Sample records for identifies unusual tissue-specific

  1. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.

    PubMed

    Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees

    2018-06-07

    The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.

  2. Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays

    PubMed Central

    Sugnet, Charles W; Srinivasan, Karpagam; Clark, Tyson A; O'Brien, Georgeann; Cline, Melissa S; Wang, Hui; Williams, Alan; Kulp, David; Blume, John E; Haussler, David; Ares, Manuel

    2006-01-01

    Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families. PMID:16424921

  3. Signatures from Tissue-specific MPSS Libraries Identify Transcripts Preferentially Expressed in the Mouse Inner Ear

    PubMed Central

    Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.

    2007-01-01

    Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805

  4. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia.

    PubMed

    Podstolski, Andrzej; Havkin-Frenkel, Daphna; Malinowski, Jacek; Blount, Jack W; Kourteva, Galina; Dixon, Richard A

    2002-11-01

    Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.

  5. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  6. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    PubMed Central

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  7. Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection

    PubMed Central

    Choi, Young-Jun; Fuchs, Jeremy F.; Mayhew, George F.; Yu, Helen E.; Christensen, Bruce M.

    2012-01-01

    Hemocytes are integral components of mosquito immune mechanisms such as phagocytosis, melanization, and production of antimicrobial peptides. However, our understanding of hemocyte-specific molecular processes and their contribution to shaping the host immune response remains limited. To better understand the immunophysiological features distinctive of hemocytes, we conducted genome-wide analysis of hemocyte-enriched transcripts, and examined how tissue-enriched expression patterns change with the immune status of the host. Our microarray data indicate that the hemocyte-enriched trascriptome is dynamic and context-dependent. Analysis of transcripts enriched after bacterial challenge in circulating hemocytes with respect to carcass added a dimension to evaluating infection-responsive genes and immune-related gene families. We resolved patterns of transcriptional change unique to hemocytes from those that are likely shared by other immune responsive tissues, and identified clusters of genes preferentially induced in hemocytes, likely reflecting their involvement in cell type specific functions. In addition, the study revealed conserved hemocyte-enriched molecular repertoires which might be implicated in core hemocyte function by cross-species meta-analysis of microarray expression data from Anopheles gambiae and Drosophila melanogaster. PMID:22796331

  8. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman

    2017-04-01

    Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.

  9. Molecular genotyping of Echinococcus granulosus using formalin-fixed paraffin-embedded preparations from human isolates in unusual tissue sites.

    PubMed

    Hizem, A; M'rad, S; Oudni-M'rad, M; Mestiri, S; Hammedi, F; Mezhoud, H; Zakhama, A; Mokni, M; Babba, H

    2016-07-01

    Cystic echinococcosis (CE) caused by Echinococcus granulosus remains a serious problem worldwide for issues relating to public health and the economy. The most predominantly affected sites are the liver and the lungs, but other organs such as the heart, the spleen and the peritoneum can also be infected. Access to cysts from uncommon sites has limited genomic and molecular investigations. In the present study, genotypes of E. granulosus sensu lato were identified from formalin-fixed paraffin-embedded tissues (FF-PETs) implicated in human CE. Tissue samples were obtained from 57 patients with histologically confirmed CE. DNA samples were analysed using Egss 1 polymerase chain reaction (PCR) specific to the mitochondrial 12S rRNA gene of E. granulosus sensu stricto. All cysts were typed as E. granulosus sensu stricto with up to 35% of the liver and 16.6% of lungs being the most frequently infected, and up to 48.4% of samples being from rare sites. No correlation was found between cyst site and either the gender or the age of patients. This study demonstrates the possibility of exploiting atypical cysts using FF-PET samples and highlights the predominance of E. granulosus sensu stricto species in the Tunisian population, even in unusual infection sites.

  10. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  11. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  12. ROKU: a novel method for identification of tissue-specific genes.

    PubMed

    Kadota, Koji; Ye, Jiazhen; Nakai, Yuji; Terada, Tohru; Shimizu, Kentaro

    2006-06-12

    One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes. We describe a method, ROKU, which selects tissue-specific patterns from gene expression data for many tissues and thousands of genes. ROKU ranks genes according to their overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist using an outlier detection method. We evaluated the capacity for the detection of various specific expression patterns using synthetic and real data. We observed that ROKU was superior to a conventional entropy-based method in its ability to rank genes according to overall tissue specificity and to detect genes whose expression pattern are specific only to objective tissues. ROKU is useful for the detection of various tissue-specific expression patterns. The framework is also directly applicable to the selection of diagnostic markers for molecular classification of multiple classes.

  13. ROKU: a novel method for identification of tissue-specific genes

    PubMed Central

    Kadota, Koji; Ye, Jiazhen; Nakai, Yuji; Terada, Tohru; Shimizu, Kentaro

    2006-01-01

    Background One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes. Results We describe a method, ROKU, which selects tissue-specific patterns from gene expression data for many tissues and thousands of genes. ROKU ranks genes according to their overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist using an outlier detection method. We evaluated the capacity for the detection of various specific expression patterns using synthetic and real data. We observed that ROKU was superior to a conventional entropy-based method in its ability to rank genes according to overall tissue specificity and to detect genes whose expression pattern are specific only to objective tissues. Conclusion ROKU is useful for the detection of various tissue-specific expression patterns. The framework is also directly applicable to the selection of diagnostic markers for molecular classification of multiple classes. PMID:16764735

  14. Identification of species- and tissue-specific proteins using proteomic strategy

    NASA Astrophysics Data System (ADS)

    Chernukha, I. M.; Vostrikova, N. L.; Kovalev, L. I.; Shishkin, S. S.; Kovaleva, M. A.; Manukhin, Y. S.

    2017-09-01

    Proteomic technologies have proven to be very effective for detecting biochemical changes in meat products, such as changes in tissue- and species-specific proteins. In the tissues of cattle, pig, horse and camel M. longissimus dorsi both tissue- and species specific proteins were detected using two dimensional electrophoresis. Species-specific isoforms of several muscle proteins were also identified. The identified and described proteins of cattle, pig, horse and camel skeletal muscles (including mass spectra of the tryptic peptides) were added to the national free access database “Muscle organ proteomics”. This research has enabled the development of new highly sensitive technologies for meat product quality control against food fraud.

  15. TSAPA: identification of tissue-specific alternative polyadenylation sites in plants.

    PubMed

    Ji, Guoli; Chen, Moliang; Ye, Wenbin; Zhu, Sheng; Ye, Congting; Su, Yaru; Peng, Haonan; Wu, Xiaohui

    2018-06-15

    Alternative polyadenylation (APA) is now emerging as a widespread mechanism modulated tissue-specifically, which highlights the need to define tissue-specific poly(A) sites for profiling APA dynamics across tissues. We have developed an R package called TSAPA based on the machine learning model for identifying tissue-specific poly(A) sites in plants. A feature space including more than 200 features was assembled to specifically characterize poly(A) sites in plants. The classification model in TSAPA can be customized by selecting desirable features or classifiers. TSAPA is also capable of predicting tissue-specific poly(A) sites in unannotated intergenic regions. TSAPA will be a valuable addition to the community for studying dynamics of APA in plants. https://github.com/BMILAB/TSAPA. Supplementary data are available at Bioinformatics online.

  16. Epigenetic regulation of depot-specific gene expression in adipose tissue.

    PubMed

    Gehrke, Sandra; Brueckner, Bodo; Schepky, Andreas; Klein, Johannes; Iwen, Alexander; Bosch, Thomas C G; Wenck, Horst; Winnefeld, Marc; Hagemann, Sabine

    2013-01-01

    In humans, adipose tissue is distributed in subcutaneous abdominal and subcutaneous gluteal depots that comprise a variety of functional differences. Whereas energy storage in gluteal adipose tissue has been shown to mediate a protective effect, an increase of abdominal adipose tissue is associated with metabolic disorders. However, the molecular basis of depot-specific characteristics is not completely understood yet. Using array-based analyses of transcription profiles, we identified a specific set of genes that was differentially expressed between subcutaneous abdominal and gluteal adipose tissue. To investigate the role of epigenetic regulation in depot-specific gene expression, we additionally analyzed genome-wide DNA methylation patterns in abdominal and gluteal depots. By combining both data sets, we identified a highly significant set of depot-specifically expressed genes that appear to be epigenetically regulated. Interestingly, the majority of these genes form part of the homeobox gene family. Moreover, genes involved in fatty acid metabolism were also differentially expressed. Therefore we suppose that changes in gene expression profiles might account for depot-specific differences in lipid composition. Indeed, triglycerides and fatty acids of abdominal adipose tissue were more saturated compared to triglycerides and fatty acids in gluteal adipose tissue. Taken together, our results uncover clear differences between abdominal and gluteal adipose tissue on the gene expression and DNA methylation level as well as in fatty acid composition. Therefore, a detailed molecular characterization of adipose tissue depots will be essential to develop new treatment strategies for metabolic syndrome associated complications.

  17. Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus.

    PubMed

    Rotllant, Guiomar; Nguyen, Tuan Viet; Sbragaglia, Valerio; Rahi, Lifat; Dudley, Kevin J; Hurwood, David; Ventura, Tomer; Company, Joan B; Chand, Vincent; Aguzzi, Jacopo; Mather, Peter B

    2017-08-16

    The Norway lobster, Nephrops norvegicus, is economically important in European fisheries and is a key organism in local marine ecosystems. Despite multi-faceted scientific interest in this species, our current knowledge of genetic resources in this species remains very limited. Here, we generated a reference de novo transcriptome for N. norvegicus from multiple tissues in both sexes. Bioinformatic analyses were conducted to detect transcripts that were expressed exclusively in either males or females. Patterns were validated via RT-PCR. Sixteen N. norvegicus libraries were sequenced from immature and mature ovary, testis and vas deferens (including the masculinizing androgenic gland). In addition, eyestalk, brain, thoracic ganglia and hepatopancreas tissues were screened in males and both immature and mature females. RNA-Sequencing resulted in >600 million reads. De novo assembly that combined the current dataset with two previously published libraries from eyestalk tissue, yielded a reference transcriptome of 333,225 transcripts with an average size of 708 base pairs (bp), with an N50 of 1272 bp. Sex-specific transcripts were detected primarily in gonads followed by hepatopancreas, brain, thoracic ganglia, and eyestalk, respectively. Candidate transcripts that were expressed exclusively either in males or females were highlighted and the 10 most abundant ones were validated via RT-PCR. Among the most highly expressed genes were Serine threonine protein kinase in testis and Vitellogenin in female hepatopancreas. These results align closely with gene annotation results. Moreover, a differential expression heatmap showed that the majority of differentially expressed transcripts were identified in gonad and eyestalk tissues. Results indicate that sex-specific gene expression patterns in Norway lobster are controlled by differences in gene regulation pattern between males and females in somatic tissues. The current study presents the first multi-tissue reference

  18. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  19. Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects, and tissue-specific enrichment of eQTLs

    PubMed Central

    Below, Jennifer E.; Parra, Esteban J.; Gamazon, Eric R.; Torres, Jason; Krithika, S.; Candille, Sophie; Lu, Yingchang; Manichakul, Ani; Peralta-Romero, Jesus; Duan, Qing; Li, Yun; Morris, Andrew P.; Gottesman, Omri; Bottinger, Erwin; Wang, Xin-Qun; Taylor, Kent D.; Ida Chen, Y.-D.; Rotter, Jerome I.; Rich, Stephen S.; Loos, Ruth J. F.; Tang, Hua; Cox, Nancy J.; Cruz, Miguel; Hanis, Craig L.; Valladares-Salgado, Adan

    2016-01-01

    We performed genome-wide meta-analysis of lipid traits on three samples of Mexican and Mexican American ancestry comprising 4,383 individuals, and followed up significant and highly suggestive associations in three additional Hispanic samples comprising 7,876 individuals. Genome-wide significant signals were observed in or near CELSR2, ZNF259/APOA5, KANK2/DOCK6 and NCAN/MAU2 for total cholesterol, LPL, ABCA1, ZNF259/APOA5, LIPC and CETP for HDL cholesterol, CELSR2, APOB and NCAN/MAU2 for LDL cholesterol, and GCKR, TRIB1, ZNF259/APOA5 and NCAN/MAU2 for triglycerides. Linkage disequilibrium and conditional analyses indicate that signals observed at ABCA1 and LIPC for HDL cholesterol and NCAN/MAU2 for triglycerides are independent of previously reported lead SNP associations. Analyses of lead SNPs from the European Global Lipids Genetics Consortium (GLGC) dataset in our Hispanic samples show remarkable concordance of direction of effects as well as strong correlation in effect sizes. A meta-analysis of the European GLGC and our Hispanic datasets identified five novel regions reaching genome-wide significance: two for total cholesterol (FN1 and SAMM50), two for HDL cholesterol (LOC100996634 and COPB1) and one for LDL cholesterol (LINC00324/CTC1/PFAS). The top meta-analysis signals were found to be enriched for SNPs associated with gene expression in a tissue-specific fashion, suggesting an enrichment of tissue-specific function in lipid-associated loci. PMID:26780889

  20. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  1. The unusual amino acid l-ergothioneine is a physiologic cytoprotectant

    PubMed Central

    Paul, BD; Snyder, SH

    2010-01-01

    Ergothioneine (ET) is an unusual sulfur-containing derivative of the amino acid, histidine, which is derived exclusively through the diet. Although ET was isolated a century ago, its physiologic function has not been clearly established. Recently, a highly specific transporter for ET (ETT) was identified in mammalian tissues, which explains abundant tissue levels of ET and implies a physiologic role. Using RNA interference, we depleted cells of its transporter. Cells lacking ETT are more susceptible to oxidative stress, resulting in increased mitochondrial DNA damage, protein oxidation and lipid peroxidation. ETT is concentrated in mitochondria, suggesting a specific role in protecting mitochondrial components such as DNA from oxidative damage associated with mitochondrial generation of superoxide. In combating cytotoxic effects of pyrogallol, a known superoxide generator, ET is as potent as glutathione. Because of its dietary origin and the toxicity associated with its depletion, ET may represent a new vitamin whose physiologic roles include antioxidant cytoprotection. PMID:19911007

  2. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data.

    PubMed

    Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S

    2016-01-01

    Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.

  3. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.

    PubMed

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-21

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

  4. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies

    PubMed Central

    Zhang, Shujun

    2018-01-01

    Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study. PMID:29377896

  5. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    PubMed

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  6. RBFOX2 Is an Important Regulator of Mesenchymal Tissue-Specific Splicing in both Normal and Cancer Tissues

    PubMed Central

    Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937

  7. A convex optimization approach for identification of human tissue-specific interactomes.

    PubMed

    Mohammadi, Shahin; Grama, Ananth

    2016-06-15

    Analysis of organism-specific interactomes has yielded novel insights into cellular function and coordination, understanding of pathology, and identification of markers and drug targets. Genes, however, can exhibit varying levels of cell type specificity in their expression, and their coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/tissue-selective interaction mechanisms have significant applications in drug discovery, as they are more likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are significantly implicated in human disease, including cancers. Finally, disease genes and protein complexes have the tendency to be differentially expressed in tissues in which defects cause pathology. These observations motivate the construction of refined tissue-specific interactomes from organism-specific interactomes. We present a novel technique for constructing human tissue-specific interactomes. Using a variety of validation tests (Edge Set Enrichment Analysis, Gene Ontology Enrichment, Disease-Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms state-of-the-art techniques. Finally, using case studies of Alzheimer's and Parkinson's diseases, we show that tissue-specific interactomes derived from our study can be used to construct pathways implicated in pathology and demonstrate the use of these pathways in identifying novel targets. http://www.cs.purdue.edu/homes/mohammas/projects/ActPro.html mohammadi@purdue.edu. © The Author 2016. Published by Oxford University Press.

  8. Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice.

    PubMed

    Wang, Rui; Zhu, Menglin; Ye, Rongjian; Liu, Zuoxiong; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2015-12-11

    As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.

  9. A family of tissue-specific resistin-like molecules

    PubMed Central

    Steppan, Claire M.; Brown, Elizabeth J.; Wright, Christopher M.; Bhat, Savitha; Banerjee, Ronadip R.; Dai, Charlotte Y.; Enders, Gregory H.; Silberg, Debra G.; Wen, Xiaoming; Wu, Gary D.; Lazar, Mitchell A.

    2001-01-01

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMα is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMβ, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMβ gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules. PMID:11209052

  10. A family of tissue-specific resistin-like molecules.

    PubMed

    Steppan, C M; Brown, E J; Wright, C M; Bhat, S; Banerjee, R R; Dai, C Y; Enders, G H; Silberg, D G; Wen, X; Wu, G D; Lazar, M A

    2001-01-16

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMalpha is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMbeta, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMbeta gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules.

  11. Solitary fibrous tumour of the cheek: An unusual presentation of a rare soft tissue tumour

    PubMed Central

    Jones, JL; Jones, AV; Drage, NA; Bhatia, S; Hourihan, MD

    2014-01-01

    This case report discusses the unusual presentation and ultrasound features of a solitary fibrous tumour of the face. Solitary fibrous tumour is an uncommon form of soft tissue tumour which, although seen predominantly within the lung pleura, can occur throughout the body in sites such as the peritoneum, mediastinum and head and neck. Ultrasound is an excellent imaging modality in the assessment of soft tissue masses in the head and neck. The ultrasound features demonstrated by this example of solitary fibrous tumour are reviewed. This report also highlights that ultrasound alone is ultimately limited in reaching a definitive diagnosis. The roles of other investigations such as ultrasound-guided biopsy and cross-sectional imaging are discussed. PMID:27433225

  12. An unusual case of vaginal myiasis

    PubMed Central

    Jones, Brian L.; Coyne, Michael

    2016-01-01

    Introduction: Myiasis, a term used to describe the infestation of a live animal by fly larvae, is rarely reported in human subjects. The adult fly lays its eggs on living tissue that progresses to become larvae that feed on living tissue having gone through three developmental stages known as the first, second and third instar. The larvae become pupae before finally developing into adults. Case presentation: We describe an unusual case of a 79-year-old female who collapsed in her garden and lay there for several days before presenting to her local hospital Accident and Emergency department with an infestation of larvae in her vagina labia, identified as those from the Protophormia species northern blowfly. After complete removal of the larvae using tweezers followed by cleansing of the affected area and a course of antibiotics, the patient’s condition improved. A follow-up review by the local gynaecology team revealed no evidence of further infestation. Conclusion: It is our understanding that this is the first highly unusual case of a blowfly larvae infestation to be reported in a human within the UK. PMID:28348792

  13. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    PubMed

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  14. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide.

    PubMed Central

    Kurosaki, M; Li Calzi, M; Scanziani, E; Garattini, E; Terao, M

    1995-01-01

    The expression of the xanthine oxidoreductase gene was studied in various mouse organs and tissues, under basal conditions and on treatment with bacterial lipopolysaccharide. Levels of xanthine oxidoreductase protein and mRNA were compared in order to understand the molecular mechanisms regulating the expression of this enzyme system. The highest amounts of xanthine oxidoreductase and the respective mRNA are observed in the duodenum and jejunum, where the protein is present in an unusual form because of a specific proteolytic cleavage of the primary translation product present in all locations. Under basal conditions, multiple tissue-specific mechanisms of xanthine oxidoreductase regulation are evident. Lipopolysaccharide increases enzyme activity in some, but not all tissues, mainly via modulation of the respective transcript, although translational and post-translational mechanisms are also active. In situ hybridization studies on tissue sections obtained from mice under control conditions or with lipopolysaccharide treatment demonstrate that xanthine oxidoreductase is present in hepatocytes, predominantly in the proximal tubules of the kidney, epithelial layer of the gastrointestinal mucosa, the alveolar compartment of the lung, the pulpar region of the spleen and the vascular component of the heart. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7864814

  15. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    PubMed

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  16. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  17. Ovule development: identification of stage-specific and tissue-specific cDNAs.

    PubMed Central

    Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D

    1996-01-01

    A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709

  18. Co-expression networks reveal the tissue-specific regulation of transcription and splicing

    PubMed Central

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D.H.; Jo, Brian; Gao, Chuan; McDowell, Ian C.; Engelhardt, Barbara E.

    2017-01-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. PMID:29021288

  19. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues

    PubMed Central

    Blazie, Stephen M.; Geissel, Heather C.; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-01-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3′untranslated region (3′UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3′UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3′UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. PMID:28348061

  20. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues.

    PubMed

    Blazie, Stephen M; Geissel, Heather C; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-06-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. Copyright © 2017 Blazie et al.

  1. Tissue-specific patterns of allelically-skewed DNA methylation

    PubMed Central

    Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan

    2016-01-01

    ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711

  2. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.

    PubMed

    Huang, Ji; Zheng, Juefei; Yuan, Hui; McGinnis, Karen

    2018-06-07

    Transcription factors (TFs) are proteins that can bind to DNA sequences and regulate gene expression. Many TFs are master regulators in cells that contribute to tissue-specific and cell-type-specific gene expression patterns in eukaryotes. Maize has been a model organism for over one hundred years, but little is known about its tissue-specific gene regulation through TFs. In this study, we used a network approach to elucidate gene regulatory networks (GRNs) in four tissues (leaf, root, SAM and seed) in maize. We utilized GENIE3, a machine-learning algorithm combined with large quantity of RNA-Seq expression data to construct four tissue-specific GRNs. Unlike some other techniques, this approach is not limited by high-quality Position Weighed Matrix (PWM), and can therefore predict GRNs for over 2000 TFs in maize. Although many TFs were expressed across multiple tissues, a multi-tiered analysis predicted tissue-specific regulatory functions for many transcription factors. Some well-studied TFs emerged within the four tissue-specific GRNs, and the GRN predictions matched expectations based upon published results for many of these examples. Our GRNs were also validated by ChIP-Seq datasets (KN1, FEA4 and O2). Key TFs were identified for each tissue and matched expectations for key regulators in each tissue, including GO enrichment and identity with known regulatory factors for that tissue. We also found functional modules in each network by clustering analysis with the MCL algorithm. By combining publicly available genome-wide expression data and network analysis, we can uncover GRNs at tissue-level resolution in maize. Since ChIP-Seq and PWMs are still limited in several model organisms, our study provides a uniform platform that can be adapted to any species with genome-wide expression data to construct GRNs. We also present a publicly available database, maize tissue-specific GRN (mGRN, https://www.bio.fsu.edu/mcginnislab/mgrn/ ), for easy querying. All source code

  3. Tissue-specific alternative splicing of TCF7L2

    PubMed Central

    Prokunina-Olsson, Ludmila; Welch, Cullan; Hansson, Ola; Adhikari, Neeta; Scott, Laura J.; Usher, Nicolle; Tong, Maurine; Sprau, Andrew; Swift, Amy; Bonnycastle, Lori L.; Erdos, Michael R.; He, Zhi; Saxena, Richa; Harmon, Brennan; Kotova, Olga; Hoffman, Eric P.; Altshuler, David; Groop, Leif; Boehnke, Michael; Collins, Francis S.; Hall, Jennifer L.

