intronic UGT1A1 variants (rs887829, rs4148325, rs6742078), which were significantly associated with total bilirubin level (P = 2.34 × 10−34, P = 7.02 × 10−34, and P = 8.27 × 10−34), as well as unconjugated, and conjugated bilirubin levels. We also identified UGT1A6 variants in association with total (rs6759892, p.Ser7Ala, P = 1.98 × 10−26; rs2070959, p.Thr181Ala, P = 2.87 × 10−27; and rs1105879, p.Arg184Ser, P = 3.27 × 10−29), unconjugated, and conjugated bilirubin levels. All UGT1A1 intronic variants (rs887829, rs6742078, and rs4148325) and UGT1A6 coding variants (rs6759892, rs2070959, and rs1105879) were significantly associated with gallstone-related cholecystectomy risk. The UGT1A6 variant rs2070959 (p.Thr181Ala) was associated with the highest risk of gallstone–related cholecystectomy (OR, 4.58; 95% CI, 1.58–13.28; P = 3.21 × 10−3). Using an exome-wide approach we identified coding variants on UGT1A1 and UGT1A6 genes in association with serum bilirubin

  15. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants

    PubMed Central

    Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.

    2016-01-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206

  16. Genetic Factors of the Disease Course After Sepsis: Rare Deleterious Variants Are Predictive.

    PubMed

    Taudien, Stefan; Lausser, Ludwig; Giamarellos-Bourboulis, Evangelos J; Sponholz, Christoph; Schöneweck, Franziska; Felder, Marius; Schirra, Lyn-Rouven; Schmid, Florian; Gogos, Charalambos; Groth, Susann; Petersen, Britt-Sabina; Franke, Andre; Lieb, Wolfgang; Huse, Klaus; Zipfel, Peter F; Kurzai, Oliver; Moepps, Barbara; Gierschik, Peter; Bauer, Michael; Scherag, André; Kestler, Hans A; Platzer, Matthias

    2016-10-01

    Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection. For its clinical course, host genetic factors are important and rare genomic variants are suspected to contribute. We sequenced the exomes of 59 Greek and 15 German patients with bacterial sepsis divided into two groups with extremely different disease courses. Variant analysis was focusing on rare deleterious single nucleotide variants (SNVs). We identified significant differences in the number of rare deleterious SNVs per patient between the ethnic groups. Classification experiments based on the data of the Greek patients allowed discrimination between the disease courses with estimated sensitivity and specificity>75%. By application of the trained model to the German patients we observed comparable discriminatory properties despite lower population-specific rare SNV load. Furthermore, rare SNVs in genes of cell signaling and innate immunity related pathways were identified as classifiers discriminating between the sepsis courses. Sepsis patients with favorable disease course after sepsis, even in the case of unfavorable preconditions, seem to be affected more often by rare deleterious SNVs in cell signaling and innate immunity related pathways, suggesting a protective role of impairments in these processes against a poor disease course. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility.

    PubMed

    Bacchelli, Elena; Battaglia, Agatino; Cameli, Cinzia; Lomartire, Silvia; Tancredi, Raffaella; Thomson, Susanne; Sutcliffe, James S; Maestrini, Elena

    2015-04-01

    Chromosome 15q13.3 recurrent microdeletions are causally associated with a wide range of phenotypes, including autism spectrum disorder (ASD), seizures, intellectual disability, and other psychiatric conditions. Whether the reciprocal microduplication is pathogenic is less certain. CHRNA7, encoding for the alpha7 subunit of the neuronal nicotinic acetylcholine receptor, is considered the likely culprit gene in mediating neurological phenotypes in 15q13.3 deletion cases. To assess if CHRNA7 rare variants confer risk to ASD, we performed copy number variant analysis and Sanger sequencing of the CHRNA7 coding sequence in a sample of 135 ASD cases. Sequence variation in this gene remains largely unexplored, given the existence of a fusion gene, CHRFAM7A, which includes a nearly identical partial duplication of CHRNA7. Hence, attempts to sequence coding exons must distinguish between CHRNA7 and CHRFAM7A, making next-generation sequencing approaches unreliable for this purpose. A CHRNA7 microduplication was detected in a patient with autism and moderate cognitive impairment; while no rare damaging variants were identified in the coding region, we detected rare variants in the promoter region, previously described to functionally reduce transcription. This study represents the first sequence variant analysis of CHRNA7 in a sample of idiopathic autism. © 2015 Wiley Periodicals, Inc.

  18. Whole-exome Sequence Analysis Implicates Rare Il17REL Variants in Familial and Sporadic Inflammatory Bowel Disease.

    PubMed

    Sasaki, Mark M; Skol, Andrew D; Hungate, Eric A; Bao, Riyue; Huang, Lei; Kahn, Stacy A; Allan, James M; Brant, Steven R; McGovern, Dermot P B; Peter, Inga; Silverberg, Mark S; Cho, Judy H; Kirschner, Barbara S; Onel, Kenan

    2016-01-01

    Rare variants (<1%) likely contribute significantly to risk for common diseases such as inflammatory bowel disease (IBD) in specific patient subsets, such as those with high familiality. They are, however, extraordinarily challenging to identify. To discover candidate rare variants associated with IBD, we performed whole-exome sequencing on 6 members of a pediatric-onset IBD family with multiple affected individuals. To determine whether the variants discovered in this family are also associated with nonfamilial IBD, we investigated their influence on disease in 2 large case-control (CC) series. We identified 2 rare variants, rs142430606 and rs200958270, both in the established IBD-susceptibility gene IL17REL, carried by all 4 affected family members and their obligate carrier parents. We then demonstrated that both variants are associated with sporadic ulcerative colitis (UC) in 2 independent data sets. For UC in CC 1: rs142430606 (odds ratio [OR] = 2.99, Padj = 0.028; minor allele frequency [MAF]cases = 0.0063, MAFcontrols = 0.0021); rs200958270 (OR = 2.61, Padj = 0.082; MAFcases = 0.0045, MAFcontrols = 0.0017). For UC in CC 2: rs142430606 (OR = 1.94, P = 0.0056; MAFcases = 0.0071, MAFcontrols = 0.0045); rs200958270 (OR = 2.08, P = 0.0028; MAFcases = 0.0071, MAFcontrols = 0.0042). We discover in a family and replicate in 2 CC data sets 2 rare susceptibility variants for IBD, both in IL17REL. Our results illustrate that whole-exome sequencing performed on disease-enriched families to guide association testing can be an efficient strategy for the discovery of rare disease-associated variants. We speculate that rare variants identified in families and confirmed in the general population may be important modifiers of disease risk for patients with a family history, and that genetic testing of these variants may be warranted in this patient subset.

  19. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants

    PubMed Central

    Fritsche, Lars G.; Igl, Wilmar; Cooke Bailey, Jessica N.; Grassmann, Felix; Sengupta, Sebanti; Bragg-Gresham, Jennifer L.; Burdon, Kathryn P.; Hebbring, Scott J.; Wen, Cindy; Gorski, Mathias; Kim, Ivana K.; Cho, David; Zack, Donald; Souied, Eric; Scholl, Hendrik P. N.; Bala, Elisa; Lee, Kristine E.; Hunter, David J.; Sardell, Rebecca J.; Mitchell, Paul; Merriam, Joanna E.; Cipriani, Valentina; Hoffman, Joshua D.; Schick, Tina; Lechanteur, Yara T. E.; Guymer, Robyn H.; Johnson, Matthew P.; Jiang, Yingda; Stanton, Chloe M.; Buitendijk, Gabriëlle H. S.; Zhan, Xiaowei; Kwong, Alan M.; Boleda, Alexis; Brooks, Matthew; Gieser, Linn; Ratnapriya, Rinki; Branham, Kari E.; Foerster, Johanna R.; Heckenlively, John R.; Othman, Mohammad I.; Vote, Brendan J.; Liang, Helena Hai; Souzeau, Emmanuelle; McAllister, Ian L.; Isaacs, Timothy; Hall, Janette; Lake, Stewart; Mackey, David A.; Constable, Ian J.; Craig, Jamie E.; Kitchner, Terrie E.; Yang, Zhenglin; Su, Zhiguang; Luo, Hongrong; Chen, Daniel; Ouyang, Hong; Flagg, Ken; Lin, Danni; Mao, Guanping; Ferreyra, Henry; Stark, Klaus; von Strachwitz, Claudia N.; Wolf, Armin; Brandl, Caroline; Rudolph, Guenther; Olden, Matthias; Morrison, Margaux A.; Morgan, Denise J.; Schu, Matthew; Ahn, Jeeyun; Silvestri, Giuliana; Tsironi, Evangelia E.; Park, Kyu Hyung; Farrer, Lindsay A.; Orlin, Anton; Brucker, Alexander; Li, Mingyao; Curcio, Christine; Mohand-Saïd, Saddek; Sahel, José-Alain; Audo, Isabelle; Benchaboune, Mustapha; Cree, Angela J.; Rennie, Christina A.; Goverdhan, Srinivas V.; Grunin, Michelle; Hagbi-Levi, Shira; Campochiaro, Peter; Katsanis, Nicholas; Holz, Frank G.; Blond, Frédéric; Blanché, Hélène; Deleuze, Jean-François; Igo, Robert P.; Truitt, Barbara; Peachey, Neal S.; Meuer, Stacy M.; Myers, Chelsea E.; Moore, Emily L.; Klein, Ronald; Hauser, Michael A.; Postel, Eric A.; Courtenay, Monique D.; Schwartz, Stephen G.; Kovach, Jaclyn L.; Scott, William K.; Liew, Gerald; Tƒan, Ava G.; Gopinath, Bamini; Merriam, John C.; Smith, R. Theodore; Khan, Jane C.; Shahid, Humma; Moore, Anthony T.; McGrath, J. Allie; Laux, Reneé; Brantley, Milam A.; Agarwal, Anita; Ersoy, Lebriz; Caramoy, Albert; Langmann, Thomas; Saksens, Nicole T. M.; de Jong, Eiko K.; Hoyng, Carel B.; Cain, Melinda S.; Richardson, Andrea J.; Martin, Tammy M.; Blangero, John; Weeks, Daniel E.; Dhillon, Bal; van Duijn, Cornelia M.; Doheny, Kimberly F.; Romm, Jane; Klaver, Caroline C. W.; Hayward, Caroline; Gorin, Michael B.; Klein, Michael L.; Baird, Paul N.; den Hollander, Anneke I.; Fauser, Sascha; Yates, John R. W.; Allikmets, Rando; Wang, Jie Jin; Schaumberg, Debra A.; Klein, Barbara E. K.; Hagstrom, Stephanie A.; Chowers, Itay; Lotery, Andrew J.; Léveillard, Thierry; Zhang, Kang; Brilliant, Murray H.; Hewitt, Alex W.; Swaroop, Anand; Chew, Emily Y.; Pericak-Vance, Margaret A.; DeAngelis, Margaret; Stambolian, Dwight; Haines, Jonathan L.; Iyengar, Sudha K.; Weber, Bernhard H. F.; Abecasis, Gonçalo R.; Heid, Iris M.

    2016-01-01

    Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes. PMID:26691988

  20. Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration.

    PubMed

    Pras, Eran; Kristal, Dana; Shoshany, Nadav; Volodarsky, Dina; Vulih, Inna; Celniker, Gershon; Isakov, Ofer; Shomron, Noam; Pras, Elon

    2015-07-01

    To explore the molecular basis of familial, early onset, age-related macular degeneration (AMD) with diverse phenotypes, using whole exome sequencing (WES). We performed WES on four patients (two sibs from two families) manifesting early-onset AMD and searched for disease-causing genetic variants in previously identified macular degeneration related genes. Validation studies of the variants included bioinformatics tools, segregation analysis of mutations within the families and mutation screening in an AMD cohort of patients. The index patients were in their 50s when diagnosed and displayed a wide variety of clinical AMD presentations: from limited drusen in the posterior pole to multiple basal-laminar drusen extending peripherally. Severe visual impairment due to extensive geographic atrophy and/or choroidal-neovascularisation was common by the age of 75 years. Approximately, 400 000 genomic variants for each DNA sample were included in the downstream bioinformatics analysis, which ended in the discovery of two novel variants; in one family a single bp deletion was identified in the Hemicentin (HMCN1) gene (c.4162delC), whereas in the other, a missense variant (p.V412M) in the Complement Factor-I (CFI) gene was found. Screening for these variants in a cohort of patients with AMD identified another family with the CFI variant. This report uses WES to uncover rare genetic variants in AMD. A null-variant in HMCN1 has been identified in one AMD family, and a missense variant in CFI was discovered in two other families. These variants confirm the genetic complexity and significance of rare genetic variants in the pathogenesis of AMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease.

    PubMed

    Jin, Sheng Chih; Benitez, Bruno A; Deming, Yuetiva; Cruchaga, Carlos

    2016-01-01

    Analyses of genome-wide association studies (GWAS) for complex disorders usually identify common variants with a relatively small effect size that only explain a small proportion of phenotypic heritability. Several studies have suggested that a significant fraction of heritability may be explained by low-frequency (minor allele frequency (MAF) of 1-5 %) and rare-variants that are not contained in the commercial GWAS genotyping arrays (Schork et al., Curr Opin Genet Dev 19:212, 2009). Rare variants can also have relatively large effects on risk for developing human diseases or disease phenotype (Cruchaga et al., PLoS One 7:e31039, 2012). However, it is necessary to perform next-generation sequencing (NGS) studies in a large population (>4,000 samples) to detect a significant rare-variant association. Several NGS methods, such as custom capture sequencing and amplicon-based sequencing, are designed to screen a small proportion of the genome, but most of these methods are limited in the number of samples that can be multiplexed (i.e. most sequencing kits only provide 96 distinct index). Additionally, the sequencing library preparation for 4,000 samples remains expensive and thus conducting NGS studies with the aforementioned methods are not feasible for most research laboratories.The need for low-cost large scale rare-variant detection makes pooled-DNA sequencing an ideally efficient and cost-effective technique to identify rare variants in target regions by sequencing hundreds to thousands of samples. Our recent work has demonstrated that pooled-DNA sequencing can accurately detect rare variants in targeted regions in multiple DNA samples with high sensitivity and specificity (Jin et al., Alzheimers Res Ther 4:34, 2012). In these studies we used a well-established pooled-DNA sequencing approach and a computational package, SPLINTER (short indel prediction by large deviation inference and nonlinear true frequency estimation by recursion) (Vallania et al., Genome Res

  2. Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants.

    PubMed

    Tada, Hayato; Kawashiri, Masa-Aki; Yamagishi, Masakazu

    2017-04-01

    Dyslipidemias, especially hyper-low-density lipoprotein cholesterolemia and hypertriglyceridemia, are important causal risk factors for coronary artery disease. Comprehensive genotyping using the 'next-generation sequencing' technique has facilitated the investigation of Mendelian dyslipidemias, in addition to Mendelian randomization studies using common genetic variants associated with plasma lipids and coronary artery disease. The beneficial effects of low-density lipoprotein cholesterol-lowering therapies on coronary artery disease have been verified by many randomized controlled trials over the years, and subsequent genetic studies have supported these findings. More recently, Mendelian randomization studies have preceded randomized controlled trials. When the on-target/off-target effects of rare variants and common variants exhibit the same direction, novel drugs targeting molecules identified by investigations of rare Mendelian lipid disorders could be promising. Such a strategy could aid in the search for drug discovery seeds other than those for dyslipidemias.

  3. Functional Investigations of HNF1A Identify Rare Variants as Risk Factors for Type 2 Diabetes in the General Population

    PubMed Central

    Najmi, Laeya Abdoli; Aukrust, Ingvild; Flannick, Jason; Molnes, Janne; Burtt, Noel; Molven, Anders; Groop, Leif; Altshuler, David; Johansson, Stefan; Njølstad, Pål Rasmus

    2017-01-01

    Variants in HNF1A encoding hepatocyte nuclear factor 1α (HNF-1A) are associated with maturity-onset diabetes of the young form 3 (MODY 3) and type 2 diabetes. We investigated whether functional classification of HNF1A rare coding variants can inform models of diabetes risk prediction in the general population by analyzing the effect of 27 HNF1A variants identified in well-phenotyped populations (n = 4,115). Bioinformatics tools classified 11 variants as likely pathogenic and showed no association with diabetes risk (combined minor allele frequency [MAF] 0.22%; odds ratio [OR] 2.02; 95% CI 0.73–5.60; P = 0.18). However, a different set of 11 variants that reduced HNF-1A transcriptional activity to <60% of normal (wild-type) activity was strongly associated with diabetes in the general population (combined MAF 0.22%; OR 5.04; 95% CI 1.99–12.80; P = 0.0007). Our functional investigations indicate that 0.44% of the population carry HNF1A variants that result in a substantially increased risk for developing diabetes. These results suggest that functional characterization of variants within MODY genes may overcome the limitations of bioinformatics tools for the purposes of presymptomatic diabetes risk prediction in the general population. PMID:27899486

  4. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants.

    PubMed

    Uricchio, Lawrence H; Zaitlen, Noah A; Ye, Chun Jimmie; Witte, John S; Hernandez, Ryan D

    2016-07-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. © 2016 Uricchio et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer's disease.

    PubMed

    Nho, Kwangsik; Kim, Sungeun; Horgusluoglu, Emrin; Risacher, Shannon L; Shen, Li; Kim, Dokyoon; Lee, Seunggeun; Foroud, Tatiana; Shaw, Leslie M; Trojanowski, John Q; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Weiner, Michael W; Green, Robert C; Toga, Arthur W; Saykin, Andrew J

    2017-05-24

    The APOE ε4 allele is the most significant common genetic risk factor for late-onset Alzheimer's disease (LOAD). The region surrounding APOE on chromosome 19 has also shown consistent association with LOAD. However, no common variants in the region remain significant after adjusting for APOE genotype. We report a rare variant association analysis of genes in the vicinity of APOE with cerebrospinal fluid (CSF) and neuroimaging biomarkers of LOAD. Whole genome sequencing (WGS) was performed on 817 blood DNA samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sequence data from 757 non-Hispanic Caucasian participants was used in the present analysis. We extracted all rare variants (MAF (minor allele frequency) < 0.05) within a 312 kb window in APOE's vicinity encompassing 12 genes. We assessed CSF and neuroimaging (MRI and PET) biomarkers as LOAD-related quantitative endophenotypes. Gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). A total of 3,334 rare variants (MAF < 0.05) were found within the APOE region. Among them, 72 rare non-synonymous variants were observed. Eight genes spanning the APOE region were significantly associated with CSF Aβ 1-42 (p < 1.0 × 10 -3 ). After controlling for APOE genotype and adjusting for multiple comparisons, 4 genes (CBLC, BCAM, APOE, and RELB) remained significant. Whole-brain surface-based analysis identified highly significant clusters associated with rare variants of CBLC in the temporal lobe region including the entorhinal cortex, as well as frontal lobe regions. Whole-brain voxel-wise analysis of amyloid PET identified significant clusters in the bilateral frontal and parietal lobes showing associations of rare variants of RELB with cortical amyloid burden. Rare variants within genes spanning the APOE region are significantly associated with LOAD-related CSF Aβ 1-42 and neuroimaging biomarkers after adjusting for APOE genotype

  6. Testing cross-phenotype effects of rare variants in longitudinal studies of complex traits.

    PubMed

    Rudra, Pratyaydipta; Broadaway, K Alaine; Ware, Erin B; Jhun, Min A; Bielak, Lawrence F; Zhao, Wei; Smith, Jennifer A; Peyser, Patricia A; Kardia, Sharon L R; Epstein, Michael P; Ghosh, Debashis

    2018-06-01

    Many gene mapping studies of complex traits have identified genes or variants that influence multiple phenotypes. With the advent of next-generation sequencing technology, there has been substantial interest in identifying rare variants in genes that possess cross-phenotype effects. In the presence of such effects, modeling both the phenotypes and rare variants collectively using multivariate models can achieve higher statistical power compared to univariate methods that either model each phenotype separately or perform separate tests for each variant. Several studies collect phenotypic data over time and using such longitudinal data can further increase the power to detect genetic associations. Although rare-variant approaches exist for testing cross-phenotype effects at a single time point, there is no analogous method for performing such analyses using longitudinal outcomes. In order to fill this important gap, we propose an extension of Gene Association with Multiple Traits (GAMuT) test, a method for cross-phenotype analysis of rare variants using a framework based on the distance covariance. The approach allows for both binary and continuous phenotypes and can also adjust for covariates. Our simple adjustment to the GAMuT test allows it to handle longitudinal data and to gain power by exploiting temporal correlation. The approach is computationally efficient and applicable on a genome-wide scale due to the use of a closed-form test whose significance can be evaluated analytically. We use simulated data to demonstrate that our method has favorable power over competing approaches and also apply our approach to exome chip data from the Genetic Epidemiology Network of Arteriopathy. © 2018 WILEY PERIODICALS, INC.

  7. FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes.

    PubMed

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-09-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. © 2016 WILEY PERIODICALS, INC.

  8. FARVATX: FAmily-based Rare Variant Association Test for X-linked genes

    PubMed Central

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H.; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-01-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease (COPD). Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. PMID:27325607

  9. Resequencing of the CETP gene in American whites and African blacks: Association of rare and common variants with HDL-cholesterol levels

    PubMed Central

    Pirim, Dilek; Wang, Xingbin; Niemsiri, Vipavee; Radwan, Zaheda H.; Bunker, Clareann H.; Hokanson, John E.; Hamman, Richard F.; Barmada, M. Michael; Demirci, F. Yesim; Kamboh, M. Ilyas

    2015-01-01

    Background Cholesteryl ester transfer protein (CETP) plays a crucial role in lipid metabolism. Associations of common CETP variants with variation in plasma lipid levels, and/or CETP mass/activity have been extensively studied and well-documented; however, the effects of uncommon/rare CETP variants on plasma lipid profile remain undefined. Hence, resequencing of the gene in extreme phenotypes and follow-up rare-variant association analyses are essential to fill this gap. Objective To identify common and uncommon/rare variants in the CETP gene by resequencing the entire gene and test the effects of both common and uncommon/rare CETP variants on plasma lipid traits in two genetically distinct populations. Methods and Results The entire CETP gene plus flanking regions were resequenced in 190 individuals comprising 95 non-Hispanic Whites (NHWs) and 95 African blacks with extreme HDL-C levels. A total of 279 sequence variants were identified, of which 25 were novel. Selected variants were genotyped in the entire samples of 623 NHWs and 788 African blacks and 184 QC-passed variants were tested in relation to plasma lipid traits by using gene-based, single-site, haplotype and rare variant association analyses (SKAT-O). Two novel and independent associations of rs1968905 and rs289740 with HDL-C were identified in African blacks. Using SKAT-O analysis, we also identified rare variants with minor allele frequency <0.01 to be associated with HDL-C in both NHWs (P=0.024) and African blacks (P=0.009). Conclusions Our results point out that in addition to the common CETP variants, rare genetic variants in the CETP gene also contribute to the phenotypic variation of HDL-C in the general population. PMID:26683795

  10. Rare ADH Variant Constellations are Specific for Alcohol Dependence

    PubMed Central

    Zuo, Lingjun; Zhang, Heping; Malison, Robert T.; Li, Chiang-Shan R.; Zhang, Xiang-Yang; Wang, Fei; Lu, Lingeng; Lu, Lin; Wang, Xiaoping; Krystal, John H.; Zhang, Fengyu; Deng, Hong-Wen; Luo, Xingguang

    2013-01-01

    Aims: Some of the well-known functional alcohol dehydrogenase (ADH) gene variants (e.g. ADH1B*2, ADH1B*3 and ADH1C*2) that significantly affect the risk of alcohol dependence are rare variants in most populations. In the present study, we comprehensively examined the associations between rare ADH variants [minor allele frequency (MAF) <0.05] and alcohol dependence, with several other neuropsychiatric and neurological disorders as reference. Methods: A total of 49,358 subjects in 22 independent cohorts with 11 different neuropsychiatric and neurological disorders were analyzed, including 3 cohorts with alcohol dependence. The entire ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5 at Chr4) was imputed in all samples using the same reference panels that included whole-genome sequencing data. We stringently cleaned the phenotype and genotype data to obtain a total of 870 single nucleotide polymorphisms with 0< MAF <0.05 for association analysis. Results: We found that a rare variant constellation across the entire ADH gene cluster was significantly associated with alcohol dependence in European-Americans (Fp1: simulated global P = 0.045), European-Australians (Fp5: global P = 0.027; collapsing: P = 0.038) and African-Americans (Fp5: global P = 0.050; collapsing: P = 0.038), but not with any other neuropsychiatric disease. Association signals in this region came principally from ADH6, ADH7, ADH1B and ADH1C. In particular, a rare ADH6 variant constellation showed a replicable association with alcohol dependence across these three independent cohorts. No individual rare variants were statistically significantly associated with any disease examined after group- and region-wide correction for multiple comparisons. Conclusion: We conclude that rare ADH variants are specific for alcohol dependence. The ADH gene cluster may harbor a causal variant(s) for alcohol dependence. PMID:23019235

  11. Searching for missing heritability: Designing rare variant association studies

    PubMed Central

    Zuk, Or; Schaffner, Stephen F.; Samocha, Kaitlin; Do, Ron; Hechter, Eliana; Kathiresan, Sekar; Daly, Mark J.; Neale, Benjamin M.; Sunyaev, Shamil R.; Lander, Eric S.

    2014-01-01

    Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, the genes discovered to date typically explain less than half of the apparent heritability. Because efforts have largely focused on common genetic variants, one hypothesis is that much of the missing heritability is due to rare genetic variants. Studies of common variants are typically referred to as genomewide association studies, whereas studies of rare variants are often simply called sequencing studies. Because they are actually closely related, we use the terms common variant association study (CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. We apply the framework to address key questions about the sample sizes needed to detect association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The optimal design depends critically on the selection coefficient against deleterious alleles and thus varies across genes. The analysis shows that common variant and rare variant studies require similarly large sample collections. In particular, a well-powered RVAS should involve discovery sets with at least 25,000 cases, together with a substantial replication set. PMID:24443550

  12. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism.

    PubMed

    Kelleher, Raymond J; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.

  13. High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    PubMed Central

    Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. PMID:22558107

  14. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment.

    PubMed

    Chen, Xiaowei Sylvia; Reader, Rose H; Hoischen, Alexander; Veltman, Joris A; Simpson, Nuala H; Francks, Clyde; Newbury, Dianne F; Fisher, Simon E

    2017-04-25

    A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential "multiple-hit" cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation.

  15. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment

    PubMed Central

    Chen, Xiaowei Sylvia; Reader, Rose H.; Hoischen, Alexander; Veltman, Joris A.; Simpson, Nuala H.; Francks, Clyde; Newbury, Dianne F.; Fisher, Simon E.

    2017-01-01

    A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential “multiple-hit” cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation. PMID:28440294

  16. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy

    PubMed Central

    Blesneac, Iulia; Themistocleous, Andreas C.; Fratter, Carl; Conrad, Linus J.; Ramirez, Juan D.; Cox, James J.; Tesfaye, Solomon; Shillo, Pallai R.; Rice, Andrew S.C.; Tucker, Stephen J.

    2018-01-01

    Abstract Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of the patients with DPN develop neuropathic pain (NeuP) for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis for better patient stratification in clinical trials and to target therapy more appropriately. Here, we examined the relationship between variants in the voltage-gated sodium channel NaV1.7 and NeuP in a deeply phenotyped cohort of patients with DPN. Although no rare variants were found in 78 participants with painless DPN, we identified 12 rare NaV1.7 variants in 10 (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other NeuP disorders and 7 have not previously been linked to NeuP. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of 2 of the novel variants (M1852T and T1596I) demonstrated that gain of function changes as a consequence of markedly impaired channel fast inactivation. Using a structural model of NaV1.7, we were also able to provide further insight into the structural mechanisms underlying fast inactivation and the role of the C-terminal domain in this process. Our observations suggest that rare NaV1.7 variants contribute to the development NeuP in patients with DPN. Their identification should aid understanding of sensory phenotype, patient stratification, and help target treatments effectively. PMID:29176367

  17. Common and rare variants associated with kidney stones and biochemical traits.

    PubMed

    Oddsson, Asmundur; Sulem, Patrick; Helgason, Hannes; Edvardsson, Vidar O; Thorleifsson, Gudmar; Sveinbjörnsson, Gardar; Haraldsdottir, Eik; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Masson, Gisli; Holm, Hilma; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Indridason, Olafur S; Palsson, Runolfur; Stefansson, Kari

    2015-08-14

    Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10(-10)) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10(-8)). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10(-5)) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10(-5)) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism.

  18. Whole exome sequencing for familial bicuspid aortic valve identifies putative variants.

    PubMed

    Martin, Lisa J; Pilipenko, Valentina; Kaufman, Kenneth M; Cripe, Linda; Kottyan, Leah C; Keddache, Mehdi; Dexheimer, Phillip; Weirauch, Matthew T; Benson, D Woodrow

    2014-10-01

    Bicuspid aortic valve (BAV) is the most common congenital cardiovascular malformation. Although highly heritable, few causal variants have been identified. The purpose of this study was to identify genetic variants underlying BAV by whole exome sequencing a multiplex BAV kindred. Whole exome sequencing was performed on 17 individuals from a single family (BAV=3; other cardiovascular malformation, 3). Postvariant calling error control metrics were established after examining the relationship between Mendelian inheritance error rate and coverage, quality score, and call rate. To determine the most effective approach to identifying susceptibility variants from among 54 674 variants passing error control metrics, we evaluated 3 variant selection strategies frequently used in whole exome sequencing studies plus extended family linkage. No putative rare, high-effect variants were identified in all affected but no unaffected individuals. Eight high-effect variants were identified by ≥2 of the commonly used selection strategies; however, these were either common in the general population (>10%) or present in the majority of the unaffected family members. However, using extended family linkage, 3 synonymous variants were identified; all 3 variants were identified by at least one other strategy. These results suggest that traditional whole exome sequencing approaches, which assume causal variants alter coding sense, may be insufficient for BAV and other complex traits. Identification of disease-associated variants is facilitated by the use of segregation within families. © 2014 American Heart Association, Inc.

  19. Rare and common variants in LPL and APOA5 in Thai subjects with severe hypertriglyceridemia: A resequencing approach.

    PubMed

    Khovidhunkit, Weerapan; Charoen, Supannika; Kiateprungvej, Arunrat; Chartyingcharoen, Palm; Muanpetch, Suwanna; Plengpanich, Wanee

    2016-01-01

    Severe hypertriglyceridemia usually results from a combination of genetic and environmental factors. Few data exist on the genetics of severe hypertriglyceridemia in Asian populations. To examine the genetic variants of 3 candidate genes known to influence triglyceride metabolism, LPL, APOC2, and APOA5, which encode lipoprotein lipase, apolipoprotein C-II, and apolipoprotein A-V, respectively, in a large group of Thai subjects with severe hypertriglyceridemia. We identified sequence variants of LPL, APOC2, and APOA5 by sequencing exons and exon-intron junctions in 101 subjects with triglyceride levels ≥ 10 mmol/L (886 mg/dL) and compared with those of 111 normotriglyceridemic subjects. Six different rare variants in LPL were found in 13 patients, 2 of which were novel (1 heterozygous missense variant: p.Arg270Gly and 1 frameshift variant: p.Asp308Glyfs*3). Four previously identified heterozygous missense variants in LPL were p.Ala98Thr, p.Leu279Val, p.Leu279Arg, and p.Arg432Thr. Collectively, these rare variants were found only in the hypertriglyceridemic group but not in the control group (13% vs 0%, P < .0001). One common variant in APOA5 (p.Gly185Cys, rs2075291) was found at a higher frequency in the hypertriglyceridemic group compared with the control group (25% vs 6%, respectively, P < .0005). Altogether, rare variants in LPL or APOA5 and/or the common APOA5 p.Gly185Cys variant were found in 37% of the hypertriglyceridemic group vs 6% in the controls (P = 3.1 × 10(-8)). No rare variant in APOC2 was identified. Rare variants in LPL and a common variant in APOA5 were more commonly found in Thai subjects with severe hypertriglyceridemia. A common p.Gly185Cys APOA5 variant, in particular, was quite prevalent and potentially contributed to hypertriglyceridemia in this group of patients. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  20. Trans-Ethnic Meta-Analysis Identifies Common and Rare Variants Associated with Hepatocyte Growth Factor Levels in the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Larson, Nicholas B.; Berardi, Cecilia; Decker, Paul A.; Wassel, Christina L.; Kirsch, Phillip S.; Pankow, James S.; Sale, Michele M.; de Andrade, Mariza; Sicotte, Hugues; Tang, Weihong; Hanson, Naomi Q.; Tsai, Michael Y.; Taylor, Kent D.; Bielinski, Suzette J.

    2015-01-01

    Summary Hepatocyte growth factor (HGF) is a mesenchyme-derived pleiotropic factor that regulates cell growth, motility, mitogenesis, and morphogenesis in a variety of cells, and increased serum levels of HGF have been linked to a number of clinical and subclinical cardiovascular disease phenotypes. However, little is currently known regarding what genetic factors influence HGF levels, despite evidence of substantial genetic contributions to HGF variation. Based upon ethnicity-stratified single-variant association analysis and trans-ethnic meta-analysis of 6201 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we discovered five statistically significant common and low-frequency variants: HGF missense polymorphism rs5745687 (p.E299K) as well as four variants (rs16844364, rs4690098, rs114303452, rs3748034) within or in proximity to HGFAC. We also identified two significant ethnicity-specific gene-level associations (A1BG in African Americans; FASN in Chinese Americans) based upon low-frequency/rare variants, while meta-analysis of gene-level results identified a significant association for HGFAC. However, identified single-variant associations explained modest proportions of the total trait variation and were not significantly associated with coronary artery calcium or coronary heart disease. Our findings indicate genetic factors influencing circulating HGF levels may be complex and ethnically diverse. PMID:25998175

  1. Incorporating gene-environment interaction in testing for association with rare genetic variants.

    PubMed

    Chen, Han; Meigs, James B; Dupuis, Josée

    2014-01-01

    The incorporation of gene-environment interactions could improve the ability to detect genetic associations with complex traits. For common genetic variants, single-marker interaction tests and joint tests of genetic main effects and gene-environment interaction have been well-established and used to identify novel association loci for complex diseases and continuous traits. For rare genetic variants, however, single-marker tests are severely underpowered due to the low minor allele frequency, and only a few gene-environment interaction tests have been developed. We aimed at developing powerful and computationally efficient tests for gene-environment interaction with rare variants. In this paper, we propose interaction and joint tests for testing gene-environment interaction of rare genetic variants. Our approach is a generalization of existing gene-environment interaction tests for multiple genetic variants under certain conditions. We show in our simulation studies that our interaction and joint tests have correct type I errors, and that the joint test is a powerful approach for testing genetic association, allowing for gene-environment interaction. We also illustrate our approach in a real data example from the Framingham Heart Study. Our approach can be applied to both binary and continuous traits, it is powerful and computationally efficient.

  2. The impact of low-frequency and rare variants on lipid levels

    PubMed Central

    Surakka, Ida; Horikoshi, Momoko; Mägi, Reedik; Sarin, Antti-Pekka; Mahajan, Anubha; Lagou, Vasiliki; Marullo, Letizia; Ferreira, Teresa; Miraglio, Benjamin; Timonen, Sanna; Kettunen, Johannes; Pirinen, Matti; Karjalainen, Juha; Thorleifsson, Gudmar; Hägg, Sara; Hottenga, Jouke-Jan; Isaacs, Aaron; Ladenvall, Claes; Beekman, Marian; Esko, Tõnu; Ried, Janina S; Nelson, Christopher P; Willenborg, Christina; Gustafsson, Stefan; Westra, Harm-Jan; Blades, Matthew; de Craen, Anton JM; de Geus, Eco J; Deelen, Joris; Grallert, Harald; Hamsten, Anders; Havulinna, Aki S.; Hengstenberg, Christian; Houwing-Duistermaat, Jeanine J; Hyppönen, Elina; Karssen, Lennart C; Lehtimäki, Terho; Lyssenko, Valeriya; Magnusson, Patrik KE; Mihailov, Evelin; Müller-Nurasyid, Martina; Mpindi, John-Patrick; Pedersen, Nancy L; Penninx, Brenda WJH; Perola, Markus; Pers, Tune H; Peters, Annette; Rung, Johan; Smit, Johannes H; Steinthorsdottir, Valgerdur; Tobin, Martin D; Tsernikova, Natalia; van Leeuwen, Elisabeth M; Viikari, Jorma S; Willems, Sara M; Willemsen, Gonneke; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J; Kaprio, Jaakko; Lind, Lars; Gieger, Christian; Metspalu, Andres; Slagboom, P Eline; Groop, Leif; van Duijn, Cornelia M; Eriksson, Johan G; Jula, Antti; Salomaa, Veikko; Boomsma, Dorret I; Power, Christine; Raitakari, Olli T; Ingelsson, Erik; Järvelin, Marjo-Riitta; Stefansson, Kari; Franke, Lude; Ikonen, Elina; Kallioniemi, Olli; Pietiäinen, Vilja; Lindgren, Cecilia M; Thorsteinsdottir, Unnur; Palotie, Aarno; McCarthy, Mark I; Morris, Andrew P; Prokopenko, Inga; Ripatti, Samuli

    2016-01-01

    Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to re-sequencing. PMID:25961943

  3. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF

    PubMed Central

    Huffman, Jennifer E.; de Vries, Paul S.; Morrison, Alanna C.; Sabater-Lleal, Maria; Kacprowski, Tim; Auer, Paul L.; Brody, Jennifer A.; Chasman, Daniel I.; Chen, Ming-Huei; Guo, Xiuqing; Lin, Li-An; Marioni, Riccardo E.; Müller-Nurasyid, Martina; Yanek, Lisa R.; Pankratz, Nathan; Grove, Megan L.; de Maat, Moniek P. M.; Cushman, Mary; Wiggins, Kerri L.; Qi, Lihong; Sennblad, Bengt; Harris, Sarah E.; Polasek, Ozren; Riess, Helene; Rivadeneira, Fernando; Rose, Lynda M.; Goel, Anuj; Taylor, Kent D.; Teumer, Alexander; Uitterlinden, André G.; Vaidya, Dhananjay; Yao, Jie; Tang, Weihong; Levy, Daniel; Waldenberger, Melanie; Becker, Diane M.; Folsom, Aaron R.; Giulianini, Franco; Greinacher, Andreas; Hofman, Albert; Huang, Chiang-Ching; Kooperberg, Charles; Silveira, Angela; Starr, John M.; Strauch, Konstantin; Strawbridge, Rona J.; Wright, Alan F.; McKnight, Barbara; Franco, Oscar H.; Zakai, Neil; Mathias, Rasika A.; Psaty, Bruce M.; Ridker, Paul M.; Tofler, Geoffrey H.; Völker, Uwe; Watkins, Hugh; Fornage, Myriam; Hamsten, Anders; Deary, Ian J.; Boerwinkle, Eric; Koenig, Wolfgang; Rotter, Jerome I.; Hayward, Caroline; Dehghan, Abbas; Reiner, Alex P.; O’Donnell, Christopher J.

    2015-01-01

    Fibrinogen, coagulation factor VII (FVII), and factor VIII (FVIII) and its carrier von Willebrand factor (vWF) play key roles in hemostasis. Previously identified common variants explain only a small fraction of the trait heritabilities, and additional variations may be explained by associations with rarer variants with larger effects. The aim of this study was to identify low-frequency (minor allele frequency [MAF] ≥0.01 and <0.05) and rare (MAF <0.01) variants that influence plasma concentrations of these 4 hemostatic factors by meta-analyzing exome chip data from up to 76 000 participants of 4 ancestries. We identified 12 novel associations of low-frequency (n = 2) and rare (n = 10) variants across the fibrinogen, FVII, FVIII, and vWF traits that were independent of previously identified associations. Novel loci were found within previously reported genes and had effect sizes much larger than and independent of previously identified common variants. In addition, associations at KCNT1, HID1, and KATNB1 identified new candidate genes related to hemostasis for follow-up replication and functional genomic analysis. Newly identified low-frequency and rare-variant associations accounted for modest amounts of trait variance and therefore are unlikely to increase predicted trait heritability but provide new information for understanding individual variation in hemostasis pathways. PMID:26105150

  4. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants.

    PubMed

    Ioannidis, Nilah M; Rothstein, Joseph H; Pejaver, Vikas; Middha, Sumit; McDonnell, Shannon K; Baheti, Saurabh; Musolf, Anthony; Li, Qing; Holzinger, Emily; Karyadi, Danielle; Cannon-Albright, Lisa A; Teerlink, Craig C; Stanford, Janet L; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan M; Schleutker, Johanna; Carpten, John D; Powell, Isaac J; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William D; Mandal, Diptasri; Eeles, Rosalind A; Kote-Jarai, Zsofia; Bustamante, Carlos D; Schaid, Daniel J; Hastie, Trevor; Ostrander, Elaine A; Bailey-Wilson, Joan E; Radivojac, Predrag; Thibodeau, Stephen N; Whittemore, Alice S; Sieh, Weiva

    2016-10-06

    The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10 -12 ) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046-0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027-0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale. Copyright © 2016 American Society of Human Genetics. All rights reserved.

  5. Introduction to Deep Sequencing and Its Application to Drug Addiction Research with a Focus on Rare Variants

    PubMed Central

    Wang, Shaolin; Yang, Zhongli; Ma, Jennie Z.; Payne, Thomas J.; Li, Ming D

    2013-01-01

    Through linkage analysis, candidate gene approach, and genome-wide association studies (GWAS), many genetic susceptibility factors for substance dependence have been discovered, such as the alcohol dehydrogenase gene (ALDH2) for alcohol dependence (AD) and nicotinic acetylcholine receptor (nAChR) subunit variants on chromosomes 8 and 15 for nicotine dependence (ND). However, these confirmed genetic factors contribute only a small portion of the heritability responsible for each addiction. Among many potential factors, rare variants in those identified and unidentified susceptibility genes are supposed to contribute greatly to the missing heritability. Several studies focusing on rare variants have been conducted by taking advantage of next-generation sequencing technologies, which revealed that some rare variants of nAChR subunits are associated with ND in both genetic and functional studies. However, these studies investigated variants for only a small number of genes and need to be expanded to broad regions/genes in a larger population. This review presents an update on recently developed methods for rare-variant identification and association analysis and on studies focused on rare-variant discovery and function related to addictions. PMID:23990377

  6. Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes.

    PubMed

    Rees, Matthew G; Ng, David; Ruppert, Sarah; Turner, Clesson; Beer, Nicola L; Swift, Amy J; Morken, Mario A; Below, Jennifer E; Blech, Ilana; Mullikin, James C; McCarthy, Mark I; Biesecker, Leslie G; Gloyn, Anna L; Collins, Francis S

    2012-01-01

    Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.

  7. Brittle cornea syndrome ZNF469 mutation carrier phenotype and segregation analysis of rare ZNF469 variants in familial keratoconus.

    PubMed

    Davidson, Alice E; Borasio, Edmondo; Liskova, Petra; Khan, Arif O; Hassan, Hala; Cheetham, Michael E; Plagnol, Vincent; Alkuraya, Fowzan S; Tuft, Stephen J; Hardcastle, Alison J

    2015-01-06

    Brittle cornea syndrome 1 (BCS1) is a rare recessive condition characterized by extreme thinning of the cornea and sclera, caused by mutations in ZNF469. Keratoconus is a relatively common disease characterized by progressive thinning and ectasia of the cornea. The etiology of keratoconus is complex and not yet understood, but rare ZNF469 variants have recently been associated with disease. We investigated the phenotype of BCS1 carriers with known pathogenic ZNF469 mutations, and recruited families in which aggregation of keratoconus was observed to establish if rare variants in ZNF469 segregated with disease. Patients and family members were recruited and underwent comprehensive anterior segment examination, including corneal topography. Blood samples were donated and genomic DNA was extracted. The coding sequence and splice sites of ZNF469 were PCR amplified and Sanger sequenced. Four carriers of three BCS1-associated ZNF469 loss-of-function mutations (p.[Glu1392Ter], p.[Gln1930Argfs*6], p.[Gln1930fs*133]) were examined and none had keratoconus. One carrier had partially penetrant features of BCS1, including joint hypermobility. ZNF469 sequencing in 11 keratoconus families identified 9 rare (minor allele frequency [MAF] ≤ 0.025) variants predicted to be potentially damaging. However, in each instance the rare variant(s) identified, including two previously reported as potentially keratoconus-associated, did not segregate with the disease. The presence of heterozygous loss-of-function alleles in the ZNF469 gene did not cause keratoconus in the individuals examined. None of the rare nonsynonymous ZNF469 variants identified in the familial cohort conferred a high risk of keratoconus; therefore, genetic variants contributing to disease pathogenesis in these 11 families remain to be identified. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  8. Common and rare variants associated with kidney stones and biochemical traits

    PubMed Central

    Oddsson, Asmundur; Sulem, Patrick; Helgason, Hannes; Edvardsson, Vidar O.; Thorleifsson, Gudmar; Sveinbjörnsson, Gardar; Haraldsdottir, Eik; Eyjolfsson, Gudmundur I.; Sigurdardottir, Olof; Olafsson, Isleifur; Masson, Gisli; Holm, Hilma; Gudbjartsson, Daniel F.; Thorsteinsdottir, Unnur; Indridason, Olafur S.; Palsson, Runolfur; Stefansson, Kari

    2015-01-01

    Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10−10) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10−8). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10−5) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10−5) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism. PMID:26272126

  9. Elucidating the genetic architecture of familial schizophrenia using rare copy number variant and linkage scans.

    PubMed

    Xu, Bin; Woodroffe, Abigail; Rodriguez-Murillo, Laura; Roos, J Louw; van Rensburg, Elizabeth J; Abecasis, Gonçalo R; Gogos, Joseph A; Karayiorgou, Maria

    2009-09-29

    To elucidate the genetic architecture of familial schizophrenia we combine linkage analysis with studies of fine-level chromosomal variation in families recruited from the Afrikaner population in South Africa. We demonstrate that individually rare inherited copy number variants (CNVs) are more frequent in cases with familial schizophrenia as compared to unaffected controls and affect almost exclusively genic regions. Interestingly, we find that while the prevalence of rare structural variants is similar in familial and sporadic cases, the type of variants is markedly different. In addition, using a high-density linkage scan with a panel of nearly 2,000 markers, we identify a region on chromosome 13q34 that shows genome-wide significant linkage to schizophrenia and show that in the families not linked to this locus, there is evidence for linkage to chromosome 1p36. No causative CNVs were identified in either locus. Overall, our results from approaches designed to detect risk variants with relatively low frequency and high penetrance in a well-defined and relatively homogeneous population, provide strong empirical evidence supporting the notion that multiple genetic variants, including individually rare ones, that affect many different genes contribute to the genetic risk of familial schizophrenia. They also highlight differences in the genetic architecture of the familial and sporadic forms of the disease.

  10. Identification of a rare coding variant in TREM2 in a Chinese individual with Alzheimer's disease.

    PubMed

    Bonham, Luke W; Sirkis, Daniel W; Fan, Jia; Aparicio, Renan E; Tse, Marian; Ramos, Eliana Marisa; Wang, Qing; Coppola, Giovanni; Rosen, Howard J; Miller, Bruce L; Yokoyama, Jennifer S

    2017-02-01

    Rare variation in the TREM2 gene is associated with a broad spectrum of neurodegenerative disorders including Alzheimer's disease (AD). TREM2 encodes a receptor expressed in microglia which is thought to influence neurodegeneration by sensing damage signals and regulating neuroinflammation. Many of the variants reported to be associated with AD, including the rare R47H variant, were discovered in populations of European ancestry and have not replicated in diverse populations from other genetic backgrounds. We utilized a cohort of elderly Chinese individuals diagnosed as cognitively normal, or with mild cognitive impairment or AD to identify a rare variant, A192T, present in a single patient diagnosed with AD. We characterized this variant using biochemical cell surface expression assays and found that it significantly altered cell surface expression of the TREM2 protein. Together these data provide evidence that the A192T variant in TREM2 could contribute risk for AD. This study underscores the increasingly recognized role of immune-related processes in AD and highlights the importance of including diverse populations in research to identify genetic variation that contributes risk for AD and other neurodegenerative disorders.

  11. Rare Coding Variants in ANGPTL6 Are Associated with Familial Forms of Intracranial Aneurysm.

    PubMed

    Bourcier, Romain; Le Scouarnec, Solena; Bonnaud, Stéphanie; Karakachoff, Matilde; Bourcereau, Emmanuelle; Heurtebise-Chrétien, Sandrine; Menguy, Céline; Dina, Christian; Simonet, Floriane; Moles, Alexis; Lenoble, Cédric; Lindenbaum, Pierre; Chatel, Stéphanie; Isidor, Bertrand; Génin, Emmanuelle; Deleuze, Jean-François; Schott, Jean-Jacques; Le Marec, Hervé; Loirand, Gervaise; Desal, Hubert; Redon, Richard

    2018-01-04

    Intracranial aneurysms (IAs) are acquired cerebrovascular abnormalities characterized by localized dilation and wall thinning in intracranial arteries, possibly leading to subarachnoid hemorrhage and severe outcome in case of rupture. Here, we identified one rare nonsense variant (c.1378A>T) in the last exon of ANGPTL6 (Angiopoietin-Like 6)-which encodes a circulating pro-angiogenic factor mainly secreted from the liver-shared by the four tested affected members of a large pedigree with multiple IA-affected case subjects. We showed a 50% reduction of ANGPTL6 serum concentration in individuals heterozygous for the c.1378A>T allele (p.Lys460Ter) compared to relatives homozygous for the normal allele, probably due to the non-secretion of the truncated protein produced by the c.1378A>T transcripts. Sequencing ANGPTL6 in a series of 94 additional index case subjects with familial IA identified three other rare coding variants in five case subjects. Overall, we detected a significant enrichment (p = 0.023) in rare coding variants within this gene among the 95 index case subjects with familial IA, compared to a reference population of 404 individuals with French ancestry. Among the 6 recruited families, 12 out of 13 (92%) individuals carrying IA also carry such variants in ANGPTL6, versus 15 out of 41 (37%) unaffected ones. We observed a higher rate of individuals with a history of high blood pressure among affected versus healthy individuals carrying ANGPTL6 variants, suggesting that ANGPTL6 could trigger cerebrovascular lesions when combined with other risk factors such as hypertension. Altogether, our results indicate that rare coding variants in ANGPTL6 are causally related to familial forms of IA. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Family-Based Rare Variant Association Analysis: A Fast and Efficient Method of Multivariate Phenotype Association Analysis.

    PubMed

    Wang, Longfei; Lee, Sungyoung; Gim, Jungsoo; Qiao, Dandi; Cho, Michael; Elston, Robert C; Silverman, Edwin K; Won, Sungho

    2016-09-01

    Family-based designs have been repeatedly shown to be powerful in detecting the significant rare variants associated with human diseases. Furthermore, human diseases are often defined by the outcomes of multiple phenotypes, and thus we expect multivariate family-based analyses may be very efficient in detecting associations with rare variants. However, few statistical methods implementing this strategy have been developed for family-based designs. In this report, we describe one such implementation: the multivariate family-based rare variant association tool (mFARVAT). mFARVAT is a quasi-likelihood-based score test for rare variant association analysis with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant on multiple phenotypes. Simulation results show that the proposed method is generally robust and efficient for various disease models, and we identify some promising candidate genes associated with chronic obstructive pulmonary disease. The software of mFARVAT is freely available at http://healthstat.snu.ac.kr/software/mfarvat/, implemented in C++ and supported on Linux and MS Windows. © 2016 WILEY PERIODICALS, INC.

  13. Rare De Novo Copy Number Variants in Patients with Congenital Pulmonary Atresia

    PubMed Central

    Xie, Li; Chen, Jin-Lan; Zhang, Wei-Zhi; Wang, Shou-Zheng; Zhao, Tian-Li; Huang, Can; Wang, Jian; Yang, Jin-Fu; Yang, Yi-Feng; Tan, Zhi-Ping

    2014-01-01

    Background Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Methods and Results Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. Conclusions Rare CNVs contribute to the pathogenesis of PA (9.8%), suggesting that the causes of PA are heterogeneous and pleiotropic. Together with previous data from animal models, our results might help identify a link between CHD and folate-mediated one-carbon metabolism (FOCM). With the accumulation of high-resolution SNP array data, these previously undescribed rare CNVs may help reveal critical gene(s) in CHD and may provide novel insights about CHD pathogenesis. PMID:24826987

  14. Rare de novo copy number variants in patients with congenital pulmonary atresia.

    PubMed

    Xie, Li; Chen, Jin-Lan; Zhang, Wei-Zhi; Wang, Shou-Zheng; Zhao, Tian-Li; Huang, Can; Wang, Jian; Yang, Jin-Fu; Yang, Yi-Feng; Tan, Zhi-Ping

    2014-01-01

    Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. Rare CNVs contribute to the pathogenesis of PA (9.8%), suggesting that the causes of PA are heterogeneous and pleiotropic. Together with previous data from animal models, our results might help identify a link between CHD and folate-mediated one-carbon metabolism (FOCM). With the accumulation of high-resolution SNP array data, these previously undescribed rare CNVs may help reveal critical gene(s) in CHD and may provide novel insights about CHD pathogenesis.

  15. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis

    PubMed Central

    Buchan, Jillian G.; Alvarado, David M.; Haller, Gabe E.; Cruchaga, Carlos; Harms, Matthew B.; Zhang, Tianxiao; Willing, Marcia C.; Grange, Dorothy K.; Braverman, Alan C.; Miller, Nancy H.; Morcuende, Jose A.; Tang, Nelson Leung-Sang; Lam, Tsz-Ping; Ng, Bobby Kin-Wah; Cheng, Jack Chun-Yiu; Dobbs, Matthew B.; Gurnett, Christina A.

    2014-01-01

    Adolescent idiopathic scoliosis (AIS) causes spinal deformity in 3% of children. Despite a strong genetic basis, few genes have been associated with AIS and the pathogenesis remains poorly understood. In a genome-wide rare variant burden analysis using exome sequence data, we identified fibrillin-1 (FBN1) as the most significantly associated gene with AIS. Based on these results, FBN1 and a related gene, fibrillin-2 (FBN2), were sequenced in a total of 852 AIS cases and 669 controls. In individuals of European ancestry, rare variants in FBN1 and FBN2 were enriched in severely affected AIS cases (7.6%) compared with in-house controls (2.4%) (OR = 3.5, P = 5.46 × 10−4) and Exome Sequencing Project controls (2.3%) (OR = 3.5, P = 1.48 × 10−6). Scoliosis severity in AIS cases was associated with FBN1 and FBN2 rare variants (P = 0.0012) and replicated in an independent Han Chinese cohort (P = 0.0376), suggesting that rare variants may be useful as predictors of curve progression. Clinical evaluations revealed that the majority of AIS cases with rare FBN1 variants do not meet diagnostic criteria for Marfan syndrome, though variants are associated with tall stature (P = 0.0035) and upregulation of the transforming growth factor beta pathway. Overall, these results expand our definition of fibrillin-related disorders to include AIS and open up new strategies for diagnosing and treating severe AIS. PMID:24833718

  16. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is

  17. Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease.

    PubMed

    Emdin, Connor A; Khera, Amit V; Chaffin, Mark; Klarin, Derek; Natarajan, Pradeep; Aragam, Krishna; Haas, Mary; Bick, Alexander; Zekavat, Seyedeh M; Nomura, Akihiro; Ardissino, Diego; Wilson, James G; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J; Samani, Nilesh J; Baber, Usman; Erdmann, Jeanette; Gupta, Namrata; Danesh, John; Chasman, Daniel; Ridker, Paul; Denny, Joshua; Bastarache, Lisa; Lichtman, Judith H; D'Onofrio, Gail; Mattera, Jennifer; Spertus, John A; Sheu, Wayne H-H; Taylor, Kent D; Psaty, Bruce M; Rich, Stephen S; Post, Wendy; Rotter, Jerome I; Chen, Yii-Der Ida; Krumholz, Harlan; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar

    2018-04-24

    Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease.

  18. Elucidating the genetic architecture of familial schizophrenia using rare copy number variant and linkage scans

    PubMed Central

    Xu, Bin; Woodroffe, Abigail; Rodriguez-Murillo, Laura; Roos, J. Louw; van Rensburg, Elizabeth J.; Abecasis, Gonçalo R.; Gogos, Joseph A.; Karayiorgou, Maria

    2009-01-01

    To elucidate the genetic architecture of familial schizophrenia we combine linkage analysis with studies of fine-level chromosomal variation in families recruited from the Afrikaner population in South Africa. We demonstrate that individually rare inherited copy number variants (CNVs) are more frequent in cases with familial schizophrenia as compared to unaffected controls and affect almost exclusively genic regions. Interestingly, we find that while the prevalence of rare structural variants is similar in familial and sporadic cases, the type of variants is markedly different. In addition, using a high-density linkage scan with a panel of nearly 2,000 markers, we identify a region on chromosome 13q34 that shows genome-wide significant linkage to schizophrenia and show that in the families not linked to this locus, there is evidence for linkage to chromosome 1p36. No causative CNVs were identified in either locus. Overall, our results from approaches designed to detect risk variants with relatively low frequency and high penetrance in a well-defined and relatively homogeneous population, provide strong empirical evidence supporting the notion that multiple genetic variants, including individually rare ones, that affect many different genes contribute to the genetic risk of familial schizophrenia. They also highlight differences in the genetic architecture of the familial and sporadic forms of the disease. PMID:19805367

  19. Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes.

    PubMed

    Cady, Janet; Allred, Peggy; Bali, Taha; Pestronk, Alan; Goate, Alison; Miller, Timothy M; Mitra, Robi D; Ravits, John; Harms, Matthew B; Baloh, Robert H

    2015-01-01

    To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. © 2014 American Neurological Association.

  20. Rare HFE variants are the most frequent cause of hemochromatosis in non-c282y homozygous patients with hemochromatosis.

    PubMed

    Hamdi-Rozé, Houda; Beaumont-Epinette, Marie-Pascale; Ben Ali, Zeineb; Le Lan, Caroline; Loustaud-Ratti, Véronique; Causse, Xavier; Loreal, Olivier; Deugnier, Yves; Brissot, Pierre; Jouanolle, Anne-Marie; Bardou-Jacquet, Edouard

    2016-12-01

    p.Cys282Tyr (C282Y) homozygosity explains most cases of HFE-related hemochromatosis, but a significant number of patients presenting with typical type I hemochromatosis phenotype remain unexplained. We sought to describe the clinical relevance of rare HFE variants in non-C282Y homozygotes. Patients referred for hemochromatosis to the National Reference Centre for Rare Iron Overload Diseases from 2004 to 2010 were studied. Sequencing was performed for coding region and intronic flanking sequences of HFE, HAMP, HFE2, TFR2, and SLC40A1. Nine private HFE variants were identified in 13 of 206 unrelated patients. Among those, five have not been previously described: p.Leu270Argfs*4, p.Ala271Valfs*25, p.Tyr52*, p.Lys166Asn, and p.Asp141Tyr. Our results show that rare HFE variants are identified more frequently than variants in the other genes associated with iron overload. Rare HFE variants are therefore the most frequent cause of hemochromatosis in non-C282Y homozygote HFE patients. Am. J. Hematol. 91:1202-1205, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Burden of rare variants in ALS genes influences survival in familial and sporadic ALS.

    PubMed

    Pang, Shirley Yin-Yu; Hsu, Jacob Shujui; Teo, Kay-Cheong; Li, Yan; Kung, Michelle H W; Cheah, Kathryn S E; Chan, Danny; Cheung, Kenneth M C; Li, Miaoxin; Sham, Pak-Chung; Ho, Shu-Leong

    2017-10-01

    Genetic variants are implicated in the development of amyotrophic lateral sclerosis (ALS), but it is unclear whether the burden of rare variants in ALS genes has an effect on survival. We performed whole genome sequencing on 8 familial ALS (FALS) patients with superoxide dismutase 1 (SOD1) mutation and whole exome sequencing on 46 sporadic ALS (SALS) patients living in Hong Kong and found that 67% had at least 1 rare variant in the exons of 40 ALS genes; 22% had 2 or more. Patients with 2 or more rare variants had lower probability of survival than patients with 0 or 1 variant (p = 0.001). After adjusting for other factors, each additional rare variant increased the risk of respiratory failure or death by 60% (p = 0.0098). The presence of the rare variant was associated with the risk of ALS (Odds ratio 1.91, 95% confidence interval 1.03-3.61, p = 0.03), and ALS patients had higher rare variant burden than controls (MB, p = 0.004). Our findings support an oligogenic basis with the burden of rare variants affecting the development and survival of ALS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies

    PubMed Central

    Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong

    2013-01-01

    We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515

  3. Association between Rare Variants in AP4E1, a Component of Intracellular Trafficking, and Persistent Stuttering

    PubMed Central

    Raza, M. Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M. Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S.; Drayna, Dennis

    2015-01-01

    Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. PMID:26544806

  4. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    2014-01-01

    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex

  5. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease.

    PubMed

    Cruchaga, Carlos; Karch, Celeste M; Jin, Sheng Chih; Benitez, Bruno A; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John; Bertelsen, Sarah; Jeng, Amanda T; Cooper, Breanna; Skorupa, Tara; Carrell, David; Levitch, Denise; Hsu, Simon; Choi, Jiyoon; Ryten, Mina; Sassi, Celeste; Bras, Jose; Gibbs, Raphael J; Hernandez, Dena G; Lupton, Michelle K; Powell, John; Forabosco, Paola; Ridge, Perry G; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; Schmutz, Cameron; Leary, Maegan; Demirci, F Yesim; Bamne, Mikhil N; Wang, Xingbin; Lopez, Oscar L; Ganguli, Mary; Medway, Christopher; Turton, James; Lord, Jenny; Braae, Anne; Barber, Imelda; Brown, Kristelle; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Brkanac, Zoran; Scott, Erick; Topol, Eric; Morgan, Kevin; Rogaeva, Ekaterina; Singleton, Andy; Hardy, John; Kamboh, M Ilyas; George-Hyslop, Peter St; Cairns, Nigel; Morris, John C; Kauwe, John S K; Goate, Alison M

    2014-01-23

    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex

  6. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans.

    PubMed

    Smith, Douglas R; Stanley, Christine M; Foss, Theodore; Boles, Richard G; McKernan, Kevin

    2017-01-01

    Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.

  7. Leveraging network analytics to infer patient syndrome and identify causal genes in rare disease cases.

    PubMed

    Krämer, Andreas; Shah, Sohela; Rebres, Robert Anthony; Tang, Susan; Richards, Daniel Rene

    2017-08-11

    Next-generation sequencing is widely used to identify disease-causing variants in patients with rare genetic disorders. Identifying those variants from whole-genome or exome data can be both scientifically challenging and time consuming. A significant amount of time is spent on variant annotation, and interpretation. Fully or partly automated solutions are therefore needed to streamline and scale this process. We describe Phenotype Driven Ranking (PDR), an algorithm integrated into Ingenuity Variant Analysis, that uses observed patient phenotypes to prioritize diseases and genes in order to expedite causal-variant discovery. Our method is based on a network of phenotype-disease-gene relationships derived from the QIAGEN Knowledge Base, which allows for efficient computational association of phenotypes to implicated diseases, and also enables scoring and ranking. We have demonstrated the utility and performance of PDR by applying it to a number of clinical rare-disease cases, where the true causal gene was known beforehand. It is also shown that PDR compares favorably to a representative alternative tool.

  8. HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data

    PubMed Central

    Hochreiter, Sepp

    2013-01-01

    Identity by descent (IBD) can be reliably detected for long shared DNA segments, which are found in related individuals. However, many studies contain cohorts of unrelated individuals that share only short IBD segments. New sequencing technologies facilitate identification of short IBD segments through rare variants, which convey more information on IBD than common variants. Current IBD detection methods, however, are not designed to use rare variants for the detection of short IBD segments. Short IBD segments reveal genetic structures at high resolution. Therefore, they can help to improve imputation and phasing, to increase genotyping accuracy for low-coverage sequencing and to increase the power of association studies. Since short IBD segments are further assumed to be old, they can shed light on the evolutionary history of humans. We propose HapFABIA, a computational method that applies biclustering to identify very short IBD segments characterized by rare variants. HapFABIA is designed to detect short IBD segments in genotype data that were obtained from next-generation sequencing, but can also be applied to DNA microarray data. Especially in next-generation sequencing data, HapFABIA exploits rare variants for IBD detection. HapFABIA significantly outperformed competing algorithms at detecting short IBD segments on artificial and simulated data with rare variants. HapFABIA identified 160 588 different short IBD segments characterized by rare variants with a median length of 23 kb (mean 24 kb) in data for chromosome 1 of the 1000 Genomes Project. These short IBD segments contain 752 000 single nucleotide variants (SNVs), which account for 39% of the rare variants and 23.5% of all variants. The vast majority—152 000 IBD segments—are shared by Africans, while only 19 000 and 11 000 are shared by Europeans and Asians, respectively. IBD segments that match the Denisova or the Neandertal genome are found significantly more often in Asians and Europeans but also

  9. Functional analyses of rare genetic variants in complement component C9 identified in patients with age-related macular degeneration.

    PubMed

    Kremlitzka, Mariann; Geerlings, Maartje J; de Jong, Sarah; Bakker, Bjorn; Nilsson, Sara C; Fauser, Sascha; Hoyng, Carel B; de Jong, Eiko K; den Hollander, Anneke I; Blom, Anna M

    2018-05-14

    Age-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.P167S) in the complement component C9 (C9) gene was recently shown to be highly associated with AMD, however its functional outcome remains largely unexplored. In this study, we reveal five novel rare genetic variants (p.M45L, p.F62S, p.G126R, p.T170I and p.A529T) in C9 in AMD patients, and evaluate their functional effects in vitro together with the previously identified (p.R118W and p.P167S) C9 variants.Our results demonstrate that the concentration of C9 is significantly elevated in patients' sera carrying the p.M45L, p.F62S, p.P167S and p.A529T variants compared to non-carrier controls. However, no difference can be observed in soluble terminal complement complex levels between the carrier and non-carrier groups. Comparing the polymerization of the C9 variants we reveal that the p.P167S mutant spontaneously aggregates, while the other mutant proteins (except for C9 p.A529T) fail to polymerize in the presence of zinc. Altered polymerization of the p.F62S and p.P167S proteins associated with decreased lysis of sheep erythrocytes and ARPE-19 cells by carriers' sera. Our data suggest that the analysed C9 variants affect only the secretion and polymerization of C9, without influencing its classical lytic activity. Future studies need to be performed to understand the implications of the altered polymerization of C9 in AMD pathology.

  10. Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes

    PubMed Central

    Prescott, Natalie J.; Lehne, Benjamin; Stone, Kristina; Lee, James C.; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M.; Simpson, Michael A.; Spain, Sarah L.; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J.; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu’Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C.; Mansfield, John C.; Sanderson, Jeremy; Lewis, Cathryn M.; Weale, Michael E.; Schlitt, Thomas; Mathew, Christopher G.

    2015-01-01

    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (<1%) and low frequency (1–5%) variants in 3 additional genes showed suggestive association (p<0.005) with either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699

  11. A generalized least-squares framework for rare-variant analysis in family data.

    PubMed

    Li, Dalin; Rotter, Jerome I; Guo, Xiuqing

    2014-01-01

    Rare variants may, in part, explain some of the hereditability missing in current genome-wide association studies. Many gene-based rare-variant analysis approaches proposed in recent years are aimed at population-based samples, although analysis strategies for family-based samples are clearly warranted since the family-based design has the potential to enhance our ability to enrich for rare causal variants. We have recently developed the generalized least squares, sequence kernel association test, or GLS-SKAT, approach for the rare-variant analyses in family samples, in which the kinship matrix that was computed from the high dimension genetic data was used to decorrelate the family structure. We then applied the SKAT-O approach for gene-/region-based inference in the decorrelated data. In this study, we applied this GLS-SKAT method to the systolic blood pressure data in the simulated family sample distributed by the Genetic Analysis Workshop 18. We compared the GLS-SKAT approach to the rare-variant analysis approach implemented in family-based association test-v1 and demonstrated that the GLS-SKAT approach provides superior power and good control of type I error rate.

  12. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2.

    PubMed

    Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K

    2016-01-01

    Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.

  13. Identification of Rare Variants in TNNI3 with Atrial Fibrillation in a Chinese GeneID Population

    PubMed Central

    Wang, Chuchu; Wu, Manman; Qian, Jin; Li, Bin; Tu, Xin; Xu, Chengqi; Li, Sisi; Chen, Shanshan; Zhao, Yuanyuan; Huang, Yufeng; Shi, Lisong; Cheng, Xiang; Liao, Yuhua; Chen, Qiuyun; Xia, Yunlong; Yao, Wei; Wu, Gang; Cheng, Mian; Wang, Qing K.

    2015-01-01

    Despite advances by genome-wide association studies (GWAS), much of heritability of common human diseases remains missing, a phenomenon referred to as ‘missing heritability’. One potential cause for ‘missing heritability’ is the rare susceptibility variants overlooked by GWAS. Atrial fibrillation (AF) is the most common arrhythmia seen at hospitals and increases risk of stroke by 5-fold and doubles risk of heart failure and sudden death. Here we studied one large Chinese family with AF and hypertrophic cardiomyopathy (HCM). Whole-exome sequencing analysis identified a mutation in TNNI3, R186Q, that co-segregated with the disease in the family, but did not exist in >1,583 controls, suggesting that R186Q causes AF and HCM. High-resolution melting curve analysis and direct DNA sequence analysis were then used to screen mutations in all exons and exon-intron boundaries of TNNI3 in a panel of 1,127 unrelated AF patients and 1,583 non-AF subjects. Four novel missense variants were identified in TNNI3, including E64G, M154L, E187G and D196G in four independent AF patients, but no variant was found in 1,583 non-AF subjects. All variants were not found in public databases, including the ExAC Browser database with 60,706 exomes. These data suggests that rare TNNI3 variants are associated with AF (P=0.03). TNNI3 encodes troponin I, a key regulator of the contraction-relaxation function of cardiac muscle and was not previously implicated in AF. Thus, this study may identify a new biological pathway for the pathogenesis of AF and provides evidence to support the rare variant hypothesis for missing heritability. PMID:26169204

  14. Association between Rare Variants in AP4E1, a Component of Intracellular Trafficking, and Persistent Stuttering.

    PubMed

    Raza, M Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S; Drayna, Dennis

    2015-11-05

    Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Rare variants of the 3’-5’ DNA exonuclease TREX1 in early onset small vessel stroke

    PubMed Central

    McGlasson, Sarah; Rannikmäe, Kristiina; Bevan, Steven; Logan, Clare; Bicknell, Louise S.; Jury, Alexa; Jackson, Andrew P.

    2017-01-01

    Background: Monoallelic and biallelic mutations in the exonuclease TREX1 cause monogenic small vessel diseases (SVD). Given recent evidence for genetic and pathophysiological overlap between monogenic and polygenic forms of SVD, evaluation of TREX1 in small vessel stroke is warranted. Methods: We sequenced the TREX1 gene in an exploratory cohort of patients with lacunar stroke (Edinburgh Stroke Study, n=290 lacunar stroke cases). We subsequently performed a fully blinded case-control study of early onset MRI-confirmed small vessel stroke within the UK Young Lacunar Stroke Resource (990 cases, 939 controls). Results: No patients with canonical disease-causing mutations of TREX1 were identified in cases or controls. Analysis of an exploratory cohort identified a potential association between rare variants of TREX1 and patients with lacunar stroke. However, subsequent controlled and blinded evaluation of TREX1 in a larger and MRI-confirmed patient cohort, the UK Young Lacunar Stroke Resource, identified heterozygous rare variants in 2.1% of cases and 2.3% of controls. No association was observed with stroke risk (odds ratio = 0.90; 95% confidence interval, 0.49-1.65 p=0.74). Similarly no association was seen with rare TREX1 variants with predicted deleterious effects on enzyme function (odds ratio = 1.05; 95% confidence interval, 0.43-2.61 p=0.91). Conclusions: No patients with early-onset lacunar stroke had genetic evidence of a TREX1-associated monogenic microangiopathy. These results show no evidence of association between rare variants of TREX1 and early onset lacunar stroke. This includes rare variants that significantly affect protein and enzyme function. Routine sequencing of the TREX1 gene in patients with early onset lacunar stroke is therefore unlikely to be of diagnostic utility, in the absence of syndromic features or family history. PMID:29387804

  16. A Protein Domain and Family Based Approach to Rare Variant Association Analysis.

    PubMed

    Richardson, Tom G; Shihab, Hashem A; Rivas, Manuel A; McCarthy, Mark I; Campbell, Colin; Timpson, Nicholas J; Gaunt, Tom R

    2016-01-01

    It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals.

  17. Rare genetic variants with large effect on triglycerides in subjects with a clinical diagnosis of familial vs nonfamilial hypertriglyceridemia.

    PubMed

    De Castro-Orós, Isabel; Civeira, Fernando; Pueyo, María Jesús; Mateo-Gallego, Rocío; Bolado-Carrancio, Alfonso; Lamíquiz-Moneo, Itziar; Álvarez-Sala, Luis; Fabiani, Fernando; Cofán, Montserrat; Cenarro, Ana; Rodríguez-Rey, José Carlos; Ros, Emilio; Pocoví, Miguel

    2016-01-01

    Most primary severe hypertriglyceridemias (HTGs) are diagnosed in adults, but their molecular foundations have not been completely elucidated. We aimed to identify rare dysfunctional mutations in genes encoding regulators of lipoprotein lipase (LPL) function in patients with familial and non-familial primary HTG. We sequenced promoters, exons, and exon-intron boundaries of LPL, APOA5, LMF1, and GPIHBP1 in 118 patients with severe primary HTG (triglycerides >500 mg/dL) and 53 normolipidemic controls. Variant functionality was analyzed using predictive software and functional assays for mutations in regulatory regions. We identified 29 rare variants, 10 of which had not been previously described: c.(-16A>G), c.(1018+2G>A), and p.(His80Arg) in LPL; p.(Arg143Alafs*57) in APOA5; p.(Val140Ile), p.(Leu235Ile), p.(Lys520*), and p.(Leu552Arg) in LMF1; and c.(-83G>A) and c.(-192A>G) in GPIHBP1. The c.(1018+2G>A) variant led to deletion of exon 6 in LPL cDNA, whereas the c.(-16A>G) analysis showed differences in the affinity for nuclear proteins. Overall, 20 (17.0%) of the patients carried at least one allele with a rare pathogenic variant in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant was not associated with lipid values, family history of HTG, clinical diagnosis, or previous pancreatitis. Less than one in five subjects with triglycerides >500 mg/dL and no major secondary cause for HTG may carry a rare pathogenic mutation in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant is not associated with a differential phenotype. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  18. Rare coding variants in Phospholipase D3 (PLD3) confer risk for Alzheimer's disease

    PubMed Central

    Cruchaga, Carlos; Benitez, Bruno A.; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John; Bertelsen, Sarah; Jeng, Amanda T.; Cooper, Breanna; Skorupa, Tara; Carrell, David; Levitch, Denise; Hsu, Simon; Choi, Jiyoon; Ryten, Mina; Sassi, Celeste; Bras, Jose; Gibbs, Raphael J.; Hernandez, Dena G.; Lupton, Michelle K.; Powell, John; Forabosco, Paola; Ridge, Perry G.; Corcoran, Christopher D.; Tschanz, JoAnn T.; Norton, Maria C.; Munger, Ronald G.; Schmutz, Cameron; Leary, Maegan; Demirci, F. Yesim; Bamne, Mikhil N.; Wang, Xingbin; Lopez, Oscar L.; Ganguli, Mary; Medway, Christopher; Turton, James; Lord, Jenny; Braae, Anne; Barber, Imelda; Brown, Kristelle; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Brkanac, Zoran; Scott, Erick; Topol, Eric; Morgan, Kevin; Rogaeva, Ekaterina; Singleton, Andy; Hardy, John; Kamboh, M. Ilyas; George-Hyslop, Peter St; Cairns, Nigel; Morris, John C.; Kauwe, John S.K.; Goate, Alison M.

    2014-01-01

    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1,2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low frequency coding variants with large effects on LOAD risk, we performed whole exome-sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large case-control datasets. A rare variant in PLD3 (phospholipase-D family, member 3, rs145999145; V232M) segregated with disease status in two independent families and doubled risk for AD in seven independent case-control series (V232M meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10-5, 11,354 cases and controls of European-descent). Gene-based burden analyses in 4,387 cases and controls of European-descent and 302 African American cases and controls, with complete sequence data for PLD3, indicate that several variants in this gene increase risk for AD in both populations (EA: OR= 2.75, CI=2.05-3.68; p=1.44×10-11, AA: OR= 5.48, CI=1.77-16.92; p=1.40×10-3). PLD3 is highly expressed in brain regions vulnerable to AD pathology, including hippocampus and cortex, and is expressed at lower levels in neurons from AD brains compared to control brains (p=8.10×10-10). Over-expression of PLD3 leads to a significant decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a two-fold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may be used to identify rare variants with large effects on risk for disease or other complex traits. PMID

  19. Two novel rare variants of APOA5 gene found in subjects with severe hypertriglyceridemia.

    PubMed

    Pisciotta, Livia; Fresa, Raffaele; Bellocchio, Antonella; Guido, Virgilia; Priore Oliva, Claudio; Calandra, Sebastiano; Bertolini, Stefano

    2011-11-20

    Common variants of APOA5 gene affect plasma triglyceride (TG) in the population and a number of rare variants APOA5 have been reported in individuals with hypertriglyceridemia (HTG). APOA5 was analysed in 98 HTG individuals (plasma TG >9 mmol/L) in whom no mutations in LPL and APOC2 had been found. Two patients were found to be heterozygous for two novel APOA5 variants. The first variant (p.L253P) was identified in an obese male who consumed a diet rich in fat and simple sugars. He was also a carrier in trans of the common TG-raising p.S19W SNP (5*3 haplotype). The second variant (c.295-297 del GAG, p.E99 del) was found in a lean male with no life style or metabolic factors known to affect plasma TG. He was a carrier in trans of the TG-raising 5*2 haplotype and was homozygous for the rare c.1337T allele of a SNP of GCKR gene. No mutations in other genes affecting plasma TG (LMF1 and GPIHBP1) were found in these patients. These APOA5 variants, resulted to be deleterious in silico, were not found in 350 control subjects. These novel APOA5 variants predispose to HTG in combination with other genetic or nutritional factors. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Systematic Cell-Based Phenotyping of Missense Alleles Empowers Rare Variant Association Studies: A Case for LDLR and Myocardial Infarction

    PubMed Central

    Schuberth, Christian; Won, Hong-Hee; Blattmann, Peter; Joggerst-Thomalla, Brigitte; Theiss, Susanne; Asselta, Rosanna; Duga, Stefano; Merlini, Pier Angelica; Ardissino, Diego; Lander, Eric S.; Gabriel, Stacey; Rader, Daniel J.; Peloso, Gina M.; Kathiresan, Sekar; Runz, Heiko

    2015-01-01

    A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude. PMID:25647241

  1. CDKL5 variants: Improving our understanding of a rare neurologic disorder.

    PubMed

    Hector, Ralph D; Kalscheuer, Vera M; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E S; Cobb, Stuart R

    2017-12-01

    To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain.

  2. Fine-scale patterns of population stratification confound rare variant association tests.

    PubMed

    O'Connor, Timothy D; Kiezun, Adam; Bamshad, Michael; Rich, Stephen S; Smith, Joshua D; Turner, Emily; Leal, Suzanne M; Akey, Joshua M

    2013-01-01

    Advances in next-generation sequencing technology have enabled systematic exploration of the contribution of rare variation to Mendelian and complex diseases. Although it is well known that population stratification can generate spurious associations with common alleles, its impact on rare variant association methods remains poorly understood. Here, we performed exhaustive coalescent simulations with demographic parameters calibrated from exome sequence data to evaluate the performance of nine rare variant association methods in the presence of fine-scale population structure. We find that all methods have an inflated spurious association rate for parameter values that are consistent with levels of differentiation typical of European populations. For example, at a nominal significance level of 5%, some test statistics have a spurious association rate as high as 40%. Finally, we empirically assess the impact of population stratification in a large data set of 4,298 European American exomes. Our results have important implications for the design, analysis, and interpretation of rare variant genome-wide association studies.

  3. Utilising family-based designs for detecting rare variant disease associations.

    PubMed

    Preston, Mark D; Dudbridge, Frank

    2014-03-01

    Rare genetic variants are thought to be important components in the causality of many diseases but discovering these associations is challenging. We demonstrate how best to use family-based designs to improve the power to detect rare variant disease associations. We show that using genetic data from enriched families (those pedigrees with greater than one affected member) increases the power and sensitivity of existing case-control rare variant tests. However, we show that transmission- (or within-family-) based tests do not benefit from this enrichment. This means that, in studies where a limited amount of genotyping is available, choosing a single case from each of many pedigrees has greater power than selecting multiple cases from fewer pedigrees. Finally, we show how a pseudo-case-control design allows a greater range of statistical tests to be applied to family data. © 2014 The Authors. Annals of Human Genetics published by John Wiley & Sons Ltd/University College London.

  4. A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants

    PubMed Central

    Broadaway, K. Alaine; Cutler, David J.; Duncan, Richard; Moore, Jacob L.; Ware, Erin B.; Jhun, Min A.; Bielak, Lawrence F.; Zhao, Wei; Smith, Jennifer A.; Peyser, Patricia A.; Kardia, Sharon L.R.; Ghosh, Debashis; Epstein, Michael P.

    2016-01-01

    Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy. PMID:26942286

  5. Identifying rare variants for genetic risk through a combined pedigree and phenotype approach: application to suicide and asthma.

    PubMed

    Darlington, T M; Pimentel, R; Smith, K; Bakian, A V; Jerominski, L; Cardon, J; Camp, N J; Callor, W B; Grey, T; Singleton, M; Yandell, M; Renshaw, P F; Yurgelun-Todd, D A; Gray, D; Coon, H

    2014-10-21

    result in asthma. Our top associated genes included those related to neurodevelopment or neural signaling (brain-derived neurotrophic factor (BDNF), neutral sphingomyelinase 2 (SMPD2), homeobox b2 (HOXB2), neural cell adhesion molecule (NCAM2), heterogeneous nuclear ribonucleoprotein A0 (HNRNPA0)), inflammation (free fatty acid receptor 2 (FFAR2)) and inflammation with additional evidence of neuronal involvement (oxidized low density lipoprotein receptor 1 (OLR1), toll-like receptor 3 (TLR3)). Of particular interest, BDNF has been previously implicated in both psychiatric disorders and asthma. Our results demonstrate the utility of combining pedigree and co-occurring phenotypes to identify rare variants associated with suicide risk in conjunction with specific co-occurring conditions.

  6. Identifying rare variants for genetic risk through a combined pedigree and phenotype approach: application to suicide and asthma

    PubMed Central

    Darlington, T M; Pimentel, R; Smith, K; Bakian, A V; Jerominski, L; Cardon, J; Camp, N J; Callor, W B; Grey, T; Singleton, M; Yandell, M; Renshaw, P F; Yurgelun-Todd, D A; Gray, D; Coon, H

    2014-01-01

    result in asthma. Our top associated genes included those related to neurodevelopment or neural signaling (brain-derived neurotrophic factor (BDNF), neutral sphingomyelinase 2 (SMPD2), homeobox b2 (HOXB2), neural cell adhesion molecule (NCAM2), heterogeneous nuclear ribonucleoprotein A0 (HNRNPA0)), inflammation (free fatty acid receptor 2 (FFAR2)) and inflammation with additional evidence of neuronal involvement (oxidized low density lipoprotein receptor 1 (OLR1), toll-like receptor 3 (TLR3)). Of particular interest, BDNF has been previously implicated in both psychiatric disorders and asthma. Our results demonstrate the utility of combining pedigree and co-occurring phenotypes to identify rare variants associated with suicide risk in conjunction with specific co-occurring conditions. PMID:25335167

  7. Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity.

    PubMed

    Hendricks, Audrey E; Bochukova, Elena G; Marenne, Gaëlle; Keogh, Julia M; Atanassova, Neli; Bounds, Rebecca; Wheeler, Eleanor; Mistry, Vanisha; Henning, Elana; Körner, Antje; Muddyman, Dawn; McCarthy, Shane; Hinney, Anke; Hebebrand, Johannes; Scott, Robert A; Langenberg, Claudia; Wareham, Nick J; Surendran, Praveen; Howson, Joanna M; Butterworth, Adam S; Danesh, John; Nordestgaard, Børge G; Nielsen, Sune F; Afzal, Shoaib; Papadia, Sofia; Ashford, Sofie; Garg, Sumedha; Millhauser, Glenn L; Palomino, Rafael I; Kwasniewska, Alexandra; Tachmazidou, Ioanna; O'Rahilly, Stephen; Zeggini, Eleftheria; Barroso, Inês; Farooqi, I Sadaf

    2017-06-29

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10 -3 ), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.

  8. Performance of genotype imputation for low frequency and rare variants from the 1000 genomes.

    PubMed

    Zheng, Hou-Feng; Rong, Jing-Jing; Liu, Ming; Han, Fang; Zhang, Xing-Wei; Richards, J Brent; Wang, Li

    2015-01-01

    Genotype imputation is now routinely applied in genome-wide association studies (GWAS) and meta-analyses. However, most of the imputations have been run using HapMap samples as reference, imputation of low frequency and rare variants (minor allele frequency (MAF) < 5%) are not systemically assessed. With the emergence of next-generation sequencing, large reference panels (such as the 1000 Genomes panel) are available to facilitate imputation of these variants. Therefore, in order to estimate the performance of low frequency and rare variants imputation, we imputed 153 individuals, each of whom had 3 different genotype array data including 317k, 610k and 1 million SNPs, to three different reference panels: the 1000 Genomes pilot March 2010 release (1KGpilot), the 1000 Genomes interim August 2010 release (1KGinterim), and the 1000 Genomes phase1 November 2010 and May 2011 release (1KGphase1) by using IMPUTE version 2. The differences between these three releases of the 1000 Genomes data are the sample size, ancestry diversity, number of variants and their frequency spectrum. We found that both reference panel and GWAS chip density affect the imputation of low frequency and rare variants. 1KGphase1 outperformed the other 2 panels, at higher concordance rate, higher proportion of well-imputed variants (info>0.4) and higher mean info score in each MAF bin. Similarly, 1M chip array outperformed 610K and 317K. However for very rare variants (MAF ≤ 0.3%), only 0-1% of the variants were well imputed. We conclude that the imputation of low frequency and rare variants improves with larger reference panels and higher density of genome-wide genotyping arrays. Yet, despite a large reference panel size and dense genotyping density, very rare variants remain difficult to impute.

  9. A Rare Variant Identified Within the GluN2B C-Terminus in a Patient with Autism Affects NMDA Receptor Surface Expression and Spine Density.

    PubMed

    Liu, Shuxi; Zhou, Liang; Yuan, Hongjie; Vieira, Marta; Sanz-Clemente, Antonio; Badger, John D; Lu, Wei; Traynelis, Stephen F; Roche, Katherine W

    2017-04-12

    NMDA receptors (NMDARs) are ionotropic glutamate receptors that are crucial for neuronal development and higher cognitive processes. NMDAR dysfunction is involved in a variety of neurological and psychiatric diseases; however, the mechanistic link between the human pathology and NMDAR dysfunction is poorly understood. Rare missense variants within NMDAR subunits have been identified in numerous patients with mental or neurological disorders. We specifically focused on the GluN2B NMDAR subunit, which is highly expressed in the hippocampus and cortex throughout development. We analyzed several variants located in the GluN2B C terminus and found that three variants in patients with autism (S1415L) or schizophrenia (L1424F and S1452F) (S1413L, L1422F, and S1450F in rodents, respectively) displayed impaired binding to membrane-associated guanylate kinase (MAGUK) proteins. In addition, we observed a deficit in surface expression for GluN2B S1413L. Furthermore, there were fewer dendritic spines in GluN2B S1413L-expressing neurons. Importantly, synaptic NMDAR currents in neurons transfected with GluN2B S1413L in GluN2A/B-deficient mouse brain slices revealed only partial rescue of synaptic current amplitude. Functional properties of GluN2B S1413L in recombinant systems revealed no change in receptor properties, consistent with synaptic defects being the result of reduced trafficking and targeting of GluN2B S1413L to the synapse. Therefore, we find that GluN2B S1413L displays deficits in NMDAR trafficking, synaptic currents, and spine density, raising the possibility that this mutation may contribute to the phenotype in this autism patient. More broadly, our research demonstrates that the targeted study of certain residues in NMDARs based on rare variants identified in patients is a powerful approach to studying receptor function. SIGNIFICANCE STATEMENT We have used a "bedside-to-bench" approach to investigate the functional regulation of NMDA receptors (NMDARs). Using

  10. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people

    PubMed Central

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.; Kessner, Darren; St. Jean, Pamela; Verzilli, Claudio; Shen, Judong; Tang, Zhengzheng; Bacanu, Silviu-Alin; Fraser, Dana; Warren, Liling; Aponte, Jennifer; Zawistowski, Matthew; Liu, Xiao; Zhang, Hao; Zhang, Yong; Li, Jun; Li, Yun; Li, Li; Woollard, Peter; Topp, Simon; Hall, Matthew D.; Nangle, Keith; Wang, Jun; Abecasis, Gonçalo; Cardon, Lon R.; Zöllner, Sebastian; Whittaker, John C.; Chissoe, Stephanie L.; Novembre, John; Mooser, Vincent

    2015-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (one every 17 bases) and geographically localized, such that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. Overall we conclude that, due to rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk. PMID:22604722

  11. Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project.

    PubMed

    Kan, Mengyuan; Auer, Paul L; Wang, Gao T; Bucasas, Kristine L; Hooker, Stanley; Rodriguez, Alejandra; Li, Biao; Ellis, Jaclyn; Adrienne Cupples, L; Ida Chen, Yii-Der; Dupuis, Josée; Fox, Caroline S; Gross, Myron D; Smith, Joshua D; Heard-Costa, Nancy; Meigs, James B; Pankow, James S; Rotter, Jerome I; Siscovick, David; Wilson, James G; Shendure, Jay; Jackson, Rebecca; Peters, Ulrike; Zhong, Hua; Lin, Danyu; Hsu, Li; Franceschini, Nora; Carlson, Chris; Abecasis, Goncalo; Gabriel, Stacey; Bamshad, Michael J; Altshuler, David; Nickerson, Deborah A; North, Kari E; Lange, Leslie A; Reiner, Alexander P; Leal, Suzanne M

    2016-08-01

    Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10(-8)) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10(-4)) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response.

  12. Nonsyndromic cleft lip with or without cleft palate: Increased burden of rare variants within Gremlin-1, a component of the bone morphogenetic protein 4 pathway.

    PubMed

    Al Chawa, Taofik; Ludwig, Kerstin U; Fier, Heide; Pötzsch, Bernd; Reich, Rudolf H; Schmidt, Gül; Braumann, Bert; Daratsianos, Nikolaos; Böhmer, Anne C; Schuencke, Hannah; Alblas, Margrieta; Fricker, Nadine; Hoffmann, Per; Knapp, Michael; Lange, Christoph; Nöthen, Markus M; Mangold, Elisabeth

    2014-06-01

    The genes Gremlin-1 (GREM1) and Noggin (NOG) are components of the bone morphogenetic protein 4 pathway, which has been implicated in craniofacial development. Both genes map to recently identified susceptibility loci (chromosomal region 15q13, 17q22) for nonsyndromic cleft lip with or without cleft palate (nsCL/P). The aim of the present study was to determine whether rare variants in either gene are implicated in nsCL/P etiology. The complete coding regions, untranslated regions, and splice sites of GREM1 and NOG were sequenced in 96 nsCL/P patients and 96 controls of Central European ethnicity. Three burden and four nonburden tests were performed. Statistically significant results were followed up in a second case-control sample (n = 96, respectively). For rare variants observed in cases, segregation analyses were performed. In NOG, four rare sequence variants (minor allele frequency < 1%) were identified. Here, burden and nonburden analyses generated nonsignificant results. In GREM1, 33 variants were identified, 15 of which were rare. Of these, five were novel. Significant p-values were generated in three nonburden analyses. Segregation analyses revealed incomplete penetrance for all variants investigated. Our study did not provide support for NOG being the causal gene at 17q22. However, the observation of a significant excess of rare variants in GREM1 supports the hypothesis that this is the causal gene at chr. 15q13. Because no single causal variant was identified, future sequencing analyses of GREM1 should involve larger samples and the investigation of regulatory elements. © 2014 Wiley Periodicals, Inc.

  13. Whole-exome Sequencing Identifies Rare Variants in ATP8B4 as a Risk Factor for Systemic Sclerosis

    PubMed Central

    Gao, Li; Emond, Mary J; Louie, Tin; Cheadle, Chris; Berger, Alan E.; Rafaels, Nicholas; Vergara, Candelaria; Kim, Yoonhee; Taub, Margaret A.; Ruczinski, Ingo; Mathai, Stephen C.; Rich, Stephen S; Nickerson, Deborah A; Hummers, Laura K.; Bamshad, Michael J; Hassoun, Paul M.; Mathias, Rasika A; Barnes, Kathleen C.

    2015-01-01

    Objective To determine the contribution of rare variants as genetic modifiers of the expressivity, penetrance, and severity of systemic sclerosis (SSc). Methods We performed whole-exome sequencing of 78 European American systemic sclerosis patients, including 35 patients without pulmonary arterial hypertension (SSc-PAH−) and 43 patients with PAH (SSc-PAH+). Association testing of case-control probability for rare variants was performed using the aSKAT-O method with small sample adjustment by comparing all SSc patients with a reference population of 3,179 controls from the ESP 5,500 exome dataset. Replication genotyping was performed in an independent sample of 3,263 patients (415 SSc and 2,848 controls). We conducted expression profiling of mRNA from 61 SSc patients (19 SSc-PAH− and 42 SSc-PAH+) and 41 corresponding controls. Results The ATP8B4 gene was associated with a significant increase in the risk of SSc (P = 3.18 × 10−7). Among the 64 ATP8B4 variants tested, a single missense variant, c.1308C>G (F436L, rs55687265), provided the most compelling evidence for association (P = 9.35 × 10−10; OR = 6.11), which was confirmed in the replication cohort (P = 0.012; OR = 1.86) and meta-analysis (P = 1.92 x 10−7; OR = 2.5). Genes involved in E3 ubiquitin-protein ligase complex (ASB10) and cyclic nucleotide gated channelopathies (CNGB3) as well as HLA-DRB5 and HSPB2 (aka heat shock protein 27) provided additional evidence for association (P < 10−5). Differential ATP8B4 expression was observed among the SSc patients compared to the controls (P = 0.0005). Conclusion ATP8B4 may represent a putative genetic risk factor for SSc and pulmonary vascular complications. PMID:26473621

  14. Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease.

    PubMed

    Carss, Keren J; Arno, Gavin; Erwood, Marie; Stephens, Jonathan; Sanchis-Juan, Alba; Hull, Sarah; Megy, Karyn; Grozeva, Detelina; Dewhurst, Eleanor; Malka, Samantha; Plagnol, Vincent; Penkett, Christopher; Stirrups, Kathleen; Rizzo, Roberta; Wright, Genevieve; Josifova, Dragana; Bitner-Glindzicz, Maria; Scott, Richard H; Clement, Emma; Allen, Louise; Armstrong, Ruth; Brady, Angela F; Carmichael, Jenny; Chitre, Manali; Henderson, Robert H H; Hurst, Jane; MacLaren, Robert E; Murphy, Elaine; Paterson, Joan; Rosser, Elisabeth; Thompson, Dorothy A; Wakeling, Emma; Ouwehand, Willem H; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Raymond, F Lucy

    2017-01-05

    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease. Copyright © 2017. Published by Elsevier Inc.

  15. Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease.

    PubMed

    Lubbe, S J; Escott-Price, V; Brice, A; Gasser, T; Pittman, A M; Bras, J; Hardy, J; Heutink, P; Wood, N M; Singleton, A B; Grosset, D G; Carroll, C B; Law, M H; Demenais, F; Iles, M M; Bishop, D T; Newton-Bishop, J; Williams, N M; Morris, H R

    2016-12-01

    A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Iron overload in HFE C282Y heterozygotes at first genetic testing: a strategy for identifying rare HFE variants.

    PubMed

    Aguilar-Martinez, Patricia; Grandchamp, Bernard; Cunat, Séverine; Cadet, Estelle; Blanc, François; Nourrit, Marlène; Lassoued, Kaiss; Schved, Jean-François; Rochette, Jacques

    2011-04-01

    Heterozygotes for the p.Cys282Tyr (C282Y) mutation of the HFE gene do not usually express a hemochromatosis phenotype. Apart from the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele, other rare HFE mutations can be found in trans on chromosome 6. We performed molecular investigation of the genes implicated in hereditary hemochromatosis in six patients who presented with iron overload but were simple heterozygotes for the HFE C282Y mutation at first genetic testing. Functional impairment of new variants was deduced from computational methods including molecular modeling studies. We identified four rare HFE mutant alleles, three of which have not been previously described. One mutation is a 13-nucleotide deletion in exon 6 (c.1022_1034del13, p.His341_Ala345 > LeufsX119), which is predicted to lead to an elongated and unstable protein. The second one is a substitution of the last nucleotide of exon 2 (c.340G > A, p.Glu114Lys) which modifies the relative solvent accessibility in a loop interface. The third mutation, p.Arg67Cys, also lies in exon 2 and introduces a destabilization of the secondary structure within a loop of the α1 domain. We also found the previously reported c.548T > C (p.Leu183Pro) missense mutation in exon 3. No other known iron genes were mutated. We present an algorithm at the clinical and genetic levels for identifying patients deserving further investigation. Conclusions Our results suggest that additional mutations in HFE may have a clinical impact in C282Y carriers. In conjunction with results from previously described cases we conclude that an elevated transferrin saturation level and elevated hepatic iron index should indicate the utility of searching for further HFE mutations in C282Y heterozygotes prior to other iron gene studies.

  17. A Rare SNP Identified a TCP Transcription Factor Essential for Tendril Development in Cucumber.

    PubMed

    Wang, Shenhao; Yang, Xueyong; Xu, Mengnan; Lin, Xingzhong; Lin, Tao; Qi, Jianjian; Shao, Guangjin; Tian, Nana; Yang, Qing; Zhang, Zhonghua; Huang, Sanwen

    2015-12-07

    Rare genetic variants are abundant in genomes but less tractable in genome-wide association study. Here we exploit a strategy of rare variation mapping to discover a gene essential for tendril development in cucumber (Cucumis sativus L.). In a collection of >3000 lines, we discovered a unique tendril-less line that forms branches instead of tendrils and, therefore, loses its climbing ability. We hypothesized that this unusual phenotype was caused by a rare variation and subsequently identified the causative single nucleotide polymorphism. The affected gene TEN encodes a TCP transcription factor conserved within the cucurbits and is expressed specifically in tendrils, representing a new organ identity gene. The variation occurs within a protein motif unique to the cucurbits and impairs its function as a transcriptional activator. Analyses of transcriptomes from near-isogenic lines identified downstream genes required for the tendril's capability to sense and climb a support. This study provides an example to explore rare functional variants in plant genomes. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Multiple rare variants in the etiology of autism spectrum disorders

    PubMed Central

    Buxbaum, Joseph D.

    2009-01-01

    Recent studies in autism spectrum disorders (ASDs) support an important role for multiple rare variants in these conditions. This is a clinically important finding, as, with the demonstration that a significant proportion of ASDs are the result of rare, etiological genetic variants, it becomes possible to make use of genetic testing to supplement behavioral analyses for an earlier diagnosis. As it appears that earlier interventions in ASDs will produce better outcomes, the development of genetic testing to augment behaviorally based evaluations in ASDs holds promise for improved treatment. Furthermore, these rare variants involve synaptic and neuronal genes that implicate specific paihvi/ays, cells, and subcellular compartments in ASDs, which in turn will suggest novel therapeutic approaches in ASDs, Of particular recent interest are the synaptic cell adhesion and associated molecules, including neurexin 1, neuroligin 3 and 4, and SHANK3, which implicate glutamatergic synapse abnormalities in ASDs, In the current review we will overview the evidence for a genetic etiology for ASDs, and summarize recent genetic findings in these disorders. PMID:19432386

  19. Rare Variants in PLD3 Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort.

    PubMed

    Cacace, Rita; Van den Bossche, Tobi; Engelborghs, Sebastiaan; Geerts, Nathalie; Laureys, Annelies; Dillen, Lubina; Graff, Caroline; Thonberg, Håkan; Chiang, Huei-Hsin; Pastor, Pau; Ortega-Cubero, Sara; Pastor, Maria A; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Nacmias, Benedetta; Sorbi, Sandro; Sanchez-Valle, Raquel; Lladó, Albert; Gelpi, Ellen; Almeida, Maria Rosário; Santana, Isabel; Tsolaki, Magda; Koutroumani, Maria; Clarimon, Jordi; Lleó, Alberto; Fortea, Juan; de Mendonça, Alexandre; Martins, Madalena; Borroni, Barbara; Padovani, Alessandro; Matej, Radoslav; Rohan, Zdenek; Vandenbulcke, Mathieu; Vandenberghe, Rik; De Deyn, Peter P; Cras, Patrick; van der Zee, Julie; Sleegers, Kristel; Van Broeckhoven, Christine

    2015-12-01

    Rare variants in the phospholipase D3 gene (PLD3) were associated with increased risk for late-onset Alzheimer disease (LOAD). We identified a missense mutation in PLD3 in whole-genome sequence data of a patient with autopsy confirmed Alzheimer disease (AD) and onset age of 50 years. Subsequently, we sequenced PLD3 in a Belgian early-onset Alzheimer disease (EOAD) patient (N = 261) and control (N = 319) cohort, as well as in European EOAD patients (N = 946) and control individuals (N = 1,209) ascertained in different European countries. Overall, we identified 22 rare variants with a minor allele frequency <1%, 20 missense and two splicing mutations. Burden analysis did not provide significant evidence for an enrichment of rare PLD3 variants in EOAD patients in any of the patient/control cohorts. Also, meta-analysis of the PLD3 data, including a published dataset of a German EOAD cohort, was not significant (P = 0.43; OR = 1.53, 95% CI 0.60-3.31). Consequently, our data do not support a role for PLD3 rare variants in the genetic etiology of EOAD in European EOAD patients. Our data corroborate the negative replication data obtained in LOAD studies and therefore a genetic role of PLD3 in AD remains to be demonstrated. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  20. Rare Variants in PLD3 Do Not Affect Risk for Early‐Onset Alzheimer Disease in a European Consortium Cohort

    PubMed Central

    Cacace, Rita; Van den Bossche, Tobi; Engelborghs, Sebastiaan; Geerts, Nathalie; Laureys, Annelies; Dillen, Lubina; Graff, Caroline; Thonberg, Håkan; Chiang, Huei‐Hsin; Pastor, Pau; Ortega‐Cubero, Sara; Pastor, Maria A.; Diehl‐Schmid, Janine; Alexopoulos, Panagiotis; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Nacmias, Benedetta; Sorbi, Sandro; Sanchez‐Valle, Raquel; Lladó, Albert; Gelpi, Ellen; Almeida, Maria Rosário; Santana, Isabel; Tsolaki, Magda; Koutroumani, Maria; Clarimon, Jordi; Lleó, Alberto; Fortea, Juan; de Mendonça, Alexandre; Martins, Madalena; Borroni, Barbara; Padovani, Alessandro; Matej, Radoslav; Rohan, Zdenek; Vandenbulcke, Mathieu; Vandenberghe, Rik; De Deyn, Peter P.; Cras, Patrick; van der Zee, Julie; Sleegers, Kristel

    2015-01-01

    ABSTRACT Rare variants in the phospholipase D3 gene (PLD3) were associated with increased risk for late‐onset Alzheimer disease (LOAD). We identified a missense mutation in PLD3 in whole‐genome sequence data of a patient with autopsy confirmed Alzheimer disease (AD) and onset age of 50 years. Subsequently, we sequenced PLD3 in a Belgian early‐onset Alzheimer disease (EOAD) patient (N = 261) and control (N = 319) cohort, as well as in European EOAD patients (N = 946) and control individuals (N = 1,209) ascertained in different European countries. Overall, we identified 22 rare variants with a minor allele frequency <1%, 20 missense and two splicing mutations. Burden analysis did not provide significant evidence for an enrichment of rare PLD3 variants in EOAD patients in any of the patient/control cohorts. Also, meta‐analysis of the PLD3 data, including a published dataset of a German EOAD cohort, was not significant (P = 0.43; OR = 1.53, 95% CI 0.60–3.31). Consequently, our data do not support a role for PLD3 rare variants in the genetic etiology of EOAD in European EOAD patients. Our data corroborate the negative replication data obtained in LOAD studies and therefore a genetic role of PLD3 in AD remains to be demonstrated. PMID:26411346

  1. Breast Cancer Clinical Trial of Chemotherapy and Trastuzumab: Potential Tool to Identify Cardiac Modifying Variants of Dilated Cardiomyopathy

    PubMed Central

    Serie, Daniel J.; Crook, Julia E.; Necela, Brian M.; Axenfeld, Bianca C.; Dockter, Travis J.; Colon-Otero, Gerardo; Perez, Edith A.; Thompson, E. Aubrey; Norton, Nadine

    2017-01-01

    Doxorubicin and the ERBB2 targeted therapy, trastuzumab, are routinely used in the treatment of HER2+ breast cancer. In mouse models, doxorubicin is known to cause cardiomyopathy and conditional cardiac knock out of Erbb2 results in dilated cardiomyopathy and increased sensitivity to doxorubicin-induced cell death. In humans, these drugs also result in cardiac phenotypes, but severity and reversibility is highly variable. We examined the association of decline in left ventricular ejection fraction (LVEF) at 15,204 single nucleotide polymorphisms (SNPs) spanning 72 cardiomyopathy genes, in 800 breast cancer patients who received doxorubicin and trastuzumab. For 7033 common SNPs (minor allele frequency (MAF) > 0.01) we performed single marker linear regression. For all SNPs, we performed gene-based testing with SNP-set (Sequence) Kernel Association Tests: SKAT, SKAT-O and SKAT-common/rare under rare variant non-burden; rare variant optimized burden and non-burden tests; and a combination of rare and common variants respectively. Single marker analyses identified seven missense variants in OBSCN (p = 0.0045–0.0009, MAF = 0.18–0.50) and two in TTN (both p = 0.04, MAF = 0.22). Gene-based rare variant analyses, SKAT and SKAT-O, performed very similarly (ILK, TCAP, DSC2, VCL, FXN, DSP and KCNQ1, p = 0.042–0.006). Gene-based tests of rare/common variants were significant at the nominal 5% level for OBSCN as well as TCAP, DSC2, VCL, NEXN, KCNJ2 and DMD (p = 0.044–0.008). Our results suggest that rare and common variants in OBSCN, as well as in other genes, could have modifying effects in cardiomyopathy. PMID:29367538

  2. Shifting the focus toward rare variants in schizophrenia to close the gap from genotype to phenotype.

    PubMed

    Bustamante, M Leonor; Herrera, Luisa; Gaspar, Pablo A; Nieto, Rodrigo; Maturana, Alejandro; Villar, María José; Salinas, Valeria; Silva, Hernán

    2017-10-01

    Schizophrenia (SZ) is a disorder with a high heritability and a complex architecture. Several dozen genetic variants have been identified as risk factors through genome-wide association studies including large population-based samples. However, the bulk of the risk cannot be accounted for by the genes associated to date. Rare mutations have been historically seen as relevant only for some infrequent, Mendelian forms of psychosis. Recent findings, however, show that the subset of patients that present a mutation with major effect is larger than expected. We discuss some of the molecular findings of these studies. SZ is clinically and genetically heterogeneous. To identify the genetic variation underlying the disorder, research should be focused on features that are more likely a product of genetic heterogeneity. Based on the phenotypical correlations with rare variants, cognition emerges as a relevant domain to study. Cognitive disturbances could be useful in selecting cases that have a higher probability of carrying deleterious mutations, as well as on the correct ascertainment of sporadic cases for the identification of de novo variants. © 2017 Wiley Periodicals, Inc.

  3. Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project

    PubMed Central

    Kan, Mengyuan; Auer, Paul L; Wang, Gao T; Bucasas, Kristine L; Hooker, Stanley; Rodriguez, Alejandra; Li, Biao; Ellis, Jaclyn; Adrienne Cupples, L; Ida Chen, Yii-Der; Dupuis, Josée; Fox, Caroline S; Gross, Myron D; Smith, Joshua D; Heard-Costa, Nancy; Meigs, James B; Pankow, James S; Rotter, Jerome I; Siscovick, David; Wilson, James G; Shendure, Jay; Jackson, Rebecca; Peters, Ulrike; Zhong, Hua; Lin, Danyu; Hsu, Li; Franceschini, Nora; Carlson, Chris; Abecasis, Goncalo; Gabriel, Stacey; Bamshad, Michael J; Altshuler, David; Nickerson, Deborah A; North, Kari E; Lange, Leslie A; Reiner, Alexander P; Leal, Suzanne M

    2016-01-01

    Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10−8) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10−4) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response. PMID:26757982

  4. The admixture maximum likelihood test to test for association between rare variants and disease phenotypes.

    PubMed

    Tyrer, Jonathan P; Guo, Qi; Easton, Douglas F; Pharoah, Paul D P

    2013-06-06

    The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant testing is underpowered to detect associations, the development of statistical methods to combine analysis across variants - so-called "burden tests" - is an area of active research interest. We previously developed a method, the admixture maximum likelihood test, to test multiple, common variants for association with a trait of interest. We have extended this method, called the rare admixture maximum likelihood test (RAML), for the analysis of rare variants. In this paper we compare the performance of RAML with six other burden tests designed to test for association of rare variants. We used simulation testing over a range of scenarios to test the power of RAML compared to the other rare variant association testing methods. These scenarios modelled differences in effect variability, the average direction of effect and the proportion of associated variants. We evaluated the power for all the different scenarios. RAML tended to have the greatest power for most scenarios where the proportion of associated variants was small, whereas SKAT-O performed a little better for the scenarios with a higher proportion of associated variants. The RAML method makes no assumptions about the proportion of variants that are associated with the phenotype of interest or the magnitude and direction of their effect. The method is flexible and can be applied to both dichotomous and quantitative traits and allows for the inclusion of covariates in the underlying regression model. The RAML method performed well compared to the other methods over a wide range of scenarios. Generally power was moderate in most of the scenarios, underlying the need for large sample sizes in any form of association testing.

  5. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.

    PubMed

    Zhang, Qianqian; Guldbrandtsen, Bernt; Calus, Mario P L; Lund, Mogens Sandø; Sahana, Goutam

    2016-08-17

    There is growing interest in the role of rare variants in the variation of complex traits due to increasing evidence that rare variants are associated with quantitative traits. However, association methods that are commonly used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it difficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated phenotypes. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of choice to account for both family relationships and population structure in cattle. We observed that the power of the LMM approach was low for mapping a rare variant (defined as those that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a gene with sample sizes of 1000 or 5000. We observed that the methods that combine multiple rare variants within a gene into a meta-variant generally had greater power to map rare variants compared

  6. Rare variant association analysis in case-parents studies by allowing for missing parental genotypes.

    PubMed

    Li, Yumei; Xiang, Yang; Xu, Chao; Shen, Hui; Deng, Hongwen

    2018-01-15

    The development of next-generation sequencing technologies has facilitated the identification of rare variants. Family-based design is commonly used to effectively control for population admixture and substructure, which is more prominent for rare variants. Case-parents studies, as typical strategies in family-based design, are widely used in rare variant-disease association analysis. Current methods in case-parents studies are based on complete case-parents data; however, parental genotypes may be missing in case-parents trios, and removing these data may lead to a loss in statistical power. The present study focuses on testing for rare variant-disease association in case-parents study by allowing for missing parental genotypes. In this report, we extended the collapsing method for rare variant association analysis in case-parents studies to allow for missing parental genotypes, and investigated the performance of two methods by using the difference of genotypes between affected offspring and their corresponding "complements" in case-parent trios and TDT framework. Using simulations, we showed that, compared with the methods just only using complete case-parents data, the proposed strategy allowing for missing parental genotypes, or even adding unrelated affected individuals, can greatly improve the statistical power and meanwhile is not affected by population stratification. We conclude that adding case-parents data with missing parental genotypes to complete case-parents data set can greatly improve the power of our strategy for rare variant-disease association.

  7. BETASEQ: a powerful novel method to control type-I error inflation in partially sequenced data for rare variant association testing.

    PubMed

    Yan, Song; Li, Yun

    2014-02-15

    Despite its great capability to detect rare variant associations, next-generation sequencing is still prohibitively expensive when applied to large samples. In case-control studies, it is thus appealing to sequence only a subset of cases to discover variants and genotype the identified variants in controls and the remaining cases under the reasonable assumption that causal variants are usually enriched among cases. However, this approach leads to inflated type-I error if analyzed naively for rare variant association. Several methods have been proposed in recent literature to control type-I error at the cost of either excluding some sequenced cases or correcting the genotypes of discovered rare variants. All of these approaches thus suffer from certain extent of information loss and thus are underpowered. We propose a novel method (BETASEQ), which corrects inflation of type-I error by supplementing pseudo-variants while keeps the original sequence and genotype data intact. Extensive simulations and real data analysis demonstrate that, in most practical situations, BETASEQ leads to higher testing powers than existing approaches with guaranteed (controlled or conservative) type-I error. BETASEQ and associated R files, including documentation, examples, are available at http://www.unc.edu/~yunmli/betaseq

  8. Significant association between rare IPO11-HTR1A variants and attention deficit hyperactivity disorder in Caucasians

    PubMed Central

    Zuo, Lingjun; Saba, Laura; Lin, Xiandong; Tan, Yunlong; Wang, Kesheng; Krystal, John H.; Tabakoff, Boris; Luo, Xingguang

    2016-01-01

    Objective We comprehensively examined the rare variants in the IPO11-HTR1A region to explore their roles in neuropsychiatric disorders. Method Five hundred seventy-three to 1,181 rare SNPs in subjects of European descent and 1,234-2,529 SNPs in subjects of African descent (0 < minor allele frequency (MAF) < 0.05) were analyzed in a total of 49,268 subjects in 21 independent cohorts with 11 different neuropsychiatric disorders. Associations between rare variant constellations and diseases and associations between individual rare variants and diseases were tested. RNA expression changes of this region were also explored. Results We identified a rare variant constellation across the entire IPO11-HTR1A region that was associated with attention deficit hyperactivity disorder (ADHD) in Caucasians (T5: p=7.9×10−31; Fp: p=1.3×10−32), but not with any other disorder examined; association signals mainly came from IPO11 (T5: p=3.6×10−10; Fp: p=3.2×10−10) and the intergenic region between IPO11 and HTR1A (T5: p=4.1×10−30; Fp: p=5.4×10−32). One association between ADHD and an intergenic rare variant, i.e., rs10042956, exhibited region- and cohort-wide significance (p=5.2×10−6) and survived correction for false discovery rate (q=0.006). Cis-eQTL analysis showed that, 29 among the 41 SNPs within or around IPO11 had replicable significant regulatory effects on IPO11 exon expression (1.5×10−17≤p<0.002) in human brain or peripheral blood mononuclear cell tissues. Conclusion We concluded that IPO11-HTR1A was a significant risk gene region for ADHD in Caucasians. PMID:26079129

  9. Resequencing of the vesicular glutamate transporter 2 gene (VGLUT2) reveals some rare genetic variants that may increase the genetic burden in schizophrenia.

    PubMed

    Shen, Yu-Chih; Liao, Ding-Lieh; Lu, Chao-Lin; Chen, Jen-Yeu; Liou, Ying-Jay; Chen, Tzu-Ting; Chen, Chia-Hsiang

    2010-08-01

    Vesicular glutamate transporters (VGLUT1-3) package glutamate into vesicles in the presynaptic terminal and regulate the release of glutamate. In mesencephalic dopamine neuron culture, the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3, have been demonstrated. As related to the dysregulated glutamatergic hypothesis of schizophrenia, the gene encoding VGLUT2 is the most plausible candidate involved in the pathogenesis of this illness. We searched for genetic variants in the promoter region and 12 exons (including UTR ends) of the VGLUT2 gene using direct sequencing in a sample of Han Chinese schizophrenic patients (n=375) and non-psychotic controls (n=366) from Taiwan, and conducted a case-control association study. We identified 8 common SNPs in the VGLUT2 gene. SNP and haplotype-based analyses showed no association with schizophrenia. Besides, we identified 9 rare variants in 13 out of 375 patients, including 3 variants located at the promoter region, 2 synonymous variants located at protein coding regions, and 4 variants located at UTR ends. No rare variants were found in the control subjects. Collectively, these rare variants were significantly overrepresented in the patient group (3.5% versus 0, p value of Fisher's exact test=2.3x10(-5)), suggesting they may contribute to the pathogenesis of schizophrenia. Although the functional significance of these rare variants remains to be characterized, our study may lend support to the multiple rare mutations hypothesis of schizophrenia, and may provide genetic clues to indicate the involvement of the glutamate transmission pathway in the pathogenesis of schizophrenia. Copyright 2010 Elsevier B.V. All rights reserved.

  10. A rare variant of first branchial cleft fistula.

    PubMed

    Ramnani, S; Mungutwar, V; Goyal, N K; Bansal, A

    2009-12-01

    We report an extremely rare variant of first branchial cleft anomaly. A 15-year-old girl presented with a history of recurrent mucopurulent discharge from an opening in the left infra-auricular region, since birth. Computed tomography fistulography showed a tortuous tract measuring approximately 4.61 cm, extending anteroinferiorly and medially from the external inframeatal opening to the lateral nasopharyngeal wall (anterior to the fossa of Rosenmuller). The tract was connected to the deep lobe of the parotid gland and lay 0.67 cm anterior to the carotid artery and posterior to the medial pterygoid muscle. This was an extremely rare variant of first branchial cleft fistula. To the best of our knowledge, this is the first case of its type to be reported. Computed tomography fistulography is the imaging modality of choice for the diagnosis of branchial cleft fistula, and will also assist surgical planning.

  11. A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans.

    PubMed

    Timpson, Nicholas J; Walter, Klaudia; Min, Josine L; Tachmazidou, Ioanna; Malerba, Giovanni; Shin, So-Youn; Chen, Lu; Futema, Marta; Southam, Lorraine; Iotchkova, Valentina; Cocca, Massimiliano; Huang, Jie; Memari, Yasin; McCarthy, Shane; Danecek, Petr; Muddyman, Dawn; Mangino, Massimo; Menni, Cristina; Perry, John R B; Ring, Susan M; Gaye, Amadou; Dedoussis, George; Farmaki, Aliki-Eleni; Burton, Paul; Talmud, Philippa J; Gambaro, Giovanni; Spector, Tim D; Smith, George Davey; Durbin, Richard; Richards, J Brent; Humphries, Steve E; Zeggini, Eleftheria; Soranzo, Nicole

    2014-09-16

    The analysis of rich catalogues of genetic variation from population-based sequencing provides an opportunity to screen for functional effects. Here we report a rare variant in APOC3 (rs138326449-A, minor allele frequency ~0.25% (UK)) associated with plasma triglyceride (TG) levels (-1.43 s.d. (s.e.=0.27 per minor allele (P-value=8.0 × 10(-8))) discovered in 3,202 individuals with low read-depth, whole-genome sequence. We replicate this in 12,831 participants from five additional samples of Northern and Southern European origin (-1.0 s.d. (s.e.=0.173), P-value=7.32 × 10(-9)). This is consistent with an effect between 0.5 and 1.5 mmol l(-1) dependent on population. We show that a single predicted splice donor variant is responsible for association signals and is independent of known common variants. Analyses suggest an independent relationship between rs138326449 and high-density lipoprotein (HDL) levels. This represents one of the first examples of a rare, large effect variant identified from whole-genome sequencing at a population scale.

  12. Functional significance of rare neuroligin 1 variants found in autism

    PubMed Central

    Nakanishi, Moe; Nomura, Jun; Ji, Xiao; Tamada, Kota; Arai, Takashi; Takahashi, Eiki; Bućan, Maja

    2017-01-01

    Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders. PMID:28841651

  13. Functional significance of rare neuroligin 1 variants found in autism.

    PubMed

    Nakanishi, Moe; Nomura, Jun; Ji, Xiao; Tamada, Kota; Arai, Takashi; Takahashi, Eiki; Bućan, Maja; Takumi, Toru

    2017-08-01

    Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders.

  14. The quest for rare variants: pooled multiplexed next generation sequencing in plants.

    PubMed

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by individual Sanger sequencing. The aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method, we will explain in detail the possible experimental and analytical approaches and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled NGS can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity, and Tajima's D. Finally, we will discuss applications and future perspectives of the multiplexed NGS approach.

  15. Higher criticism approach to detect rare variants using whole genome sequencing data

    PubMed Central

    2014-01-01

    Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we develop a strategy to apply the HC approach to WGS data that contains rare variants as the majority. By using Genetic Analysis Workshop 18 "dose" genetic data with simulated phenotypes, we assess the performance of HC under a variety of strategies for grouping variants and collapsing rare variants. The HC approach is compared with the minimal p-value method and the sequence kernel association test. The results show that the HC approach is preferred for detecting weak genetic effects. PMID:25519367

  16. Rare, low frequency, and common coding variants in CHRNA5 and their contribution to nicotine dependence in European and African Americans

    PubMed Central

    Olfson, Emily; Saccone, Nancy L.; Johnson, Eric O.; Chen, Li-Shiun; Culverhouse, Robert; Doheny, Kimberly; Foltz, Steven M.; Fox, Louis; Gogarten, Stephanie M.; Hartz, Sarah; Hetrick, Kurt; Laurie, Cathy C.; Marosy, Beth; Amin, Najaf; Arnett, Donna; Barr, R. Graham; Bartz, Traci M.; Bertelsen, Sarah; Borecki, Ingrid B.; Brown, Michael R.; Chasman, Daniel I.; van Duijn, Cornelia M.; Feitosa, Mary F.; Fox, Ervin R.; Franceschini, Nora; Franco, Oscar H.; Grove, Megan L.; Guo, Xiuqing; Hofman, Albert; Kardia, Sharon L.R.; Morrison, Alanna C.; Musani, Solomon K.; Psaty, Bruce M.; Rao, D.C.; Reiner, Alex P.; Rice, Kenneth; Ridker, Paul M.; Rose, Lynda M.; Schick, Ursula M.; Schwander, Karen; Uitterlinden, Andre G.; Vojinovic, Dina; Wang, Jen-Chyong; Ware, Erin B.; Wilson, Gregory; Yao, Jie; Zhao, Wei; Breslau, Naomi; Hatsukami, Dorothy; Stitzel, Jerry A.; Rice, John; Goate, Alison; Bierut, Laura J.

    2015-01-01

    The common nonsynonymous variant rs16969968 in the α5 nicotinic receptor subunit gene (CHRNA5) is the strongest genetic risk factor for nicotine dependence in European Americans and contributes to risk in African Americans. To comprehensively examine whether other CHRNA5 coding variation influences nicotine dependence risk, we performed targeted sequencing on 1582 nicotine dependent cases (Fagerström Test for Nicotine Dependence score≥4) and 1238 non-dependent controls, with independent replication of common and low frequency variants using 12 studies with exome chip data. Nicotine dependence was examined using logistic regression with individual common variants (MAF≥0.05), aggregate low frequency variants (0.05>MAF≥0.005), and aggregate rare variants (MAF<0.005). Meta-analysis of primary results was performed with replication studies containing 12 174 heavy and 11 290 light smokers. Next-generation sequencing with 180X coverage identified 24 nonsynonymous variants and 2 frameshift deletions in CHRNA5, including 9 novel variants in the 2820 subjects. Meta-analysis confirmed the risk effect of the only common variant (rs16969968, European ancestry: OR=1.3, p=3.5×10−11; African ancestry: OR=1.3, p=0.01) and demonstrated that 3 low frequency variants contributed an independent risk (aggregate term, European ancestry: OR=1.3, p=0.005; African ancestry: OR=1.4, p=0.0006). The remaining 22 rare coding variants were associated with increased risk of nicotine dependence in the European American primary sample (OR=12.9, p=0.01) and in the same risk direction in African Americans (OR=1.5, p=0.37). Our results indicate that common, low frequency and rare CHRNA5 coding variants are independently associated with nicotine dependence risk. These newly identified variants likely influence risk for smoking-related diseases such as lung cancer. PMID:26239294

  17. Rare, low frequency and common coding variants in CHRNA5 and their contribution to nicotine dependence in European and African Americans.

    PubMed

    Olfson, E; Saccone, N L; Johnson, E O; Chen, L-S; Culverhouse, R; Doheny, K; Foltz, S M; Fox, L; Gogarten, S M; Hartz, S; Hetrick, K; Laurie, C C; Marosy, B; Amin, N; Arnett, D; Barr, R G; Bartz, T M; Bertelsen, S; Borecki, I B; Brown, M R; Chasman, D I; van Duijn, C M; Feitosa, M F; Fox, E R; Franceschini, N; Franco, O H; Grove, M L; Guo, X; Hofman, A; Kardia, S L R; Morrison, A C; Musani, S K; Psaty, B M; Rao, D C; Reiner, A P; Rice, K; Ridker, P M; Rose, L M; Schick, U M; Schwander, K; Uitterlinden, A G; Vojinovic, D; Wang, J-C; Ware, E B; Wilson, G; Yao, J; Zhao, W; Breslau, N; Hatsukami, D; Stitzel, J A; Rice, J; Goate, A; Bierut, L J

    2016-05-01

    The common nonsynonymous variant rs16969968 in the α5 nicotinic receptor subunit gene (CHRNA5) is the strongest genetic risk factor for nicotine dependence in European Americans and contributes to risk in African Americans. To comprehensively examine whether other CHRNA5 coding variation influences nicotine dependence risk, we performed targeted sequencing on 1582 nicotine-dependent cases (Fagerström Test for Nicotine Dependence score⩾4) and 1238 non-dependent controls, with independent replication of common and low frequency variants using 12 studies with exome chip data. Nicotine dependence was examined using logistic regression with individual common variants (minor allele frequency (MAF)⩾0.05), aggregate low frequency variants (0.05>MAF⩾0.005) and aggregate rare variants (MAF<0.005). Meta-analysis of primary results was performed with replication studies containing 12 174 heavy and 11 290 light smokers. Next-generation sequencing with 180 × coverage identified 24 nonsynonymous variants and 2 frameshift deletions in CHRNA5, including 9 novel variants in the 2820 subjects. Meta-analysis confirmed the risk effect of the only common variant (rs16969968, European ancestry: odds ratio (OR)=1.3, P=3.5 × 10(-11); African ancestry: OR=1.3, P=0.01) and demonstrated that three low frequency variants contributed an independent risk (aggregate term, European ancestry: OR=1.3, P=0.005; African ancestry: OR=1.4, P=0.0006). The remaining 22 rare coding variants were associated with increased risk of nicotine dependence in the European American primary sample (OR=12.9, P=0.01) and in the same risk direction in African Americans (OR=1.5, P=0.37). Our results indicate that common, low frequency and rare CHRNA5 coding variants are independently associated with nicotine dependence risk. These newly identified variants likely influence the risk for smoking-related diseases such as lung cancer.

  18. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants.

    PubMed

    Claustres, Mireille; Thèze, Corinne; des Georges, Marie; Baux, David; Girodon, Emmanuelle; Bienvenu, Thierry; Audrezet, Marie-Pierre; Dugueperoux, Ingrid; Férec, Claude; Lalau, Guy; Pagin, Adrien; Kitzis, Alain; Thoreau, Vincent; Gaston, Véronique; Bieth, Eric; Malinge, Marie-Claire; Reboul, Marie-Pierre; Fergelot, Patricia; Lemonnier, Lydie; Mekki, Chadia; Fanen, Pascale; Bergougnoux, Anne; Sasorith, Souphatta; Raynal, Caroline; Bareil, Corinne

    2017-10-01

    Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles. © 2017 Wiley Periodicals, Inc.

  19. Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren's syndrome.

    PubMed

    Johar, Angad S; Mastronardi, Claudio; Rojas-Villarraga, Adriana; Patel, Hardip R; Chuah, Aaron; Peng, Kaiman; Higgins, Angela; Milburn, Peter; Palmer, Stephanie; Silva-Lara, Maria Fernanda; Velez, Jorge I; Andrews, Dan; Field, Matthew; Huttley, Gavin; Goodnow, Chris; Anaya, Juan-Manuel; Arcos-Burgos, Mauricio

    2015-06-02

    Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases. The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES. Filters to identify novel and rare functional (pathogenic-deleterious) homozygous and/or compound heterozygous variants in these patients and controls were applied. Bioinformatics tools such as the Human gene connectome as well as pathway and network analysis were applied to test overrepresentation of genes harbouring these variants in critical pathways and networks involved in autoimmunity. Eleven novel and rare functional variants were identified in cases but not in controls, harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, TMEM161A, and FKRP. These were subsequently subject to network analysis and their functional relatedness to genes already associated with autoimmunity was evaluated. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for autoimmunity. LRP1/STAT6 are involved in extracellular and intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is functionally related to the HLA-B and IL10 genes and it has a substantial impact within immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, regulation of phospholipase A2 activity, negative regulation of apoptosis and response to lipopolysaccharides). Further, ICA1 and STAT6 were also closely related to AIRE and IRF5, two very

  20. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    PubMed

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  1. The impact of rare variation on gene expression across tissues.

    PubMed

    Li, Xin; Kim, Yungil; Tsang, Emily K; Davis, Joe R; Damani, Farhan N; Chiang, Colby; Hess, Gaelen T; Zappala, Zachary; Strober, Benjamin J; Scott, Alexandra J; Li, Amy; Ganna, Andrea; Bassik, Michael C; Merker, Jason D; Hall, Ira M; Battle, Alexis; Montgomery, Stephen B

    2017-10-11

    Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.

  2. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome.

    PubMed

    Yamamoto, Guilherme Lopes; Aguena, Meire; Gos, Monika; Hung, Christina; Pilch, Jacek; Fahiminiya, Somayyeh; Abramowicz, Anna; Cristian, Ingrid; Buscarilli, Michelle; Naslavsky, Michel Satya; Malaquias, Alexsandra C; Zatz, Mayana; Bodamer, Olaf; Majewski, Jacek; Jorge, Alexander A L; Pereira, Alexandre C; Kim, Chong Ae; Passos-Bueno, Maria Rita; Bertola, Débora Romeo

    2015-06-01

    Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits.

    PubMed

    Thomson, P A; Parla, J S; McRae, A F; Kramer, M; Ramakrishnan, K; Yao, J; Soares, D C; McCarthy, S; Morris, S W; Cardone, L; Cass, S; Ghiban, E; Hennah, W; Evans, K L; Rebolini, D; Millar, J K; Harris, S E; Starr, J M; MacIntyre, D J; McIntosh, A M; Watson, J D; Deary, I J; Visscher, P M; Blackwood, D H; McCombie, W R; Porteous, D J

    2014-06-01

    A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.

  4. Contribution of Rare Copy Number Variants to Isolated Human Malformations

    PubMed Central

    Serra-Juhé, Clara; Rodríguez-Santiago, Benjamín; Cuscó, Ivon; Vendrell, Teresa; Camats, Núria; Torán, Núria; Pérez-Jurado, Luis A.

    2012-01-01

    Background Congenital malformations are present in approximately 2–3% of liveborn babies and 20% of stillborn fetuses. The mechanisms underlying the majority of sporadic and isolated congenital malformations are poorly understood, although it is hypothesized that the accumulation of rare genetic, genomic and epigenetic variants converge to deregulate developmental networks. Methodology/Principal Findings We selected samples from 95 fetuses with congenital malformations not ascribed to a specific syndrome (68 with isolated malformations, 27 with multiple malformations). Karyotyping and Multiplex Ligation-dependent Probe Amplification (MLPA) discarded recurrent genomic and cytogenetic rearrangements. DNA extracted from the affected tissue (46%) or from lung or liver (54%) was analyzed by molecular karyotyping. Validations and inheritance were obtained by MLPA. We identified 22 rare copy number variants (CNV) [>100 kb, either absent (n = 7) or very uncommon (n = 15, <1/2,000) in the control population] in 20/95 fetuses with congenital malformations (21%), including 11 deletions and 11 duplications. One of the 9 tested rearrangements was de novo while the remaining were inherited from a healthy parent. The highest frequency was observed in fetuses with heart hypoplasia (8/17, 62.5%), with two events previously related with the phenotype. Double events hitting candidate genes were detected in two samples with brain malformations. Globally, the burden of deletions was significantly higher in fetuses with malformations compared to controls. Conclusions/Significance Our data reveal a significant contribution of rare deletion-type CNV, mostly inherited but also de novo, to human congenital malformations, especially heart hypoplasia, and reinforce the hypothesis of a multifactorial etiology in most cases. PMID:23056206

  5. A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans

    PubMed Central

    Timpson, Nicholas J.; Walter, Klaudia; Min, Josine L.; Tachmazidou, Ioanna; Malerba, Giovanni; Shin, So-Youn; Chen, Lu; Futema, Marta; Southam, Lorraine; Iotchkova, Valentina; Cocca, Massimiliano; Huang, Jie; Memari, Yasin; McCarthy, Shane; Danecek, Petr; Muddyman, Dawn; Mangino, Massimo; Menni, Cristina; Perry, John R. B.; Ring, Susan M.; Gaye, Amadou; Dedoussis, George; Farmaki, Aliki-Eleni; Burton, Paul; Talmud, Philippa J.; Gambaro, Giovanni; Spector, Tim D.; Smith, George Davey; Durbin, Richard; Richards, J Brent; Humphries, Steve E.; Zeggini, Eleftheria; Soranzo, Nicole; Al Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Soler Artigas, Maria; Ayub, Muhammad; Balasubramaniam, Senduran; Barrett, Jeffrey C.; Barroso, Inês; Beales, Phil; Bentham, Jamie; Bhattacharya, Shoumo; Birney, Ewan; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Bounds, Rebecca; Boustred, Chris; Breen, Gerome; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Ciampi, Antonio; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Danecek, Petr; Davey Smith, George; Day-Williams, Aaron; Day, Ian N. M.; Down, Thomas; Du, Yuanping; Dunham, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Faroogi, Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David R.; Flicek, Paul; Flyod, James; Foley, A Reghan; Franklin, Christopher S; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geihs, Matthias; Geschwind, Daniel; Greenwood, Celia; Griffin, Heather; Grozeva, Detelina; Guo, Xueqin; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Howie, Bryan; Huang, Jie; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro; Jackson, David K.; Jamshidi, Yalda; Jing, Tian; Joyce, Chris; Kaye, Jane; Keane, Thomas; Keogh, Julia; Kemp, John; Kennedy, Karen; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Liang, Jieqin; Lin, Hong; Li, Rui; Li, Yingrui; Liu, Ryan; Lönnqvist, Jouko; Lopes, Margarida; Lotchkova, Valentina; MacArthur, Daniel; Marchini, Jonathan; Maslen, John; Massimo, Mangino; Mathieson, Iain; Marenne, Gaëlle; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew G.; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Mitchison, Hannah; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donnovan, Michael; Onoufriadis, Alexandros; O'Rahilly, Stephen; Oualkacha, Karim; Owen, Michael J.; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quaye, Lydia; Quail, Michael A.; Raymond, Lucy; Rehnström, Karola; Richards, Brent; Ring, Susan; Ritchie, Graham R. S.; Roberts, Nicola; Savage, David B.; Scambler, Peter; Schiffels, Stephen; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shihab, Hasheem; Shin, So-Youn; Skuse, David; Small, Kerrin; Soranzo, Nicole; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Tim; St Clair, David; Stalker, Jim; Stevens, Elizabeth; St Pourcian, Beate; Sun, Jianping; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ionna; Timpson, Nicholas; Tobin, Martin D.; Valdes, Ana; Van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walter, Klaudia; Walters, James T. R.; Wang, Guangbiao; Wang, Jun; Wang, Yu; Ward, Kirsten; Wheeler, Elanor; Whyte, Tamieka; Williams, Hywel; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, ChangJiang; Yang, Jian; Zeggini, Eleftheria; Zhang, Fend; Zhang, Pingbo; Zheng, Hou-Feng

    2014-01-01

    The analysis of rich catalogues of genetic variation from population-based sequencing provides an opportunity to screen for functional effects. Here we report a rare variant in APOC3 (rs138326449-A, minor allele frequency ~0.25% (UK)) associated with plasma triglyceride (TG) levels (−1.43 s.d. (s.e.=0.27 per minor allele (P-value=8.0 × 10−8)) discovered in 3,202 individuals with low read-depth, whole-genome sequence. We replicate this in 12,831 participants from five additional samples of Northern and Southern European origin (−1.0 s.d. (s.e.=0.173), P-value=7.32 × 10−9). This is consistent with an effect between 0.5 and 1.5 mmol l−1 dependent on population. We show that a single predicted splice donor variant is responsible for association signals and is independent of known common variants. Analyses suggest an independent relationship between rs138326449 and high-density lipoprotein (HDL) levels. This represents one of the first examples of a rare, large effect variant identified from whole-genome sequencing at a population scale. PMID:25225788

  6. Evolutionary evidence of the effect of rare variants on disease etiology.

    PubMed

    Gorlov, I P; Gorlova, O Y; Frazier, M L; Spitz, M R; Amos, C I

    2011-03-01

    The common disease/common variant hypothesis has been popular for describing the genetic architecture of common human diseases for several years. According to the originally stated hypothesis, one or a few common genetic variants with a large effect size control the risk of common diseases. A growing body of evidence, however, suggests that rare single-nucleotide polymorphisms (SNPs), i.e. those with a minor allele frequency of less than 5%, are also an important component of the genetic architecture of common human diseases. In this study, we analyzed the relevance of rare SNPs to the risk of common diseases from an evolutionary perspective and found that rare SNPs are more likely than common SNPs to be functional and tend to have a stronger effect size than do common SNPs. This observation, and the fact that most of the SNPs in the human genome are rare, suggests that rare SNPs are a crucial element of the genetic architecture of common human diseases. We propose that the next generation of genomic studies should focus on analyzing rare SNPs. Further, targeting patients with a family history of the disease, an extreme phenotype, or early disease onset may facilitate the detection of risk-associated rare SNPs. © 2010 John Wiley & Sons A/S.