    2009-01-01

    Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174. PMID:19602480

  4. Identifying unusual performance in Australian and New Zealand intensive care units from 2000 to 2010.

    PubMed

    Solomon, Patricia J; Kasza, Jessica; Moran, John L

    2014-04-22

    The Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database (APD) collects voluntary data on patient admissions to Australian and New Zealand intensive care units (ICUs). This paper presents an in-depth statistical analysis of risk-adjusted mortality of ICU admissions from 2000 to 2010 for the purpose of identifying ICUs with unusual performance. A cohort of 523,462 patients from 144 ICUs was analysed. For each ICU, the natural logarithm of the standardised mortality ratio (log-SMR) was estimated from a risk-adjusted, three-level hierarchical model. This is the first time a three-level model has been fitted to such a large ICU database anywhere. The analysis was conducted in three stages which included the estimation of a null distribution to describe usual ICU performance. Log-SMRs with appropriate estimates of standard errors are presented in a funnel plot using 5% false discovery rate thresholds. False coverage-statement rate confidence intervals are also presented. The observed numbers of deaths for ICUs identified as unusual are compared to the predicted true worst numbers of deaths under the model for usual ICU performance. Seven ICUs were identified as performing unusually over the period 2000 to 2010, in particular, demonstrating high risk-adjusted mortality compared to the majority of ICUs. Four of the seven were ICUs in private hospitals. Our three-stage approach to the analysis detected outlying ICUs which were not identified in a conventional (single) risk-adjusted model for mortality using SMRs to compare ICUs. We also observed a significant linear decline in mortality over the decade. Distinct yearly and weekly respiratory seasonal effects were observed across regions of Australia and New Zealand for the first time. The statistical approach proposed in this paper is intended to be used for the review of observed ICU and hospital mortality. Two important messages from our study are firstly, that comprehensive risk

  5. Identifying unusual performance in Australian and New Zealand intensive care units from 2000 to 2010

    PubMed Central

    2014-01-01

    Background The Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database (APD) collects voluntary data on patient admissions to Australian and New Zealand intensive care units (ICUs). This paper presents an in-depth statistical analysis of risk-adjusted mortality of ICU admissions from 2000 to 2010 for the purpose of identifying ICUs with unusual performance. Methods A cohort of 523,462 patients from 144 ICUs was analysed. For each ICU, the natural logarithm of the standardised mortality ratio (log-SMR) was estimated from a risk-adjusted, three-level hierarchical model. This is the first time a three-level model has been fitted to such a large ICU database anywhere. The analysis was conducted in three stages which included the estimation of a null distribution to describe usual ICU performance. Log-SMRs with appropriate estimates of standard errors are presented in a funnel plot using 5% false discovery rate thresholds. False coverage-statement rate confidence intervals are also presented. The observed numbers of deaths for ICUs identified as unusual are compared to the predicted true worst numbers of deaths under the model for usual ICU performance. Results Seven ICUs were identified as performing unusually over the period 2000 to 2010, in particular, demonstrating high risk-adjusted mortality compared to the majority of ICUs. Four of the seven were ICUs in private hospitals. Our three-stage approach to the analysis detected outlying ICUs which were not identified in a conventional (single) risk-adjusted model for mortality using SMRs to compare ICUs. We also observed a significant linear decline in mortality over the decade. Distinct yearly and weekly respiratory seasonal effects were observed across regions of Australia and New Zealand for the first time. Conclusions The statistical approach proposed in this paper is intended to be used for the review of observed ICU and hospital mortality. Two important messages from our study are

  6. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    PubMed

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  8. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  9. Tissue-specific effects of peptides.

    PubMed

    Khavinson, V K

    2001-08-01

    Synthetic peptides (cytogens) Cortagen, Epithalon, Livagen, and Vilon stimulated the growth of explants from rat brain cortex, subcortical structures, liver, and thymus, respectively, in organotypic cultures. These peptides produced tissue-specific effects: they stimulated the growth of explants from tissues, whose cytomedins (peptide complexes) were used for chemical synthesis.

  10. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.

    PubMed

    Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L

    2017-03-23

    Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune

  11. [Tissue-specific nucleoprotein complexes].

    PubMed

    Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh

    2000-01-01

    A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.

  12. Computation and application of tissue-specific gene set weights.

    PubMed

    Frost, H Robert

    2018-04-06

    Gene set testing, or pathway analysis, has become a critical tool for the analysis of highdimensional genomic data. Although the function and activity of many genes and higher-level processes is tissue-specific, gene set testing is typically performed in a tissue agnostic fashion, which impacts statistical power and the interpretation and replication of results. To address this challenge, we have developed a bioinformatics approach to compute tissuespecific weights for individual gene sets using information on tissue-specific gene activity from the Human Protein Atlas (HPA). We used this approach to create a public repository of tissue-specific gene set weights for 37 different human tissue types from the HPA and all collections in the Molecular Signatures Database (MSigDB). To demonstrate the validity and utility of these weights, we explored three different applications: the functional characterization of human tissues, multi-tissue analysis for systemic diseases and tissue-specific gene set testing. All data used in the reported analyses is publicly available. An R implementation of the method and tissue-specific weights for MSigDB gene set collections can be downloaded at http://www.dartmouth.edu/∼hrfrost/TissueSpecificGeneSets. rob.frost@dartmouth.edu.

  13. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs

    PubMed Central

    Chishima, Takafumi; Iwakiri, Junichi

    2018-01-01

    It has been recently suggested that transposable elements (TEs) are re-used as functional elements of long non-coding RNAs (lncRNAs). This is supported by some examples such as the human endogenous retrovirus subfamily H (HERVH) elements contained within lncRNAs and expressed specifically in human embryonic stem cells (hESCs), as required to maintain hESC identity. There are at least two unanswered questions about all lncRNAs. How many TEs are re-used within lncRNAs? Are there any other TEs that affect tissue specificity of lncRNA expression? To answer these questions, we comprehensively identify TEs that are significantly related to tissue-specific expression levels of lncRNAs. We downloaded lncRNA expression data corresponding to normal human tissue from the Expression Atlas and transformed the data into tissue specificity estimates. Then, Fisher’s exact tests were performed to verify whether the presence or absence of TE-derived sequences influences the tissue specificity of lncRNA expression. Many TE–tissue pairs associated with tissue-specific expression of lncRNAs were detected, indicating that multiple TE families can be re-used as functional domains or regulatory sequences of lncRNAs. In particular, we found that the antisense promoter region of L1PA2, a LINE-1 subfamily, appears to act as a promoter for lncRNAs with placenta-specific expression. PMID:29315213

  15. Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns.

    PubMed

    Sack, Laura Magill; Davoli, Teresa; Li, Mamie Z; Li, Yuyang; Xu, Qikai; Naxerova, Kamila; Wooten, Eric C; Bernardi, Ronald J; Martin, Timothy D; Chen, Ting; Leng, Yumei; Liang, Anthony C; Scorsone, Kathleen A; Westbrook, Thomas F; Wong, Kwok-Kin; Elledge, Stephen J

    2018-04-05

    Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Identifying mitosis deep in tissue using dynamic light scattering fluctuation spectroscopy

    NASA Astrophysics Data System (ADS)

    An, Ran; Jeong, Kwan; Turek, John; Nolte, David

    2012-03-01

    In the cell cycle, mitosis is the most dramatic phase, especially in Telophase and Cytokinesis. For single cells and cell monolayer, there are precise microscopic studies of mitosis, while for 3-D tissue such as tumor spheroids the light signal is obscured by the high background of diffusely scattered light. Therefore, the mitosis phase cannot be detected deep inside 3-D tissue using conventional microscopic techniques. In this work, we detect mitosis in living tissue using Tissue Dynamic Imaging (TDI). We trace depth-gated dynamic speckles from a tumor spheroid (up to 1mm in diameter) using coherence-gated digital holography imaging. Frequency-versus-time spectrograms depend on specific types of perturbation such as cell shape change, membrane undulation and cell organelles movements. By using these spectral responses as functional finger prints, we can identify mitosis events from different voxels at a specified depth inside tumor spheroids. By performing B-scans of the tumor spheroid, we generate 3-D mitosis maps (or movies) for the entire tumor spheroids. We show that for healthy tumor spheroids, the mitosis events only happen within the proliferating shell. We also compare results when anti-cancer drugs are applied to arrest, release and synchronize mitosis. This shows the application of TDI for drug screening. The technique can identify and monitor complex motilities inside 3-D tissue with a strong potential for drug diagnosis and developmental biology studies.

  17. Estimating patient-specific soft-tissue properties in a TKA knee.

    PubMed

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Finasteride Treatment Alters Tissue Specific Androgen Receptor Expression in Prostate Tissues

    PubMed Central

    Bauman, Tyler M.; Sehgal, Priyanka D.; Johnson, Karen A.; Pier, Thomas; Bruskewitz, Reginald C.; Ricke, William A.; Huang, Wei

    2014-01-01

    BACKGROUND Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. METHODS Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. RESULTS Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. CONCLUSIONS In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. PMID:24789081

  19. Inter-specific coral chimerism: Genetically distinct multicellular structures associated with tissue loss in Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Forsman, Zac H.; Szabo, Zoltan; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.

  20. Regulatory mechanisms for specification and patterning of plant vascular tissues.

    PubMed

    Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku

    2010-01-01

    Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.

  1. Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome

    PubMed Central

    Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964

  2. Toward identifying specification requirements for digital bone-anchored prosthesis design incorporating substructure fabrication: a pilot study.

    PubMed

    Eggbeer, Dominic; Bibb, Richard; Evans, Peter

    2006-01-01

    This paper is the first in a series that aims to identify the specification requirements for advanced digital technologies that may be used to design and fabricate complex, soft tissue facial prostheses. Following a review of previously reported techniques, appropriate and currently available technologies were selected and applied in a pilot study. This study uses a range of optical surface scanning, computerized tomography, computer-aided design, and rapid prototyping technologies to capture, design, and fabricate a bone-anchored auricular prosthesis, including the retentive components. The techniques are assessed in terms of their effectiveness, and the results are used to identify future research and specification requirements to direct developments. The case study identifies that while digital technologies may be used to design implant-retained facial prostheses, many limitations need to be addressed to make the techniques clinically viable. It also identifies the need to develop a more robust specification that covers areas such as resolution, accuracy, materials, and design, against which potential technologies may be assessed. There is a need to develop a specification against which potential technologies may be assessed for their suitability in soft tissue facial prosthetics. The specification will be developed using further experimental research studies.

  3. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement

    PubMed Central

    2014-01-01

    Background The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant. Results We used an integrated approach to compare the transcriptome, proteome and metabolome of the rhizome to other tissues of red rice. 116 Gb of transcriptome sequence was obtained from various tissues and used to identify rhizome-specific and preferentially expressed genes, including transcription factors and hormone metabolism and stress response-related genes. Proteomics and metabolomics approaches identified 41 proteins and more than 100 primary metabolites and plant hormones with rhizome preferential accumulation. Of particular interest was the identification of a large number of gene transcripts from Magnaportha oryzae, the fungus that causes rice blast disease in cultivated rice, even though the red rice plants showed no sign of disease. Conclusions A significant set of genes, proteins and metabolites appear to be specifically or preferentially expressed in the rhizome of O. longistaminata. The presence of M. oryzae gene transcripts at a high level in apparently healthy plants suggests that red rice is resistant to this pathogen, and may be able to provide genes to cultivated rice that will enable resistance to rice blast disease. PMID:24521476

  4. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    PubMed

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  5. N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    PubMed Central

    Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia

    2011-01-01

    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989

  6. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  7. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    PubMed Central

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.

    2017-01-01

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886

  8. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE PAGES

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...

    2017-02-13

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  9. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis

    PubMed Central

    2018-01-01

    Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non–cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types. PMID:29768404

  10. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins.

    PubMed

    Capitanchik, Charlotte; Dixon, Charles; Swanson, Selene K; Florens, Laurence; Kerr, Alastair R W; Schirmer, Eric C

    2018-06-18

    Nuclear envelopathies/laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. One possible explanation of this tissue specificity is that tissue-specific partners become disrupted from larger complexes, but a little investigated alternate hypothesis is that the mutated proteins themselves have tissue-specific splice variants. Here, we analyze RNA-Seq datasets to identify muscle-specific splice variants of nuclear envelope genes that could be relevant to the study of laminopathies, particularly muscular dystrophies, that are not currently annotated in sequence databases. Notably, we found novel isoforms or tissue-specificity of isoforms for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, a regulator of the emerin gene that is linked to Emery-Dreifuss muscular dystrophy. Interestingly, the muscle-specific exon in Lmo7 is rich in serine phosphorylation motifs, suggesting an important regulatory function. Evidence for muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies was also found. Tissue-specific variants were also indicated for several nucleoporins including Nup54, Nup133, Nup153 and Nup358/RanBP2. We confirmed expression of novel Lmo7 and RanBP2 variants with RT-PCR and found that specific knockdown of the Lmo7 variant caused a reduction in myogenic index during mouse C2C12 myogenesis. Global analysis revealed an enrichment of tissue-specific splice variants for nuclear envelope proteins in general compared to the rest of the genome, suggesting that splice variants contribute to regulating its tissue-specific functions.

  11. Establishment of a tissue-specific RNAi system in C. elegans.

    PubMed

    Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D; Amano, Mutsuki; Moerman, Donald G; Kaibuchi, Kozo

    2007-10-01

    In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.

  12. Establishment of a tissue-specific RNAi system in C. elegans

    PubMed Central

    Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D.; Amano, Mutsuki; Moerman, Donald G.; Kaibuchi, Kozo

    2011-01-01

    In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal- and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues. PMID:17681718

  13. Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis

    PubMed Central

    Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.

    2015-01-01

    The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908

  14. Toward a patient-specific tissue engineered vascular graft

    PubMed Central

    Best, Cameron; Strouse, Robert; Hor, Kan; Pepper, Victoria; Tipton, Amy; Kelly, John; Shinoka, Toshiharu; Breuer, Christopher

    2018-01-01

    Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application. PMID:29568478

  15. The tissue microarray data exchange specification: A community-based, open source tool for sharing tissue microarray data

    PubMed Central

    Berman, Jules J; Edgerton, Mary E; Friedman, Bruce A

    2003-01-01

    Background Tissue Microarrays (TMAs) allow researchers to examine hundreds of small tissue samples on a single glass slide. The information held in a single TMA slide may easily involve Gigabytes of data. To benefit from TMA technology, the scientific community needs an open source TMA data exchange specification that will convey all of the data in a TMA experiment in a format that is understandable to both humans and computers. A data exchange specification for TMAs allows researchers to submit their data to journals and to public data repositories and to share or merge data from different laboratories. In May 2001, the Association of Pathology Informatics (API) hosted the first in a series of four workshops, co-sponsored by the National Cancer Institute, to develop an open, community-supported TMA data exchange specification. Methods A draft tissue microarray data exchange specification was developed through workshop meetings. The first workshop confirmed community support for the effort and urged the creation of an open XML-based specification. This was to evolve in steps with approval for each step coming from the stakeholders in the user community during open workshops. By the fourth workshop, held October, 2002, a set of Common Data Elements (CDEs) was established as well as a basic strategy for organizing TMA data in self-describing XML documents. Results The TMA data exchange specification is a well-formed XML document with four required sections: 1) Header, containing the specification Dublin Core identifiers, 2) Block, describing the paraffin-embedded array of tissues, 3)Slide, describing the glass slides produced from the Block, and 4) Core, containing all data related to the individual tissue samples contained in the array. Eighty CDEs, conforming to the ISO-11179 specification for data elements constitute XML tags used in the TMA data exchange specification. A set of six simple semantic rules describe the complete data exchange specification. Anyone

  16. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.

    PubMed

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y; Yeger-Lotem, Esti

    2014-06-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases.

  17. Whyever bladder tissue engineering clinical applications still remain unusual even though many intriguing technological advances have been reached?

    PubMed

    Alberti, C

    2016-01-01

    To prevent problematic outcomes of bowel-based bladder reconstructive surgery, such as prosthetic tumors and systemic metabolic complications, research works, to either regenerate and strengthen failing organ or build organ replacement biosubstitute, have been turned, from 90s of the last century, to both regenerative medicine and tissue engineering.Various types of acellular matrices, naturally-derived materials, synthetic polymers have been used for either "unseeded" (cell free) or autologous "cell seeded" tissue engineering scaffolds. Different categories of cell sources - from autologous differentiated urothelial and smooth muscle cells to natural or laboratory procedure-derived stem cells - have been taken into consideration to reach the construction of suitable "cell seeded" templates. Current clinically validated bladder tissue engineering approaches essentially consist of augmentation cystoplasty in patients suffering from poorly compliant neuropathic bladder. No clinical applications of wholly tissue engineered neobladder have been carried out to radical-reconstructive surgical treatment of bladder malignancies or chronic inflammation-due vesical coarctation. Reliable reasons why bladder tissue engineering clinical applications so far remain unusual, particularly imply the risk of graft ischemia, hence its both fibrous contraction and even worse perforation. Therefore, the achievement of graft vascular network (vasculogenesis) could allow, together with the promotion of host surrounding vessel sprouting (angiogenesis), an effective graft blood supply, so avoiding the ischemia-related serious complications.

  18. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.

    PubMed

    Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting

    2017-09-12

    Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.

  19. Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.

    PubMed

    Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L

    2017-04-07

    The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in

  20. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  1. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    PubMed Central

    Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael

    2011-01-01

    CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964

  2. Mature cystic teratoma with high proportion of solid thyroid tissue: a controversial case with unusual imaging findings.

    PubMed

    Gil, Rui; Cunha, Teresa Margarida; Rolim, Ines

    2017-07-01

    We describe a case of a mature cystic teratoma of the ovary with high proportion of solid thyroid tissue (< 50% of the entire tumor) in a childbearing woman. The patient presented with non-specific abdominal bloating. Pelvic ultrasound and magnetic resonance imaging revealed a complex cystic-solid tumor confined to the left ovary with an anterior fat-containing locus compatible with mature cystic teratoma and a posterior predominantly solid component with low signal intensity on T2-weighted images that was histopatologically diagnosed as benign thyroid tissue. Thyroglobulin levels were in normal range. Although thyroid tissue is present in up to 20% of mature cystic teratomas, with exception of struma ovarii, it is not usually macroscopically nor radiologically identified. The differential diagnosis should include T2-hypointense adnexal lesions associated with mature cystic teratoma, malignant transformation of mature teratoma, and immature teratoma.

  3. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    PubMed

    Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2017-08-29

    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.

  4. Analysis of tissue specific progenitor cell differentiation using FT-IR

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-07-01

    Tissue specific progenitor cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-contact and non-destructive methods from the view point of safety. Or the analysis with small quantities of materials could be possible if the quantities of materials are acceptable. A non-contact and non-destructive quality control method has been required. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The changes in the cells and tissues, which are subtle and often not obvious in the histpathological studies, are shown to be well resolved using FT-IR. Moreover, although most techniques designed to detect one or a few changes, FT-IR is possible to identify the changes in the levels of various cellular biochemicals simultaneously under in vivo and in vitro conditions. The objective of this study is to establish the infrared spectroscopy of tissue specific progenitor cell differentiations as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examine the adipose differentiation kinetics of preadipose cells (3T3-L1) and the osteoblast differentiation kinetics of mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra.

  5. Proteome labelling and protein identification in specific tissues and at specific developmental stages in an animal

    PubMed Central

    Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.

    2014-01-01

    Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715

  6. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  7. Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration

    PubMed Central

    Nolan, Daniel J.; Ginsberg, Michael; Israely, Edo; Palikuqi, Brisa; Poulos, Michael G.; James, Daylon; Ding, Bi-Sen; Schachterle, William; Liu, Ying; Rosenwaks, Zev; Butler, Jason M.; Xiang, Jenny; Rafii, Arash; Shido, Koji; Rabbany, Sina Y.; Elemento, Olivier; Rafii, Shahin

    2013-01-01

    SUMMARY Microvascular endothelial cells (ECs) within different tissues are endowed with distinct but as yet unrecognized structural, phenotypic, and functional attributes. We devised EC purification, cultivation, profiling, and transplantation models that establish tissue-specific molecular libraries of ECs devoid of lymphatic ECs or parenchymal cells. These libraries identify attributes that confer ECs with their organotypic features. We show that clusters of transcription factors, angiocrine growth factors, adhesion molecules, and chemokines are expressed in unique combinations by ECs of each organ. Furthermore, ECs respond distinctly in tissue regeneration models, hepatectomy, and myeloablation. To test the data set, we developed a transplantation model that employs generic ECs differentiated from embryonic stem cells. Transplanted generic ECs engraft into regenerating tissues and acquire features of organotypic ECs. Collectively, we demonstrate the utility of informational databases of ECs toward uncovering the extravascular and intrinsic signals that define EC heterogeneity. These factors could be exploited therapeutically to engineer tissue-specific ECs for regeneration. PMID:23871589

  8. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    PubMed

    Morton, Nicholas M; Nelson, Yvonne B; Michailidou, Zoi; Di Rollo, Emma M; Ramage, Lynne; Hadoke, Patrick W F; Seckl, Jonathan R; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J; Dunbar, Donald R

    2011-01-01

    Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  9. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  10. Oscillator networks with tissue-specific circadian clocks in plants.

    PubMed

    Inoue, Keisuke; Araki, Takashi; Endo, Motomu

    2017-09-08

    Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.

  11. The RNA-binding protein Rumpelstiltskin antagonizes gypsy chromatin insulator function in a tissue-specific manner

    PubMed Central

    King, Matthew R.; Matzat, Leah H.; Dale, Ryan K.; Lim, Su Jun; Lei, Elissa P.

    2014-01-01

    ABSTRACT Chromatin insulators are DNA–protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity. PMID:24706949

  12. Human active X-specific DNA methylation events showing stability across time and tissues

    PubMed Central

    Joo, Jihoon Eric; Novakovic, Boris; Cruickshank, Mark; Doyle, Lex W; Craig, Jeffrey M; Saffery, Richard

    2014-01-01

    The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a ‘patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena. PMID:24713664

  13. An unusual case of an intramuscular lipoma of the biceps brachii

    PubMed Central

    Lahrach, Kamal; el Kadi, Khalid Ibn; Mezzani, Amine; Marzouki, Amine; Boutayeb, Fawzi

    2013-01-01

    Lipomas are common benign neoplasms consisting of mature fatty tissue. They are usually of roundish or ovoid shape and are situated in a single anatomical region. They most frequently occur on the back and in the extremities. Most lipomas are subcutaneous and require no imaging evaluation. When deep, large and unusual in location, MRI can identify and localise these tumours and is the best exploration to differentiate lipoma and lipo-sarcoma. We describe a case of a patient with an intramuscular lipoma of the biceps brachii. PMID:24062869

  14. The tissue microarray data exchange specification: A document type definition to validate and enhance XML data

    PubMed Central

    Nohle, David G; Ayers, Leona W

    2005-01-01

    Background The Association for Pathology Informatics (API) Extensible Mark-up Language (XML) TMA Data Exchange Specification (TMA DES) proposed in April 2003 provides a community-based, open source tool for sharing tissue microarray (TMA) data in a common format. Each tissue core within an array has separate data including digital images; therefore an organized, common approach to produce, navigate and publish such data facilitates viewing, sharing and merging TMA data from different laboratories. The AIDS and Cancer Specimen Resource (ACSR) is a HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers HIV-related malignancies and uninfected control tissues in microarrays (TMA) accompanied by de-identified clinical data to approved researchers. Exporting our TMA data into the proposed API specified format offers an opportunity to evaluate the API specification in an applied setting and to explore its usefulness. Results A document type definition (DTD) that governs the allowed common data elements (CDE) in TMA DES export XML files was written, tested and evolved and is in routine use by the ACSR. This DTD defines TMA DES CDEs which are implemented in an external file that can be supplemented by internal DTD extensions for locally defined TMA data elements (LDE). Conclusion ACSR implementation of the TMA DES demonstrated the utility of the specification and allowed application of a DTD to validate the language of the API specified XML elements and to identify possible enhancements within our TMA data management application. Improvements to the specification have additionally been suggested by our experience in importing other institution's exported TMA data. Enhancements to TMA DES to remove ambiguous situations and clarify the data should be considered. Better specified identifiers and hierarchical relationships will make automatic use of the data possible. Our tool can be

  15. Tissue-Specific and Genetic Regulation of Insulin Sensitivity-Associated Transcripts in African Americans

    PubMed Central

    Sharma, Neeraj K.; Sajuthi, Satria P.; Chou, Jeff W.; Calles-Escandon, Jorge; Demons, Jamehl; Rogers, Samantha; Ma, Lijun; Palmer, Nicholette D.; McWilliams, David R.; Beal, John; Comeau, Mary E.; Cherry, Kristina; Hawkins, Gregory A.; Menon, Lata; Kouba, Ethel; Davis, Donna; Burris, Marcie; Byerly, Sara J.; Easter, Linda; Bowden, Donald W.; Freedman, Barry I.; Langefeld, Carl D.