  7. Rare missense variants in CHRNB3 and CHRNA3 are associated with risk of alcohol and cocaine dependence.

    PubMed

    Haller, Gabe; Kapoor, Manav; Budde, John; Xuei, Xiaoling; Edenberg, Howard; Nurnberger, John; Kramer, John; Brooks, Andy; Tischfield, Jay; Almasy, Laura; Agrawal, Arpana; Bucholz, Kathleen; Rice, John; Saccone, Nancy; Bierut, Laura; Goate, Alison

    2014-02-01

    Previous findings have demonstrated that variants in nicotinic receptor genes are associated with nicotine, alcohol and cocaine dependence. Because of the substantial comorbidity, it has often been unclear whether a variant is associated with multiple substances or whether the association is actually with a single substance. To investigate the possible contribution of rare variants to the development of substance dependencies other than nicotine dependence, specifically alcohol and cocaine dependence, we undertook pooled sequencing of the coding regions and flanking sequence of CHRNA5, CHRNA3, CHRNB4, CHRNA6 and CHRNB3 in 287 African American and 1028 European American individuals from the Collaborative Study of the Genetics of Alcoholism (COGA). All members of families for whom any individual was sequenced (2504 African Americans and 7318 European Americans) were then genotyped for all variants identified by sequencing. For each gene, we then tested for association using FamSKAT. For European Americans, we find increased DSM-IV cocaine dependence symptoms (FamSKAT P = 2 × 10(-4)) and increased DSM-IV alcohol dependence symptoms (FamSKAT P = 5 × 10(-4)) among carriers of missense variants in CHRNB3. Additionally, one variant (rs149775276; H329Y) shows association with both cocaine dependence symptoms (P = 7.4 × 10(-5), β = 2.04) and alcohol dependence symptoms (P = 2.6 × 10(-4), β = 2.04). For African Americans, we find decreased cocaine dependence symptoms among carriers of missense variants in CHRNA3 (FamSKAT P = 0.005). Replication in an independent sample supports the role of rare variants in CHRNB3 and alcohol dependence (P = 0.006). These are the first results to implicate rare variants in CHRNB3 or CHRNA3 in risk for alcohol dependence or cocaine dependence.

  8. Rare missense variants in CHRNB3 and CHRNA3 are associated with risk of alcohol and cocaine dependence

    PubMed Central

    Haller, Gabe; Kapoor, Manav; Budde, John; Xuei, Xiaoling; Edenberg, Howard; Nurnberger, John; Kramer, John; Brooks, Andy; Tischfield, Jay; Almasy, Laura; Agrawal, Arpana; Bucholz, Kathleen; Rice, John; Saccone, Nancy; Bierut, Laura; Goate, Alison

    2014-01-01

    Previous findings have demonstrated that variants in nicotinic receptor genes are associated with nicotine, alcohol and cocaine dependence. Because of the substantial comorbidity, it has often been unclear whether a variant is associated with multiple substances or whether the association is actually with a single substance. To investigate the possible contribution of rare variants to the development of substance dependencies other than nicotine dependence, specifically alcohol and cocaine dependence, we undertook pooled sequencing of the coding regions and flanking sequence of CHRNA5, CHRNA3, CHRNB4, CHRNA6 and CHRNB3 in 287 African American and 1028 European American individuals from the Collaborative Study of the Genetics of Alcoholism (COGA). All members of families for whom any individual was sequenced (2504 African Americans and 7318 European Americans) were then genotyped for all variants identified by sequencing. For each gene, we then tested for association using FamSKAT. For European Americans, we find increased DSM-IV cocaine dependence symptoms (FamSKAT P = 2 × 10−4) and increased DSM-IV alcohol dependence symptoms (FamSKAT P = 5 × 10−4) among carriers of missense variants in CHRNB3. Additionally, one variant (rs149775276; H329Y) shows association with both cocaine dependence symptoms (P = 7.4 × 10−5, β = 2.04) and alcohol dependence symptoms (P = 2.6 × 10−4, β = 2.04). For African Americans, we find decreased cocaine dependence symptoms among carriers of missense variants in CHRNA3 (FamSKAT P = 0.005). Replication in an independent sample supports the role of rare variants in CHRNB3 and alcohol dependence (P = 0.006). These are the first results to implicate rare variants in CHRNB3 or CHRNA3 in risk for alcohol dependence or cocaine dependence. PMID:24057674

  9. Functional Characterization of Rare RAB12 Variants and Their Role in Musician's and Other Dystonias.

    PubMed

    Hebert, Eva; Borngräber, Friederike; Schmidt, Alexander; Rakovic, Aleksandar; Brænne, Ingrid; Weissbach, Anne; Hampf, Jennie; Vollstedt, Eva-Juliane; Größer, Leopold; Schaake, Susen; Müller, Michaela; Manzoor, Humera; Jabusch, Hans-Christian; Alvarez-Fischer, Daniel; Kasten, Meike; Kostic, Vladimir S; Gasser, Thomas; Zeuner, Kirsten E; Kim, Han-Joon; Jeon, Beomseok; Bauer, Peter; Altenmüller, Eckart; Klein, Christine; Lohmann, Katja

    2017-10-18

    Mutations in RAB (member of the Ras superfamily) genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician's dystonia (MD) and writer's dystonia (WD) are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val) in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson's disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1%) but only one carrier in non-dystonic individuals (0.1%; p = 0.005). The detected variants among index patients comprised p.Ile196Val ( n = 6); p.Ala174Thr ( n = 3); p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp) were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP), so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias.

  10. Frequency of Rare Alpha-1 Antitrypsin Variants in Polish Patients with Chronic Respiratory Disorders.

    PubMed

    Duk, K; Zdral, A; Szumna, B; Roży, A; Chorostowska-Wynimko, J

    2016-01-01

    The SERPINA1 gene encoding the alpha-1 antitrypsin (A1AT) protein is highly polymorphic. It is known that, apart from the most prevalent PI*S and PI*Z A1AT deficiency variants, other so-called rare variants also predispose individuals to severe chronic respiratory disorders such as emphysema and chronic obstructive pulmonary disease. Our aim was to assess the frequencies of common and rare SERPINA1 mutations in a group of 1033 Polish patients referred for A1AT deficiency diagnostics due to chronic respiratory disorders in the period of January 2014-September 2015. All blood samples were analyzed according to the routine diagnostic protocol, including A1AT serum concentration assessment by nephelometry and immune isoelectric focusing, followed by PCR genotyping and direct sequencing when necessary. A total of 890 out of the 1033 samples (86 %) carried the normal PI*MM genotype, whereas, in 143 samples (14 %), at least one A1AT deficiency variant was detected. In 132 subjects, PI*S (2.1 %) and PI*Z (10.8 %) common deficiency alleles were identified, yielding frequencies of 0.011 and 0.062, respectively. Rare SERPINA1 variants were detected in nine patients: PI*F (c.739C>T) (n = 5) and PI*I (c.187C>T) (n = 4). Samples from the patients with an A1AT serum concentration below 120 mg/dl and presenting a PI*MM-like phenotypic pattern were retrospectively analyzed by direct sequencing for rare SERPINA1 mutations, revealing a PI*M2Obernburg (c.514G>T) mutation in one patient and a non-pathogenic mutation (c.922G>T) in another. We conclude that the deficiency PI*Z A1AT allele is considerably more common in patients with chronic respiratory disorders than in the general Polish population. The prevalence of the PI*F allele seems higher than in other European studies.

  11. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors

    PubMed Central

    Bahl, Ethan; Hannah, Claire; Hofammann, Dabney; Acevedo, Summer; Cui, Huxing; McAdams, Carrie J.

    2017-01-01

    Objective Eating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown. Methods To understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating) to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating. Results An excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001) for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of ‘binge-like’ eating. Conclusions These findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating. PMID:28846695

  12. Sequencing ASMT identifies rare mutations in Chinese Han patients with autism.

    PubMed

    Wang, Lifang; Li, Jun; Ruan, Yanyan; Lu, Tianlan; Liu, Chenxing; Jia, Meixiang; Yue, Weihua; Liu, Jing; Bourgeron, Thomas; Zhang, Dai

    2013-01-01

    Melatonin is involved in the regulation of circadian and seasonal rhythms and immune function. Prior research reported low melatonin levels in autism spectrum disorders (ASD). ASMT located in pseudo-autosomal region 1 encodes the last enzyme of the melatonin biosynthesis pathway. A previous study reported an association between ASD and single nucleotide polymorphisms (SNPs) rs4446909 and rs5989681 located in the promoter of ASMT. Furthermore, rare deleterious mutations were identified in a subset of patients. To investigate the association between ASMT and autism, we sequenced all ASMT exons and its neighboring region in 398 Chinese Han individuals with autism and 437 healthy controls. Although our study did not detect significant differences of genotypic distribution and allele frequencies of the common SNPs in ASMT between patients with autism and healthy controls, we identified new rare coding mutations of ASMT. Among these rare variants, 4 were exclusively detected in patients with autism including a stop mutation (p.R115W, p.V166I, p.V179G, and p.W257X). These four coding variants were observed in 6 of 398 (1.51%) patients with autism and none in 437 controls (Chi-Square test, Continuity Correction p = 0.032, two-sided). Functional prediction of impact of amino acid showed that p.R115W might affect protein function. These results indicate that ASMT might be a susceptibility gene for autism. Further studies in larger samples are needed to better understand the degree of variation in this gene as well as to understand the biochemical and clinical impacts of ASMT/melatonin deficiency.

  13. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer

    PubMed Central

    Wang, Yufei; McKay, James D.; Rafnar, Thorunn; Wang, Zhaoming; Timofeeva, Maria; Broderick, Peter; Zong, Xuchen; Laplana, Marina; Wei, Yongyue; Han, Younghun; Lloyd, Amy; Delahaye-Sourdeix, Manon; Chubb, Daniel; Gaborieau, Valerie; Wheeler, William; Chatterjee, Nilanjan; Thorleifsson, Gudmar; Sulem, Patrick; Liu, Geoffrey; Kaaks, Rudolf; Henrion, Marc; Kinnersley, Ben; Vallée, Maxime; LeCalvez-Kelm, Florence; Stevens, Victoria L.; Gapstur, Susan M.; Chen, Wei V.; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Krokan, Hans E.; Gabrielsen, Maiken Elvestad; Skorpen, Frank; Vatten, Lars; Njølstad, Inger; Chen, Chu; Goodman, Gary; Benhamou, Simone; Vooder, Tonu; Valk, Kristjan; Nelis, Mari; Metspalu, Andres; Lener, Marcin; Lubiński, Jan; Johansson, Mattias; Vineis, Paolo; Agudo, Antonio; Clavel-Chapelon, Francoise; Bueno-de-Mesquita, H.Bas; Trichopoulos, Dimitrios; Khaw, Kay-Tee; Johansson, Mikael; Weiderpass, Elisabete; Tjønneland, Anne; Riboli, Elio; Lathrop, Mark; Scelo, Ghislaine; Albanes, Demetrius; Caporaso, Neil E.; Ye, Yuanqing; Gu, Jian; Wu, Xifeng; Spitz, Margaret R.; Dienemann, Hendrik; Rosenberger, Albert; Su, Li; Matakidou, Athena; Eisen, Timothy; Stefansson, Kari; Risch, Angela; Chanock, Stephen J.; Christiani, David C.; Hung, Rayjean J.; Brennan, Paul; Landi, Maria Teresa; Houlston, Richard S.; Amos, Christopher I.

    2014-01-01

    We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants of BRCA2-K3326X (rs11571833; odds ratio [OR]=2.47, P=4.74×10−20) and of CHEK2-I157T (rs17879961; OR=0.38 P=1.27×10−13). We also showed an association between common variation at 3q28 (TP63; rs13314271; OR=1.13, P=7.22×10−10) and lung adenocarcinoma previously only reported in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants having substantive effects on cancer risk from pre-existing GWAS data. PMID:24880342

  14. Identified OAS3 gene variants associated with coexistence of HBsAg and anti-HBs in chronic HBV infection.

    PubMed

    Wang, S; Wang, J; Fan, M-J; Li, T-Y; Pan, H; Wang, X; Liu, H-K; Lin, Q-F; Zhang, J-G; Guan, L-P; Zhernakova, D V; O'Brien, S J; Feng, Z-R; Chang, L; Dai, E-H; Lu, J-H; Xi, H-L; Zeng, Z; Yu, Y-Y; Wang, B-B

    2018-03-27

    The underlying mechanism of coexistence of hepatitis B surface antigen (HBsAg) and hepatitis B surface antigen antibody (anti-HBs) is still controversial. To identify the host genetic factors related to this unusual clinical phenomenon, a two-stage study was conducted in the Chinese Han population. In the first stage, we performed a case-control (1:1) age- and gender-matched study of 101 cases with concurrent HBsAg and anti-HBs and 102 controls with negative HBsAg and positive anti-HBs using whole exome sequencing. In the second validation stage, we directly sequence the 16 exons on the OAS3 gene in two dependent cohorts of 48 cases and 200 controls. Although, in the first stage, a genome-wide association study of 58,563 polymorphism variants in 101 cases and 102 controls found no significant loci (P-value ≤ .05/58563), and neither locus achieved a conservative genome-wide significance threshold (P-value ≤ 5e-08), gene-based burden analysis showed that OAS3 gene rare variants were associated with the coexistence of HBsAg and anti-HBs. (P-value = 4.127e-06 ≤ 0.05/6994). A total of 16 rare variants were screened out from 21 cases and 3 controls. In the second validation stage, one case with a stop-gained rare variant was identified. Fisher's exact test of all 149 cases and 302 controls showed that the rare coding sequence mutations were more frequent in cases vs controls (P-value = 7.299e-09, OR = 17.27, 95% CI [5.01-58.72]). Protein-coding rare variations on the OAS3 gene are associated with the coexistence of HBsAg and anti-HBs in patients with chronic HBV infection in Chinese Han population. © 2018 John Wiley & Sons Ltd.

  15. AB053. NRG1 rare variant effects in Hirschsprung disease patients

    PubMed Central

    Gunadi; Budi, Nova; Iskandar, Kristy; Adrianto, Indra

    2017-01-01

    Background Hirschsprung disease (HSCR) is a heterogeneous genetic disorder characterized by absence of ganglion cells along intestines resulting in functional bowel obstruction. NRG1 gene has been implicated in the intestinal ganglionosis. This study aimed to investigate the contribution of NRG1 gene into the HSCR development in Indonesian population. Methods We performed Sanger sequencing to find NRG1 variants in 54 HSCR patients. Results All patients were sporadic non-syndromic HSCR with 53/54 (98%) and 1/54 (2%) were short-segment and long-segment patients, respectively. NRG1 analysis showed one rare variant, c.397G > C (p.V133L), and three common variants, rs7834206, rs3735774, and rs75155858. The p.V133L was predicted to reside within in a region of high mammalian conservation, overlap with the promoter and enhancer histone marks of relevant tissues such as digestive and smooth muscle tissues and alter AP-4_2, BDP1_disc3, Egr-1_known1, Egr-1_known4, HEN1_2 transcription factor binding motifs. Furthermore, this variant was absent in 92 controls. Conclusions This study is the first report of NRG1 rare variant associated with HSCR patients in South-East Asian ancestry and adds insights into the NRG1 effect in the molecular pathogenesis of HSCR.

  16. Rare variants in axonogenesis genes connect three families with sound-color synesthesia.

    PubMed

    Tilot, Amanda K; Kucera, Katerina S; Vino, Arianna; Asher, Julian E; Baron-Cohen, Simon; Fisher, Simon E

    2018-03-20

    Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound-color (auditory-visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes- COL4A1 , ITGA2 , MYO10 , ROBO3 , SLC9A6 , and SLIT2 -associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences. Copyright © 2018 the Author(s). Published by PNAS.

  17. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    PubMed

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating

  18. Functional Characterization of Rare RAB12 Variants and Their Role in Musician’s and Other Dystonias

    PubMed Central

    Hebert, Eva; Borngräber, Friederike; Schmidt, Alexander; Rakovic, Aleksandar; Brænne, Ingrid; Weissbach, Anne; Hampf, Jennie; Vollstedt, Eva-Juliane; Größer, Leopold; Schaake, Susen; Müller, Michaela; Manzoor, Humera; Jabusch, Hans-Christian; Alvarez-Fischer, Daniel; Kasten, Meike; Kostic, Vladimir S.; Gasser, Thomas; Zeuner, Kirsten E.; Kim, Han-Joon; Jeon, Beomseok; Bauer, Peter; Altenmüller, Eckart; Klein, Christine; Lohmann, Katja

    2017-01-01

    Mutations in RAB (member of the Ras superfamily) genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician’s dystonia (MD) and writer’s dystonia (WD) are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val) in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson’s disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1%) but only one carrier in non-dystonic individuals (0.1%; p = 0.005). The detected variants among index patients comprised p.Ile196Val (n = 6); p.Ala174Thr (n = 3); p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp) were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP), so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias. PMID:29057844

  19. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

    PubMed

    Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C

    Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

  20. A rare functional cardioprotective APOC3 variant has risen in frequency in distinct population isolates

    PubMed Central

    Tachmazidou, Ioanna; Dedoussis, George; Southam, Lorraine; Farmaki, Aliki-Eleni; Ritchie, Graham R. S.; Xifara, Dionysia K.; Matchan, Angela; Hatzikotoulas, Konstantinos; Rayner, Nigel W.; Chen, Yuan; Pollin, Toni I.; O’Connell, Jeffrey R.; Yerges-Armstrong, Laura M.; Kiagiadaki, Chrysoula; Panoutsopoulou, Kalliope; Schwartzentruber, Jeremy; Moutsianas, Loukas; Tsafantakis, Emmanouil; Tyler-Smith, Chris; McVean, Gil; Xue, Yali; Zeggini, Eleftheria

    2013-01-01

    Isolated populations can empower the identification of rare variation associated with complex traits through next generation association studies, but the generalizability of such findings remains unknown. Here we genotype 1,267 individuals from a Greek population isolate on the Illumina HumanExome Beadchip, in search of functional coding variants associated with lipids traits. We find genome-wide significant evidence for association between R19X, a functional variant in APOC3, with increased high-density lipoprotein and decreased triglycerides levels. Approximately 3.8% of individuals are heterozygous for this cardioprotective variant, which was previously thought to be private to the Amish founder population. R19X is rare (<0.05% frequency) in outbred European populations. The increased frequency of R19X enables discovery of this lipid traits signal at genome-wide significance in a small sample size. This work exemplifies the value of isolated populations in successfully detecting transferable rare variant associations of high medical relevance. PMID:24343240

  1. A rare functional cardioprotective APOC3 variant has risen in frequency in distinct population isolates.

    PubMed

    Tachmazidou, Ioanna; Dedoussis, George; Southam, Lorraine; Farmaki, Aliki-Eleni; Ritchie, Graham R S; Xifara, Dionysia K; Matchan, Angela; Hatzikotoulas, Konstantinos; Rayner, Nigel W; Chen, Yuan; Pollin, Toni I; O'Connell, Jeffrey R; Yerges-Armstrong, Laura M; Kiagiadaki, Chrysoula; Panoutsopoulou, Kalliope; Schwartzentruber, Jeremy; Moutsianas, Loukas; Tsafantakis, Emmanouil; Tyler-Smith, Chris; McVean, Gil; Xue, Yali; Zeggini, Eleftheria

    2013-01-01

    Isolated populations can empower the identification of rare variation associated with complex traits through next generation association studies, but the generalizability of such findings remains unknown. Here we genotype 1,267 individuals from a Greek population isolate on the Illumina HumanExome Beadchip, in search of functional coding variants associated with lipids traits. We find genome-wide significant evidence for association between R19X, a functional variant in APOC3, with increased high-density lipoprotein and decreased triglycerides levels. Approximately 3.8% of individuals are heterozygous for this cardioprotective variant, which was previously thought to be private to the Amish founder population. R19X is rare (<0.05% frequency) in outbred European populations. The increased frequency of R19X enables discovery of this lipid traits signal at genome-wide significance in a small sample size. This work exemplifies the value of isolated populations in successfully detecting transferable rare variant associations of high medical relevance.

  2. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Cancer.gov

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  3. Rare Variants in the Gene ALPL That Cause Hypophosphatasia Are Strongly Associated With Ovarian and Uterine Disorders.

    PubMed

    Dahir, Kathryn M; Tilden, Daniel R; Warner, Jeremy L; Bastarache, Lisa; Smith, Derek K; Gifford, Aliya; Ramirez, Andrea H; Simmons, Jill S; Black, Margo M; Newman, John H; Denny, Josh C

    2018-06-01

    Mutations in alkaline phosphatase (AlkP), liver/bone/kidney (ALPL), which encodes tissue-nonspecific isozyme AlkP, cause hypophosphatasia (HPP). HPP is suspected by a low-serum AlkP. We hypothesized that some patients with bone or dental disease have undiagnosed HPP, caused by ALPL variants. Our objective was to discover the prevalence of these gene variants in the Vanderbilt University DNA Biobank (BioVU) and to assess phenotypic associations. We identified subjects in BioVU, a repository of DNA, that had at least one of three known, rare HPP disease-causing variants in ALPL: rs199669988, rs121918007, and/or rs121918002. To evaluate for phenotypic associations, we conducted a sequential phenome-wide association study of ALPL variants and then performed a de-identified manual record review to refine the phenotype. Out of 25,822 genotyped individuals, we identified 52 women and 53 men with HPP disease-causing variants in ALPL, 7/1000. None had a clinical diagnosis of HPP. For patients with ALPL variants, the average serum AlkP levels were in the lower range of normal or lower. Forty percent of men and 62% of women had documented bone and/or dental disease, compatible with the diagnosis of HPP. Forty percent of the female patients had ovarian pathology or other gynecological abnormalities compared with 15% seen in controls. Variants in the ALPL gene cause bone and dental disease in patients with and without the standard biomarker, low plasma AlkP. ALPL gene variants are more prevalent than currently reported and underdiagnosed. Gynecologic disease appears to be associated with HPP-causing variants in ALPL.

  4. Rare copy number variants in patients with congenital conotruncal heart defects.

    PubMed

    Xie, Hongbo M; Werner, Petra; Stambolian, Dwight; Bailey-Wilson, Joan E; Hakonarson, Hakon; White, Peter S; Taylor, Deanne M; Goldmuntz, Elizabeth

    2017-03-01

    Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Database for Parkinson Disease Mutations and Rare Variants

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-14-1-0097 TITLE: “ Database for Parkinson Disease Mutations and Rare Variants” PRINCIPAL INVESTIGATOR: JEFFERY M. VANCE...TO THE ABOVE ADDRESS. 1. REPORT DATE September 2016 2. REPORT TYPE FINAL 3. DATES COVERED 1 Jul 2014 – 30 Jun 2016 4. TITLE AND SUBTITLE Database ...For Parkinson Disease (PD) specifically, the variant databases currently available are incomplete, don’t assess impact and/or are not equipped to

  6. Comparison of statistical tests for association between rare variants and binary traits.

    PubMed

    Bacanu, Silviu-Alin; Nelson, Matthew R; Whittaker, John C

    2012-01-01

    Genome-wide association studies have found thousands of common genetic variants associated with a wide variety of diseases and other complex traits. However, a large portion of the predicted genetic contribution to many traits remains unknown. One plausible explanation is that some of the missing variation is due to the effects of rare variants. Nonetheless, the statistical analysis of rare variants is challenging. A commonly used method is to contrast, within the same region (gene), the frequency of minor alleles at rare variants between cases and controls. However, this strategy is most useful under the assumption that the tested variants have similar effects. We previously proposed a method that can accommodate heterogeneous effects in the analysis of quantitative traits. Here we extend this method to include binary traits that can accommodate covariates. We use simulations for a variety of causal and covariate impact scenarios to compare the performance of the proposed method to standard logistic regression, C-alpha, SKAT, and EREC. We found that i) logistic regression methods perform well when the heterogeneity of the effects is not extreme and ii) SKAT and EREC have good performance under all tested scenarios but they can be computationally intensive. Consequently, it would be more computationally desirable to use a two-step strategy by (i) selecting promising genes by faster methods and ii) analyzing selected genes using SKAT/EREC. To select promising genes one can use (1) regression methods when effect heterogeneity is assumed to be low and the covariates explain a non-negligible part of trait variability, (2) C-alpha when heterogeneity is assumed to be large and covariates explain a small fraction of trait's variability and (3) the proposed trend and heterogeneity test when the heterogeneity is assumed to be non-trivial and the covariates explain a large fraction of trait variability.

  7. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis.

    PubMed

    Gang, Qiang; Bettencourt, Conceição; Machado, Pedro M; Brady, Stefen; Holton, Janice L; Pittman, Alan M; Hughes, Deborah; Healy, Estelle; Parton, Matthew; Hilton-Jones, David; Shieh, Perry B; Needham, Merrilee; Liang, Christina; Zanoteli, Edmar; de Camargo, Leonardo Valente; De Paepe, Boel; De Bleecker, Jan; Shaibani, Aziz; Ripolone, Michela; Violano, Raffaella; Moggio, Maurizio; Barohn, Richard J; Dimachkie, Mazen M; Mora, Marina; Mantegazza, Renato; Zanotti, Simona; Singleton, Andrew B; Hanna, Michael G; Houlden, Henry

    2016-11-01

    Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Uncovering the Rare Variants of DLC1 Isoform 1 and Their Functional Effects in a Chinese Sporadic Congenital Heart Disease Cohort

    PubMed Central

    Wang, Zhen; Tan, Huilian; Kong, Xianghua; Shu, Yang; Zhang, Yuchao; Huang, Yun; Zhu, Yufei; Xu, Heng; Wang, Zhiqiang; Wang, Ping; Ning, Guang; Kong, Xiangyin; Hu, Guohong; Hu, Landian

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect affecting the structure and function of fetal hearts. Despite decades of extensive studies, the genetic mechanism of sporadic CHD remains obscure. Deleted in liver cancer 1 (DLC1) gene, encoding a GTPase-activating protein, is highly expressed in heart and essential for heart development according to the knowledge of Dlc1-deficient mice. To determine whether DLC1 is a susceptibility gene for sporadic CHD, we sequenced the coding region of DLC1 isoform 1 in 151 sporadic CHD patients and identified 13 non-synonymous rare variants (including 6 private variants) in the case cohort. Importantly, these rare variants (8/13) were enriched in the N-terminal region of the DLC1 isoform 1 protein. Seven of eight amino acids at the N-terminal variant positions were conserved among the primates. Among the 9 rare variants that were predicted as “damaging”, five were located at the N-terminal region. Ensuing in vitro functional assays showed that three private variants (Met360Lys, Glu418Lys and Asp554Val) impaired the ability of DLC1 to inhibit cell migration or altered the subcellular location of the protein compared to wild-type DLC1 isoform 1. These data suggest that DLC1 might act as a CHD-associated gene in addition to its role as a tumor suppressor in cancer. PMID:24587289

  9. Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

    PubMed Central

    van Leeuwen, Elisabeth M.; Karssen, Lennart C.; Deelen, Joris; Isaacs, Aaron; Medina-Gomez, Carolina; Mbarek, Hamdi; Kanterakis, Alexandros; Trompet, Stella; Postmus, Iris; Verweij, Niek; van Enckevort, David J.; Huffman, Jennifer E.; White, Charles C.; Feitosa, Mary F.; Bartz, Traci M.; Manichaikul, Ani; Joshi, Peter K.; Peloso, Gina M.; Deelen, Patrick; van Dijk, Freerk; Willemsen, Gonneke; de Geus, Eco J.; Milaneschi, Yuri; Penninx, Brenda W.J.H.; Francioli, Laurent C.; Menelaou, Androniki; Pulit, Sara L.; Rivadeneira, Fernando; Hofman, Albert; Oostra, Ben A.; Franco, Oscar H.; Leach, Irene Mateo; Beekman, Marian; de Craen, Anton J.M.; Uh, Hae-Won; Trochet, Holly; Hocking, Lynne J.; Porteous, David J.; Sattar, Naveed; Packard, Chris J.; Buckley, Brendan M.; Brody, Jennifer A.; Bis, Joshua C.; Rotter, Jerome I.; Mychaleckyj, Josyf C.; Campbell, Harry; Duan, Qing; Lange, Leslie A.; Wilson, James F.; Hayward, Caroline; Polasek, Ozren; Vitart, Veronique; Rudan, Igor; Wright, Alan F.; Rich, Stephen S.; Psaty, Bruce M.; Borecki, Ingrid B.; Kearney, Patricia M.; Stott, David J.; Adrienne Cupples, L.; Neerincx, Pieter B.T.; Elbers, Clara C.; Francesco Palamara, Pier; Pe'er, Itsik; Abdellaoui, Abdel; Kloosterman, Wigard P.; van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F.J.; Stoneking, Mark; de Knijff, Peter; Kayser, Manfred; Veldink, Jan H.; van den Berg, Leonard H.; Byelas, Heorhiy; den Dunnen, Johan T.; Dijkstra, Martijn; Amin, Najaf; Joeri van der Velde, K.; van Setten, Jessica; Kattenberg, Mathijs; van Schaik, Barbera D.C.; Bot, Jan; Nijman, Isaäc J.; Mei, Hailiang; Koval, Vyacheslav; Ye, Kai; Lameijer, Eric-Wubbo; Moed, Matthijs H.; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Sunyaev, Shamil R.; Sohail, Mashaal; Hormozdiari, Fereydoun; Marschall, Tobias; Schönhuth, Alexander; Guryev, Victor; Suchiman, H. Eka D.; Wolffenbuttel, Bruce H.; Platteel, Mathieu; Pitts, Steven J.; Potluri, Shobha; Cox, David R.; Li, Qibin; Li, Yingrui; Du, Yuanping; Chen, Ruoyan; Cao, Hongzhi; Li, Ning; Cao, Sujie; Wang, Jun; Bovenberg, Jasper A.; Jukema, J. Wouter; van der Harst, Pim; Sijbrands, Eric J.; Hottenga, Jouke-Jan; Uitterlinden, Andre G.; Swertz, Morris A.; van Ommen, Gert-Jan B.; de Bakker, Paul I.W.; Eline Slagboom, P.; Boomsma, Dorret I.; Wijmenga, Cisca; van Duijn, Cornelia M.

    2015-01-01

    Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10−4), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR. PMID:25751400

  10. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly

    PubMed Central

    Cullup, T.; Boustred, C.; James, C.; Docker, J.; English, C.; Lench, N.; Copp, A.J.; Moore, G.E.; Greene, N.D.E.; Stanier, P.

    2018-01-01

    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in‐house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop‐gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly. PMID:29205322

  11. The role of functionally defective rare germline variants of sialic acid acetylesterase in autoimmune Addison's disease

    PubMed Central

    Gan, Earn H; MacArthur, Katie; Mitchell, Anna L; Pearce, Simon H S

    2012-01-01

    Background Autoimmune Addison's disease (AAD) is a rare condition with a complex genetic basis. A panel of rare and functionally defective genetic variants in the sialic acid acetylesterase (SIAE) gene has recently been implicated in several common autoimmune conditions. We performed a case–control study to determine whether these rare variants are associated with a rarer condition, AAD. Method We analysed nine SIAE gene variants (W48X, M89V, C196F, C226G, R230W, T312M, Y349C, F404S and R479C) in a United Kingdom cohort of 378 AAD subjects and 387 healthy controls. All samples were genotyped using Sequenom iPlex chemistry to characterise primer extension products. Results A heterozygous rare allele at codon 312 (312*M) was found in one AAD patient (0.13%) but was not detected in the healthy controls. The commoner, functionally recessive variant at codon 89 (89*V) was found to be homozygous in two AAD patients but was only found in the heterozygous state in controls. Taking into account all nine alleles examined, 4/378 (1.06%) AAD patients and 1/387 (0.25%) healthy controls carried the defective SIAE alleles, with a calculated odds ratio of 4.13 (95% CI 0.44–97.45, two-tailed P value 0.212, NS). Conclusion We demonstrated the presence of 89*V homozygotes and the 312*M rare allele in the AAD cohort, but overall, our analysis does not support a role for rare variants in SIAE in the pathogenesis of AAD. However, the relatively small collection of AAD patients limits the power to exclude a small effect. PMID:23011869

  12. Allele frequencies of variants in ultra conserved elements identify selective pressure on transcription factor binding.

    PubMed

    Silla, Toomas; Kepp, Katrin; Tai, E Shyong; Goh, Liang; Davila, Sonia; Catela Ivkovic, Tina; Calin, George A; Voorhoeve, P Mathijs

    2014-01-01

    Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF<0.5%) of which 75% is not present in dbSNP137. UCEs association studies for complex human traits can use this information to model expected background variation and thus necessary power for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.

  13. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants contributing to lipid levels and coronary artery disease

    PubMed Central

    Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J.; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N.; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H.-H.; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B.; Adair, Linda S.; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; da Chen, Yii-Der I; Shu, XiaoOu; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K.; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars; Nielsen, Jonas Bille; Tse, Hung-fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y. Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Consortium, GLGC; Kathiresan, Sekar; Mohlke, Karen L.; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J

    2017-01-01

    Most genome-wide association studies have been conducted in European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with > 300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population-specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci. PMID:29083407

  14. Investigation of rare and low-frequency variants using high-throughput sequencing with pooled DNA samples

    PubMed Central

    Wang, Jingwen; Skoog, Tiina; Einarsdottir, Elisabet; Kaartokallio, Tea; Laivuori, Hannele; Grauers, Anna; Gerdhem, Paul; Hytönen, Marjo; Lohi, Hannes; Kere, Juha; Jiao, Hong

    2016-01-01

    High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies. PMID:27633116

  15. Identifying Causal Variants at Loci with Multiple Signals of Association

    PubMed Central

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-01-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515

  16. Identifying causal variants at loci with multiple signals of association.

    PubMed

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-10-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.

  17. Identification of a rare variant haemoglobin (Hb Sinai-Baltimore) causing spuriously low haemoglobin A(1c) values on ion exchange chromatography.

    PubMed

    Smith, Geoff; Murray, Heather; Brennan, Stephen O

    2013-01-01

    Commonly used methods for assay of haemoglobin A(1c) (HbA(1c)) are susceptible to interference from the presence of haemoglobin variants. In many systems, the common variants can be identified but scientists and pathologists must remain vigilant for more subtle variants that may result in spuriously high or low HbA(1c) values. It is clearly important to recognize these events whether HbA(1c) is being used as a monitoring tool or, as is increasingly the case, for diagnostic purposes. We report a patient with a rare haemoglobin variant (Hb Sinai-Baltimore) that resulted in spuriously low values of HbA(1c) when assayed using ion exchange chromatography, and the steps taken to elucidate the nature of the variant.

  18. Follicular Dowling Degos disease: a rare variant of an evolving dermatosis.

    PubMed

    Singh, Saurabh; Khandpur, Sujay; Verma, Parul; Singh, Manoj

    2013-01-01

    Dowling Degos disease is a rare, reticulate pigmentary disorder with variable phenotypic expression that manifests as hyperpigmented macules and reticulate pigmentary anomaly of the flexures. Many variants of this condition and its overlap with other reticulate pigmentary disorders have been reported in the literature. We present here two cases of DDD with follicular localization, both clinically and histologically. It was associated with ichthyosis vulgaris in one case. Follicular DDD is an uncommon variant of this evolving dermatosis. Our report supports the possible role for disordered follicular keratinisation in its pathogenesis.

  19. Regression and Data Mining Methods for Analyses of Multiple Rare Variants in the Genetic Analysis Workshop 17 Mini-Exome Data

    PubMed Central

    Bailey-Wilson, Joan E.; Brennan, Jennifer S.; Bull, Shelley B; Culverhouse, Robert; Kim, Yoonhee; Jiang, Yuan; Jung, Jeesun; Li, Qing; Lamina, Claudia; Liu, Ying; Mägi, Reedik; Niu, Yue S.; Simpson, Claire L.; Wang, Libo; Yilmaz, Yildiz E.; Zhang, Heping; Zhang, Zhaogong

    2012-01-01

    Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large numbers of potential predictors. PMID:22128066

  20. Screening of whole genome sequences identified high-impact variants for stallion fertility.

    PubMed

    Schrimpf, Rahel; Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-04-14

    Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant

  1. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification

    PubMed Central

    Wu, Lucia R.; Chen, Sherry X.; Wu, Yalei; Patel, Abhijit A.; Zhang, David Yu

    2018-01-01

    Rare DNA-sequence variants hold important clinical and biological information, but existing detection techniques are expensive, complex, allele-specific, or don’t allow for significant multiplexing. Here, we report a temperature-robust polymerase-chain-reaction method, which we term blocker displacement amplification (BDA), that selectively amplifies all sequence variants, including single-nucleotide variants (SNVs), within a roughly 20-nucleotide window by 1,000-fold over wild-type sequences. This allows for easy detection and quantitation of hundreds of potential variants originally at ≤0.1% in allele frequency. BDA is compatible with inexpensive thermocycler instrumentation and employs a rationally designed competitive hybridization reaction to achieve comparable enrichment performance across annealing temperatures ranging from 56 °C to 64 °C. To show the sequence generality of BDA, we demonstrate enrichment of 156 SNVs and the reliable detection of single-digit copies. We also show that the BDA detection of rare driver mutations in cell-free DNA samples extracted from the blood plasma of lung-cancer patients is highly consistent with deep sequencing using molecular lineage tags, with a receiver operator characteristic accuracy of 95%. PMID:29805844

  2. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease.

    PubMed

    Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-Man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H-H; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B; Adair, Linda S; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; Chen, Yii-Der Ida; Shu, Xiao-Ou; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars G; Nielsen, Jonas Bille; Tse, Hung-Fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Kathiresan, Sekar; Mohlke, Karen L; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J

    2017-12-01

    Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci.

  3. Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association

    PubMed Central

    Grinde, Kelsey E.; Arbet, Jaron; Green, Alden; O'Connell, Michael; Valcarcel, Alessandra; Westra, Jason; Tintle, Nathan

    2017-01-01

    To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s) in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as “winner's curse.” We illustrate the ramifications of this bias on variant effect size estimation and variant prioritization/ranking approaches, outline parameters of genetic architecture that affect this bias, and propose a bootstrap resampling method to correct for this bias. We find that our correction method significantly reduces the bias due to winner's curse (average two-fold decrease in bias, p < 2.2 × 10−6) and, consequently, substantially improves mean squared error and variant prioritization/ranking. The method is particularly helpful in adjustment for winner's curse effects when the initial gene-based test has low power and for relatively more common, non-causal variants. Adjustment for winner's curse is recommended for all post-hoc estimation and ranking of variants after a gene-based test. Further work is necessary to continue seeking ways to reduce bias and improve inference in post-hoc analysis of gene-based tests under a wide variety of genetic architectures. PMID:28959274

  4. Rare copy number variants in a population-based investigation of hypoplastic right heart syndrome.

    PubMed

    Dimopoulos, Aggeliki; Sicko, Robert J; Kay, Denise M; Rigler, Shannon L; Druschel, Charlotte M; Caggana, Michele; Browne, Marilyn L; Fan, Ruzong; Romitti, Paul A; Brody, Lawrence C; Mills, James L

    2017-01-20

    Hypoplastic right heart syndrome (HRHS) is a rare congenital defect characterized by underdevelopment of the right heart structures commonly accompanied by an atrial septal defect. Familial HRHS reports suggest genetic factor involvement. We examined the role of copy number variants (CNVs) in HRHS. We genotyped 32 HRHS cases identified from all New York State live births (1998-2005) using Illumina HumanOmni2.5 microarrays. CNVs were called with PennCNV and prioritized if they were ≥20 Kb, contained ≥10 SNPs and had minimal overlap with CNVs from in-house controls, the Database of Genomic Variants, HapMap3, and Childrens Hospital of Philadelphia database. We identified 28 CNVs in 17 cases; several encompassed genes important for right heart development. One case had a 2p16-2p23 duplication spanning LBH, a limb and heart development transcription factor. Lbh mis-expression results in right ventricular hypoplasia and pulmonary valve defects. This duplication also encompassed SOS1, a factor associated with pulmonary valve stenosis in Noonan syndrome. Sos1 -/- mice display thin and poorly trabeculated ventricles. In another case, we identified a 1.5 Mb deletion associated with Williams-Beuren syndrome, a disorder that includes valvular malformations. A third case had a 24 Kb deletion upstream of the TGFβ ligand ITGB8. Embryos genetically null for Itgb8, and its intracellular interactant Band 4.1B, display lethal cardiac phenotypes. To our knowledge, this is the first study of CNVs in HRHS. We identified several rare CNVs that overlap genes related to right ventricular wall and valve development, suggesting that genetics plays a role in HRHS and providing clues for further investigation. Birth Defects Research 109:16-26, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Rare Copy Number Variants in a Population Based Investigation of Hypoplastic Right Heart Syndrome

    PubMed Central

    Dimopoulos, Aggeliki; Sicko, Robert J.; Kay, Denise M.; Rigler, Shannon L.; Druschel, Charlotte M.; Caggana, Michele; Browne, Marilyn L.; Fan, Ruzong; Romitti, Paul A.; Brody, Lawrence C.; Mills, James L.

    2016-01-01

    Background Hypoplastic right heart syndrome (HRHS) is a rare congenital defect characterized by underdevelopment of the right heart structures commonly accompanied by an atrial septal defect. Familial HRHS reports suggest genetic factor involvement. We examined the role of copy number variants (CNVs) in HRHS. Methods We genotyped 32 HRHS cases identified from all New York State live births (1998–2005) using Illumina HumanOmni2.5 microarrays. CNVs were called with PennCNV and prioritized if they were ≥20Kb, contained ≥10 SNPs and had minimal overlap with CNVs from in-house controls, the Database of Genomic Variants, HapMap3 and CHOP database. Results We identified 28 CNVs in 17 cases; several encompassed genes important for right heart development. One case had a 2p16–2p23 duplication spanning LBH, a limb and heart development transcription factor. Lbh mis-expression results in right ventricular hypoplasia and pulmonary valve defects. This duplication also encompassed SOS1, a factor associated with pulmonary valve stenosis in Noonan syndrome. Sos1−/− mice display thin and poorly trabeculated ventricles. In another case, we identified a 1.5Mb deletion associated with Williams Beuren syndrome, a disorder that includes valvular malformations. A third case had a 24Kb deletion upstream of the TGFβ ligand ITGB8. Embryos genetically null for Itgb8, and its intracellular interactant Band 4.1B, display lethal cardiac phenotypes. Conclusions To our knowledge, this is the first study of CNVs in HRHS. We identified several rare CNVs that overlap genes related to right ventricular wall and valve development, suggesting that genetics plays a role in HRHS and providing clues for further investigation. PMID:28009100

  6. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly.

    PubMed

    Ishida, M; Cullup, T; Boustred, C; James, C; Docker, J; English, C; Lench, N; Copp, A J; Moore, G E; Greene, N D E; Stanier, P

    2018-04-01

    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in-house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop-gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis.

    PubMed

    Dinckan, N; Du, R; Petty, L E; Coban-Akdemir, Z; Jhangiani, S N; Paine, I; Baugh, E H; Erdem, A P; Kayserili, H; Doddapaneni, H; Hu, J; Muzny, D M; Boerwinkle, E; Gibbs, R A; Lupski, J R; Uyguner, Z O; Below, J E; Letra, A

    2018-01-01

    Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.

  8. RARE VARIANTS IN THE NEUROTROPHIN SIGNALING PATHWAY IMPLICATED IN SCHIZOPHRENIA RISK

    PubMed Central

    Kranz, Thorsten M.; Goetz, Ray R.; Walsh-Messinger, Julie; Goetz, Deborah; Antonius, Daniel; Dolgalev, Igor; Heguy, Adriana; Seandel, Marco; Malaspina, Dolores; Chao, Moses V.

    2015-01-01

    Multiple lines of evidence corroborate impaired signaling pathways as relevant to the underpinnings of schizophrenia. There has been an interest in neurotrophins, since they are crucial mediators of neurodevelopment and in synaptic connectivity in the adult brain. Neurotrophins and their receptors demonstrate aberrant expression patterns in cortical areas for schizophrenia cases in comparison to control subjects. There is little known about the contribution of neurotrophin genes in psychiatric disorders. To begin to address this issue, we conducted high-coverage targeted exome capture in a subset of neurotrophin genes in 48 comprehensively characterized cases with schizophrenia-related psychosis. We herein report rare missense polymorphisms and novel missense mutations in neurotrophin receptor signaling pathway genes. Furthermore, we observed that several genes have a higher propensity to harbor missense coding variants than others. Based on this initial analysis we suggest that rare variants and missense mutations in neurotrophin genes might represent genetic contributions involved across psychiatric disorders. PMID:26215504

  9. Rare variants in the neurotrophin signaling pathway implicated in schizophrenia risk.

    PubMed

    Kranz, Thorsten M; Goetz, Ray R; Walsh-Messinger, Julie; Goetz, Deborah; Antonius, Daniel; Dolgalev, Igor; Heguy, Adriana; Seandel, Marco; Malaspina, Dolores; Chao, Moses V

    2015-10-01

    Multiple lines of evidence corroborate impaired signaling pathways as relevant to the underpinnings of schizophrenia. There has been an interest in neurotrophins, since they are crucial mediators of neurodevelopment and in synaptic connectivity in the adult brain. Neurotrophins and their receptors demonstrate aberrant expression patterns in cortical areas for schizophrenia cases in comparison to control subjects. There is little known about the contribution of neurotrophin genes in psychiatric disorders. To begin to address this issue, we conducted high-coverage targeted exome capture in a subset of neurotrophin genes in 48 comprehensively characterized cases with schizophrenia-related psychosis. We herein report rare missense polymorphisms and novel missense mutations in neurotrophin receptor signaling pathway genes. Furthermore, we observed that several genes have a higher propensity to harbor missense coding variants than others. Based on this initial analysis we suggest that rare variants and missense mutations in neurotrophin genes might represent genetic contributions involved across psychiatric disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Exome Array Analysis Identifies a Common Variant in IL27 Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Parker, Margaret M.; Chen, Han; Lao, Taotao; Hardin, Megan; Qiao, Dandi; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Yim, Jae-Joon; Kim, Woo Jin; Kim, Deog Kyeom; Castaldi, Peter J.; Hersh, Craig P.; Morrow, Jarrett; Celli, Bartolome R.; Pinto-Plata, Victor M.; Criner, Gerald J.; Marchetti, Nathaniel; Bueno, Raphael; Agustí, Alvar; Make, Barry J.; Crapo, James D.; Calverley, Peter M.; Donner, Claudio F.; Lomas, David A.; Wouters, Emiel F. M.; Vestbo, Jorgen; Paré, Peter D.; Levy, Robert D.; Rennard, Stephen I.; Zhou, Xiaobo; Laird, Nan M.; Lin, Xihong; Beaty, Terri H.; Silverman, Edwin K.

    2016-01-01

    Rationale: Chronic obstructive pulmonary disease (COPD) susceptibility is in part related to genetic variants. Most genetic studies have been focused on genome-wide common variants without a specific focus on coding variants, but common and rare coding variants may also affect COPD susceptibility. Objectives: To identify coding variants associated with COPD. Methods: We tested nonsynonymous, splice, and stop variants derived from the Illumina HumanExome array for association with COPD in five study populations enriched for COPD. We evaluated single variants with a minor allele frequency greater than 0.5% using logistic regression. Results were combined using a fixed effects meta-analysis. We replicated novel single-variant associations in three additional COPD cohorts. Measurements and Main Results: We included 6,004 control subjects and 6,161 COPD cases across five cohorts for analysis. Our top result was rs16969968 (P = 1.7 × 10−14) in CHRNA5, a locus previously associated with COPD susceptibility and nicotine dependence. Additional top results were found in AGER, MMP3, and SERPINA1. A nonsynonymous variant, rs181206, in IL27 (P = 4.7 × 10−6) was just below the level of exome-wide significance but attained exome-wide significance (P = 5.7 × 10−8) when combined with results from other cohorts. Gene expression datasets revealed an association of rs181206 and the surrounding locus with expression of multiple genes; several were differentially expressed in COPD lung tissue, including TUFM. Conclusions: In an exome array analysis of COPD, we identified nonsynonymous variants at previously described loci and a novel exome-wide significant variant in IL27. This variant is at a locus previously described in genome-wide associations with diabetes, inflammatory bowel disease, and obesity and appears to affect genes potentially related to COPD pathogenesis. PMID:26771213

  11. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia.

    PubMed

    Teng, S; Thomson, P A; McCarthy, S; Kramer, M; Muller, S; Lihm, J; Morris, S; Soares, D C; Hennah, W; Harris, S; Camargo, L M; Malkov, V; McIntosh, A M; Millar, J K; Blackwood, D H; Evans, K L; Deary, I J; Porteous, D J; McCombie, W R

    2018-05-01

    Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWER across ), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWER across P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWER across P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.

  12. Rapid Detection of Rare Deleterious Variants by Next Generation Sequencing with Optional Microarray SNP Genotype Data

    PubMed Central

    Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.

    2015-01-01

    ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133

  13. IRX3 Promotes the Browning of White Adipocytes and Its Rare Variants are Associated with Human Obesity Risk.

    PubMed

    Zou, Yaoyu; Lu, Peng; Shi, Juan; Liu, Wen; Yang, Minglan; Zhao, Shaoqian; Chen, Na; Chen, Maopei; Sun, Yingkai; Gao, Aibo; Chen, Qingbo; Zhang, Zhiguo; Ma, Qinyun; Ning, Tinglu; Ying, Xiayang; Jin, Jiabin; Deng, Xiaxing; Shen, Baiyong; Zhang, Yifei; Yuan, Bo; Kauderer, Sophie; Liu, Simin; Hong, Jie; Liu, Ruixin; Ning, Guang; Wang, Weiqing; Gu, Weiqiong; Wang, Jiqiu

    2017-10-01

    IRX3 was recently reported as the effector of the FTO variants. We aimed to test IRX3's roles in the browning program and to evaluate the association between the genetic variants in IRX3 and human obesity. IRX3 expression was examined in beige adipocytes in human and mouse models, and further validated in induced beige adipocytes. The browning capacity of primary preadipocytes was assessed with IRX3 knockdown. Luciferase reporter analysis and ChIP assay were applied to investigate IRX3's effects on UCP1 transcriptional activity. Moreover, genetic analysis of IRX3 was performed in 861 young obese subjects and 916 controls. IRX3 expression was induced in the browning process and was positively correlated with the browning markers. IRX3 knockdown remarkably inhibited UCP1 expression in induced mouse and human beige adipocytes, and also repressed the uncoupled oxygen consumption rate. Further, IRX3 directly bound to UCP1 promoter and increased its transcriptional activity. Moreover, 17 rare heterozygous missense/frameshift IRX3 variants were identified, with a significant enrichment in obese subjects (P=0.038, OR=2.27; 95% CI, 1.02-5.05). IRX3 deficiency repressed the browning program of white adipocytes partially by regulating UCP1 transcriptional activity. Rare variants of IRX3 were associated with human obesity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Rare Variant of GM2 Gangliosidosis through Activator-Protein Deficiency.

    PubMed

    Brackmann, Florian; Kehrer, Christiane; Kustermann, Wibke; Böhringer, Judith; Krägeloh-Mann, Ingeborg; Trollmann, Regina

    2017-04-01

    GM2 gangliosidosis, AB variant, is a very rare form of GM2 gangliosidosis due to a deficiency of GM2 activator protein. We report on two patients with typical clinical features suggestive of GM2 gangliosidosis, but normal results for hexosaminidase A and hexosaminidase B as well as their corresponding genes. Genetic analysis of the gene encoding the activator protein, the GM2A gene, elucidated the cause of the disease, adding a novel mutation to the spectrum of GM2 AB variant. This report points out that in typical clinical constellations with normal enzyme results, genetic diagnostic for activator protein defects should be performed. Georg Thieme Verlag KG Stuttgart · New York.

  15. Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis.

    PubMed

    Beyer, Ulrike; Brand, Frank; Martens, Helge; Weder, Julia; Christians, Arne; Elyan, Natalie; Hentschel, Bettina; Westphal, Manfred; Schackert, Gabriele; Pietsch, Torsten; Hong, Bujung; Krauss, Joachim K; Samii, Amir; Raab, Peter; Das, Anibh; Dumitru, Claudia A; Sandalcioglu, I Erol; Hakenberg, Oliver W; Erbersdobler, Andreas; Lehmann, Ulrich; Reifenberger, Guido; Weller, Michael; Reijns, Martin A M; Preller, Matthias; Wiese, Bettina; Hartmann, Christian; Weber, Ruthild G

    2017-12-01

    In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.

  16. Y-type urethral duplication: an unusual variant of a rare anomaly.

    PubMed

    Kumaravel, S; Senthilnathan, R; Sankkarabarathi, C; Bagdi, R K; Soundararajan, S; Prasad, N

    2004-12-01

    Urethral duplications are rare anomalies. We present a 3-year-old continent boy passing urine since birth per anus while voiding from penis. Micturating cystourethrogram, retrograde urethrogram and cystoscopy revealed a Y connection between the posterior urethra and anal canal. The accessory channel was excised by a perineal approach. Histopathology revealed that the tract was lined by transitional epithelium, proving that it was indeed a case of urethral duplication; hence, we suggest that all urethroanal fistulas are not variants of anorectal malformations. Certain of these fistulas should be considered as variants of Y-type urethral duplication even if the orthotopic urethra is normal.

  17. Gene-based rare allele analysis identified a risk gene of Alzheimer's disease.

    PubMed

    Kim, Jong Hun; Song, Pamela; Lim, Hyunsun; Lee, Jae-Hyung; Lee, Jun Hong; Park, Sun Ah

    2014-01-01

    Alzheimer's disease (AD) has a strong propensity to run in families. However, the known risk genes excluding APOE are not clinically useful. In various complex diseases, gene studies have targeted rare alleles for unsolved heritability. Our study aims to elucidate previously unknown risk genes for AD by targeting rare alleles. We used data from five publicly available genetic studies from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the database of Genotypes and Phenotypes (dbGaP). A total of 4,171 cases and 9,358 controls were included. The genotype information of rare alleles was imputed using 1,000 genomes. We performed gene-based analysis of rare alleles (minor allele frequency≤3%). The genome-wide significance level was defined as meta P<1.8×10(-6) (0.05/number of genes in human genome = 0.05/28,517). ZNF628, which is located at chromosome 19q13.42, showed a genome-wide significant association with AD. The association of ZNF628 with AD was not dependent on APOE ε4. APOE and TREM2 were also significantly associated with AD, although not at genome-wide significance levels. Other genes identified by targeting common alleles could not be replicated in our gene-based rare allele analysis. We identified that rare variants in ZNF628 are associated with AD. The protein encoded by ZNF628 is known as a transcription factor. Furthermore, the associations of APOE and TREM2 with AD were highly significant, even in gene-based rare allele analysis, which implies that further deep sequencing of these genes is required in AD heritability studies.

  18. Targeted Deep Resequencing Identifies Coding Variants in the PEAR1 Gene That Play a Role in Platelet Aggregation

    PubMed Central

    Kim, Yoonhee; Suktitipat, Bhoom; Yanek, Lisa R.; Faraday, Nauder; Wilson, Alexander F.; Becker, Diane M.; Becker, Lewis C.; Mathias, Rasika A.

    2013-01-01

    Platelet aggregation is heritable, and genome-wide association studies have detected strong associations with a common intronic variant of the platelet endothelial aggregation receptor1 (PEAR1) gene both in African American and European American individuals. In this study, we used a sequencing approach to identify additional exonic variants in PEAR1 that may also determine variability in platelet aggregation in the GeneSTAR Study. A 0.3 Mb targeted region on chromosome 1q23.1 including the entire PEAR1 gene was Sanger sequenced in 104 subjects (45% male, 49% African American, age = 52±13) selected on the basis of hyper- and hypo- aggregation across three different agonists (collagen, epinephrine, and adenosine diphosphate). Single-variant and multi-variant burden tests for association were performed. Of the 235 variants identified through sequencing, 61 were novel, and three of these were missense variants. More rare variants (MAF<5%) were noted in African Americans compared to European Americans (108 vs. 45). The common intronic GWAS-identified variant (rs12041331) demonstrated the most significant association signal in African Americans (p = 4.020×10−4); no association was seen for additional exonic variants in this group. In contrast, multi-variant burden tests indicated that exonic variants play a more significant role in European Americans (p = 0.0099 for the collective coding variants compared to p = 0.0565 for intronic variant rs12041331). Imputation of the individual exonic variants in the rest of the GeneSTAR European American cohort (N = 1,965) supports the results noted in the sequenced discovery sample: p = 3.56×10−4, 2.27×10−7, 5.20×10−5 for coding synonymous variant rs56260937 and collagen, epinephrine and adenosine diphosphate induced platelet aggregation, respectively. Sequencing approaches confirm that a common intronic variant has the strongest association with platelet aggregation in African Americans, and

  19. Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.

    PubMed

    Cornes, Belinda K; Brody, Jennifer A; Nikpoor, Naghmeh; Morrison, Alanna C; Chu, Huan; Ahn, Byung Soo; Wang, Shuai; Dauriz, Marco; Barzilay, Joshua I; Dupuis, Josée; Florez, Jose C; Coresh, Josef; Gibbs, Richard A; Kao, W H Linda; Liu, Ching-Ti; McKnight, Barbara; Muzny, Donna; Pankow, James S; Reid, Jeffrey G; White, Charles C; Johnson, Andrew D; Wong, Tien Y; Psaty, Bruce M; Boerwinkle, Eric; Rotter, Jerome I; Siscovick, David S; Sladek, Robert; Meigs, James B

    2014-06-01

    Common variation at the 11p11.2 locus, encompassing MADD, ACP2, NR1H3, MYBPC3, and SPI1, has been associated in genome-wide association studies with fasting glucose and insulin (FI). In the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study, we sequenced 5 gene regions at 11p11.2 to identify rare, potentially functional variants influencing fasting glucose or FI levels. Sequencing (mean depth, 38×) across 16.1 kb in 3566 individuals without diabetes mellitus identified 653 variants, 79.9% of which were rare (minor allele frequency <1%) and novel. We analyzed rare variants in 5 gene regions with FI or fasting glucose using the sequence kernel association test. At NR1H3, 53 rare variants were jointly associated with FI (P=2.73×10(-3)); of these, 7 were predicted to have regulatory function and showed association with FI (P=1.28×10(-3)). Conditioning on 2 previously associated variants at MADD (rs7944584, rs10838687) did not attenuate this association, suggesting that there are >2 independent signals at 11p11.2. One predicted regulatory variant, chr11:47227430 (hg18; minor allele frequency=0.00068), contributed 20.6% to the overall sequence kernel association test score at NR1H3, lies in intron 2 of NR1H3, and is a predicted binding site for forkhead box A1 (FOXA1), a transcription factor associated with insulin regulation. In human HepG2 hepatoma cells, the rare chr11:47227430 A allele disrupted FOXA1 binding and reduced FOXA1-dependent transcriptional activity. Sequencing at 11p11.2-NR1H3 identified rare variation associated with FI. One variant, chr11:47227430, seems to be functional, with the rare A allele reducing transcription factor FOXA1 binding and FOXA1-dependent transcriptional activity. © 2014 American Heart Association, Inc.

  20. Examining rare and low-frequency genetic variants previously associated with lone or familial forms of atrial fibrillation in an electronic medical record system: a cautionary note.

    PubMed

    Weeke, Peter; Denny, Joshua C; Basterache, Lisa; Shaffer, Christian; Bowton, Erica; Ingram, Christie; Darbar, Dawood; Roden, Dan M

    2015-02-01

    Studies in individuals or small kindreds have implicated rare variants in 25 different genes in lone and familial atrial fibrillation (AF) using linkage and segregation analysis, functional characterization, and rarity in public databases. Here, we used a cohort of 20 204 patients of European or African ancestry with electronic medical records and exome chip data to compare the frequency of AF among carriers and noncarriers of these rare variants. The exome chip included 19 of 115 rare variants, in 9 genes, previously associated with lone or familial AF. Using validated algorithms querying a combination of clinical notes, structured billing codes, ECG reports, and procedure codes, we identified 1056 AF cases (>18 years) and 19 148 non-AF controls (>50 years) with available genotype data on the Illumina HumanExome BeadChip v.1.0 in the Vanderbilt electronic medical record-linked DNA repository, BioVU. Known correlations between AF and common variants at 4q25 were replicated. None of the 19 variants previously associated with AF were over-represented among AF cases (P>0.1 for all), and the frequency of variant carriers among non-AF controls was >0.1% for 14 of 19. Repeat analyses using non-AF controls aged >60 (n=14 904), >70 (n=9670), and >80 (n=4729) years did not influence these findings. Rare variants previously implicated in lone or familial forms of AF present on the exome chip are detected at low frequencies in a general population but are not associated with AF. These findings emphasize the need for caution when ascribing variants as pathogenic or causative. © 2014 American Heart Association, Inc.

  1. Rare and Common Variants in CARD14, Encoding an Epidermal Regulator of NF-kappaB, in Psoriasis

    PubMed Central

    Jordan, Catherine T.; Cao, Li; Roberson, Elisha D.O.; Duan, Shenghui; Helms, Cynthia A.; Nair, Rajan P.; Duffin, Kristina Callis; Stuart, Philip E.; Goldgar, David; Hayashi, Genki; Olfson, Emily H.; Feng, Bing-Jian; Pullinger, Clive R.; Kane, John P.; Wise, Carol A.; Goldbach-Mansky, Raphaela; Lowes, Michelle A.; Peddle, Lynette; Chandran, Vinod; Liao, Wilson; Rahman, Proton; Krueger, Gerald G.; Gladman, Dafna; Elder, James T.; Menter, Alan; Bowcock, Anne M.

    2012-01-01

    Psoriasis is a common inflammatory disorder of the skin and other organs. We have determined that mutations in CARD14, encoding a nuclear factor of kappa light chain enhancer in B cells (NF-kB) activator within skin epidermis, account for PSORS2. Here, we describe fifteen additional rare missense variants in CARD14, their distribution in seven psoriasis cohorts (>6,000 cases and >4,000 controls), and their effects on NF-kB activation and the transcriptome of keratinocytes. There were more CARD14 rare variants in cases than in controls (burden test p value = 0.0015). Some variants were only seen in a single case, and these included putative pathogenic mutations (c.424G>A [p.Glu142Lys] and c.425A>G [p.Glu142Gly]) and the generalized-pustular-psoriasis mutation, c.413A>C (p.Glu138Ala); these three mutations lie within the coiled-coil domain of CARD14. The c.349G>A (p.Gly117Ser) familial-psoriasis mutation was present at a frequency of 0.0005 in cases of European ancestry. CARD14 variants led to a range of NF-kB activities; in particular, putative pathogenic variants led to levels >2.5× higher than did wild-type CARD14. Two variants (c.511C>A [p.His171Asn] and c.536G>A [p.Arg179His]) required stimulation with tumor necrosis factor alpha (TNF-α) to achieve significant increases in NF-kB levels. Transcriptome profiling of wild-type and variant CARD14 transfectants in keratinocytes differentiated probably pathogenic mutations from neutral variants such as polymorphisms. Over 20 CARD14 polymorphisms were also genotyped, and meta-analysis revealed an association between psoriasis and rs11652075 (c.2458C>T [p.Arg820Trp]; p value = 2.1 × 10−6). In the two largest psoriasis cohorts, evidence for association increased when rs11652075 was conditioned on HLA-Cw∗0602 (PSORS1). These studies contribute to our understanding of the genetic basis of psoriasis and illustrate the challenges faced in identifying pathogenic variants in common disease. PMID:22521419

  2. The effect of rare variants on inflation of the test statistics in case-control analyses.

    PubMed

    Pirie, Ailith; Wood, Angela; Lush, Michael; Tyrer, Jonathan; Pharoah, Paul D P

    2015-02-20

    The detection of bias due to cryptic population structure is an important step in the evaluation of findings of genetic association studies. The standard method of measuring this bias in a genetic association study is to compare the observed median association test statistic to the expected median test statistic. This ratio is inflated in the presence of cryptic population structure. However, inflation may also be caused by the properties of the association test itself particularly in the analysis of rare variants. We compared the properties of the three most commonly used association tests: the likelihood ratio test, the Wald test and the score test when testing rare variants for association using simulated data. We found evidence of inflation in the median test statistics of the likelihood ratio and score tests for tests of variants with less than 20 heterozygotes across the sample, regardless of the total sample size. The test statistics for the Wald test were under-inflated at the median for variants below the same minor allele frequency. In a genetic association study, if a substantial proportion of the genetic variants tested have rare minor allele frequencies, the properties of the association test may mask the presence or absence of bias due to population structure. The use of either the likelihood ratio test or the score test is likely to lead to inflation in the median test statistic in the absence of population structure. In contrast, the use of the Wald test is likely to result in under-inflation of the median test statistic which may mask the presence of population structure.

  3. Association of genetic variants of GRIN2B with autism.

    PubMed

    Pan, Yongcheng; Chen, Jingjing; Guo, Hui; Ou, Jianjun; Peng, Yu; Liu, Qiong; Shen, Yidong; Shi, Lijuan; Liu, Yalan; Xiong, Zhimin; Zhu, Tengfei; Luo, Sanchuan; Hu, Zhengmao; Zhao, Jingping; Xia, Kun

    2015-02-06

    Autism (MIM 209850) is a complex neurodevelopmental disorder characterized by social communication impairments and restricted repetitive behaviors. It has a high heritability, although much remains unclear. To evaluate genetic variants of GRIN2B in autism etiology, we performed a system association study of common and rare variants of GRIN2B and autism in cohorts from a Chinese population, involving a total sample of 1,945 subjects. Meta-analysis of a triad family cohort and a case-control cohort identified significant associations of multiple common variants and autism risk (Pmin = 1.73 × 10(-4)). Significantly, the haplotype involved with the top common variants also showed significant association (P = 1.78 × 10(-6)). Sanger sequencing of 275 probands from a triad cohort identified several variants in coding regions, including four common variants and seven rare variants. Two of the common coding variants were located in the autism-related linkage disequilibrium (LD) block, and both were significantly associated with autism (P < 9 × 10(-3)) using an independent control cohort. Burden analysis and case-only analysis of rare coding variants identified by Sanger sequencing did not find this association. Our study for the first time reveals that common variants and related haplotypes of GRIN2B are associated with autism risk.

  4. Renal Clear Cell Sarcoma - Anaplastic Variant: A Rare Entity.

    PubMed

    Walke, Vaishali Atmaram; Shende, Nitin Y; Kumbhalkar, D T

    2017-01-01

    Clear Cell Sarcoma of Kidney (CCSK) is known for its morphologic diversity, aggressive behaviour, tendency to recur and metastasis to bone. Amongst the various morphologic subtypes, anaplastic CCSK is associated with worse prognosis. Here, we report a case of this rare variant of CCSK. A five-year-old boy presented with history of lump and pain in abdomen since one week. The Computed Tomography (CT) scan revealed a large mass occupying the middle and inferior pole of right kidney. The clinical impression was Wilms tumour. Nephrectomy specimen was received and the diagnosis of CCSK anaplastic variant was offered only after excluding the differentials and after performing ancillary tests such as Immunohistochemistry (IHC). Thus, this case emphasizes the diagnostic challenges on morphology and the essential role of IHC in arriving at a definitive diagnosis, because failure to do so may deprive the child from optimal treatment.

  5. Renal Clear Cell Sarcoma - Anaplastic Variant: A Rare Entity

    PubMed Central

    Shende, Nitin Y; Kumbhalkar, D T

    2017-01-01

    Clear Cell Sarcoma of Kidney (CCSK) is known for its morphologic diversity, aggressive behaviour, tendency to recur and metastasis to bone. Amongst the various morphologic subtypes, anaplastic CCSK is associated with worse prognosis. Here, we report a case of this rare variant of CCSK. A five-year-old boy presented with history of lump and pain in abdomen since one week. The Computed Tomography (CT) scan revealed a large mass occupying the middle and inferior pole of right kidney. The clinical impression was Wilms tumour. Nephrectomy specimen was received and the diagnosis of CCSK anaplastic variant was offered only after excluding the differentials and after performing ancillary tests such as Immunohistochemistry (IHC). Thus, this case emphasizes the diagnostic challenges on morphology and the essential role of IHC in arriving at a definitive diagnosis, because failure to do so may deprive the child from optimal treatment. PMID:28273978

  6. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  7. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J

    2017-05-01

    Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.

  8. Rare and Common Variants Conferring Risk of Tooth Agenesis.

    PubMed

    Jonsson, L; Magnusson, T E; Thordarson, A; Jonsson, T; Geller, F; Feenstra, B; Melbye, M; Nohr, E A; Vucic, S; Dhamo, B; Rivadeneira, F; Ongkosuwito, E M; Wolvius, E B; Leslie, E J; Marazita, M L; Howe, B J; Moreno Uribe, L M; Alonso, I; Santos, M; Pinho, T; Jonsson, R; Audolfsson, G; Gudmundsson, L; Nawaz, M S; Olafsson, S; Gustafsson, O; Ingason, A; Unnsteinsdottir, U; Bjornsdottir, G; Walters, G B; Zervas, M; Oddsson, A; Gudbjartsson, D F; Steinberg, S; Stefansson, H; Stefansson, K

    2018-05-01

    We present association results from a large genome-wide association study of tooth agenesis (TA) as well as selective TA, including 1,944 subjects with congenitally missing teeth, excluding third molars, and 338,554 controls, all of European ancestry. We also tested the association of previously identified risk variants, for timing of tooth eruption and orofacial clefts, with TA. We report associations between TA and 9 novel risk variants. Five of these variants associate with selective TA, including a variant conferring risk of orofacial clefts. These results contribute to a deeper understanding of the genetic architecture of tooth development and disease. The few variants previously associated with TA were uncovered through candidate gene studies guided by mouse knockouts. Knowing the etiology and clinical features of TA is important for planning oral rehabilitation that often involves an interdisciplinary approach.

  9. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

    PubMed Central

    van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M; McLaughlin, Russell L; Diekstra, Frank P; Pulit, Sara L; van der Spek, Rick A A; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R; Yang, Jian; Fogh, Isabella; van Doormaal, Perry TC; Tazelaar, Gijs H P; Koppers, Max; Blokhuis, Anna M; Sproviero, William; Jones, Ashley R; Kenna, Kevin P; van Eijk, Kristel R; Harschnitz, Oliver; Schellevis, Raymond D; Brands, William J; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E; Shaw, Pamela J; Hardy, John; Orrell, Richard W; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A; Staats, Kim A; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; Van Deerlin, Vivianna M; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Basak, A Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A M; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M; van der Kooi, Anneke J; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E; Smith, Bradley N; Pansarasa, Orietta; Cereda, Cristina; Bo, Roberto Del; Comi, Giacomo P; D’Alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P; Fifita, Jennifer A; Nicholson, Garth A; Rowe, Dominic B; Pamphlett, Roger; Kiernan, Matthew C; Grosskreutz, Julian; Witte, Otto W; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A; Leigh, P Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C; Weishaupt, Jochen H; Robberecht, Wim; Van Damme, Philip; Franke, Lude; Pers, Tune H; Brown, Robert H; Glass, Jonathan D; Landers, John E; Hardiman, Orla; Andersen, Peter M; Corcia, Philippe; Vourc’h, Patrick; Silani, Vincenzo; Wray, Naomi R; Visscher, Peter M; de Bakker, Paul I W; van Es, Michael A; Pasterkamp, R Jeroen; Lewis, Cathryn M; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan H

    2017-01-01

    To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk. PMID:27455348

  10. Pathogenic Anti-Müllerian Hormone Variants in Polycystic Ovary Syndrome.

    PubMed

    Gorsic, Lidija K; Kosova, Gulum; Werstein, Brian; Sisk, Ryan; Legro, Richard S; Hayes, M Geoffrey; Teixeira, Jose M; Dunaif, Andrea; Urbanek, Margrit

    2017-08-01

    Polycystic ovary syndrome (PCOS), a common endocrine condition, is the leading cause of anovulatory infertility. Given that common disease-susceptibility variants account for only a small percentage of the estimated PCOS heritability, we tested the hypothesis that rare variants contribute to this deficit in heritability. Unbiased whole-genome sequencing (WGS) of 80 patients with PCOS and 24 reproductively normal control subjects identified potentially deleterious variants in AMH, the gene encoding anti-Müllerian hormone (AMH). Targeted sequencing of AMH of 643 patients with PCOS and 153 control patients was used to replicate WGS findings. Dual luciferase reporter assays measured the impact of the variants on downstream AMH signaling. We found 24 rare (minor allele frequency < 0.01) AMH variants in patients with PCOS and control subjects; 18 variants were specific to women with PCOS. Seventeen of 18 (94%) PCOS-specific variants had significantly reduced AMH signaling, whereas none of 6 variants observed in control subjects showed significant defects in signaling. Thus, we identified rare AMH coding variants that reduced AMH-mediated signaling in a subset of patients with PCOS. To our knowledge, this study is the first to identify rare genetic variants associated with a common PCOS phenotype. Our findings suggest decreased AMH signaling as a mechanism for the pathogenesis of PCOS. AMH decreases androgen biosynthesis by inhibiting CYP17 activity; a potential mechanism of action for AMH variants in PCOS, therefore, is to increase androgen biosynthesis due to decreased AMH-mediated inhibition of CYP17 activity. Copyright © 2017 Endocrine Society

  11. Whole-Exome Sequencing to Identify Rare Variants and Gene Networks that Increase Susceptibility to Scleroderma in African Americans.

    PubMed

    Gourh, Pravitt; Remmers, Elaine F; Boyden, Steven E; Alexander, Theresa; Morgan, Nadia D; Shah, Ami A; Mayes, Maureen D; Doumatey, Ayo; Bentley, Amy R; Shriner, Daniel; Domsic, Robyn T; Medsger, Thomas A; Steen, Virginia D; Ramos, Paula S; Silver, Richard M; Korman, Benjamin; Varga, John; Schiopu, Elena; Khanna, Dinesh; Hsu, Vivien; Gordon, Jessica K; Saketkoo, Lesley Ann; Gladue, Heather; Kron, Brynn; Criswell, Lindsey A; Derk, Chris T; Bridges, S Louis; Shanmugam, Victoria K; Kolstad, Kathleen D; Chung, Lorinda; Jan, Reem; Bernstein, Elana J; Goldberg, Avram; Trojanowski, Marcin; Kafaja, Suzanne; Maksimowicz-McKinnon, Kathleen M; Mullikin, James C; Adeyemo, Adebowale; Rotimi, Charles; Boin, Francesco; Kastner, Daniel L; Wigley, Fredrick M

    2018-05-06

    Whole-exome sequencing (WES) studies in systemic sclerosis (SSc) patients of European American (EA) ancestry have identified variants in the ATP8B4 gene and enrichment of variants in genes in the extracellular matrix (ECM)-related pathway increasing SSc susceptibility. Our goal was to evaluate the association of the ATP8B4 gene and the ECM-related pathway with SSc in a cohort of African Americans (AA). SSc patients of AA ancestry were enrolled from 23 academic centers across the United States under the Genome Research in African American Scleroderma Patients (GRASP) consortium. Unrelated AA individuals without serological evidence of autoimmunity enrolled in the Howard University Family Study were used as unaffected controls. Functional variants in genes reported in the two WES studies in EA SSc were selected for gene association testing using the optimized sequence kernel association test (SKAT-O) and pathway analysis by Ingenuity pathway analysis in 379 patients and 411 controls. Principal components analysis demonstrated that the patients and controls had similar ancestral backgrounds with about equal proportions of mean European admixture. Using SKAT-O, we examined the association of individual genes that were previously reported in EAs, and none remained significant including ATP8B4 (P U nCorr =0.98). However, we confirm the previously reported association of the ECM-related pathway with enrichment of variants within the COL13A1, COL18A1, COL22A1, COL4A3, COL4A4, COL5A2, PROK1, and SERPINE1 genes (P C orr =1.95×10 -4 ). This is the largest genetic study in AAs with SSc to date, corroborating the role of functional variants aggregating in a fibrotic pathway and increasing SSc susceptibility. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways.

    PubMed

    Giacopuzzi, Edoardo; Gennarelli, Massimo; Minelli, Alessandra; Gardella, Rita; Valsecchi, Paolo; Traversa, Michele; Bonvicini, Cristian; Vita, Antonio; Sacchetti, Emilio; Magri, Chiara

    2017-01-01

    Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically

  13. Cumulative role of rare and common putative functional genetic variants at NPAS3 in schizophrenia susceptibility.

    PubMed

    González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier

    2015-10-01

    Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.

  14. Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants

    PubMed Central

    Flores, Raquel; González, Juan R.; Argente, Jesús; Pérez-Jurado, Luis A.

    2017-01-01

    Obesity is a multifactorial disorder with high heritability (50–75%), which is probably higher in early-onset and severe cases. Although rare monogenic forms and several genes and regions of susceptibility, including copy number variants (CNVs), have been described, the genetic causes underlying the disease still remain largely unknown. We searched for rare CNVs (>100kb in size, altering genes and present in <1/2000 population controls) in 157 Spanish children with non-syndromic early-onset obesity (EOO: body mass index >3 standard deviations above the mean at <3 years of age) using SNP array molecular karyotypes. We then performed case control studies (480 EOO cases/480 non-obese controls) with the validated CNVs and rare sequence variants (RSVs) detected by targeted resequencing of selected CNV genes (n = 14), and also studied the inheritance patterns in available first-degree relatives. A higher burden of gain-type CNVs was detected in EOO cases versus controls (OR = 1.71, p-value = 0.0358). In addition to a gain of the NPY gene in a familial case with EOO and attention deficit hyperactivity disorder, likely pathogenic CNVs included gains of glutamate receptors (GRIK1, GRM7) and the X-linked gastrin-peptide receptor (GRPR), all inherited from obese parents. Putatively functional RSVs absent in controls were also identified in EOO cases at NPY, GRIK1 and GRPR. A patient with a heterozygous deletion disrupting two contiguous and related genes, SLCO4C1 and SLCO6A1, also had a missense RSV at SLCO4C1 on the other allele, suggestive of a recessive model. The genes identified showed a clear enrichment of shared co-expression partners with known genes strongly related to obesity, reinforcing their role in the pathophysiology of the disease. Our data reveal a higher burden of rare CNVs and RSVs in several related genes in patients with EOO compared to controls, and implicate NPY, GRPR, two glutamate receptors and SLCO4C1 in highly penetrant forms of familial obesity

  15. Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants.

    PubMed

    Serra-Juhé, Clara; Martos-Moreno, Gabriel Á; Bou de Pieri, Francesc; Flores, Raquel; González, Juan R; Rodríguez-Santiago, Benjamín; Argente, Jesús; Pérez-Jurado, Luis A

    2017-05-01

    Obesity is a multifactorial disorder with high heritability (50-75%), which is probably higher in early-onset and severe cases. Although rare monogenic forms and several genes and regions of susceptibility, including copy number variants (CNVs), have been described, the genetic causes underlying the disease still remain largely unknown. We searched for rare CNVs (>100kb in size, altering genes and present in <1/2000 population controls) in 157 Spanish children with non-syndromic early-onset obesity (EOO: body mass index >3 standard deviations above the mean at <3 years of age) using SNP array molecular karyotypes. We then performed case control studies (480 EOO cases/480 non-obese controls) with the validated CNVs and rare sequence variants (RSVs) detected by targeted resequencing of selected CNV genes (n = 14), and also studied the inheritance patterns in available first-degree relatives. A higher burden of gain-type CNVs was detected in EOO cases versus controls (OR = 1.71, p-value = 0.0358). In addition to a gain of the NPY gene in a familial case with EOO and attention deficit hyperactivity disorder, likely pathogenic CNVs included gains of glutamate receptors (GRIK1, GRM7) and the X-linked gastrin-peptide receptor (GRPR), all inherited from obese parents. Putatively functional RSVs absent in controls were also identified in EOO cases at NPY, GRIK1 and GRPR. A patient with a heterozygous deletion disrupting two contiguous and related genes, SLCO4C1 and SLCO6A1, also had a missense RSV at SLCO4C1 on the other allele, suggestive of a recessive model. The genes identified showed a clear enrichment of shared co-expression partners with known genes strongly related to obesity, reinforcing their role in the pathophysiology of the disease. Our data reveal a higher burden of rare CNVs and RSVs in several related genes in patients with EOO compared to controls, and implicate NPY, GRPR, two glutamate receptors and SLCO4C1 in highly penetrant forms of familial obesity.

  16. Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling.

    PubMed

    Nock, Nl; Zhang, Lx

    2011-11-29

    Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error.

  17. An exome-wide analysis of low frequency and rare variants in relation to risk of breast cancer in African American Women: the AMBER Consortium

    PubMed Central

    Haddad, Stephen A.; Ruiz-Narváez, Edward A.; Haiman, Christopher A.; Sucheston-Campbell, Lara E.; Bensen, Jeannette T.; Zhu, Qianqian; Liu, Song; Yao, Song; Bandera, Elisa V.; Rosenberg, Lynn; Olshan, Andrew F.; Ambrosone, Christine B.; Palmer, Julie R.; Lunetta, Kathryn L.

    2016-01-01

    A large percentage of breast cancer heritability remains unaccounted for, and most of the known susceptibility loci have been established in European and Asian populations. Rare variants may contribute to the unexplained heritability of this disease, including in women of African ancestry (AA). We conducted an exome-wide analysis of rare variants in relation to risk of overall and subtype-specific breast cancer in the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium, which includes data from four large studies of AA women. Genotyping on the Illumina Human Exome Beadchip yielded data for 170 812 SNPs and 8287 subjects: 3629 cases (1093 estrogen receptor negative (ER−), 1968 ER+, 568 ER unknown) and 4658 controls, the largest exome chip study to date for AA breast cancer. Pooled gene-based association analyses were performed using the unified optimal sequence kernel association test (SKAT-O) for variants with minor allele frequency (MAF) ≤ 5%. In addition, each variant with MAF >0.5% was tested for association using logistic regression. There were no significant associations with overall breast cancer. However, a novel gene, FBXL22 (P = 8.2×10–6), and a gene previously identified in GWAS of European ancestry populations, PDE4D (P = 1.2×10–6), were significantly associated with ER− breast cancer after correction for multiple testing. Cases with the associated rare variants were also negative for progesterone and human epidermal growth factor receptors—thus, triple-negative cancer. Replication is required to confirm these gene-level associations, which are based on very small counts at extremely rare SNPs. PMID:27267999

  18. Investigation of exomic variants associated with overall survival in ovarian cancer

    PubMed Central

    Ann Chen, Yian; Larson, Melissa C; Fogarty, Zachary C; Earp, Madalene A; Anton-Culver, Hoda; Bandera, Elisa V; Cramer, Daniel; Doherty, Jennifer A; Goodman, Marc T; Gronwald, Jacek; Karlan, Beth Y; Kjaer, Susanne K; Levine, Douglas A; Menon, Usha; Ness, Roberta B; Pearce, Celeste L; Pejovic, Tanja; Rossing, Mary Anne; Wentzensen, Nicolas; Bean, Yukie T; Bisogna, Maria; Brinton, Louise A; Carney, Michael E; Cunningham, Julie M; Cybulski, Cezary; deFazio, Anna; Dicks, Ed M; Edwards, Robert P; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Gore, Martin; Iversen, Edwin S; Jensen, Allan; Johnatty, Sharon E; Lester, Jenny; Lin, Hui-Yi; Lissowska, Jolanta; Lubinski, Jan; Menkiszak, Janusz; Modugno, Francesmary; Moysich, Kirsten B; Orlow, Irene; Pike, Malcolm C; Ramus, Susan J; Song, Honglin; Terry, Kathryn L; Thompson, Pamela J; Tyrer, Jonathan P; van den Berg, David J; Vierkant, Robert A; Vitonis, Allison F; Walsh, Christine; Wilkens, Lynne R; Wu, Anna H; Yang, Hannah; Ziogas, Argyrios; Berchuck, Andrew; Chenevix-Trench, Georgia; Schildkraut, Joellen M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pharoah, Paul D P; Fridley, Brooke L

    2016-01-01

    Background While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, few associations have been reported with overall survival. In the absence of common prognostic genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer Association Consortium (OCAC). Methods The primary patient set (Set 1) included 14 independent EOC studies (4293 patients) and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1744 patients) and 114,620 variants. Because power to detect rare variants individually is reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped). Results No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (Pmeta=1.1E-6, HRSet1=1.17, HRSet2=1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (Pmeta=1.1E-6; Pcorrected=0.01). Conclusions Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival, although further study is needed. Impact This study represents the first exome-wide association study of EOC survival to include rare variant analyses, and suggests that complementary single variant and gene-level analyses in large studies are needed to identify rare variants that warrant follow-up study. PMID:26747452

  19. Genomic Architecture of Aggression: Rare Copy Number Variants in Intermittent Explosive Disorder

    PubMed Central

    Vu, Tiffany H; Coccaro, Emil F; Eichler, Evan E; Girirajan, Santhosh

    2011-01-01

    Copy number variants (CNVs) are known to be associated with complex neuropsychiatric disorders (e.g., schizophrenia and autism) but have not been explored in the isolated features of aggressive behaviors such as intermittent explosive disorder (IED). IED is characterized by recurrent episodes of aggression in which individuals act impulsively and grossly out of proportion from the involved stressors. Previous studies have identified genetic variants in the serotonergic pathway that play a role in susceptibility to this behavior, but additional contributors have not been identified. Therefore, to further delineate possible genetic influences, we investigated CNVs in individuals diagnosed with IED and/or personality disorder (PD). We carried out array comparative genomic hybridization on 113 samples of individuals with isolated features of IED (n = 90) or PD (n = 23). We detected a recurrent 1.35-Mbp deletion on chromosome 1q21.1 in one IED subject and a novel ∼350-kbp deletion on chromosome 16q22.3q23.1 in another IED subject. While five recent reports have suggested the involvement of an ∼1.6-Mbp 15q13.3 deletion in individuals with behavioral problems, particularly aggression, we report an absence of such events in our study of individuals specifically selected for aggression. We did, however, detect a smaller ∼430-kbp 15q13.3 duplication containing CHRNA7 in one individual with PD. While these results suggest a possible role for rare CNVs in identifying genes underlying IED or PD, further studies on a large number of well-characterized individuals are necessary. © 2011 Wiley-Liss, Inc. PMID:21812102

  20. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity.

    PubMed

    Katrancha, Sara M; Wu, Yi; Zhu, Minsheng; Eipper, Betty A; Koleske, Anthony J; Mains, Richard E

    2017-12-01

    Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Common and rare von Willebrand factor (VWF) coding variants, VWF levels, and factor VIII levels in African Americans: the NHLBI Exome Sequencing Project.

    PubMed

    Johnsen, Jill M; Auer, Paul L; Morrison, Alanna C; Jiao, Shuo; Wei, Peng; Haessler, Jeffrey; Fox, Keolu; McGee, Sean R; Smith, Joshua D; Carlson, Christopher S; Smith, Nicholas; Boerwinkle, Eric; Kooperberg, Charles; Nickerson, Deborah A; Rich, Stephen S; Green, David; Peters, Ulrike; Cushman, Mary; Reiner, Alex P

    2013-07-25

    Several rare European von Willebrand disease missense variants of VWF (including p.Arg2185Gln and p.His817Gln) were recently reported to be common in apparently healthy African Americans (AAs). Using data from the NHLBI Exome Sequencing Project, we assessed the association of these and other VWF coding variants with von Willebrand factor (VWF) and factor VIII (FVIII) levels in 4468 AAs. Of 30 nonsynonymous VWF variants, 6 were significantly and independently associated (P < .001) with levels of VWF and/or FVIII. Each additional copy of the common VWF variants encoding p.Thr789Ala or p.Asp1472His was associated with 6 to 8 IU/dL higher VWF levels. The VWF variant encoding p.Arg2185Gln was associated with 7 to 13 IU/dL lower VWF and FVIII levels. The type 2N-related VWF variant encoding p.His817Gln was associated with 17 IU/dL lower FVIII level but normal VWF level. A novel, rare missense VWF variant that predicts disruption of an O-glycosylation site (p.Ser1486Leu) and a rare variant encoding p.Arg2287Trp were each associated with 30 to 40 IU/dL lower VWF level (P < .001). In summary, several common and rare VWF missense variants contribute to phenotypic differences in VWF and FVIII among AAs.

  2. A rare variant of the mtDNA HVS1 sequence in the hairs of Napoléon's family.

    PubMed

    Lucotte, Gérard

    2010-10-04

    This paper describes the finding of a rare variant in the sequence of the hypervariable segment (HVS1) of mitochondrial (mtDNA) extracted from two preserved hairs, authenticated as belonging to the French Emperor Napoléon I (Napoléon Bonaparte). This rare variant is a mutation that changes the base C to T at position 16,184 (16184C→T), and it constitutes the only mutation found in this HVS1 sequence. This mutation is rare, because it was not found in a reference database (P < 0.05). In a personal database (M. Pala) comprising 37,000 different sequences, the 16184C→T mutation was found in only three samples, thus in this database the mutation frequency was 0.00008%. This mutation 16184C→T was also the only variant found subsequently in the HVS1 sequences of mtDNAs extracted from Napoléon's mother (Letizia) and from his youngest sister (Caroline), confirming that this mutation is maternally inherited. This 16184C→T variant could be used for genetic verification to authenticate any doubtful material and determine whether it should indeed be attributed to Napoléon.

  3. A rare variant of the mtDNA HVS1 sequence in the hairs of Napoléon's family

    PubMed Central

    2010-01-01

    This paper describes the finding of a rare variant in the sequence of the hypervariable segment (HVS1) of mitochondrial (mtDNA) extracted from two preserved hairs, authenticated as belonging to the French Emperor Napoléon I (Napoléon Bonaparte). This rare variant is a mutation that changes the base C to T at position 16,184 (16184C→T), and it constitutes the only mutation found in this HVS1 sequence. This mutation is rare, because it was not found in a reference database (P < 0.05). In a personal database (M. Pala) comprising 37,000 different sequences, the 16184C→T mutation was found in only three samples, thus in this database the mutation frequency was 0.00008%. This mutation 16184C→T was also the only variant found subsequently in the HVS1 sequences of mtDNAs extracted from Napoléon's mother (Letizia) and from his youngest sister (Caroline), confirming that this mutation is maternally inherited. This 16184C→T variant could be used for genetic verification to authenticate any doubtful material and determine whether it should indeed be attributed to Napoléon. PMID:21092341

  4. A Rare Variant of Wallenberg’s Syndrome: Opalski syndrome

    PubMed Central

    KK, Parathan; P, Chitrambalam; Aiyappan, Senthil Kumar; N, Deepthi

    2014-01-01

    Lateral Medullary Syndrome (LMS) is a well-documented vascular syndrome of the posterior circulation territory. This syndrome is easily localised because of characteristic presentation, unique territory of blood supply and very small area of involvement. We present a case of Wallenberg’s syndrome which did not have all the classical components of the syndrome, like Horner’s syndrome. Opalski syndrome is a rare variant of Wallenberg syndrome, where lateral medullary syndrome is associated with ipsilateral hemiparesis. This case report highlights how differential involvement of the lateral part of medulla can result in varied presentation. PMID:25177595

  5. Exome sequence analysis and follow up genotyping implicates rare ULK1 variants to be involved in susceptibility to schizophrenia

    PubMed Central

    Al Eissa, Mariam M.; Fiorentino, Alessia; Sharp, Sally I.; O'Brien, Niamh L.; Wolfe, Kate; Giaroli, Giovanni; Curtis, David; Bass, Nicholas J.

    2017-01-01

    Summary Schizophrenia (SCZ) is a severe, highly heritable psychiatric disorder. Elucidation of the genetic architecture of the disorder will facilitate greater understanding of the altered underlying neurobiological mechanisms. The aim of this study was to identify likely aetiological variants in subjects affected with SCZ. Exome sequence data from a SCZ cas–control sample from Sweden was analysed for likely aetiological variants using a weighted burden test. Suggestive evidence implicated the UNC‐51‐like kinase (ULK1) gene, and it was observed that four rare variants that were more common in the Swedish SCZ cases were also more common in UK10K SCZ cases, as compared to obesity cases. These three missense variants and one intronic variant were genotyped in the University College London cohort of 1304 SCZ cases and 1348 ethnically matched controls. All four variants were more common in the SCZ cases than controls and combining them produced a result significant at P = 0.02. The results presented here demonstrate the importance of following up exome sequencing studies using additional datasets. The roles of ULK1 in autophagy and mTOR signalling strengthen the case that these pathways may be important in the pathophysiology of SCZ. The findings reported here await independent replication. PMID:29148569

  6. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease.

    PubMed

    Sims, Rebecca; van der Lee, Sven J; Naj, Adam C; Bellenguez, Céline; Badarinarayan, Nandini; Jakobsdottir, Johanna; Kunkle, Brian W; Boland, Anne; Raybould, Rachel; Bis, Joshua C; Martin, Eden R; Grenier-Boley, Benjamin; Heilmann-Heimbach, Stefanie; Chouraki, Vincent; Kuzma, Amanda B; Sleegers, Kristel; Vronskaya, Maria; Ruiz, Agustin; Graham, Robert R; Olaso, Robert; Hoffmann, Per; Grove, Megan L; Vardarajan, Badri N; Hiltunen, Mikko; Nöthen, Markus M; White, Charles C; Hamilton-Nelson, Kara L; Epelbaum, Jacques; Maier, Wolfgang; Choi, Seung-Hoan; Beecham, Gary W; Dulary, Cécile; Herms, Stefan; Smith, Albert V; Funk, Cory C; Derbois, Céline; Forstner, Andreas J; Ahmad, Shahzad; Li, Hongdong; Bacq, Delphine; Harold, Denise; Satizabal, Claudia L; Valladares, Otto; Squassina, Alessio; Thomas, Rhodri; Brody, Jennifer A; Qu, Liming; Sánchez-Juan, Pascual; Morgan, Taniesha; Wolters, Frank J; Zhao, Yi; Garcia, Florentino Sanchez; Denning, Nicola; Fornage, Myriam; Malamon, John; Naranjo, Maria Candida Deniz; Majounie, Elisa; Mosley, Thomas H; Dombroski, Beth; Wallon, David; Lupton, Michelle K; Dupuis, Josée; Whitehead, Patrice; Fratiglioni, Laura; Medway, Christopher; Jian, Xueqiu; Mukherjee, Shubhabrata; Keller, Lina; Brown, Kristelle; Lin, Honghuang; Cantwell, Laura B; Panza, Francesco; McGuinness, Bernadette; Moreno-Grau, Sonia; Burgess, Jeremy D; Solfrizzi, Vincenzo; Proitsi, Petra; Adams, Hieab H; Allen, Mariet; Seripa, Davide; Pastor, Pau; Cupples, L Adrienne; Price, Nathan D; Hannequin, Didier; Frank-García, Ana; Levy, Daniel; Chakrabarty, Paramita; Caffarra, Paolo; Giegling, Ina; Beiser, Alexa S; Giedraitis, Vilmantas; Hampel, Harald; Garcia, Melissa E; Wang, Xue; Lannfelt, Lars; Mecocci, Patrizia; Eiriksdottir, Gudny; Crane, Paul K; Pasquier, Florence; Boccardi, Virginia; Henández, Isabel; Barber, Robert C; Scherer, Martin; Tarraga, Lluis; Adams, Perrie M; Leber, Markus; Chen, Yuning; Albert, Marilyn S; Riedel-Heller, Steffi; Emilsson, Valur; Beekly, Duane; Braae, Anne; Schmidt, Reinhold; Blacker, Deborah; Masullo, Carlo; Schmidt, Helena; Doody, Rachelle S; Spalletta, Gianfranco; Longstreth, W T; Fairchild, Thomas J; Bossù, Paola; Lopez, Oscar L; Frosch, Matthew P; Sacchinelli, Eleonora; Ghetti, Bernardino; Yang, Qiong; Huebinger, Ryan M; Jessen, Frank; Li, Shuo; Kamboh, M Ilyas; Morris, John; Sotolongo-Grau, Oscar; Katz, Mindy J; Corcoran, Chris; Dunstan, Melanie; Braddel, Amy; Thomas, Charlene; Meggy, Alun; Marshall, Rachel; Gerrish, Amy; Chapman, Jade; Aguilar, Miquel; Taylor, Sarah; Hill, Matt; Fairén, Mònica Díez; Hodges, Angela; Vellas, Bruno; Soininen, Hilkka; Kloszewska, Iwona; Daniilidou, Makrina; Uphill, James; Patel, Yogen; Hughes, Joseph T; Lord, Jenny; Turton, James; Hartmann, Annette M; Cecchetti, Roberta; Fenoglio, Chiara; Serpente, Maria; Arcaro, Marina; Caltagirone, Carlo; Orfei, Maria Donata; Ciaramella, Antonio; Pichler, Sabrina; Mayhaus, Manuel; Gu, Wei; Lleó, Alberto; Fortea, Juan; Blesa, Rafael; Barber, Imelda S; Brookes, Keeley; Cupidi, Chiara; Maletta, Raffaele Giovanni; Carrell, David; Sorbi, Sandro; Moebus, Susanne; Urbano, Maria; Pilotto, Alberto; Kornhuber, Johannes; Bosco, Paolo; Todd, Stephen; Craig, David; Johnston, Janet; Gill, Michael; Lawlor, Brian; Lynch, Aoibhinn; Fox, Nick C; Hardy, John; Albin, Roger L; Apostolova, Liana G; Arnold, Steven E; Asthana, Sanjay; Atwood, Craig S; Baldwin, Clinton T; Barnes, Lisa L; Barral, Sandra; Beach, Thomas G; Becker, James T; Bigio, Eileen H; Bird, Thomas D; Boeve, Bradley F; Bowen, James D; Boxer, Adam; Burke, James R; Burns, Jeffrey M; Buxbaum, Joseph D; Cairns, Nigel J; Cao, Chuanhai; Carlson, Chris S; Carlsson, Cynthia M; Carney, Regina M; Carrasquillo, Minerva M; Carroll, Steven L; Diaz, Carolina Ceballos; Chui, Helena C; Clark, David G; Cribbs, David H; Crocco, Elizabeth A; DeCarli, Charles; Dick, Malcolm; Duara, Ranjan; Evans, Denis A; Faber, Kelley M; Fallon, Kenneth B; Fardo, David W; Farlow, Martin R; Ferris, Steven; Foroud, Tatiana M; Galasko, Douglas R; Gearing, Marla; Geschwind, Daniel H; Gilbert, John R; Graff-Radford, Neill R; Green, Robert C; Growdon, John H; Hamilton, Ronald L; Harrell, Lindy E; Honig, Lawrence S; Huentelman, Matthew J; Hulette, Christine M; Hyman, Bradley T; Jarvik, Gail P; Abner, Erin; Jin, Lee-Way; Jun, Gyungah; Karydas, Anna; Kaye, Jeffrey A; Kim, Ronald; Kowall, Neil W; Kramer, Joel H; LaFerla, Frank M; Lah, James J; Leverenz, James B; Levey, Allan I; Li, Ge; Lieberman, Andrew P; Lunetta, Kathryn L; Lyketsos, Constantine G; Marson, Daniel C; Martiniuk, Frank; Mash, Deborah C; Masliah, Eliezer; McCormick, Wayne C; McCurry, Susan M; McDavid, Andrew N; McKee, Ann C; Mesulam, Marsel; Miller, Bruce L; Miller, Carol A; Miller, Joshua W; Morris, John C; Murrell, Jill R; Myers, Amanda J; O'Bryant, Sid; Olichney, John M; Pankratz, Vernon S; Parisi, Joseph E; Paulson, Henry L; Perry, William; Peskind, Elaine; Pierce, Aimee; Poon, Wayne W; Potter, Huntington; Quinn, Joseph F; Raj, Ashok; Raskind, Murray; Reisberg, Barry; Reitz, Christiane; Ringman, John M; Roberson, Erik D; Rogaeva, Ekaterina; Rosen, Howard J; Rosenberg, Roger N; Sager, Mark A; Saykin, Andrew J; Schneider, Julie A; Schneider, Lon S; Seeley, William W; Smith, Amanda G; Sonnen, Joshua A; Spina, Salvatore; Stern, Robert A; Swerdlow, Russell H; Tanzi, Rudolph E; Thornton-Wells, Tricia A; Trojanowski, John Q; Troncoso, Juan C; Van Deerlin, Vivianna M; Van Eldik, Linda J; Vinters, Harry V; Vonsattel, Jean Paul; Weintraub, Sandra; Welsh-Bohmer, Kathleen A; Wilhelmsen, Kirk C; Williamson, Jennifer; Wingo, Thomas S; Woltjer, Randall L; Wright, Clinton B; Yu, Chang-En; Yu, Lei; Garzia, Fabienne; Golamaully, Feroze; Septier, Gislain; Engelborghs, Sebastien; Vandenberghe, Rik; De Deyn, Peter P; Fernadez, Carmen Muñoz; Benito, Yoland Aladro; Thonberg, Hakan; Forsell, Charlotte; Lilius, Lena; Kinhult-Stählbom, Anne; Kilander, Lena; Brundin, RoseMarie; Concari, Letizia; Helisalmi, Seppo; Koivisto, Anne Maria; Haapasalo, Annakaisa; Dermecourt, Vincent; Fievet, Nathalie; Hanon, Olivier; Dufouil, Carole; Brice, Alexis; Ritchie, Karen; Dubois, Bruno; Himali, Jayanadra J; Keene, C Dirk; Tschanz, JoAnn; Fitzpatrick, Annette L; Kukull, Walter A; Norton, Maria; Aspelund, Thor; Larson, Eric B; Munger, Ron; Rotter, Jerome I; Lipton, Richard B; Bullido, María J; Hofman, Albert; Montine, Thomas J; Coto, Eliecer; Boerwinkle, Eric; Petersen, Ronald C; Alvarez, Victoria; Rivadeneira, Fernando; Reiman, Eric M; Gallo, Maura; O'Donnell, Christopher J; Reisch, Joan S; Bruni, Amalia Cecilia; Royall, Donald R; Dichgans, Martin; Sano, Mary; Galimberti, Daniela; St George-Hyslop, Peter; Scarpini, Elio; Tsuang, Debby W; Mancuso, Michelangelo; Bonuccelli, Ubaldo; Winslow, Ashley R; Daniele, Antonio; Wu, Chuang-Kuo; Peters, Oliver; Nacmias, Benedetta; Riemenschneider, Matthias; Heun, Reinhard; Brayne, Carol; Rubinsztein, David C; Bras, Jose; Guerreiro, Rita; Al-Chalabi, Ammar; Shaw, Christopher E; Collinge, John; Mann, David; Tsolaki, Magda; Clarimón, Jordi; Sussams, Rebecca; Lovestone, Simon; O'Donovan, Michael C; Owen, Michael J; Behrens, Timothy W; Mead, Simon; Goate, Alison M; Uitterlinden, Andre G; Holmes, Clive; Cruchaga, Carlos; Ingelsson, Martin; Bennett, David A; Powell, John; Golde, Todd E; Graff, Caroline; De Jager, Philip L; Morgan, Kevin; Ertekin-Taner, Nilufer; Combarros, Onofre; Psaty, Bruce M; Passmore, Peter; Younkin, Steven G; Berr, Claudine; Gudnason, Vilmundur; Rujescu, Dan; Dickson, Dennis W; Dartigues, Jean-François; DeStefano, Anita L; Ortega-Cubero, Sara; Hakonarson, Hakon; Campion, Dominique; Boada, Merce; Kauwe, John Keoni; Farrer, Lindsay A; Van Broeckhoven, Christine; Ikram, M Arfan; Jones, Lesley; Haines, Jonathan L; Tzourio, Christophe; Launer, Lenore J; Escott-Price, Valentina; Mayeux, Richard; Deleuze, Jean-François; Amin, Najaf; Holmans, Peter A; Pericak-Vance, Margaret A; Amouyel, Philippe; van Duijn, Cornelia M; Ramirez, Alfredo; Wang, Li-San; Lambert, Jean-Charles; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D

    2017-09-01

    We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10 -4 ) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10 -8 ) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10 -10 , odds ratio (OR) = 0.68, minor allele frequency (MAF) cases = 0.0059, MAF controls = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10 -10 , OR = 1.43, MAF cases = 0.011, MAF controls = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10 -14 , OR = 1.67, MAF cases = 0.0143, MAF controls = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

  7. Rare coding variants in PLCG2, ABI3 and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease

    PubMed Central

    Sims, Rebecca; van der Lee, Sven J.; Naj, Adam C.; Bellenguez, Céline; Badarinarayan, Nandini; Jakobsdottir, Johanna; Kunkle, Brian W.; Boland, Anne; Raybould, Rachel; Bis, Joshua C.; Martin, Eden R.; Grenier-Boley, Benjamin; Heilmann-Heimbach, Stefanie; Chouraki, Vincent; Kuzma, Amanda B.; Sleegers, Kristel; Vronskaya, Maria; Ruiz, Agustin; Graham, Robert R.; Olaso, Robert; Hoffmann, Per; Grove, Megan L.; Vardarajan, Badri N.; Hiltunen, Mikko; Nöthen, Markus M.; White, Charles C.; Hamilton-Nelson, Kara L.; Epelbaum, Jacques; Maier, Wolfgang; Choi, Seung-Hoan; Beecham, Gary W.; Dulary, Cécile; Herms, Stefan; Smith, Albert V.; Funk, Cory C.; Derbois, Céline; Forstner, Andreas J.; Ahmad, Shahzad; Li, Hongdong; Bacq, Delphine; Harold, Denise; Satizabal, Claudia L.; Valladares, Otto; Squassina, Alessio; Thomas, Rhodri; Brody, Jennifer A.; Qu, Liming; Sanchez-Juan, Pascual; Morgan, Taniesha; Wolters, Frank J.; Zhao, Yi; Garcia, Florentino Sanchez; Denning, Nicola; Fornage, Myriam; Malamon, John; Naranjo, Maria Candida Deniz; Majounie, Elisa; Mosley, Thomas H.; Dombroski, Beth; Wallon, David; Lupton, Michelle K; Dupuis, Josée; Whitehead, Patrice; Fratiglioni, Laura; Medway, Christopher; Jian, Xueqiu; Mukherjee, Shubhabrata; Keller, Lina; Brown, Kristelle; Lin, Honghuang; Cantwell, Laura B.; Panza, Francesco; McGuinness, Bernadette; Moreno-Grau, Sonia; Burgess, Jeremy D.; Solfrizzi, Vincenzo; Proitsi, Petra; Adams, Hieab H.; Allen, Mariet; Seripa, Davide; Pastor, Pau; Cupples, L. Adrienne; Price, Nathan D; Hannequin, Didier; Frank-García, Ana; Levy, Daniel; Chakrabarty, Paramita; Caffarra, Paolo; Giegling, Ina; Beiser, Alexa S.; Giedraitis, Vimantas; Hampel, Harald; Garcia, Melissa E.; Wang, Xue; Lannfelt, Lars; Mecocci, Patrizia; Eiriksdottir, Gudny; Crane, Paul K.; Pasquier, Florence; Boccardi, Virginia; Henández, Isabel; Barber, Robert C.; Scherer, Martin; Tarraga, Lluis; Adams, Perrie M.; Leber, Markus; Chen, Yuning; Albert, Marilyn S.; Riedel-Heller, Steffi; Emilsson, Valur; Beekly, Duane; Braae, Anne; Schmidt, Reinhold; Blacker, Deborah; Masullo, Carlo; Schmidt, Helena; Doody, Rachelle S.; Spalletta, Gianfranco; Longstreth, WT; Fairchild, Thomas J.; Bossù, Paola; Lopez, Oscar L.; Frosch, Matthew P.; Sacchinelli, Eleonora; Ghetti, Bernardino; Sánchez-Juan, Pascual; Yang, Qiong; Huebinger, Ryan M.; Jessen, Frank; Li, Shuo; Kamboh, M. Ilyas; Morris, John; Sotolongo-Grau, Oscar; Katz, Mindy J.; Corcoran, Chris; Himali, Jayanadra J.; Keene, C. Dirk; Tschanz, JoAnn; Fitzpatrick, Annette L.; Kukull, Walter A.; Norton, Maria; Aspelund, Thor; Larson, Eric B.; Munger, Ron; Rotter, Jerome I.; Lipton, Richard B.; Bullido, María J; Hofman, Albert; Montine, Thomas J.; Coto, Eliecer; Boerwinkle, Eric; Petersen, Ronald C.; Alvarez, Victoria; Rivadeneira, Fernando; Reiman, Eric M.; Gallo, Maura; O’Donnell, Christopher J.; Reisch, Joan S.; Bruni, Amalia Cecilia; Royall, Donald R.; Dichgans, Martin; Sano, Mary; Galimberti, Daniela; St George-Hyslop, Peter; Scarpini, Elio; Tsuang, Debby W.; Mancuso, Michelangelo; Bonuccelli, Ubaldo; Winslow, Ashley R.; Daniele, Antonio; Wu, Chuang-Kuo; Peters, Oliver; Nacmias, Benedetta; Riemenschneider, Matthias; Heun, Reinhard; Brayne, Carol; Rubinsztein, David C; Bras, Jose; Guerreiro, Rita; Hardy, John; Al-Chalabi, Ammar; Shaw, Christopher E; Collinge, John; Mann, David; Tsolaki, Magda; Clarimón, Jordi; Sussams, Rebecca; Lovestone, Simon; O’Donovan, Michael C; Owen, Michael J; Behrens, Timothy W.; Mead, Simon; Goate, Alison M.; Uitterlinden, Andre G.; Holmes, Clive; Cruchaga, Carlos; Ingelsson, Martin; Bennett, David A.; Powell, John; Golde, Todd E.; Graff, Caroline; De Jager, Philip L.; Morgan, Kevin; Ertekin-Taner, Nilufer; Combarros, Onofre; Psaty, Bruce M.; Passmore, Peter; Younkin, Steven G; Berr, Claudine; Gudnason, Vilmundur; Rujescu, Dan; Dickson, Dennis W.; Dartigues, Jean-Francois; DeStefano, Anita L.; Ortega-Cubero, Sara; Hakonarson, Hakon; Campion, Dominique; Boada, Merce; Kauwe, John “Keoni”; Farrer, Lindsay A.; Van Broeckhoven, Christine; Ikram, M. Arfan; Jones, Lesley; Haines, Johnathan; Tzourio, Christophe; Launer, Lenore J.; Escott-Price, Valentina; Mayeux, Richard; Deleuze, Jean-François; Amin, Najaf; Holmans, Peter A; Pericak-Vance, Margaret A.; Amouyel, Philippe; van Duijn, Cornelia M.; Ramirez, Alfredo; Wang, Li-San; Lambert, Jean-Charles; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D.

    2017-01-01

    Introduction We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development. PMID:28714976

  8. Population-based rare variant detection via pooled exome or custom hybridization capture with or without individual indexing.

    PubMed

    Ramos, Enrique; Levinson, Benjamin T; Chasnoff, Sara; Hughes, Andrew; Young, Andrew L; Thornton, Katherine; Li, Allie; Vallania, Francesco L M; Province, Michael; Druley, Todd E

    2012-12-06

    Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1) create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2) expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence. These results were obtained aligning raw

  9. Genome-Wide Analysis of Copy Number Variants in Attention Deficit Hyperactivity Disorder: The Role of Rare Variants and Duplications at 15q13.3

    PubMed Central

    Franke, Barbara; Mick, Eric; Anney, Richard J.L.; Freitag, Christine M.; Gill, Michael; Thapar, Anita; O'Donovan, Michael C.; Owen, Michael J.; Holmans, Peter; Kent, Lindsey; Middleton, Frank; Zhang-James, Yanli; Liu, Lu; Meyer, Jobst; Nguyen, Thuy Trang; Romanos, Jasmin; Romanos, Marcel; Seitz, Christiane; Renner, Tobias J.; Walitza, Susanne; Warnke, Andreas; Palmason, Haukur; Buitelaar, Jan; Rommelse, Nanda; Vasquez, Alejandro Arias; Hawi, Ziarih; Langley, Kate; Sergeant, Joseph; Steinhausen, Hans-Christoph; Roeyers, Herbert; Biederman, Joseph; Zaharieva, Irina; Hakonarson, Hakon; Elia, Josephine; Lionel, Anath C.; Crosbie, Jennifer; Marshall, Christian R.; Schachar, Russell; Scherer, Stephen W.; Todorov, Alexandre; Smalley, Susan L.; Loo, Sandra; Nelson, Stanley; Shtir, Corina; Asherson, Philip; Reif, Andreas; Lesch, Klaus-Peter

    2012-01-01

    Objective: Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNVs) may be important for ADHD etiology. Method: The authors performed a genome-wide analysis of large, rare CNVs (<1% population frequency) in children with ADHD (N=896) and comparison subjects (N=2,455) from the IMAGE II Consortium. Results: The authors observed 1,562 individually rare CNVs >100 kb in size, which segregated into 912 independent loci. Overall, the rate of rare CNVs >100 kb was 1.15 times higher in ADHD case subjects relative to comparison subjects, with duplications spanning known genes showing a 1.2-fold enrichment. In accordance with a previous study, rare CNVs >500 kb showed the greatest enrichment (1.28-fold). CNVs identified in ADHD case subjects were significantly enriched for loci implicated in autism and in schizophrenia. Duplications spanning the CHRNA7 gene at chromosome 15q13.3 were associated with ADHD in single-locus analysis. This finding was consistently replicated in an additional 2,242 ADHD case subjects and 8,552 comparison subjects from four independent cohorts from the United Kingdom, the United States, and Canada. Presence of the duplication at 15q13.3 appeared to be associated with comorbid conduct disorder. Conclusions: These findings support the enrichment of large, rare CNVs in ADHD and implicate duplications at 15q13.3 as a novel risk factor for ADHD. With a frequency of 0.6% in the populations investigated and a relatively large effect size (odds ratio=2.22, 95% confidence interval=1.5–3.6), this locus could be an important contributor to ADHD etiology. PMID:22420048

  10. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3.

    PubMed

    Williams, Nigel M; Franke, Barbara; Mick, Eric; Anney, Richard J L; Freitag, Christine M; Gill, Michael; Thapar, Anita; O'Donovan, Michael C; Owen, Michael J; Holmans, Peter; Kent, Lindsey; Middleton, Frank; Zhang-James, Yanli; Liu, Lu; Meyer, Jobst; Nguyen, Thuy Trang; Romanos, Jasmin; Romanos, Marcel; Seitz, Christiane; Renner, Tobias J; Walitza, Susanne; Warnke, Andreas; Palmason, Haukur; Buitelaar, Jan; Rommelse, Nanda; Vasquez, Alejandro Arias; Hawi, Ziarih; Langley, Kate; Sergeant, Joseph; Steinhausen, Hans-Christoph; Roeyers, Herbert; Biederman, Joseph; Zaharieva, Irina; Hakonarson, Hakon; Elia, Josephine; Lionel, Anath C; Crosbie, Jennifer; Marshall, Christian R; Schachar, Russell; Scherer, Stephen W; Todorov, Alexandre; Smalley, Susan L; Loo, Sandra; Nelson, Stanley; Shtir, Corina; Asherson, Philip; Reif, Andreas; Lesch, Klaus-Peter; Faraone, Stephen V

    2012-02-01

    Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNVs) may be important for ADHD etiology. The authors performed a genome-wide analysis of large, rare CNVs (<1% population frequency) in children with ADHD (N=896) and comparison subjects (N=2,455) from the IMAGE II Consortium. The authors observed 1,562 individually rare CNVs >100 kb in size, which segregated into 912 independent loci. Overall, the rate of rare CNVs >100 kb was 1.15 times higher in ADHD case subjects relative to comparison subjects, with duplications spanning known genes showing a 1.2-fold enrichment. In accordance with a previous study, rare CNVs >500 kb showed the greatest enrichment (1.28-fold). CNVs identified in ADHD case subjects were significantly enriched for loci implicated in autism and in schizophrenia. Duplications spanning the CHRNA7 gene at chromosome 15q13.3 were associated with ADHD in single-locus analysis. This finding was consistently replicated in an additional 2,242 ADHD case subjects and 8,552 comparison subjects from four independent cohorts from the United Kingdom, the United States, and Canada. Presence of the duplication at 15q13.3 appeared to be associated with comorbid conduct disorder. These findings support the enrichment of large, rare CNVs in ADHD and implicate duplications at 15q13.3 as a novel risk factor for ADHD. With a frequency of 0.6% in the populations investigated and a relatively large effect size (odds ratio=2.22, 95% confidence interval=1.5–3.6), this locus could be an important contributor to ADHD etiology.

  11. Simple and efficient identification of rare recessive pathologically important sequence variants from next generation exome sequence data.

    PubMed

    Carr, Ian M; Morgan, Joanne; Watson, Christopher; Melnik, Svitlana; Diggle, Christine P; Logan, Clare V; Harrison, Sally M; Taylor, Graham R; Pena, Sergio D J; Markham, Alexander F; Alkuraya, Fowzan S; Black, Graeme C M; Ali, Manir; Bonthron, David T

    2013-07-01

    Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis. © 2013 WILEY PERIODICALS, INC.

  12. Identification of missing variants by combining multiple analytic pipelines.

    PubMed

    Ren, Yingxue; Reddy, Joseph S; Pottier, Cyril; Sarangi, Vivekananda; Tian, Shulan; Sinnwell, Jason P; McDonnell, Shannon K; Biernacka, Joanna M; Carrasquillo, Minerva M; Ross, Owen A; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hudson, Matthew; Mainzer, Liudmila Sergeevna; Asmann, Yan W

    2018-04-16

    After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. Identification of the complete variant set from sequencing data is the prerequisite of genetic

  13. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel.

    PubMed

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-06-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.

  14. Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease

    PubMed Central

    Nuytemans, Karen; Bademci, Guney; Inchausti, Vanessa; Dressen, Amy; Kinnamon, Daniel D.; Mehta, Arpit; Wang, Liyong; Züchner, Stephan; Beecham, Gary W.; Martin, Eden R.; Scott, William K.

    2013-01-01

    Objective: Recently, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) have been identified as 2 causal Parkinson disease (PD) genes. We used whole exome sequencing for rapid, parallel analysis of variations in these 2 genes. Methods: We performed whole exome sequencing in 213 patients with PD and 272 control individuals. Those rare variants (RVs) with <5% frequency in the exome variant server database and our own control data were considered for analysis. We performed joint gene-based tests for association using RVASSOC and SKAT (Sequence Kernel Association Test) as well as single-variant test statistics. Results: We identified 3 novel VPS35 variations that changed the coded amino acid (nonsynonymous) in 3 cases. Two variations were in multiplex families and neither segregated with PD. In EIF4G1, we identified 11 (9 nonsynonymous and 2 small indels) RVs including the reported pathogenic mutation p.R1205H, which segregated in all affected members of a large family, but also in 1 unaffected 86-year-old family member. Two additional RVs were found in isolated patients only. Whereas initial association studies suggested an association (p = 0.04) with all RVs in EIF4G1, subsequent testing in a second dataset for the driving variant (p.F1461) suggested no association between RVs in the gene and PD. Conclusions: We confirm that the specific EIF4G1 variation p.R1205H seems to be a strong PD risk factor, but is nonpenetrant in at least one 86-year-old. A few other select RVs in both genes could not be ruled out as causal. However, there was no evidence for an overall contribution of genetic variability in VPS35 or EIF4G1 to PD development in our dataset. PMID:23408866

  15. Imputation of variants from the 1000 Genomes Project modestly improves known associations and can identify low-frequency variant-phenotype associations undetected by HapMap based imputation.

    PubMed

    Wood, Andrew R; Perry, John R B; Tanaka, Toshiko; Hernandez, Dena G; Zheng, Hou-Feng; Melzer, David; Gibbs, J Raphael; Nalls, Michael A; Weedon, Michael N; Spector, Tim D; Richards, J Brent; Bandinelli, Stefania; Ferrucci, Luigi; Singleton, Andrew B; Frayling, Timothy M

    2013-01-01

    Genome-wide association (GWA) studies have been limited by the reliance on common variants present on microarrays or imputable from the HapMap Project data. More recently, the completion of the 1000 Genomes Project has provided variant and haplotype information for several million variants derived from sequencing over 1,000 individuals. To help understand the extent to which more variants (including low frequency (1% ≤ MAF <5%) and rare variants (<1%)) can enhance previously identified associations and identify novel loci, we selected 93 quantitative circulating factors where data was available from the InCHIANTI population study. These phenotypes included cytokines, binding proteins, hormones, vitamins and ions. We selected these phenotypes because many have known strong genetic associations and are potentially important to help understand disease processes. We performed a genome-wide scan for these 93 phenotypes in InCHIANTI. We identified 21 signals and 33 signals that reached P<5×10(-8) based on HapMap and 1000 Genomes imputation, respectively, and 9 and 11 that reached a stricter, likely conservative, threshold of P<5×10(-11) respectively. Imputation of 1000 Genomes genotype data modestly improved the strength of known associations. Of 20 associations detected at P<5×10(-8) in both analyses (17 of which represent well replicated signals in the NHGRI catalogue), six were captured by the same index SNP, five were nominally more strongly associated in 1000 Genomes imputed data and one was nominally more strongly associated in HapMap imputed data. We also detected an association between a low frequency variant and phenotype that was previously missed by HapMap based imputation approaches. An association between rs112635299 and alpha-1 globulin near the SERPINA gene represented the known association between rs28929474 (MAF = 0.007) and alpha1-antitrypsin that predisposes to emphysema (P = 2.5×10(-12)). Our data provide important proof of principle

  16. Imputation of Variants from the 1000 Genomes Project Modestly Improves Known Associations and Can Identify Low-frequency Variant - Phenotype Associations Undetected by HapMap Based Imputation

    PubMed Central

    Wood, Andrew R.; Perry, John R. B.; Tanaka, Toshiko; Hernandez, Dena G.; Zheng, Hou-Feng; Melzer, David; Gibbs, J. Raphael; Nalls, Michael A.; Weedon, Michael N.; Spector, Tim D.; Richards, J. Brent; Bandinelli, Stefania; Ferrucci, Luigi; Singleton, Andrew B.; Frayling, Timothy M.

    2013-01-01

    Genome-wide association (GWA) studies have been limited by the reliance on common variants present on microarrays or imputable from the HapMap Project data. More recently, the completion of the 1000 Genomes Project has provided variant and haplotype information for several million variants derived from sequencing over 1,000 individuals. To help understand the extent to which more variants (including low frequency (1% ≤ MAF <5%) and rare variants (<1%)) can enhance previously identified associations and identify novel loci, we selected 93 quantitative circulating factors where data was available from the InCHIANTI population study. These phenotypes included cytokines, binding proteins, hormones, vitamins and ions. We selected these phenotypes because many have known strong genetic associations and are potentially important to help understand disease processes. We performed a genome-wide scan for these 93 phenotypes in InCHIANTI. We identified 21 signals and 33 signals that reached P<5×10−8 based on HapMap and 1000 Genomes imputation, respectively, and 9 and 11 that reached a stricter, likely conservative, threshold of P<5×10−11 respectively. Imputation of 1000 Genomes genotype data modestly improved the strength of known associations. Of 20 associations detected at P<5×10−8 in both analyses (17 of which represent well replicated signals in the NHGRI catalogue), six were captured by the same index SNP, five were nominally more strongly associated in 1000 Genomes imputed data and one was nominally more strongly associated in HapMap imputed data. We also detected an association between a low frequency variant and phenotype that was previously missed by HapMap based imputation approaches. An association between rs112635299 and alpha-1 globulin near the SERPINA gene represented the known association between rs28929474 (MAF = 0.007) and alpha1-antitrypsin that predisposes to emphysema (P = 2.5×10−12). Our data provide important proof of principle

  17. Contribution of Global Rare Copy-Number Variants to the Risk of Sporadic Congenital Heart Disease

    PubMed Central

    Soemedi, Rachel; Wilson, Ian J.; Bentham, Jamie; Darlay, Rebecca; Töpf, Ana; Zelenika, Diana; Cosgrove, Catherine; Setchfield, Kerry; Thornborough, Chris; Granados-Riveron, Javier; Blue, Gillian M.; Breckpot, Jeroen; Hellens, Stephen; Zwolinkski, Simon; Glen, Elise; Mamasoula, Chrysovalanto; Rahman, Thahira J.; Hall, Darroch; Rauch, Anita; Devriendt, Koenraad; Gewillig, Marc; O’ Sullivan, John; Winlaw, David S.; Bu’Lock, Frances; Brook, J. David; Bhattacharya, Shoumo; Lathrop, Mark; Santibanez-Koref, Mauro; Cordell, Heather J.; Goodship, Judith A.; Keavney, Bernard D.

    2012-01-01

    Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10−5). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ∼5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ∼4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias. PMID:22939634

  18. Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes.

    PubMed

    Wong, John K L; Campbell, Desmond; Ngo, Ngoc Diem; Yeung, Fanny; Cheng, Guo; Tang, Clara S M; Chung, Patrick H Y; Tran, Ngoc Son; So, Man-Ting; Cherny, Stacey S; Sham, Pak C; Tam, Paul K; Garcia-Barcelo, Maria-Mercè

    2016-12-12

    Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. We aim to identify genetic risk factors by a "trio-based" exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD.

  19. Design of DNA pooling to allow incorporation of covariates in rare variants analysis.

    PubMed

    Guan, Weihua; Li, Chun

    2014-01-01

    Rapid advances in next-generation sequencing technologies facilitate genetic association studies of an increasingly wide array of rare variants. To capture the rare or less common variants, a large number of individuals will be needed. However, the cost of a large scale study using whole genome or exome sequencing is still high. DNA pooling can serve as a cost-effective approach, but with a potential limitation that the identity of individual genomes would be lost and therefore individual characteristics and environmental factors could not be adjusted in association analysis, which may result in power loss and a biased estimate of genetic effect. For case-control studies, we propose a design strategy for pool creation and an analysis strategy that allows covariate adjustment, using multiple imputation technique. Simulations show that our approach can obtain reasonable estimate for genotypic effect with only slight loss of power compared to the much more expensive approach of sequencing individual genomes. Our design and analysis strategies enable more powerful and cost-effective sequencing studies of complex diseases, while allowing incorporation of covariate adjustment.

  20. Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients

    PubMed Central

    Sadovnick, A. Dessa; Traboulsee, Anthony L.; Bernales, Cecily Q.; Ross, Jay P.; Forwell, Amanda L.; Yee, Irene M.; Guillot-Noel, Lena; Fontaine, Bertrand; Cournu-Rebeix, Isabelle; Alcina, Antonio; Fedetz, Maria; Izquierdo, Guillermo; Matesanz, Fuencisla; Hilven, Kelly; Dubois, Bénédicte; Goris, An; Astobiza, Ianire; Alloza, Iraide; Antigüedad, Alfredo; Vandenbroeck, Koen; Akkad, Denis A.; Aktas, Orhan; Blaschke, Paul; Buttmann, Mathias; Chan, Andrew; Epplen, Joerg T.; Gerdes, Lisa-Ann; Kroner, Antje; Kubisch, Christian; Kümpfel, Tania; Lohse, Peter; Rieckmann, Peter; Zettl, Uwe K.; Zipp, Frauke; Bertram, Lars; Lill, Christina M; Fernandez, Oscar; Urbaneja, Patricia; Leyva, Laura; Alvarez-Cermeño, Jose Carlos; Arroyo, Rafael; Garagorri, Aroa M.; García-Martínez, Angel; Villar, Luisa M.; Urcelay, Elena; Malhotra, Sunny; Montalban, Xavier; Comabella, Manuel; Berger, Thomas; Fazekas, Franz; Reindl, Markus; Schmied, Mascha C.; Zimprich, Alexander; Vilariño-Güell, Carles

    2016-01-01

    Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93–1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility. PMID:27194806

  1. Effect of RareGenetic Variants in the β2 Adrenergic Receptor Geneon the Risk for Exacerbations and Symptom Control During Long-Acting Beta Agonist Treatment in a Multi-Ethnic Asthma Population

    PubMed Central

    Ortega, Victor E.; Hawkins, Gregory A.; Moore, Wendy C.; Hastie, Annette T.; Ampleford, Elizabeth J.; Busse, William W.; Castro, Mario; Chardon, Domingo; Erzurum, Serpil C.; Israel, Elliot; Montealegre, Federico; Wenzel, Sally E.; Peters, Stephen P.; Meyers, Deborah A.; Bleecker, Eugene R.

    2014-01-01

    Background Severe adverse life-threatening events associated with long-acting beta agonists (LABA) use have caused the FDA to review LABA safety which has resulted in a boxed warning and a mandatory LABA safety study in 46,800 asthmatics. Identification of an at-risk, susceptible subpopulation using predictive biomarkers is critical in understanding LABA safety. The β2-adrenergic receptor gene (ADRB2) contains a common, nonsynonymous single nucleotide polymorphism, Gly16Arg, that is unlikely to account for rare, life-threatening events. We hypothesize that rare ADRB2 variants with strong effects modulate therapeutic responses to long-acting beta agonist (LABA) therapy and contribute to rare, severe adverse events. Methods ADRB2 was sequenced in 197 African Americans, 191 non-Hispanic Whites, and 73 Puerto Ricans. Sequencing identified six rare variants which were genotyped in 1,165 asthmatics (total=1,626). The primary hypothesis was that severe asthma exacerbations requiring hospitalization were associated with rare ADRB2 variants. Replication was performed in 659 non-Hispanic White asthma subjects. Findings Asthmatics receiving LABA with a rare variant had increased asthma-related hospitalizations (meta-analysis for all ethnic groups: p=2·83 × 10−4), specifically LABA-treated non-Hispanic Whites with the rare Ile164 allele (only rare variant in Whites, OR4·48, 95% CI 1·40–14·0, p=0·01) and African Americans with a 25 base-pair promoter polynucleotide insertion (OR 13·43, 95% CI 2·02–265·4, p=0·006). The subset of non-Hispanic Whites and African Americans receiving LABAs with these rare variants had increased exacerbations requiring urgent outpatient healthcare visits (non-Hispanic Whites with or without the rare Ile164 allele: 2·6 visits versus 1·1 visits, p=8·4 × 10−7 and African Americans with or without the rare insertion: 3·7 visits versus 2·4 visits, 0·01), and more frequently were treated with chronic systemic corticosteroids (OR4

  2. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel

    PubMed Central

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-01-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies. PMID:28401899

  3. Search for Rare Copy-Number Variants in Congenital Heart Defects Identifies Novel Candidate Genes and a Potential Role for FOXC1 in Patients With Coarctation of the Aorta.

    PubMed

    Sanchez-Castro, Marta; Eldjouzi, Hadja; Charpentier, Eric; Busson, Pierre-François; Hauet, Quentin; Lindenbaum, Pierre; Delasalle-Guyomarch, Béatrice; Baudry, Adrien; Pichon, Olivier; Pascal, Cécile; Lefort, Bruno; Bajolle, Fanny; Pezard, Philippe; Schott, Jean-Jacques; Dina, Christian; Redon, Richard; Gournay, Véronique; Bonnet, Damien; Le Caignec, Cédric

    2016-02-01

    Congenital heart defects are the most frequent malformations among newborns and a frequent cause of morbidity and mortality. Although genetic variation contributes to congenital heart defects, their precise molecular bases remain unknown in the majority of patients. We analyzed, by high-resolution array comparative genomic hybridization, 316 children with sporadic, nonsyndromic congenital heart defects, including 76 coarctation of the aorta, 159 transposition of the great arteries, and 81 tetralogy of Fallot, as well as their unaffected parents. We identified by array comparative genomic hybridization, and validated by quantitative real-time polymerase chain reaction, 71 rare de novo (n=8) or inherited (n=63) copy-number variants (CNVs; 50 duplications and 21 deletions) in patients. We identified 113 candidate genes for congenital heart defects within these CNVs, including BTRC, CHRNB3, CSRP2BP, ERBB2, ERMARD, GLIS3, PLN, PTPRJ, RLN3, and TCTE3. No de novo CNVs were identified in patients with transposition of the great arteries in contrast to coarctation of the aorta and tetralogy of Fallot (P=0.002; Fisher exact test). A search for transcription factor binding sites showed that 93% of the rare CNVs identified in patients with coarctation of the aorta contained at least 1 gene with FOXC1-binding sites. This significant enrichment (P<0.0001; permutation test) was not observed for the CNVs identified in patients with transposition of the great arteries and tetralogy of Fallot. We hypothesize that these CNVs may alter the expression of genes regulated by FOXC1. Foxc1 belongs to the forkhead transcription factors family, which plays a critical role in cardiovascular development in mice. These data suggest that deregulation of FOXC1 or its downstream genes play a major role in the pathogenesis of coarctation of the aorta in humans. © 2015 American Heart Association, Inc.

  4. Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing.

    PubMed

    Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin

    2017-12-01

    Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10-6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10-4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10-4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10-5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene.

  5. Integrated analysis of germline and somatic variants in ovarian cancer.

    PubMed

    Kanchi, Krishna L; Johnson, Kimberly J; Lu, Charles; McLellan, Michael D; Leiserson, Mark D M; Wendl, Michael C; Zhang, Qunyuan; Koboldt, Daniel C; Xie, Mingchao; Kandoth, Cyriac; McMichael, Joshua F; Wyczalkowski, Matthew A; Larson, David E; Schmidt, Heather K; Miller, Christopher A; Fulton, Robert S; Spellman, Paul T; Mardis, Elaine R; Druley, Todd E; Graubert, Timothy A; Goodfellow, Paul J; Raphael, Benjamin J; Wilson, Richard K; Ding, Li

    2014-01-01

    We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2 truncations, respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.

  6. A genome-wide assessment of rare copy number variants in colorectal cancer.

    PubMed

    Li, Zhenli; Yu, Dan; Gan, Meifu; Shan, Qiaonan; Yin, Xiaoyang; Tang, Shunli; Zhang, Shuai; Shi, Yongyong; Zhu, Yimin; Lai, Maode; Zhang, Dandan

    2015-09-22

    Colorectal cancer (CRC) is a complex disease with an estimated heritability of approximately 35%. However, known CRC-related common single nucleotide polymorphisms (SNPs) can only explain ~0.65% of the heritability. This "missing heritability" may be explained partially by rare copy number variants (CNVs). In this study, we performed a genome-wide scan using Illumina Human-Omni Express BeadChip, 694 sporadic CRC cases and 1641 controls were eventually included in our analysis after quality control. The global burden analysis revealed a 1.53-fold excess of rare CNVs in CRC cases compared with controls (P < 1 × 10(-6)), and the difference being more pronounced for genic rare CNVs and CNVs overlapped with coding regions (1.65-fold and 1.84-fold, respectively, both P < 1 × 10(-6)). Interestingly, both the cases in the lowest and middle tertile of age carried a higher burden of rare CNVs comparing to the highest tertile. Furthermore, 639 CNV-disrupted genes exclusive to CRC cases were found to be significantly enriched in gene ontology (GO) terms concerning nucleosome assembly and olfactory receptor activity. Our study was the first to evaluate the burden of rare CNVs in sporadic CRC and suggested that rare CNVs contributed to the missing heritability of CRC.

  7. Rare Variants in the Epithelial Cadherin Gene Underlying the Genetic Etiology of Nonsyndromic Cleft Lip with or without Cleft Palate.

    PubMed

    Brito, Luciano Abreu; Yamamoto, Guilherme Lopes; Melo, Soraia; Malcher, Carolina; Ferreira, Simone Gomes; Figueiredo, Joana; Alvizi, Lucas; Kobayashi, Gerson Shigeru; Naslavsky, Michel Satya; Alonso, Nivaldo; Felix, Temis Maria; Zatz, Mayana; Seruca, Raquel; Passos-Bueno, Maria Rita

    2015-11-01

    Nonsyndromic orofacial cleft (NSOFC) is a complex disease of still unclear genetic etiology. To investigate the contribution of rare epithelial cadherin (CDH1) gene variants to NSOFC, we target sequenced 221 probands. Candidate variants were evaluated via in vitro, in silico, or segregation analyses. Three probably pathogenic variants (c.760G>A [p.Asp254Asn], c.1023T>G [p.Tyr341*], and c.2351G>A [p.Arg784His]) segregated according to autosomal dominant inheritance in four nonsyndromic cleft lip with or without cleft palate (NSCL/P) families (Lod score: 5.8 at θ = 0; 47% penetrance). A fourth possibly pathogenic variant (c.387+5G>A) was also found, but further functional analyses are needed (overall prevalence of CDH1 candidate variants: 2%; 15.4% among familial cases). CDH1 mutational burden was higher among probands from familial cases when compared to that of controls (P = 0.002). We concluded that CDH1 contributes to NSCL/P with mainly rare, moderately penetrant variants, and CDH1 haploinsufficiency is the likely etiological mechanism. © 2015 WILEY PERIODICALS, INC.

  8. Rare and Coding Region Genetic Variants Associated With Risk of Ischemic Stroke: The NHLBI Exome Sequence Project.

    PubMed

    Auer, Paul L; Nalls, Mike; Meschia, James F; Worrall, Bradford B; Longstreth, W T; Seshadri, Sudha; Kooperberg, Charles; Burger, Kathleen M; Carlson, Christopher S; Carty, Cara L; Chen, Wei-Min; Cupples, L Adrienne; DeStefano, Anita L; Fornage, Myriam; Hardy, John; Hsu, Li; Jackson, Rebecca D; Jarvik, Gail P; Kim, Daniel S; Lakshminarayan, Kamakshi; Lange, Leslie A; Manichaikul, Ani; Quinlan, Aaron R; Singleton, Andrew B; Thornton, Timothy A; Nickerson, Deborah A; Peters, Ulrike; Rich, Stephen S

    2015-07-01

    Stroke is the second leading cause of death and the third leading cause of years of life lost. Genetic factors contribute to stroke prevalence, and candidate gene and genome-wide association studies (GWAS) have identified variants associated with ischemic stroke risk. These variants often have small effects without obvious biological significance. Exome sequencing may discover predicted protein-altering variants with a potentially large effect on ischemic stroke risk. To investigate the contribution of rare and common genetic variants to ischemic stroke risk by targeting the protein-coding regions of the human genome. The National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP) analyzed approximately 6000 participants from numerous cohorts of European and African ancestry. For discovery, 365 cases of ischemic stroke (small-vessel and large-vessel subtypes) and 809 European ancestry controls were sequenced; for replication, 47 affected sibpairs concordant for stroke subtype and an African American case-control series were sequenced, with 1672 cases and 4509 European ancestry controls genotyped. The ESP's exome sequencing and genotyping started on January 1, 2010, and continued through June 30, 2012. Analyses were conducted on the full data set between July 12, 2012, and July 13, 2013. Discovery of new variants or genes contributing to ischemic stroke risk and subtype (primary analysis) and determination of support for protein-coding variants contributing to risk in previously published candidate genes (secondary analysis). We identified 2 novel genes associated with an increased risk of ischemic stroke: a protein-coding variant in PDE4DIP (rs1778155; odds ratio, 2.15; P = 2.63 × 10(-8)) with an intracellular signal transduction mechanism and in ACOT4 (rs35724886; odds ratio, 2.04; P = 1.24 × 10(-7)) with a fatty acid metabolism; confirmation of PDE4DIP was observed in affected sibpair families with large-vessel stroke

  9. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families.