    2016-01-01

    Context: Compared with European Americans, African Americans (AAs) are more insulin resistant, have a higher insulin secretion response to glucose, and develop type 2 diabetes more often. Molecular processes and/or genetic variations contributing to altered glucose homeostasis in high-risk AAs remain uncharacterized. Objective: Adipose and muscle transcript expression profiling and genotyping were performed in 260 AAs to identify genetic regulatory mechanisms associated with insulin sensitivity (SI). We hypothesized that: 1) transcription profiles would reveal tissue-specific modulation of physiologic pathways with SI, and 2) a subset of SI-associated transcripts would be controlled by DNA sequence variants as expression quantitative traits, and these variants in turn would be associated with SI. Design and Settings: The cross-sectional research study was performed in a clinical research unit. Participants: Unrelated nondiabetic AAs were recruited for the study. Main Outcome Measures: SI was measured by frequently sampled iv glucose tolerance test. Results: The expression levels of 2212 transcripts in adipose and 145 transcripts in muscle were associated with SI. Genes involved in eIF2, eIF4-p70S6K, and mTOR signaling were modulated with SI in both tissues. Genes involved in leukocyte extravasation signaling showed adipose-specific regulation, and genes involved in oxidative phosphorylation had discordant regulation between tissues. Intersecting cis-expression quantitative trait loci results with data from transcript-SI association analysis identified cis-regulatory single nucleotide polymorphisms for 363 and 42 SI-associated transcripts in adipose and muscle, respectively. Cis-eSNPs for three SI-associated adipose transcripts, NINJ1, AGA, and CLEC10A were associated with SI. Abrogation of NINJ1 induction in THP1 macrophages modulated expression of genes in chemokine signaling, cell adhesion, and angiogenesis pathways. Conclusion: This study identified multiple

  16. Extensive variation between tissues in allele specific expression in an outbred mammal.

    PubMed

    Chamberlain, Amanda J; Vander Jagt, Christy J; Hayes, Benjamin J; Khansefid, Majid; Marett, Leah C; Millen, Catriona A; Nguyen, Thuy T T; Goddard, Michael E

    2015-11-23

    Allele specific gene expression (ASE), with the paternal allele more expressed than the maternal allele or vice versa, appears to be a common phenomenon in humans and mice. In other species the extent of ASE is unknown, and even in humans and mice there are several outstanding questions. These include; to what extent is ASE tissue specific? how often does the direction of allele expression imbalance reverse between tissues? how often is only one of the two alleles expressed? is there a genome wide bias towards expression of the paternal or maternal allele; and finally do genes that are nearby on a chromosome share the same direction of ASE? Here we use gene expression data (RNASeq) from 18 tissues from a single cow to investigate each of these questions in turn, and then validate some of these findings in two tissues from 20 cows. Between 40 and 100 million sequence reads were generated per tissue across three replicate samples for each of the eighteen tissues from the single cow (the discovery dataset). A bovine gene expression atlas was created (the first from RNASeq data), and differentially expressed genes in each tissue were identified. To analyse ASE, we had access to unambiguously phased genotypes for all heterozygous variants in the cow's whole genome sequence, where these variants were homozygous in the whole genome sequence of her sire, and as a result we were able to map reads to parental genomes, to determine SNP and genes showing ASE in each tissue. In total 25,251 heterozygous SNP within 7985 genes were tested for ASE in at least one tissue. ASE was pervasive, 89 % of genes tested had significant ASE in at least one tissue. This large proportion of genes displaying ASE was confirmed in the two tissues in a validation dataset. For individual tissues the proportion of genes showing significant ASE varied from as low as 8-16 % of those tested in thymus to as high as 71-82 % of those tested in lung. There were a number of cases where the direction of

  17. Unusual headache syndromes.

    PubMed

    Queiroz, Luiz P

    2013-01-01

    Some headache syndromes have few cases reported in the literature. Their clinical characteristics, pathogenesis, and treatment may have not been completely defined. They may not actually be uncommon but rather under-recognized and/or underreported. A literature review of unusual headache syndromes, searching PubMed and ISI Web of Knowledge, was performed. After deciding which disorders to study, relevant publications in scientific journals, including original articles, reviews, meeting abstracts, and letters or correspondences to the editors were searched. This paper reviewed the clinical characteristics, the pathogenesis, the diagnosis, and the treatment of five interesting and unusual headache syndromes: exploding head syndrome, red ear syndrome, neck-tongue syndrome, nummular headache, and cardiac cephalgia. Recognizing some unusual headaches, either primary or secondary, may be a challenge for many non-headache specialist physicians. It is important to study them because the correct diagnosis may result in specific treatments that may improve the quality of life of these patients, and this can even be life saving. © 2013 American Headache Society.

  18. Tissue-specific contribution of macrophages to wound healing.

    PubMed

    Minutti, Carlos M; Knipper, Johanna A; Allen, Judith E; Zaiss, Dietmar M W

    2017-01-01

    Macrophages are present in all tissues, either as resident cells or monocyte-derived cells that infiltrate into tissues. The tissue site largely determines the phenotype of tissue-resident cells, which help to maintain tissue homeostasis and act as sentinels of injury. Both tissue resident and recruited macrophages make a substantial contribution to wound healing following injury. In this review, we evaluate how macrophages in two fundamentally distinct tissues, i.e. the lung and the skin, differentially contribute to the process of wound healing. We highlight the commonalities of macrophage functions during repair and contrast them with distinct, tissue-specific functions that macrophages fulfill during the different stages of wound healing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression

    PubMed Central

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-01-01

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI: http://dx.doi.org/10.7554/eLife.25125.001 PMID:28806168

  20. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    PubMed Central

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes

  1. Unconventional microarray design reveals the response to obesity is largely tissue specific: analysis of common and divergent responses to diet-induced obesity in insulin-sensitive tissues.

    PubMed

    Lee, Robyn K; Hittel, Dustin S; Nyamandi, Vongai Z; Kang, Li; Soh, Jung; Sensen, Christoph W; Shearer, Jane

    2012-04-01

    Obesity is a chronic condition involving the excessive accumulation of adipose tissue that adversely affects all systems in the body. The aim of the present study was to employ an unbiased, genome-wide assessment of transcript abundance in order to identify common gene expression pathways within insulin-sensitive tissues in response to dietary-induced diabetes. Following 20 weeks of chow or high-fat feeding (60% kcal), age-matched mice underwent a euglycemic-hyperinsulinemic clamp to assess insulin sensitivity. High-fat-fed animals were obese and highly insulin resistant, disposing of ∼75% less glucose compared with their chow-fed counterparts. Tissues were collected, and gene expression was examined by microarray in 4 tissues known to exhibit obesity-related metabolic disturbances: white adipose tissue, skeletal muscle, liver, and heart. A total of 463 genes were differentially expressed between diets. Analysis of individual tissues showed skeletal muscle to exhibit the largest number of differentially expressed genes (191) in response to high-fat feeding, followed by adipose tissue (169), liver (115), and heart (65). Analyses revealed that the response of individual genes to obesity is distinct and largely tissue specific, with less than 10% of transcripts being shared among tissues. Although transcripts are largely tissue specific, a systems approach shows numerous commonly activated pathways, including those involved in signal transduction, inflammation, oxidative stress, substrate transport, and metabolism. This suggests a coordinated attempt by tissues to limit metabolic perturbations occurring in early-stage obesity. Many identified genes were associated with a variety of disorders, thereby serving as potential links between obesity and its related health risks.

  2. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    PubMed

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yan; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Yu Lian

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat bodymore » nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.« less

  4. Tissue Specific Dysregulated Protein Subnetworks in Type 2 Diabetic Bladder Urothelium and Detrusor Muscle*

    PubMed Central

    Tomechko, Sara E.; Liu, Guiming; Tao, Mingfang; Schlatzer, Daniela; Powell, C. Thomas; Gupta, Sanjay; Chance, Mark R.; Daneshgari, Firouz

    2015-01-01

    Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction. PMID:25573746

  5. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression

    PubMed Central

    Catusse, Julie; Strub, Jean-Marc; Job, Claudette; Van Dorsselaer, Alain; Job, Dominique

    2008-01-01

    Proteomic analysis of mature sugarbeet seeds led to the identification of 759 proteins and their specific tissue expression in root, cotyledons, and perisperm. In particular, the proteome of the perispermic storage tissue found in many seeds of the Caryophyllales is described here. The data allowed us to reconstruct in detail the metabolism of the seeds toward recapitulating facets of seed development and provided insights into complex behaviors such as germination. The seed appears to be well prepared to mobilize the major classes of reserves (the proteins, triglycerides, phytate, and starch) during germination, indicating that the preparation of the seed for germination is mainly achieved during its maturation on the mother plant. Furthermore, the data revealed several pathways that can contribute to seed vigor, an important agronomic trait defined as the potential to produce vigorous seedlings, such as glycine betaine accumulation in seeds. This study also identified several proteins that, to our knowledge, have not previously been described in seeds. For example, the data revealed that the sugarbeet seed can initiate translation either through the traditional cap-dependent mechanism or by a cap-independent process. The study of the tissue specificity of the seed proteome demonstrated a compartmentalization of metabolic activity between the roots, cotyledons, and perisperm, indicating a division of metabolic tasks between the various tissues. Furthermore, the perisperm, although it is known as a dead tissue, appears to be very active biochemically, playing multiple roles in distributing sugars and various metabolites to other tissues of the embryo. PMID:18635686

  7. Unusual Characteristics of the DNA Binding Domain of Epigenetic Regulatory Protein MeCP2 Determine Its Binding Specificity

    PubMed Central

    2015-01-01

    The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed. PMID:24828757

  8. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other

  9. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.

  10. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    PubMed

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  11. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA

    PubMed Central

    Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.

    2013-01-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928

  12. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    PubMed Central

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  13. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    PubMed

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  14. Profile analysis and prediction of tissue-specific CpG island methylation classes

    PubMed Central

    2009-01-01

    Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes

  15. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis

    PubMed Central

    Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin

    2012-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960

  16. Exostosis following a subepithelial connective tissue graft.

    PubMed

    Corsair, A J; Iacono, V J; Moss, S S

    2001-04-01

    This case report describes the formation of an unusual unaesthetic gingival enlargement during a five year post operative period subsequent to a subepithelial connective tissue graft placed facial to teeth #4 and #6. Histological assessment of the enlarged tissue indicated that it consisted of viable bone and marrow. The exostosis was reduced with rotary instruments and acceptable soft tissue aesthetics were created using a carbon dioxide laser for gingivoplasty. Possible causes for this unusual enlargement are discussed.

  17. Tissue specific dysregulated protein subnetworks in type 2 diabetic bladder urothelium and detrusor muscle.

    PubMed

    Tomechko, Sara E; Liu, Guiming; Tao, Mingfang; Schlatzer, Daniela; Powell, C Thomas; Gupta, Sanjay; Chance, Mark R; Daneshgari, Firouz

    2015-03-01

    Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction. © 2015 by The

  18. Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin

    PubMed Central

    Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.

    2013-01-01

    The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665

  19. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Blow, Matthew J.; Li, Zirong

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. Wemore » tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.« less

  20. Tissue-Specific Analysis of Pharmacological Pathways.

    PubMed

    Hao, Yun; Quinnies, Kayla; Realubit, Ronald; Karan, Charles; Tatonetti, Nicholas P

    2018-06-19

    Understanding the downstream consequences of pharmacologically targeted proteins is essential to drug design. Current approaches investigate molecular effects under tissue-naïve assumptions. Many target proteins, however, have tissue-specific expression. A systematic study connecting drugs to target pathways in in vivo human tissues is needed. We introduced a data-driven method that integrates drug-target relationships with gene expression, protein-protein interaction, and pathway annotation data. We applied our method to four independent genomewide expression datasets and built 467,396 connections between 1,034 drugs and 954 pathways in 259 human tissues or cell lines. We validated our results using data from L1000 and Pharmacogenomics Knowledgebase (PharmGKB), and observed high precision and recall. We predicted and tested anticoagulant effects of 22 compounds experimentally that were previously unknown, and used clinical data to validate these effects retrospectively. Our systematic study provides a better understanding of the cellular response to drugs and can be applied to many research topics in systems pharmacology. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  1. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Unusual specific heat of almost dry L-cysteine and L-cystine amino acids.

    PubMed

    Ishikawa, M S; Lima, T A; Ferreira, F F; Martinho, H S

    2015-03-01

    A detailed quantitative analysis of the specific heat in the 0.5- to 200-K temperature range for almost dry L-cysteine and its dimer, L-cystine, amino acids is presented. We report the occurrence of a sharp first-order transition at ∼76 K for L-cysteine associated with the thiol group ordering which was successfully modeled with the two-dimensional Ising model. We demonstrated that quantum rotors, two-level systems (TLS), Einstein oscillators, and acoustic phonons (the Debye model) are essential ingredients to correctly describe the overall experimental data. Our analysis pointed out the absence of the TLS contribution to the low temperature specific heat of L-cysteine. This result was similar to that found in other noncrystalline amorphous materials, e.g., amorphous silicon, low density amorphous water, and ultrastable glasses. L-cystine presented an unusual nonlinear acoustic dispersion relation ω(q)=vq0.95 and a Maxwell-Boltzmann-type distribution of tunneling barriers. The presence of Einstein oscillators with ΘE∼70 K was common in both systems and adequately modeled the boson peak contributions.

  3. An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2

    PubMed Central

    Boswell, C Andrew; Mundo, Eduardo E; Firestein, Ron; Zhang, Crystal; Mao, Weiguang; Gill, Herman; Young, Cynthia; Ljumanovic, Nina; Stainton, Shannon; Ulufatu, Sheila; Fourie, Aimee; Kozak, Katherine R; Fuji, Reina; Polakis, Paul; Khawli, Leslie A; Lin, Kedan

    2013-01-01

    Background and Purpose The success of antibody-drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target-mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen-independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target-mediated clearance. Experimental Approach A series of pharmacokinetics, tissue distribution and mass balance studies were conducted in mice using a radiolabelled anti-TENB2 ADC. These data were complemented by non-invasive single photon emission computed tomography – X-ray computed tomography imaging and immunohistochemistry. Key Results The intestines were identified as a saturable and specific antigen sink that contributes, at least in part, to the rapid target-mediated clearance of the anti-TENB2 antibody and its drug conjugate in rodents. As a proof of concept, we also demonstrated the selective disposition of the ADC in a tumoural environment in vivo using the LuCaP 77 transplant mouse model. High tumour uptake was observed despite the presence of the antigen sink, and antigen specificity was confirmed by antigen blockade. Conclusions and Implications Our findings provide the anatomical location and biological interpretation of target-mediated clearance of anti-TENB2 antibodies and corresponding drug conjugates. Further investigations may be beneficial in addressing the relative contributions to ADC disposition from antigen expression in both normal and pathological tissues. PMID:22889168

  4. An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2.

    PubMed

    Boswell, C Andrew; Mundo, Eduardo E; Firestein, Ron; Zhang, Crystal; Mao, Weiguang; Gill, Herman; Young, Cynthia; Ljumanovic, Nina; Stainton, Shannon; Ulufatu, Sheila; Fourie, Aimee; Kozak, Katherine R; Fuji, Reina; Polakis, Paul; Khawli, Leslie A; Lin, Kedan

    2013-01-01

    The success of antibody-drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target-mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen-independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target-mediated clearance. A series of pharmacokinetics, tissue distribution and mass balance studies were conducted in mice using a radiolabelled anti-TENB2 ADC. These data were complemented by non-invasive single photon emission computed tomography - X-ray computed tomography imaging and immunohistochemistry. The intestines were identified as a saturable and specific antigen sink that contributes, at least in part, to the rapid target-mediated clearance of the anti-TENB2 antibody and its drug conjugate in rodents. As a proof of concept, we also demonstrated the selective disposition of the ADC in a tumoural environment in vivo using the LuCaP 77 transplant mouse model. High tumour uptake was observed despite the presence of the antigen sink, and antigen specificity was confirmed by antigen blockade. Our findings provide the anatomical location and biological interpretation of target-mediated clearance of anti-TENB2 antibodies and corresponding drug conjugates. Further investigations may be beneficial in addressing the relative contributions to ADC disposition from antigen expression in both normal and pathological tissues. © 2012 Genentech, Inc.. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  5. Differential tissue-specific function of the Adora2b in cardio-protection

    PubMed Central

    Seo, Seong-wook; Koeppen, Michael; Bonney, Stephanie; Gobel, Merit; Thayer, Molly; Harter, Patrick N.; Ravid, Katya; Eltzschig, Holger K.; Mittelbronn, Michel; Walker, Lori; Eckle, Tobias

    2015-01-01

    The adenosine A2b-receptor (Adora2b) has been implicated in cardio-protection from myocardial ischemia. As such the Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia reperfusion (IR) injury of the heart. While the Adora2b is present on various cells types, the tissue specific role of the Adora2b in cardio-protection is still unknown. To study the tissue specific role of Adora2b signaling on inflammatory cells, endothelia or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre+, VE-Cadherin-Cre+ or Myosin-Cre+ transgenic mice, respectively. Mice were exposed to 60 minutes of myocardial ischemia with or without IP (4×5min) followed by 120 minutes of reperfusion. Cardio-protection by IP was abolished in Adora2bf/f-VE-Cadherin-Cre+ or Adora2bf/f-Myosin-Cre+, indicating that Adora2bs signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardio-protection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2bf/f-Lyz2-Cre+ mice only. Cytokine profiling of IR injury in Adora2bf/f-Lyz2-Cre+ mice pointed towards PMNs. Analysis of PMNs from Adora2bf/f-Lyz2-Cre+ confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Ador2b−/− PMNs revealed a critical role of the Adorab2 on PMNs in cardio-protection from IR-injury. Adora2b signaling mediates different types of cardio-protection in a tissue specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia. PMID:26136425

  6. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches.

    PubMed

    Novák, Ondřej; Napier, Richard; Ljung, Karin

    2017-04-28

    Plant hormones are a group of naturally occurring, low-abundance organic compounds that influence physiological processes in plants. Our knowledge of the distribution profiles of phytohormones in plant organs, tissues, and cells is still incomplete, but advances in mass spectrometry have enabled significant progress in tissue- and cell-type-specific analyses of phytohormones over the last decade. Mass spectrometry is able to simultaneously identify and quantify hormones and their related substances. Biosensors, on the other hand, offer continuous monitoring; can visualize local distributions and real-time quantification; and, in the case of genetically encoded biosensors, are noninvasive. Thus, biosensors offer additional, complementary technologies for determining temporal and spatial changes in phytohormone concentrations. In this review, we focus on recent advances in mass spectrometry-based quantification, describe monitoring systems based on biosensors, and discuss validations of the various methods before looking ahead at future developments for both approaches.

  7. Tuning of shortening speed in coleoid cephalopod muscle: no evidence for tissue-specific muscle myosin heavy chain isoforms

    PubMed Central

    Shaffer, Justin F.; Kier, William M.

    2015-01-01

    The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities. PMID:26997860

  8. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.

    PubMed

    Markunas, Christina A; Johnson, Eric O; Hancock, Dana B

    2017-07-01

    Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p < 5×10 -8 ) from the NHGRI-EBI Catalog across seven disease/trait categories: cancer, cardiovascular disease, diabetes, autoimmune disease, psychiatric disease, neurological disease, and anthropometric traits. SNPs were annotated using HaploReg for the eight functional elements across any tissue: DNase sites, expression quantitative trait loci (eQTL), sequence conservation, enhancers, promoters, missense variants, sequence motifs, and protein binding sites. In addition, tissue-specific annotations were considered for brain vs. blood. Disease/trait SNPs were compared to a control set of 4809 SNPs matched to the GWAS SNPs (N = 1639) on allele frequency, gene density, distance to nearest gene, and linkage disequilibrium at ~3:1 ratio. Enrichment analyses were conducted using logistic regression, with Bonferroni correction. Overall, a significant enrichment was observed for all functional elements, except sequence motifs. Missense SNPs showed the strongest magnitude of enrichment. eQTLs were the only functional element significantly enriched across all diseases/traits. Magnitudes of enrichment were generally similar across diseases/traits, where enrichment was statistically significant. Blood vs. brain tissue effects on enrichment were dependent on disease/trait and functional element (e.g., cardiovascular disease: eQTLs P TissueDifference  = 1.28 × 10 -6 vs. enhancers P TissueDifference  = 0.94). Identifying disease/trait-relevant functional elements and tissue types could provide new insight into the underlying biology, by guiding a priori GWAS analyses (e.g., brain enhancer elements for psychiatric disease) or facilitating post hoc interpretation.

  9. Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones

    PubMed Central

    Macrander, Jason; Broe, Michael; Daly, Marymegan

    2016-01-01

    Cnidarians represent one of the few groups of venomous animals that lack a centralized venom transmission system. Instead, they are equipped with stinging capsules collectively known as nematocysts. Nematocysts vary in abundance and type across different tissues; however, the venom composition in most species remains unknown. Depending on the tissue type, the venom composition in sea anemones may be vital for predation, defense, or digestion. Using a tissue-specific RNA-seq approach, we characterize the venom assemblage in the tentacles, mesenterial filaments, and column for three species of sea anemone (Anemonia sulcata, Heteractis crispa, and Megalactis griffithsi). These taxa vary with regard to inferred venom potency, symbiont abundance, and nematocyst diversity. We show that there is significant variation in abundance of toxin-like genes across tissues and species. Although the cumulative toxin abundance for the column was consistently the lowest, contributions to the overall toxin assemblage varied considerably among tissues for different toxin types. Our gene ontology (GO) analyses also show sharp contrasts between conserved GO groups emerging from whole transcriptome analysis and tissue-specific expression among GO groups in our differential expression analysis. This study provides a framework for future characterization of tissue-specific venom and other functionally important genes in this lineage of simple bodied animals. PMID:27389690

  10. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    PubMed

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  11. Actinomycotic osteomyelitis of the mandible: an unusual case.

    PubMed

    Figueiredo, Leonardo Morais Godoy; Trindade, Soraya Castro; Sarmento, Viviane Almeida; de Oliveira, Thaís Feitosa Leitão; Muniz, Wilson Rodrigo; Valente, Rômulo Oliveira de Hollanda

    2013-12-01

    Actinomycotic osteomyelitis is an infection in soft tissues and/or bones, being associated with trauma or a previous nonspecific infection. This article presents an unusual case of mandibular osteomyelitis caused by Actinomyces. A 19-year-old male patient was referred for endodontic treatment of the lower right first molar about 16 months ago and removal of lower right third molar approximately 3 years before. The panoramic radiography showed change in bone density in the region of ill-defined mandibular angle boundaries, and the computed tomography (CT) showed mixed density image in the mandibular angle, with discreet expansion of cortical vestibular and lingual. Biopsy was performed, and content was aspirated in small quantity and purulent tissue fragments were sent to anatomical-pathological examination. The collected purulent secretion was colored for cytopathologic study, which showed infection by Actinomyces. In this case, the causative agent was Actinomyces, which makes it even more unusual. The origin of the microorganism has not been clearly established; however, the diagnosis allowed long-term treatment with antibiotics, which has resulted in the resolution of the case.