    PubMed

    Cruchaga, Carlos; Haller, Gabe; Chakraverty, Sumitra; Mayo, Kevin; Vallania, Francesco L M; Mitra, Robi D; Faber, Kelley; Williamson, Jennifer; Bird, Tom; Diaz-Arrastia, Ramon; Foroud, Tatiana M; Boeve, Bradley F; Graff-Radford, Neill R; St Jean, Pamela; Lawson, Michael; Ehm, Margaret G; Mayeux, Richard; Goate, Alison M

    2012-01-01

    Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09 × 10⁻⁵; OR = 2.21; 95%CI = 1.49-3.28) or an unselected population of 12,481 samples (p = 6.82 × 10⁻⁵; OR = 2.19; 95%CI = 1.347-3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.

  10. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis

    PubMed Central

    Beecham, Ashley H; Patsopoulos, Nikolaos A; Xifara, Dionysia K; Davis, Mary F; Kemppinen, Anu; Cotsapas, Chris; Shahi, Tejas S; Spencer, Chris; Booth, David; Goris, An; Oturai, Annette; Saarela, Janna; Fontaine, Bertrand; Hemmer, Bernhard; Martin, Claes; Zipp, Frauke; D’alfonso, Sandra; Martinelli-Boneschi, Filippo; Taylor, Bruce; Harbo, Hanne F; Kockum, Ingrid; Hillert, Jan; Olsson, Tomas; Ban, Maria; Oksenberg, Jorge R; Hintzen, Rogier; Barcellos, Lisa F; Agliardi, Cristina; Alfredsson, Lars; Alizadeh, Mehdi; Anderson, Carl; Andrews, Robert; Søndergaard, Helle Bach; Baker, Amie; Band, Gavin; Baranzini, Sergio E; Barizzone, Nadia; Barrett, Jeffrey; Bellenguez, Céline; Bergamaschi, Laura; Bernardinelli, Luisa; Berthele, Achim; Biberacher, Viola; Binder, Thomas M C; Blackburn, Hannah; Bomfim, Izaura L; Brambilla, Paola; Broadley, Simon; Brochet, Bruno; Brundin, Lou; Buck, Dorothea; Butzkueven, Helmut; Caillier, Stacy J; Camu, William; Carpentier, Wassila; Cavalla, Paola; Celius, Elisabeth G; Coman, Irène; Comi, Giancarlo; Corrado, Lucia; Cosemans, Leentje; Cournu-Rebeix, Isabelle; Cree, Bruce A C; Cusi, Daniele; Damotte, Vincent; Defer, Gilles; Delgado, Silvia R; Deloukas, Panos; di Sapio, Alessia; Dilthey, Alexander T; Donnelly, Peter; Dubois, Bénédicte; Duddy, Martin; Edkins, Sarah; Elovaara, Irina; Esposito, Federica; Evangelou, Nikos; Fiddes, Barnaby; Field, Judith; Franke, Andre; Freeman, Colin; Frohlich, Irene Y; Galimberti, Daniela; Gieger, Christian; Gourraud, Pierre-Antoine; Graetz, Christiane; Graham, Andrew; Grummel, Verena; Guaschino, Clara; Hadjixenofontos, Athena; Hakonarson, Hakon; Halfpenny, Christopher; Hall, Gillian; Hall, Per; Hamsten, Anders; Harley, James; Harrower, Timothy; Hawkins, Clive; Hellenthal, Garrett; Hillier, Charles; Hobart, Jeremy; Hoshi, Muni; Hunt, Sarah E; Jagodic, Maja; Jelčić, Ilijas; Jochim, Angela; Kendall, Brian; Kermode, Allan; Kilpatrick, Trevor; Koivisto, Keijo; Konidari, Ioanna; Korn, Thomas; Kronsbein, Helena; Langford, Cordelia; Larsson, Malin; Lathrop, Mark; Lebrun-Frenay, Christine; Lechner-Scott, Jeannette; Lee, Michelle H; Leone, Maurizio A; Leppä, Virpi; Liberatore, Giuseppe; Lie, Benedicte A; Lill, Christina M; Lindén, Magdalena; Link, Jenny; Luessi, Felix; Lycke, Jan; Macciardi, Fabio; Männistö, Satu; Manrique, Clara P; Martin, Roland; Martinelli, Vittorio; Mason, Deborah; Mazibrada, Gordon; McCabe, Cristin; Mero, Inger-Lise; Mescheriakova, Julia; Moutsianas, Loukas; Myhr, Kjell-Morten; Nagels, Guy; Nicholas, Richard; Nilsson, Petra; Piehl, Fredrik; Pirinen, Matti; Price, Siân E; Quach, Hong; Reunanen, Mauri; Robberecht, Wim; Robertson, Neil P; Rodegher, Mariaemma; Rog, David; Salvetti, Marco; Schnetz-Boutaud, Nathalie C; Sellebjerg, Finn; Selter, Rebecca C; Schaefer, Catherine; Shaunak, Sandip; Shen, Ling; Shields, Simon; Siffrin, Volker; Slee, Mark; Sorensen, Per Soelberg; Sorosina, Melissa; Sospedra, Mireia; Spurkland, Anne; Strange, Amy; Sundqvist, Emilie; Thijs, Vincent; Thorpe, John; Ticca, Anna; Tienari, Pentti; van Duijn, Cornelia; Visser, Elizabeth M; Vucic, Steve; Westerlind, Helga; Wiley, James S; Wilkins, Alastair; Wilson, James F; Winkelmann, Juliane; Zajicek, John; Zindler, Eva; Haines, Jonathan L; Pericak-Vance, Margaret A; Ivinson, Adrian J; Stewart, Graeme; Hafler, David; Hauser, Stephen L; Compston, Alastair; McVean, Gil; De Jager, Philip; Sawcer, Stephen; McCauley, Jacob L

    2013-01-01

    Using the ImmunoChip custom genotyping array, we analysed 14,498 multiple sclerosis subjects and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (p-value < 1.0 × 10-4). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802 multiple sclerosis subjects and 26,703 healthy controls. In these 80,094 individuals of European ancestry we identified 48 new susceptibility variants (p-value < 5.0 × 10-8); three found after conditioning on previously identified variants. Thus, there are now 110 established multiple sclerosis risk variants in 103 discrete loci outside of the Major Histocompatibility Complex. With high resolution Bayesian fine-mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalogue of multiple sclerosis risk variants and illustrates the value of fine-mapping in the resolution of GWAS signals. PMID:24076602

  11. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel.

    PubMed

    Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Gambaro, Giovanni; Richards, J Brent; Durbin, Richard; Timpson, Nicholas J; Marchini, Jonathan; Soranzo, Nicole

    2015-09-14

    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants.

  12. Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children.

    PubMed

    Butte, Nancy F; Voruganti, V Saroja; Cole, Shelley A; Haack, Karin; Comuzzie, Anthony G; Muzny, Donna M; Wheeler, David A; Chang, Kyle; Hawes, Alicia; Gibbs, Richard A

    2011-09-22

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5' and 3' flanking regions of IRS2 (∼14.5 kb), were bidirectionally sequenced for single nucleotide polymorphism (SNP) discovery in 934 Hispanic children using 3730XL DNA Sequencers. Additionally, 15 SNPs derived from Illumina HumanOmni1-Quad BeadChips were analyzed. Measured genotype analysis tested associations between SNPs and obesity and diabetes-related traits. Bayesian quantitative trait nucleotide analysis was used to statistically infer the most likely functional polymorphisms. A total of 140 SNPs were identified with minor allele frequencies (MAF) ranging from 0.001 to 0.47. Forty-two of the 70 coding SNPs result in nonsynonymous amino acid substitutions relative to the consensus sequence; 28 SNPs were detected in the promoter, 12 in introns, 28 in the 3'-UTR, and 2 in the 5'-UTR. Two insertion/deletions (indels) were detected. Ten independent rare SNPs (MAF = 0.001-0.009) were associated with obesity-related traits (P = 0.01-0.00002). SNP 10510452_139 in the promoter region was shown to have a high posterior probability (P = 0.77-0.86) of influencing BMI, fat mass, and waist circumference in Hispanic children. SNP 10510452_139 contributed between 2 and 4% of the population variance in body weight and composition. None of the SNPs or indels were associated with diabetes-related traits or accounted for a previously identified quantitative trait locus on chromosome 13 for fasting serum glucose. Rare but not common IRS2 variants may play a role in the regulation of body weight but not an essential role in fasting glucose homeostasis in Hispanic children.

  13. Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children

    PubMed Central

    Voruganti, V. Saroja; Cole, Shelley A.; Haack, Karin; Comuzzie, Anthony G.; Muzny, Donna M.; Wheeler, David A.; Chang, Kyle; Hawes, Alicia; Gibbs, Richard A.

    2011-01-01

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5′ and 3′ flanking regions of IRS2 (∼14.5 kb), were bidirectionally sequenced for single nucleotide polymorphism (SNP) discovery in 934 Hispanic children using 3730XL DNA Sequencers. Additionally, 15 SNPs derived from Illumina HumanOmni1-Quad BeadChips were analyzed. Measured genotype analysis tested associations between SNPs and obesity and diabetes-related traits. Bayesian quantitative trait nucleotide analysis was used to statistically infer the most likely functional polymorphisms. A total of 140 SNPs were identified with minor allele frequencies (MAF) ranging from 0.001 to 0.47. Forty-two of the 70 coding SNPs result in nonsynonymous amino acid substitutions relative to the consensus sequence; 28 SNPs were detected in the promoter, 12 in introns, 28 in the 3′-UTR, and 2 in the 5′-UTR. Two insertion/deletions (indels) were detected. Ten independent rare SNPs (MAF = 0.001–0.009) were associated with obesity-related traits (P = 0.01–0.00002). SNP 10510452_139 in the promoter region was shown to have a high posterior probability (P = 0.77–0.86) of influencing BMI, fat mass, and waist circumference in Hispanic children. SNP 10510452_139 contributed between 2 and 4% of the population variance in body weight and composition. None of the SNPs or indels were associated with diabetes-related traits or accounted for a previously identified quantitative trait locus on chromosome 13 for fasting serum glucose. Rare but not common IRS2 variants may play a role in the regulation of body weight but not an essential role in fasting glucose homeostasis in Hispanic children. PMID:21771880

  14. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants.

    PubMed

    Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D

    2014-11-04

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.

  15. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants

    PubMed Central

    Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.

    2014-01-01

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903

  16. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.

    PubMed

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene; Grarup, Niels; Sebastian, David; Rodriguez-Fos, Elias; Sánchez, Friman; Planas-Fèlix, Mercè; Cortes-Sánchez, Paula; González, Santi; Timshel, Pascal; Pers, Tune H; Morgan, Claire C; Moran, Ignasi; Atla, Goutham; González, Juan R; Puiggros, Montserrat; Martí, Jonathan; Andersson, Ehm A; Díaz, Carlos; Badia, Rosa M; Udler, Miriam; Leong, Aaron; Kaur, Varindepal; Flannick, Jason; Jørgensen, Torben; Linneberg, Allan; Jørgensen, Marit E; Witte, Daniel R; Christensen, Cramer; Brandslund, Ivan; Appel, Emil V; Scott, Robert A; Luan, Jian'an; Langenberg, Claudia; Wareham, Nicholas J; Pedersen, Oluf; Zorzano, Antonio; Florez, Jose C; Hansen, Torben; Ferrer, Jorge; Mercader, Josep Maria; Torrents, David

    2018-01-22

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.

  17. Frequent and Rare HABP2 Variants Are Not Associated with Increased Susceptibility to Familial Nonmedullary Thyroid Carcinoma in the Spanish Population.

    PubMed

    de Randamie, Rajdee; Martos-Moreno, Gabriel Ángel; Lumbreras, César; Chueca, Maria; Donnay, Sergio; Luque, Manuel; Regojo, Rita María; Mendiola, Marta; Hardisson, David; Argente, Jesús; Moreno, José C

    2018-06-12

    A genomic HABP2 variant was proposed to be responsible for familial nonmedullary thyroid carcinoma (FNMTC). However, its involvement has been questioned in subsequent studies. We aimed to identify genetic HABP2 mutations in a series of FNMTC patients and investigate their involvement in the disease. HABP2 was sequenced from 6 index patients. Presence of the variants was investigated in all members of one family. Somatic BRAF and RAS "hotspot" mutations were investigated by the IdyllaTM BRAF Mutation Test and/or Sanger sequencing. Two HABP2 variants (p.E393Q and p.G534E) were identified in the index patient from one family with papillary thyroid carcinoma (PTC) (follicular variant). The prevalence of p.E393Q in Spanish control alleles was 0.5% and that of p.G534E was 5.1%. However, neither change cosegregated with the phenotype in 3 affected members and 5 healthy members of the kindred. Interestingly, all 3 members affected by PTC harbored the p.V600E somatic mutation in BRAF. The variant G534E is prevalent in the Spanish population (5.1%); however, p.E393Q is rare (< 1%) and none cosegregated with the FNMTC phenotype. The presence of the noninheritable V600E BRAF mutation in this family supports Knudson's "double-hit" hypothesis for cancer development and suggests the involvement of more than 1 gene in the clinical expression of FNMTC. © 2018 S. Karger AG, Basel.

  18. Prehepatocholedochal proper hepatic artery. Rare anatomical variant. Surgical considerations. Case report.

    PubMed

    Ardeleanu, V; Chicoş, S; Tutunaru, D; Georgescu, C

    2014-01-01

    In classical anatomic variants, the proper hepatic artery (PHA)continues the common hepatic artery (CHA) after the gastroduodenal artery (GDA) detaches itself and divides into the right hepatic artery (RHA) and left hepatic artery (LHA), the proper hepatic artery being located to the left of the hepatocholedochal duct (HCD). This paper presents an abnormal positioning of the PHA placed before the HCD with an increased diameter of about 5-7 mm, which could be confused with the HCD. We present the case of a 57 year-old woman diagnosed with acute lithiasic cholecystitis, associated with hypersplenism and hypertension. The literature mentions manifold anatomical variants of arterial liver vascularization,including PHA. For this reason, this paper presents an overview of similar cases that can be found in medical literature. The aforementioned case is a rare topographic anatomy for the PHA that can easily pass for HCD especially during celioscopy, therefore it is crucial for this to be acknowledged by all surgeons. Celsius.

  19. Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.

    PubMed

    Lin, Honghuang; van Setten, Jessica; Smith, Albert V; Bihlmeyer, Nathan A; Warren, Helen R; Brody, Jennifer A; Radmanesh, Farid; Hall, Leanne; Grarup, Niels; Müller-Nurasyid, Martina; Boutin, Thibaud; Verweij, Niek; Lin, Henry J; Li-Gao, Ruifang; van den Berg, Marten E; Marten, Jonathan; Weiss, Stefan; Prins, Bram P; Haessler, Jeffrey; Lyytikäinen, Leo-Pekka; Mei, Hao; Harris, Tamara B; Launer, Lenore J; Li, Man; Alonso, Alvaro; Soliman, Elsayed Z; Connell, John M; Huang, Paul L; Weng, Lu-Chen; Jameson, Heather S; Hucker, William; Hanley, Alan; Tucker, Nathan R; Chen, Yii-Der Ida; Bis, Joshua C; Rice, Kenneth M; Sitlani, Colleen M; Kors, Jan A; Xie, Zhijun; Wen, Chengping; Magnani, Jared W; Nelson, Christopher P; Kanters, Jørgen K; Sinner, Moritz F; Strauch, Konstantin; Peters, Annette; Waldenberger, Melanie; Meitinger, Thomas; Bork-Jensen, Jette; Pedersen, Oluf; Linneberg, Allan; Rudan, Igor; de Boer, Rudolf A; van der Meer, Peter; Yao, Jie; Guo, Xiuqing; Taylor, Kent D; Sotoodehnia, Nona; Rotter, Jerome I; Mook-Kanamori, Dennis O; Trompet, Stella; Rivadeneira, Fernando; Uitterlinden, André; Eijgelsheim, Mark; Padmanabhan, Sandosh; Smith, Blair H; Völzke, Henry; Felix, Stephan B; Homuth, Georg; Völker, Uwe; Mangino, Massimo; Spector, Timothy D; Bots, Michiel L; Perez, Marco; Kähönen, Mika; Raitakari, Olli T; Gudnason, Vilmundur; Arking, Dan E; Munroe, Patricia B; Psaty, Bruce M; van Duijn, Cornelia M; Benjamin, Emelia J; Rosand, Jonathan; Samani, Nilesh J; Hansen, Torben; Kääb, Stefan; Polasek, Ozren; van der Harst, Pim; Heckbert, Susan R; Jukema, J Wouter; Stricker, Bruno H; Hayward, Caroline; Dörr, Marcus; Jamshidi, Yalda; Asselbergs, Folkert W; Kooperberg, Charles; Lehtimäki, Terho; Wilson, James G; Ellinor, Patrick T; Lubitz, Steven A; Isaacs, Aaron

    2018-05-01

    Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction ( P <1.2×10 -6 ), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 ( P =5.9×10 -11 ) and SCN5A ( P =1.1×10 -7 ) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health. © 2018 American Heart Association, Inc.

  20. Novel features and enhancements in BioBin, a tool for the biologically inspired binning and association analysis of rare variants

    PubMed Central

    Byrska-Bishop, Marta; Wallace, John; Frase, Alexander T; Ritchie, Marylyn D

    2018-01-01

    Abstract Motivation BioBin is an automated bioinformatics tool for the multi-level biological binning of sequence variants. Herein, we present a significant update to BioBin which expands the software to facilitate a comprehensive rare variant analysis and incorporates novel features and analysis enhancements. Results In BioBin 2.3, we extend our software tool by implementing statistical association testing, updating the binning algorithm, as well as incorporating novel analysis features providing for a robust, highly customizable, and unified rare variant analysis tool. Availability and implementation The BioBin software package is open source and freely available to users at http://www.ritchielab.com/software/biobin-download Contact mdritchie@geisinger.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28968757

  1. Rare variants of RNF213 and moyamoya/non-moyamoya intracranial artery stenosis/occlusion disease risk: a meta-analysis and systematic review.

    PubMed

    Liao, Xin; Deng, Jing; Dai, Wenjie; Zhang, Tong; Yan, Junxia

    2017-11-02

    Japan and Korea with 2 ~ 4 times larger effect sizes than that in China (dominant model ORs 10.71, 28.52, and 5.59, respectively). Another two rare variants- p.E4950D and p.A5021V significantly increased MMD risk in Chinese population (dominant model ORs 9.06 and 5.01, respectively). Various other rare variants in RNF213 were identified in Japanese, Chinese, European, and Hispanic American populations without association evidence available yet. This meta-analysis shows the critical roles of RNF213 p.R4810K in MMD especially familial MMD and ICASO in Japan, Korea, and China. Except for RNF213 p.R4810K, MMD seems to have more complex determiners in China. Distinct genetic background exists and other environmental or genetic factor(s) may contribute to MMD. Studies focused on delineating the ethnicity-specific factors and pathological role of RNF213 variants in MMD and ICASO are needed.

  2. Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing

    PubMed Central

    Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin

    2017-01-01

    Abstract Background Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Methods Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Results Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10‐6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10‐4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10‐4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10‐5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. Conclusions The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and

  3. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility

    PubMed Central

    Wessel, Jennifer; Chu, Audrey Y; Willems, Sara M; Wang, Shuai; Yaghootkar, Hanieh; Brody, Jennifer A; Dauriz, Marco; Hivert, Marie-France; Raghavan, Sridharan; Lipovich, Leonard; Hidalgo, Bertha; Fox, Keolu; Huffman, Jennifer E; An, Ping; Lu, Yingchang; Rasmussen-Torvik, Laura J; Grarup, Niels; Ehm, Margaret G; Li, Li; Baldridge, Abigail S; Stančáková, Alena; Abrol, Ravinder; Besse, Céline; Boland, Anne; Bork-Jensen, Jette; Fornage, Myriam; Freitag, Daniel F; Garcia, Melissa E; Guo, Xiuqing; Hara, Kazuo; Isaacs, Aaron; Jakobsdottir, Johanna; Lange, Leslie A; Layton, Jill C; Li, Man; Hua Zhao, Jing; Meidtner, Karina; Morrison, Alanna C; Nalls, Mike A; Peters, Marjolein J; Sabater-Lleal, Maria; Schurmann, Claudia; Silveira, Angela; Smith, Albert V; Southam, Lorraine; Stoiber, Marcus H; Strawbridge, Rona J; Taylor, Kent D; Varga, Tibor V; Allin, Kristine H; Amin, Najaf; Aponte, Jennifer L; Aung, Tin; Barbieri, Caterina; Bihlmeyer, Nathan A; Boehnke, Michael; Bombieri, Cristina; Bowden, Donald W; Burns, Sean M; Chen, Yuning; Chen, Yii-DerI; Cheng, Ching-Yu; Correa, Adolfo; Czajkowski, Jacek; Dehghan, Abbas; Ehret, Georg B; Eiriksdottir, Gudny; Escher, Stefan A; Farmaki, Aliki-Eleni; Frånberg, Mattias; Gambaro, Giovanni; Giulianini, Franco; Goddard, William A; Goel, Anuj; Gottesman, Omri; Grove, Megan L; Gustafsson, Stefan; Hai, Yang; Hallmans, Göran; Heo, Jiyoung; Hoffmann, Per; Ikram, Mohammad K; Jensen, Richard A; Jørgensen, Marit E; Jørgensen, Torben; Karaleftheri, Maria; Khor, Chiea C; Kirkpatrick, Andrea; Kraja, Aldi T; Kuusisto, Johanna; Lange, Ethan M; Lee, I T; Lee, Wen-Jane; Leong, Aaron; Liao, Jiemin; Liu, Chunyu; Liu, Yongmei; Lindgren, Cecilia M; Linneberg, Allan; Malerba, Giovanni; Mamakou, Vasiliki; Marouli, Eirini; Maruthur, Nisa M; Matchan, Angela; McKean-Cowdin, Roberta; McLeod, Olga; Metcalf, Ginger A; Mohlke, Karen L; Muzny, Donna M; Ntalla, Ioanna; Palmer, Nicholette D; Pasko, Dorota; Peter, Andreas; Rayner, Nigel W; Renström, Frida; Rice, Ken; Sala, Cinzia F; Sennblad, Bengt; Serafetinidis, Ioannis; Smith, Jennifer A; Soranzo, Nicole; Speliotes, Elizabeth K; Stahl, Eli A; Stirrups, Kathleen; Tentolouris, Nikos; Thanopoulou, Anastasia; Torres, Mina; Traglia, Michela; Tsafantakis, Emmanouil; Javad, Sundas; Yanek, Lisa R; Zengini, Eleni; Becker, Diane M; Bis, Joshua C; Brown, James B; Adrienne Cupples, L; Hansen, Torben; Ingelsson, Erik; Karter, Andrew J; Lorenzo, Carlos; Mathias, Rasika A; Norris, Jill M; Peloso, Gina M; Sheu, Wayne H.-H.; Toniolo, Daniela; Vaidya, Dhananjay; Varma, Rohit; Wagenknecht, Lynne E; Boeing, Heiner; Bottinger, Erwin P; Dedoussis, George; Deloukas, Panos; Ferrannini, Ele; Franco, Oscar H; Franks, Paul W; Gibbs, Richard A; Gudnason, Vilmundur; Hamsten, Anders; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; Hofman, Albert; Jansson, Jan-Håkan; Langenberg, Claudia; Launer, Lenore J; Levy, Daniel; Oostra, Ben A; O'Donnell, Christopher J; O'Rahilly, Stephen; Padmanabhan, Sandosh; Pankow, James S; Polasek, Ozren; Province, Michael A; Rich, Stephen S; Ridker, Paul M; Rudan, Igor; Schulze, Matthias B; Smith, Blair H; Uitterlinden, André G; Walker, Mark; Watkins, Hugh; Wong, Tien Y; Zeggini, Eleftheria; Sharp, Stephen J; Forouhi, Nita G; Kerrison, Nicola D; Lucarelli, Debora ME; Sims, Matt; Barroso, Inês; McCarthy, Mark I; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Gonzalez, Carlos; Grioni, Sara; Kaaks, Rudolf; Key, Timothy J; Navarro, Carmen; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Sánchez, María–José; Slimani, Nadia; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; van der Schouw, Yvonne T; Riboli, Elio; Laakso, Markku; Borecki, Ingrid B; Chasman, Daniel I; Pedersen, Oluf; Psaty, Bruce M; Shyong Tai, E; van Duijn, Cornelia M; Wareham, Nicholas J; Waterworth, Dawn M; Boerwinkle, Eric; Linda Kao, W H; Florez, Jose C; Loos, Ruth J.F.; Wilson, James G; Frayling, Timothy M; Siscovick, David S; Dupuis, Josée; Rotter, Jerome I; Meigs, James B; Scott, Robert A; Goodarzi, Mark O

    2015-01-01

    Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility. PMID:25631608

  4. Rare Copy Number Variants Are a Common Cause of Short Stature

    PubMed Central

    Zahnleiter, Diana; Uebe, Steffen; Ekici, Arif B.; Hoyer, Juliane; Wiesener, Antje; Wieczorek, Dagmar; Kunstmann, Erdmute; Reis, André; Doerr, Helmuth-Guenther; Rauch, Anita; Thiel, Christian T.

    2013-01-01

    Human growth has an estimated heritability of about 80%–90%. Nevertheless, the underlying cause of shortness of stature remains unknown in the majority of individuals. Genome-wide association studies (GWAS) showed that both common single nucleotide polymorphisms and copy number variants (CNVs) contribute to height variation under a polygenic model, although explaining only a small fraction of overall genetic variability in the general population. Under the hypothesis that severe forms of growth retardation might also be caused by major gene effects, we searched for rare CNVs in 200 families, 92 sporadic and 108 familial, with idiopathic short stature compared to 820 control individuals. Although similar in number, patients had overall significantly larger CNVs (p-value<1×10−7). In a gene-based analysis of all non-polymorphic CNVs>50 kb for gene function, tissue expression, and murine knock-out phenotypes, we identified 10 duplications and 10 deletions ranging in size from 109 kb to 14 Mb, of which 7 were de novo (p<0.03) and 13 inherited from the likewise affected parent but absent in controls. Patients with these likely disease causing 20 CNVs were smaller than the remaining group (p<0.01). Eleven (55%) of these CNVs either overlapped with known microaberration syndromes associated with short stature or contained GWAS loci for height. Haploinsufficiency (HI) score and further expression profiling suggested dosage sensitivity of major growth-related genes at these loci. Overall 10% of patients carried a disease-causing CNV indicating that, like in neurodevelopmental disorders, rare CNVs are a frequent cause of severe growth retardation. PMID:23516380

  5. Rare missense coding variants in oxytocin receptor (OXTR) in schizophrenia cases are associated with early trauma exposure, cognition and emotional processing.

    PubMed

    Veras, Andre B; Getz, Mara; Froemke, Robert C; Nardi, Antonio Egidio; Alves, Gilberto Sousa; Walsh-Messinger, Julie; Chao, Moses V; Kranz, Thorsten M; Malaspina, Dolores

    2018-02-01

    Oxytocin is a peptide hormone that influences the integration of social cognition with behavior and affect regulation. Oxytocin also prominently directs the transition of neuronal GABA neurotransmission from excitatory to inhibitory after birth. The oxytocin receptor (OXTR) is linked to schizophrenia, a heterogeneous syndrome. Relationships of OXTR polymorphisms with specific clinical features could aid in evaluating any role of oxytocin in the pathogenesis of schizophrenia. Schizophrenia cases with rare missense coding OXTR single nucleotide variants (SNVs) were identified from a well-characterized sample of cases and controls who were assessed for symptoms, cognition and early life trauma. Five of 48 cases showed rare OXTR variants. Compared to the other cases they had less severe negative symptoms (deficits in emotional expression and motivation) and less severe general psychopathology scores (depression and anxiety). They demonstrated lower nonverbal (performance) than verbal intelligence due to deficient perceptual organization and slow processing speed. They also reported greater early trauma exposure (physical and sexual abuse and emotional trauma). Cases carrying rare OXTR SNVs had less negative and affective symptoms than other cases, but similar psychotic symptoms, along with specific cognitive deficits. The clinical characterization of these cases occurred in association with environmental exposure to early trauma, especially sexual abuse, which may have influenced the expression of schizophrenia in subjects harboring specific SNVs in the OXTR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS

    PubMed Central

    Southey, Melissa C; Goldgar, David E; Winqvist, Robert; Pylkäs, Katri; Couch, Fergus; Tischkowitz, Marc; Foulkes, William D; Dennis, Joe; Michailidou, Kyriaki; van Rensburg, Elizabeth J; Heikkinen, Tuomas; Nevanlinna, Heli; Hopper, John L; Dörk, Thilo; Claes, Kathleen BM; Reis-Filho, Jorge; Teo, Zhi Ling; Radice, Paolo; Catucci, Irene; Peterlongo, Paolo; Tsimiklis, Helen; Odefrey, Fabrice A; Dowty, James G; Schmidt, Marjanka K; Broeks, Annegien; Hogervorst, Frans B; Verhoef, Senno; Carpenter, Jane; Clarke, Christine; Scott, Rodney J; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; dos-Santos-Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Bolla, Manjeet K; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Yang, Rongxi; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Bojesen, Stig; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan; Ziogas, Argyrios; Clarke, Christina A; Brenner, Hermann; Arndt, Volker; Stegmaier, Christa; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Bogdanova, Natalia V; Antonenkova, Natalia N; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Spurdle, Amanda B; Investigators, kConFab; Wauters, Els; Smeets, Dominiek; Beuselinck, Benoit; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Olson, Janet E; Vachon, Celine; Pankratz, Vernon S; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Kristensen, Vessela; Alnæs, Grethe Grenaker; Zheng, Wei; Hunter, David J; Lindstrom, Sara; Hankinson, Susan E; Kraft, Peter; Andrulis, Irene; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Jukkola-Vuorinen, Arja; Grip, Mervi; Kauppila, Saila; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Hollestelle, Antoinette; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Eccles, Diana M; Rafiq, Sajjad; Tapper, William J; Gerty, Sue M; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Brand, Judith S; Humphreys, Keith; Cox, Angela; Reed, Malcolm W R; Luccarini, Craig; Baynes, Caroline; Dunning, Alison M; Hamann, Ute; Torres, Diana; Ulmer, Hans Ulrich; Rüdiger, Thomas; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Simard, Jacques; Dumont, Martine; Soucy, Penny; Eeles, Rosalind; Muir, Kenneth; Wiklund, Fredrik; Gronberg, Henrik; Schleutker, Johanna; Nordestgaard, Børge G; Weischer, Maren; Travis, Ruth C; Neal, David; Donovan, Jenny L; Hamdy, Freddie C; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Schaid, Daniel J; Kelley, Joseph L; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Butterbach, Katja; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Benlloch, Sara; Renner, Stefan P; Hartmann, Arndt; Hein, Alexander; Ruebner, Matthias; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambretchs, Sandrina; Doherty, Jennifer A; Rossing, Mary Anne; Nickels, Stefan; Eilber, Ursula; Wang-Gohrke, Shan; Odunsi, Kunle; Sucheston-Campbell, Lara E; Friel, Grace; Lurie, Galina; Killeen, Jeffrey L; Wilkens, Lynne R; Goodman, Marc T; Runnebaum, Ingo; Hillemanns, Peter A; Pelttari, Liisa M; Butzow, Ralf; Modugno, Francesmary; Edwards, Robert P; Ness, Roberta B; Moysich, Kirsten B; du Bois, Andreas; Heitz, Florian; Harter, Philipp; Kommoss, Stefan; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjaer, Susanne Krüger; Høgdall, Estrid; Peissel, Bernard; Bonanni, Bernardo; Bernard, Loris; Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A; Cunningham, Julie M; Larson, Melissa C; Fogarty, Zachary C; Kalli, Kimberly R; Liang, Dong; Lu, Karen H; Hildebrandt, Michelle A T; Wu, Xifeng; Levine, Douglas A; Dao, Fanny; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S; Marks, Jeffrey R; Akushevich, Lucy; Cramer, Daniel W; Schildkraut, Joellen; Terry, Kathryn L; Poole, Elizabeth M; Stampfer, Meir; Tworoger, Shelley S; Bandera, Elisa V; Orlow, Irene; Olson, Sara H; Bjorge, Line; Salvesen, Helga B; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Pejovic, Tanja; Bean, Yukie; Brooks-Wilson, Angela; Kelemen, Linda E; Cook, Linda S; Le, Nhu D; Górski, Bohdan; Gronwald, Jacek; Menkiszak, Janusz; Høgdall, Claus K; Lundvall, Lene; Nedergaard, Lotte; Engelholm, Svend Aage; Dicks, Ed; Tyrer, Jonathan; Campbell, Ian; McNeish, Iain; Paul, James; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Cai, Hui; Shu, Xiao-Ou; Teten, Rachel T; Sutphen, Rebecca; McLaughlin, John R; Narod, Steven A; Phelan, Catherine M; Monteiro, Alvaro N; Fenstermacher, David; Lin, Hui-Yi; Permuth, Jennifer B; Sellers, Thomas A; Chen, Y Ann; Tsai, Ya-Yu; Chen, Zhihua; Gentry-Maharaj, Aleksandra; Gayther, Simon A; Ramus, Susan J; Menon, Usha; Wu, Anna H; Pearce, Celeste L; Van Den Berg, David; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul DP; Song, Honglin; Winship, Ingrid; Chenevix-Trench, Georgia; Giles, Graham G; Tavtigian, Sean V; Easton, Doug F; Milne, Roger L

    2016-01-01

    Background The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. Methods We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. Results For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10−5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10−8) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. Conclusions This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important. PMID:27595995

  7. Novel human CRYGD rare variant in a Brazilian family with congenital cataract

    PubMed Central

    Giordano, Gabriel Gorgone; Tavares, Anderson; da Silva, Márcio José; de Vasconcellos, José Paulo Cabral; Arieta, Carlos Eduardo Leite; de Melo, Mônica Barbosa

    2011-01-01

    Purpose To describe a novel polymorphism in the γD-crystallin (CRYGD) gene in a Brazilian family with congenital cataract. Methods A Brazilian four-generation family was analyzed. The proband had bilateral lamellar cataract and the phenotypes were classified by slit lamp examination. Genomic DNA was extracted from peripheral blood and coding regions and intron/exon boundaries of the αA-crystallin (CRYAA), γC-crystallin (CRYGC), and CRYGD genes were amplified by polymerase chain reaction and directly sequenced. Results Sequencing of the coding regions of CRYGD showed the presence of a heterozygous A→G transversion at c.401 position, which results in the substitution of a tyrosine to a cysteine (Y134C). The polymorphism was identified in three individuals, two affected and one unaffected. Conclusions A novel rare variant in CRYGD (Y134C) was detected in a Brazilian family with congenital cataract. Because there is no segregation between the substitution and the phenotypes in this family, other genetic alterations are likely to be present. PMID:21866214

  8. HEALER: homomorphic computation of ExAct Logistic rEgRession for secure rare disease variants analysis in GWAS

    PubMed Central

    Wang, Shuang; Zhang, Yuchen; Dai, Wenrui; Lauter, Kristin; Kim, Miran; Tang, Yuzhe; Xiong, Hongkai; Jiang, Xiaoqian

    2016-01-01

    Motivation: Genome-wide association studies (GWAS) have been widely used in discovering the association between genotypes and phenotypes. Human genome data contain valuable but highly sensitive information. Unprotected disclosure of such information might put individual’s privacy at risk. It is important to protect human genome data. Exact logistic regression is a bias-reduction method based on a penalized likelihood to discover rare variants that are associated with disease susceptibility. We propose the HEALER framework to facilitate secure rare variants analysis with a small sample size. Results: We target at the algorithm design aiming at reducing the computational and storage costs to learn a homomorphic exact logistic regression model (i.e. evaluate P-values of coefficients), where the circuit depth is proportional to the logarithmic scale of data size. We evaluate the algorithm performance using rare Kawasaki Disease datasets. Availability and implementation: Download HEALER at http://research.ucsd-dbmi.org/HEALER/ Contact: shw070@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26446135

  9. Epithelial-myoepithelial carcinoma with myoepithelial anaplasia: report of a case with cytologic findings of a rare variant.

    PubMed

    Suzuki, Takashi; Murata, Shin-ichi; Yamaguchi, Hiroshi; Shimizu, Yoshihiko; Shimizu, Michio

    2010-01-01

    Epithelial-myoepithelial carcinoma (EMC) is usually a low grade malignancy with rare mortality. Rare aggressive variants of EMC, dedifferentiated EMC and EMC with myoepithelial anaplasia have been reported. An 81-year-old man presented with EMC of the parotid gland showing the classical type at the time of initial presentation and a high grade type with myoepithelial anaplasia at recurrence after 10 years. We compared the histologic and cytologic findings of the initial and recurrent tumors. Aspiration cytology of the initial tumor was typical of classical EMC, represented by a biphasic pattern composed of sheetlike and tubular clusters. In contrast, cytologic specimens of the recurrent tumor, which had a focally biphasic pattern similar to that of the initial tumor, also had many isolated or discohesive piled-up clusters of spindle and polygonal cells with nuclear atypia. The cytologic findings of the recurrent tumor were consistent with a rare variant of EMC with myoepithelial anaplasia. To the best of our knowledge, this is the first report of the cytologic finding of an EMC with myoepithelial anaplasia.

  10. Complex Landscape of Germline Variants in Brazilian Patients With Hereditary and Early Onset Breast Cancer.

    PubMed

    Torrezan, Giovana T; de Almeida, Fernanda G Dos Santos R; Figueiredo, Márcia C P; Barros, Bruna D de Figueiredo; de Paula, Cláudia A A; Valieris, Renan; de Souza, Jorge E S; Ramalho, Rodrigo F; da Silva, Felipe C C; Ferreira, Elisa N; de Nóbrega, Amanda F; Felicio, Paula S; Achatz, Maria I; de Souza, Sandro J; Palmero, Edenir I; Carraro, Dirce M

    2018-01-01

    Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes ( BRCA1/2, TP53 , and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1 . For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes ( ERCC1 and SXL4 ) and other cancer-related genes ( NOTCH2, ERBB2, MST1R , and RAF1 ). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.

  11. Rare Variation in TET2 Is Associated with Clinically Relevant Prostate Carcinoma in African-Americans

    PubMed Central

    Koboldt, Daniel C.; Kanchi, Krishna L.; Gui, Bin; Larson, David E.; Fulton, Robert S.; Isaacs, William B.; Kraja, Aldi; Borecki, Ingrid B.; Jia, Li; Wilson, Richard K.; Mardis, Elaine R.; Kibel, Adam S.

    2016-01-01

    Background Common variants have been associated with prostate cancer risk. Unfortunately, few are reproducibly linked to aggressive disease, the phenotype of greatest clinical relevance. One possible explanation is that rare genetic variants underlie a significant proportion of the risk for aggressive disease. Method To identify such variants, we performed a two staged approach using whole exome sequencing followed by targeted sequencing of 800 genes in 652 aggressive prostate cancer patients and 752 disease-free controls in both African and European Americans. In each population, we tested rare variants for association using two gene-based aggregation tests. We established a study-wide significance threshold of 3.125 × 10−5 to correct for multiple testing. Results TET2 in African-Americans was associated with aggressive disease with 24.4% of cases harboring a rare deleterious variant compared to 9.6% of controls (FET p = 1.84×10−5, OR=3.0; SKAT-O p= 2.74×10−5). We report 8 additional genes with suggestive evidence of association, including the DNA repair genes PARP2 and MSH6. Finally, we observed an excess of rare truncation variants in 5 genes including the DNA repair genes MSH6, BRCA1 and BRCA2. This adds to the growing body of evidence that DNA repair pathway defects may influence susceptibility to aggressive prostate cancer. Conclusion Our findings suggest that rare variants influence risk of clinically relevant prostate cancer and, if validated, could serve to identify men for screening, prophylaxis and treatment. Impact This study provides evidence that rare variants in TET2 may help identify African-American men at increased risk for clinically relevant prostate cancer. PMID:27486019

  12. European external quality control study on the competence of laboratories to recognize rare sequence variants resulting in unusual genotyping results.

    PubMed

    Márki-Zay, János; Klein, Christoph L; Gancberg, David; Schimmel, Heinz G; Dux, László

    2009-04-01

    Depending on the method used, rare sequence variants adjacent to the single nucleotide polymorphism (SNP) of interest may cause unusual or erroneous genotyping results. Because such rare variants are known for many genes commonly tested in diagnostic laboratories, we organized a proficiency study to assess their influence on the accuracy of reported laboratory results. Four external quality control materials were processed and sent to 283 laboratories through 3 EQA organizers for analysis of the prothrombin 20210G>A mutation. Two of these quality control materials contained sequence variants introduced by site-directed mutagenesis. One hundred eighty-nine laboratories participated in the study. When samples gave a usual result with the method applied, the error rate was 5.1%. Detailed analysis showed that more than 70% of the failures were reported from only 9 laboratories. Allele-specific amplification-based PCR had a much higher error rate than other methods (18.3% vs 2.9%). The variants 20209C>T and [20175T>G; 20179_20180delAC] resulted in unusual genotyping results in 67 and 85 laboratories, respectively. Eighty-three (54.6%) of these unusual results were not recognized, 32 (21.1%) were attributed to technical issues, and only 37 (24.3%) were recognized as another sequence variant. Our findings revealed that some of the participating laboratories were not able to recognize and correctly interpret unusual genotyping results caused by rare SNPs. Our study indicates that the majority of the failures could be avoided by improved training and careful selection and validation of the methods applied.

  13. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa.

    PubMed

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-05-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10 -6 ), and rs7700147, an intergenic variant (P=2.93 × 10 -5 ). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.

  14. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    PubMed Central

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-01-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802

  15. Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis.

    PubMed

    Maver, Ales; Lavtar, Polona; Ristić, Smiljana; Stopinšek, Sanja; Simčič, Saša; Hočevar, Keli; Sepčić, Juraj; Drulović, Jelena; Pekmezović, Tatjana; Novaković, Ivana; Alenka, Hodžić; Rudolf, Gorazd; Šega, Saša; Starčević-Čizmarević, Nada; Palandačić, Anja; Zamolo, Gordana; Kapović, Miljenko; Likar, Tina; Peterlin, Borut

    2017-06-16

    The genetic etiology and the contribution of rare genetic variation in multiple sclerosis (MS) has not yet been elucidated. Although familial forms of MS have been described, no convincing rare and penetrant variants have been reported to date. We aimed to characterize the contribution of rare genetic variation in familial and sporadic MS and have identified a family with two sibs affected by concomitant MS and malignant melanoma (MM). We performed whole exome sequencing in this primary family and 38 multiplex MS families and 44 sporadic MS cases and performed transcriptional and immunologic assessment of the identified variants. We identified a potentially causative homozygous missense variant in NLRP1 gene (Gly587Ser) in the primary family. Further possibly pathogenic NLRP1 variants were identified in the expanded cohort of patients. Stimulation of peripheral blood mononuclear cells from MS patients with putatively pathogenic NLRP1 variants showed an increase in IL-1B gene expression and active cytokine IL-1β production, as well as global activation of NLRP1-driven immunologic pathways. We report a novel familial association of MS and MM, and propose a possible underlying genetic basis in NLRP1 gene. Furthermore, we provide initial evidence of the broader implications of NLRP1-related pathway dysfunction in MS.

  16. A rare variant of α 1 antitrypsin mutations detected in Vietnamese children with liver disease.

    PubMed

    Hoàng, Thu Hà; Phạm, Thiên Ngọc; Nguyễn, Gia Khánh; Lê, Quang Huấn

    2013-07-01

    Alpha 1 antitrypsin (A1AT) is the major plasma serine protease inhibitor that is produced in liver cells. A1AT deficiency is recognized globally as a common genetic cause of liver disease in children, which results from mutations in the SERine Protease INhibitor A1 (SERPINA1) gene. The importance of A1AT deficiency in Viet Nam is unclear. The aim of this study was to determine the A1AT variants present in paediatric patients with liver diseases in order to clarify whether A1AT deficiency is present in Viet Nam. A1AT studies were carried out in 130 children with liver disease of indeterminate aetiology. A1AT levels were determined by immunoturbidimetry. Phenotype analysis of A1AT was performed by isoelectric focusing (IEF) in all patients. Genotype analyses to determine A1AT mutations were performed by direct sequencing. We identified a rare variant of A1AT named Zbristol. The Zbristol appeared to be deficient in the plasma to about the same degree as the PI S protein resulting in low concentration of A1AT in one of these two Vietnamese patients. No other deficient A1AT allele was detected, although 11 patients (8.5%) showed a reduced serum concentration of A1AT. These are the first two cases of a rare A1AT deficiency allele to be found in Viet Nam clearly inferring that A1AT deficiency is not just a disease of Caucasians. As such, the laboratory diagnosis of A1AT deficiency including A1AT concentration determination and phenotype and genotype testing should form part of the routine differential diagnosis of paediatric liver disease of indeterminate aetiology in Vietnamese patients.

  17. Identification of POMC exonic variants associated with substance dependence and body mass index.

    PubMed

    Wang, Fan; Gelernter, Joel; Kranzler, Henry R; Zhang, Huiping

    2012-01-01

    Risk of substance dependence (SD) and obesity has been linked to the function of melanocortin peptides encoded by the proopiomelanocortin gene (POMC). POMC exons were Sanger sequenced in 280 African Americans (AAs) and 308 European Americans (EAs). Among them, 311 (167 AAs and 114 EAs) were affected with substance (alcohol, cocaine, opioid and/or marijuana) dependence and 277 (113 AAs and164 EAs) were screened controls. We identified 23 variants, including two common polymorphisms (rs10654394 and rs1042571) and 21 rare variants; 12 of which were novel. We used logistic regression to analyze the association between the two common variants and SD or body mass index (BMI), with sex, age, and ancestry proportion as covariates. The common variant rs1042571 in the 3'UTR was significantly associated with BMI in EAs (Overweight: P(adj) = 0.005; Obese: P(adj) = 0.018; Overweight+Obese: P(adj) = 0.002) but not in AAs. The common variant, rs10654394, was not associated with BMI and neither common variant was associated with SD in either population. To evaluate the association between the rare variants and SD or BMI, we collapsed rare variants and tested their prevalence using Fisher's exact test. In AAs, rare variants were nominally associated with SD overall and with specific SD traits (SD: P(FET,1df) = 0.026; alcohol dependence: P(FET,1df) = 0.027; cocaine dependence: P(FET,1df) = 0.007; marijuana dependence: P(FET,1df) = 0.050) (the P-value from cocaine dependence analysis survived Bonferroni correction). There was no such effect in EAs. Although the frequency of the rare variants did not differ significantly between the normal-weight group and the overweight or obese group in either population, certain rare exonic variants occurred only in overweight or obese subjects without SD. These findings suggest that POMC exonic variants may influence risk for both SD and elevated BMI, in a population-specific manner. However, common and rare variants in this gene may exert

  18. Considering interactive effects in the identification of influential regions with extremely rare variants via fixed bin approach

    PubMed Central

    2014-01-01

    In this study, we analyze the Genetic Analysis Workshop 18 (GAW18) data to identify regions of single-nucleotide polymorphisms (SNPs), which significantly influence hypertension status among individuals. We have studied the marginal impact of these regions on disease status in the past, but we extend the method to deal with environmental factors present in data collected over several exam periods. We consider the respective interactions between such traits as smoking status and age with the genetic information and hope to augment those genetic regions deemed influential marginally with those that contribute via an interactive effect. In particular, we focus only on rare variants and apply a procedure to combine signal among rare variants in a number of "fixed bins" along the chromosome. We extend the procedure in Agne et al [1] to incorporate environmental factors by dichotomizing subjects via traits such as smoking status and age, running the marginal procedure among each respective category (i.e., smokers or nonsmokers), and then combining their scores into a score for interaction. To avoid overlap of subjects, we examine each exam period individually. Out of a possible 629 fixed-bin regions in chromosome 3, we observe that 11 show up in multiple exam periods for gene-smoking score. Fifteen regions exhibit significance for multiple exam periods for gene-age score, with 4 regions deemed significant for all 3 exam periods. The procedure pinpoints SNPs in 8 "answer" genes, with 5 of these showing up as significant in multiple testing schemes (Gene-Smoking, Gene-Age for Exams 1, 2, and 3). PMID:25519400

  19. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS.

    PubMed

    Southey, Melissa C; Goldgar, David E; Winqvist, Robert; Pylkäs, Katri; Couch, Fergus; Tischkowitz, Marc; Foulkes, William D; Dennis, Joe; Michailidou, Kyriaki; van Rensburg, Elizabeth J; Heikkinen, Tuomas; Nevanlinna, Heli; Hopper, John L; Dörk, Thilo; Claes, Kathleen Bm; Reis-Filho, Jorge; Teo, Zhi Ling; Radice, Paolo; Catucci, Irene; Peterlongo, Paolo; Tsimiklis, Helen; Odefrey, Fabrice A; Dowty, James G; Schmidt, Marjanka K; Broeks, Annegien; Hogervorst, Frans B; Verhoef, Senno; Carpenter, Jane; Clarke, Christine; Scott, Rodney J; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; Dos-Santos-Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Bolla, Manjeet K; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Yang, Rongxi; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Bojesen, Stig; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan; Ziogas, Argyrios; Clarke, Christina A; Brenner, Hermann; Arndt, Volker; Stegmaier, Christa; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Bogdanova, Natalia V; Antonenkova, Natalia N; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Spurdle, Amanda B; Investigators, kConFab; Wauters, Els; Smeets, Dominiek; Beuselinck, Benoit; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Olson, Janet E; Vachon, Celine; Pankratz, Vernon S; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Kristensen, Vessela; Alnæs, Grethe Grenaker; Zheng, Wei; Hunter, David J; Lindstrom, Sara; Hankinson, Susan E; Kraft, Peter; Andrulis, Irene; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Jukkola-Vuorinen, Arja; Grip, Mervi; Kauppila, Saila; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Hollestelle, Antoinette; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Eccles, Diana M; Rafiq, Sajjad; Tapper, William J; Gerty, Sue M; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Brand, Judith S; Humphreys, Keith; Cox, Angela; Reed, Malcolm W R; Luccarini, Craig; Baynes, Caroline; Dunning, Alison M; Hamann, Ute; Torres, Diana; Ulmer, Hans Ulrich; Rüdiger, Thomas; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Simard, Jacques; Dumont, Martine; Soucy, Penny; Eeles, Rosalind; Muir, Kenneth; Wiklund, Fredrik; Gronberg, Henrik; Schleutker, Johanna; Nordestgaard, Børge G; Weischer, Maren; Travis, Ruth C; Neal, David; Donovan, Jenny L; Hamdy, Freddie C; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Schaid, Daniel J; Kelley, Joseph L; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Butterbach, Katja; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Benlloch, Sara; Renner, Stefan P; Hartmann, Arndt; Hein, Alexander; Ruebner, Matthias; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambretchs, Sandrina; Doherty, Jennifer A; Rossing, Mary Anne; Nickels, Stefan; Eilber, Ursula; Wang-Gohrke, Shan; Odunsi, Kunle; Sucheston-Campbell, Lara E; Friel, Grace; Lurie, Galina; Killeen, Jeffrey L; Wilkens, Lynne R; Goodman, Marc T; Runnebaum, Ingo; Hillemanns, Peter A; Pelttari, Liisa M; Butzow, Ralf; Modugno, Francesmary; Edwards, Robert P; Ness, Roberta B; Moysich, Kirsten B; du Bois, Andreas; Heitz, Florian; Harter, Philipp; Kommoss, Stefan; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjaer, Susanne Krüger; Høgdall, Estrid; Peissel, Bernard; Bonanni, Bernardo; Bernard, Loris; Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A; Cunningham, Julie M; Larson, Melissa C; Fogarty, Zachary C; Kalli, Kimberly R; Liang, Dong; Lu, Karen H; Hildebrandt, Michelle A T; Wu, Xifeng; Levine, Douglas A; Dao, Fanny; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S; Marks, Jeffrey R; Akushevich, Lucy; Cramer, Daniel W; Schildkraut, Joellen; Terry, Kathryn L; Poole, Elizabeth M; Stampfer, Meir; Tworoger, Shelley S; Bandera, Elisa V; Orlow, Irene; Olson, Sara H; Bjorge, Line; Salvesen, Helga B; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Pejovic, Tanja; Bean, Yukie; Brooks-Wilson, Angela; Kelemen, Linda E; Cook, Linda S; Le, Nhu D; Górski, Bohdan; Gronwald, Jacek; Menkiszak, Janusz; Høgdall, Claus K; Lundvall, Lene; Nedergaard, Lotte; Engelholm, Svend Aage; Dicks, Ed; Tyrer, Jonathan; Campbell, Ian; McNeish, Iain; Paul, James; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Cai, Hui; Shu, Xiao-Ou; Teten, Rachel T; Sutphen, Rebecca; McLaughlin, John R; Narod, Steven A; Phelan, Catherine M; Monteiro, Alvaro N; Fenstermacher, David; Lin, Hui-Yi; Permuth, Jennifer B; Sellers, Thomas A; Chen, Y Ann; Tsai, Ya-Yu; Chen, Zhihua; Gentry-Maharaj, Aleksandra; Gayther, Simon A; Ramus, Susan J; Menon, Usha; Wu, Anna H; Pearce, Celeste L; Van Den Berg, David; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul Dp; Song, Honglin; Winship, Ingrid; Chenevix-Trench, Georgia; Giles, Graham G; Tavtigian, Sean V; Easton, Doug F; Milne, Roger L

    2016-12-01

    The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10 -5 ), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10 -8 ) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Rare A2ML1 variants confer susceptibility to otitis media

    PubMed Central

    Santos-Cortez, Regie Lyn P.; Chiong, Charlotte M.; Reyes-Quintos, Ma. Rina T.; Tantoco, Ma. Leah C.; Wang, Xin; Acharya, Anushree; Abbe, Izoduwa; Giese, Arnaud P.; Smith, Joshua D.; Allen, E. Kaitlynn; Li, Biao; Cutiongco-de la Paz, Eva Maria; Garcia, Marieflor Cristy; Llanes, Erasmo Gonzalo D.V.; Labra, Patrick John; Gloria-Cruz, Teresa Luisa I.; Chan, Abner L.; Wang, Gao T.; Daly, Kathleen A.; Shendure, Jay; Bamshad, Michael J.; Nickerson, Deborah A.; Patel, Janak A.; Riazuddin, Saima; Sale, Michele M.; Chonmaitree, Tasnee; Ahmed, Zubair M.; Abes, Generoso T.; Leal, Suzanne M.

    2015-01-01

    A duplication variant within middle-ear-specific gene A2ML1 co-segregates with otitis media in an indigenous Filipino pedigree (LOD score=7.5 at reduced penetrance) and lies within a founder haplotype that is also shared by three otitis-prone European- and Hispanic-American children, but is absent in non-otitis-prone children and >62,000 next-generation sequences. Seven additional A2ML1 variants were identified in six otitis-prone children. Collectively our studies support a role for A2ML1 in the pathophysiology of otitis media. PMID:26121085

  1. Rare A2ML1 variants confer susceptibility to otitis media.

    PubMed

    Santos-Cortez, Regie Lyn P; Chiong, Charlotte M; Reyes-Quintos, Ma Rina T; Tantoco, Ma Leah C; Wang, Xin; Acharya, Anushree; Abbe, Izoduwa; Giese, Arnaud P; Smith, Joshua D; Allen, E Kaitlynn; Li, Biao; Cutiongco-de la Paz, Eva Maria; Garcia, Marieflor Cristy; Llanes, Erasmo Gonzalo D V; Labra, Patrick John; Gloria-Cruz, Teresa Luisa I; Chan, Abner L; Wang, Gao T; Daly, Kathleen A; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Patel, Janak A; Riazuddin, Saima; Sale, Michele M; Chonmaitree, Tasnee; Ahmed, Zubair M; Abes, Generoso T; Leal, Suzanne M

    2015-08-01

    A duplication variant within the middle ear-specific gene A2ML1 cosegregates with otitis media in an indigenous Filipino pedigree (LOD score = 7.5 at reduced penetrance) and lies within a founder haplotype that is also shared by 3 otitis-prone European-American and Hispanic-American children but is absent in non-otitis-prone children and >62,000 next-generation sequences. We identified seven additional A2ML1 variants in six otitis-prone children. Collectively, our studies support a role for A2ML1 in the pathophysiology of otitis media.

  2. Challenges of Identifying Clinically Actionable Genetic Variants for Precision Medicine

    PubMed Central

    2016-01-01

    Advances in genomic medicine have the potential to change the way we treat human disease, but translating these advances into reality for improving healthcare outcomes depends essentially on our ability to discover disease- and/or drug-associated clinically actionable genetic mutations. Integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a big data infrastructure can provide an efficient and effective way to identify clinically actionable genetic variants for personalized treatments and reduce healthcare costs. We review bioinformatics processing of next-generation sequencing (NGS) data, bioinformatics infrastructures for implementing precision medicine, and bioinformatics approaches for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:27195526

  3. Protein variants in Hiroshima and Nagasaki: tales of two cities.

    PubMed Central

    Neel, J V; Satoh, C; Smouse, P; Asakawa, J; Takahashi, N; Goriki, K; Fujita, M; Kageoka, T; Hazama, R

    1988-01-01

    The results of 1,465,423 allele product determinations based on blood samples from Hiroshima and Nagasaki, involving 30 different proteins representing 32 different gene products, are analyzed in a variety of ways, with the following conclusions: (1) Sibships and their parents are included in the sample. Our analysis reveals that statistical procedures designed to reduce the sample to equivalent independent genomes do not in population comparisons compensate for the familial cluster effect of rare variants. Accordingly, the data set was reduced to one representative of each sibship (937,427 allele products). (2) Both chi 2-type contrasts and a genetic distance measure (delta) reveal that rare variants (P less than .01) are collectively as effective as polymorphisms in establishing genetic differences between the two cities. (3) We suggest that rare variants that individually exhibit significant intercity differences are probably the legacy of tribal private polymorphisms that occurred during prehistoric times. (4) Despite the great differences in the known histories of the two cities, both the overall frequency of rare variants and the number of different rare variants are essentially identical in the two cities. (5) The well-known differences in locus variability are confirmed, now after adjustment for sample size differences for the various locus products; in this large series we failed to detect variants at only three of 29 loci for which sample size exceeded 23,000. (6) The number of alleles identified per locus correlates positively with subunit molecular weight. (7) Loci supporting genetic polymorphisms are characterized by more rare variants than are loci at which polymorphisms were not encountered. (8) Loci whose products do not appear to be essential for health support more variants than do loci the absence of whose product is detrimental to health. (9) There is a striking excess of rare variants over the expectation under the neutral mutation

  4. Protein variants in Hiroshima and Nagasaki: tales of two cities.

    PubMed

    Neel, J V; Satoh, C; Smouse, P; Asakawa, J; Takahashi, N; Goriki, K; Fujita, M; Kageoka, T; Hazama, R

    1988-12-01

    The results of 1,465,423 allele product determinations based on blood samples from Hiroshima and Nagasaki, involving 30 different proteins representing 32 different gene products, are analyzed in a variety of ways, with the following conclusions: (1) Sibships and their parents are included in the sample. Our analysis reveals that statistical procedures designed to reduce the sample to equivalent independent genomes do not in population comparisons compensate for the familial cluster effect of rare variants. Accordingly, the data set was reduced to one representative of each sibship (937,427 allele products). (2) Both chi 2-type contrasts and a genetic distance measure (delta) reveal that rare variants (P less than .01) are collectively as effective as polymorphisms in establishing genetic differences between the two cities. (3) We suggest that rare variants that individually exhibit significant intercity differences are probably the legacy of tribal private polymorphisms that occurred during prehistoric times. (4) Despite the great differences in the known histories of the two cities, both the overall frequency of rare variants and the number of different rare variants are essentially identical in the two cities. (5) The well-known differences in locus variability are confirmed, now after adjustment for sample size differences for the various locus products; in this large series we failed to detect variants at only three of 29 loci for which sample size exceeded 23,000. (6) The number of alleles identified per locus correlates positively with subunit molecular weight. (7) Loci supporting genetic polymorphisms are characterized by more rare variants than are loci at which polymorphisms were not encountered. (8) Loci whose products do not appear to be essential for health support more variants than do loci the absence of whose product is detrimental to health. (9) There is a striking excess of rare variants over the expectation under the neutral mutation

  5. Novel rare variations of the oxytocin receptor (OXTR) gene in autism spectrum disorder individuals.

    PubMed

    Liu, Xiaoxi; Kawashima, Minae; Miyagawa, Taku; Otowa, Takeshi; Latt, Khun Zaw; Thiri, Myo; Nishida, Hisami; Sugiyama, Toshiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Mabuchi, Akihiko; Tokunaga, Katsushi; Sasaki, Tsukasa

    2015-01-01

    The oxytocin receptor (OXTR) gene has been implicated as a risk gene for autism spectrum disorder (ASD)-a neurodevelopmental disorder with essential features of impairments in social communication and reciprocal interaction. The genetic associations between common variations in OXTR and ASD have been reported in multiple ethnic populations. However, little is known about the distribution of rare variations within OXTR in ASD patients. In this study, we resequenced the full length of OXTR in 105 ASD individuals using an approach that combined the power of next-generation sequencing technology, long-range PCR and DNA pooling. We demonstrated that rare variants with minor allele frequency as low as 0.05% could be reliably detected by our method. We identified 28 novel variants including potential functional variants in the intron region and one rare missense variant (R150S). We subsequently performed Sanger sequencing and validated five novel variants located in previously suggested candidate regions in ASD individuals. Further sequencing of 312 healthy subjects showed that the burden of rare variants is significantly higher in ASDs compared with healthy individuals. Our results support that the rare variation in OXTR gene might be involved in ASD.

  6. Metastatic thyroid carcinoma without identifiable primary tumor within the thyroid gland: a retrospective study of a rare phenomenon.

    PubMed

    Xu, Bin; Scognamiglio, Theresa; Cohen, Perry R; Prasad, Manju L; Hasanovic, Adnan; Tuttle, Robert Michael; Katabi, Nora; Ghossein, Ronald A

    2017-07-01

    Metastatic papillary thyroid carcinoma (PTC) without an identifiable primary tumor despite extensive microscopic examination of the thyroid gland is a rare but true phenomenon.We retrieved 7 of such cases and described in detail the clinical and pathologic features of these tumors. BRAF V600E immunohistochemistry and Sequenom molecular profile were conducted in selected cases. All patients harbored metastatic disease in the central (n=3), lateral (n=3), or both neck compartments (n=1). The histotype of the metastatic disease was PTC (n=5), poorly differentiated thyroid carcinoma in association with a PTC columnar variant (n=1), and anaplastic thyroid carcinoma in association with a PTC tall cell variant (n=1). Fibrosis was present in the thyroid of 5 patients. All patients with PTC were alive without evidence of recurrence. The 76-year-old patient with poorly differentiated thyroid carcinoma did not recur and died of unknown causes. Finally, the patient with anaplastic thyroid carcinoma was alive with distant metastasis at last follow-up. The median follow-up for this cohort was 2.2years (range, 0.8-17). BRAF V600E was detected in 4 of 6 cases by immunohistochemistry. In conclusion, metastatic nodal disease without identifiable thyroid primary is a rare but real phenomenon of unknown mechanisms. Although most tumors are low grade and well differentiated, aggressive behavior due to poorly differentiated or anaplastic carcinoma can happen. Most cases are BRAF V600E -positive thyroid tumors. A papillary carcinoma phenotype is found in all reported cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks

    PubMed Central

    Decker, Brennan; Allen, Jamie; Luccarini, Craig; Pooley, Karen A; Shah, Mitul; Bolla, Manjeet K; Wang, Qin; Ahmed, Shahana; Baynes, Caroline; Conroy, Don M; Brown, Judith; Luben, Robert; Ostrander, Elaine A; Pharoah, Paul DP; Dunning, Alison M; Easton, Douglas F

    2017-01-01

    Background Breast cancer (BC) is the most common malignancy in women and has a major heritable component. The risks associated with most rare susceptibility variants are not well estimated. To better characterise the contribution of variants in ATM, CHEK2, PALB2 and XRCC2, we sequenced their coding regions in 13 087 BC cases and 5488 controls from East Anglia, UK. Methods Gene coding regions were enriched via PCR, sequenced, variant called and filtered for quality. ORs for BC risk were estimated separately for carriers of truncating variants and of rare missense variants, which were further subdivided by functional domain and pathogenicity as predicted by four in silico algorithms. Results Truncating variants in PALB2 (OR=4.69, 95% CI 2.27 to 9.68), ATM (OR=3.26; 95% CI 1.82 to 6.46) and CHEK2 (OR=3.11; 95% CI 2.15 to 4.69), but not XRCC2 (OR=0.94; 95% CI 0.26 to 4.19) were associated with increased BC risk. Truncating variants in ATM and CHEK2 were more strongly associated with risk of oestrogen receptor (ER)-positive than ER-negative disease, while those in PALB2 were associated with similar risks for both subtypes. There was also some evidence that missense variants in ATM, CHEK2 and PALB2 may contribute to BC risk, but larger studies are necessary to quantify the magnitude of this effect. Conclusions Truncating variants in PALB2 are associated with a higher risk of BC than those in ATM or CHEK2. A substantial risk of BC due to truncating XRCC2 variants can be excluded. PMID:28779002

  8. Conjunctival malignant melanoma: A rare variant and review of important diagnostic and therapeutic considerations

    PubMed Central

    Albreiki, Danah H.; Gilberg, Steven M.; Farmer, James P.

    2012-01-01

    Malignant melanoma of the conjunctiva is a relatively infrequent neoplasm that can be associated with significant morbidity and cause diagnostic difficulty to both the ophthalmologist and pathologist. We herein describe the first reported case in North American and European databases of a rare variant-signet ring cell melanoma – arising in the background of primary acquired melanosis (PAM) and use this case as a review of important diagnostic and therapeutic considerations when faced with this condition. PMID:23960986

  9. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease.

    PubMed

    Cruchaga, Carlos; Kauwe, John S K; Harari, Oscar; Jin, Sheng Chih; Cai, Yefei; Karch, Celeste M; Benitez, Bruno A; Jeng, Amanda T; Skorupa, Tara; Carrell, David; Bertelsen, Sarah; Bailey, Matthew; McKean, David; Shulman, Joshua M; De Jager, Philip L; Chibnik, Lori; Bennett, David A; Arnold, Steve E; Harold, Denise; Sims, Rebecca; Gerrish, Amy; Williams, Julie; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Shaw, Leslie M; Trojanowski, John Q; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Peskind, Elaine R; Galasko, Douglas; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2013-04-24

    Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimer's disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants.

    PubMed

    Berger, Seth I; Ciccone, Carla; Simon, Karen L; Malicdan, May Christine; Vilboux, Thierry; Billington, Charles; Fischer, Roxanne; Introne, Wendy J; Gropman, Andrea; Blancato, Jan K; Mullikin, James C; Gahl, William A; Huizing, Marjan; Smith, Ann C M

    2017-04-01

    Smith-Magenis syndrome (SMS), a neurodevelopmental disorder characterized by dysmorphic features, intellectual disability (ID), and sleep disturbances, results from a 17p11.2 microdeletion or a mutation in the RAI1 gene. We performed exome sequencing on 6 patients with SMS-like phenotypes but without chromosomal abnormalities or RAI1 variants. We identified pathogenic de novo variants in two cases, a nonsense variant in IQSEC2 and a missense variant in the SAND domain of DEAF1, and candidate de novo missense variants in an additional two cases. One candidate variant was located in an alpha helix of Necdin (NDN), phased to the paternally inherited allele. NDN is maternally imprinted within the 15q11.2 Prader-Willi Syndrome (PWS) region. This can help clarify NDN's role in the PWS phenotype. No definitive pathogenic gene variants were detected in the remaining SMS-like cases, but we report our findings for future comparison. This study provides information about the inheritance pattern and recurrence risk for patients with identified variants and demonstrates clinical and genetic overlap of neurodevelopmental disorders. Identification and characterization of ID-related genes that assist in development of common developmental pathways and/or gene-networks, may inform disease mechanism and treatment strategies.

  11. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks.

    PubMed

    Decker, Brennan; Allen, Jamie; Luccarini, Craig; Pooley, Karen A; Shah, Mitul; Bolla, Manjeet K; Wang, Qin; Ahmed, Shahana; Baynes, Caroline; Conroy, Don M; Brown, Judith; Luben, Robert; Ostrander, Elaine A; Pharoah, Paul Dp; Dunning, Alison M; Easton, Douglas F

    2017-11-01

    Breast cancer (BC) is the most common malignancy in women and has a major heritable component. The risks associated with most rare susceptibility variants are not well estimated. To better characterise the contribution of variants in ATM , CHEK2 , PALB2 and XRCC2 , we sequenced their coding regions in 13 087 BC cases and 5488 controls from East Anglia, UK. Gene coding regions were enriched via PCR, sequenced, variant called and filtered for quality. ORs for BC risk were estimated separately for carriers of truncating variants and of rare missense variants, which were further subdivided by functional domain and pathogenicity as predicted by four in silico algorithms. Truncating variants in PALB2 (OR=4.69, 95% CI 2.27 to 9.68), ATM (OR=3.26; 95% CI 1.82 to 6.46) and CHEK2 (OR=3.11; 95% CI 2.15 to 4.69), but not XRCC2 (OR=0.94; 95% CI 0.26 to 4.19) were associated with increased BC risk. Truncating variants in ATM and CHEK2 were more strongly associated with risk of oestrogen receptor (ER)-positive than ER-negative disease, while those in PALB2 were associated with similar risks for both subtypes. There was also some evidence that missense variants in ATM , CHEK2 and PALB2 may contribute to BC risk, but larger studies are necessary to quantify the magnitude of this effect. Truncating variants in PALB2 are associated with a higher risk of BC than those in ATM or CHEK2 . A substantial risk of BC due to truncating XRCC2 variants can be excluded. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Uterine angioleiomyoma: a rare variant of uterine leiomyoma.

    PubMed

    Garg, Garima; Mohanty, Sambit K

    2014-08-01

    Uterine angioleiomyoma is an extremely rare and unique variant of leiomyoma. It usually occurs in middle-aged women, who commonly present with menorrhagia, abdominal pain, or abdominal mass. The lesions are either single or multiple and manifest as submucosal, intramural, or subserosal whorled nodules. Microscopy of the individual nodule shows interlacing fascicles of spindle cells swirling around thick-walled blood vessels. Angioleiomyoma usually lacks mitotic figures, pleomorphism, or necrosis, although cases with marked nuclear atypia and multinucleated giant cells have been reported. The tumor cells are immunoreactive for smooth muscle actin, desmin, h-caldesmon, and progesterone receptor, with a low Ki-67 labeling index. Because these lesions are vascular, they may undergo spontaneous rupture and pose a life-threatening emergency, especially in pregnancy. There are no specific imaging findings; therefore, a preoperative diagnosis is extremely difficult. It is important to recognize this entity and differentiate it from a malignancy, particularly when angioleiomyoma shows significant cytologic atypia or raised cancer antigen 125 levels by thorough sampling. When required, a proper immunohistochemical panel should be used to arrive at a correct diagnosis. In this review, we discuss the current knowledge on uterine angioleiomyoma and its clinical relevance.

  13. Exome-chip meta-analysis identifies association between variation in ANKRD26 and platelet aggregation.

    PubMed

    Chen, Ming-Huei; Yanek, Lisa R; Backman, Joshua D; Eicher, John D; Huffman, Jennifer E; Ben-Shlomo, Yoav; Beswick, Andrew D; Yerges-Armstrong, Laura M; Shuldiner, Alan R; O'Connell, Jeffrey R; Mathias, Rasika A; Becker, Diane M; Becker, Lewis C; Lewis, Joshua P; Johnson, Andrew D; Faraday, Nauder

    2017-11-29

    Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10 -7 ) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic

  14. A population-specific uncommon variant in GRIN3A associated with schizophrenia.

    PubMed

    Takata, Atsushi; Iwayama, Yoshimi; Fukuo, Yasuhisa; Ikeda, Masashi; Okochi, Tomo; Maekawa, Motoko; Toyota, Tomoko; Yamada, Kazuo; Hattori, Eiji; Ohnishi, Tetsuo; Toyoshima, Manabu; Ujike, Hiroshi; Inada, Toshiya; Kunugi, Hiroshi; Ozaki, Norio; Nanko, Shinichiro; Nakamura, Kazuhiko; Mori, Norio; Kanba, Shigenobu; Iwata, Nakao; Kato, Tadafumi; Yoshikawa, Takeo

    2013-03-15

    Genome-wide association studies have successfully identified several common variants showing robust association with schizophrenia. However, individually, these variants only produce a weak effect. To identify genetic variants with larger effect sizes, increasing attention is now being paid to uncommon and rare variants. From the 1000 Genomes Project data, we selected 47 candidate single nucleotide variants (SNVs), which were: 1) uncommon (minor allele frequency < 5%); 2) Asian-specific; 3) missense, nonsense, or splice site variants predicted to be damaging; and 4) located in candidate genes for schizophrenia and bipolar disorder. We examined their association with schizophrenia, using a Japanese case-control cohort (2012 cases and 2781 control subjects). Additional meta-analysis was performed using genotyping data from independent Han-Chinese case-control (333 cases and 369 control subjects) and family samples (9 trios and 284 quads). We identified disease association of a missense variant in GRIN3A (p.R480G, rs149729514, p = .00042, odds ratio [OR] = 1.58), encoding a subunit of the N-methyl-D-aspartate type glutamate receptor, with study-wide significance (threshold p = .0012). This association was supported by meta-analysis (combined p = 3.3 × 10(-5), OR = 1.61). Nominally significant association was observed in missense variants from FAAH, DNMT1, MYO18B, and CFB, with ORs of risk alleles ranging from 1.41 to 2.35. The identified SNVs, particularly the GRIN3A R480G variant, are good candidates for further replication studies and functional evaluation. The results of this study indicate that association analyses focusing on uncommon and rare SNVs are a promising way to discover risk variants with larger effects. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    PubMed

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  16. Targeted resequencing identifies defective variants of decoy receptor 3 in pediatric-onset inflammatory bowel disease.

    PubMed

    Cardinale, C J; Wei, Z; Panossian, S; Wang, F; Kim, C E; Mentch, F D; Chiavacci, R M; Kachelries, K E; Pandey, R; Grant, S F A; Baldassano, R N; Hakonarson, H

    2013-10-01

    Genome-wide association studies have implicated common variation at the 20q13 locus in inflammatory bowel disease, particularly for the pediatric Crohn's form. This locus harbors tumor necrosis factor receptor superfamily (TNFRSF6B), encoding a secreted protein, decoy receptor 3 (DcR3), which binds to and neutralizes pro-inflammatory cytokines of the tumor necrosis factor superfamily. We sought to further the evidence of DcR3's role in pediatric IBD by identifying missense mutations with functional significance within TNFRSF6B. We sequenced the exons of the gene in 528 Caucasian pediatric IBD cases and 549 Caucasian healthy controls to establish the frequency of such events in each population. Sequencing revealed that our IBD cohort harbored a greater number of missense variants, yielding an odds ratio of 3.9 (P-value=0.005). Using functional assays, we established that the frequency of mutants defective in secretion from cultured cells was greater in the Crohn's category than in the controls, yielding an odds ratio of 7.1 (P-value=0.004). These results suggest that rare defective variants in TNFRSF6B have a role in the pathogenesis of some cases of IBD and that interventions targeting this group of tumor necrosis factor-family members may benefit patients with IBD.

  17. CDKL5 variants

    PubMed Central

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  18. Mitochondrial targeting sequence variants of the CHCHD2 gene are a risk for Lewy body disorders

    PubMed Central

    Ogaki, Kotaro; Koga, Shunsuke; Heckman, Michael G.; Fiesel, Fabienne C.; Ando, Maya; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Moussaud-Lamodière, Elisabeth L.; Soto-Ortolaza, Alexandra I.; Walton, Ronald L.; Strongosky, Audrey J.; Uitti, Ryan J.; McCarthy, Allan; Lynch, Timothy; Siuda, Joanna; Opala, Grzegorz; Rudzinska, Monika; Krygowska-Wajs, Anna; Barcikowska, Maria; Czyzewski, Krzysztof; Puschmann, Andreas; Nishioka, Kenya; Funayama, Manabu; Hattori, Nobutaka; Parisi, Joseph E.; Petersen, Ronald C.; Graff-Radford, Neill R.; Boeve, Bradley F.; Springer, Wolfdieter; Wszolek, Zbigniew K.; Dickson, Dennis W.

    2015-01-01

    Objective: To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and Lewy body disease (LBD) in Caucasian populations. Methods: All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in an Irish series (355 PD and 365 controls) and a Polish series (394 PD and 350 controls). Immunohistochemistry and immunofluorescence studies were performed on pathologic LBD cases with rare CHCHD2 variants. Results: We identified 9 rare exonic variants of unknown significance. These variants were more frequent in the combined group of PD and LBD patients compared to controls (0.6% vs 0.1%, p = 0.013). In addition, the presence of any rare variant was more common in patients with LBD (2.5% vs 1.0%, p = 0.050) compared to controls. Eight of these 9 variants were located within the gene's mitochondrial targeting sequence. Conclusions: Although the role of variants of the CHCHD2 gene in PD and LBD remains to be further elucidated, the rare variants in the mitochondrial targeting sequence may be a risk factor for Lewy body disorders, which may link CHCHD2 to other genetic forms of parkinsonism with mitochondrial dysfunction. PMID:26561290

  19. A combined reference panel from the 1000 Genomes and UK10K projects improved rare variant imputation in European and Chinese samples

    PubMed Central

    Chou, Wen-Chi; Zheng, Hou-Feng; Cheng, Chia-Ho; Yan, Han; Wang, Li; Han, Fang; Richards, J. Brent; Karasik, David; Kiel, Douglas P.; Hsu, Yi-Hsiang

    2016-01-01

    Imputation using the 1000 Genomes haplotype reference panel has been widely adapted to estimate genotypes in genome wide association studies. To evaluate imputation quality with a relatively larger reference panel and a reference panel composed of different ethnic populations, we conducted imputations in the Framingham Heart Study and the North Chinese Study using a combined reference panel from the 1000 Genomes (N = 1,092) and UK10K (N = 3,781) projects. For rare variants with 0.01% < MAF ≤ 0.5%, imputation in the Framingham Heart Study with the combined reference panel increased well-imputed genotypes (with imputation quality score ≥0.4) from 62.9% to 76.1% when compared to imputation with the 1000 Genomes. For the North Chinese samples, imputation of rare variants with 0.01% < MAF ≤ 0.5% with the combined reference panel increased well-imputed genotypes by from 49.8% to 61.8%. The predominant European ancestry of the UK10K and the combined reference panels may explain why there was less of an increase in imputation success in the North Chinese samples. Our results underscore the importance and potential of larger reference panels to impute rare variants, while recognizing that increasing ethnic specific variants in reference panels may result in better imputation for genotypes in some ethnic groups. PMID:28004816

  20. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.

    PubMed

    Do, Ron; Stitziel, Nathan O; Won, Hong-Hee; Jørgensen, Anders Berg; Duga, Stefano; Angelica Merlini, Pier; Kiezun, Adam; Farrall, Martin; Goel, Anuj; Zuk, Or; Guella, Illaria; Asselta, Rosanna; Lange, Leslie A; Peloso, Gina M; Auer, Paul L; Girelli, Domenico; Martinelli, Nicola; Farlow, Deborah N; DePristo, Mark A; Roberts, Robert; Stewart, Alexander F R; Saleheen, Danish; Danesh, John; Epstein, Stephen E; Sivapalaratnam, Suthesh; Hovingh, G Kees; Kastelein, John J; Samani, Nilesh J; Schunkert, Heribert; Erdmann, Jeanette; Shah, Svati H; Kraus, William E; Davies, Robert; Nikpay, Majid; Johansen, Christopher T; Wang, Jian; Hegele, Robert A; Hechter, Eliana; Marz, Winfried; Kleber, Marcus E; Huang, Jie; Johnson, Andrew D; Li, Mingyao; Burke, Greg L; Gross, Myron; Liu, Yongmei; Assimes, Themistocles L; Heiss, Gerardo; Lange, Ethan M; Folsom, Aaron R; Taylor, Herman A; Olivieri, Oliviero; Hamsten, Anders; Clarke, Robert; Reilly, Dermot F; Yin, Wu; Rivas, Manuel A; Donnelly, Peter; Rossouw, Jacques E; Psaty, Bruce M; Herrington, David M; Wilson, James G; Rich, Stephen S; Bamshad, Michael J; Tracy, Russell P; Cupples, L Adrienne; Rader, Daniel J; Reilly, Muredach P; Spertus, John A; Cresci, Sharon; Hartiala, Jaana; Tang, W H Wilson; Hazen, Stanley L; Allayee, Hooman; Reiner, Alex P; Carlson, Christopher S; Kooperberg, Charles; Jackson, Rebecca D; Boerwinkle, Eric; Lander, Eric S; Schwartz, Stephen M; Siscovick, David S; McPherson, Ruth; Tybjaerg-Hansen, Anne; Abecasis, Goncalo R; Watkins, Hugh; Nickerson, Deborah A; Ardissino, Diego; Sunyaev, Shamil R; O'Donnell, Christopher J; Altshuler, David; Gabriel, Stacey; Kathiresan, Sekar

    2015-02-05

    Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.

  1. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases

    PubMed Central

    Coppola, Giovanni; Chinnathambi, Subashchandrabose; Lee, Jason JiYong; Dombroski, Beth A.; Baker, Matt C.; Soto-Ortolaza, Alexandra I.; Lee, Suzee E.; Klein, Eric; Huang, Alden Y.; Sears, Renee; Lane, Jessica R.; Karydas, Anna M.; Kenet, Robert O.; Biernat, Jacek; Wang, Li-San; Cotman, Carl W.; DeCarli, Charles S.; Levey, Allan I.; Ringman, John M.; Mendez, Mario F.; Chui, Helena C.; Le Ber, Isabelle; Brice, Alexis; Lupton, Michelle K.; Preza, Elisavet; Lovestone, Simon; Powell, John; Graff-Radford, Neill; Petersen, Ronald C.; Boeve, Bradley F.; Lippa, Carol F.; Bigio, Eileen H.; Mackenzie, Ian; Finger, Elizabeth; Kertesz, Andrew; Caselli, Richard J.; Gearing, Marla; Juncos, Jorge L.; Ghetti, Bernardino; Spina, Salvatore; Bordelon, Yvette M.; Tourtellotte, Wallace W.; Frosch, Matthew P.; Vonsattel, Jean Paul G.; Zarow, Chris; Beach, Thomas G.; Albin, Roger L.; Lieberman, Andrew P.; Lee, Virginia M.; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Bird, Thomas D.; Galasko, Douglas R.; Masliah, Eliezer; White, Charles L.; Troncoso, Juan C.; Hannequin, Didier; Boxer, Adam L.; Geschwind, Michael D.; Kumar, Satish; Mandelkow, Eva-Maria; Wszolek, Zbigniew K.; Uitti, Ryan J.; Dickson, Dennis W.; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Ross, Owen A.; Rademakers, Rosa; Schellenberg, Gerard D.; Miller, Bruce L.; Mandelkow, Eckhard; Geschwind, Daniel H.

    2012-01-01

    Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects. Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6–5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3–4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated. PMID:22556362

  2. Targeted Resequencing and Functional Testing Identifies Low-Frequency Missense Variants in the Gene Encoding GARP as Significant Contributors to Atopic Dermatitis Risk.

    PubMed

    Manz, Judith; Rodríguez, Elke; ElSharawy, Abdou; Oesau, Eva-Maria; Petersen, Britt-Sabina; Baurecht, Hansjörg; Mayr, Gabriele; Weber, Susanne; Harder, Jürgen; Reischl, Eva; Schwarz, Agatha; Novak, Natalija; Franke, Andre; Weidinger, Stephan

    2016-12-01

    Gene-mapping studies have consistently identified a susceptibility locus for atopic dermatitis and other inflammatory diseases on chromosome band 11q13.5, with the strongest association observed for a common variant located in an intergenic region between the two annotated genes C11orf30 and LRRC32. Using a targeted resequencing approach we identified low-frequency and rare missense mutations within the LRRC32 gene encoding the protein GARP, a receptor on activated regulatory T cells that binds latent transforming growth factor-β. Subsequent association testing in more than 2,000 atopic dermatitis patients and 2,000 control subjects showed a significant excess of these LRRC32 variants in individuals with atopic dermatitis. Structural protein modeling and bioinformatic analysis predicted a disruption of protein transport upon these variants, and overexpression assays in CD4 + CD25 - T cells showed a significant reduction in surface expression of the mutated protein. Consistently, flow cytometric (FACS) analyses of different T-cell subtypes obtained from atopic dermatitis patients showed a significantly reduced surface expression of GARP and a reduced conversion of CD4 + CD25 - T cells into regulatory T cells, along with lower expression of latency-associated protein upon stimulation in carriers of the LRRC32 A407T variant. These results link inherited disturbances of transforming growth factor-β signaling with atopic dermatitis risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. De novo and inherited private variants in MAP1B in periventricular nodular heterotopia.

    PubMed

    Heinzen, Erin L; O'Neill, Adam C; Zhu, Xiaolin; Allen, Andrew S; Bahlo, Melanie; Chelly, Jamel; Chen, Ming Hui; Dobyns, William B; Freytag, Saskia; Guerrini, Renzo; Leventer, Richard J; Poduri, Annapurna; Robertson, Stephen P; Walsh, Christopher A; Zhang, Mengqi

    2018-05-01

    Periventricular nodular heterotopia (PVNH) is a malformation of cortical development commonly associated with epilepsy. We exome sequenced 202 individuals with sporadic PVNH to identify novel genetic risk loci. We first performed a trio-based analysis and identified 219 de novo variants. Although no novel genes were implicated in this initial analysis, PVNH cases were found overall to have a significant excess of nonsynonymous de novo variants in intolerant genes (p = 3.27x10-7), suggesting a role for rare new alleles in genes yet to be associated with the condition. Using a gene-level collapsing analysis comparing cases and controls, we identified a genome-wide significant signal driven by four ultra-rare loss-of-function heterozygous variants in MAP1B, including one de novo variant. In at least one instance, the MAP1B variant was inherited from a parent with previously undiagnosed PVNH. The PVNH was frontally predominant and associated with perisylvian polymicrogyria. These results implicate MAP1B in PVNH. More broadly, our findings suggest that detrimental mutations likely arising in immediately preceding generations with incomplete penetrance may also be responsible for some apparently sporadic diseases.

  4. Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease

    PubMed Central

    2011-01-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10−33; LPA:p<10−19; 1p13.3:p<10−17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10−7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  5. Large-scale gene-centric analysis identifies novel variants for coronary artery disease.

    PubMed

    2011-09-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  6. Overlap between Parkinson disease and Alzheimer disease in ABCA7 functional variants

    PubMed Central

    Nuytemans, Karen; Maldonado, Lizmarie; Ali, Aleena; John-Williams, Krista; Beecham, Gary W.; Martin, Eden; Scott, William K.

    2016-01-01

    Objective: Given their reported function in phagocytosis and clearance of protein aggregates in Alzheimer disease (AD), we hypothesized that variants in ATP-binding cassette transporter A7 (ABCA7) might be involved in Parkinson disease (PD). Methods: ABCA7 variants were identified using whole-exome sequencing (WES) on 396 unrelated patients with PD and 222 healthy controls. In addition, we used the publicly available WES data from the Parkinson's Progression Markers Initiative (444 patients and 153 healthy controls) as a second, independent data set. Results: We observed a higher frequency of loss-of-function (LOF) variants and rare putative highly functional variants (Combined Annotation Dependent Depletion [CADD] >20) in clinically diagnosed patients with PD than in healthy controls in both data sets. Overall, we identified LOF variants in 11 patients and 1 healthy control (odds ratio [OR] 4.94, Fisher exact p = 0.07). Four of these variants have been previously implicated in AD risk (p.E709AfsX86, p.W1214X, p.L1403RfsX7, and rs113809142). In addition, rare variants with CADD >20 were observed in 19 patients vs 3 healthy controls (OR 2.85, Fisher exact p = 0.06). Conclusion: The presence of ABCA7 LOF variants in clinically defined PD suggests that they might be risk factors for neurodegeneration in general, especially those variants hallmarked by protein aggregation. More studies will be needed to evaluate the overall impact of this transporter in neurodegenerative disease. PMID:27066581

  7. Rare RNF213 variants in the C-terminal region encompassing the RING-finger domain are associated with moyamoya angiopathy in Caucasians.

    PubMed

    Guey, Stéphanie; Kraemer, Markus; Hervé, Dominique; Ludwig, Thomas; Kossorotoff, Manoëlle; Bergametti, Françoise; Schwitalla, Jan Claudius; Choi, Simone; Broseus, Lucile; Callebaut, Isabelle; Genin, Emmanuelle; Tournier-Lasserve, Elisabeth

    2017-08-01

    Moyamoya angiopathy (MMA) is a cerebral angiopathy affecting the terminal part of internal carotid arteries. Its prevalence is 10 times higher in Japan and Korea than in Europe. In East Asian countries, moyamoya is strongly associated to the R4810K variant in the RNF213 gene that encodes for a protein containing a RING-finger and two AAA+ domains. This variant has never been detected in Caucasian MMA patients, but several rare RNF213 variants have been reported in Caucasian cases. Using a collapsing test based on exome data from 68 European MMA probands and 573 ethnically matched controls, we showed a significant association between rare missense RNF213 variants and MMA in European patients (odds ratio (OR)=2.24, 95% confidence interval (CI)=(1.19-4.11), P=0.01). Variants specific to cases had higher pathogenicity predictive scores (median of 24.2 in cases versus 9.4 in controls, P=0.029) and preferentially clustered in a C-terminal hotspot encompassing the RING-finger domain of RNF213 (P<10 -3 ). This association was even stronger when restricting the analysis to childhood-onset and familial cases (OR=4.54, 95% CI=(1.80-11.34), P=1.1 × 10 -3 ). All clinically affected relatives who were genotyped were carriers. However, the need for additional factors to develop MMA is strongly suggested by the fact that only 25% of mutation carrier relatives were clinically affected.

  8. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype.

    PubMed

    Cooper-Knock, Johnathan; Robins, Henry; Niedermoser, Isabell; Wyles, Matthew; Heath, Paul R; Higginbottom, Adrian; Walsh, Theresa; Kazoka, Mbombe; Ince, Paul G; Hautbergue, Guillaume M; McDermott, Christopher J; Kirby, Janine; Shaw, Pamela J

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72 . We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes ( n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72 . We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies ( p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression ( t -test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course ( t -test, p = 0.025). Our data are consistent

  9. Whole-exome sequencing of a rare case of familial childhood acute lymphoblastic leukemia reveals putative predisposing mutations in Fanconi anemia genes.

    PubMed

    Spinella, Jean-François; Healy, Jasmine; Saillour, Virginie; Richer, Chantal; Cassart, Pauline; Ouimet, Manon; Sinnett, Daniel

    2015-07-23

    Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. While the multi-step model of pediatric leukemogenesis suggests interplay between constitutional and somatic genomes, the role of inherited genetic variability remains largely undescribed. Nonsyndromic familial ALL, although extremely rare, provides the ideal setting to study inherited contributions to ALL. Toward this goal, we sequenced the exomes of a childhood ALL family consisting of mother, father and two non-twinned siblings diagnosed with concordant pre-B hyperdiploid ALL and previously shown to have inherited a rare form of PRDM9, a histone H3 methyltransferase involved in crossing-over at recombination hotspots and Holliday junctions. We postulated that inheritance of additional rare disadvantaging variants in predisposing cancer genes could affect genomic stability and lead to increased risk of hyperdiploid ALL within this family. Whole exomes were captured using Agilent's SureSelect kit and sequenced on the Life Technologies SOLiD System. We applied a data reduction strategy to identify candidate variants shared by both affected siblings. Under a recessive disease model, we focused on rare non-synonymous or frame-shift variants in leukemia predisposing pathways. Though the family was nonsyndromic, we identified a combination of rare variants in Fanconi anemia (FA) genes FANCP/SLX4 (compound heterozygote - rs137976282/rs79842542) and FANCA (rs61753269) and a rare homozygous variant in the Holliday junction resolvase GEN1 (rs16981869). These variants, predicted to affect protein function, were previously identified in familial breast cancer cases. Based on our in-house database of 369 childhood ALL exomes, the sibs were the only patients to carry this particularly rare combination and only a single hyperdiploid patient was heterozygote at both FANCP/SLX4 positions, while no FANCA variant allele carriers were identified. FANCA is the most commonly mutated gene in FA and is essential for

  10. A comprehensive global genotype-phenotype database for rare diseases.

    PubMed

    Trujillano, Daniel; Oprea, Gabriela-Elena; Schmitz, Yvonne; Bertoli-Avella, Aida M; Abou Jamra, Rami; Rolfs, Arndt

    2017-01-01

    The ability to discover genetic variants in a patient runs far ahead of the ability to interpret them. Databases with accurate descriptions of the causal relationship between the variants and the phenotype are valuable since these are critical tools in clinical genetic diagnostics. Here, we introduce a comprehensive and global genotype-phenotype database focusing on rare diseases. This database (CentoMD ® ) is a browser-based tool that enables access to a comprehensive, independently curated system utilizing stringent high-quality criteria and a quickly growing repository of genetic and human phenotype ontology (HPO)-based clinical information. Its main goals are to aid the evaluation of genetic variants, to enhance the validity of the genetic analytical workflow, to increase the quality of genetic diagnoses, and to improve evaluation of treatment options for patients with hereditary diseases. The database software correlates clinical information from consented patients and probands of different geographical backgrounds with a large dataset of genetic variants and, when available, biomarker information. An automated follow-up tool is incorporated that informs all users whenever a variant classification has changed. These unique features fully embedded in a CLIA/CAP-accredited quality management system allow appropriate data quality and enhanced patient safety. More than 100,000 genetically screened individuals are documented in the database, resulting in more than 470 million variant detections. Approximately, 57% of the clinically relevant and uncertain variants in the database are novel. Notably, 3% of the genetic variants identified and previously reported in the literature as being associated with a particular rare disease were reclassified, based on internal evidence, as clinically irrelevant. The database offers a comprehensive summary of the clinical validity and causality of detected gene variants with their associated phenotypes, and is a valuable tool

  11. Clinical relevance of rare germline sequence variants in cancer genes: evolution and application of classification models.

    PubMed

    Spurdle, Amanda B

    2010-06-01

    Multifactorial models developed for BRCA1/2 variant classification have proved very useful for delineating BRCA1/2 variants associated with very high risk of cancer, or with little clinical significance. Recent linkage of this quantitative assessment of risk to clinical management guidelines has provided a basis to standardize variant reporting, variant classification and management of families with such variants, and can theoretically be applied to any disease gene. As proof of principle, the multifactorial approach already shows great promise for application to the evaluation of mismatch repair gene variants identified in families with suspected Lynch syndrome. However there is need to be cautious of the noted limitations and caveats of the current model, some of which may be exacerbated by differences in ascertainment and biological pathways to disease for different cancer syndromes.

  12. Germline Missense Variants in the BTNL2 Gene Are Associated with Prostate Cancer Susceptibility

    PubMed Central

    FitzGerald, Liesel M.; Kumar, Akash; Boyle, Evan A.; Zhang, Yuzheng; McIntosh, Laura M.; Kolb, Suzanne; Stott-Miller, Marni; Smith, Tiffany; Karyadi, Danielle M.; Ostrander, Elaine A.; Hsu, Li; Shendure, Jay; Stanford, Janet L.

    2013-01-01

    Background Rare, inherited mutations account for 5%–10% of all prostate cancer (PCa) cases. However, to date, few causative mutations have been identified. Methods To identify rare mutations for PCa, we performed whole-exome sequencing (WES) in multiple kindreds (n = 91) from 19 hereditary prostate cancer (HPC) families characterized by aggressive or early onset phenotypes. Candidate variants (n = 130) identified through family- and bioinformatics-based filtering of WES data were then genotyped in an independent set of 270 HPC families (n = 819 PCa cases; n = 496 unaffected relatives) for replication. Two variants with supportive evidence were subsequently genotyped in a population-based case-control study (n = 1,155 incident PCa cases; n = 1,060 age-matched controls) for further confirmation. All participants were men of European ancestry. Results The strongest evidence was for two germline missense variants in the butyrophilin-like 2 (BTNL2) gene (rs41441651, p.Asp336Asn and rs28362675, p.Gly454Cys) that segregated with affection status in two of the WES families. In the independent set of 270 HPC families, 1.5% (rs41441651; P = 0.0032) and 1.2% (rs28362675; P = 0.0070) of affected men, but no unaffected men, carried a variant. Both variants were associated with elevated PCa risk in the population-based study (rs41441651: OR = 2.7; 95% CI, 1.27–5.87; P = 0.010; rs28362675: OR = 2.5; 95% CI, 1.16–5.46; P = 0.019). Conclusions Results indicate that rare BTNL2 variants play a role in susceptibility to both familial and sporadic prostate cancer. Impact Results implicate BTNL2 as a novel PCa susceptibility gene. PMID:23833122

  13. Exome Sequencing Identifies Potential Risk Variants for Mendelian Disorders at High Prevalence in Qatar

    PubMed Central

    Rodriguez-Flores, Juan L.; Fakhro, Khalid; Hackett, Neil R.; Salit, Jacqueline; Fuller, Jennifer; Agosto-Perez, Francisco; Gharbiah, Maey; Malek, Joel A.; Zirie, Mahmoud; Jayyousi, Amin; Badii, Ramin; Al-Marri, Ajayeb Al-Nabet; Chouchane, Lotfi; Stadler, Dora J.; Hunter-Zinck, Haley; Mezey, Jason G.; Crystal, Ronald G.

    2013-01-01

    Exome sequencing of families of related individuals has been highly successful in identifying genetic polymorphisms responsible for Mendelian disorders. Here, we demonstrate the value of the reverse approach, where we use exome sequencing of a sample of unrelated individuals to analyze allele frequencies of known causal mutations for Mendelian diseases. We sequenced the exomes of 100 individuals representing the three major genetic subgroups of the Qatari population (Q1 Bedouin, Q2 Persian-South Asian, Q3 African) and identified 37 variants in 33 genes with effects on 36 clinically significant Mendelian diseases. These include variants not present in 1000 Genomes and variants at high frequency when compared to 1000 Genomes populations. Several of these Mendelian variants were only segregating in one Qatari subpopulation, where the observed subpopulation specificity trends were confirmed in an independent population of 386 Qataris. Pre-marital genetic screening in Qatar tests for only 4 out of the 37, such that this study provides a set of Mendelian disease variants with potential impact on the epidemiological profile of the population that could be incorporated into the testing program if further experimental and clinical characterization confirms high penetrance. PMID:24123366

  14. Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy.

    PubMed

    Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O; Thomas, Rhys H; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M; Malone, Stephen; Sadleir, Lynette G; Berkovic, Samuel F; Nashef, Lina; Zuberi, Sameer M; Rees, Mark I; Cavalleri, Gianpiero L; Sander, Josemir W; Hughes, Elaine; Helen Cross, J; Scheffer, Ingrid E; Palotie, Aarno; Sisodiya, Sanjay M

    2015-09-01

    Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10(- 3)) and non-epilepsy disease controls (P = 1.2 × 10(- 3)). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP.

  15. Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy

    PubMed Central

    Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O.; Thomas, Rhys H.; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M.; Malone, Stephen; Sadleir, Lynette G.; Berkovic, Samuel F.; Nashef, Lina; Zuberi, Sameer M.; Rees, Mark I.; Cavalleri, Gianpiero L.; Sander, Josemir W.; Hughes, Elaine; Helen Cross, J.; Scheffer, Ingrid E.; Palotie, Aarno; Sisodiya, Sanjay M.

    2015-01-01

    Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10− 3) and non-epilepsy disease controls (P = 1.2 × 10− 3). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP. PMID:26501104

  16. Inferring processes of cultural transmission: the critical role of rare variants in distinguishing neutrality from novelty biases.

    PubMed

    O'Dwyer, James P; Kandler, Anne

    2017-12-05

    Neutral evolution assumes that there are no selective forces distinguishing different variants in a population. Despite this striking assumption, many recent studies have sought to assess whether neutrality can provide a good description of different episodes of cultural change. One approach has been to test whether neutral predictions are consistent with observed progeny distributions, recording the number of variants that have produced a given number of new instances within a specified time interval: a classic example is the distribution of baby names. Using an overlapping generations model, we show that these distributions consist of two phases: a power-law phase with a constant exponent of [Formula: see text], followed by an exponential cut-off for variants with very large numbers of progeny. Maximum-likelihood estimations of the model parameters provide a direct way to establish whether observed empirical patterns are consistent with neutral evolution. We apply our approach to a complete dataset of baby names from Australia. Crucially, we show that analyses based on only the most popular variants, as is often the case in studies of cultural evolution, can provide misleading evidence for underlying transmission hypotheses. While neutrality provides a plausible description of progeny distributions of abundant variants, rare variants deviate from neutrality. Further, we develop a simulation framework that allows the detection of alternative cultural transmission processes. We show that anti-novelty bias is able to replicate the complete progeny distribution of the Australian dataset.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  17. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study.

    PubMed

    Dressen, Amy; Abbas, Alexander R; Cabanski, Christopher; Reeder, Janina; Ramalingam, Thirumalai R; Neighbors, Margaret; Bhangale, Tushar R; Brauer, Matthew J; Hunkapiller, Julie; Reeder, Jens; Mukhyala, Kiran; Cuenco, Karen; Tom, Jennifer; Cowgill, Amy; Vogel, Jan; Forrest, William F; Collard, Harold R; Wolters, Paul J; Kropski, Jonathan A; Lancaster, Lisa H; Blackwell, Timothy S; Arron, Joseph R; Yaspan, Brian L

    2018-06-08

    Idiopathic pulmonary fibrosis (IPF) risk has a strong genetic component. Studies have implicated variations at several loci, including TERT, surfactant genes, and a single nucleotide polymorphism at chr11p15 (rs35705950) in the intergenic region between TOLLIP and MUC5B. Patients with IPF who have risk alleles at rs35705950 have longer survival from the time of IPF diagnosis than do patients homozygous for the non-risk allele, whereas patients with shorter telomeres have shorter survival times. We aimed to assess whether rare protein-altering variants in genes regulating telomere length are enriched in patients with IPF homozygous for the non-risk alleles at rs35705950. Between Nov 1, 2014, and Nov 1, 2016, we assessed blood samples from patients aged 40 years or older and of European ancestry with sporadic IPF from three international phase 3 clinical trials (INSPIRE, CAPACITY, ASCEND), one phase 2 study (RIFF), and US-based observational studies (Vanderbilt Clinical Interstitial Lung Disease Registry and the UCSF Interstitial Lung Disease Clinic registry cohorts) at the Broad Institute (Cambridge, MA, USA) and Human Longevity (San Diego, CA, USA). We also assessed blood samples from non-IPF controls in several clinical trials. We did whole-genome sequencing to assess telomere length and identify rare protein-altering variants, stratified by rs35705950 genotype. We also assessed rare functional variation in TERT exons and compared telomere length and disease progression across genotypes. We assessed samples from 1510 patients with IPF and 1874 non-IPF controls. 30 (3%) of 1046 patients with an rs35705950 risk allele had a rare protein-altering variant in TERT compared with 34 (7%) of 464 non-risk allele carriers (odds ratio 0·40 [95% CI 0·24-0·66], p=0·00039). Subsequent analyses identified enrichment of rare protein-altering variants in PARN and RTEL1, and rare variation in TERC in patients with IPF compared with controls. We expanded our study population to

  18. Mutations In Rare Ataxia Genes Are Uncommon Causes of Sporadic Cerebellar Ataxia

    PubMed Central

    Fogel, Brent L.; Lee, Ji Yong; Lane, Jessica; Wahnich, Amanda; Chan, Sandy; Huang, Alden; Osborn, Greg E.; Klein, Eric; Mamah, Catherine; Perlman, Susan; Geschwind, Daniel H.; Coppola, Giovanni

    2012-01-01

    BACKGROUND Sporadic-onset ataxia is common in a tertiary care setting but a significant percentage remains unidentified despite extensive evaluation. Rare genetic ataxias, reported only in specific populations or families, may contribute to a percentage of sporadic ataxia. METHODS Patients with adult-onset sporadic ataxia, who tested negative for common genetic ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and/or Friedreich ataxia), were evaluated using a stratified screening approach for variants in seven rare ataxia genes. RESULTS We screened patients for published mutations in SYNE1 (n=80) and TGM6 (n=118), copy number variations in LMNB1 (n=40) and SETX (n=11), sequence variants in SACS (n=39) and PDYN (n=119), and the pentanucleotide insertion of spinocerebellar ataxia type 31 (n=101). Overall, we identified one patient with a LMNB1 duplication, one patient with a PDYN variant, and one compound SACS heterozygote, including a novel variant. CONCLUSIONS The rare genetic ataxias examined here do not significantly contribute to sporadic cerebellar ataxia in our tertiary care population. PMID:22287014

  19. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis.

    PubMed

    Yao, Shi; Guo, Yan; Dong, Shan-Shan; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Yi-Xiao; Chen, Jia-Bin; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2017-08-01

    Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.

  20. A Sodium Channel Myotonia Presenting with Intermittent Dysphagia as a Manifestation of a Rare SCN4A Variant.

    PubMed

    Benhammou, Jihane N; Phan, Jennifer; Lee, Hane; Ghassemi, Kevin; Parsons, William; Grody, Wayne W; Pisegna, Joseph R

    2017-03-01

    The voltage gated sodium channel SCN4A mutations account for non-dystrophic myotonia and include a heterogeneous group of conditions that include hyperkalemic periodic paralysis, paramyotonica congenita, potassium-aggravated myotonia, and hypokalemic periodic paralysis type 2. This case report proposes that a rare variant p.Pro1629Leu in SCN4A can cause a skeletal muscle deficit with intermittent dysphagia.

  1. A Sodium Channel Myotonia Presenting with Intermittent Dysphagia as a Manifestation of a Rare SCN4A Variant

    PubMed Central

    Benhammou, Jihane N.; Phan, Jennifer; Lee, Hane; Ghassemi, Kevin; Parsons, William; Grody, Wayne W.; Pisegna, Joseph R.

    2016-01-01

    The voltage gated sodium channel SCN4A mutations account for non-dystrophic myotonia and include a heterogenous group of conditions that include hyperkalemic periodic paralysis, paramyotonica congenita, potassium-aggravated myotonia and hypokalemic periodic paralysis type 2. This case report proposes that a rare variant p.Pro1629Leu in SCN4A can cause skeletal muscle deficit with intermittent dysphagia. PMID:28012096

  2. A statistical method for the detection of variants from next-generation resequencing of DNA pools.

    PubMed

    Bansal, Vikas

    2010-06-15

    Next-generation sequencing technologies have enabled the sequencing of several human genomes in their entirety. However, the routine resequencing of complete genomes remains infeasible. The massive capacity of next-generation sequencers can be harnessed for sequencing specific genomic regions in hundreds to thousands of individuals. Sequencing-based association studies are currently limited by the low level of multiplexing offered by sequencing platforms. Pooled sequencing represents a cost-effective approach for studying rare variants in large populations. To utilize the power of DNA pooling, it is important to accurately identify sequence variants from pooled sequencing data. Detection of rare variants from pooled sequencing represents a different challenge than detection of variants from individual sequencing. We describe a novel statistical approach, CRISP [Comprehensive Read analysis for Identification of Single Nucleotide Polymorphisms (SNPs) from Pooled sequencing] that is able to identify both rare and common variants by using two approaches: (i) comparing the distribution of allele counts across multiple pools using contingency tables and (ii) evaluating the probability of observing multiple non-reference base calls due to sequencing errors alone. Information about the distribution of reads between the forward and reverse strands and the size of the pools is also incorporated within this framework to filter out false variants. Validation of CRISP on two separate pooled sequencing datasets generated using the Illumina Genome Analyzer demonstrates that it can detect 80-85% of SNPs identified using individual sequencing while achieving a low false discovery rate (3-5%). Comparison with previous methods for pooled SNP detection demonstrates the significantly lower false positive and false negative rates for CRISP. Implementation of this method is available at http://polymorphism.scripps.edu/~vbansal/software/CRISP/.

  3. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales

    PubMed Central

    Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-01-01

    Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016

  4. Gliosarcoma: A rare variant of glioblastoma multiforme in paediatric patient: Case report and review of literature

    PubMed Central

    Meena, Ugan Singh; Sharma, Sumit; Chopra, Sanjeev; Jain, Shashi Kant

    2016-01-01

    Gliosarcoma is rare central nervous system tumour and a variant of glioblastoma multiforme with bimorphic histological pattern of glial and sarcomatous differentiation. It occurs in elderly between 5th and 6th decades of life and extremely rare in children. It is highly aggressive tumour and managed like glioblastoma multiforme. A 12-year-old female child presented with complaints of headache and vomiting from 15 d and blurring of vision from 3 d. Magnetic resonance imaging of brain shows heterogeneous mass in right parieto-occipital cortex. A right parieto-occipito-temporal craniotomy with complete excision of mass revealed a primary glioblastoma on histopathological investigation. Treatment consists of maximum surgical excision followed by adjuvant radiotherapy. The etiopathogenesis, treatment modalities and prognosis is discussed. The available literature is also reviewed. PMID:27672648

  5. Variants in congenital hypogonadotrophic hypogonadism genes identified in an Indonesian cohort of 46,XY under-virilised boys.

    PubMed

    Ayers, Katie L; Bouty, Aurore; Robevska, Gorjana; van den Bergen, Jocelyn A; Juniarto, Achmad Zulfa; Listyasari, Nurin Aisyiyah; Sinclair, Andrew H; Faradz, Sultana M H

    2017-02-16

    Congenital hypogonadotrophic hypogonadism (CHH) and Kallmann syndrome (KS) are caused by disruption to the hypothalamic-pituitary-gonadal (H-P-G) axis. In particular, reduced production, secretion or action of gonadotrophin-releasing hormone (GnRH) is often responsible. Various genes, many of which play a role in the development and function of the GnRH neurons, have been implicated in these disorders. Clinically, CHH and KS are heterogeneous; however, in 46,XY patients, they can be characterised by under-virilisation phenotypes such as cryptorchidism and micropenis or delayed puberty. In rare cases, hypospadias may also be present. Here, we describe genetic mutational analysis of CHH genes in Indonesian 46,XY disorder of sex development patients with under-virilisation. We present 11 male patients with varying degrees of under-virilisation who have rare variants in known CHH genes. Interestingly, many of these patients had hypospadias. We postulate that variants in CHH genes, in particular PROKR2, PROK2, WDR11 and FGFR1 with CHD7, may contribute to under-virilisation phenotypes including hypospadias in Indonesia.

  6. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure underpinning obesity

    PubMed Central

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas GD; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie CY; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Goncalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Heijer, Martin; den Hollander, Anneke I; den Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I. Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan FA; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna MM; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken Sin; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O’Donoghue, Michelle L.; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John RB; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva RB; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert Vernon; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; van der Laan, Sander W; van Duijn, Cornelia M; van Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth JF

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAF<5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which eight in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly implicated in human obesity, two (MC4R, KSR2) previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically-supported therapeutic targets to treat obesity. PMID:29273807

  7. NMNAT1 variants cause cone and cone-rod dystrophy.

    PubMed

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  8. Brain calcifications and PCDH12 variants

    PubMed Central

    Nicolas, Gaël; Sanchez-Contreras, Monica; Ramos, Eliana Marisa; Lemos, Roberta R.; Ferreira, Joana; Moura, Denis; Sobrido, Maria J.; Richard, Anne-Claire; Lopez, Alma Rosa; Legati, Andrea; Deleuze, Jean-François; Boland, Anne; Quenez, Olivier; Krystkowiak, Pierre; Favrole, Pascal; Geschwind, Daniel H.; Aran, Adi; Segel, Reeval; Levy-Lahad, Ephrat; Dickson, Dennis W.; Coppola, Giovanni; Rademakers, Rosa

    2017-01-01

    Objective: To assess the potential connection between PCDH12 and brain calcifications in a patient carrying a homozygous nonsense variant in PCDH12 and in adult patients with brain calcifications. Methods: We performed a CT scan in 1 child with a homozygous PCDH12 nonsense variant. We screened DNA samples from 53 patients with primary familial brain calcification (PFBC) and 26 patients with brain calcification of unknown cause (BCUC). Results: We identified brain calcifications in subcortical and perithalamic regions in the patient with a homozygous PCDH12 nonsense variant. The calcification pattern was different from what has been observed in PFBC and more similar to what is described in in utero infections. In patients with PFBC or BCUC, we found no protein-truncating variant and 3 rare (minor allele frequency <0.001) PCDH12 predicted damaging missense heterozygous variants in 3 unrelated patients, albeit with no segregation data available. Conclusions: Brain calcifications should be added to the phenotypic spectrum associated with PCDH12 biallelic loss of function, in the context of severe cerebral developmental abnormalities. A putative role for PCDH12 variants remains to be determined in PFBC. PMID:28804758

  9. The Mendelian inheritance of rare flesh and shell colour variants in the black-lipped pearl oyster (Pinctada margaritifera).

    PubMed

    Ky, Chin-Long; Nakasai, Seiji; Pommier, Steve; Sham Koua, Manaarii; Devaux, Dominique

    2016-10-01

    Pinctada margaritifera is French Polynesia's most economically important aquaculture species. This pearl oyster has the specific ability to produce cultured pearls with a very wide range of colours, depending on the colour phenotypes of donor oysters used. Its aquaculture is still based on natural spat collection from wild stocks. We investigated three rare colour variants of P. margaritifera - orange flesh, and red and white shell colour phenotypes - in comparison with the wild-type black flesh and shell commonly found in this species. The study aimed to assess the geographic distribution and genetic basis of these colour variants. Colour frequencies were evaluated during transfer and graft processes of pearl oyster seed captured at collector stations. Among the collection locations studied, Mangareva Island showed the highest rate of the orange flesh phenotype, whereas Takaroa and Takume atolls had relatively high rates of red and white shell phenotypes respectively. Broodstocks were made of these rare colour variants, and crosses were performed to produce first- and second-generation progenies to investigate segregation. The results were consistent with Mendelian ratios and suggest a distinct model with no co-dominance: (i) a two-allele model for flesh trait, whereby the orange allele is recessive to the black fleshed type, and (ii) a three-allele model for shell trait, whereby the black wild-type allele is dominant to the red coloration, which is dominant to the white shell. Furthermore, the proposed model provides the basis for producing selected donor pearl oyster lines through hatchery propagation. © 2016 Stichting International Foundation for Animal Genetics.

  10. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

    PubMed

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas G D; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie C Y; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Gonçalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der I; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Corominas Galbany, Jordi; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; Bakker, Paul I W; Groot, Mark C H; Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; Heijer, Martin; Hollander, Anneke I; Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan F A; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna M M; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L R; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken S; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O'Donoghue, Michelle L; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin N A; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R B; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva R B; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert V; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; Laan, Sander W; Duijn, Cornelia M; Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth J F

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.

  11. Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia.

    PubMed

    Legge, S E; Hamshere, M L; Ripke, S; Pardinas, A F; Goldstein, J I; Rees, E; Richards, A L; Leonenko, G; Jorskog, L F; Chambert, K D; Collier, D A; Genovese, G; Giegling, I; Holmans, P; Jonasdottir, A; Kirov, G; McCarroll, S A; MacCabe, J H; Mantripragada, K; Moran, J L; Neale, B M; Stefansson, H; Rujescu, D; Daly, M J; Sullivan, P F; Owen, M J; O'Donovan, M C; Walters, J T R

    2017-10-01

    The antipsychotic clozapine is uniquely effective in the management of schizophrenia; however, its use is limited by its potential to induce agranulocytosis. The causes of this, and of its precursor neutropenia, are largely unknown, although genetic factors have an important role. We sought risk alleles for clozapine-associated neutropenia in a sample of 66 cases and 5583 clozapine-treated controls, through a genome-wide association study (GWAS), imputed human leukocyte antigen (HLA) alleles, exome array and copy-number variation (CNV) analyses. We then combined associated variants in a meta-analysis with data from the Clozapine-Induced Agranulocytosis Consortium (up to 163 cases and 7970 controls). In the largest combined sample to date, we identified a novel association with rs149104283 (odds ratio (OR)=4.32, P=1.79 × 10 -8 ), intronic to transcripts of SLCO1B3 and SLCO1B7, members of a family of hepatic transporter genes previously implicated in adverse drug reactions including simvastatin-induced myopathy and docetaxel-induced neutropenia. Exome array analysis identified gene-wide associations of uncommon non-synonymous variants within UBAP2 and STARD9. We additionally provide independent replication of a previously identified variant in HLA-DQB1 (OR=15.6, P=0.015, positive predictive value=35.1%). These results implicate biological pathways through which clozapine may act to cause this serious adverse effect.

  12. Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia

    PubMed Central

    Legge, S E; Hamshere, M L; Ripke, S; Pardinas, A F; Goldstein, J I; Rees, E; Richards, A L; Leonenko, G; Jorskog, L F; Goldstein, Jacqueline I; Jarskog, L Fredrik; Hilliard, Chris; Alfirevic, Ana; Duncan, Laramie; Fourches, Denis; Huang, Hailiang; Lek, Monkol; Neale, Benjamin M; Ripke, Stephan; Shianna, Kevin; Szatkiewicz, Jin P; Tropsha, Alexander; van den Oord, Edwin JCG; Cascorbi, Ingolf; Dettling, Michael; Gazit, Ephraim; Goff, Donald C; Holden, Arthur L; Kelly, Deanna L; Malhotra, Anil K; Nielsen, Jimmi; Pirmohamed, Munir; Rujescu, Dan; Werge, Thomas; Levy, Deborah L; Josiassen, Richard C; Kennedy, James L; Lieberman, Jeffrey A; Daly, Mark J; Sullivan, Patrick F; Chambert, K D; Collier, D A; Genovese, G; Giegling, I; Holmans, P; Jonasdottir, A; Kirov, G; McCarroll, S A; MacCabe, J H; Mantripragada, K; Moran, J L; Neale, B M; Stefansson, H; Rujescu, D; Daly, M J; Sullivan, P F; Owen, M J; O'Donovan, M C; Walters, J T R

    2017-01-01

    The antipsychotic clozapine is uniquely effective in the management of schizophrenia; however, its use is limited by its potential to induce agranulocytosis. The causes of this, and of its precursor neutropenia, are largely unknown, although genetic factors have an important role. We sought risk alleles for clozapine-associated neutropenia in a sample of 66 cases and 5583 clozapine-treated controls, through a genome-wide association study (GWAS), imputed human leukocyte antigen (HLA) alleles, exome array and copy-number variation (CNV) analyses. We then combined associated variants in a meta-analysis with data from the Clozapine-Induced Agranulocytosis Consortium (up to 163 cases and 7970 controls). In the largest combined sample to date, we identified a novel association with rs149104283 (odds ratio (OR)=4.32, P=1.79 × 10−8), intronic to transcripts of SLCO1B3 and SLCO1B7, members of a family of hepatic transporter genes previously implicated in adverse drug reactions including simvastatin-induced myopathy and docetaxel-induced neutropenia. Exome array analysis identified gene-wide associations of uncommon non-synonymous variants within UBAP2 and STARD9. We additionally provide independent replication of a previously identified variant in HLA-DQB1 (OR=15.6, P=0.015, positive predictive value=35.1%). These results implicate biological pathways through which clozapine may act to cause this serious adverse effect. PMID:27400856

  13. Identification of Rare, Single-Nucleotide Mutations in NDE1 and Their Contributions to Schizophrenia Susceptibility

    PubMed Central

    Kimura, Hiroki; Tsuboi, Daisuke; Wang, Chenyao; Kushima, Itaru; Koide, Takayoshi; Ikeda, Masashi; Iwayama, Yoshimi; Toyota, Tomoko; Yamamoto, Noriko; Kunimoto, Shohko; Nakamura, Yukako; Yoshimi, Akira; Banno, Masahiro; Xing, Jingrui; Takasaki, Yuto; Yoshida, Mami; Aleksic, Branko; Uno, Yota; Okada, Takashi; Iidaka, Tetsuya; Inada, Toshiya; Suzuki, Michio; Ujike, Hiroshi; Kunugi, Hiroshi; Kato, Tadafumi; Yoshikawa, Takeo; Iwata, Nakao; Kaibuchi, Kozo; Ozaki, Norio

    2015-01-01

    Background: Nuclear distribution E homolog 1 (NDE1), located within chromosome 16p13.11, plays an essential role in microtubule organization, mitosis, and neuronal migration and has been suggested by several studies of rare copy number variants to be a promising schizophrenia (SCZ) candidate gene. Recently, increasing attention has been paid to rare single-nucleotide variants (SNVs) discovered by deep sequencing of candidate genes, because such SNVs may have large effect sizes and their functional analysis may clarify etiopathology. Methods and Results: We conducted mutation screening of NDE1 coding exons using 433 SCZ and 145 pervasive developmental disorders samples in order to identify rare single nucleotide variants with a minor allele frequency ≤5%. We then performed genetic association analysis using a large number of unrelated individuals (3554 SCZ, 1041 bipolar disorder [BD], and 4746 controls). Among the discovered novel rare variants, we detected significant associations between SCZ and S214F (P = .039), and between BD and R234C (P = .032). Furthermore, functional assays showed that S214F affected axonal outgrowth and the interaction between NDE1 and YWHAE (14-3-3 epsilon; a neurodevelopmental regulator). Conclusions: This study strengthens the evidence for association between rare variants within NDE1 and SCZ, and may shed light into the molecular mechanisms underlying this severe psychiatric disorder. PMID:25332407

  14. Statistical tests for detecting associations with groups of genetic variants: generalization, evaluation, and implementation

    PubMed Central

    Ferguson, John; Wheeler, William; Fu, YiPing; Prokunina-Olsson, Ludmila; Zhao, Hongyu; Sampson, Joshua

    2013-01-01

    With recent advances in sequencing, genotyping arrays, and imputation, GWAS now aim to identify associations with rare and uncommon genetic variants. Here, we describe and evaluate a class of statistics, generalized score statistics (GSS), that can test for an association between a group of genetic variants and a phenotype. GSS are a simple weighted sum of single-variant statistics and their cross-products. We show that the majority of statistics currently used to detect associations with rare variants are equivalent to choosing a specific set of weights within this framework. We then evaluate the power of various weighting schemes as a function of variant characteristics, such as MAF, the proportion associated with the phenotype, and the direction of effect. Ultimately, we find that two classical tests are robust and powerful, but details are provided as to when other GSS may perform favorably. The software package CRaVe is available at our website (http://dceg.cancer.gov/bb/tools/crave). PMID:23092956

  15. Are quantitative trait-dependent sampling designs cost-effective for analysis of rare and common variants?

    PubMed

    Yilmaz, Yildiz E; Bull, Shelley B

    2011-11-29

    Use of trait-dependent sampling designs in whole-genome association studies of sequence data can reduce total sequencing costs with modest losses of statistical efficiency. In a quantitative trait (QT) analysis of data from the Genetic Analysis Workshop 17 mini-exome for unrelated individuals in the Asian subpopulation, we investigate alternative designs that sequence only 50% of the entire cohort. In addition to a simple random sampling design, we consider extreme-phenotype designs that are of increasing interest in genetic association analysis of QTs, especially in studies concerned with the detection of rare genetic variants. We also evaluate a novel sampling design in which all individuals have a nonzero probability of being selected into the sample but in which individuals with extreme phenotypes have a proportionately larger probability. We take differential sampling of individuals with informative trait values into account by inverse probability weighting using standard survey methods which thus generalizes to the source population. In replicate 1 data, we applied the designs in association analysis of Q1 with both rare and common variants in the FLT1 gene, based on knowledge of the generating model. Using all 200 replicate data sets, we similarly analyzed Q1 and Q4 (which is known to be free of association with FLT1) to evaluate relative efficiency, type I error, and power. Simulation study results suggest that the QT-dependent selection designs generally yield greater than 50% relative efficiency compared to using the entire cohort, implying cost-effectiveness of 50% sample selection and worthwhile reduction of sequencing costs.

  16. Decoding the Effect of Isobaric Substitutions on Identifying Missing Proteins and Variant Peptides in Human Proteome.

    PubMed

    Choong, Wai-Kok; Lih, Tung-Shing Mamie; Chen, Yu-Ju; Sung, Ting-Yi

    2017-12-01

    To confirm the existence of missing proteins, we need to identify at least two unique peptides with length of 9-40 amino acids of a missing protein in bottom-up mass-spectrometry-based proteomic experiments. However, an identified unique peptide of the missing protein, even identified with high level of confidence, could possibly coincide with a peptide of a commonly observed protein due to isobaric substitutions, mass modifications, alternative splice isoforms, or single amino acid variants (SAAVs). Besides unique peptides of missing proteins, identified variant peptides (SAAV-containing peptides) could also alternatively map to peptides of other proteins due to the aforementioned issues. Therefore, we conducted a thorough comparative analysis on data sets in PeptideAtlas Tiered Human Integrated Search Proteome (THISP, 2017-03 release), including neXtProt (2017-01 release), to systematically investigate the possibility of unique peptides in missing proteins (PE2-4), unique peptides in dubious proteins, and variant peptides affected by isobaric substitutions, causing doubtful identification results. In this study, we considered 11 isobaric substitutions. From our analysis, we found <5% of the unique peptides of missing proteins and >6% of variant peptides became shared with peptides of PE1 proteins after isobaric substitutions.

  17. X-Linked Glomerulopathy Due to COL4A5 Founder Variant.

    PubMed

    Barua, Moumita; John, Rohan; Stella, Lorenzo; Li, Weili; Roslin, Nicole M; Sharif, Bedra; Hack, Saidah; Lajoie-Starkell, Ginette; Schwaderer, Andrew L; Becknell, Brian; Wuttke, Matthias; Köttgen, Anna; Cattran, Daniel; Paterson, Andrew D; Pei, York

    2018-03-01

    Alport syndrome is a rare hereditary disorder caused by rare variants in 1 of 3 genes encoding for type IV collagen. Rare variants in COL4A5 on chromosome Xq22 cause X-linked Alport syndrome, which accounts for ∼80% of the cases. Alport syndrome has a variable clinical presentation, including progressive kidney failure, hearing loss, and ocular defects. Exome sequencing performed in 2 affected related males with an undefined X-linked glomerulopathy characterized by global and segmental glomerulosclerosis, mesangial hypercellularity, and vague basement membrane immune complex deposition revealed a COL4A5 sequence variant, a substitution of a thymine by a guanine at nucleotide 665 (c.T665G; rs281874761) of the coding DNA predicted to lead to a cysteine to phenylalanine substitution at amino acid 222, which was not seen in databases cataloguing natural human genetic variation, including dbSNP138, 1000 Genomes Project release version 01-11-2004, Exome Sequencing Project 21-06-2014, or ExAC 01-11-2014. Review of the literature identified 2 additional families with the same COL4A5 variant leading to similar atypical histopathologic features, suggesting a unique pathologic mechanism initiated by this specific rare variant. Homology modeling suggests that the substitution alters the structural and dynamic properties of the type IV collagen trimer. Genetic analysis comparing members of the 3 families indicated a distant relationship with a shared haplotype, implying a founder effect. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Rare deleterious mutations are associated with disease in bipolar disorder families.

    PubMed

    Rao, A R; Yourshaw, M; Christensen, B; Nelson, S F; Kerner, B

    2017-07-01

    Bipolar disorder (BD) is a common, complex and heritable psychiatric disorder characterized by episodes of severe mood swings. The identification of rare, damaging genomic mutations in families with BD could inform about disease mechanisms and lead to new therapeutic interventions. To determine whether rare, damaging mutations shared identity-by-descent in families with BD could be associated with disease, exome sequencing was performed in multigenerational families of the NIMH BD Family Study followed by in silico functional prediction. Disease association and disease specificity was determined using 5090 exomes from the Sweden-Schizophrenia (SZ) Population-Based Case-Control Exome Sequencing study. We identified 14 rare and likely deleterious mutations in 14 genes that were shared identity-by-descent among affected family members. The variants were associated with BD (P<0.05 after Bonferroni's correction) and disease specificity was supported by the absence of the mutations in patients with SZ. In addition, we found rare, functional mutations in known causal genes for neuropsychiatric disorders including holoprosencephaly and epilepsy. Our results demonstrate that exome sequencing in multigenerational families with BD is effective in identifying rare genomic variants of potential clinical relevance and also disease modifiers related to coexisting medical conditions. Replication of our results and experimental validation are required before disease causation could be assumed.

  19. Necrotizing Lip Infection Causing Septic Thrombophlebitis of the Neck: A Rare Variant of Lemierre Syndrome.

    PubMed

    Cuddy, Karl; Saadat, Nariman; Khatib, Baber; Patel, Ashish

    2018-01-01

    Lemierre syndrome is an uncommon condition in which internal jugular vein thrombosis presents after recent oropharyngeal infection. Frequently, this is accompanied by septic emboli. This report outlines a variant of this disease process, with septic thrombophlebitis of the neck associated with a necrotizing skin infection of the lower lip and chin. A 25-year-old man with lower lip and chin swelling, initially managed with intravenous antibiotics, progressed to the development of a left facial vein thrombus, septic emboli to the lungs, and a necrotizing lower lip and chin infection that was managed with debridement, thrombectomy, and prolonged hemodynamic and pulmonary support. A necrotizing skin infection with thrombus of the jugular system and septic emboli is a very rare variant of Lemierre syndrome. Early recognition of an infection with septic emboli and/or necrotizing pathobiological findings allows for prompt antibiotic and surgical therapy, minimizing the mortality of these potentially lethal infections. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Trans-ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the ANGPTL8 HDL-C GWAS Locus

    PubMed Central

    Cannon, Maren E.; Duan, Qing; Wu, Ying; Zeynalzadeh, Monica; Xu, Zheng; Kangas, Antti J.; Soininen, Pasi; Ala-Korpela, Mika; Civelek, Mete; Lusis, Aldons J.; Kuusisto, Johanna; Collins, Francis S.; Boehnke, Michael; Tang, Hua; Laakso, Markku; Li, Yun; Mohlke, Karen L.

    2017-01-01

    Recent genome-wide association studies (GWAS) have identified variants associated with high-density lipoprotein cholesterol (HDL-C) located in or near the ANGPTL8 gene. Given the extensive sharing of GWAS loci across populations, we hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C–associated variants are coincident with expression quantitative trait loci for ANGPTL8 and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C levels. We identified a 400-bp promoter region of ANGPTL8 and enhancer regions within 5 kb that contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5-fold, P = 0.004) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and at least one functional variant. PMID:28754724

  1. Variant Interpretation: Functional Assays to the Rescue.

    PubMed

    Starita, Lea M; Ahituv, Nadav; Dunham, Maitreya J; Kitzman, Jacob O; Roth, Frederick P; Seelig, Georg; Shendure, Jay; Fowler, Douglas M

    2017-09-07

    Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Sequence variants in oxytocin pathway genes and preterm birth: a candidate gene association study

    PubMed Central

    2013-01-01

    Background Preterm birth (PTB) is a complex disorder associated with significant neonatal mortality and morbidity and long-term adverse health consequences. Multiple lines of evidence suggest that genetic factors play an important role in its etiology. This study was designed to identify genetic variation associated with PTB in oxytocin pathway genes whose role in parturition is well known. Methods To identify common genetic variants predisposing to PTB, we genotyped 16 single nucleotide polymorphisms (SNPs) in the oxytocin (OXT), oxytocin receptor (OXTR), and leucyl/cystinyl aminopeptidase (LNPEP) genes in 651 case infants from the U.S. and one or both of their parents. In addition, we examined the role of rare genetic variation in susceptibility to PTB by conducting direct sequence analysis of OXTR in 1394 cases and 1112 controls from the U.S., Argentina, Denmark, and Finland. This study was further extended to maternal triads (maternal grandparents-mother of a case infant, N=309). We also performed in vitro analysis of selected rare OXTR missense variants to evaluate their functional importance. Results Maternal genetic effect analysis of the SNP genotype data revealed four SNPs in LNPEP that show significant association with prematurity. In our case–control sequence analysis, we detected fourteen coding variants in exon 3 of OXTR, all but four of which were found in cases only. Of the fourteen variants, three were previously unreported novel rare variants. When the sequence data from the maternal triads were analyzed using the transmission disequilibrium test, two common missense SNPs (rs4686302 and rs237902) in OXTR showed suggestive association for three gestational age subgroups. In vitro functional assays showed a significant difference in ligand binding between wild-type and two mutant receptors. Conclusions Our study suggests an association between maternal common polymorphisms in LNPEP and susceptibility to PTB. Maternal OXTR missense SNPs rs4686302

  3. Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing

    PubMed Central

    Wang, Yimin; Du, Xiaonan; Bin, Rao; Yu, Shanshan; Xia, Zhezhi; Zheng, Guo; Zhong, Jianmin; Zhang, Yunjian; Jiang, Yong-hui; Wang, Yi

    2017-01-01

    Genetic factors play a major role in the etiology of epilepsy disorders. Recent genomics studies using next generation sequencing (NGS) technique have identified a large number of genetic variants including copy number (CNV) and single nucleotide variant (SNV) in a small set of genes from individuals with epilepsy. These discoveries have contributed significantly to evaluate the etiology of epilepsy in clinic and lay the foundation to develop molecular specific treatment. However, the molecular basis for a majority of epilepsy patients remains elusive, and furthermore, most of these studies have been conducted in Caucasian children. Here we conducted a targeted exome-sequencing of 63 trios of Chinese epilepsy families using a custom-designed NGS panel that covers 412 known and candidate genes for epilepsy. We identified pathogenic and likely pathogenic variants in 15 of 63 (23.8%) families in known epilepsy genes including SCN1A, CDKL5, STXBP1, CHD2, SCN3A, SCN9A, TSC2, MBD5, POLG and EFHC1. More importantly, we identified likely pathologic variants in several novel candidate genes such as GABRE, MYH1, and CLCN6. Our results provide the evidence supporting the application of custom-designed NGS panel in clinic and indicate a conserved genetic susceptibility for epilepsy between Chinese and Caucasian children. PMID:28074849

  4. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    PubMed

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10^-4). CONCLUSIONS This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  5. Germ-line variants identified by next generation sequencing in a panel of estrogen and cancer associated genes correlate with poor clinical outcome in Lynch syndrome patients.

    PubMed

    Jóri, Balazs; Kamps, Rick; Xanthoulea, Sofia; Delvoux, Bert; Blok, Marinus J; Van de Vijver, Koen K; de Koning, Bart; Oei, Felicia Trups; Tops, Carli M; Speel, Ernst Jm; Kruitwagen, Roy F; Gomez-Garcia, Encarna B; Romano, Andrea

    2015-12-01

    The risk to develop colorectal and endometrial cancers among subjects testing positive for a pathogenic Lynch syndrome mutation varies, making the risk prediction difficult. Genetic risk modifiers alter the risk conferred by inherited Lynch syndrome mutations, and their identification can improve genetic counseling. We aimed at identifying rare genetic modifiers of the risk of Lynch syndrome endometrial cancer. A family based approach was used to assess the presence of genetic risk modifiers among 35 Lynch syndrome mutation carriers having either a poor clinical phenotype (early age of endometrial cancer diagnosis or multiple cancers) or a neutral clinical phenotype. Putative genetic risk modifiers were identified by Next Generation Sequencing among a panel of 154 genes involved in endometrial physiology and carcinogenesis. A simple pipeline, based on an allele frequency lower than 0.001 and on predicted non-conservative amino-acid substitutions returned 54 variants that were considered putative risk modifiers. The presence of two or more risk modifying variants in women carrying a pathogenic Lynch syndrome mutation was associated with a poor clinical phenotype. A gene-panel is proposed that comprehends genes that can carry variants with putative modifying effects on the risk of Lynch syndrome endometrial cancer. Validation in further studies is warranted before considering the possible use of this tool in genetic counseling.