  12. Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer

    PubMed Central

    O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik

    2015-01-01

    To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329

  13. LDHk, an unusual oxygen-sensitive lactate dehydrogenase expressed in human cancer.

    PubMed Central

    Anderson, G R; Kovacik, W P

    1981-01-01

    An unusual isozyme of lactate dehydrogenase (LDH; L-lactate:NAD+ oxidoreductase, EC 1.1.1.27), LDHk, has been described in cells transformed by the Kirsten murine sarcoma virus (KiMSV). This isozyme appears to contain one or more subunits encoded by the transforming gene of KiMSV and is readily distinguished from other isozymes of LDH. Specifically, it is more basic than other LDH isozymes, has an apparent subunit structure of (35,000)4(22,000)1, is essentially inactive if assayed under a normal atmosphere, and is strongly inhibited by GTP and various related compounds. We have examined human cancer and normal tissue controls for expression of an activity like LDHk. In 11 out of 16 human carcinomas, LDHk activity was increased 10- to 500-fold over the level seen in adjoining nontumor tissue. In contrast, other LDH isozymes were increased by only 2- to 5-fold. Images PMID:6942426

  14. Identifying viscoelastic parameters of tissue specimens using Hertz contact mechanics

    NASA Astrophysics Data System (ADS)

    Namiri, Nikan K.; Maccabi, Ashkan; Bajwa, Neha; Badran, Karam W.; St. John, Maie A.; Taylor, Zachary D.; Grundfest, Warren S.; Saddik, George N.

    2018-02-01

    The unique viscoelastic properties of tissues throughout the human body can be utilized in a variety of clinical applications. Palpation techniques, for instance, enable surgeons to distinguish malignancies in tissue composition during surgical procedures. Additionally, imaging devices have begun utilizing the viscoelastic properties of tissue to delineate tumor margins. Vibroacoustography (VA), a non-invasive, high resolution imaging modality, has the ability to detect sub-millimeter differences in tissue composition. VA images tissue using a low frequency acoustic radiation force, which perturbs the target and causes an acoustic response that is dependent on the target's viscoelastic properties. Given the unique properties specific to human and animal tissues, there are far-reaching clinical applications of VA. To date, however, a comprehensive model that relates viscoelasticity to VA tissue response has yet to be developed. Utilizing tissue-mimicking phantoms (TMPs) and fresh ex vivo tissues, a mechanical stress relaxation model was developed to compare the viscoelastic properties of known and unknown specimens. This approach was conducted using the Hertz theory of contact mechanics. Fresh hepatic tissue was obtained from porcine subjects (n=10), while gelatin and agar TMPs (n=12) were fabricated from organic extracts. Each specimen's elastic modulus (E), long term shear modulus (η), and time constant (τ) were found to be unique. Additionally, each specimen's stress relaxation profiles were analyzed using Weichert-Maxwell viscoelastic modeling, and retained high precision (R2>0.9) among all samples.

  15. Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data.

    PubMed

    Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani

    2012-11-02

    The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated

  16. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue

    PubMed Central

    Korutla, Laxminarayana; Habertheuer, Andreas; Yu, Ming; Rostami, Susan; Yuan, Chao-Xing; Reddy, Sanjana; Korutla, Varun; Koeberlein, Brigitte; Trofe-Clark, Jennifer; Rickels, Michael R.; Naji, Ali

    2017-01-01

    In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, we quantified islet transplant exosomes in recipient blood over long-term follow-up using anti-HLA antibody, which was detectable only in xenoislet recipients of human islets. Transplant islet exosomes were purified using anti-HLA antibody–conjugated beads, and their cargoes contained the islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to a marked decrease in transplant islet exosome signal along with distinct changes in exosomal microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet and renal transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up periods of up to 5 years. Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a noninvasive window into the conditional state of transplant tissue. PMID:28319051

  17. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways

    PubMed Central

    Mitsche, Matthew A; McDonald, Jeffrey G; Hobbs, Helen H; Cohen, Jonathan C

    2015-01-01

    Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K–R pathway. Rather, a hybrid pathway was identified that we call the modified K–R (MK–R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK–R pathway. Thus, relative use of the Bloch and MK–R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol. DOI: http://dx.doi.org/10.7554/eLife.07999.001 PMID:26114596

  18. A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties

    PubMed Central

    Garritano, Sonia; Gigoni, Arianna; Costa, Delfina; Malatesta, Paolo; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo

    2012-01-01

    We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III. PMID:23109855

  19. A novel collection of snRNA-like promoters with tissue-specific transcription properties.

    PubMed

    Garritano, Sonia; Gigoni, Arianna; Costa, Delfina; Malatesta, Paolo; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo

    2012-01-01

    We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III.

  20. Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools.

    PubMed

    Rasinger, J D; Marbaix, H; Dieu, M; Fumière, O; Mauro, S; Palmblad, M; Raes, M; Berntssen, M H G

    2016-09-16

    The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥133°C, at 3bar for 20min) protein feed ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells.

    PubMed

    Chen, Junhui; Meng, Yuhuan; Zhou, Jinghui; Zhuo, Min; Ling, Fei; Zhang, Yu; Du, Hongli; Wang, Xiaoning

    2013-01-01

    Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.

  2. Sparse Feature Selection Identifies H2A.Z as a Novel, Pattern-Specific Biomarker for Asymmetrically Self-Renewing Distributed Stem Cells

    PubMed Central

    Huh, Yang Hoon; Noh, Minsoo; Burden, Frank R.; Chen, Jennifer C.; Winkler, David A.; Sherley, James L.

    2015-01-01

    There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs) in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow). Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify DSC such useful and specific biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ. PMID:25636161

  3. Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array

    PubMed Central

    Zhang, Ting; Zhao, Xiuqin; Huang, Liyu; Liu, Xiaoyue; Zong, Ying; Zhu, Linghua; Yang, Daichang; Fu, Binying

    2013-01-01

    Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development. PMID:23536906

  4. Tissue specific specialization of the nanoscale architecture of Arabidopsis.

    PubMed

    Liu, Jiliang; Inouye, Hideyo; Venugopalan, Nagarajan; Fischetti, Robert F; Gleber, S Charlotte; Vogt, Stefan; Cusumano, Joanne C; Kim, Jeong Im; Chapple, Clint; Makowski, Lee

    2013-11-01

    The Arabidopsis stem is composed of five tissues - the pith, xylem, phloem, cortex and epidermis - each of which fulfills specific roles in support of the growth and survival of the organism. The lignocellulosic scaffolding of cell walls is specialized to provide optimal support for the diverse functional roles of these layers, but little is known about this specialization. X-ray scattering can be used to study this tissue-specific diversity because the cellulosic components of the cell walls give rise to recognizable scattering features interpretable in terms of the underlying molecular architecture and distinct from the largely unoriented scatter from other constituents. Here we use scanning X-ray microdiffraction from thin sections to characterize the diversity of molecular architecture in the Arabidopsis stem and correlate that diversity to the functional roles the distinct tissues of the stem play in the growth and survival of the organism. Copyright © 2013. Published by Elsevier Inc.

  5. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  6. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums.

    PubMed

    Shakoor, Nadia; Nair, Ramesh; Crasta, Oswald; Morris, Geoffrey; Feltus, Alex; Kresovich, Stephen

    2014-01-23

    Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.

  7. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums

    PubMed Central

    2014-01-01

    Background Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community. PMID:24456189

  8. Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome

    PubMed Central

    Pinter, Stefan F.; Colognori, David; Beliveau, Brian J.; Sadreyev, Ruslan I.; Payer, Bernhard; Yildirim, Eda; Wu, Chao-ting; Lee, Jeannie T.

    2015-01-01

    In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5′ and 3′ termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease. PMID:25858912

  9. Tissue-specific autophagy responses to aging and stress in C. elegans.

    PubMed

    Chapin, Hannah C; Okada, Megan; Merz, Alexey J; Miller, Dana L

    2015-06-01

    Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging.

  10. Synthetic biology meets tissue engineering

    PubMed Central

    Davies, Jamie A.; Cachat, Elise

    2016-01-01

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  11. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  12. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-07-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen.

  13. Mapping an atlas of tissue-specific Drosophila melanogaster metabolomes by high resolution mass spectrometry.

    PubMed

    Chintapalli, Venkateswara R; Al Bratty, Mohammed; Korzekwa, Dominika; Watson, David G; Dow, Julian A T

    2013-01-01

    Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes.

  14. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer.

    PubMed

    Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A

    2017-11-01

    Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate < 0.25). Patients with high tumor expression of chromatin-related genes had worse clinical characteristics (Gleason grade > 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.

  15. Age-dependent tissue-specific exposure of cell phone users.

    PubMed

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-07

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  16. Age-dependent tissue-specific exposure of cell phone users

    NASA Astrophysics Data System (ADS)

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-01

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  17. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation

    PubMed Central

    Weng, Lingjie; Li, Yi; Xie, Xiaohui; Shi, Yongsheng

    2016-01-01

    mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms. PMID:27095026

  18. An unusual case of calcineurine inhibitor pain syndrome.

    PubMed

    Nickavar, Azar; Mehrazma, Mitra; Hallaji, Farideh

    2014-09-01

    Cyclosporine induced pain syndrome (CIPS) is a newly diagnosed complication of calcineurine inhibitors, mainly observed in solid organ and hematopoetic transplantations. The present case is a male child with steroid resistant nephrotic syndrome on low therapeutic level cyclosporine treatment. He presented with intractable and debilitating leg pain, with no reported history of previous injury or trauma. The pain was reluctant to antimicrobial and sedative treatment. MRI revealed bone marrow and soft tissue edema in the mid shaft of patient's right leg. Inspite of unusual manifestations, CIPS was suggested and cyclosporine discontinued. However, the pain did not improve and was resistant to calcium blocker. Subsequently, core decompression was performed as an unusual treatment of CIPS, revealing normal bone morphology. The pain improved rapidly and the patient was discharged a few days later.

  19. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Shih, Tsung-Mu; Chang, Hsueh-Wei

    2010-12-17

    SAGE (serial analysis of gene expression) is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM) and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  20. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    PubMed

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  1. Genome-Wide Mutant Fitness Profiling Identifies Nutritional Requirements for Optimal Growth of Yersinia pestis in Deep Tissue

    PubMed Central

    Palace, Samantha G.; Proulx, Megan K.; Lu, Shan; Baker, Richard E.

    2014-01-01

    ABSTRACT Rapid growth in deep tissue is essential to the high virulence of Yersinia pestis, causative agent of plague. To better understand the mechanisms underlying this unusual ability, we used transposon mutagenesis and high-throughput sequencing (Tn-seq) to systematically probe the Y. pestis genome for elements contributing to fitness during infection. More than a million independent insertion mutants representing nearly 200,000 unique genotypes were generated in fully virulent Y. pestis. Each mutant in the library was assayed for its ability to proliferate in vitro on rich medium and in mice following intravenous injection. Virtually all genes previously established to contribute to virulence following intravenous infection showed significant fitness defects, with the exception of genes for yersiniabactin biosynthesis, which were masked by strong intercellular complementation effects. We also identified more than 30 genes with roles in nutrient acquisition and metabolism as experiencing strong selection during infection. Many of these genes had not previously been implicated in Y. pestis virulence. We further examined the fitness defects of strains carrying mutations in two such genes—encoding a branched-chain amino acid importer (brnQ) and a glucose importer (ptsG)—both in vivo and in a novel defined synthetic growth medium with nutrient concentrations matching those in serum. Our findings suggest that diverse nutrient limitations in deep tissue play a more important role in controlling bacterial infection than has heretofore been appreciated. Because much is known about Y. pestis pathogenesis, this study also serves as a test case that assesses the ability of Tn-seq to detect virulence genes. PMID:25139902

  2. A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans.

    PubMed

    Wang, Shaohe; Tang, Ngang Heok; Lara-Gonzalez, Pablo; Zhao, Zhiling; Cheerambathur, Dhanya K; Prevo, Bram; Chisholm, Andrew D; Desai, Arshad; Oegema, Karen

    2017-07-15

    Proteins that are essential for embryo production, cell division and early embryonic events are frequently reused later in embryogenesis, during organismal development or in the adult. Examining protein function across these different biological contexts requires tissue-specific perturbation. Here, we describe a method that uses expression of a fusion between a GFP-targeting nanobody and a SOCS-box containing ubiquitin ligase adaptor to target GFP-tagged proteins for degradation. When combined with endogenous locus GFP tagging by CRISPR-Cas9 or with rescue of a null mutant with a GFP fusion, this approach enables routine and efficient tissue-specific protein ablation. We show that this approach works in multiple tissues - the epidermis, intestine, body wall muscle, ciliated sensory neurons and touch receptor neurons - where it recapitulates expected loss-of-function mutant phenotypes. The transgene toolkit and the strain set described here will complement existing approaches to enable routine analysis of the tissue-specific roles of C. elegans proteins. © 2017. Published by The Company of Biologists Ltd.

  3. Tissue-specific NETs alter genome organization and regulation even in a heterologous system.

    PubMed

    de Las Heras, Jose I; Zuleger, Nikolaj; Batrakou, Dzmitry G; Czapiewski, Rafal; Kerr, Alastair R W; Schirmer, Eric C

    2017-01-02

    Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.

  4. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila.

    PubMed

    Sawyer, Eric M; Brunner, Elizabeth C; Hwang, Yihharn; Ivey, Lauren E; Brown, Olivia; Bannon, Megan; Akrobetu, Dennis; Sheaffer, Kelsey E; Morgan, Oshauna; Field, Conroy O; Suresh, Nishita; Gordon, M Grace; Gunnell, E Taylor; Regruto, Lindsay A; Wood, Cricket G; Fuller, Margaret T; Hales, Karen G

    2017-03-23

    In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.

  5. Tissue-specific tumorigenesis – Context matters

    PubMed Central

    Schneider, Günter; Schmidt-Supprian, Marc; Rad, Roland; Saur, Dieter

    2018-01-01

    Preface How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research enabling molecular tumour profiling. The identification and validation of cancer drivers, which are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so called “basket or umbrella trials”, which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumourigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumourigenesis and mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly-guided cancer therapies in the future. PMID:28256574

  6. Laser micro-dissection and qPCR for identifying specific HPV types responsible for malignancy in penile lesions.

    PubMed

    Lebelo, Ramokone L; Thys, Sofie; Benoy, Ina; Depuydt, Christophe E; Bogers, John-Paul; Bida, Meshack N; Mphahlele, M Jeffrey

    2015-10-01

    The aim of the study was to identify specific human papillomavirus (HPV) type responsible for malignancy in penile tissue samples using laser micro-dissection and TaqMan quantitative real-time PCR (qPCR). The study was based on two pre-malignant and seven malignant penile tissue samples and laser micro-dissection was performed on all. Genotyping was performed on whole tissue sections and laser micro-dissection samples using qPCR. Two whole tissue section samples were HPV negative while seven were HPV positive. In four samples that were single HPV infections with whole tissue section PCR, identical HPV types were confirmed with laser micro-dissection PCR. Clearly confirming that the single HPV type detected is responsible for malignancy. In two samples that had multiple HPV infections with whole tissue section PCR, only one HPV type with the highest viral load was detected with laser micro-dissection PCR, suggesting that the HPV type with the highest viral load is most likely the cause of that particular lesion. HPV 11 and/or HPV 16 were the only types detected with laser micro-dissection PCR in these cases, compared to multiple HPV types (HPV 11, HPV 16, HPV 18, HPV 31, HPV 33, HPV 35, and HPV 39) initially detected with whole tissue section PCR. HPV 11 was associated with verrucous lesions while HPV 16 was associated with squamous cell carcinoma and PIN 3 lesions. This study confirms that laser micro-dissection and qPCR are essential tools in identifying the HPV types responsible for malignancy in penile lesions, particularly in samples with multiple infections. © 2015 Wiley Periodicals, Inc.

  7. Tissue-Specific Transcriptomics in the Field Cricket Teleogryllus oceanicus

    PubMed Central

    Bailey, Nathan W.; Veltsos, Paris; Tan, Yew-Foon; Millar, A. Harvey; Ritchie, Michael G.; Simmons, Leigh W.

    2013-01-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection. PMID:23390599

  8. Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.

    PubMed

    Bailey, Nathan W; Veltsos, Paris; Tan, Yew-Foon; Millar, A Harvey; Ritchie, Michael G; Simmons, Leigh W

    2013-02-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection--testis and accessory gland--would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.

  9. Identifying the architecture of a supracellular actomyosin network that induces tissue folding

    NASA Astrophysics Data System (ADS)

    Yevick, Hannah; Stoop, Norbert; Dunkel, Jorn; Martin, Adam

    During embryonic development, the establishment of correct tissue form ensures proper tissue function. Yet, how the thousands of cells within a tissue coordinate force production to sculpt tissue shape is poorly understood. One important tissue shape change is tissue folding where a cell sheet bends to form a closed tube. Drosophila (fruit fly) embryos undergo such a folding event, called ventral furrow formation. The ventral furrow is associated with a supracellular network of actin and myosin, where actin-myosin fibers assemble and connect between cells. It is not known how this tissue-wide network grows and connects over time, how reproducible it is between embryos, and what determines its architecture. Here, we used topological feature analysis to quantitatively and dynamically map the connections and architecture of this supracellular network across hundreds of cells in the folding tissue. We identified the importance of the cell unit in setting up the tissue-scale architecture of the network. Our mathematical framework allows us to explore stereotypic properties of the myosin network such that we can investigate the reproducibility of mechanical connections for a morphogenetic process. NIH F32.

  10. Cross-Tissue and Tissue-Specific eQTLs: Partitioning the Heritability of a Complex Trait

    PubMed Central

    Torres, Jason M.; Gamazon, Eric R.; Parra, Esteban J.; Below, Jennifer E.; Valladares-Salgado, Adan; Wacher, Niels; Cruz, Miguel; Hanis, Craig L.; Cox, Nancy J.

    2014-01-01

    Top signals from genome-wide association studies (GWASs) of type 2 diabetes (T2D) are enriched with expression quantitative trait loci (eQTLs) identified in skeletal muscle and adipose tissue. We therefore hypothesized that such eQTLs might account for a disproportionate share of the heritability estimated from all SNPs interrogated through GWASs. To test this hypothesis, we applied linear mixed models to the Wellcome Trust Case Control Consortium (WTCCC) T2D data set and to data sets representing Mexican Americans from Starr County, TX, and Mexicans from Mexico City. We estimated the proportion of phenotypic variance attributable to the additive effect of all variants interrogated in these GWASs, as well as a much smaller set of variants identified as eQTLs in human adipose tissue, skeletal muscle, and lymphoblastoid cell lines. The narrow-sense heritability explained by all interrogated SNPs in each of these data sets was substantially greater than the heritability accounted for by genome-wide-significant SNPs (∼10%); GWAS SNPs explained over 50% of phenotypic variance in the WTCCC, Starr County, and Mexico City data sets. The estimate of heritability attributable to cross-tissue eQTLs was greater in the WTCCC data set and among lean Hispanics, whereas adipose eQTLs significantly explained heritability among Hispanics with a body mass index ≥ 30. These results support an important role for regulatory variants in the genetic component of T2D susceptibility, particularly for eQTLs that elicit effects across insulin-responsive peripheral tissues. PMID:25439722

  11. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs.

    PubMed

    Gondret, Florence; Vincent, Annie; Houée-Bigot, Magalie; Siegel, Anne; Lagarrigue, Sandrine; Causeur, David; Gilbert, Hélène; Louveau, Isabelle

    2017-03-21

    Animal's efficiency in converting feed into lean gain is a critical issue for the profitability of meat industries. This study aimed to describe shared and specific molecular responses in different tissues of pigs divergently selected over eight generations for residual feed intake (RFI). Pigs from the low RFI line had an improved gain-to-feed ratio during the test period and displayed higher leanness but similar adiposity when compared with pigs from the high RFI line at 132 days of age. Transcriptomics data were generated from longissimus muscle, liver and two adipose tissues using a porcine microarray and analyzed for the line effect (n = 24 pigs per line). The most apparent effect of the line was seen in muscle, whereas subcutaneous adipose tissue was the less affected tissue. Molecular data were analyzed by bioinformatics and subjected to multidimensional statistics to identify common biological processes across tissues and key genes participating to differences in the genetics of feed efficiency. Immune response, response to oxidative stress and protein metabolism were the main biological pathways shared by the four tissues that distinguished pigs from the low or high RFI lines. Many immune genes were under-expressed in the four tissues of the most efficient pigs. The main genes contributing to difference between pigs from the low vs high RFI lines were CD40, CTSC and NTN1. Different genes associated with energy use were modulated in a tissue-specific manner between the two lines. The gene expression program related to glycogen utilization was specifically up-regulated in muscle of pigs from the low RFI line (more efficient). Genes involved in fatty acid oxidation were down-regulated in muscle but were promoted in adipose tissues of the same pigs when compared with pigs from the high RFI line (less efficient). This underlined opposite line-associated strategies for energy use in skeletal muscle and adipose tissue. Genes related to cholesterol synthesis

  12. Combined Bisulfite Restriction Analysis for brain tissue identification.

    PubMed

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    PubMed Central

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  14. The surface of Mars: An unusual laboratory that preserves a record of catastrophic and unusual events

    USGS Publications Warehouse

    Chapman, M.G.

    2009-01-01

    Catastrophic and unusual events on Earth such as bolide impacts, megafloods, supereruptions, flood volcanism, and subice volcanism may have devastating effects when they occur. Although these processes have unique characteristics and form distinctive features and deposits, we have diffi culties identifying them and measuring the magnitude of their effects. Our diffi culties with interpreting these processes and identifying their consequences are understandable considering their infrequency on Earth, combined with the low preservation potential of their deposits in the terrestrial rock record. Although we know these events do happen, they are infrequent enough that the deposits are poorly preserved on the geologically active face of the Earth, where erosion, volcanism, and tectonism constantly change the surface. Unlike the Earth, on Mars catastrophic and unusual features are well preserved because of the slow modifi cation of the surface. Signifi cant precipitation has not occurred on Mars for billions of years and there appears to be no discrete crustal plates to have undergone subduction and destruction. Therefore the ancient surface of Mars preserves geologic features and deposits that result from these extraordinary events. Also, unlike the other planets, Mars is the most similar to our own, having an atmosphere, surface ice, volcanism, and evidence of onceflowing water. So although our understanding of precursors, processes, and possible biological effects of catastrophic and unusual processes is limited on Earth, some of these mysteries may be better understood through investigating the surface of Mars. ?? 2009 The Geological Society of America.

  15. Comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri identifies potential genes related to triterpenoid saponin biosynthesis.