  6. Rare intronic variants of TCF7L2 arising by selective sweeps in an indigenous population from Mexico.

    PubMed

    Acosta, Jose Luis; Hernández-Mondragón, Alma Cristal; Correa-Acosta, Laura Carolina; Cazañas-Padilla, Sandra Nathaly; Chávez-Florencio, Berenice; Ramírez-Vega, Elvia Yamilet; Monge-Cázares, Tulia; Aguilar-Salinas, Carlos A; Tusié-Luna, Teresa; Del Bosque-Plata, Laura

    2016-05-26

    Genetic variations of the TCF7L2 gene are associated with the development of Type 2 diabetes (T2D). The associated mutations have demonstrated an adaptive role in some human populations, but no studies have determined the impact of evolutionary forces on genetic diversity in indigenous populations from Mexico. Here, we sequenced and analyzed the variation of the TCF7L2 gene in three Amerindian populations and compared the results with whole-exon-sequencing of Mestizo populations from Sigma and the 1000 Genomes Project to assess the roles of selection and recombination in diversity. The diversity in the indigenous populations was biased to intronic regions. Most of the variation was low frequency. Only mutations rs77961654 and rs61724286 were located on exon 15. We did not observe variation in intronic region 4-6 in any of the three indigenous populations. In addition, we identified peaks of selective sweeps in the mestizo samples from the Sigma Project within this region. By replicating the analysis of association with T2D between case-controls from the Sigma Project, we determined that T2D was most highly associated with the rs7903146 risk allele and to a lesser extent with the other six variants. All associated markers were located in intronic region 4-6, and their r(2) values of linkage disequilibrium were significantly higher in the Mexican population than in Africans from the 1000 Genomes Project. We observed reticulations in both the haplotypes network analysis from seven marker associates and the neighborNet tree based on 6061 markers in the TCF7L2 gene identified from all samples of the 1000 Genomes Project. Finally, we identified two recombination hotspots in the upstream region and 3' end of the TCF7L2 gene. The lack of diversity in intronic region 4-6 in Indigenous populations could be an effect of selective sweeps generated by the selection of neighboring rare variants at T2D-associated mutations. The survivors' variants make the intronic region 4-6 the

  7. Rare Disease Mechanisms Identified by Genealogical Proteomics of Copper Homeostasis Mutant Pedigrees.

    PubMed

    Zlatic, Stephanie A; Vrailas-Mortimer, Alysia; Gokhale, Avanti; Carey, Lucas J; Scott, Elizabeth; Burch, Reid; McCall, Morgan M; Rudin-Rush, Samantha; Davis, John Bowen; Hartwig, Cortnie; Werner, Erica; Li, Lian; Petris, Michael; Faundez, Victor

    2018-03-28

    Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A -/y fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES)

    PubMed Central

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong

    2018-01-01

    Background Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. Material/Methods Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. Results From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10−4). Conclusions This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations. PMID:29505555

  9. Novel microcephalic primordial dwarfism disorder associated with variants in the centrosomal protein ninein.

    PubMed

    Dauber, Andrew; Lafranchi, Stephen H; Maliga, Zoltan; Lui, Julian C; Moon, Jennifer E; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A; Pers, Tune H; Baron, Jeffrey; Rosenfeld, Ron G; Hirschhorn, Joel N; Harris, Matthew P; Hwa, Vivian

    2012-11-01

    Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. The objective of the study was to find the genetic etiology of a novel presentation of MPD. The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients.

  10. Identification of rare paired box 3 variant in strabismus by whole exome sequencing.

    PubMed

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.

  11. Novel variants in GNAI3 associated with auriculocondylar syndrome strengthen a common dominant negative effect.

    PubMed

    Romanelli Tavares, Vanessa L; Gordon, Christopher T; Zechi-Ceide, Roseli M; Kokitsu-Nakata, Nancy Mizue; Voisin, Norine; Tan, Tiong Y; Heggie, Andrew A; Vendramini-Pittoli, Siulan; Propst, Evan J; Papsin, Blake C; Torres, Tatiana T; Buermans, Henk; Capelo, Luciane Portas; den Dunnen, Johan T; Guion-Almeida, Maria L; Lyonnet, Stanislas; Amiel, Jeanne; Passos-Bueno, Maria Rita

    2015-04-01

    Auriculocondylar syndrome is a rare craniofacial disorder comprising core features of micrognathia, condyle dysplasia and question mark ear. Causative variants have been identified in PLCB4, GNAI3 and EDN1, which are predicted to function within the EDN1-EDNRA pathway during early pharyngeal arch patterning. To date, two GNAI3 variants in three families have been reported. Here we report three novel GNAI3 variants, one segregating with affected members in a family previously linked to 1p21.1-q23.3 and two de novo variants in simplex cases. Two variants occur in known functional motifs, the G1 and G4 boxes, and the third variant is one amino acid outside of the G1 box. Structural modeling shows that all five altered GNAI3 residues identified to date cluster in a region involved in GDP/GTP binding. We hypothesize that all GNAI3 variants lead to dominant negative effects.

  12. A novel LPL intronic variant: g.18704C>A identified by re-sequencing Kuwaiti Arab samples is associated with high-density lipoprotein, very low-density lipoprotein and triglyceride lipid levels.

    PubMed

    Al-Bustan, Suzanne A; Al-Serri, Ahmad; Annice, Babitha G; Alnaqeeb, Majed A; Al-Kandari, Wafa Y; Dashti, Mohammed

    2018-01-01

    The role interethnic genetic differences play in plasma lipid level variation across populations is a global health concern. Several genes involved in lipid metabolism and transport are strong candidates for the genetic association with lipid level variation especially lipoprotein lipase (LPL). The objective of this study was to re-sequence the full LPL gene in Kuwaiti Arabs, analyse the sequence variation and identify variants that could attribute to variation in plasma lipid levels for further genetic association. Samples (n = 100) of an Arab ethnic group from Kuwait were analysed for sequence variation by Sanger sequencing across the 30 Kb LPL gene and its flanking sequences. A total of 293 variants including 252 single nucleotide polymorphisms (SNPs) and 39 insertions/deletions (InDels) were identified among which 47 variants (32 SNPs and 15 InDels) were novel to Kuwaiti Arabs. This study is the first to report sequence data and analysis of frequencies of variants at the LPL gene locus in an Arab ethnic group with a novel "rare" variant (LPL:g.18704C>A) significantly associated to HDL (B = -0.181; 95% CI (-0.357, -0.006); p = 0.043), TG (B = 0.134; 95% CI (0.004-0.263); p = 0.044) and VLDL (B = 0.131; 95% CI (-0.001-0.263); p = 0.043) levels. Sequence variation in Kuwaiti Arabs was compared to other populations and was found to be similar with regards to the number of SNPs, InDels and distribution of the number of variants across the LPL gene locus and minor allele frequency (MAF). Moreover, comparison of the identified variants and their MAF with other reports provided a list of 46 potential variants across the LPL gene to be considered for future genetic association studies. The findings warrant further investigation into the association of g.18704C>A with lipid levels in other ethnic groups and with clinical manifestations of dyslipidemia.

  13. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.

    PubMed

    Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H

    2017-04-01

    Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

  14. Complex phenotype of dyskeratosis congenita and mood dysregulation with novel homozygous RTEL1 and TPH1 variants.

    PubMed

    Ungar, Rachel A; Giri, Neelam; Pao, Maryland; Khincha, Payal P; Zhou, Weiyin; Alter, Blanche P; Savage, Sharon A

    2018-06-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome-wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in-house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease. © 2018 Wiley Periodicals, Inc.

  15. Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records.

    PubMed

    Van Driest, Sara L; Wells, Quinn S; Stallings, Sarah; Bush, William S; Gordon, Adam; Nickerson, Deborah A; Kim, Jerry H; Crosslin, David R; Jarvik, Gail P; Carrell, David S; Ralston, James D; Larson, Eric B; Bielinski, Suzette J; Olson, Janet E; Ye, Zi; Kullo, Iftikhar J; Abul-Husn, Noura S; Scott, Stuart A; Bottinger, Erwin; Almoguera, Berta; Connolly, John; Chiavacci, Rosetta; Hakonarson, Hakon; Rasmussen-Torvik, Laura J; Pan, Vivian; Persell, Stephen D; Smith, Maureen; Chisholm, Rex L; Kitchner, Terrie E; He, Max M; Brilliant, Murray H; Wallace, John R; Doheny, Kimberly F; Shoemaker, M Benjamin; Li, Rongling; Manolio, Teri A; Callis, Thomas E; Macaya, Daniela; Williams, Marc S; Carey, David; Kapplinger, Jamie D; Ackerman, Michael J; Ritchie, Marylyn D; Denny, Joshua C; Roden, Dan M

    2016-01-05

    Large-scale DNA sequencing identifies incidental rare variants in established Mendelian disease genes, but the frequency of related clinical phenotypes in unselected patient populations is not well established. Phenotype data from electronic medical records (EMRs) may provide a resource to assess the clinical relevance of rare variants. To determine the clinical phenotypes from EMRs for individuals with variants designated as pathogenic by expert review in arrhythmia susceptibility genes. This prospective cohort study included 2022 individuals recruited for nonantiarrhythmic drug exposure phenotypes from October 5, 2012, to September 30, 2013, for the Electronic Medical Records and Genomics Network Pharmacogenomics project from 7 US academic medical centers. Variants in SCN5A and KCNH2, disease genes for long QT and Brugada syndromes, were assessed for potential pathogenicity by 3 laboratories with ion channel expertise and by comparison with the ClinVar database. Relevant phenotypes were determined from EMRs, with data available from 2002 (or earlier for some sites) through September 10, 2014. One or more variants designated as pathogenic in SCN5A or KCNH2. Arrhythmia or electrocardiographic (ECG) phenotypes defined by International Classification of Diseases, Ninth Revision (ICD-9) codes, ECG data, and manual EMR review. Among 2022 study participants (median age, 61 years [interquartile range, 56-65 years]; 1118 [55%] female; 1491 [74%] white), a total of 122 rare (minor allele frequency <0.5%) nonsynonymous and splice-site variants in 2 arrhythmia susceptibility genes were identified in 223 individuals (11% of the study cohort). Forty-two variants in 63 participants were designated potentially pathogenic by at least 1 laboratory or ClinVar, with low concordance across laboratories (Cohen κ = 0.26). An ICD-9 code for arrhythmia was found in 11 of 63 (17%) variant carriers vs 264 of 1959 (13%) of those without variants (difference, +4%; 95% CI, -5% to +13

  16. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways

    PubMed Central

    Cappi, C; Brentani, H; Lima, L; Sanders, S J; Zai, G; Diniz, B J; Reis, V N S; Hounie, A G; Conceição do Rosário, M; Mariani, D; Requena, G L; Puga, R; Souza-Duran, F L; Shavitt, R G; Pauls, D L; Miguel, E C; Fernandez, T V

    2016-01-01

    Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein–protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10−8 per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular

  17. [Rare bile duct anatomy variant - Right bile duct intraparenchymal junction into the left bile duct].

    PubMed

    Gál, Adrián Róbert; Kalmár-Nagy, Károly; Fincsur, András; Horváth, Örs Péter; Vereczkei, András

    2018-03-01

    The authors present a case of a 67-year-old male patient, who previously had been diagnosed with a malignant liver tumor localized in segment II. He underwent bisegmentectomy (II and III) and partial IV segmentectomy. After the primary surgery jaundice developed, the level of bilirubin increased and after several imaging modalities reoperation was indicated. During the surgery a rare bile duct anatomy variant was found. The right hepatic duct joined the left duct in the parenchyma of the left lobe, and was ligated at the resection. As the liver hilum was not explored, the absence of the right duct was not discovered. Reconstruction of the biliary system was accomplished by a Roux-en-Y loop.

  18. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome.

    PubMed

    Mlynarski, Elisabeth E; Xie, Michael; Taylor, Deanne; Sheridan, Molly B; Guo, Tingwei; Racedo, Silvia E; McDonald-McGinn, Donna M; Chow, Eva W C; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno; Philip, Nicole; Simon, Tony J; Roberts, Amy E; Piotrowicz, Małgorzata; Bearden, Carrie E; Eliez, Stephan; Gothelf, Doron; Coleman, Karlene; Kates, Wendy R; Devoto, Marcella; Zackai, Elaine; Heine-Suñer, Damian; Goldmuntz, Elizabeth; Bassett, Anne S; Morrow, Bernice E; Emanuel, Beverly S

    2016-03-01

    The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60-75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients.

  19. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants.

    PubMed

    Dadaev, Tokhir; Saunders, Edward J; Newcombe, Paul J; Anokian, Ezequiel; Leongamornlert, Daniel A; Brook, Mark N; Cieza-Borrella, Clara; Mijuskovic, Martina; Wakerell, Sarah; Olama, Ali Amin Al; Schumacher, Fredrick R; Berndt, Sonja I; Benlloch, Sara; Ahmed, Mahbubl; Goh, Chee; Sheng, Xin; Zhang, Zhuo; Muir, Kenneth; Govindasami, Koveela; Lophatananon, Artitaya; Stevens, Victoria L; Gapstur, Susan M; Carter, Brian D; Tangen, Catherine M; Goodman, Phyllis; Thompson, Ian M; Batra, Jyotsna; Chambers, Suzanne; Moya, Leire; Clements, Judith; Horvath, Lisa; Tilley, Wayne; Risbridger, Gail; Gronberg, Henrik; Aly, Markus; Nordström, Tobias; Pharoah, Paul; Pashayan, Nora; Schleutker, Johanna; Tammela, Teuvo L J; Sipeky, Csilla; Auvinen, Anssi; Albanes, Demetrius; Weinstein, Stephanie; Wolk, Alicja; Hakansson, Niclas; West, Catharine; Dunning, Alison M; Burnet, Neil; Mucci, Lorelei; Giovannucci, Edward; Andriole, Gerald; Cussenot, Olivier; Cancel-Tassin, Géraldine; Koutros, Stella; Freeman, Laura E Beane; Sorensen, Karina Dalsgaard; Orntoft, Torben Falck; Borre, Michael; Maehle, Lovise; Grindedal, Eli Marie; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Martin, Richard M; Travis, Ruth C; Key, Tim J; Hamilton, Robert J; Fleshner, Neil E; Finelli, Antonio; Ingles, Sue Ann; Stern, Mariana C; Rosenstein, Barry; Kerns, Sarah; Ostrer, Harry; Lu, Yong-Jie; Zhang, Hong-Wei; Feng, Ninghan; Mao, Xueying; Guo, Xin; Wang, Guomin; Sun, Zan; Giles, Graham G; Southey, Melissa C; MacInnis, Robert J; FitzGerald, Liesel M; Kibel, Adam S; Drake, Bettina F; Vega, Ana; Gómez-Caamaño, Antonio; Fachal, Laura; Szulkin, Robert; Eklund, Martin; Kogevinas, Manolis; Llorca, Javier; Castaño-Vinyals, Gemma; Penney, Kathryn L; Stampfer, Meir; Park, Jong Y; Sellers, Thomas A; Lin, Hui-Yi; Stanford, Janet L; Cybulski, Cezary; Wokolorczyk, Dominika; Lubinski, Jan; Ostrander, Elaine A; Geybels, Milan S; Nordestgaard, Børge G; Nielsen, Sune F; Weisher, Maren; Bisbjerg, Rasmus; Røder, Martin Andreas; Iversen, Peter; Brenner, Hermann; Cuk, Katarina; Holleczek, Bernd; Maier, Christiane; Luedeke, Manuel; Schnoeller, Thomas; Kim, Jeri; Logothetis, Christopher J; John, Esther M; Teixeira, Manuel R; Paulo, Paula; Cardoso, Marta; Neuhausen, Susan L; Steele, Linda; Ding, Yuan Chun; De Ruyck, Kim; De Meerleer, Gert; Ost, Piet; Razack, Azad; Lim, Jasmine; Teo, Soo-Hwang; Lin, Daniel W; Newcomb, Lisa F; Lessel, Davor; Gamulin, Marija; Kulis, Tomislav; Kaneva, Radka; Usmani, Nawaid; Slavov, Chavdar; Mitev, Vanio; Parliament, Matthew; Singhal, Sandeep; Claessens, Frank; Joniau, Steven; Van den Broeck, Thomas; Larkin, Samantha; Townsend, Paul A; Aukim-Hastie, Claire; Gago-Dominguez, Manuela; Castelao, Jose Esteban; Martinez, Maria Elena; Roobol, Monique J; Jenster, Guido; van Schaik, Ron H N; Menegaux, Florence; Truong, Thérèse; Koudou, Yves Akoli; Xu, Jianfeng; Khaw, Kay-Tee; Cannon-Albright, Lisa; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Lindstrom, Sara; Turman, Constance; Ma, Jing; Hunter, David J; Riboli, Elio; Siddiq, Afshan; Canzian, Federico; Kolonel, Laurence N; Le Marchand, Loic; Hoover, Robert N; Machiela, Mitchell J; Kraft, Peter; Freedman, Matthew; Wiklund, Fredrik; Chanock, Stephen; Henderson, Brian E; Easton, Douglas F; Haiman, Christopher A; Eeles, Rosalind A; Conti, David V; Kote-Jarai, Zsofia

    2018-06-11

    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.

  20. Computational approaches to identify functional genetic variants in cancer genomes

    PubMed Central

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris; Ritchie, Graham R.S.; Creixell, Pau; Karchin, Rachel; Vazquez, Miguel; Fink, J. Lynn; Kassahn, Karin S.; Pearson, John V.; Bader, Gary; Boutros, Paul C.; Muthuswamy, Lakshmi; Ouellette, B.F. Francis; Reimand, Jüri; Linding, Rune; Shibata, Tatsuhiro; Valencia, Alfonso; Butler, Adam; Dronov, Serge; Flicek, Paul; Shannon, Nick B.; Carter, Hannah; Ding, Li; Sander, Chris; Stuart, Josh M.; Stein, Lincoln D.; Lopez-Bigas, Nuria

    2014-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor, but only a minority drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype. PMID:23900255

  1. Identification of rare paired box 3 variant in strabismus by whole exome sequencing

    PubMed Central

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    AIM To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. METHODS A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. RESULTS Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. CONCLUSION Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder. PMID:28861346

  2. Novel Microcephalic Primordial Dwarfism Disorder Associated with Variants in the Centrosomal Protein Ninein

    PubMed Central

    LaFranchi, Stephen H.; Maliga, Zoltan; Lui, Julian C.; Moon, Jennifer E.; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A.; Pers, Tune H.; Baron, Jeffrey; Rosenfeld, Ron G.; Hirschhorn, Joel N.; Harris, Matthew P.; Hwa, Vivian

    2012-01-01

    Context: Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. Objective: The objective of the study was to find the genetic etiology of a novel presentation of MPD. Design: The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Patients: Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. Main Outcome Measures: NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. Results: From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. Conclusion: We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients. PMID:22933543

  3. Identifying genetic variants that affect viability in large cohorts

    PubMed Central

    Berisa, Tomaz; Day, Felix R.; Perry, John R. B.

    2017-01-01

    A number of open questions in human evolutionary genetics would become tractable if we were able to directly measure evolutionary fitness. As a step towards this goal, we developed a method to examine whether individual genetic variants, or sets of genetic variants, currently influence viability. The approach consists in testing whether the frequency of an allele varies across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across the genome, we found only a few common variants with large effects on age-specific mortality: tagging the APOE ε4 allele and near CHRNA3. These results suggest that when large, even late-onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of genetic variants that jointly influence 1 of 42 traits, we detected a number of strong signals. In participants of the UK Biobank of British ancestry, we found that variants that delay puberty timing are associated with a longer parental life span (P~6.2 × 10−6 for fathers and P~2.0 × 10−3 for mothers), consistent with epidemiological studies. Similarly, variants associated with later age at first birth are associated with a longer maternal life span (P~1.4 × 10−3). Signals are also observed for variants influencing cholesterol levels, risk of coronary artery disease (CAD), body mass index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and among participants of the UK Biobank of non-British ancestry. We also found marked differences between males and females, most notably at the CHRNA3 locus, and variants associated with risk of CAD and cholesterol levels. Beyond our findings, the analysis serves as a proof of principle for how upcoming biomedical data sets can be used to learn about selection effects in contemporary humans. PMID:28873088

  4. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease.

    PubMed

    Zheng, Xiaojing; Demirci, F Yesim; Barmada, M Michael; Richardson, Gale A; Lopez, Oscar L; Sweet, Robert A; Kamboh, M Ilyas; Feingold, Eleanor

    2014-01-01

    Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.

  5. Ocular Alterations in a Rare Case of Segmental Neurofibromatosis Type 1 with a Non-Classified Mutational Variant of the NF-1 Gene.

    PubMed

    Abdolrahimzadeh, Solmaz; Piraino, Domenica Carmen; Plateroti, Rocco; Scuderi, Gianluca; Recupero, Santi Maria

    2016-06-01

    Neurofibromatosis type 1 (NF-1) is an autsomal dominant disorder which can occasionally result from somatic mosaicism and manifest as segmental forms of the disease. A 37-year-old woman with ascertained NF-1, based on clinical diagnostic criteria and genetic analysis, was referred for ophthalmological evaluation. Genetic analysis, magnetic resonance imaging (MRI), complete ophthalmological examination, and near infrared reflectance (NIR) images at 815 nm of the retina were obtained. Genetic analysis revealed a non-classified mutational variant of the NF-1 gene identified as NM_000267.3:c2084T > C (p.Leu695Pro.T). MRI demonstrated non-symptomatic bilateral optic nerve gliomas. The only cutaneous sign was a subcutaneous neurofibroma of the posterior cervical region. Slit-lamp examination showed bilateral Lisch nodules. NIR images of the retina did not show any choroidal hamartomas. We report a rare case of segmental neurofibromatosis with a non-classified mutational variant of the NF-1 gene described in only one previous case in the literature. The patient presented with clinical features of NF-1 localized to the head and neck region, compatible with diagnosis of segmental NF-1. Interestingly, ocular manifestations included bilateral optic nerve gliomas and Lisch nodules, but no choroidal hamartomas.

  6. Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

    PubMed Central

    Puffenberger, Erik G.; Jinks, Robert N.; Sougnez, Carrie; Cibulskis, Kristian; Willert, Rebecca A.; Achilly, Nathan P.; Cassidy, Ryan P.; Fiorentini, Christopher J.; Heiken, Kory F.; Lawrence, Johnny J.; Mahoney, Molly H.; Miller, Christopher J.; Nair, Devika T.; Politi, Kristin A.; Worcester, Kimberly N.; Setton, Roni A.; DiPiazza, Rosa; Sherman, Eric A.; Eastman, James T.; Francklyn, Christopher; Robey-Bond, Susan; Rider, Nicholas L.; Gabriel, Stacey; Morton, D. Holmes; Strauss, Kevin A.

    2012-01-01

    The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data. PMID:22279524

  7. A thrifty variant in CREBRF strongly influences body mass index in Samoans.

    PubMed

    Minster, Ryan L; Hawley, Nicola L; Su, Chi-Ting; Sun, Guangyun; Kershaw, Erin E; Cheng, Hong; Buhule, Olive D; Lin, Jerome; Reupena, Muagututi'a Sefuiva; Viali, Satupa'itea; Tuitele, John; Naseri, Take; Urban, Zsolt; Deka, Ranjan; Weeks, Daniel E; McGarvey, Stephen T

    2016-09-01

    Samoans are a unique founder population with a high prevalence of obesity, making them well suited for identifying new genetic contributors to obesity. We conducted a genome-wide association study (GWAS) in 3,072 Samoans, discovered a variant, rs12513649, strongly associated with body mass index (BMI) (P = 5.3 × 10(-14)), and replicated the association in 2,102 additional Samoans (P = 1.2 × 10(-9)). Targeted sequencing identified a strongly associated missense variant, rs373863828 (p.Arg457Gln), in CREBRF (meta P = 1.4 × 10(-20)). Although this variant is extremely rare in other populations, it is common in Samoans (frequency of 0.259), with an effect size much larger than that of any other known common BMI risk variant (1.36-1.45 kg/m(2) per copy of the risk-associated allele). In comparison to wild-type CREBRF, the Arg457Gln variant when overexpressed selectively decreased energy use and increased fat storage in an adipocyte cell model. These data, in combination with evidence of positive selection of the allele encoding p.Arg457Gln, support a 'thrifty' variant hypothesis as a factor in human obesity.

  8. Whole exome sequencing identifies novel candidate genes that modify chronic obstructive pulmonary disease susceptibility.

    PubMed

    Bruse, Shannon; Moreau, Michael; Bromberg, Yana; Jang, Jun-Ho; Wang, Nan; Ha, Hongseok; Picchi, Maria; Lin, Yong; Langley, Raymond J; Qualls, Clifford; Klensney-Tait, Julia; Zabner, Joseph; Leng, Shuguang; Mao, Jenny; Belinsky, Steven A; Xing, Jinchuan; Nyunoya, Toru

    2016-01-07

    Chronic obstructive pulmonary disease (COPD) is characterized by an irreversible airflow limitation in response to inhalation of noxious stimuli, such as cigarette smoke. However, only 15-20 % smokers manifest COPD, suggesting a role for genetic predisposition. Although genome-wide association studies have identified common genetic variants that are associated with susceptibility to COPD, effect sizes of the identified variants are modest, as is the total heritability accounted for by these variants. In this study, an extreme phenotype exome sequencing study was combined with in vitro modeling to identify COPD candidate genes. We performed whole exome sequencing of 62 highly susceptible smokers and 30 exceptionally resistant smokers to identify rare variants that may contribute to disease risk or resistance to COPD. This was a cross-sectional case-control study without therapeutic intervention or longitudinal follow-up information. We identified candidate genes based on rare variant analyses and evaluated exonic variants to pinpoint individual genes whose function was computationally established to be significantly different between susceptible and resistant smokers. Top scoring candidate genes from these analyses were further filtered by requiring that each gene be expressed in human bronchial epithelial cells (HBECs). A total of 81 candidate genes were thus selected for in vitro functional testing in cigarette smoke extract (CSE)-exposed HBECs. Using small interfering RNA (siRNA)-mediated gene silencing experiments, we showed that silencing of several candidate genes augmented CSE-induced cytotoxicity in vitro. Our integrative analysis through both genetic and functional approaches identified two candidate genes (TACC2 and MYO1E) that augment cigarette smoke (CS)-induced cytotoxicity and, potentially, COPD susceptibility.

  9. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk.

    PubMed

    Day, Felix R; Thompson, Deborah J; Helgason, Hannes; Chasman, Daniel I; Finucane, Hilary; Sulem, Patrick; Ruth, Katherine S; Whalen, Sean; Sarkar, Abhishek K; Albrecht, Eva; Altmaier, Elisabeth; Amini, Marzyeh; Barbieri, Caterina M; Boutin, Thibaud; Campbell, Archie; Demerath, Ellen; Giri, Ayush; He, Chunyan; Hottenga, Jouke J; Karlsson, Robert; Kolcic, Ivana; Loh, Po-Ru; Lunetta, Kathryn L; Mangino, Massimo; Marco, Brumat; McMahon, George; Medland, Sarah E; Nolte, Ilja M; Noordam, Raymond; Nutile, Teresa; Paternoster, Lavinia; Perjakova, Natalia; Porcu, Eleonora; Rose, Lynda M; Schraut, Katharina E; Segrè, Ayellet V; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Andrulis, Irene L; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Bergmann, Sven; Bochud, Murielle; Boerwinkle, Eric; Bojesen, Stig E; Bolla, Manjeet K; Brand, Judith S; Brauch, Hiltrud; Brenner, Hermann; Broer, Linda; Brüning, Thomas; Buring, Julie E; Campbell, Harry; Catamo, Eulalia; Chanock, Stephen; Chenevix-Trench, Georgia; Corre, Tanguy; Couch, Fergus J; Cousminer, Diana L; Cox, Angela; Crisponi, Laura; Czene, Kamila; Davey Smith, George; de Geus, Eco J C N; de Mutsert, Renée; De Vivo, Immaculata; Dennis, Joe; Devilee, Peter; Dos-Santos-Silva, Isabel; Dunning, Alison M; Eriksson, Johan G; Fasching, Peter A; Fernández-Rhodes, Lindsay; Ferrucci, Luigi; Flesch-Janys, Dieter; Franke, Lude; Gabrielson, Marike; Gandin, Ilaria; Giles, Graham G; Grallert, Harald; Gudbjartsson, Daniel F; Guénel, Pascal; Hall, Per; Hallberg, Emily; Hamann, Ute; Harris, Tamara B; Hartman, Catharina A; Heiss, Gerardo; Hooning, Maartje J; Hopper, John L; Hu, Frank; Hunter, David J; Ikram, M Arfan; Im, Hae Kyung; Järvelin, Marjo-Riitta; Joshi, Peter K; Karasik, David; Kellis, Manolis; Kutalik, Zoltan; LaChance, Genevieve; Lambrechts, Diether; Langenberg, Claudia; Launer, Lenore J; Laven, Joop S E; Lenarduzzi, Stefania; Li, Jingmei; Lind, Penelope A; Lindstrom, Sara; Liu, YongMei; Luan, Jian'an; Mägi, Reedik; Mannermaa, Arto; Mbarek, Hamdi; McCarthy, Mark I; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Metspalu, Andres; Michailidou, Kyriaki; Milani, Lili; Milne, Roger L; Montgomery, Grant W; Mulligan, Anna M; Nalls, Mike A; Navarro, Pau; Nevanlinna, Heli; Nyholt, Dale R; Oldehinkel, Albertine J; O'Mara, Tracy A; Padmanabhan, Sandosh; Palotie, Aarno; Pedersen, Nancy; Peters, Annette; Peto, Julian; Pharoah, Paul D P; Pouta, Anneli; Radice, Paolo; Rahman, Iffat; Ring, Susan M; Robino, Antonietta; Rosendaal, Frits R; Rudan, Igor; Rueedi, Rico; Ruggiero, Daniela; Sala, Cinzia F; Schmidt, Marjanka K; Scott, Robert A; Shah, Mitul; Sorice, Rossella; Southey, Melissa C; Sovio, Ulla; Stampfer, Meir; Steri, Maristella; Strauch, Konstantin; Tanaka, Toshiko; Tikkanen, Emmi; Timpson, Nicholas J; Traglia, Michela; Truong, Thérèse; Tyrer, Jonathan P; Uitterlinden, André G; Edwards, Digna R Velez; Vitart, Veronique; Völker, Uwe; Vollenweider, Peter; Wang, Qin; Widen, Elisabeth; van Dijk, Ko Willems; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce H R; Zhao, Jing Hua; Zoledziewska, Magdalena; Zygmunt, Marek; Alizadeh, Behrooz Z; Boomsma, Dorret I; Ciullo, Marina; Cucca, Francesco; Esko, Tõnu; Franceschini, Nora; Gieger, Christian; Gudnason, Vilmundur; Hayward, Caroline; Kraft, Peter; Lawlor, Debbie A; Magnusson, Patrik K E; Martin, Nicholas G; Mook-Kanamori, Dennis O; Nohr, Ellen A; Polasek, Ozren; Porteous, David; Price, Alkes L; Ridker, Paul M; Snieder, Harold; Spector, Tim D; Stöckl, Doris; Toniolo, Daniela; Ulivi, Sheila; Visser, Jenny A; Völzke, Henry; Wareham, Nicholas J; Wilson, James F; Spurdle, Amanda B; Thorsteindottir, Unnur; Pollard, Katherine S; Easton, Douglas F; Tung, Joyce Y; Chang-Claude, Jenny; Hinds, David; Murray, Anna; Murabito, Joanne M; Stefansson, Kari; Ong, Ken K; Perry, John R B

    2017-06-01

    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to ∼370,000 women, we identify 389 independent signals (P < 5 × 10 -8 ) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ∼7.4% of the population variance in age at menarche, corresponding to ∼25% of the estimated heritability. We implicate ∼250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility.

  10. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    PubMed Central

    Day, Felix R; Thompson, Deborah J; Helgason, Hannes; Chasman, Daniel I; Finucane, Hilary; Sulem, Patrick; Ruth, Katherine S; Whalen, Sean; Sarkar, Abhishek K; Albrecht, Eva; Altmaier, Elisabeth; Amini, Marzyeh; Barbieri, Caterina M; Boutin, Thibaud; Campbell, Archie; Demerath, Ellen; Giri, Ayush; He, Chunyan; Hottenga, Jouke J; Karlsson, Robert; Kolcic, Ivana; Loh, Po-Ru; Lunetta, Kathryn L; Mangino, Massimo; Marco, Brumat; McMahon, George; Medland, Sarah E; Nolte, Ilja M; Noordam, Raymond; Nutile, Teresa; Paternoster, Lavinia; Perjakova, Natalia; Porcu, Eleonora; Rose, Lynda M; Schraut, Katharina E; Segrè, Ayellet V; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Andrulis, Irene L; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Bergmann, Sven; Bochud, Murielle; Boerwinkle, Eric; Bojesen, Stig E; Bolla, Manjeet K; Brand, Judith S; Brauch, Hiltrud; Brenner, Hermann; Broer, Linda; Brüning, Thomas; Buring, Julie E; Campbell, Harry; Catamo, Eulalia; Chanock, Stephen; Chenevix-Trench, Georgia; Corre, Tanguy; Couch, Fergus J; Cousminer, Diana L; Cox, Angela; Crisponi, Laura; Czene, Kamila; Smith, George Davey; de Geus, Eco JCN; de Mutsert, Renée; De Vivo, Immaculata; Dennis, Joe; Devilee, Peter; dos-Santos-Silva, Isabel; Dunning, Alison M; Eriksson, Johan G; Fasching, Peter A; Fernández-Rhodes, Lindsay; Ferrucci, Luigi; Flesch-Janys, Dieter; Franke, Lude; Gabrielson, Marike; Gandin, Ilaria; Giles, Graham G; Grallert, Harald; Gudbjartsson, Daniel F; Guénel, Pascal; Hall, Per; Hallberg, Emily; Hamann, Ute; Harris, Tamara B; Hartman, Catharina A; Heiss, Gerardo; Hooning, Maartje J; Hopper, John L; Hu, Frank; Hunter, David J; Ikram, M Arfan; Im, Hae Kyung; Järvelin, Marjo-Riitta; Joshi, Peter K; Karasik, David; Kellis, Manolis; Kutalik, Zoltan; LaChance, Genevieve; Lambrechts, Diether; Langenberg, Claudia; Launer, Lenore J; Laven, Joop S E; Lenarduzzi, Stefania; Li, Jingmei; Lind, Penelope A; Lindstrom, Sara; Liu, YongMei; Luan, Jian’an; Mägi, Reedik; Mannermaa, Arto; Mbarek, Hamdi; McCarthy, Mark I; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Metspalu, Andres; Michailidou, Kyriaki; Milani, Lili; Milne, Roger L; Montgomery, Grant W; Mulligan, Anna M; Nalls, Mike A; Navarro, Pau; Nevanlinna, Heli; Nyholt, Dale R; Oldehinkel, Albertine J; O’Mara, Tracy A; Padmanabhan, Sandosh; Palotie, Aarno; Pedersen, Nancy; Peters, Annette; Peto, Julian; Pharoah, Paul D P; Pouta, Anneli; Radice, Paolo; Rahman, Iffat; Ring, Susan M; Robino, Antonietta; Rosendaal, Frits R; Rudan, Igor; Rueedi, Rico; Ruggiero, Daniela; Sala, Cinzia F; Schmidt, Marjanka K; Scott, Robert A; Shah, Mitul; Sorice, Rossella; Southey, Melissa C; Sovio, Ulla; Stampfer, Meir; Steri, Maristella; Strauch, Konstantin; Tanaka, Toshiko; Tikkanen, Emmi; Timpson, Nicholas J; Traglia, Michela; Truong, Thérèse; Tyrer, Jonathan P; Uitterlinden, André G; Velez Edwards, Digna R; Vitart, Veronique; Völker, Uwe; Vollenweider, Peter; Wang, Qin; Widen, Elisabeth; van Dijk, Ko Willems; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce H R; Zhao, Jing Hua; Zoledziewska, Magdalena; Zygmunt, Marek; Alizadeh, Behrooz Z; Boomsma, Dorret I; Ciullo, Marina; Cucca, Francesco; Esko, Tõnu; Franceschini, Nora; Gieger, Christian; Gudnason, Vilmundur; Hayward, Caroline; Kraft, Peter; Lawlor, Debbie A; Magnusson, Patrik K E; Martin, Nicholas G; Mook-Kanamori, Dennis O; Nohr, Ellen A; Polasek, Ozren; Porteous, David; Price, Alkes L; Ridker, Paul M; Snieder, Harold; Spector, Tim D; Stöckl, Doris; Toniolo, Daniela; Ulivi, Sheila; Visser, Jenny A; Völzke, Henry; Wareham, Nicholas J; Wilson, James F; Spurdle, Amanda B; Thorsteindottir, Unnur; Pollard, Katherine S; Easton, Douglas F; Tung, Joyce Y; Chang-Claude, Jenny; Hinds, David; Murray, Anna; Murabito, Joanne M; Stefansson, Kari; Ong, Ken K; Perry, John R B

    2018-01-01

    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project–imputed genotype data in up to ~370,000 women, we identify 389 independent signals (P < 5 × 10−8) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ~7.4% of the population variance in age at menarche, corresponding to ~25% of the estimated heritability. We implicate ~250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility. PMID:28436984

  11. Analysis of potential protein-modifying variants in 9000 endometriosis patients and 150000 controls of European ancestry.

    PubMed

    Sapkota, Yadav; Vivo, Immaculata De; Steinthorsdottir, Valgerdur; Fassbender, Amelie; Bowdler, Lisa; Buring, Julie E; Edwards, Todd L; Jones, Sarah; O, Dorien; Peterse, Daniëlle; Rexrode, Kathryn M; Ridker, Paul M; Schork, Andrew J; Thorleifsson, Gudmar; Wallace, Leanne M; Kraft, Peter; Morris, Andrew P; Nyholt, Dale R; Edwards, Digna R Velez; Nyegaard, Mette; D'Hooghe, Thomas; Chasman, Daniel I; Stefansson, Kari; Missmer, Stacey A; Montgomery, Grant W

    2017-09-12

    Genome-wide association (GWA) studies have identified 19 independent common risk loci for endometriosis. Most of the GWA variants are non-coding and the genes responsible for the association signals have not been identified. Herein, we aimed to assess the potential role of protein-modifying variants in endometriosis using exome-array genotyping in 7164 cases and 21005 controls, and a replication set of 1840 cases and 129016 controls of European ancestry. Results in the discovery sample identified significant evidence for association with coding variants in single-variant (rs1801232-CUBN) and gene-level (CIITA and PARP4) meta-analyses, but these did not survive replication. In the combined analysis, there was genome-wide significant evidence for rs13394619 (P = 2.3 × 10 -9 ) in GREB1 at 2p25.1 - a locus previously identified in a GWA meta-analysis of European and Japanese samples. Despite sufficient power, our results did not identify any protein-modifying variants (MAF > 0.01) with moderate or large effect sizes in endometriosis, although these variants may exist in non-European populations or in high-risk families. The results suggest continued discovery efforts should focus on genotyping large numbers of surgically-confirmed endometriosis cases and controls, and/or sequencing high-risk families to identify novel rare variants to provide greater insights into the molecular pathogenesis of the disease.

  12. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis.

    PubMed

    Alberts, Rudi; de Vries, Elisabeth M G; Goode, Elizabeth C; Jiang, Xiaojun; Sampaziotis, Fotis; Rombouts, Krista; Böttcher, Katrin; Folseraas, Trine; Weismüller, Tobias J; Mason, Andrew L; Wang, Weiwei; Alexander, Graeme; Alvaro, Domenico; Bergquist, Annika; Björkström, Niklas K; Beuers, Ulrich; Björnsson, Einar; Boberg, Kirsten Muri; Bowlus, Christopher L; Bragazzi, Maria C; Carbone, Marco; Chazouillères, Olivier; Cheung, Angela; Dalekos, Georgios; Eaton, John; Eksteen, Bertus; Ellinghaus, David; Färkkilä, Martti; Festen, Eleonora A M; Floreani, Annarosa; Franceschet, Irene; Gotthardt, Daniel Nils; Hirschfield, Gideon M; Hoek, Bart van; Holm, Kristian; Hohenester, Simon; Hov, Johannes Roksund; Imhann, Floris; Invernizzi, Pietro; Juran, Brian D; Lenzen, Henrike; Lieb, Wolfgang; Liu, Jimmy Z; Marschall, Hanns-Ulrich; Marzioni, Marco; Melum, Espen; Milkiewicz, Piotr; Müller, Tobias; Pares, Albert; Rupp, Christian; Rust, Christian; Sandford, Richard N; Schramm, Christoph; Schreiber, Stefan; Schrumpf, Erik; Silverberg, Mark S; Srivastava, Brijesh; Sterneck, Martina; Teufel, Andreas; Vallier, Ludovic; Verheij, Joanne; Vila, Arnau Vich; Vries, Boudewijn de; Zachou, Kalliopi; Chapman, Roger W; Manns, Michael P; Pinzani, Massimo; Rushbrook, Simon M; Lazaridis, Konstantinos N; Franke, Andre; Anderson, Carl A; Karlsen, Tom H; Ponsioen, Cyriel Y; Weersma, Rinse K

    2017-08-04

    Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10 -9 ). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3 , we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. IV. Transmission of rare B chromosome variants.

    PubMed

    Bakkali, M; Camacho, J P M

    2004-01-01

    In addition to the principal B chromosome (B(1)) in Moroccan populations of the grasshopper Eyprepocnemis plorans, nine B chromosome variants appeared at low frequency. The transmission of five of these rare B chromosome variants through females was analysed in three natural populations. Sixteen controlled crosses provided useful information on the transmission of B(M2), B(M6) and B(M7) in Smir, B(M3) and B(M6) in SO.DE.A. (Société de Développement Agricole lands near Ksar-el-Kebir city), and B(M2) and B(M10) in Mechra, all located in Morocco. Since six female parents carried two different B variants, a total of 22 progeny analyses could be studied. Intraindividual variation in B transmission rate (k(B)) was observed among the successive egg pods in 26.7 % of the females, but this variation did not show a consistent temporal pattern. Only the B(M2) and B(M6) variants in Smir showed net drive, although variation was high among crosses, especially for B(M2). These two variants are thus good candidates for future regenerations (the replacement of a neutralized B, B(1) in this case, by a new driving variant, B(M2) or B(M6)) in Smir, the northern population where the B polymorphism is presumably older. The analysis of all crosses performed in the three populations, including those reported previously for the analysis of B(1) transmission, showed that the largest variance in k(B) among crosses stands at the individual level, and not at population or type of B levels. The implications of these findings for the occurrence of possible regeneration processes in Moroccan populations are discussed. Copyright 2004 S. Karger AG, Basel

  14. A Rare Form of Guillan Barre Syndrome: A Child Diagnosed with Anti-GD1a and Anti-GD1b Positive Pharyngeal-Cervical-Brachial Variant.

    PubMed

    Uysalol, Metin; Tatlı, Burak; Uzel, Nedret; Cıtak, Agop; Aygün, Erhan; Kayaoğlu, Semra

    2013-09-01

    Pharyngeal-cervical-brachial (PCB) variant is a rare form of Guillan-Barre Syndrome (GBS). Antibodies against other membrane proteins like GM1b and GD1a have been found only in a small number of patients with Guillan Barre syndrome variant. Here, we report a 5.5 year-old boy diagnosed early with positive GD1a and GD1b gangliosides of Guillan-Barre syndrome pharyngeal cervical-Brachial variant, who improved and recovered fully in a short period. This is in contrast to those whose recovery period prolongs in spite of early diagnosis and appropriate treatment and/or those who experience incomplete recovery. In summary, diagnosis of PCB variant of GBS should be considered in infants with sudden onset bulbar symptoms and muscle weakness, and it should be kept in mind that early diagnosis and appropriate treatment can give successful outcomes.

  15. Enhanced activity of human serotonin transporter variants associated with autism.

    PubMed

    Prasad, Harish C; Steiner, Jennifer A; Sutcliffe, James S; Blakely, Randy D

    2009-01-27

    Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.

  16. Privacy preserving protocol for detecting genetic relatives using rare variants.

    PubMed

    Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Guan, Feng; Ostrosky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-06-15

    High-throughput sequencing technologies have impacted many areas of genetic research. One such area is the identification of relatives from genetic data. The standard approach for the identification of genetic relatives collects the genomic data of all individuals and stores it in a database. Then, each pair of individuals is compared to detect the set of genetic relatives, and the matched individuals are informed. The main drawback of this approach is the requirement of sharing your genetic data with a trusted third party to perform the relatedness test. In this work, we propose a secure protocol to detect the genetic relatives from sequencing data while not exposing any information about their genomes. We assume that individuals have access to their genome sequences but do not want to share their genomes with anyone else. Unlike previous approaches, our approach uses both common and rare variants which provide the ability to detect much more distant relationships securely. We use a simulated data generated from the 1000 genomes data and illustrate that we can easily detect up to fifth degree cousins which was not possible using the existing methods. We also show in the 1000 genomes data with cryptic relationships that our method can detect these individuals. The software is freely available for download at http://genetics.cs.ucla.edu/crypto/. © The Author 2014. Published by Oxford University Press.

  17. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype

    PubMed Central

    Ferreira, Manuel A. R.; Matheson, Melanie C.; Tang, Clara S.; Granell, Raquel; Ang, Wei; Hui, Jennie; Kiefer, Amy K.; Duffy, David L.; Baltic, Svetlana; Danoy, Patrick; Bui, Minh; Price, Loren; Sly, Peter D.; Eriksson, Nicholas; Madden, Pamela A.; Abramson, Michael J.; Holt, Patrick G.; Heath, Andrew C.; Hunter, Michael; Musk, Bill; Robertson, Colin F.; Le Souëf, Peter; Montgomery, Grant W.; Henderson, A. John; Tung, Joyce Y.; Dharmage, Shyamali C.; Brown, Matthew A.; James, Alan; Thompson, Philip J.; Pennell, Craig; Martin, Nicholas G.; Evans, David M.; Hinds, David A.; Hopper, John L.

    2014-01-01

    Background To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. Objective We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. Methods We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). Results At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10−9) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10−8). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10−7) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10−6). Conclusion By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency. PMID:24388013

  18. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype.

    PubMed

    Ferreira, Manuel A R; Matheson, Melanie C; Tang, Clara S; Granell, Raquel; Ang, Wei; Hui, Jennie; Kiefer, Amy K; Duffy, David L; Baltic, Svetlana; Danoy, Patrick; Bui, Minh; Price, Loren; Sly, Peter D; Eriksson, Nicholas; Madden, Pamela A; Abramson, Michael J; Holt, Patrick G; Heath, Andrew C; Hunter, Michael; Musk, Bill; Robertson, Colin F; Le Souëf, Peter; Montgomery, Grant W; Henderson, A John; Tung, Joyce Y; Dharmage, Shyamali C; Brown, Matthew A; James, Alan; Thompson, Philip J; Pennell, Craig; Martin, Nicholas G; Evans, David M; Hinds, David A; Hopper, John L

    2014-06-01

    To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10(-9)) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10(-8)). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10(-7)) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10(-6)). By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Collective feature selection to identify crucial epistatic variants.

    PubMed

    Verma, Shefali S; Lucas, Anastasia; Zhang, Xinyuan; Veturi, Yogasudha; Dudek, Scott; Li, Binglan; Li, Ruowang; Urbanowicz, Ryan; Moore, Jason H; Kim, Dokyoon; Ritchie, Marylyn D

    2018-01-01

    Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample size as input, thus leading to the so-called "short fat data" problem. The efficiency of machine learning methods can be increased by limiting the number of input features. Thus, it is very important to perform variable selection before searching for epistasis. Many methods have been evaluated and proposed to perform feature selection, but no single method works best in all scenarios. We demonstrate this by conducting two separate simulation analyses to evaluate the proposed collective feature selection approach. Through our simulation study we propose a collective feature selection approach to select features that are in the "union" of the best performing methods. We explored various parametric, non-parametric, and data mining approaches to perform feature selection. We choose our top performing methods to select the union of the resulting variables based on a user-defined percentage of variants selected from each method to take to downstream analysis. Our simulation analysis shows that non-parametric data mining approaches, such as MDR, may work best under one simulation criteria for the high effect size (penetrance) datasets, while non-parametric methods designed for feature selection, such as Ranger and Gradient boosting, work best under other simulation criteria. Thus, using a collective approach proves to be more beneficial for selecting variables with epistatic effects also in low effect size datasets and different genetic architectures. Following this, we applied our proposed collective feature selection approach to select the top 1% of variables to identify potential interacting variables associated with Body Mass Index (BMI) in ~ 44,000 samples obtained from Geisinger

  20. Novel Variants in ZNF34 and Other Brain-Expressed Transcription Factors are Shared Among Early-Onset MDD Relatives

    PubMed Central

    Subaran, Ryan L.; Odgerel, Zagaa; Swaminathan, Rajeswari; Glatt, Charles E.; Weissman, Myrna M.

    2018-01-01

    There are no known genetic variants with large effects on susceptibility to major depressive disorder (MDD). Although one proposed study approach is to increase sensitivity by increasing sample sizes, another is to focus on families with multiple affected individuals to identify genes with rare or novel variants with strong effects. Choosing the family-based approach, we performed whole-exome analysis on affected individuals (n = 12) across five MDD families, each with at least five affected individuals, early onset, and prepubertal diagnoses. We identified 67 genes where novel deleterious variants were shared among affected relatives. Gene ontology analysis shows that of these 67 genes, 18 encode transcriptional regulators, eight of which are expressed in the human brain, including four KRAB-A box-containing Zn2+ finger repressors. One of these, ZNF34, has been reported as being associated with bipolar disorder and as differentially expressed in bipolar disorder patients compared to healthy controls. We found a novel variant—encoding a non-conservative P17R substitution in the conserved repressor domain of ZNF34 protein—segregating completely with MDD in all available individuals in the family in which it was discovered. Further analysis showed a common ZNF34 coding indel segregating with MDD in a separate family, possibly indicating the presence of an unobserved, linked, rare variant in that particular family. Our results indicate that genes encoding transcription factors expressed in the brain might be an important group of MDD candidate genes and that rare variants in ZNF34 might contribute to susceptibility to MDD and perhaps other affective disorders. PMID:26823146

  1. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2

    PubMed Central

    Santos-Cortez, Regie Lyn P.; Faridi, Rabia; Rehman, Atteeq U.; Lee, Kwanghyuk; Ansar, Muhammad; Wang, Xin; Morell, Robert J.; Isaacson, Rivka; Belyantseva, Inna A.; Dai, Hang; Acharya, Anushree; Qaiser, Tanveer A.; Muhammad, Dost; Ali, Rana Amjad; Shams, Sulaiman; Hassan, Muhammad Jawad; Shahzad, Shaheen; Raza, Syed Irfan; Bashir, Zil-e-Huma; Smith, Joshua D.; Nickerson, Deborah A.; Bamshad, Michael J.; Riazuddin, Sheikh; Ahmad, Wasim; Friedman, Thomas B.; Leal, Suzanne M.

    2016-01-01

    The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.2. From exome sequence data we identified two pathogenic S1PR2 variants, c.323G>C (p.Arg108Pro) and c.419A>G (p.Tyr140Cys). Each of these variants co-segregates with congenital profound hearing impairment in consanguineous Pakistani families with maximum LOD scores of 6.4 for family DEM4154 and 3.3 for family PKDF1400. Neither S1PR2 missense variant was reported among ∼120,000 chromosomes in the Exome Aggregation Consortium database, in 76 unrelated Pakistani exomes, or in 720 Pakistani control chromosomes. Both DNA variants affect highly conserved residues of S1PR2 and are predicted to be damaging by multiple bioinformatics tools. Molecular modeling predicts that these variants affect binding of sphingosine-1-phosphate (p.Arg108Pro) and G protein docking (p.Tyr140Cys). In the previously reported S1pr2−/− mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. Additionally, hair cell defects were seen in both knockout mice and morphant zebrafish. Family PKDF1400 presents with ARNSHI, which is consistent with the lack of gross malformations in S1pr2−/− mice, whereas family DEM4154 has lower limb malformations in addition to hearing loss. Our findings suggest the possibility of developing therapies against hair cell damage (e.g., from ototoxic drugs) through targeted stimulation of S1PR2. PMID:26805784

  2. A Rare Form of Guillan Barre Syndrome: A Child Diagnosed with Anti-GD1a and Anti-GD1b Positive Pharyngeal-Cervical-Brachial Variant

    PubMed Central

    Uysalol, Metin; Tatlı, Burak; Uzel, Nedret; Çıtak, Agop; Aygün, Erhan; Kayaoğlu, Semra

    2013-01-01

    Background: Pharyngeal-cervical-brachial (PCB) variant is a rare form of Guillan-Barre Syndrome (GBS). Antibodies against other membrane proteins like GM1b and GD1a have been found only in a small number of patients with Guillan Barre syndrome variant. Case Report: Here, we report a 5.5 year-old boy diagnosed early with positive GD1a and GD1b gangliosides of Guillan-Barre syndrome pharyngeal cervical-Brachial variant, who improved and recovered fully in a short period. This is in contrast to those whose recovery period prolongs in spite of early diagnosis and appropriate treatment and/or those who experience incomplete recovery. Conclusion: In summary, diagnosis of PCB variant of GBS should be considered in infants with sudden onset bulbar symptoms and muscle weakness, and it should be kept in mind that early diagnosis and appropriate treatment can give successful outcomes. PMID:25207134

  3. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects

    PubMed Central

    Johnson, Ben; Lowe, Gillian C.; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A.; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J.; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula HB; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E.; Watson, Steve P.; Morgan, Neil V.

    2016-01-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×109/L to 186×109/L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified “pathogenic” or “likely pathogenic” variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. PMID:27479822

  4. Mapping rare and common causal alleles for complex human diseases

    PubMed Central

    Raychaudhuri, Soumya

    2011-01-01

    Advances in genotyping and sequencing technologies have revolutionized the genetics of complex disease by locating rare and common variants that influence an individual’s risk for diseases, such as diabetes, cancers, and psychiatric disorders. However, to capitalize on this data for prevention and therapies requires the identification of causal alleles and a mechanistic understanding for how these variants contribute to the disease. After discussing the strategies currently used to map variants for complex diseases, this Primer explores how variants may be prioritized for follow-up functional studies and the challenges and approaches for assessing the contributions of rare and common variants to disease phenotypes. PMID:21962507

  5. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses

    PubMed Central

    Derringer, Jaime; Gratten, Jacob; Lee, James J; Liu, Jimmy Z; de Vlaming, Ronald; Ahluwalia, Tarunveer S; Buchwald, Jadwiga; Cavadino, Alana; Frazier-Wood, Alexis C; Davies, Gail; Furlotte, Nicholas A; Garfield, Victoria; Geisel, Marie Henrike; Gonzalez, Juan R; Haitjema, Saskia; Karlsson, Robert; van der Laan, Sander W; Ladwig, Karl-Heinz; Lahti, Jari; van der Lee, Sven J; Miller, Michael B; Lind, Penelope A; Liu, Tian; Matteson, Lindsay; Mihailov, Evelin; Minica, Camelia C; Nolte, Ilja M; Mook-Kanamori, Dennis O; van der Most, Peter J; Oldmeadow, Christopher; Qian, Yong; Raitakari, Olli; Rawal, Rajesh; Realo, Anu; Rueedi, Rico; Schmidt, Börge; Smith, Albert V; Stergiakouli, Evie; Tanaka, Toshiko; Taylor, Kent; Thorleifsson, Gudmar; Wedenoja, Juho; Wellmann, Juergen; Westra, Harm-Jan; Willems, Sara M; Zhao, Wei; Amin, Najaf; Bakshi, Andrew; Bergmann, Sven; Bjornsdottir, Gyda; Boyle, Patricia A; Cherney, Samantha; Cox, Simon R; Davis, Oliver S P; Ding, Jun; Direk, Nese; Eibich, Peter; Emeny, Rebecca T; Fatemifar, Ghazaleh; Faul, Jessica D; Ferrucci, Luigi; Forstner, Andreas J; Gieger, Christian; Gupta, Richa; Harris, Tamara B; Harris, Juliette M; Holliday, Elizabeth G; Hottenga, Jouke-Jan; De Jager, Philip L; Kaakinen, Marika A; Kajantie, Eero; Karhunen, Ville; Kolcic, Ivana; Kumari, Meena; Launer, Lenore J; Franke, Lude; Li-Gao, Ruifang; Liewald, David C; Koini, Marisa; Loukola, Anu; Marques-Vidal, Pedro; Montgomery, Grant W; Mosing, Miriam A; Paternoster, Lavinia; Pattie, Alison; Petrovic, Katja E; Pulkki-Råback, Laura; Quaye, Lydia; Räikkönen, Katri; Rudan, Igor; Scott, Rodney J; Smith, Jennifer A; Sutin, Angelina R; Trzaskowski, Maciej; Vinkhuyzen, Anna E; Yu, Lei; Zabaneh, Delilah; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Boomsma, Dorret I; Snieder, Harold; Chang, Shun-Chiao; Cucca, Francesco; Deary, Ian J; van Duijn, Cornelia M; Eriksson, Johan G; Bültmann, Ute; de Geus, Eco J C; Groenen, Patrick J F; Gudnason, Vilmundur; Hansen, Torben; Hartman, Catharine A; Haworth, Claire M A; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Hyppönen, Elina; Iacono, William G; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Keltikangas-Järvinen, Liisa; Kraft, Peter; Kubzansky, Laura D; Lehtimäki, Terho; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Mills, Melinda; de Mutsert, Renée; Oldehinkel, Albertine J; Pasterkamp, Gerard; Pedersen, Nancy L; Plomin, Robert; Polasek, Ozren; Power, Christine; Rich, Stephen S; Rosendaal, Frits R; den Ruijter, Hester M; Schlessinger, David; Schmidt, Helena; Svento, Rauli; Schmidt, Reinhold; Alizadeh, Behrooz Z; Sørensen, Thorkild I A; Spector, Tim D; Starr, John M; Stefansson, Kari; Steptoe, Andrew; Terracciano, Antonio; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Uitterlinden, André G; Vollenweider, Peter; Wagner, Gert G; Weir, David R; Yang, Jian; Conley, Dalton C; Smith, George Davey; Hofman, Albert; Johannesson, Magnus; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Pickrell, Joseph K; Esko, Tõnu; Krueger, Robert F; Beauchamp, Jonathan P; Koellinger, Philipp D; Benjamin, Daniel J; Bartels, Meike; Cesarini, David

    2016-01-01

    We conducted genome-wide association studies of three phenotypes: subjective well-being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). We identified three variants associated with subjective well-being, two with depressive symptoms, and eleven with neuroticism, including two inversion polymorphisms. The two depressive symptoms loci replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings, and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal/pancreas tissues are strongly enriched for association. PMID:27089181

  6. A novel variant of FGFR3 causes proportionate short stature.

    PubMed

    Kant, Sarina G; Cervenkova, Iveta; Balek, Lukas; Trantirek, Lukas; Santen, Gijs W E; de Vries, Martine C; van Duyvenvoorde, Hermine A; van der Wielen, Michiel J R; Verkerk, Annemieke J M H; Uitterlinden, André G; Hannema, Sabine E; Wit, Jan M; Oostdijk, Wilma; Krejci, Pavel; Losekoot, Monique

    2015-06-01

    Mutations of the fibroblast growth factor receptor 3 (FGFR3) cause various forms of short stature, of which the least severe phenotype is hypochondroplasia, mainly characterized by disproportionate short stature. Testing for an FGFR3 mutation is currently not part of routine diagnostic testing in children with short stature without disproportion. A three-generation family A with dominantly transmitted proportionate short stature was studied by whole-exome sequencing to identify the causal gene mutation. Functional studies and protein modeling studies were performed to confirm the pathogenicity of the mutation found in FGFR3. We performed Sanger sequencing in a second family B with dominant proportionate short stature and identified a rare variant in FGFR3. Exome sequencing and/or Sanger sequencing was performed, followed by functional studies using transfection of the mutant FGFR3 into cultured cells; homology modeling was used to construct a three-dimensional model of the two FGFR3 variants. A novel p.M528I mutation in FGFR3 was detected in family A, which segregates with short stature and proved to be activating in vitro. In family B, a rare variant (p.F384L) was found in FGFR3, which did not segregate with short stature and showed normal functionality in vitro compared with WT. Proportionate short stature can be caused by a mutation in FGFR3. Sequencing of this gene can be considered in patients with short stature, especially when there is an autosomal dominant pattern of inheritance. However, functional studies and segregation studies should be performed before concluding that a variant is pathogenic. © 2015 European Society of Endocrinology.

  7. Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka.

    PubMed

    Nanayakkara, Shanika; Senevirathna, S T M L D; Parahitiyawa, Nipuna B; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Hitomi, Toshiaki; Kobayashi, Hatasu; Harada, Kouji H; Koizumi, Akio

    2015-09-01

    The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.

  8. Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants.

    PubMed

    Kesselmeier, Miriam; Lorenzo Bermejo, Justo

    2017-11-01

    Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A thrifty variant in CREBRF strongly influences body mass index in Samoans

    PubMed Central

    Kershaw, Erin E; Cheng, Hong; Buhule, Olive D; Lin, Jerome; Reupena, Muagututi‘a Sefuiva; Viali, Satupa‘itea; Tuitele, John; Naseri, Take; Urban, Zsolt; Deka, Ranjan; Weeks, Daniel E; McGarvey, Stephen T

    2016-01-01

    Samoans are a unique founder population with a high prevalence of obesity1–3, making them well suited for identifying new genetic contributors to obesity4. We conducted a genome-wide association study (GWAS) in 3,072 Samoans, discovered a variant, rs12513649, strongly associated with body mass index (BMI) (P = 5.3 × 10−14), and replicated the association in 2,102 additional Samoans (P = 1.2 × 10−9). Targeted sequencing identified a strongly associated missense variant, rs373863828 (p.Arg457Gln), in CREBRF (meta P = 1.4 × 10−20). Although this variant is extremely rare in other populations, it is common in Samoans (frequency of 0.259), with an effect size much larger than that of any other known common BMI risk variant (1.36–1.45 kg/m2 per copy of the risk-associated allele). In comparison to wild-type CREBRF, the Arg457Gln variant when overexpressed selectively decreased energy use and increased fat storage in an adipocyte cell model. These data, in combination with evidence of positive selection of the allele encoding p.Arg457Gln, support a ‘thrifty’ variant hypothesis as a factor in human obesity. PMID:27455349

  10. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease.

    PubMed

    Takahashi, Shinichi; Andreoletti, Gaia; Chen, Rui; Munehira, Yoichi; Batra, Akshay; Afzal, Nadeem A; Beattie, R Mark; Bernstein, Jonathan A; Ennis, Sarah; Snyder, Michael

    2017-01-26

    Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disease of the gastrointestinal tract which includes ulcerative colitis and Crohn's disease. Genetic risk factors for IBD are not well understood. We performed a family-based whole exome sequencing (WES) analysis on a core family (Family A) to identify potential causal mutations and then analyzed exome data from a Caucasian pediatric cohort (136 patients and 106 controls) to validate the presence of mutations in the candidate gene, heat shock 70 kDa protein 1-like (HSPA1L). Biochemical assays of the de novo and rare (minor allele frequency, MAF < 0.01) mutation variant proteins further validated the predicted deleterious effects of the identified alleles. In the proband of Family A, we found a heterozygous de novo mutation (c.830C > T; p.Ser277Leu) in HSPA1L. Through analysis of WES data of 136 patients, we identified five additional rare HSPA1L mutations (p.Gly77Ser, p.Leu172del, p.Thr267Ile, p.Ala268Thr, p.Glu558Asp) in six patients. In contrast, rare HSPA1L mutations were not observed in controls, and were significantly enriched in patients (P = 0.02). Interestingly, we did not find non-synonymous rare mutations in the HSP70 isoforms HSPA1A and HSPA1B. Biochemical assays revealed that all six rare HSPA1L variant proteins showed decreased chaperone activity in vitro. Moreover, three variants demonstrated dominant negative effects on HSPA1L and HSPA1A protein activity. Our results indicate that de novo and rare mutations in HSPA1L are associated with IBD and provide insights into the pathogenesis of IBD, and also expand our understanding of the roles of HSP70s in human disease.

  11. Rare coding variation in paraoxonase-1 is associated with ischemic stroke in the NHLBI Exome Sequencing Project.

    PubMed

    Kim, Daniel Seung; Crosslin, David R; Auer, Paul L; Suzuki, Stephanie M; Marsillach, Judit; Burt, Amber A; Gordon, Adam S; Meschia, James F; Nalls, Mike A; Worrall, Bradford B; Longstreth, W T; Gottesman, Rebecca F; Furlong, Clement E; Peters, Ulrike; Rich, Stephen S; Nickerson, Deborah A; Jarvik, Gail P

    2014-06-01

    HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10(-3)). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10(-3)). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10(-3); AA P = 6.52 × 10(-4)), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted.

  12. A rare variant of internal anatomy of a third mandibular molar: a case report.

    PubMed

    Nimigean, V; Nimigean, Vanda Roxana; Sălăvăstru, D I

    2011-01-01

    The several anatomical variations existing in the root canal system may contribute to failure of the root canal therapy. Knowledge of the internal dental morphology is a complex and extremely important point for planning and performing endodontic therapy. This paper reports the case of a left mandibular third molar that presented only one dental conical root and only one aberrant radicular canal with an initial annular portion situated in the coronar third of the root and a linear portion at the level of the other two thirds of the dental root, which opened through an apical foramen. Root canal therapy and case management are described. Features like wide crown access, adequate illumination and use of exploring files where important for successful completion of the endodontic treatment. The treatment was performed through conventional methods. This clinical case constitutes a rare anatomical variant of internal radicular morphology.

  13. Gene-Based Sequencing Identifies Lipid-Influencing Variants with Ethnicity-Specific Effects in African Americans

    PubMed Central

    Bentley, Amy R.; Chen, Guanjie; Shriner, Daniel; Doumatey, Ayo P.; Zhou, Jie; Huang, Hanxia; Mullikin, James C.; Blakesley, Robert W.; Hansen, Nancy F.; Bouffard, Gerard G.; Cherukuri, Praveen F.; Maskeri, Baishali; Young, Alice C.; Adeyemo, Adebowale; Rotimi, Charles N.

    2014-01-01

    Although a considerable proportion of serum lipids loci identified in European ancestry individuals (EA) replicate in African Americans (AA), interethnic differences in the distribution of serum lipids suggest that some genetic determinants differ by ethnicity. We conducted a comprehensive evaluation of five lipid candidate genes to identify variants with ethnicity-specific effects. We sequenced ABCA1, LCAT, LPL, PON1, and SERPINE1 in 48 AA individuals with extreme serum lipid concentrations (high HDLC/low TG or low HDLC/high TG). Identified variants were genotyped in the full population-based sample of AA (n = 1694) and tested for an association with serum lipids. rs328 (LPL) and correlated variants were associated with higher HDLC and lower TG. Interestingly, a stronger effect was observed on a “European” vs. “African” genetic background at this locus. To investigate this effect, we evaluated the region among West Africans (WA). For TG, the effect size among WA was the same in AA with only African local ancestry (2–3% lower TG), while the larger association among AA with local European ancestry matched previous reports in EA (10%). For HDLC, there was no association with rs328 in AA with only African local ancestry or in WA, while the association among AA with European local ancestry was much greater than what has been observed for EA (15 vs. ∼5 mg/dl), suggesting an interaction with an environmental or genetic factor that differs by ethnicity. Beyond this ancestry effect, the importance of African ancestry-focused, sequence-based work was also highlighted by serum lipid associations of variants that were in higher frequency (or present only) among those of African ancestry. By beginning our study with the sequence variation present in AA individuals, investigating local ancestry effects, and seeking replication in WA, we were able to comprehensively evaluate the role of a set of candidate genes in serum lipids in AA. PMID:24603370

  14. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes

    PubMed Central

    Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.

    2014-01-01

    Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276

  15. Kullback-Leibler divergence for detection of rare haplotype common disease association.

    PubMed

    Lin, Shili

    2015-11-01

    Rare haplotypes may tag rare causal variants of common diseases; hence, detection of such rare haplotypes may also contribute to our understanding of complex disease etiology. Because rare haplotypes frequently result from common single-nucleotide polymorphisms (SNPs), focusing on rare haplotypes is much more economical compared with using rare single-nucleotide variants (SNVs) from sequencing, as SNPs are available and 'free' from already amassed genome-wide studies. Further, associated haplotypes may shed light on the underlying disease causal mechanism, a feat unmatched by SNV-based collapsing methods. In recent years, data mining approaches have been adapted to detect rare haplotype association. However, as they rely on an assumed underlying disease model and require the specification of a null haplotype, results can be erroneous if such assumptions are violated. In this paper, we present a haplotype association method based on Kullback-Leibler divergence (hapKL) for case-control samples. The idea is to compare haplotype frequencies for the cases versus the controls by computing symmetrical divergence measures. An important property of such measures is that both the frequencies and logarithms of the frequencies contribute in parallel, thus balancing the contributions from rare and common, and accommodating both deleterious and protective, haplotypes. A simulation study under various scenarios shows that hapKL has well-controlled type I error rates and good power compared with existing data mining methods. Application of hapKL to age-related macular degeneration (AMD) shows a strong association of the complement factor H (CFH) gene with AMD, identifying several individual rare haplotypes with strong signals.

  16. BISQUE: locus- and variant-specific conversion of genomic, transcriptomic and proteomic database identifiers.

    PubMed

    Meyer, Michael J; Geske, Philip; Yu, Haiyuan

    2016-05-15

    Biological sequence databases are integral to efforts to characterize and understand biological molecules and share biological data. However, when analyzing these data, scientists are often left holding disparate biological currency-molecular identifiers from different databases. For downstream applications that require converting the identifiers themselves, there are many resources available, but analyzing associated loci and variants can be cumbersome if data is not given in a form amenable to particular analyses. Here we present BISQUE, a web server and customizable command-line tool for converting molecular identifiers and their contained loci and variants between different database conventions. BISQUE uses a graph traversal algorithm to generalize the conversion process for residues in the human genome, genes, transcripts and proteins, allowing for conversion across classes of molecules and in all directions through an intuitive web interface and a URL-based web service. BISQUE is freely available via the web using any major web browser (http://bisque.yulab.org/). Source code is available in a public GitHub repository (https://github.com/hyulab/BISQUE). haiyuan.yu@cornell.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. The germline variants in DNA repair genes in pediatric medulloblastoma: a challenge for current therapeutic strategies.