    PubMed

    Jeena, Gajendra Singh; Fatima, Shahnoor; Tripathi, Pragya; Upadhyay, Swati; Shukla, Rakesh Kumar

    2017-06-28

    Bacopa monnieri commonly known as Brahmi is utilized in Ayurveda to improve memory and many other human health benefits. Bacosides enriched standardized extract of Bacopa monnieri is being marketed as a memory enhancing agent. In spite of its well known pharmacological properties it is not much studied in terms of transcripts involved in biosynthetic pathway and its regulation that controls the secondary metabolic pathway in this plant. The aim of this study was to identify the potential transcripts and provide a framework of identified transcripts involved in bacosides production through transcriptome assembly. We performed comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri in two independent biological replicate and obtained 22.48 million and 22.0 million high quality processed reads in shoot and root respectively. After de novo assembly and quantitative assessment total 26,412 genes got annotated in root and 18,500 genes annotated in shoot sample. Quality of raw reads was determined by using SeqQC-V2.2. Assembled sequences were annotated using BLASTX against public database such as NR or UniProt. Searching against the KEGG pathway database indicated that 37,918 unigenes from root and 35,130 unigenes from shoot were mapped to 133 KEGG pathways. Based on the DGE data we found that most of the transcript related to CYP450s and UDP-glucosyltransferases were specifically upregulated in shoot tissue as compared to root tissue. Finally, we have selected 43 transcripts related to secondary metabolism including transcription factor families which are differentially expressed in shoot and root tissues were validated by qRT-PCR and their expression level were monitored after MeJA treatment and wounding for 1, 3 and 5 h. This study not only represents the first de novo transcriptome analysis of Bacopa monnieri but also provides information about the identification, expression and differential tissues specific distribution of transcripts related

  16. Gastric Cancer-Specific Protein Profile Identified Using Endoscopic Biopsy Samples via MALDI Mass Spectrometry

    PubMed Central

    Kim, Hark Kyun; Reyzer, Michelle L.; Choi, Il Ju; Kim, Chan Gyoo; Kim, Hee Sung; Oshima, Akira; Chertov, Oleg; Colantonio, Simona; Fisher, Robert J.; Allen, Jamie L.; Caprioli, Richard M.; Green, Jeffrey E.

    2012-01-01

    To date, proteomic analyses on gastrointestinal cancer tissue samples have been performed using surgical specimens only, which are obtained after a diagnosis is made. To determine if a proteomic signature obtained from endoscopic biopsy samples could be found to assist with diagnosis, frozen endoscopic biopsy samples collected from 63 gastric cancer patients and 43 healthy volunteers were analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. A statistical classification model was developed to distinguish tumor from normal tissues using half the samples and validated with the other half. A protein profile was discovered consisting of 73 signals that could classify 32 cancer and 22 normal samples in the validation set with high predictive values (positive and negative predictive values for cancer, 96.8% and 91.3%; sensitivity, 93.8%; specificity, 95.5%). Signals overexpressed in tumors were identified as α-defensin-1, α-defensin-2, calgranulin A, and calgranulin B. A protein profile was also found to distinguish pathologic stage Ia (pT1N0M0) samples (n = 10) from more advanced stage (Ib or higher) tumors (n = 48). Thus, protein profiles obtained from endoscopic biopsy samples may be useful in assisting with the diagnosis of gastric cancer and, possibly, in identifying early stage disease. PMID:20557134

  17. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    PubMed

    Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico

    2014-01-01

    Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co

  18. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes

    PubMed Central

    Bastiani, Michele; Liu, Libin; Hill, Michelle M.; Jedrychowski, Mark P.; Nixon, Susan J.; Lo, Harriet P.; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R.; Gygi, Steven P.; Vinten, Jorgen; Walser, Piers J.; North, Kathryn N.; Hancock, John F.; Pilch, Paul F.

    2009-01-01

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer–based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein. PMID:19546242

  19. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.

    PubMed

    Bastiani, Michele; Liu, Libin; Hill, Michelle M; Jedrychowski, Mark P; Nixon, Susan J; Lo, Harriet P; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R; Gygi, Steven P; Vinten, Jorgen; Walser, Piers J; North, Kathryn N; Hancock, John F; Pilch, Paul F; Parton, Robert G

    2009-06-29

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.

  20. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging.

    PubMed

    Wend, Korinna; Wend, Peter; Krum, Susan A

    2012-01-01

    The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women's Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms.

  1. Myopericytoma proliferating in an unusual anastomosing multinodular fashion.

    PubMed

    Inoue, Takuya; Misago, Noriyuki; Asami, Akihiko; Tokunaga, Osamu; Narisawa, Yutaka

    2016-05-01

    We herein describe a case of myopericytoma that proliferated in an unusual fashion. Myopericytoma is described as a group of rare, benign, dermal or subcutaneous tumors that are characterized histologically by a striking, concentric, perivascular proliferation of spindle cells and showing apparent differentiation towards perivascular myoid cells. Myopericytoma forms a morphological continuum with myofibroma/myofibromatosis, glomus tumor and angioleiomyoma. The patient was a 64-year-old woman who demonstrated a recurrent ulcer on an atrophic plaque on her left shin. A histopathological examination of the plaque demonstrated that tumor cells proliferated in an anastomosing multinodular fashion along the vessels in the dermis and subcutaneous tissue. In those nodules, there were numerous, small, concentric proliferations of myoid-appearing spindle cells around small vascular lumina. The present case is an unusual example of myopericytoma, manifesting in a characteristic anastomosing, multinodular, infiltrating fashion. © 2015 Japanese Dermatological Association.

  2. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed Central

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis. PMID:12226177

  3. Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation.

    PubMed

    Azzi, Salah; Blaise, Annick; Steunou, Virginie; Harbison, Madeleine D; Salem, Jennifer; Brioude, Frédéric; Rossignol, Sylvie; Habib, Walid Abi; Thibaud, Nathalie; Neves, Cristina Das; Jule, Marilyne Le; Brachet, Cécile; Heinrichs, Claudine; Bouc, Yves Le; Netchine, Irène

    2014-10-01

    Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS. © 2014 WILEY PERIODICALS, INC.

  4. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.

    PubMed

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  5. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakoor, N; Nair, R; Crasta, O

    2014-01-23

    Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specificmore » probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.« less

  6. Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches

    PubMed Central

    Choi, Ted; Eskin, Eleazar

    2013-01-01

    Gene expression data, in conjunction with information on genetic variants, have enabled studies to identify expression quantitative trait loci (eQTLs) or polymorphic locations in the genome that are associated with expression levels. Moreover, recent technological developments and cost decreases have further enabled studies to collect expression data in multiple tissues. One advantage of multiple tissue datasets is that studies can combine results from different tissues to identify eQTLs more accurately than examining each tissue separately. The idea of aggregating results of multiple tissues is closely related to the idea of meta-analysis which aggregates results of multiple genome-wide association studies to improve the power to detect associations. In principle, meta-analysis methods can be used to combine results from multiple tissues. However, eQTLs may have effects in only a single tissue, in all tissues, or in a subset of tissues with possibly different effect sizes. This heterogeneity in terms of effects across multiple tissues presents a key challenge to detect eQTLs. In this paper, we develop a framework that leverages two popular meta-analysis methods that address effect size heterogeneity to detect eQTLs across multiple tissues. We show by using simulations and multiple tissue data from mouse that our approach detects many eQTLs undetected by traditional eQTL methods. Additionally, our method provides an interpretation framework that accurately predicts whether an eQTL has an effect in a particular tissue. PMID:23785294

  7. Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns.

    PubMed

    Pardo, Michal; Kuperman, Yael; Levin, Liron; Rudich, Assaf; Haim, Yulia; Schauer, James J; Chen, Alon; Rudich, Yinon

    2018-04-20

    Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue

  8. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders.

    PubMed

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M; Weinberger, Daniel R; Kleinman, Joel E; Law, Amanda J

    2017-03-01

    Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I-IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. NRG3 isoform classes I-IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Mapping the temporal expression of genes

  9. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    PubMed Central

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  10. Unusual Dermatological Manifestations of Gout: Review of Literature and a Case Report

    PubMed Central

    Ortega, Viviana Gómez; Gaona, Jennifer; Motta, Adriana; Medina Barragán, Oskar Javier

    2015-01-01

    Background: Gouty panniculitis is a rare clinical manifestation of gout, characterized by deposits of monosodium urate crystals in the hypodermis. Our aim was to describe atypical and rare clinical presentations of gouty tophi. Methods: We searched relevant English and Spanish literature of unusual gout manifestations using the following keywords: giant, gout, panniculitis, gouty panniculitis, gouty tophi, rare manifestations of gout, gouty, tophi, tophus, monosodium urate, uric acid, and unusual. Well-described case reports, case series, and review articles were evaluated and included in the literature review. Results: International literature has reported fewer than 10 cases of gouty panniculitis worldwide. In this case report, the patient presents a rare manifestation of gouty panniculitis, with typical joint injuries, gouty tophi in both lower and upper extremities, chronic gouty tophi in the nose, for which only 3 cases have been reported in literature, and great hypertrophy of adipose tissue in the lower back. Conclusions: Tophi can be found in atypical locations, which increase morbidities and deformities caused by the disease. We report an interesting case of gouty panniculitis associated with great hypertrophy of the adipose tissue, a rare manifestation of gout, and unusual locations of tophi. These clinical manifestations in our patient have not been recorded before, which leads us to think that we are in the presence of a new dermatological manifestation of gout. PMID:26301134

  11. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    PubMed Central

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  12. Detection of unusual strains of RV in patients with acute diarrhoea in Mexico.

    PubMed

    del R González-Losa, Maria; Rodríguez-Angulo, Elsa; Manzano-Cabrera, Luis; Mejía-Cámara, Javier; Puerto-Solís, Marylin

    2005-04-01

    Group A rotaviruses are a major cause of acute gastroenteritis in infants. Human strains with a short RNA pattern generally exhibit subgroup I, G2, P1B[4] specificity, those with a long RNA pattern show subgroup II, G1, G3 or G4, P1A[8] specificity. The presence of strains with unusual specificities has been reported worldwide over the last decade. To determine antigenic diversity among rotaviruses isolated from patients with diarrhoea. A laboratory-based survey study was carried out with faecal samples from patients with acute gastroenteritis form January to April 2000. To classify the samples PAGE and ELISA with specific antibodies to serotype G and P and RT-PCR were carried out. Twenty one specimens from patients with dehydrating diarrhoea had unusual specifies. Nine specimens had unusual combination of long pattern and subgroup I. Twelve specimens with short pattern belong to G1 serotype. As far as the serotypes and genotypes concern 11 samples were P1A, P[4] and one specimen was P1A, P[9]. These results demonstrated the unexpected presence of unusual strains of rotavirus in Mexico. Detection of strains with both human and animal characteristics may indicate interspecies transmission of RV between humans and animals.

  13. A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling.

    PubMed

    van Kelle, Mathieu A J; Oomen, Pim J A; Bulsink, Jurgen A; Janssen-van den Broek, Marloes W J T; Lopata, Richard G P; Rutten, Marcel C M; Loerakker, Sandra; Bouten, Carlijn V C

    2017-06-01

    Tissue growth and remodeling are essential processes that should ensure long-term functionality of tissue-engineered (TE) constructs. Even though it is widely recognized that these processes strongly depend on mechanical stimuli, the underlying mechanisms of mechanically induced growth and remodeling are only partially understood. It is generally accepted that cells sense mechanical changes and respond by altering their surroundings, by means of extracellular matrix growth and remodeling, in an attempt to return to a certain preferred mechanical homeostatic state. However, the exact mechanical cues that trigger cells to synthesize and remodel their environment remain unclear. To identify the driving mechanical stimuli of these processes, it is critical to be able to temporarily follow the mechanical state of developing tissues under physiological loading conditions. Therefore, a novel "versatile tissue growth and remodeling" (Vertigro) bioreactor was developed that is capable of tissue culture and mechanical stimulation for a prolonged time period, while simultaneously performing mechanical testing. The Vertigro's unique two-chamber design allows easy, sterile handling of circular 3D TE constructs in a dedicated culture chamber, while a separate pressure chamber facilitates a pressure-driven dynamic loading regime during culture. As a proof-of-concept, temporal changes in the mechanical state of cultured tissues were quantified using nondestructive mechanical testing by means of a classical bulge test, in which the tissue displacement was tracked using ultrasound imaging. To demonstrate the successful development of the bioreactor system, compositional, structural, and geometrical changes were qualitatively and quantitatively assessed using a series of standard analysis techniques. With this bioreactor and associated mechanical analysis technique, a powerful toolbox has been developed to quantitatively study and identify the driving mechanical stimuli of engineered

  14. Unusual spacecraft materials

    NASA Technical Reports Server (NTRS)

    Post, Jonathan V.

    1990-01-01

    For particularly innovative space exploration missions, unusual requirements are levied on the structural components of the spacecraft. In many cases, the preferred solution is the utilization of unusual materials. This trend is forecast to continue. Several hypothetic examples are discussed.

  15. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    PubMed

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Complex Tissue-Specific Patterns and Distribution of Multiple RAGE Splice Variants in Different Mammals

    PubMed Central

    López-Díez, Raquel; Rastrojo, Alberto; Villate, Olatz; Aguado, Begoña

    2013-01-01

    The receptor for advanced glycosylation end products (RAGE) is a multiligand receptor involved in diverse cell signaling pathways. Previous studies show that this gene expresses several splice variants in human, mouse, and dog. Alternative splicing (AS) plays an important role in expanding transcriptomic and proteomic diversity, and it has been related to disease. AS is also one of the main evolutionary mechanisms in mammalian genomes. However, limited information is available regarding the AS of RAGE in a wide context of mammalian tissues. In this study, we examined in detail the different RAGE mRNAs generated by AS from six mammals, including two primates (human and monkey), two artiodactyla (cow and pig), and two rodentia (mouse and rat) in 6–18 different tissues including fetal, adult, and tumor. By nested reverse transcription-polymerase chain reaction (RT-PCR) we identified a high number of splice variants including noncoding transcripts and predicted coding ones with different potential protein modifications affecting mainly the transmembrane and ligand-binding domains that could influence their biological function. However, analysis of RNA-seq data enabled detecting only the most abundant splice variants. More than 80% of the detected RT-PCR variants (87 of 101 transcripts) are novel (different exon/intron structure to the previously described ones), and interestingly, 20–60% of the total transcripts (depending on the species) are noncoding ones that present tissue specificity. Our results suggest that RAGE undergoes extensive AS in mammals, with different expression patterns among adult, fetal, and tumor tissues. Moreover, most splice variants seem to be species specific, especially the noncoding variants, with only two (canonical human Tv1-RAGE, and human N-truncated or Tv10-RAGE) conserved among the six different species. This could indicate a special evolution pattern of this gene at mRNA level. PMID:24273313

  17. Unusual way of suicide by carbon monoxide. Case Report.

    PubMed

    Zelený, Michal; Pivnička, Jan; Šindler, Martin; Kukleta, Pavel

    2015-01-01

    Authors discuss the case of a suicide of a 29-year-old man caused by carbon monoxide (CO) intoxication. What the authors found interesting was the unusual way of committing suicide that required good technical skills and expert knowledge. The level of carboxyhemoglobin (COHb) in the blood of the deceased man was routinely determined by the modified method by Blackmoore (1970), using gas chromatography/thermal conductivity detection. The level of saturation of the hemoglobin by CO in the collected blood sample is determined relatively to the same sample saturated to 100%. In the blood sample of the deceased man the lethal concentration of COHb of 76.5% was determined. Within the following examinations the blood alcohol concentration of 0.05 g.kg(-1) was determined. Further analysis revealed traces of sertraline, its metabolite N-desmethylsertraline, omeprazole and caffeine in the liver tissue, traces of N-desmethylsertraline, ibuprofen and caffeine in urine sample, and only traces of caffeine in the stomach content and blood samples were proved. To commit suicide the man used a sophisticated double container-system equipped with a timer for controlled generation of CO based on the chemical reaction of concentrated sulphuric acid and formic acid. The used timer was set by an electromechanical timer switch that triggered the fatal reaction of the acids while the man was sleeping. The authors discuss an unusual case of suicide by CO intoxication rarely seen in the area of forensic medicine and toxicology that is specific due to its sophisticated way of execution.

  18. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    PubMed Central

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  19. Diurnal Changes in Volume and Specific Tissue Weight of Crassulacean Acid Metabolism Plants 1

    PubMed Central

    Chen, Sheng-Shu; Black, Clanton C.

    1983-01-01

    The diurnal variations in volume and in specific weight were determined for green stems and leaves of Crassulacen acid metabolism (CAM) plants. Volume changes were measured by a water displacement method. Diurnal variations occurred in the volume of green CAM tissues. Their volume increased early in the light period reaching a maximum about mid-day, then the volume decreased to a minimum near midnight. The maximum volume increase each day was about 2.7% of the total volume. Control leaves of C3 and C4 plants exhibited reverse diurnal volume changes of 0.2 to 0.4%. The hypothesis is presented and supported that green CAM tissues should exhibit a diurnal increase in volume due to the increase of internal gas pressure from CO2 and O2 when their stomata are closed. Conversely, the volume should decrease when the gas pressure is decreased. The second hypothesis presented and supported was that the specific weight (milligrams of dry weight per square centimeter of green surface area) of green CAM tissues should increase at night due to the net fixation of CO2. Green CAM tissues increased their specific weight at night in contrast to control C3 and C4 leaves which decreased their specific weight at night. With Kalanchoë daigremontiana leaves, the calculated increase in specific leaf weight at night based on estimates of carbohydrate available for net CO2 fixation was near 6% and the measured increase in specific leaf weight was 6%. Diurnal measurements of CAM tissue water content were neither coincident nor reciprocal with their diurnal patterns of either volume or specific weight changes. PMID:16662833

  20. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  1. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture.

    PubMed

    Sakakura, Eriko; Eiraku, Mototsugu; Takata, Nozomu

    2016-08-01

    The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Hypoxia as a target for tissue specific gene therapy.

    PubMed

    Rhim, Taiyoun; Lee, Dong Yun; Lee, Minhyung

    2013-12-10

    Hypoxia is a hallmark of various ischemic diseases such as ischemic heart disease, ischemic limb, ischemic stroke, and solid tumors. Gene therapies for these diseases have been developed with various therapeutic genes including growth factors, anti-apoptotic genes, and toxins. However, non-specific expression of these therapeutic genes may induce dangerous side effects in the normal tissues. To avoid the side effects, gene expression should be tightly regulated in an oxygen concentration dependent manner. The hypoxia inducible promoters and enhancers have been evaluated as a transcriptional regulation tool for hypoxia inducible gene therapy. The hypoxia inducible UTRs were also used in gene therapy for spinal cord injury as a translational regulation strategy. In addition to transcriptional and translational regulations, post-translational regulation strategies have been developed using the HIF-1α ODD domain. Hypoxia inducible transcriptional, translational, and post-translational regulations are useful for tissue specific gene therapy of ischemic diseases. In this review, hypoxia inducible gene expression systems are discussed and their applications are introduced. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Tissue-specific insulin signaling mediates female sexual attractiveness

    PubMed Central

    Arbuthnott, Devin; Rundle, Howard D.; Promislow, Daniel E. L.; Pletcher, Scott D.

    2017-01-01

    Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells. PMID:28817572

  4. Tissue-specific insulin signaling mediates female sexual attractiveness.

    PubMed

    Fedina, Tatyana Y; Arbuthnott, Devin; Rundle, Howard D; Promislow, Daniel E L; Pletcher, Scott D

    2017-08-01

    Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.

  5. Cell- and Tissue-Specific Transcriptome Analyses of Medicago truncatula Root Nodules

    PubMed Central

    Limpens, Erik; Moling, Sjef; Hooiveld, Guido; Pereira, Patrícia A.; Bisseling, Ton; Becker, Jörg D.; Küster, Helge

    2013-01-01

    Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies. PMID:23734198

  6. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy - a prospect for tissue specific laser surgery.

    PubMed

    Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian

    2017-10-01

    Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    PubMed

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes

    PubMed Central

    Ai, Rizi; Hammaker, Deepa; Boyle, David L.; Morgan, Rachel; Walsh, Alice M.; Fan, Shicai; Firestein, Gary S.; Wang, Wei

    2016-01-01

    Stratifying patients on the basis of molecular signatures could facilitate development of therapeutics that target pathways specific to a particular disease or tissue location. Previous studies suggest that pathogenesis of rheumatoid arthritis (RA) is similar in all affected joints. Here we show that distinct DNA methylation and transcriptome signatures not only discriminate RA fibroblast-like synoviocytes (FLS) from osteoarthritis FLS, but also distinguish RA FLS isolated from knees and hips. Using genome-wide methods, we show differences between RA knee and hip FLS in the methylation of genes encoding biological pathways, such as IL-6 signalling via JAK-STAT pathway. Furthermore, differentially expressed genes are identified between knee and hip FLS using RNA-sequencing. Double-evidenced genes that are both differentially methylated and expressed include multiple HOX genes. Joint-specific DNA signatures suggest that RA disease mechanisms might vary from joint to joint, thus potentially explaining some of the diversity of drug responses in RA patients. PMID:27282753

  9. Several unusual cases of child abuse.

    PubMed

    Palmer, H; Weston, J T

    1976-10-01

    All childhood deaths which occurred in New Mexico during 1974 and 1975 were reviewed. Nine fatal instances of abuse were identified representing the entire spectrum of physical abuse: neglect, abuse in a single episode of injury, repetitive abuse, or sexual abuse. Several cases are summarized. These are unusual either in the distribution of pathologic findings or in the problems encountered in court presentation.

  10. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  11. Genome-wide oxidative bisulfite sequencing identifies sex-specific methylation differences in the human placenta

    PubMed Central

    Johnson, Michelle D; Dopierala, Justyna

    2018-01-01

    ABSTRACT DNA methylation is an important regulator of gene function. Fetal sex is associated with the risk of several specific pregnancy complications related to placental function. However, the association between fetal sex and placental DNA methylation remains poorly understood. We carried out whole-genome oxidative bisulfite sequencing in the placentas of two healthy female and two healthy male pregnancies generating an average genome depth of coverage of 25x. Most highly ranked differentially methylated regions (DMRs) were located on the X chromosome but we identified a 225 kb sex-specific DMR in the body of the CUB and Sushi Multiple Domains 1 (CSMD1) gene on chromosome 8. The sex-specific differential methylation pattern observed in this region was validated in additional placentas using in-solution target capture. In a new RNA-seq data set from 64 female and 67 male placentas, CSMD1 mRNA was 1.8-fold higher in male than in female placentas (P value = 8.5 × 10−7, Mann-Whitney test). Exon-level quantification of CSMD1 mRNA from these 131 placentas suggested a likely placenta-specific CSMD1 isoform not detected in the 21 somatic tissues analyzed. We show that the gene body of an autosomal gene, CSMD1, is differentially methylated in a sex- and placental-specific manner, displaying sex-specific differences in placental transcript abundance. PMID:29376485

  12. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.

    PubMed

    Wang, L; Eriksson, S

    2010-06-01

    Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.

  13. An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter.

    PubMed Central

    Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C

    1989-01-01

    The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122

  14. Acute Hypercortisolemia Exerts Depot-Specific Effects on Abdominal and Femoral Adipose Tissue Function

    PubMed Central

    O’Reilly, Michael W.; Bujalska, Iwona J.; Tomlinson, Jeremy W.; Arlt, Wiebke

    2017-01-01

    Context: Glucocorticoids have pleiotropic metabolic functions, and acute glucocorticoid excess affects fatty acid metabolism, increasing systemic lipolysis. Whether glucocorticoids exert adipose tissue depot-specific effects remains unclear. Objective: To provide an in vivo assessment of femoral and abdominal adipose tissue responses to acute glucocorticoid administration. Design and Outcome Measures: Nine healthy male volunteers were studied on two occasions, after a hydrocortisone infusion (0.2 mg/kg/min for 14 hours) and a saline infusion, respectively, given in randomized double-blind order. The subjects were studied in the fasting state and after a 75-g glucose drink with an in vivo assessment of femoral adipose tissue blood flow (ATBF) using radioactive xenon washout and of lipolysis and glucose uptake using the arteriovenous difference technique. In a separate study (same infusion design), eight additional healthy male subjects underwent assessment of fasting abdominal ATBF and lipolysis only. Lipolysis was assessed as the net release of nonesterified fatty acids (NEFAs) from femoral and abdominal subcutaneous adipose tissue. Results: Acute hypercortisolemia significantly increased basal and postprandial ATBF in femoral adipose tissue, but the femoral net NEFA release did not change. In abdominal adipose tissue, hypercortisolemia induced substantial increases in basal ATBF and NEFA release. Conclusions: Acute hypercortisolemia induces differential lipolysis and ATBF responses in abdominal and femoral adipose tissue, suggesting depot-specific glucocorticoid effects. Abdominal, but not femoral, adipose tissue contributes to the hypercortisolemia-induced systemic NEFA increase, with likely contributions from other adipose tissue sources and intravascular triglyceride hydrolysis. PMID:28323916

  15. The Relation of Codon Bias to Tissue-Specific Gene Expression in Arabidopsis thaliana

    PubMed Central

    Camiolo, Salvatore; Farina, Lorenzo; Porceddu, Andrea

    2012-01-01

    The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codon bias, they could not explain the observed differences fully. Similarly, given that transcript abundances did not account for the differences in codon usage, it is unlikely that selection for translational efficiency can account exclusively for the observed codon bias. Thus, we considered the possible evolution of codon bias as an adaptive response to the different abundances of tRNAs in different tissues. Our analysis demonstrated that in some cases, codon usage in genes that were expressed in a broad range of tissues was influenced primarily by the tissue in which the gene was expressed maximally. On the basis of this finding we propose that genes that are expressed in certain tissues might show a tissue-specific compositional signature in relation to codon usage. These findings might have implications for the design of transgenes in relation to optimizing their expression. PMID:22865738

  16. Histology-specific therapy for advanced soft tissue sarcoma and benign connective tissue tumors.

    PubMed

    Silk, Ann W; Schuetze, Scott M

    2012-09-01

    Molecularly targeted agents have shown activity in soft tissue sarcoma (STS) and benign connective tissue tumors over the past ten years, but response rates differ by histologic subtype. The field of molecularly targeted agents in sarcoma is increasingly complex. Often, clinicians must rely on phase II data or even case series due to the rarity of these diseases. In subtypes with a clear role of specific factors in the pathophysiology of disease, such as giant cell tumor of the bone and diffuse-type tenosynovial giant cell tumor, it is reasonable to treat with newer targeted therapies, when available, in place of chemotherapy when systemic treatment is needed to control disease. In diseases without documented implication of a pathway in disease pathogenesis (e.g. soft tissue sarcoma and vascular endothelial growth factor), clear benefit from drug treatment should be established in randomized phase III trials before implementation into routine clinical practice. Histologic subtype will continue to emerge as a critical factor in treatment selection as we learn more about the molecular drivers of tumor growth and survival in different subtypes. Many of the drugs that have been recently developed affect tumor growth more than survival, therefore progression-free survival may be a more clinically relevant intermediate endpoint than objective response rate using Response Evaluation Criteria In Solid Tumors (RECIST) in early phase sarcoma trials. Because of the rarity of disease and increasing need for multidisciplinary management, patients with connective tissue tumors should be evaluated at a center with expertise in these diseases. Participation in clinical trials, when available, is highly encouraged.

  17. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    PubMed Central

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  18. Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification.

    PubMed

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples.

  19. Characteristics of microRNAs enriched in specific cell types and primary tissue types in solid organs.

    PubMed

    Kriegel, Alison J; Liu, Yong; Liu, Pengyuan; Baker, Maria Angeles; Hodges, Matthew R; Hua, Xing; Liang, Mingyu

    2013-12-01

    Knowledge of miRNA expression and function in specific cell types in solid organs is limited because of difficulty in obtaining appropriate specimens. We used laser capture microdissection to obtain nine tissue regions from rats, including the nucleus of the solitary tract, hypoglossal motor nucleus, ventral respiratory column/pre-Bötzinger complex, and midline raphe nucleus from the brain stem, myocardium and coronary artery from the heart, and glomerulus, proximal convoluted tubule, and medullary thick ascending limb from the kidney. Each tissue region consists of or is enriched for a specific cell type. Differential patterns of miRNA expression obtained by deep sequencing of minute amounts of laser-captured cells were highly consistent with data obtained from real-time PCR analysis. miRNA expression patterns correctly clustered the specimens by tissue regions and then by primary tissue types (neural, muscular, or epithelial). The aggregate difference in miRNA profiles between tissue regions that contained the same primary tissue type was as large as one-half of the aggregate difference between primary tissue types. miRNAs differentially expressed between primary tissue types are more likely to be abundant miRNAs, while miRNAs differentially expressed between tissue regions containing the same primary tissue type were distributed evenly across the abundance spectrum. The tissue type-enriched miRNAs were more likely to target genes enriched for specific functional categories compared with either cell type-enriched miRNAs or randomly selected miRNAs. These data indicate that the role of miRNAs in determining characteristics of primary tissue types may be different than their role in regulating cell type-specific functions in solid organs.

  20. Evaluation of two-dimensional electrophoresis and liquid chromatography – tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schad, Martina; Lipton, Mary S.; Giavalisco, Patrick

    2005-07-14

    Laser microdissection (LM) allows the collection of homogeneous tissue- and cell specific plant samples. The employment of this technique with subsequent protein analysis has thus far not been reported for plant tissues, probably due to the difficulties associated with defining a reasonable cellular morphology and, in parallel, allowing efficient protein extraction from tissue samples. The relatively large sample amount needed for successful proteome analysis is an additional issue that complicates protein profiling on a tissue- or even cell-specific level. In contrast to transcript profiling that can be performed from very small sample amounts due to efficient amplification strategies, there ismore » as yet no amplification procedure for proteins available. In the current study, we compared different tissue preparation techniques prior to LM/laser pressure catapulting (LMPC) with respect to their suitability for protein retrieval. Cryosectioning was identified as the best compromise between tissue morphology and effective protein extraction. After collection of vascular bundles from Arabidopsis thaliana stem tissue by LMPC, proteins were extracted and subjected to protein analysis, either by classical two-dimensional gel electrophoresis (2-DE), or by high-efficiency liquid chromatography (LC) in conjunction with tandem mass spectrometry (MS/MS). Our results demonstrate that both methods can be used with LMPC collected plant material. But because of the significantly lower sample amount required for LC-MS/MS than for 2-DE, the combination of LMPC and LC-MS/MS has a higher potential to promote comprehensive proteome analysis of specific plant tissues.« less

  1. Tissue-specific Regulation of Porcine Prolactin Receptor Expression by Estrogen, Progesterone and Prolactin

    USDA-ARS?s Scientific Manuscript database

    Prolactin (PRL) acts through its receptor (PRLR) via both endocrine and local paracrine/autocrine pathways to regulate biological processes including reproduction and lactation. We analyzed the tissue and stage of gestation-specific regulation of PRL and PRLR expression in various tissues of pigs. ...

  2. Immunolocalization of a glycosylphosphatidylinositol-specific phospholipase D in mast cells found in normal tissue and neurofibromatosis lesions.

    PubMed

    Metz, C N; Thomas, P; Davitz, M A

    1992-06-01

    A large number of eukaryotic proteins have been shown to be anchored to the cell membrane by glycosylphosphatidylinositol (GPI). This glycolipid anchor can serve as a substrate for anchor-specific phospholipases that convert the GPI-anchored membrane proteins into soluble forms. Soluble forms of many GPI anchored proteins have been identified in vivo in connective tissue, plasma, and urine. The authors have discovered that mammalian plasma contains a GPI-specific phospholipase D (GPI-PLD). Because it recognizes a portion of the conserved glycan core structure, all GPI-anchored proteins are potential substrates. The authors report the development of a murine monoclonal antibody specific for one form of the human GPI-PLD and the immunohistochemical localization of this enzyme to mast cells.

  3. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression

    PubMed Central

    Ponnaluri, V. K. Chaithanya; Ehrlich, Kenneth C.; Zhang, Guoqiang; Lacey, Michelle; Johnston, Douglas; Pradhan, Sriharsa; Ehrlich, Melanie

    2017-01-01

    ABSTRACT Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study—owing to their myogenic DMRs—overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage. PMID:27911668

  4. Notch signalling coordinates tissue growth and wing fate specification in Drosophila.

    PubMed

    Rafel, Neus; Milán, Marco

    2008-12-01

    During the development of a given organ, tissue growth and fate specification are simultaneously controlled by the activity of a discrete number of signalling molecules. Here, we report that these two processes are extraordinarily coordinated in the Drosophila wing primordium, which extensively proliferates during larval development to give rise to the dorsal thoracic body wall and the adult wing. The developmental decision between wing and body wall is defined by the opposing activities of two secreted signalling molecules, Wingless and the EGF receptor ligand Vein. Notch signalling is involved in the determination of a variety of cell fates, including growth and cell survival. We present evidence that growth of the wing primordium mediated by the activity of Notch is required for wing fate specification. Our data indicate that tissue size modulates the activity range of the signalling molecules Wingless and Vein. These results highlight a crucial role of Notch in linking proliferation and fate specification in the developing wing primordium.

  5. Unusual Cancers of Childhood Treatment (PDQ®)—Patient Version

    Cancer.gov

    Treatment for unusual cancers of childhood depends on the specific cancer (e.g., nasopharyngeal, thyroid, oral, laryngeal, lung, esophageal, cardiac). See the full list and learn more about treatment for these cancers in this expert-reviewed summary.

  6. Unusual Structure of the attB Site of the Site-Specific Recombination System of Lactobacillus delbrueckii Bacteriophage mv4

    PubMed Central

    Auvray, Frédéric; Coddeville, Michèle; Ordonez, Romy Catoira; Ritzenthaler, Paul

    1999-01-01

    The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3′ end of a tRNASer gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNASer gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model. PMID:10572145

  7. Fat tissue is not a reservoir for radiocesium in wild boars.

    PubMed

    Steinhauser, Georg; Knecht, Christian; Sipos, Wolfgang

    2017-01-01

    Meat of wild boars is not only known for high 137 Cs activity concentrations but also for the remarkable constancy of these levels. Even decades after the Chernobyl accident, the 137 Cs levels in wild boar meat in Central Europe have not declined but even partly increased. In the present study, we investigated an unusual hypothesis for this very unusual phenomenon: may the boars' fat tissue act as a reservoir for radiocesium? We investigated fat and muscle tissues of four wild boars in Western Germany and found that the 137 Cs concentrations in fat were in the range of 10-30% of the respective activities in muscle tissue. Hence, the hypothesis was refuted.

  8. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  9. Tissue-Specific and Cation/Anion-Specific DNA Methylation Variations Occurred in C. virgata in Response to Salinity Stress

    PubMed Central

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations. PMID:24223802

  10. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    PubMed

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  11. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.

    PubMed

    Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna

    2009-10-15

    Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the

  12. A General Map of Iron Metabolism and Tissue-specific Subnetworks

    PubMed Central

    Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.

    2009-01-01

    Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358

  13. Frozen chips: an unusual cause of severe frostbite injury

    PubMed Central

    Graham, C.; Stevenson, J.

    2000-01-01

    A case of severe frostbite injury to the right foot is presented. This was caused by the inappropriate application of a bag of frozen chips to the foot in an attempt to ease non-specific pain. No specific acute traumatic injury was identified. As the patient was a teacher of physical education, the pain had initially been assumed to originate from a minor musculoskeletal injury. Full recovery ensued after surgical excision of necrotic tissue and split skin grafting. The danger of inappropriate overenthusiastic use of ice packs or other frozen material to treat soft tissue injuries is emphasised. The need for education to prevent similar future injuries is discussed. Key Words: cold injury; frostbite; ice pack; skin; necrosis PMID:11049150

  14. H3.1 K36M mutation in a congenital-onset soft tissue neoplasm.

    PubMed

    Kernohan, Kristin D; Grynspan, David; Ramphal, Raveena; Bareke, Eric; Wang, You Chang; Nizalik, Elizabeth; Ragoussis, Jiannis; Jabado, Nada; Boycott, Kym M; Majewski, Jacek; Sawyer, Sarah L

    2017-12-01

    We describe a patient who presented with a congenital soft tissue lesion initially diagnosed as infantile fibromatosis at 15 days of age. Unusually, the mass demonstrated malignant progression leading to death at 20 months of age. Biological progression to malignancy is not known to occur in fibromatosis, and fibrosarcoma is not known to progress from a benign lesion. Whole-exome sequencing of the tumor identified a driver mutation in histone H3.1 at lysine (K)36. Our findings support the link between oncohistones and infantile soft tissue tumors and provide additional evidence for the oncogenic effects of p.K36M in H3 variants. © 2017 Wiley Periodicals, Inc.

  15. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.

    PubMed

    Garg, Anchal; Agrawal, Lalit; Misra, Rajesh Chandra; Sharma, Shubha; Ghosh, Sumit

    2015-09-02

    Kalmegh (Andrographis paniculata) has been widely exploited in traditional medicine for the treatment of infectious diseases and health disorders. Ent-labdane-related diterpene (ent-LRD) specialized (i.e., secondary) metabolites of kalmegh such as andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, are known for variety of pharmacological activities. However, due to the lack of genomic and transcriptomic information, underlying molecular basis of ent-LRDs biosynthesis has remained largely unknown. To identify candidate genes of the ent-LRD biosynthetic pathway, we performed comparative transcriptome analysis using leaf and root tissues that differentially accumulate ent-LRDs. De novo assembly of Illumina HiSeq2000 platform-generated paired-end sequencing reads resulted into 69,011 leaf and 64,244 root transcripts which were assembled into a total of 84,628 unique transcripts. Annotation of these transcripts to the Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active Enzymes (CAZy) databases identified candidate transcripts of the ent-LRD biosynthetic pathway. These included transcripts that encode enzymes of the plastidial 2C-methyl-D-erythritol-4-phosphate pathway which provides C5 isoprenoid precursors for the ent-LRDs biosynthesis, geranylgeranyl diphosphate synthase, class II diterpene synthase (diTPS), cytochrome P450 monooxygenase and glycosyltransferase. Three class II diTPSs (ApCPS1, ApCPS2 and ApCPS3) that showed distinct tissue-specific expression profiles and are phylogenetically related to the dicotyledon ent-copalyl diphosphate synthases, are identified. ApCPS1, ApCPS2 and ApCPS3 encode for 832-, 817- and 797- amino acids proteins of 55-63 % identity, respectively. Spatio-temporal patterns of transcripts and ent-LRDs accumulation are consistent with the involvement of ApCPS1 in general (i.e., primary) metabolism for the biosynthesis of phytohormone gibberellin, ApCPS2 in leaf specialized ent

  16. Sequence-specific unusual (1-->2)-type helical turns in alpha/beta-hybrid peptides.

    PubMed

    Prabhakaran, Panchami; Kale, Sangram S; Puranik, Vedavati G; Rajamohanan, P R; Chetina, Olga; Howard, Judith A K; Hofmann, Hans-Jörg; Sanjayan, Gangadhar J

    2008-12-31

    This article describes novel conformationally ordered alpha/beta-hybrid peptides consisting of repeating l-proline-anthranilic acid building blocks. These oligomers adopt a compact, right-handed helical architecture determined by the intrinsic conformational preferences of the individual amino acid residues. The striking feature of these oligomers is their ability to display an unusual periodic pseudo beta-turn network of nine-membered hydrogen-bonded rings formed in the forward direction of the sequence by 1-->2 amino acid interactions both in solid-state and in solution. Conformational investigations of several of these oligomers by single-crystal X-ray diffraction, solution-state NMR, and ab initio MO theory suggest that the characteristic steric and dihedral angle restraints exerted by proline are essential for stabilizing the unusual pseudo beta-turn network found in these oligomers. Replacing proline by the conformationally flexible analogue alanine (Ala) or by the conformationally more constrained alpha-amino isobutyric acid (Aib) had an adverse effect on the stabilization of this structural architecture. These findings increase the potential to design novel secondary structure elements profiting from the steric and dihedral angle constraints of the amino acid constituents and help to augment the conformational space available for synthetic oligomer design with diverse backbone structures.

  17. Tissue phosphoproteomics with PolyMAC identifies potential therapeutic targets in a transgenic mouse model of HER2 positive breast cancer

    PubMed Central

    Searleman, Adam C.; Iliuk, Anton B.; Collier, Timothy S.; Chodosh, Lewis A.; Tao, W. Andy; Bose, Ron

    2014-01-01

    Altered protein phosphorylation is a feature of many human cancers that can be targeted therapeutically. Phosphopeptide enrichment is a critical step for maximizing the depth of phosphoproteome coverage by MS, but remains challenging for tissue specimens because of their high complexity. We describe the first analysis of a tissue phosphoproteome using polymer-based metal ion affinity capture (PolyMAC), a nanopolymer that has excellent yield and specificity for phosphopeptide enrichment, on a transgenic mouse model of HER2-driven breast cancer. By combining phosphotyrosine immunoprecipitation with PolyMAC, 411 unique peptides with 139 phosphotyrosine, 45 phosphoserine, and 29 phosphothreonine sites were identified from five LC-MS/MS runs. Combining reverse phase liquid chromatography fractionation at pH 8.0 with PolyMAC identified 1571 unique peptides with 1279 phosphoserine, 213 phosphothreonine, and 21 phosphotyrosine sites from eight LC-MS/MS runs. Linear motif analysis indicated that many of the phosphosites correspond to well-known phosphorylation motifs. Analysis of the tyrosine phosphoproteome with the Drug Gene Interaction database uncovered a network of potential therapeutic targets centered on Src family kinases with inhibitors that are either FDA-approved or in clinical development. These results demonstrate that PolyMAC is well suited for phosphoproteomic analysis of tissue specimens. PMID:24723360

  18. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization

    PubMed Central

    Cavaillé, Jérôme; Buiting, Karin; Kiefmann, Martin; Lalande, Marc; Brannan, Camilynn I.; Horsthemke, Bernhard; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2000-01-01

    We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11–q13, within a region implicated in the Prader–Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA. PMID:11106375

  19. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression.

    PubMed Central

    Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.

    1996-01-01

    NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation. PMID:12226321

  20. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression.

    PubMed

    Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.

    1996-07-01

    NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation.

  1. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods

  2. The use of a prescription drug monitoring program to develop algorithms to identify providers with unusual prescribing practices for controlled substances.

    PubMed

    Ringwalt, Christopher; Schiro, Sharon; Shanahan, Meghan; Proescholdbell, Scott; Meder, Harold; Austin, Anna; Sachdeva, Nidhi

    2015-10-01

    The misuse, abuse and diversion of controlled substances have reached epidemic proportion in the United States. Contributing to this problem are providers who over-prescribe these substances. Using one state's prescription drug monitoring program, we describe a series of metrics we developed to identify providers manifesting unusual and uncustomary prescribing practices. We then present the results of a preliminary effort to assess the concurrent validity of these algorithms, using death records from the state's vital records database pertaining to providers who wrote prescriptions to patients who then died of a medication or drug overdose within 30 days. Metrics manifesting the strongest concurrent validity with providers identified from these records related to those who co-prescribed benzodiazepines (e.g., valium) and high levels of opioid analgesics (e.g., oxycodone), as well as those who wrote temporally overlapping prescriptions. We conclude with a discussion of a variety of uses to which these metrics may be put, as well as problems and opportunities related to their use.

  3. Assessment of tissue-specific cortisol activity with regard to degeneration of the suspensory ligaments in horses with pituitary pars intermedia dysfunction.

    PubMed

    Hofberger, Sina C; Gauff, Felicia; Thaller, Denise; Morgan, Ruth; Keen, John A; Licka, Theresia F

    2018-02-01

    OBJECTIVE To identify signs of tissue-specific cortisol activity in samples of suspensory ligament (SL) and neck skin tissue from horses with and without pituitary pars intermedia dysfunction (PPID). SAMPLE Suspensory ligament and neck skin tissue samples obtained from 26 euthanized horses with and without PPID. PROCEDURES Tissue samples were collected from 12 horses with and 14 horses without PPID (controls). Two control horses had received treatment with dexamethasone; data from those horses were not used in statistical analyses. The other 12 control horses were classified as old horses (≥ 14 years old) and young horses (≤ 9 years old). Standard histologic staining, staining for proteoglycan accumulation, and immunostaining of SL and neck skin tissue sections for glucocorticoid receptors, insulin, 11β hydroxysteroid dehydrogenase type 1, and 11β hydroxysteroid dehydrogenase type 2 were performed. Findings for horses with PPID were compared with findings for young and old horses without PPID. RESULTS Compared with findings for old and young control horses, there were significantly more cells stained for glucocorticoid receptors in SL samples and for 11 β hydroxysteroid dehydrogenase type 1 in SL and skin tissue samples from horses with PPID. Insulin could not be detected in any of the SL or skin tissue samples. Horses with PPID had evidence of SL degeneration with significantly increased proteoglycan accumulation. Neck skin tissue was found to be significantly thinner in PPID-affected horses than in young control horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that tissue-specific dysregulation of cortisol metabolism may contribute to the SL degeneration associated with PPID in horses.

  4. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene

  5. Yki/YAP, Sd/TEAD and Hth/MEIS Control Tissue Specification in the Drosophila Eye Disc Epithelium

    PubMed Central

    Pignoni, Francesca

    2011-01-01

    During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki) pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd), or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth), known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth - in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival. PMID:21811580

  6. A proximal promoter region of Arabidopsis DREB2C confers tissue-specific expression under heat stress.

    PubMed

    Chen, Huan; Je, Jihyun; Song, Chieun; Hwang, Jung Eun; Lim, Chae Oh

    2012-09-01

    The dehydration-responsive element-binding factor 2C (DREB2C) is a member of the CBF/DREB subfamily of proteins, which contains a single APETALA2/Ethylene responsive element-binding factor (AP2/ERF) domain. To identify the expression pattern of the DREB2C gene, which contains multiple transcription cis-regulatory elements in its promoter, an approximately 1.4 kb upstream DREB2C sequence was fused to the β-glucuronidase reporter gene (GUS) and the recombinant p1244 construct was transformed into Arabidopsis thaliana (L.) Heynh. The promoter of the gene directed prominent GUS activity in the vasculature in diverse young dividing tissues. Upon applying heat stress (HS), GUS staining was also enhanced in the vasculature of the growing tissues. Analysis of a series of 5'-deletions of the DREB2C promoter revealed that a proximal upstream sequence sufficient for the tissue-specific spatial and temporal induction of GUS expression by HS is localized in the promoter region between -204 and -34 bps relative to the transcriptional start site. Furthermore, electrophoretic mobility shift assay (EMSA) demonstrated that nuclear protein binding activities specific to a -120 to -32 bp promoter fragment increased after HS. These results indicate that the TATA-proximal region and some latent trans-acting factors may cooperate in HS-induced activation of the Arabidopsis DREB2C promoter. © 2012 Institute of Botany, Chinese Academy of Sciences.

  7. Highly Tissue Substructure-Specific Effects of Human Papilloma Virus in Mucosa of HIV-Infected Patients Revealed by Laser-Dissection Microscopy-Assisted Gene Expression Profiling

    PubMed Central

    Baumgarth, Nicole; Szubin, Richard; Dolganov, Greg M.; Watnik, Mitchell R.; Greenspan, Deborah; Da Costa, Maria; Palefsky, Joel M.; Jordan, Richard; Roederer, Mario; Greenspan, John S.