    PubMed

    Trubicka, Joanna; Żemojtel, Tomasz; Hecht, Jochen; Falana, Katarzyna; Piekutowska-Abramczuk, Dorota; Płoski, Rafał; Perek-Polnik, Marta; Drogosiewicz, Monika; Grajkowska, Wiesława; Ciara, Elżbieta; Moszczyńska, Elżbieta; Dembowska-Bagińska, Bożenna; Perek, Danuta; Chrzanowska, Krystyna H; Krajewska-Walasek, Małgorzata; Łastowska, Maria

    2017-04-04

    The defects in DNA repair genes are potentially linked to development and response to therapy in medulloblastoma. Therefore the purpose of this study was to establish the spectrum and frequency of germline variants in selected DNA repair genes and their impact on response to chemotherapy in medulloblastoma patients. The following genes were investigated in 102 paediatric patients: MSH2 and RAD50 using targeted gene panel sequencing and NBN variants (p.I171V and p.K219fs*19) by Sanger sequencing. In three patients with presence of rare life-threatening adverse events (AE) and no detected variants in the analyzed genes, whole exome sequencing was performed. Based on combination of molecular and immunohistochemical evaluations tumors were divided into molecular subgroups. Presence of variants was tested for potential association with the occurrence of rare life-threatening AE and other clinical features. We have identified altogether six new potentially pathogenic variants in MSH2 (p.A733T and p.V606I), RAD50 (p.R1093*), FANCM (p.L694*), ERCC2 (p.R695C) and EXO1 (p.V738L), in addition to two known NBN variants. Five out of twelve patients with defects in either of MSH2, RAD50 and NBN genes suffered from rare life-threatening AE, more frequently than in control group (p = 0.0005). When all detected variants were taken into account, the majority of patients (8 out of 15) suffered from life-threatening toxicity during chemotherapy. Our results, based on the largest systematic study performed in a clinical setting, provide preliminary evidence for a link between defects in DNA repair genes and treatment related toxicity in children with medulloblastoma. The data suggest that patients with DNA repair gene variants could need special vigilance during and after courses of chemotherapy.

  18. SORL1 variants across Alzheimer's disease European American cohorts.

    PubMed

    Fernández, Maria Victoria; Black, Kathleen; Carrell, David; Saef, Ben; Budde, John; Deming, Yuetiva; Howells, Bill; Del-Aguila, Jorge L; Ma, Shengmei; Bi, Catherine; Norton, Joanne; Chasse, Rachel; Morris, John; Goate, Alison; Cruchaga, Carlos

    2016-12-01

    The accumulation of the toxic Aβ peptide in Alzheimer's disease (AD) largely relies upon an efficient recycling of amyloid precursor protein (APP). Recent genetic association studies have described rare variants in SORL1 with putative pathogenic consequences in the recycling of APP. In this work, we examine the presence of rare coding variants in SORL1 in three different European American cohorts: early-onset, late-onset AD (LOAD) and familial LOAD.

  19. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects.

    PubMed

    Johnson, Ben; Lowe, Gillian C; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula Hb; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E; Watson, Steve P; Morgan, Neil V

    2016-10-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×10 9 /L to 186×10 9 /L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified "pathogenic" or "likely pathogenic" variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. Copyright© Ferrata Storti Foundation.

  20. TREM2 Variants in Alzheimer's Disease

    PubMed Central

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  1. Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits

    PubMed Central

    Palmer, Cameron D.; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E.; Launer, Lenore J.; Nalls, Michael A.; Clark, Jeanne M.; Mitchell, Braxton D.; Shuldiner, Alan R.; Butler, Johannah L.; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M.; O'Donnell, Christopher J.; Sahani, Dushyant V.; Salomaa, Veikko; Schadt, Eric E.; Schwartz, Stephen M.; Siscovick, David S.; Voight, Benjamin F.; Carr, J. Jeffrey; Feitosa, Mary F.; Harris, Tamara B.; Fox, Caroline S.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%–27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10−8) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT–assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits. PMID:21423719

  2. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.

    PubMed

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun; Hernaez, Ruben; Kim, Lauren J; Palmer, Cameron D; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E; Launer, Lenore J; Nalls, Michael A; Clark, Jeanne M; Mitchell, Braxton D; Shuldiner, Alan R; Butler, Johannah L; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M; O'Donnell, Christopher J; Sahani, Dushyant V; Salomaa, Veikko; Schadt, Eric E; Schwartz, Stephen M; Siscovick, David S; Voight, Benjamin F; Carr, J Jeffrey; Feitosa, Mary F; Harris, Tamara B; Fox, Caroline S; Smith, Albert V; Kao, W H Linda; Hirschhorn, Joel N; Borecki, Ingrid B

    2011-03-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.

  3. Resequencing IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children

    USDA-ARS?s Scientific Manuscript database

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5' and 3' flanking regions of IRS2 (approx. 14.5 kb), were bidirectionally sequenced for single nucleotide...

  4. 68Ga-DOTATATE uptake in pineal gland, a rare physiological variant: case series.

    PubMed

    Riaz, Saima; Syed, Rizwan; Skoura, Evangelia; Alshammari, Alshaima; Gaze, Mark; Sajjan, Rakesh; Halsey, Richard; Bomanji, Jamshed

    2015-11-01

    (68)Ga-DOTATATE PET-CT is widely used for the evaluation of neuroendocrine tumours. Knowledge of the physiological distribution of the radiotracer is of critical importance in characterizing focal areas of uptake. In this case series, we report three paediatric cases (average age 4.7 years ± 0.6 SD) with diagnosed advanced stage IV Neuroblastoma. Two had (68)Ga-DOTATATE PET-CT scans and one underwent (68)Ga-DOTATATE PET-MRI scan to assess for suitability of molecular therapy. Focal increased tracer uptake in the pineal gland was noted in all cases with no morphological abnormality on the corresponding CT and MRI scans. The uptake within the gland was thought to be a physiological variant rather than metastases owing to the heterogeneity of somatostatin receptors expression. The pineal gland has been reported to express somatostatin receptors. The physiological distribution of (68)Ga-DOTATATE uptake in the pineal gland is not routinely seen. Furthermore, the possibility of pineal meningioma is very unlikely as pineal meningiomas are very rare and there was no convincing morphological evidence of meningiomas on CT/MRI scan.

  5. Peeling skin syndrome associated with novel variant in FLG2 gene.

    PubMed

    Alfares, Ahmed; Al-Khenaizan, Sultan; Al Mutairi, Fuad

    2017-12-01

    Peeling skin syndrome is a rare genodermatosis characterized by variably pruritic superficial generalized peeling of the skin with several genes involved until now little is known about the association between FLG2 and peeling skin syndrome. We describe multiple family members from a consanguineous Saudi family with peeling skin syndrome. Next Generation Sequencing identifies a cosegregating novel variant in FLG2 c.632C>G (p.Ser211*) as a likely etiology in this family. Here, we reported on the clinical manifestation of homozygous loss of function variant in FLG2 as a disease-causing gene for peeling skin syndrome and expand the dermatology findings. © 2017 Wiley Periodicals, Inc.

  6. A rare variant P507L in TPP1 interrupts TPP1-TIN2 interaction, influences telomere length, and confers colorectal cancer risk in Chinese population.

    PubMed

    Li, Jiaoyuan; Chang, Jiang; Tian, Jianbo; Ke, Juntao; Zhu, Ying; Yang, Yang; Gong, Yajie; Zou, Danyi; Peng, Xiating; Yang, Nan; Mei, Shufang; Wang, Xiaoyang; Cheng, Liming; Hu, Weiguo; Gong, Jing; Zhong, Rong; Miao, Xiaoping

    2018-06-11

    Telomere dysfunction triggers cellular senescence and constitutes a driving force for cancer initiation. Genetic variants in genes involved in telomere maintenance may contribute to colorectal cancer (CRC) susceptibility. In this study, we firstly captured germline mutations in 192 CRC patients by sequencing the coding regions of 13 core components implicated in telomere biology. Five potential functional variants were then genotyped and assessed in a case-control set with 3,761 CRC cases and 3,839 healthy controls. The promising association was replicated in additional 6,765 cases and 6,906 controls. Functional experiments were used to further clarify the potential function of the significant variant and uncover the underlying mechanism in CRC development. The two-stage association studies showed that a rare missense variant rs149418249 (c.C1520T, p.P507L) in the 11th exon of TPP1 (also known as ACD, gene ID 65057) was significantly associated with CRC risk with the ORs being 2.90 (95% CI:1.04-8.07, P=0.041), 2.50 (95% CI:1.04-6.04, P=0.042), and 2.66 (95%CI:1.36-5.18, P=0.004) in discovery, replication, and the combined samples, respectively. Further functional annotation indicated that the TPP1 P507L substitution interrupted TPP1-TIN2 interaction, impaired telomerase processivity, and shortened telomere length, which subsequently facilitated cell proliferation and promoted CRC development. A rare variant P507L in TPP1 confers increased risk of CRC through interrupting TPP1-TIN2 interaction, impairing telomerase processivity, and shrinking telomere length. These findings emphasize the important role of telomere dysfunction in CRC development, and provide new insights about the prevention of this type of cancer. Copyright ©2018, American Association for Cancer Research.

  7. Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies.

    PubMed

    Hardt, Karin; Heick, Sven Boris; Betz, Beate; Goecke, Timm; Yazdanparast, Haniyeh; Küppers, Robin; Servan, Kati; Steinke, Verena; Rahner, Nils; Morak, Monika; Holinski-Feder, Elke; Engel, Christoph; Möslein, Gabriela; Schackert, Hans-Konrad; von Knebel Doeberitz, Magnus; Pox, Christian; Hegemann, Johannes H; Royer-Pokora, Brigitte

    2011-06-01

    Missense mutations of the DNA mismatch repair gene MLH1 are found in a significant fraction of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer, HNPCC) and their pathogenicity often remains unclear. We report here all 88 MLH1 missense variants identified in families from the German HNPCC consortium with clinical details of these patients/families. We investigated 23 MLH1 missense variants by two functional in vivo assays in yeast; seven map to the ATPase and 16 to the protein interaction domain. In the yeast-2-hybrid (Y2H) assay three variants in the ATPase and twelve variants in the interaction domain showed no or a reduced interaction with PMS2; seven showed a normal and one a significantly higher interaction. Using the Lys2A (14) reporter system to study the dominant negative mutator effect (DNE), 16 variants showed no or a low mutator effect, suggesting that these are nonfunctional, three were intermediate and four wild type in this assay. The DNE and Y2H results were concordant for all variants in the interaction domain, whereas slightly divergent results were obtained for variants in the ATPase domain. Analysis of the stability of the missense proteins in yeast and human embryonic kidney cells (293T) revealed a very low expression for seven of the variants in yeast and for nine in human cells. In total 15 variants were classified as deleterious, five were classified as variants of unclassified significance (VUS) and three were basically normal in the functional assays, P603R, K618R, Q689R, suggesting that these are neutral.

  8. Rare platelet GPCR variants: what can we learn?

    PubMed

    Nisar, S P; Jones, M L; Cunningham, M R; Mumford, A D; Mundell, S J

    2015-07-01

    Platelet-expressed GPCRs are critical regulators of platelet function. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis associated with coronary atherosclerosis and ischaemic stroke. However, anti-thrombotic drug therapy is associated with high inter-patient variability in therapeutic response and adverse bleeding side effects. In order to optimize the use of existing anti-platelet drugs and to develop new therapies, more detailed knowledge is required relating to the molecular mechanisms that regulate GPCR and therefore platelet function. One approach has been to identify rare, function-disrupting mutations within key platelet proteins in patients with bleeding disorders. In this review, we describe how an integrated functional genomics strategy has contributed important structure-function information about platelet GPCRs with specific emphasis upon purinergic and thromboxane A2 receptors. We also discuss the potential implications these findings have for pharmacotherapy and for understanding the molecular basis of mild bleeding disorders. © 2014 The British Pharmacological Society.

  9. Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing.

    PubMed

    Lohoff, F W; Hodge, R; Narasimhan, S; Nall, A; Ferraro, T N; Mickey, B J; Heitzeg, M M; Langenecker, S A; Zubieta, J-K; Bogdan, R; Nikolova, Y S; Drabant, E; Hariri, A R; Bevilacqua, L; Goldman, D; Doyle, G A

    2014-01-01

    Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits and risk for psychopathology.

  10. Applications of machine learning and data mining methods to detect associations of rare and common variants with complex traits.

    PubMed

    Lu, Ake Tzu-Hui; Austin, Erin; Bonner, Ashley; Huang, Hsin-Hsiung; Cantor, Rita M

    2014-09-01

    Machine learning methods (MLMs), designed to develop models using high-dimensional predictors, have been used to analyze genome-wide genetic and genomic data to predict risks for complex traits. We summarize the results from six contributions to our Genetic Analysis Workshop 18 working group; these investigators applied MLMs and data mining to analyses of rare and common genetic variants measured in pedigrees. To develop risk profiles, group members analyzed blood pressure traits along with single-nucleotide polymorphisms and rare variant genotypes derived from sequence and imputation analyses in large Mexican American pedigrees. Supervised MLMs included penalized regression with varying penalties, support vector machines, and permanental classification. Unsupervised MLMs included sparse principal components analysis and sparse graphical models. Entropy-based components analyses were also used to mine these data. None of the investigators fully capitalized on the genetic information provided by the complete pedigrees. Their approaches either corrected for the nonindependence of the individuals within the pedigrees or analyzed only those who were independent. Some methods allowed for covariate adjustment, whereas others did not. We evaluated these methods using a variety of metrics. Four contributors conducted primary analyses on the real data, and the other two research groups used the simulated data with and without knowledge of the underlying simulation model. One group used the answers to the simulated data to assess power and type I errors. Although the MLMs applied were substantially different, each research group concluded that MLMs have advantages over standard statistical approaches with these high-dimensional data. © 2014 WILEY PERIODICALS, INC.

  11. Synonymous ABCA3 Variants Do Not Increase Risk for Neonatal Respiratory Distress Syndrome

    PubMed Central

    Wambach, Jennifer A.; Wegner, Daniel J.; Heins, Hillary B.; Druley, Todd E.; Mitra, Robi D.; Hamvas, Aaron; Cole, F. Sessions

    2014-01-01

    Objective To determine whether synonymous variants in the adenosine triphosphate-binding cassette A3 transporter (ABCA3) gene increase the risk for neonatal respiratory distress syndrome (RDS) in term and late preterm infants of European and African descent. Study design Using next-generation pooled sequencing of race-stratified DNA samples from infants of European and African descent at $34 weeks gestation with and without RDS (n = 503), we scanned all exons of ABCA3, validated each synonymous variant with an independent genotyping platform, and evaluated race-stratified disease risk associated with common synonymous variants and collapsed frequencies of rare synonymous variants. Results The synonymous ABCA3 variant frequency spectrum differs between infants of European descent and those of African descent. Using in silico prediction programs and statistical strategies, we found no potentially disruptive synonymous ABCA3 variants or evidence of selection pressure. Individual common synonymous variants and collapsed frequencies of rare synonymous variants did not increase disease risk in term and late-preterm infants of European or African descent. Conclusion In contrast to rare, nonsynonymous ABCA3 mutations, synonymous ABCA3 variants do not increase the risk for neonatal RDS among term and late-preterm infants of European or African descent. PMID:24657120

  12. Low-Pass Genome-Wide Sequencing and Variant Inference Using Identity-by-Descent in an Isolated Human Population

    PubMed Central

    Gusev, A.; Shah, M. J.; Kenny, E. E.; Ramachandran, A.; Lowe, J. K.; Salit, J.; Lee, C. C.; Levandowsky, E. C.; Weaver, T. N.; Doan, Q. C.; Peckham, H. E.; McLaughlin, S. F.; Lyons, M. R.; Sheth, V. N.; Stoffel, M.; De La Vega, F. M.; Friedman, J. M.; Breslow, J. L.

    2012-01-01

    Whole-genome sequencing in an isolated population with few founders directly ascertains variants from the population bottleneck that may be rare elsewhere. In such populations, shared haplotypes allow imputation of variants in unsequenced samples without resorting to complex statistical methods as in studies of outbred cohorts. We focus on an isolated population cohort from the Pacific Island of Kosrae, Micronesia, where we previously collected SNP array and rich phenotype data for the majority of the population. We report identification of long regions with haplotypes co-inherited between pairs of individuals and methodology to leverage such shared genetic content for imputation. Our estimates show that sequencing as few as 40 personal genomes allows for inference in up to 60% of the 3000-person cohort at the average locus. We ascertained a pilot data set of whole-genome sequences from seven Kosraean individuals, with average 5× coverage. This assay identified 5,735,306 unique sites of which 1,212,831 were previously unknown. Additionally, these variants are unusually enriched for alleles that are rare in other populations when compared to geographic neighbors (published Korean genome SJK). We used the presence of shared haplotypes between the seven Kosraen individuals to estimate expected imputation accuracy of known and novel homozygous variants at 99.6% and 97.3%, respectively. This study presents whole-genome analysis of a homogenous isolate population with emphasis on optimal rare variant inference. PMID:22135348

  13. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India.

    PubMed

    Mohan, Viswanathan; Radha, Venkatesan; Nguyen, Thong T; Stawiski, Eric W; Pahuja, Kanika Bajaj; Goldstein, Leonard D; Tom, Jennifer; Anjana, Ranjit Mohan; Kong-Beltran, Monica; Bhangale, Tushar; Jahnavi, Suresh; Chandni, Radhakrishnan; Gayathri, Vijay; George, Paul; Zhang, Na; Murugan, Sakthivel; Phalke, Sameer; Chaudhuri, Subhra; Gupta, Ravi; Zhang, Jingli; Santhosh, Sam; Stinson, Jeremy; Modrusan, Zora; Ramprasad, V L; Seshagiri, Somasekar; Peterson, Andrew S

    2018-02-13

    Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.

  14. Common variants in Mendelian kidney disease genes and their association with renal function.

    PubMed

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  15. Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function

    PubMed Central

    Fuchsberger, Christian; Köttgen, Anna; O’Seaghdha, Conall M.; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I.; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J.; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V.; O’Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M.; Bochud, Murielle; Heid, Iris M.; Siscovick, David S.; Fox, Caroline S.; Kao, W. Linda; Böger, Carsten A.

    2013-01-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research. PMID:24029420

  16. Functional and pharmacological evaluation of novel GLA variants in Fabry disease identifies six (two de novo) causative mutations and two amenable variants to the chaperone DGJ.

    PubMed

    Ferri, Lorenzo; Malesci, Duccio; Fioravanti, Antonella; Bagordo, Gaia; Filippini, Armando; Ficcadenti, Anna; Manna, Raffaele; Antuzzi, Daniela; Verrecchia, Elena; Donati, Ilaria; Mignani, Renzo; Cavicchi, Catia; Guerrini, Renzo; Morrone, Amelia

    2018-06-01

    Allelic heterogeneity is an important feature of the GLA gene for which almost 900 known genetic variants have been discovered so far. Pathogenetic GLA variants cause alpha-galactosidase A (α-Gal A) enzyme deficiency leading to the X-linked lysosomal storage disorder Fabry disease (FD). Benign GLA intronic and exonic variants (e.g. pseudodeficient p.Asp313Tyr) have also been described. Some GLA missense variants, previously deemed to be pathogenetic (e.g. p.Glu66Gln and p.Arg118Cys), they have been reclassified as benign after re-evaluation by functional and population studies. Hence, the functional role of novel GLA variants should be investigated to assess their clinical relevance. We identified six GLA variants in 4 males and 2 females who exhibited symptoms of FD: c.159C>G p.(Asn53Lys), c.400T>C p.(Tyr134His), c.680G>C (p.Arg227Pro), c.815A>T p.(Asn272Ile), c.907A>T p.(Ile303Phe) and c.1163_1165delTCC (p.Leu388del). We evaluated their impact on the α-Gal A protein by bioinformatic analysis and homology modelling, by analysis of the GLA mRNA, and by site-directed mutagenesis and in vitro expression studies. We also measured their responsiveness to the pharmacological chaperone DGJ. The six detected GLA variants cause deficient α-Gal A activity and impairment or loss of the protein wild-type structure. We found p.Asn53Lys and p.Ile303Phe variants to be susceptible to DGJ. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Adenoid basal cell carcinoma: a rare facet of basal cell carcinoma

    PubMed Central

    Saxena, Kartikay; Manohar, Vidya; Bhakhar, Vikas; Bahl, Sumit

    2016-01-01

    Basal cell carcinoma (BCC) is a common, locally invasive epithelial malignancy of skin and its appendages. Every year, close to 10 million people get diagnosed with BCC worldwide. While the histology of this lesion is mostly predictable, some of the rare histological variants such as cystic, adenoid, morpheaform, infundibulocystic, pigmented and miscellaneous variants (clear-cell, signet ring cell, granular, giant cell, adamantanoid, schwannoid) are even rarer, accounting for <10% of all BCC's. Adenoid BCC (ADBCC) is a very rare histopathological variant with reported incidence of only approximately 1.3%. The clinical appearance of this lesion can be a pigmented or non-pigmented nodule or ulcer without predilection for any particular site. We share a case report of ADBCC, a rare histological variant of BCC that showed interesting features not only histologically but also by clinically mimicking a benign lesion. PMID:27095806

  18. Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle.

    PubMed

    Huang, J M; Wang, Z Y; Ju, Z H; Wang, C F; Li, Q L; Sun, T; Hou, Q L; Hang, S Q; Hou, M H; Zhong, J F

    2011-12-21

    Bovine lactoferrin (bLF) is a member of the transferrin family; it plays an important role in the innate immune response. We identified novel splice variants of the bLF gene in mastitis-infected and healthy cows. Reverse transcription-polymerase chain reaction (RT-PCR) and clone sequencing analysis were used to screen the splice variants of the bLF gene in the mammary gland, spleen and liver tissues. One main transcript corresponding to the bLF reference sequence was found in three tissues in both healthy and mastitis-infected cows. Quantitative real-time PCR analysis showed that the expression levels of the LF gene's main transcript were not significantly different in tissues from healthy versus mastitis-infected cows. However, the new splice variant, LF-AS2, which has the exon-skipping alternative splicing pattern, was only identified in mammary glands infected with Staphylococcus aureus. Sequencing analysis showed that the new splice variant was 251 bp in length, including exon 1, part of exon 2, part of exon 16, and exon 17. We conclude that bLF may play a role in resistance to mastitis through alternative splicing mechanisms.

  19. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  20. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.

    PubMed

    Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-02-03

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.

  1. A sex-specific association of common variants of neuroligin genes (NLGN3 and NLGN4X) with autism spectrum disorders in a Chinese Han cohort

    PubMed Central

    2011-01-01

    Background Synaptic genes, NLGN3 and NLGN4X, two homologous members of the neuroligin family, have been supposed as predisposition loci for autism spectrum disorders (ASDs), and defects of these two genes have been identified in a small fraction of individuals with ASDs. But no such rare variant in these two genes has as yet been adequately replicated in Chinese population and no common variant has been further investigated to be associated with ASDs. Methods 7 known ASDs-related rare variants in NLGN3 and NLGN4X genes were screened for replication of the initial findings and 12 intronic tagging single nucleotide polymorphisms (SNPs) were genotyped for case-control association analysis in a total of 229 ASDs cases and 184 control individuals in a Chinese Han cohort, using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Results We found that a common intronic variant, SNP rs4844285 in NLGN3 gene, and a specific 3-marker haplotype XA-XG-XT (rs11795613-rs4844285-rs4844286) containing this individual SNP were associated with ASDs and showed a male bias, even after correction for multiple testing (SNP allele: P = 0.048, haplotype:P = 0.032). Simultaneously, none of these 7 known rare mutation of NLGN3 and NLGN4X genes was identified, neither in our patients with ASDs nor controls, giving further evidence that these known rare variants might be not enriched in Chinese Han cohort. Conclusion The present study provides initial evidence that a common variant in NLGN3 gene may play a role in the etiology of ASDs among affected males in Chinese Han population, and further supports the hypothesis that defect of synapse might involvement in the pathophysiology of ASDs. PMID:21569590

  2. A sex-specific association of common variants of neuroligin genes (NLGN3 and NLGN4X) with autism spectrum disorders in a Chinese Han cohort.

    PubMed

    Yu, Jindan; He, Xue; Yao, Dan; Li, Zhongyue; Li, Hui; Zhao, Zhengyan

    2011-05-14

    Synaptic genes, NLGN3 and NLGN4X, two homologous members of the neuroligin family, have been supposed as predisposition loci for autism spectrum disorders (ASDs), and defects of these two genes have been identified in a small fraction of individuals with ASDs. But no such rare variant in these two genes has as yet been adequately replicated in Chinese population and no common variant has been further investigated to be associated with ASDs. 7 known ASDs-related rare variants in NLGN3 and NLGN4X genes were screened for replication of the initial findings and 12 intronic tagging single nucleotide polymorphisms (SNPs) were genotyped for case-control association analysis in a total of 229 ASDs cases and 184 control individuals in a Chinese Han cohort, using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. We found that a common intronic variant, SNP rs4844285 in NLGN3 gene, and a specific 3-marker haplotype XA-XG-XT (rs11795613-rs4844285-rs4844286) containing this individual SNP were associated with ASDs and showed a male bias, even after correction for multiple testing (SNP allele: P = 0.048, haplotype:P = 0.032). Simultaneously, none of these 7 known rare mutation of NLGN3 and NLGN4X genes was identified, neither in our patients with ASDs nor controls, giving further evidence that these known rare variants might be not enriched in Chinese Han cohort. The present study provides initial evidence that a common variant in NLGN3 gene may play a role in the etiology of ASDs among affected males in Chinese Han population, and further supports the hypothesis that defect of synapse might involvement in the pathophysiology of ASDs.

  3. Single nucleotide variants and InDels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds.

    PubMed

    Stafuzza, Nedenia Bonvino; Zerlotini, Adhemar; Lobo, Francisco Pereira; Yamagishi, Michel Eduardo Beleza; Chud, Tatiane Cristina Seleguim; Caetano, Alexandre Rodrigues; Munari, Danísio Prado; Garrick, Dorian J; Machado, Marco Antonio; Martins, Marta Fonseca; Carvalho, Maria Raquel; Cole, John Bruce; Barbosa da Silva, Marcos Vinicius Gualberto

    2017-01-01

    Whole-genome re-sequencing, alignment and annotation analyses were undertaken for 12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose), Gyr, Girolando and Holstein (dairy production). A total of approximately 4.3 billion reads from an Illumina HiSeq 2000 sequencer generated for each animal 10.7 to 16.4-fold genome coverage. A total of 27,441,279 single nucleotide variations (SNVs) and 3,828,041 insertions/deletions (InDels) were detected in the samples, of which 2,557,670 SNVs and 883,219 InDels were novel. The submission of these genetic variants to the dbSNP database significantly increased the number of known variants, particularly for the indicine genome. The concordance rate between genotypes obtained using the Bovine HD BeadChip array and the same variants identified by sequencing was about 99.05%. The annotation of variants identified numerous non-synonymous SNVs and frameshift InDels which could affect phenotypic variation. Functional enrichment analysis was performed and revealed that variants in the olfactory transduction pathway was over represented in all four cattle breeds, while the ECM-receptor interaction pathway was over represented in Girolando and Guzerat breeds, the ABC transporters pathway was over represented only in Holstein breed, and the metabolic pathways was over represented only in Gyr breed. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Gyr, Girolando, Guzerat and Holstein breeding programs.

  4. Single nucleotide variants and InDels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds

    PubMed Central

    Lobo, Francisco Pereira; Yamagishi, Michel Eduardo Beleza; Chud, Tatiane Cristina Seleguim; Caetano, Alexandre Rodrigues; Munari, Danísio Prado; Garrick, Dorian J.; Machado, Marco Antonio; Martins, Marta Fonseca; Carvalho, Maria Raquel; Cole, John Bruce; Barbosa da Silva, Marcos Vinicius Gualberto

    2017-01-01

    Whole-genome re-sequencing, alignment and annotation analyses were undertaken for 12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose), Gyr, Girolando and Holstein (dairy production). A total of approximately 4.3 billion reads from an Illumina HiSeq 2000 sequencer generated for each animal 10.7 to 16.4-fold genome coverage. A total of 27,441,279 single nucleotide variations (SNVs) and 3,828,041 insertions/deletions (InDels) were detected in the samples, of which 2,557,670 SNVs and 883,219 InDels were novel. The submission of these genetic variants to the dbSNP database significantly increased the number of known variants, particularly for the indicine genome. The concordance rate between genotypes obtained using the Bovine HD BeadChip array and the same variants identified by sequencing was about 99.05%. The annotation of variants identified numerous non-synonymous SNVs and frameshift InDels which could affect phenotypic variation. Functional enrichment analysis was performed and revealed that variants in the olfactory transduction pathway was over represented in all four cattle breeds, while the ECM-receptor interaction pathway was over represented in Girolando and Guzerat breeds, the ABC transporters pathway was over represented only in Holstein breed, and the metabolic pathways was over represented only in Gyr breed. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Gyr, Girolando, Guzerat and Holstein breeding programs. PMID:28323836

  5. Characterization of a rare variant (c.2635-2A>G) of the MSH2 gene in a family with Lynch syndrome.

    PubMed

    Cariola, Filomena; Disciglio, Vittoria; Valentini, Anna M; Lotesoriere, Claudio; Fasano, Candida; Forte, Giovanna; Russo, Luciana; Di Carlo, Antonio; Guglielmi, Floranna; Manghisi, Andrea; Lolli, Ivan; Caruso, Maria L; Simone, Cristiano

    2018-04-01

    Lynch syndrome is caused by germline mutations in one of the mismatch repair genes ( MLH1, MSH2, MSH6, and PMS2) or in the EPCAM gene. Lynch syndrome is defined on the basis of clinical, pathological, and genetic findings. Accordingly, the identification of predisposing genes allows for accurate risk assessment and tailored screening protocols. Here, we report a family case with three family members manifesting the Lynch syndrome phenotype, all of which harbor the rare variant c.2635-2A>G affecting the splice site consensus sequence of intron 15 of the MSH2 gene. This mutation was previously described only in one family with Lynch syndrome, in which mismatch repair protein expression in tumor tissues was not assessed. In this study, we report for the first time the molecular characterization of the MSH2 c.2635-2A>G variant through in silico prediction analysis, microsatellite instability, and mismatch repair protein expression experiments on tumor tissues of Lynch syndrome patients. The potential effect of the splice site variant was revealed by three splicing prediction bioinformatics tools, which suggested the generation of a new cryptic splicing site. The potential pathogenic role of this variant was also revealed by the presence of microsatellite instability and the absence of MSH2/MSH6 heterodimer protein expression in the tumor cells of cancer tissues of the affected family members. We provide compelling evidence in favor of the pathogenic role of the MSH2 variant c.2635-2A>G, which could induce an alteration of the canonical splice site and consequently an aberrant form of the protein product (MSH2).

  6. Sequencing the GRHL3 Coding Region Reveals Rare Truncating Mutations and a Common Susceptibility Variant for Nonsyndromic Cleft Palate

    PubMed Central

    Mangold, Elisabeth; Böhmer, Anne C.; Ishorst, Nina; Hoebel, Ann-Kathrin; Gültepe, Pinar; Schuenke, Hannah; Klamt, Johanna; Hofmann, Andrea; Gölz, Lina; Raff, Ruth; Tessmann, Peter; Nowak, Stefanie; Reutter, Heiko; Hemprich, Alexander; Kreusch, Thomas; Kramer, Franz-Josef; Braumann, Bert; Reich, Rudolf; Schmidt, Gül; Jäger, Andreas; Reiter, Rudolf; Brosch, Sibylle; Stavusis, Janis; Ishida, Miho; Seselgyte, Rimante; Moore, Gudrun E.; Nöthen, Markus M.; Borck, Guntram; Aldhorae, Khalid A.; Lace, Baiba; Stanier, Philip; Knapp, Michael; Ludwig, Kerstin U.

    2016-01-01

    Nonsyndromic cleft lip with/without cleft palate (nsCL/P) and nonsyndromic cleft palate only (nsCPO) are the most frequent subphenotypes of orofacial clefts. A common syndromic form of orofacial clefting is Van der Woude syndrome (VWS) where individuals have CL/P or CPO, often but not always associated with lower lip pits. Recently, ∼5% of VWS-affected individuals were identified with mutations in the grainy head-like 3 gene (GRHL3). To investigate GRHL3 in nonsyndromic clefting, we sequenced its coding region in 576 Europeans with nsCL/P and 96 with nsCPO. Most strikingly, nsCPO-affected individuals had a higher minor allele frequency for rs41268753 (0.099) than control subjects (0.049; p = 1.24 × 10−2). This association was replicated in nsCPO/control cohorts from Latvia, Yemen, and the UK (pcombined = 2.63 × 10−5; ORallelic = 2.46 [95% CI 1.6–3.7]) and reached genome-wide significance in combination with imputed data from a GWAS in nsCPO triads (p = 2.73 × 10−9). Notably, rs41268753 is not associated with nsCL/P (p = 0.45). rs41268753 encodes the highly conserved p.Thr454Met (c.1361C>T) (GERP = 5.3), which prediction programs denote as deleterious, has a CADD score of 29.6, and increases protein binding capacity in silico. Sequencing also revealed four novel truncating GRHL3 mutations including two that were de novo in four families, where all nine individuals harboring mutations had nsCPO. This is important for genetic counseling: given that VWS is rare compared to nsCPO, our data suggest that dominant GRHL3 mutations are more likely to cause nonsyndromic than syndromic CPO. Thus, with rare dominant mutations and a common risk variant in the coding region, we have identified an important contribution for GRHL3 in nsCPO. PMID:27018475

  7. Rare coding variation in paraoxonase-1 is associated with ischemic stroke in the NHLBI Exome Sequencing Project[S

    PubMed Central

    Kim, Daniel Seung; Crosslin, David R.; Auer, Paul L.; Suzuki, Stephanie M.; Marsillach, Judit; Burt, Amber A.; Gordon, Adam S.; Meschia, James F.; Nalls, Mike A.; Worrall, Bradford B.; Longstreth, W. T.; Gottesman, Rebecca F.; Furlong, Clement E.; Peters, Ulrike; Rich, Stephen S.; Nickerson, Deborah A.; Jarvik, Gail P.

    2014-01-01

    HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10−3). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10−3). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10−3; AA P = 6.52 × 10−4), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted. PMID:24711634

  8. Neuroradiological findings in GM2 gangliosidosis variant B1.

    PubMed

    Bano, Shahina; Prasad, Akhila; Yadav, Sachchida Nand; Chaudhary, Vikas; Garga, Umesh Chandra

    2011-07-01

    GM2 gangliosidosis variant B1 is a very rare lysosomal disorder. As per our knowledge, to date, only one article depicting the magnetic resonance imaging (MRI) findings of GM2 gangliosidosis variant B1 is available in the literature. We are the first to describe the neuroradiological findings in an Indian patient diagnosed with GM2 gangliosidosis variant B1.

  9. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study.

    PubMed

    Dewey, Frederick E; Murray, Michael F; Overton, John D; Habegger, Lukas; Leader, Joseph B; Fetterolf, Samantha N; O'Dushlaine, Colm; Van Hout, Cristopher V; Staples, Jeffrey; Gonzaga-Jauregui, Claudia; Metpally, Raghu; Pendergrass, Sarah A; Giovanni, Monica A; Kirchner, H Lester; Balasubramanian, Suganthi; Abul-Husn, Noura S; Hartzel, Dustin N; Lavage, Daniel R; Kost, Korey A; Packer, Jonathan S; Lopez, Alexander E; Penn, John; Mukherjee, Semanti; Gosalia, Nehal; Kanagaraj, Manoj; Li, Alexander H; Mitnaul, Lyndon J; Adams, Lance J; Person, Thomas N; Praveen, Kavita; Marcketta, Anthony; Lebo, Matthew S; Austin-Tse, Christina A; Mason-Suares, Heather M; Bruse, Shannon; Mellis, Scott; Phillips, Robert; Stahl, Neil; Murphy, Andrew; Economides, Aris; Skelding, Kimberly A; Still, Christopher D; Elmore, James R; Borecki, Ingrid B; Yancopoulos, George D; Davis, F Daniel; Faucett, William A; Gottesman, Omri; Ritchie, Marylyn D; Shuldiner, Alan R; Reid, Jeffrey G; Ledbetter, David H; Baras, Aris; Carey, David J

    2016-12-23

    The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery. Copyright © 2016, American Association for the Advancement of Science.

  10. Next generation sequencing to identify novel genetic variants causative of autosomal dominant familial hypercholesterolemia associated with increased risk of coronary heart disease.

    PubMed

    Al-Allaf, Faisal A; Athar, Mohammad; Abduljaleel, Zainularifeen; Taher, Mohiuddin M; Khan, Wajahatullah; Ba-Hammam, Faisal A; Abalkhail, Hala; Alashwal, Abdullah

    2015-07-01

    Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). It is an autosomal dominant disease, caused by variants in Ldlr, ApoB or Pcsk9, which results in high levels of LDL-cholesterol (LDL-C) leading to early coronary heart disease. Sequencing whole genome for screening variants for FH are not suitable due to high cost. Hence, in this study we performed targeted customized sequencing of FH 12 genes (Ldlr, ApoB, Pcsk9, Abca1, Apoa2, Apoc3, Apon2, Arh, Ldlrap1, Apoc2, ApoE, and Lpl) that have been implicated in the homozygous phenotype of a proband pedigree to identify candidate variants by NGS Ion torrent PGM. Only three genes (Ldlr, ApoB, and Pcsk9) were found to be highly associated with FH based on the variant rate. The results showed that seven deleterious variants in Ldlr, ApoB, and Pcsk9 genes were pathological and were clinically significant based on predictions identified by SIFT and PolyPhen. Targeted customized sequencing is an efficient technique for screening variants among targeted FH genes. Final validation of seven deleterious variants conducted by capillary resulted to only one novel variant in Ldlr gene that was found in exon 14 (c.2026delG, p. Gly676fs). The variant found in Ldlr gene was a novel heterozygous variant derived from a male in the proband. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder.

    PubMed

    Kasahara, Takaoki; Ishiwata, Mizuho; Kakiuchi, Chihiro; Fuke, Satoshi; Iwata, Nakao; Ozaki, Norio; Kunugi, Hiroshi; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Fujii, Kumiko; Kanba, Shigenobu; Ujike, Hiroshi; Kusumi, Ichiro; Kataoka, Muneko; Matoba, Nana; Takata, Atsushi; Iwamoto, Kazuya; Yoshikawa, Takeo; Kato, Tadafumi

    2017-08-01

    Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  12. Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues

    PubMed Central

    Kukurba, Kimberly R.; Zhang, Rui; Li, Xin; Smith, Kevin S.; Knowles, David A.; How Tan, Meng; Piskol, Robert; Lek, Monkol; Snyder, Michael; MacArthur, Daniel G.; Li, Jin Billy; Montgomery, Stephen B.

    2014-01-01

    Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. PMID:24786518

  13. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    PubMed

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  14. Aggressive Angiomyolipomas: the Clandestine Epithelioid Variant.

    PubMed

    Maré, Anton; Wickramasinghe, Shehan; Ilie, Victor; Mulcahy, Maurice

    2016-02-01

    Epithelioid angiomyolipoma is a rare mesenchymal derived neoplasm of the kidney. Thought to be a variant of classical angiomyolipoma, a benign tumour, its malignant potential has been highlighted by case reports of loco-regional and distant metastasis. Given the potentially adverse clinical course associated with epithelioid angiomyolipoma compared to classical angiomyolipoma, the distinction and comprehensive histological characterisation of this rare entity is essential.

  15. Copy number variants in patients with short stature

    PubMed Central

    van Duyvenvoorde, Hermine A; Lui, Julian C; Kant, Sarina G; Oostdijk, Wilma; Gijsbers, Antoinet CJ; Hoffer, Mariëtte JV; Karperien, Marcel; Walenkamp, Marie JE; Noordam, Cees; Voorhoeve, Paul G; Mericq, Verónica; Pereira, Alberto M; Claahsen-van de Grinten, Hedi L; van Gool, Sandy A; Breuning, Martijn H; Losekoot, Monique; Baron, Jeffrey; Ruivenkamp, Claudia AL; Wit, Jan M

    2014-01-01

    Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes. PMID:24065112

  16. Variants in SKP1, PROB1, and IL17B genes at keratoconus 5q31.1–q35.3 susceptibility locus identified by whole-exome sequencing

    PubMed Central

    Karolak, Justyna A; Gambin, Tomasz; Pitarque, Jose A; Molinari, Andrea; Jhangiani, Shalini; Stankiewicz, Pawel; Lupski, James R; Gajecka, Marzena

    2017-01-01

    Keratoconus (KTCN) is a protrusion and thinning of the cornea, resulting in impairment of visual function. The extreme genetic heterogeneity makes it difficult to discover factors unambiguously influencing the KTCN phenotype. In this study, we used whole-exome sequencing (WES) and Sanger sequencing to reduce the number of candidate genes at the 5q31.1–q35.3 locus and to prioritize other potentially relevant variants in an Ecuadorian family with KTCN. We applied WES in two affected KTCN individuals from the Ecuadorian family that showed a suggestive linkage between the KTCN phenotype and the 5q31.1–q35.3 locus. Putative variants identified by WES were further evaluated in this family using Sanger sequencing. Exome capture discovered a total of 173 rare (minor allele frequency <0.001 in control population) nonsynonymous variants in both affected individuals. Among them, 16 SNVs were selected for further evaluation. Segregation analysis revealed that variants c.475T>G in SKP1, c.671G>A in PROB1, and c.527G>A in IL17B in the 5q31.1–q35.3 linkage region, and c.850G>A in HKDC1 in the 10q22 locus completely segregated with the phenotype in the studied KTCN family. We demonstrate that a combination of various techniques significantly narrowed the studied genomic region and reduced the list of the putative exonic variants. Moreover, since this locus overlapped two other chromosomal regions previously recognized in distinct KTCN studies, our findings suggest that this 5q31.1–q35.3 locus might be linked with KTCN. PMID:27703147

  17. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    PubMed

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    PubMed

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mutations in UBQLN2 and SIGMAR1 genes are rare in Korean patients with amyotrophic lateral sclerosis.

    PubMed

    Kim, Hee-Jung; Kwon, Min-Jung; Choi, Won-Jun; Oh, Ki-Wook; Oh, Seong-Il; Ki, Chang-Seok; Kim, Seung Hyun

    2014-08-01

    Mutations in the UBQLN2 and SIGMAR1 genes were recently identified in X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia (ALS and/or FTD) and FTD and/or motor neuron disease, respectively. Subsequent studies, however, found that UBQLN2 mutations were rare, and the pathogenicity of SIGMAR1 mutation in FTD and/or motor neuron disease was controversial. In the present study, we analyzed mutations in the UBQLN2 and SIGMAR1 genes in a Korean cohort of 258 patients with familial ALS (n = 9) or sporadic (sALS; n = 258) ALS. One novel UBQLN2 variant (p.D314E) was observed in 2 patients with sALS and 5 of 727 controls indicating that this variant might be a rare polymorphism rather than a disease-causing mutation. A novel SIGMAR1 gene variant in the 3'-untranslated region (c.*58T>C) was found in 1 sALS and was absent in 727 control samples. Taken together, our data suggest that causative mutations in the UBQLN2 and SIGMAR1 genes are rare in Korean patients with either familial or sporadic ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. SCN5A (NaV1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance.

    PubMed

    Kroncke, Brett M; Glazer, Andrew M; Smith, Derek K; Blume, Jeffrey D; Roden, Dan M

    2018-05-01

    Accurately predicting the impact of rare nonsynonymous variants on disease risk is an important goal in precision medicine. Variants in the cardiac sodium channel SCN5A (protein Na V 1.5; voltage-dependent cardiac Na+ channel) are associated with multiple arrhythmia disorders, including Brugada syndrome and long QT syndrome. Rare SCN5A variants also occur in ≈1% of unaffected individuals. We hypothesized that in vitro electrophysiological functional parameters explain a statistically significant portion of the variability in disease penetrance. From a comprehensive literature review, we quantified the number of carriers presenting with and without disease for 1712 reported SCN5A variants. For 356 variants, data were also available for 5 Na V 1.5 electrophysiological parameters: peak current, late/persistent current, steady-state V1/2 of activation and inactivation, and recovery from inactivation. We found that peak and late current significantly associate with Brugada syndrome ( P <0.001; ρ=-0.44; Spearman rank test) and long QT syndrome disease penetrance ( P <0.001; ρ=0.37). Steady-state V1/2 activation and recovery from inactivation associate significantly with Brugada syndrome and long QT syndrome penetrance, respectively. Continuous estimates of disease penetrance align with the current American College of Medical Genetics classification paradigm. Na V 1.5 in vitro electrophysiological parameters are correlated with Brugada syndrome and long QT syndrome disease risk. Our data emphasize the value of in vitro electrophysiological characterization and incorporating counts of affected and unaffected carriers to aid variant classification. This quantitative analysis of the electrophysiological literature should aid the interpretation of Na V 1.5 variant electrophysiological abnormalities and help improve Na V 1.5 variant classification. © 2018 American Heart Association, Inc.

  1. Aggressive Angiomyolipomas: the Clandestine Epithelioid Variant

    PubMed Central

    Maré, Anton; Wickramasinghe, Shehan; Ilie, Victor; Mulcahy, Maurice

    2016-01-01

    Epithelioid angiomyolipoma is a rare mesenchymal derived neoplasm of the kidney. Thought to be a variant of classical angiomyolipoma, a benign tumour, its malignant potential has been highlighted by case reports of loco-regional and distant metastasis. Given the potentially adverse clinical course associated with epithelioid angiomyolipoma compared to classical angiomyolipoma, the distinction and comprehensive histological characterisation of this rare entity is essential. PMID:26989374

  2. Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty.

    PubMed

    Howard, Sasha R; Guasti, Leonardo; Poliandri, Ariel; David, Alessia; Cabrera, Claudia P; Barnes, Michael R; Wehkalampi, Karoliina; O'Rahilly, Stephen; Aiken, Catherine E; Coll, Anthony P; Ma, Marcella; Rimmington, Debra; Yeo, Giles S H; Dunkel, Leo

    2018-02-01

    Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p.Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto+/- mice displayed a significantly delayed timing of pubertal onset (P < 0.05). Mutations in genes implicated in body mass and timing of puberty in the general population may contribute to the pathogenesis of self-limited DP. Copyright © 2017 Endocrine Society

  3. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of themore » variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.« less

  4. Biphasic papillary renal cell carcinoma is a rare morphological variant with frequent multifocality: a study of 28 cases.

    PubMed

    Trpkov, Kiril; Athanazio, Daniel; Magi-Galluzzi, Cristina; Yilmaz, Helene; Clouston, David; Agaimy, Abbas; Williamson, Sean R; Brimo, Fadi; Lopez, Jose I; Ulamec, Monika; Rioux-Leclercq, Nathalie; Kassem, Maysoun; Gupta, Nilesh; Hartmann, Arndt; Leroy, Xavier; Bashir, Samir Al; Yilmaz, Asli; Hes, Ondřej

    2018-04-01

    To further characterise biphasic squamoid renal cell carcinoma (RCC), a recently proposed variant of papillary RCC. We identified 28 tumours from multiple institutions. They typically showed two cell populations-larger cells with eosinophilic cytoplasm and higher-grade nuclei, surrounded by smaller, amphophilic cells with scanty cytoplasm. The dual morphology was variable (median 72.5% of tumour, range 5-100%); emperipolesis was found in all cases. The male/female ratio was 2:1, and the median age was 55 years (range 39-86 years). The median tumour size was 20 mm (range 9-65 mm). Pathological stage pT1a was found in 21 cases, pT1b in three, and pT3a and pT3b in one each (two not available). Multifocality was found in 32%: multifocal biphasic RCC in one case, biphasic + papillary RCC in two cases, biphasic + clear cell RCC in three cases, biphasic + low-grade urothelial carcinoma of the renal pelvis in one case, and biphasic + Birt-Hogg-Dubé syndrome in one case. Positive immunostains included: PAX8, cytokeratin (CK) 7, α-methylacyl-CoA racemase, epithelial membrane antigen, and vimentin. Cyclin D1 was expressed only in the larger cells. The Ki67 index was higher in the larger cells (median 5% versus ≤1%). Negative stains included: carbonic anhydrase 9, CD117, GATA-3, WT1, CK5/6, and CK20; CD10 and 34βE12 were variably expressed. Gains of chromosomes 7 and 17 were found in two evaluated cases. Follow-up was available for 23 patients (median 24 months, range 1-244 months): 19 were alive without disease, one was alive with recurrence, and one had died of disease (two had died of other causes). Biphasic papillary RCC is a rare variant of papillary RCC, and is often multifocal. © 2017 John Wiley & Sons Ltd.

  5. Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing

    PubMed Central

    Jiang, Yong-hui; Yuen, Ryan K.C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T.; Chrysler, Christina; Drmic, Irene E.; Howe, Jennifer L.; Lau, Lynette; Marshall, Christian R.; Merico, Daniele; Nalpathamkalam, Thomas; Thiruvahindrapuram, Bhooma; Thompson, Ann; Uddin, Mohammed; Walker, Susan; Luo, Jun; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Ring, Robert H.; Wang, Jian; Lajonchere, Clara; Wang, Jun; Shih, Andy; Szatmari, Peter; Yang, Huanming; Dawson, Geraldine; Li, Yingrui; Scherer, Stephen W.

    2013-01-01

    Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms. PMID:23849776

  6. Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on 'black bone disease' in Italy.

    PubMed

    Nemethova, Martina; Radvanszky, Jan; Kadasi, Ludevit; Ascher, David B; Pires, Douglas E V; Blundell, Tom L; Porfirio, Berardino; Mannoni, Alessandro; Santucci, Annalisa; Milucci, Lia; Sestini, Silvia; Biolcati, Gianfranco; Sorge, Fiammetta; Aurizi, Caterina; Aquaron, Robert; Alsbou, Mohammed; Lourenço, Charles Marques; Ramadevi, Kanakasabapathi; Ranganath, Lakshminarayan R; Gallagher, James A; van Kan, Christa; Hall, Anthony K; Olsson, Birgitta; Sireau, Nicolas; Ayoob, Hana; Timmis, Oliver G; Sang, Kim-Hanh Le Quan; Genovese, Federica; Imrich, Richard; Rovensky, Jozef; Srinivasaraghavan, Rangan; Bharadwaj, Shruthi K; Spiegel, Ronen; Zatkova, Andrea

    2016-01-01

    Alkaptonuria (AKU) is an autosomal recessive disorder caused by mutations in homogentisate-1,2-dioxygenase (HGD) gene leading to the deficiency of HGD enzyme activity. The DevelopAKUre project is underway to test nitisinone as a specific treatment to counteract this derangement of the phenylalanine-tyrosine catabolic pathway. We analysed DNA of 40 AKU patients enrolled for SONIA1, the first study in DevelopAKUre, and of 59 other AKU patients sent to our laboratory for molecular diagnostics. We identified 12 novel DNA variants: one was identified in patients from Brazil (c.557T>A), Slovakia (c.500C>T) and France (c.440T>C), three in patients from India (c.469+6T>C, c.650-85A>G, c.158G>A), and six in patients from Italy (c.742A>G, c.614G>A, c.1057A>C, c.752G>A, c.119A>C, c.926G>T). Thus, the total number of potential AKU-causing variants found in 380 patients reported in the HGD mutation database is now 129. Using mCSM and DUET, computational approaches based on the protein 3D structure, the novel missense variants are predicted to affect the activity of the enzyme by three mechanisms: decrease of stability of individual protomers, disruption of protomer-protomer interactions or modification of residues in the region of the active site. We also present an overview of AKU in Italy, where so far about 60 AKU cases are known and DNA analysis has been reported for 34 of them. In this rather small group, 26 different HGD variants affecting function were described, indicating rather high heterogeneity. Twelve of these variants seem to be specific for Italy.

  7. A frameshift variant of CYP2C8 was identified in a patient who suffered from rhabdomyolysis after administration of cerivastatin.

    PubMed

    Ishikawa, Chikako; Ozaki, Hiroshi; Nakajima, Toshiaki; Ishii, Toshihiro; Kanai, Saburo; Anjo, Saeko; Shirai, Kohji; Inoue, Ituro

    2004-01-01

    A hypercholesterolemic patient medicated with cerivastatin for 22 days resulted in acute rhabdomyolysis. CYP2C8 and CYP3A4 are the major enzymes responsible for the metabolism of cerivastatin, and a transporter, OATP2, contributes to uptake of cerivastatin to the liver. In this study, the patient's DNA was sequenced in order to identify a variant that would lead to the adverse effect of cerivastatin. Three nucleotide variants, 475delA, G874C, and T1551C, were found in the exons of CYP2C8. The patient was homozygous for 475delA variant that leads to frameshift and premature termination. Accordingly, the patient is most likely lacking the enzyme activity. The patient's children were both heterozygous for the mutation. The patient had three nucleotide variants in exon 4 (A388G) and exon 5 (C571T and C597T) of OATP2 that were all heterozygous. No nucleotide variation in the exons of CYP3A4 was identified. To our knowledge, this is the first report showing that the adverse effect of cerivastatin might be caused by the genetic variant of CYP2C8.

  8. Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis.

    PubMed

    Monico, Carla G; Weinstein, Adam; Jiang, Zhirong; Rohlinger, Audrey L; Cogal, Andrea G; Bjornson, Beth B; Olson, Julie B; Bergstralh, Eric J; Milliner, Dawn S; Aronson, Peter S

    2008-12-01

    Urinary oxalate is a major risk factor for calcium oxalate stones. Marked hyperoxaluria arises from mutations in 2 separate loci, AGXT and GRHPR, the causes of primary hyperoxaluria (PH) types 1 (PH1) and 2 (PH2), respectively. Studies of null Slc26a6(-/-) mice have shown a phenotype of hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis, leading to the hypothesis that SLC26A6 mutations may cause or modify hyperoxaluria in humans. Cross-sectional case-control. Cases were recruited from the International Primary Hyperoxaluria Registry. Control DNA samples were from a pool of adult subjects who identified themselves as being in good health. PH1, PH2, and non-PH1/PH2 genotypes in cases. Homozygosity or compound heterozygosity for SLC26A6 variants. Functional expression of oxalate transport in Xenopus laevis oocytes. 80 PH1, 6 PH2, 8 non-PH1/PH2, and 96 control samples were available for SLC26A6 screening. A rare variant, c.487C-->T (p.Pro163Ser), was detected solely in 1 non-PH1/PH2 pedigree, but this variant failed to segregate with hyperoxaluria, and functional studies of oxalate transport in Xenopus oocytes showed no transport defect. No other rare variant was identified specifically in non-PH1/PH2. Six additional missense variants were detected in controls and cases. Of these, c.616G-->A (p.Val206Met) was most common (11%) and showed a 30% reduction in oxalate transport. To test p.Val206Met as a potential modifier of hyperoxaluria, we extended screening to PH1 and PH2. Heterozygosity for this variant did not affect plasma or urine oxalate levels in this population. We did not have a sufficient number of cases to determine whether homozygosity for p.Val206Met might significantly affect urine oxalate. SLC26A6 was effectively ruled out as the disease gene in this non-PH1/PH2 cohort. Taken together, our studies are the first to identify and characterize SLC26A6 variants in patients with hyperoxaluria. Phenotypic and functional analysis excluded a

  9. Phenotypic and Functional Analysis of Human SLC26A6 Variants in Patients With Familial Hyperoxaluria and Calcium Oxalate Nephrolithiasis

    PubMed Central

    Monico, Carla G.; Weinstein, Adam; Jiang, Zhirong; Rohlinger, Audrey L.; Cogal, Andrea G.; Bjornson, Beth B.; Olson, Julie B.; Bergstralh, Eric J.; Milliner, Dawn S.; Aronson, Peter S.

    2008-01-01

    Background Urinary oxalate is a major risk factor for calcium oxalate stones. Marked hyperoxaluria arises from mutations in two separate loci, AGXT and GRHPR, the causes of primary hyperoxaluria (PH) types 1 and 2, respectively. Studies of null Slc26a6 (−/−) mice have revealed a phenotype of hyperoxaluria, hyperoxalemia and calcium oxalate urolithiasis, leading to the hypothesis that SLC26A6 mutations may cause or modify hyperoxaluria in humans. Study Design Cross-sectional, case-control. Setting & Participants Cases were recruited from the International Primary Hyperoxaluria Registry. Control DNA samples were from a pool of adult subjects who identified themselves as being in good health. Predictor PH1, PH2, non-PH1/PH2 genotypes in cases. Outcomes & Measures Homozygosity or compound heterozygosity for SLC26A6 variants. Functional expression of oxalate transport in Xenopus oocytes. Results A total of 80 PH1, 6 PH2, 8 non-PH1/PH2 and 96 control samples were available for SLC26A6 screening. A rare variant, c.487C>T (p.Pro163Ser) was detected solely in one non-PH1/PH2 pedigree but this variant failed to segregate with hyperoxaluria, and functional studies of oxalate transport in Xenopus oocytes revealed no transport defect. No other rare variant was identified specifically in non-PH1/PH2. Six additional missense variants were detected in controls and in cases. Of these, c.616G>A (p.Val206Met) was most common (11%), and showed a 30% reduction in oxalate transport. To test p.Val206Met as a potential modifier of hyperoxaluria, we extended screening to PH1 and PH2. Heterozygosity for this variant did not affect plasma or urine oxalate in this population. Limitations We did not have a sufficient number of cases to determine whether homozygosity for p.Val206Met might significantly affect urine oxalate. Conclusions SLC26A6 was effectively ruled out as the disease gene in this non-PH1/PH2 cohort. Taken together, our studies are the first to identify and characterize SLC

  10. Identifying and Caring for Rare Books in the Community or Junior College with No Special Collections Department.

    ERIC Educational Resources Information Center

    Visser, Michelle

    2003-01-01

    Discusses issues of identifying, storing, handling, and providing access to rare books and materials in institutions without special collections departments. Suggests that although many community colleges do not collect rare materials, they may nonetheless be in possession of books that are rare and that should receive special care. (ontains four…

  11. Rare copy number variants in neuropsychiatric disorders: Specific phenotype or not?

    PubMed

    Van Den Bossche, Maarten J; Johnstone, Mandy; Strazisar, Mojca; Pickard, Benjamin S; Goossens, Dirk; Lenaerts, An-Sofie; De Zutter, Sonia; Nordin, Annelie; Norrback, Karl-Fredrik; Mendlewicz, Julien; Souery, Daniel; De Rijk, Peter; Sabbe, Bernard G; Adolfsson, Rolf; Blackwood, Douglas; Del-Favero, Jurgen

    2012-10-01

    From a number of genome-wide association studies it was shown that de novo and/or rare copy number variants (CNVs) are found at an increased frequency in neuropsychiatric diseases. In this study we examined the prevalence of CNVs in six genomic regions (1q21.1, 2p16.3, 3q29, 15q11.2, 15q13.3, and 16p11.2) previously implicated in neuropsychiatric diseases. Hereto, a cohort of four neuropsychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, and intellectual disability) and control individuals from three different populations was used in combination with Multilpex Amplicon Quantifiaction (MAQ) assays, capable of high resolution (kb range) and custom-tailored CNV detection. Our results confirm the etiological candidacy of the six selected CNV regions for neuropsychiatric diseases. It is possible that CNVs in these regions can result in disturbed brain development and in this way lead to an increased susceptibility for different neuropsychiatric disorders, dependent on additional genetic and environmental factors. Our results also suggest that the neurodevelopmental component is larger in the etiology of schizophrenia and intellectual disability than in mood disorders. Finally, our data suggest that deletions are in general more pathogenic than duplications. Given the high frequency of the examined CNVs (1-2%) in patients of different neuropsychiatric disorders, screening of large cohorts with an affordable and feasible method like the MAQ assays used in this study is likely to result in important progress in unraveling the genetic factors leading to an increased susceptibility for several psychiatric disorders. 2012 Wiley Periodicals, Inc

  12. Discovery and Functional Annotation of SIX6 Variants in Primary Open-Angle Glaucoma

    PubMed Central

    Allingham, R. Rand; Whigham, Benjamin T.; Havens, Shane; Garrett, Melanie E.; Qiao, Chunyan; Katsanis, Nicholas; Wiggs, Janey L.; Pasquale, Louis R.; Ashley-Koch, Allison; Oh, Edwin C.; Hauser, Michael A.

    2014-01-01

    Glaucoma is a leading cause of blindness worldwide. Primary open-angle glaucoma (POAG) is the most common subtype and is a complex trait with multigenic inheritance. Genome-wide association studies have previously identified a significant association between POAG and the SIX6 locus (rs10483727, odds ratio (OR) = 1.32, p = 3.87×10−11). SIX6 plays a role in ocular development and has been associated with the morphology of the optic nerve. We sequenced the SIX6 coding and regulatory regions in 262 POAG cases and 256 controls and identified six nonsynonymous coding variants, including five rare and one common variant, Asn141His (rs33912345), which was associated significantly with POAG (OR = 1.27, p = 4.2×10−10) in the NEIGHBOR/GLAUGEN datasets. These variants were tested in an in vivo Danio rerio (zebrafish) complementation assay to evaluate ocular metrics such as eye size and optic nerve structure. Five variants, found primarily in POAG cases, were hypomorphic or null, while the sixth variant, found only in controls, was benign. One variant in the SIX6 enhancer increased expression of SIX6 and disrupted its regulation. Finally, to our knowledge for the first time, we have identified a clinical feature in POAG patients that appears to be dependent upon SIX6 genotype: patients who are homozygous for the SIX6 risk allele (His141) have a statistically thinner retinal nerve fiber layer than patients homozygous for the SIX6 non-risk allele (Asn141). Our results, in combination with previous SIX6 work, lead us to hypothesize that SIX6 risk variants disrupt the development of the neural retina, leading to a reduced number of retinal ganglion cells, thereby increasing the risk of glaucoma-associated vision loss. PMID:24875647

  13. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.

    PubMed

    Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B; Hancock-Cerutti, William F; Millar, John S; Cuchel, Marina; DerOhannessian, Stephanie; Kontush, Anatol; Surendran, Praveen; Saleheen, Danish; Trompet, Stella; Jukema, J Wouter; De Craen, Anton; Deloukas, Panos; Sattar, Naveed; Ford, Ian; Packard, Chris; Majumder, Abdullah al Shafi; Alam, Dewan S; Di Angelantonio, Emanuele; Abecasis, Goncalo; Chowdhury, Rajiv; Erdmann, Jeanette; Nordestgaard, Børge G; Nielsen, Sune F; Tybjærg-Hansen, Anne; Schmidt, Ruth Frikke; Kuulasmaa, Kari; Liu, Dajiang J; Perola, Markus; Blankenberg, Stefan; Salomaa, Veikko; Männistö, Satu; Amouyel, Philippe; Arveiler, Dominique; Ferrieres, Jean; Müller-Nurasyid, Martina; Ferrario, Marco; Kee, Frank; Willer, Cristen J; Samani, Nilesh; Schunkert, Heribert; Butterworth, Adam S; Howson, Joanna M M; Peloso, Gina M; Stitziel, Nathan O; Danesh, John; Kathiresan, Sekar; Rader, Daniel J

    2016-03-11

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant). Copyright © 2016, American Association for the Advancement of Science.

  14. Biallelic variants in the ciliary gene TMEM67 cause RHYNS syndrome.

    PubMed

    Brancati, Francesco; Camerota, Letizia; Colao, Emma; Vega-Warner, Virginia; Zhao, Xiangzhong; Zhang, Ruixiao; Bottillo, Irene; Castori, Marco; Caglioti, Alfredo; Sangiuolo, Federica; Novelli, Giuseppe; Perrotti, Nicola; Otto, Edgar A

    2018-06-11

    A rare syndrome was first described in 1997 in a 17-year-old male patient presenting with Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and Skeletal dysplasia (RHYNS). In the single reported familial case, two brothers were affected, arguing for X-linked or recessive mode of inheritance. Up to now, the underlying genetic basis of RHYNS syndrome remains unknown. Here we applied whole-exome sequencing in the originally described family with RHYNS to identify compound heterozygous variants in the ciliary gene TMEM67. Sanger sequencing confirmed a paternally inherited nonsense c.622A > T, p.(Arg208*) and a maternally inherited missense variant c.1289A > G, p.(Asp430Gly), which perturbs the correct splicing of exon 13. Overall, TMEM67 showed one of the widest clinical continuum observed in ciliopathies ranging from early lethality to adults with liver fibrosis. Our findings extend the spectrum of phenotypes/syndromes resulting from biallelic TMEM67 variants to now eight distinguishable clinical conditions including RHYNS syndrome.

  15. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  16. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture

    PubMed Central

    Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent

    2016-01-01

    SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of

  17. Genome-Wide Association Study Identifies Common Genetic Variants Associated with Salivary Gland Carcinoma and its Subtypes

    PubMed Central

    Xu, Li; Tang, Hongwei; Chen, Diane W.; El-Naggar, Adel K.; Wei, Peng; Sturgis, Erich M.

    2015-01-01

    BACKGROUND Salivary gland carcinomas (SGCs) are a rare malignancy with unknown etiology. We aimed to identify genetic variants modifying risk of SGC and its major subtypes, adenoid cystic carcinoma (ACCA) and mucoepidermoid carcinoma (MECA). METHODS We conducted a genome-wide association study in 309 well-defined SGC cases and 535 cancer-free controls. We performed a SNP-level discovery study in non-Hispanic whites followed by a replication study in Hispanics. A logistic regression was applied to calculate odds ratios (ORs) and 95% confidence intervals (95%CIs). A meta-analysis was conducted of the results. RESULTS Genome-wide significant association with SGC in non-Hispanic whites was detected at coding SNPs in CHRNA2 (OR=8.55, 95%CI: 4.53–16.13, P = 3.6 × 10−11), OR4F15 (OR=5.26, 95%CI: 3.13–8.83, P = 3.5 × 10−10), ZNF343 (OR=3.28, 95%CI: 2.12–5.07, P = 9.1 × 10−8), and PARP4 (OR=2.00, 95%CI: 1.54–2.59, P = 1.7 × 10−7). Meta-analysis of the non-Hispanic white and Hispanic cohorts identified another genome-wide significant SNP in ELL2 (meta-OR=1.86, 95%CI: 1.48–2.34, P = 1.3 × 10−7). Risk alleles largely enriched in MECA, where the SNPs in CHRNA2, OR4F15, and ZNF343 had ORs of 15.71 (95%CI: 6.59–37.47, P = 5.2 × 10−10), 15.60 (95%CI: 6.50–37.41, P = 7.5 × 10−10), and 6.49 (95%CI: 3.36–12.52, P = 2.5 × 10−8), respectively. None of these SNPs retained significant association with ACCA. CONCLUSIONS These findings, for the first time, identify a panel of SNPs associated with SGC risk. Confirmation of these findings along with functional analysis of identified SNPs are needed. PMID:25823930

  18. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease.

    PubMed

    Kelsen, Judith R; Dawany, Noor; Moran, Christopher J; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F; Daly, Mark; Sullivan, Kathleen E; Baldassano, Robert N; Devoto, Marcella

    2015-11-01

    Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the

  19. Exome Sequencing Analysis Reveals Variants in Primary Immunodeficiency Genes in Patients With Very Early Onset Inflammatory Bowel Disease

    PubMed Central

    Kelsen, Judith R.; Dawany, Noor; Moran, Christopher J.; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S.; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F.; Daly, Mark; Sullivan, Kathleen E.; Baldassano, Robert N.; Devoto, Marcella

    2016-01-01

    Background & Aims Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed ≤5 y of age, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Methods Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (ages 3 weeks to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by post-processing and variant calling. Following functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency <0.1%, and scaled combined annotation dependent depletion scores ≤10. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n=45) or adult-onset Crohn's disease (n=20) and healthy individuals (controls, n=145) were obtained from the University of Kiel, Germany and used as control groups. Results Four-hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling > 1 Mbp of coding sequence, were selected from the whole exome data. Our analysis revealed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. Conclusions In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the

  20. Implant-based oral rehabilitation of a variant model of type I dentinal dysplasia: A rare case report

    PubMed Central

    Nettem, Sowmya; Nettemu, Sunil Kumar; Basha, K.; Venkatachalapathi, S

    2014-01-01

    Dentin dysplasia is an exceptionally rare, autosomal-dominant, hereditary condition, primarily characterized by defective dentin formation affecting both the deciduous and permanent dentitions. The etiology remains imprecise to date, in spite of the numerous hypotheses put forward and the constant updates on this condition. This case report of type I dentin dysplasia exhibits radiographic findings that are unique and diverse from the classical findings of various subtypes of this disease reported to date. This article also depicts the implant-based oral rehabilitation of the young patient diagnosed with this variant model of dentin dysplasia type I. Early diagnosis and implementation of this preventive and curative therapy is vital for avoiding premature exfoliation of deciduous and permanent dentition and the associated residual ridge resorption, thereby overcoming functional and esthetic deficits and ensuring protection of the remaining dentition from further harm. PMID:25225567