    2004-01-01

    Human papilloma virus (HPV) causes focal infections of epithelial layers in skin and mucosa. HIV-infected patients on highly active antiretroviral therapy (HAART) appear to be at increased risk of developing HPV-induced oral warts. To identify the mechanisms that allow long-term infection of oral epithelial cells in these patients, we used a combination of laser-dissection microscopy (LDM) and highly sensitive and quantitative, non-biased, two-step multiplex real-time RT-PCR to study pathogen-induced alterations of specific tissue subcompartments. Expression of 166 genes was compared in three distinct epithelial and subepithelial compartments isolated from biopsies of normal mucosa from HIV-infected and non-infected patients and of HPV32-induced oral warts from HIV-infected patients. In contrast to the underlying HIV infection and/or HAART, which did not significantly elaborate tissue substructure-specific effects, changes in oral warts were strongly tissue substructure-specific. HPV 32 seems to establish infection by selectively enhancing epithelial cell growth and differentiation in the stratum spinosum and to evade the immune system by actively suppressing inflammatory responses in adjacent underlying tissues. With this highly sensitive and quantitative method tissue-specific expression of hundreds of genes can be studied simultaneously in a few cells. Because of its large dynamic measurement range it could also become a method of choice to confirm and better quantify results obtained by microarray analysis. PMID:15331396

  8. Tissue-specific Insulin Signaling in the Regulation of Metabolism and Aging

    PubMed Central

    Zhang, Jingjing

    2014-01-01

    In mammals, insulin signaling regulates glucose homeostasis and plays an essential role in metabolism, organ growth, development, fertility, and lifespan. Defects in this signaling pathway contribute to various metabolic diseases such as type 2 diabetes, polycystic ovarian disease, hypertension, hyperlipidemia, and atherosclerosis. However, reducing the insulin signaling pathway has been found to increase longevity and delay the aging-associated diseases in various animals, ranging from nematodes to mice. These seemly paradoxical findings raise an interesting question as to how modulation of the insulin signaling pathway could be an effective approach to improve metabolism and aging. In this review, we summarize current understanding on tissue-specific functions of insulin signaling in the regulation of metabolism and lifespan. We also discuss potential benefits and limitations in modulating tissue-specific insulin signaling pathway to improve metabolism and healthspan. PMID:25087968

  9. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    PubMed

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  10. Spectral unmixing of multi-color tissue specific in vivo fluorescence in mice

    NASA Astrophysics Data System (ADS)

    Zacharakis, Giannis; Favicchio, Rosy; Garofalakis, Anikitos; Psycharakis, Stylianos; Mamalaki, Clio; Ripoll, Jorge

    2007-07-01

    Fluorescence Molecular Tomography (FMT) has emerged as a powerful tool for monitoring biological functions in vivo in small animals. It provides the means to determine volumetric images of fluorescent protein concentration by applying the principles of diffuse optical tomography. Using different probes tagged to different proteins or cells, different biological functions and pathways can be simultaneously imaged in the same subject. In this work we present a spectral unmixing algorithm capable of separating signal from different probes when combined with the tomographic imaging modality. We show results of two-color imaging when the algorithm is applied to separate fluorescence activity originating from phantoms containing two different fluorophores, namely CFSE and SNARF, with well separated emission spectra, as well as Dsred- and GFP-fused cells in F5-b10 transgenic mice in vivo. The same algorithm can furthermore be applied to tissue-specific spectroscopy data. Spectral analysis of a variety of organs from control, DsRed and GFP F5/B10 transgenic mice showed that fluorophore detection by optical systems is highly tissue-dependent. Spectral data collected from different organs can provide useful insight into experimental parameter optimisation (choice of filters, fluorophores, excitation wavelengths) and spectral unmixing can be applied to measure the tissue-dependency, thereby taking into account localized fluorophore efficiency. Summed up, tissue spectral unmixing can be used as criteria in choosing the most appropriate tissue targets as well as fluorescent markers for specific applications.

  11. Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory

    PubMed Central

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T.

    2016-01-01

    Secondary metabolite diversity is considered an important fitness determinant for plants’ biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue–metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function. PMID:27821729

  12. Tissue-Specific Chromatin Modifications at a Multigene Locus Generate Asymmetric Transcriptional Interactions

    PubMed Central

    Yoo, Eung Jae; Cajiao, Isabela; Kim, Jeong-Seon; Kimura, Atsushi P.; Zhang, Aiwen; Cooke, Nancy E.; Liebhaber, Stephen A.

    2006-01-01

    Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitarycell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome. PMID:16847312

  13. The tissue microarray data exchange specification: Extending TMA DES to provide flexible scoring and incorporate virtual slides

    PubMed Central

    Wright, Alexander; Lyttleton, Oliver; Lewis, Paul; Quirke, Philip; Treanor, Darren

    2011-01-01

    Background: Tissue MicroArrays (TMAs) are a high throughput technology for rapid analysis of protein expression across hundreds of patient samples. Often, data relating to TMAs is specific to the clinical trial or experiment it is being used for, and not interoperable. The Tissue Microarray Data Exchange Specification (TMA DES) is a set of eXtensible Markup Language (XML)-based protocols for storing and sharing digitized Tissue Microarray data. XML data are enclosed by named tags which serve as identifiers. These tag names can be Common Data Elements (CDEs), which have a predefined meaning or semantics. By using this specification in a laboratory setting with increasing demands for digital pathology integration, we found that the data structure lacked the ability to cope with digital slide imaging in respect to web-enabled digital pathology systems and advanced scoring techniques. Materials and Methods: By employing user centric design, and observing behavior in relation to TMA scoring and associated data, the TMA DES format was extended to accommodate the current limitations. This was done with specific focus on developing a generic tool for handling any given scoring system, and utilizing data for multiple observations and observers. Results: DTDs were created to validate the extensions of the TMA DES protocol, and a test set of data containing scores for 6,708 TMA core images was generated. The XML was then read into an image processing algorithm to utilize the digital pathology data extensions, and scoring results were easily stored alongside the existing multiple pathologist scores. Conclusions: By extending the TMA DES format to include digital pathology data and customizable scoring systems for TMAs, the new system facilitates the collaboration between pathologists and organizations, and can be used in automatic or manual data analysis. This allows complying systems to effectively communicate complex and varied scoring data. PMID:21572508

  14. Evolution of a tissue-specific splicing network

    PubMed Central

    Taliaferro, J. Matthew; Alvarez, Nehemiah; Green, Richard E.; Blanchette, Marco; Rio, Donald C.

    2011-01-01

    Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear. Here we characterize the evolution and function of a new Drosophila splicing factor, termed LS2 (Large Subunit 2), that arose from a gene duplication event of dU2AF50, the large subunit of the highly conserved heterodimeric general splicing factor U2AF (U2-associated factor). The quickly evolving LS2 gene has diverged from the splicing-promoting, ubiquitously expressed dU2AF50 such that it binds a markedly different RNA sequence, acts as a splicing repressor, and is preferentially expressed in testes. Target transcripts of LS2 are also enriched for performing testes-related functions. We therefore propose a path for the evolution of a new splicing factor in Drosophila that regulates specific pre-mRNAs and contributes to transcript diversity in a tissue-specific manner. PMID:21406555

  15. Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans

    PubMed Central

    Ragle, James Matthew; Katzman, Sol; Akers, Taylor F.; Barberan-Soler, Sergio; Zahler, Alan M.

    2015-01-01

    Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus. PMID:25922281

  16. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    PubMed

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  17. Transcriptomics reveals tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera.

    PubMed

    Kim, Chan-Hee; Go, Hye-Jin; Oh, Hye Young; Jo, Yong Hun; Elphick, Maurice R; Park, Nam Gyu

    2018-02-01

    Starfish (Phylum Echinodermata) are of interest from an evolutionary perspective because as deuterostomian invertebrates they occupy an "intermediate" phylogenetic position with respect to chordates (e.g. vertebrates) and protostomian invertebrates (e.g. Drosophila). Furthermore, starfish are model organisms for research on fertilization, embryonic development, innate immunity and tissue regeneration. However, large-scale molecular data for starfish tissues/organs are limited. To provide a comprehensive genetic resource for the starfish Patiria pectinifera, we report de novo transcriptome assemblies and global gene expression analysis for six P. pectinifera tissues/organs - body wall (BW), coelomic epithelium (CE), tube feet (TF), stomach (SM), pyloric caeca (PC) and gonad (GN). A total of 408 million high-quality reads obtained from six cDNA libraries were assembled de novo using Trinity, resulting in a total of 549,598 contigs with a mean length of 835 nucleotides (nt), an N50 of 1473nt, and GC ratio of 42.5%. A total of 126,136 contigs (22.9%) were obtained as predicted open reading frames (ORFs) by TransDecoder, of which 102,187 were annotated with NCBI non-redundant (NR) hits, and 51,075 and 10,963 were annotated with Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) using the Blast2GO program, respectively. Gene expression analysis revealed that tissues/organs are grouped into three clusters: BW/CE/TF, SM/PC, and GN, which likely reflect functional relationships. 2408, 8560, 2687, 1727, 3321, and 2667 specifically expressed genes were identified for BW, GN, PC, CE, SM and TF, respectively, using the ROKU method. This study provides a valuable transcriptome resource and novel molecular insights into the functional biology of different tissues/organs in starfish as a model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evolution of IPv6 Internet topology with unusual sudden changes

    NASA Astrophysics Data System (ADS)

    Ai, Jun; Zhao, Hai; Kathleen, M. Carley; Su, Zhan; Li, Hui

    2013-07-01

    The evolution of Internet topology is not always smooth but sometimes with unusual sudden changes. Consequently, identifying patterns of unusual topology evolution is critical for Internet topology modeling and simulation. We analyze IPv6 Internet topology evolution in IP-level graph to demonstrate how it changes in uncommon ways to restructure the Internet. After evaluating the changes of average degree, average path length, and some other metrics over time, we find that in the case of a large-scale growing the Internet becomes more robust; whereas in a top—bottom connection enhancement the Internet maintains its efficiency with links largely decreased.

  19. Transgenic Zebrafish Reveal Tissue-Specific Differences in Estrogen Signaling in Response to Environmental Water Samples

    PubMed Central

    Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to

  20. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis

    PubMed Central

    Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio

    2015-01-01

    The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring

  1. Molecular identification of unusual Mycetoma agents isolated from patients in Venezuela.

    PubMed

    Rojas, Olga C; León-Cachón, Rafael B R; Moreno-Treviño, Maria; González, Gloria M

    2017-02-01

    Mycetoma is a chronic granulomatous, subcutaneous disease endemic in tropical and subtropical countries. It is currently a health problem in rural areas of Africa, Asia and South America. Nine cases of mycetoma were analysed in a retrospective study. All isolates were identified by morphological features. The level of species identification was reached by molecular tools. Definitive identification of fungi was performed using sequence analysis of the ITS of the ribosomal DNA region and the ribosomal large-subunit D1/D2. Identification of actinomycetes was accomplished by the 16S rRNA gene sequence. Six unusual clinical isolates were identified: Aspergillus ustus, Cyphellophora oxyspora, Exophiala oligosperma, Madurella pseudomycetomatis, Nocardia farcinica and Nocardia wallacei. The prevalence of mycetoma in Venezuela remains unknown. This study represents the first report in the literature of mycetoma caused by unusual pathogens identified by molecular techniques. © 2016 Blackwell Verlag GmbH.

  2. Gene Expression of Tissue-Specific Molecules in Ex vivo Dermacentor variabilis (Acari: Ixodidae) During Rickettsial Exposure

    PubMed Central

    SUNYAKUMTHORN, PIYANATE; PETCHAMPAI, NATTHIDA; GRASPERGE, BRITTON J.; KEARNEY, MICHAEL T.; SONENSHINE, DANIEL E.; MACALUSO, KEVIN R.

    2014-01-01

    Ticks serve as both vectors and the reservoir hosts capable of transmitting spotted fever group Rickettsia by horizontal and vertical transmission. Persistent maintenance of Rickettsia species in tick populations is dependent on the specificity of the tick and Rickettsia relationship that limits vertical transmission of particular Rickettsia species, suggesting host-derived mechanisms of control. Tick-derived molecules are differentially expressed in a tissue-specific manner in response to rickettsial infection; however, little is known about tick response to specific rickettsial species. To test the hypothesis that tissue-specific tick-derived molecules are uniquely responsive to rickettsial infection, a bioassay to characterize the tick tissue-specific response to different rickettsial species was used. Whole organs of Dermacentor variabilis (Say) were exposed to either Rickettsia montanensis or Rickettsia amblyommii, two Rickettsia species common, or absent, in field-collected D. variabilis, respectively, for 1 and 12 h and harvested for quantitative real time-polymerase chain reaction assays of putative immune-like tick-derived factors. The results indicated that tick genes are differently expressed in a temporal and tissue-specific manner. Genes encoding glutathione S-transferase 1 (dvgst1) and Kunitz protease inhibitor (dvkpi) were highly expressed in midgut, and rickettsial exposure downregulated the expression of both genes. Two other genes encoding glutathione S-transferase 2 (dvgst2) and β-thymosin (dvβ-thy) were highly expressed in ovary, with dvβ-thy expression significantly downregulated in ovaries exposed to R. montanensis, but not R. amblyommii, at 12-h postexposure, suggesting a selective response. Deciphering the tissue-specific molecular interactions between tick and Rickettsia will enhance our understanding of the key mechanisms that mediate rickettsial infection in ticks. PMID:24180114

  3. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    PubMed Central

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  4. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set ofmore » unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of

  5. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    PubMed Central

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  6. Pressure Sore at an Unusual Site- the Bilateral Popliteal Fossa: A Case report

    PubMed Central

    Kataria, Kamal; Sagar, Sushma; Singhal, Manish; Yadav, Rajni

    2012-01-01

    Pressure sore is tissue ulceration due to unrelieved pressure, altered sensory perception, and exposure to moisture. Geriatric patients with organic problems and patients with spinal cord injuries are the high-risk groups. Soft tissues over bony prominences are the common sites for ulcer development. About 95% of pressure ulcers occur in the lower part of the body. Ischial tuberosity, greater trochanter, sacrum and heel are common sites. In addition to these, pressure sores at unusual sites like nasal alae, malar eminences, cervical region and medial side of knee have also been described. Only 1.6% of the patients present with sores in areas outside the pelvis and lower extremity. In a paraplegic patient, pressure sores are usually over extensor surface of knee and heel but pressure ulcer over popliteal fossa are extremely rare. We herein report a case of a 36-years-old diabetic and paraplegic male, who presented with multiple bed sores involving the sacral area, heels and bilateral popliteal fossa. Popliteal fossa is an unusual site for pressure sores. Only one similar case has been previously reported in the literature. PMID:29181131

  7. Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat

    PubMed Central

    Singh, Deepak K.; Rath, Pramod C.

    2012-01-01

    We report strong somatic and germ line expression of LINE RNAs in eight different tissues of rat by using a novel ~2.8 kb genomic PstI-LINE DNA (P1-LINE) isolated from the rat brain. P1-LINE is present in a 93 kb LINE-SINE-cluster in sub-telomeric region of chromosome 12 (12p12) and as multiple truncated copies interspersed in all rat chromosomes. P1-LINEs occur as inverted repeats at multiple genomic loci in tissue-specific and mosaic patterns. P1-LINE RNAs are strongly expressed in brain, liver, lungs, heart, kidney, testes, spleen and thymus into large to small heterogeneous RNAs (~5.0 to 0.2 kb) in tissue-specific and dynamic patterns in individual rats. P1-LINE DNA is strongly methylated at CpG-dinucleotides in most genomic copies in all the tissues and weakly hypomethylated in few copies in some tissues. Small (700–75 nt) P1-LINE RNAs expressed in all tissues may be possible precursors for small regulatory RNAs (PIWI-interacting/piRNAs) bioinformatically derived from P1-LINE. The strong and dynamic expression of LINE RNAs from multiple chromosomal loci and the putative piRNAs in somatic tissues of rat under normal physiological conditions may define functional chromosomal domains marked by LINE RNAs as long noncoding RNAs (lncRNAs) unrestricted by DNA methylation. The tissue-specific, dynamic RNA expression and mosaic genomic distribution of LINEs representing a steady-state genomic flux of retrotransposon RNAs suggest for biological role of LINE RNAs as long ncRNAs and small piRNAs in mammalian tissues independent of their cellular fate for translation, reverse-transcription and retrotransposition. This may provide evolutionary advantages to LINEs and mammalian genomes. PMID:23064113

  8. Evidence of specialized tissue in human interatrial septum: histological, immunohistochemical and ultrastructural findings.

    PubMed

    Mitrofanova, Lubov B; Gorshkov, Andrey N; Lebedev, Dmitry S; Mikhaylov, Evgeny N

    2014-01-01

    There is a paucity of information on structural organization of muscular bundles in the interatrial septum (IAS). The aim was to investigate histologic and ultrastructural organization of muscular bundles in human IAS, including fossa ovalis (FO) and flap valve. Macroscopic and light microscopy evaluations of IAS were performed from postmortem studies of 40 patients. Twenty three IAS specimens underwent serial transverse sectioning, and 17--longitudinal sectioning. The transverse sections from 10 patients were immunolabeled for HCN4, Caveolin3 and Connexin43. IAS specimens from 6 other patients underwent electron microscopy. In all IAS specimens sections the FO, its rims and the flap valve had muscle fibers consisting of working cardiac myocytes. Besides the typical cardiomyocytes there were unusual cells: tortuous and horseshoe-shaped intertangled myocytes, small and large rounded myocytes with pale cytoplasm. The cells were aggregated in a definite structure in 38 (95%) cases, which was surrounded by fibro-fatty tissue. The height of the structure on transverse sections positively correlated with age (P = 0.03) and AF history (P = 0.045). Immunohistochemistry showed positive staining of the cells for HCN4 and Caveolin3. Electron microscopy identified cells with characteristics similar to electrical conduction cells. Specialized conduction cells in human IAS have been identified, specifically in the FO and its flap valve. The cells are aggregated in a structure, which is surrounded by fibrous and fatty tissue. Further investigations are warranted to explore electrophysiological characteristics of this structure.

  9. Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis

    PubMed Central

    Abbott, Karen L.; Lim, Jae-Min; Wells, Lance; Benigno, Benedict B.; McDonald, John F.; Pierce, Michael

    2016-01-01

    Epithelial ovarian cancer is diagnosed less than 25% of the time when the cancer is confined to the ovary, leading to 5-year survival rates of less than 30%. Therefore, there is an urgent need for early diagnostics for ovarian cancer. Our study using glycotranscriptome comparative analysis of endometrioid ovarian cancer tissue and normal ovarian tissue led to the identification of distinct differences in the transcripts of a restricted set of glycosyltransferases involved in N-linked glycosylation. Utilizing lectins that bind to glycan structures predicted to show changes, we observed differences in lectin-bound glycoproteins consistent with some of the transcript differences. In this study, we have extended our observations by the use of selected lectins to perform a targeted glycoproteomic analysis of ovarian cancer and normal ovarian tissues. Our results have identified several glycoproteins that display tumor-specific glycosylation changes. We have verified these glycosylation changes on glycoproteins from tissue using immunoprecipitation followed by lectin blot detection. The glycoproteins that were verified were then analyzed further using existing microarray data obtained from benign ovarian adenomas, borderline ovarian adenocarcinomas, and malignant ovarian adenocarcinomas. The verified glycoproteins found to be expressed above control levels in the microarray data sets were then screened for tumor-specific glycan modifications in serum from ovarian cancer patients. Results obtained from two of these glycoprotein markers, periostin and thrombospondin, have confirmed that tumor-specific glycan changes can be used to distinguish ovarian cancer patient serum from normal serum. PMID:19953551

  10. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    PubMed Central

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-01-01

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

  11. Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation.

    PubMed

    Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb; Pomerantz, Mark; Li, Fugen; Long, Henry W; Ingles, Sue A; Kittles, Rick A; Strom, Sara S; Rybicki, Benjamin A; Nemesure, Barbara; Isaacs, William B; Zheng, Wei; Pettaway, Curtis A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; John, Esther M; Murphy, Adam B; Signorello, Lisa B; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anslem J M; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Witte, John S; Casey, Graham; Kaggwa, Sam; Cook, Michael B; Stram, Daniel O; Blot, William J; Eeles, Rosalind A; Easton, Douglas; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel M; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L J; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Wokolorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Teerlink, Craig; Brenner, Hermann; Dieffenbach, Aida K; Arndt, Volker; Park, Jong Y; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A; Teixeira, Manuel R; Pandha, Hardev; Michael, Agnieszka; Paulo, Paula; Maia, Sofia; Kierzek, Andrzej; Conti, David V; Albanes, Demetrius; Berg, Christine; Berndt, Sonja I; Campa, Daniele; Crawford, E David; Diver, W Ryan; Gapstur, Susan M; Gaziano, J Michael; Giovannucci, Edward; Hoover, Robert; Hunter, David J; Johansson, Mattias; Kraft, Peter; Le Marchand, Loic; Lindström, Sara; Navarro, Carmen; Overvad, Kim; Riboli, Elio; Siddiq, Afshan; Stevens, Victoria L; Trichopoulos, Dimitrios; Vineis, Paolo; Yeager, Meredith; Trynka, Gosia; Raychaudhuri, Soumya; Schumacher, Frederick R; Price, Alkes L; Freedman, Matthew L; Haiman, Christopher A; Pasaniuc, Bogdan

    2016-04-07

    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.

  12. Unusual Case of Gunshot Injury to the Face

    PubMed Central

    Guruprasad, Yadavalli; Giraddi, Girish

    2011-01-01

    An unusual case of facial gunshot injury with the missile lodged in the cervical spine region, but without any neurological impairment, is reported. The extent of tissue damage and missile track termination in a male patient who sustained gunshot trauma to the face was assessed by plain radiography and by computed tomography scans. The patient was treated conservatively and observed for clinical manifestations of neurological deficit for one year. We present a case of gunshot injury to the face with the missile lodged in the cervical spine region and atypical absence of clinical manifestation that may occur even when a bullet remains in the vicinity of the cervical spine. PMID:21915384

  13. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    PubMed Central

    2013-01-01

    Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200

  14. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    PubMed Central

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  15. Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma.

    PubMed

    Munding, Johanna B; Adai, Alex T; Maghnouj, Abdelouahid; Urbanik, Aleksandra; Zöllner, Hannah; Liffers, Sven T; Chromik, Ansgar M; Uhl, Waldemar; Szafranska-Schwarzbach, Anna E; Tannapfel, Andrea; Hahn, Stephan A

    2012-07-15

    Pancreatic ductal adenocarcinoma (PDAC) is known for its poor prognosis resulting from being diagnosed at an advanced stage. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. MicroRNAs (miRNAs), considered a new class of biomarkers and therapeutic targets, may be able to fulfill those needs. Combining tissue microdissection with global miRNA array analyses, cell type-specific miRNA expression profiles were generated for normal pancreatic ductal cells, acinar cells, PDAC cells derived from xenografts and also from macrodissected chronic pancreatitis (CP) tissues. We identified 78 miRNAs differentially expressed between ND and PDAC cells providing new insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development. Having filtered miRNAs which are upregulated in the three pairwise comparisons of PDAC vs. ND, PDAC vs. AZ and PDAC vs. CP, we identified 15 miRNA biomarker candidates including miR-135b. Using relative qRT-PCR to measure miR-135b normalized to miR-24 in 75 FFPE specimens (42 PDAC and 33 CP) covering a broad range of tumor content, we discriminated CP from PDAC with a sensitivity and specificity of 92.9% [95% CI=(80.5, 98.5)] and 93.4% [95% CI=(79.8, 99.3)], respectively. Furthermore, the area under the curve (AUC) value reached of 0.97 was accompanied by positive and negative predictive values of 95% and 91%, respectively. In conclusion, we report pancreatic cell-specific global miRNA profiles, which offer new candidate miRNAs to be exploited for functional studies in PDAC. Furthermore, we provide evidence that miRNAs are well-suited analytes for development of sensitive and specific aid-in-diagnosis tests for PDAC. Copyright © 2011 UICC.

  16. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE PAGES

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian; ...

    2018-04-24

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice

  17. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice

  18. Differential Tissue-specific and Pathway-specific Anti-obesity Effects of Green Tea and Taeumjowitang, a Traditional Korean Medicine, in Mice.

    PubMed

    Kim, Junil; Park, Sujin; An, Haein; Choi, Ji-Young; Choi, Myung-Sook; Choi, Sang-Woon; Kim, Seong-Jin

    2017-09-01

    Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity.

  19. Differential Tissue-specific and Pathway-specific Anti-obesity Effects of Green Tea and Taeumjowitang, a Traditional Korean Medicine, in Mice

    PubMed Central

    Kim, Junil; Park, Sujin; An, Haein; Choi, Ji-Young; Choi, Myung-Sook; Choi, Sang-Woon; Kim, Seong-Jin

    2017-01-01

    Background Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. Methods We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. Results We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. Conclusions Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity. PMID:29018779

  20. Tissue-specific mismatch repair protein expression: MSH3 is higher than MSH6 in multiple mouse tissues.

    PubMed

    Tomé, Stéphanie; Simard, Jodie P; Slean, Meghan M; Holt, Ian; Morris, Glenn E; Wojciechowicz, Kamila; te Riele, Hein; Pearson, Christopher E

    2013-01-01

    Mismatch repair (MMR) proteins have critical roles in the maintenance of genomic stability, both class-switch recombination and somatic hypermutation of immunoglobulin genes and disease-associated trinucleotide repeat expansions. In the genetic absence of MMR, certain tissues are predisposed to mutations and cancer. MMR proteins are involved in various functions including protection from replication-associated and non-mitotic mutations, as well as driving programmed and deleterious mutations, including disease-causing trinucleotide repeat expansions. Here we have assessed the levels of MSH2, MSH3, and MSH6 expression in a large number of murine tissues by transcript analysis and simultaneous Western blotting. We observed that MMR expression patterns varied widely between 14 different tissue types, but did not vary with age (13-84 weeks). MMR protein expression is highest in testis, thymus and spleen and lowest in pancreas, quadriceps and heart, with intermediate levels in liver, kidney, intestine, colon, cortex, striatum and cerebellum. By equalizing antibody signal intensity to represent levels found in mMutSα and mMutSβ purified proteins, we observed that mMSH3 protein levels are greater than mMSH6 levels in the multiple tissues analyzed, with more MSH6 in proliferating tissues. In the intestinal epithelium MSH3 and MSH6 are more highly expressed in the proliferative undifferentiated cells of the crypts than in the differentiated villi cells, as reported for MSH2. This finding correlates with the higher level of MMR expression in highly proliferative mouse tissues such as the spleen and thymus. The relative MMR protein expression levels may explain the functional and tissue-specific reliance upon the roles of each MMR protein. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  1. Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids.

    PubMed

    van den Berge, Margreet; Sijen, Titia

    2017-12-01

    Messenger RNA (mRNA) profiling is a technique increasingly applied for the forensic identification of body fluids and skin. More recently, an mRNA-based organ typing assay was developed which allows for the inference of brain, lung, liver, skeletal muscle, heart, kidney, and skin tissue. When applying this organ typing system in forensic casework for the presence of animal, rather than human, tissue is an alternative scenario to be proposed, for instance that bullets carry cell material from a hunting event. Even though mRNA profiling systems are commonly in silico designed to be primate specific, physical testing against other animal species is generally limited. In this study, human specificity of the organ tissue inferring system was assessed against organ tissue RNAs of various animals. Results confirm human specificity of the system, especially when utilizing interpretation rules considering multiple markers per cell type. Besides, we cross-tested our organ and body fluid mRNA assays against the target types covered by the other assay. Marker expression in the nontarget organ tissues and body fluids was observed to a limited extent, which emphasizes the importance of involving the case-specific context of the forensic samples in deciding which mRNA profiling assay to use and when for interpreting results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermoluminescence of Antarctic meteorites: A rapid screening technique for terrestrial age estimation, pairing studies and identification of specimens with unusual prefall histories

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Walker, R. M.

    1986-01-01

    Thermoluminescence (TL) is a promising technique for rapid screening of the large numbers of Antarctic meteorites, permitting identification of interesting specimens that can then be studied in detail by other, more definite techniques. Specifically, TL permits determination of rough terrestrial age, identification of potential paired groups and location of specimens with unusual pre-fall histories. Meteorites with long terrestrial ages are particularly valuable for studying transport and weathering mechanisms. Pairing studies are possible because TL variations among meteorites are large compared to variations within individual objects, especially for natural TL. Available TL data for several L3 fragments, three of which were paired by other techniques, are presented as an example of the use of TL parameters in pairing studies. Additional TL measurements, specifically a blind test, are recommended to satisfactorily establish the reliability of this pairing property. The TL measurements also identify fragments with unusual pre-fall histories, such an near-Sun orbits.

  3. Tissue specific MR contrast media role in the differential diagnosis of cirrhotic liver nodules.

    PubMed

    Lupescu, Ioana Gabriela; Capsa, Razvan A; Gheorghe, Liana; Herlea, Vlad; Georgescu, Serban A

    2008-09-01

    State-of-the-art magnetic resonance (MR) imaging using tissue specific contrast media facilitates detection and characterization in most cases of hepatic nodules. According to the currently used nomenclature, in liver cirrhosis there are only two major types of hepatocellular nodular lesions: regenerative lesions and dysplastic or neoplastic lesions. The purpose of this clinical imaging review is to provide information on the properties of tissue-specific MR contrast agents and on their usefulness in the demonstration of the pathologic changes that take place at the level of the hepatobiliary and reticuloendothelial systems during the carcinogenesis in liver cirrhosis.

  4. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities.

    PubMed

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B; Papamarkou, Theodore; Huber, Kilian V M; Mutz, Cornelia; Toretsky, Jeffrey A; Bennett, Keiryn L; Olsen, Jesper V; Brunak, Søren; Kovar, Heinrich; Superti-Furga, Giulio

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong synergistic propensity in Ewing sarcoma, revealing its targets in critical Ewing sarcoma signaling routes. Using a multilevel experimental approach including quantitative phosphoproteomics, we analyzed the molecular rationale behind the disease-specific synergistic effect of simultaneous application of PKC412 and IGF1R inhibitors. The mechanism of the drug synergy between these inhibitors is different from the sum of the mechanisms of the single agents. The combination effectively inhibited pathway crosstalk and averted feedback loop repression, in EWS-FLI1-dependent manner. Mol Cancer Ther; 16(1); 88-101. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Diet-induced weight loss has chronic tissue-specific effects on glucocorticoid metabolism in overweight postmenopausal women.

    PubMed

    Stomby, A; Simonyte, K; Mellberg, C; Ryberg, M; Stimson, R H; Larsson, C; Lindahl, B; Andrew, R; Walker, B R; Olsson, T

    2015-05-01

    Tissue-specific glucocorticoid metabolism is altered in obesity, and may increase cardiovascular risk. This dysregulation is normalized by short-term calorie restriction and weight loss, an effect that varies with dietary macronutrient composition. However, tissue-specific glucocorticoid metabolism has not been studied during long-term (>6 months) dietary interventions. Therefore our aim was to test whether long-term dietary interventions, either a paleolithic-type diet (PD) or a diet according to Nordic nutrition recommendations (NNR) could normalize tissue-specific glucocorticoid metabolism in overweight and obese women. Forty-nine overweight/obese postmenopausal women were randomized to a paleolithic diet or a diet according to NNR for 24 months. At baseline, 6 and 24 months anthropometric measurements, insulin sensitivity, excretion of urinary glucocorticoid metabolites in 24-hour collections, conversion of orally administered cortisone to plasma cortisol and transcript levels of 11β hydroxysteroid dehydrogenase type 1 (11βHSD1) in subcutaneous adipose tissue were studied. Both diet groups achieved significant and sustained weight loss. Weight loss with the PD was greater than on NNR diet after 6 months (P<0.001) but similar at 24 months. Urinary measurement of 5α-reductase activity was increased after 24 months in both groups compared with baseline (P<0.001). Subcutaneous adipose tissue 11βHSD1 gene expression decreased at 6 and 24 months in both diet groups (P=0.036). Consistent with increased liver 11βHSD1, conversion of oral cortisone to cortisol increased at 6 months (P=0.023) but was unchanged compared with baseline by 24 months. Long-term weight loss in postmenopausal women has tissue-specific and time-dependent effects on glucocorticoid metabolism. This may alter local-tissue cortisol exposure contributing to improved metabolic function during weight loss.

  6. Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles In Vivo

    PubMed Central

    Cohen, Benjamin Peter; Hooper, Rachel C.; Puetzer, Jennifer L.; Nordberg, Rachel; Asanbe, Ope; Hernandez, Karina A.; Spector, Jason A.

    2016-01-01

    Current techniques for autologous auricular reconstruction produce substandard ear morphologies with high levels of donor-site morbidity, whereas alloplastic implants demonstrate poor biocompatibility. Tissue engineering, in combination with noninvasive digital photogrammetry and computer-assisted design/computer-aided manufacturing technology, offers an alternative method of auricular reconstruction. Using this method, patient-specific ears composed of collagen scaffolds and auricular chondrocytes have generated auricular cartilage with great fidelity following 3 months of subcutaneous implantation, however, this short time frame may not portend long-term tissue stability. We hypothesized that constructs developed using this technique would undergo continued auricular cartilage maturation without degradation during long-term (6 month) implantation. Full-sized, juvenile human ear constructs were injection molded from high-density collagen hydrogels encapsulating juvenile bovine auricular chondrocytes and implanted subcutaneously on the backs of nude rats for 6 months. Upon explantation, constructs retained overall patient morphology and displayed no evidence of tissue necrosis. Limited contraction occurred in vivo, however, no significant change in size was observed beyond 1 month. Constructs at 6 months showed distinct auricular cartilage microstructure, featuring a self-assembled perichondrial layer, a proteoglycan-rich bulk, and rounded cellular lacunae. Verhoeff's staining also revealed a developing elastin network comparable to native tissue. Biochemical measurements for DNA, glycosaminoglycan, and hydroxyproline content and mechanical properties of aggregate modulus and hydraulic permeability showed engineered tissue to be similar to native cartilage at 6 months. Patient-specific auricular constructs demonstrated long-term stability and increased cartilage tissue development during extended implantation, and offer a potential tissue-engineered solution for

  7. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate

    PubMed Central

    Bain, Virginia E.; Gordon, Julie; O'Neil, John D.; Ramos, Isaias; Richie, Ellen R.

    2016-01-01

    The thymus and parathyroids develop from third pharyngeal pouch (3rd pp) endoderm. Our previous studies show that Shh null mice have smaller, aparathyroid primordia in which thymus fate specification extends into the pharynx. SHH signaling is active in both dorsal pouch endoderm and neighboring neural crest (NC) mesenchyme. It is unclear which target tissue of SHH signaling is required for the patterning defects in Shh mutants. Here, we used a genetic approach to ectopically activate or delete the SHH signal transducer Smo in either pp endoderm or NC mesenchyme. Although no manipulation recapitulated the Shh null phenotype, manipulation of SHH signaling in either the endoderm or NC mesenchyme had direct and indirect effects on both cell types during fate specification and organogenesis. SHH pathway activation throughout pouch endoderm activated ectopic Tbx1 expression and partially suppressed the thymus-specific transcription factor Foxn1, identifying Tbx1 as a key target of SHH signaling in the 3rd pp. However, ectopic SHH signaling was insufficient to expand the GCM2-positive parathyroid domain, indicating that multiple inputs, some of which might be independent of SHH signaling, are required for parathyroid fate specification. These data support a model in which SHH signaling plays both positive and negative roles in patterning and organogenesis of the thymus and parathyroids. PMID:27633995

  9. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples.

    PubMed

    Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E

    2014-04-01

    Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  10. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    USGS Publications Warehouse

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  11. 48 CFR 32.114 - Unusual contract financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Unusual contract financing... CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 32.114 Unusual contract financing. Any contract financing arrangement that deviates from this part is unusual contract financing...

  12. Differential proteomic and tissue expression analyses identify valuable diagnostic biomarkers of hepatocellular differentiation and hepatoid adenocarcinomas.

    PubMed

    Reis, Henning; Padden, Juliet; Ahrens, Maike; Pütter, Carolin; Bertram, Stefanie; Pott, Leona L; Reis, Anna-Carinna; Weber, Frank; Juntermanns, Benjamin; Hoffmann, Andreas-C; Eisenacher, Martin; Schlaak, Joörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-10-01

    The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.

  13. Cytological studies of lunar treated tissue cultures

    NASA Technical Reports Server (NTRS)

    Halliwell, R. S.

    1972-01-01

    An electron microscopic study was made of botanical materials, particularly pine tissues, treated with lunar materials collected by Apollo 12 quarantine mission. Results show unusual structural changes within several of the treated tissues. The bodies, as yet unidentified, resemble virus particles observed within infected plant cells. Although the size and shape of the structures are comparable to rod shaped virus particles such as Tobacco mosaic, the numerical distribution, affinity for stains, and intercellular location are different.

  14. Variability in the routing of dietary proteins and lipids to consumer tissues influences tissue-specific isotopic discrimination.

    PubMed

    Wolf, Nathan; Newsome, Seth D; Peters, Jacob; Fogel, Marilyn L

    2015-08-15

    The eco-physiological mechanisms that govern the incorporation and routing of macronutrients from dietary sources into consumer tissues determine the efficacy of stable isotope analysis (SIA) for studying animal foraging ecology. We document how changes in the relative amounts of dietary proteins and lipids affect the metabolic routing of these macronutrients and the consequent effects on tissue-specific discrimination factors in domestic mice using SIA. We also examine the effects of dietary macromolecular content on a commonly used methodological approach: lipid extraction of potential food sources. We used carbon ((13) C) and nitrogen ((15) N) isotopes to examine the routing of carbon from dietary proteins and lipids that were used by mice to biosynthesize hair, blood, muscle, and liver. Growing mice were fed one of four diet treatments in which the total dietary content of C4 -based lipids (δ(13) C = -14.5‰) and C(3) -based proteins (δ(13) C = -27‰) varied inversely between 5% and 40%. The δ(13) C values of mouse tissues increased by approximately 2-6‰ with increasing dietary lipid content. The difference in δ(13) C values between mouse tissues and bulk diet ranged from 0.1 ± 1.5‰ to 2.3 ± 0.6‰ for all diet treatments. The mean (±SD) difference between the δ(13) C values of mouse tissues and dietary protein varied systematically among tissues and ranged from 3.1 ± 0.1‰ to 4.5 ± 0.6‰ for low fat diets and from 5.4 ± 0.4‰ to 10.5 ± 7.3‰ for high fat diets. Mice used some fraction of their dietary lipid carbon to synthesize tissue proteins, suggesting flexibility in the routing of dietary macromolecules to consumer tissues based on dietary macromolecular availability. Consequently, all constituent dietary macromolecules, not just protein, should be considered when determining the relationship between diets and consumer tissues using SIA. In addition, in cases where animals consume diets with high lipid contents, non lipid

  15. Griffonia simplicifolia Isolectin B4 Identifies a Specific Subpopulation of Angiogenic Blood Vessels Following Contusive Spinal Cord Injury in the Adult Mouse

    PubMed Central

    BENTON, RICHARD L.; MADDIE, MELISSA A.; MINNILLO, DANIELLE R.; HAGG, THEO; WHITTEMORE, SCOTT R.

    2009-01-01

    After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1–28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements. PMID:18092342

  16. Tissue enrichment analysis for C. elegans genomics.

    PubMed

    Angeles-Albores, David; N Lee, Raymond Y; Chan, Juancarlos; Sternberg, Paul W

    2016-09-13

    Over the last ten years, there has been explosive development in methods for measuring gene expression. These methods can identify thousands of genes altered between conditions, but understanding these datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does not include anatomical information. We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude. We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated due to pathogen infection in C. elegans. Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using Python's standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and provides users with a text and graphic representation of the results.

  17. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques.

    PubMed

    Au, Bryan C; Lee, Chyan-Jang; Lopez-Perez, Orlay; Foltz, Warren; Felizardo, Tania C; Wang, James C M; Huang, Ju; Fan, Xin; Madden, Melissa; Goldstein, Alyssa; Jaffray, David A; Moloo, Badru; McCart, J Andrea; Medin, Jeffrey A

    2016-02-19

    Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag)-specific responses through direct injections of recombinant lentivectors (LVs) that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA)-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months-the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an "off-the-shelf" anti-cancer vaccine that could be made at large scale and injected into patients-even on an out-patient basis.

  18. 48 CFR 1332.114 - Unusual contract financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Unusual contract financing... CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 1332.114 Unusual contract financing. The designee authorized to approve unusual contract financing arrangements is set forth in CAM...

  19. 48 CFR 432.114 - Unusual contract financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Unusual contract financing... CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 432.114 Unusual contract financing. The HCA is authorized to approve unusual contract financing. The signed determination and finding...

  20. Functional MRI registration with tissue-specific patch-based functional correlation tensors.

    PubMed

    Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang

    2018-06-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.

  1. Method To Identify Specific Inhibiutors Of Imp Dehydrogenase

    DOEpatents

    Collart, Frank R.; Huberman, Eliezer

    2000-11-28

    This invention relates to methods to identify specific inhibitors of the purine nucleotide synthesis enzyme, IMP dehydrogenase (IMPDH). IMPDH is an essential enzyme found in all free-living organisms from humans to bacteria and is an important therapeutic target. The invention allows the identification of specific inhibitors of any IMPDH enzyme which can be expressed in a functional form in a recombinant host cell. A variety of eukaryotic or prokaryotic host systems commonly used for the expression of recombinant proteins are suitable for the practice of the invention. The methods are amenable to high throughput systems for the screening of inhibitors generated by combinatorial chemistry or other methods such as antisense molecule production. Utilization of exogenous guanosine as a control component of the methods allows for the identification of inhibitors specific for IMPDH rather than other causes of decreased cell proliferation.

  2. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules.

    PubMed

    Nakamura, Yukio; de Paiva Alves, Eduardo; Veenstra, Gert Jan C; Hoppler, Stefan

    2016-06-01

    Key signalling pathways, such as canonical Wnt/β-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear β-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling, mechanisms controlling stage- or tissue-specific transcriptional responses remain elusive. Here, a direct comparison of genome-wide occupancy of β-catenin with a stage-matched Wnt-regulated transcriptome reveals that only a subset of β-catenin-bound genomic loci are transcriptionally regulated by Wnt signalling. We demonstrate that Wnt signalling regulates β-catenin binding to Wnt target genes not only when they are transcriptionally regulated, but also in contexts in which their transcription remains unaffected. The transcriptional response to Wnt signalling depends on additional mechanisms, such as BMP or FGF signalling for the particular genes we investigated, which do not influence β-catenin recruitment. Our findings suggest a more general paradigm for Wnt-regulated transcriptional mechanisms, which is relevant for tissue-specific functions of Wnt/β-catenin signalling in embryonic development but also for stem cell-mediated homeostasis and cancer. Chromatin association of β-catenin, even to functional Wnt-response elements, can no longer be considered a proxy for identifying transcriptionally Wnt-regulated genes. Context-dependent mechanisms are crucial for transcriptional activation of Wnt/β-catenin target genes subsequent to β-catenin recruitment. Our conclusions therefore also imply that Wnt-regulated β-catenin binding in one context can mark Wnt-regulated transcriptional target genes for different contexts. © 2016. Published by The Company of Biologists Ltd.

  3. A Lectin from Platypodium elegans with Unusual Specificity and Affinity for Asymmetric Complex N-Glycans*

    PubMed Central

    Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne

    2012-01-01

    Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206

  4. Developmentally Programmed 3′ CpG Island Methylation Confers Tissue- and Cell-Type-Specific Transcriptional Activation

    PubMed Central

    Yu, Da-Hai; Ware, Carol; Waterland, Robert A.; Zhang, Jiexin; Chen, Miao-Hsueh; Gadkari, Manasi; Kunde-Ramamoorthy, Govindarajan; Nosavanh, Lagina M.

    2013-01-01

    During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation. PMID:23459939

  5. The tissue micro-array data exchange specification: a web based experience browsing imported data

    PubMed Central

    Nohle, David G; Hackman, Barbara A; Ayers, Leona W

    2005-01-01

    Background The AIDS and Cancer Specimen Resource (ACSR) is an HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers to approved researchers HIV infected biologic samples and uninfected control tissues including tissue cores in micro-arrays (TMA) accompanied by de-identified clinical data. Researchers interested in the type and quality of TMA tissue cores and the associated clinical data need an efficient method for viewing available TMA materials. Because each of the tissue samples within a TMA has separate data including a core tissue digital image and clinical data, an organized, standard approach to producing, navigating and publishing such data is necessary. The Association for Pathology Informatics (API) extensible mark-up language (XML) TMA data exchange specification (TMA DES) proposed in April 2003 provides a common format for TMA data. Exporting TMA data into the proposed format offers an opportunity to implement the API TMA DES. Using our public BrowseTMA tool, we created a web site that organizes and cross references TMA lists, digital "virtual slide" images, TMA DES export data, linked legends and clinical details for researchers. Microsoft Excel® and Microsoft Word® are used to convert tabular clinical data and produce an XML file in the TMA DES format. The BrowseTMA tool contains Extensible Stylesheet Language Transformation (XSLT) scripts that convert XML data into Hyper-Text Mark-up Language (HTML) web pages with hyperlinks automatically added to allow rapid navigation. Results Block lists, virtual slide images, legends, clinical details and exports have been placed on the ACSR web site for 14 blocks with 1623 cores of 2.0, 1.0 and 0.6 mm sizes. Our virtual microscope can be used to view and annotate these TMA images. Researchers can readily navigate from TMA block lists to TMA legends and to clinical details for a selected tissue core. Exports for 11

  6. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline.

    PubMed

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-06-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. © 2016 by The American Society for Biochemistry and

  7. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline*

    PubMed Central

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-01-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207

  8. Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilnytskyy, Yaroslav; Zemp, Franz J.; Koturbash, Igor

    To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show thatmore » miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.« less

  9. Tissue-specific expression of squirrel monkey chorionic gonadotropin

    PubMed Central

    Vasauskas, Audrey A.; Hubler, Tina R.; Boston, Lori; Scammell, Jonathan G.

    2010-01-01

    Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary. Instead, chorionic gonadotropin (CG), which is normally only expressed in the placenta of Old World primates, is the active luteotropic pituitary hormone in these animals. The goal of this study was to investigate the tissue-specific regulation of squirrel monkey CG. We isolated the squirrel monkey CGβ gene and promoter from genomic DNA from squirrel monkey B-lymphoblasts and compared the promoter sequence to that of the common marmoset, another New World primate, and human CGβ and LHβ. Using reporter gene assays, we found that a squirrel monkey CGβ promoter fragment (−1898/+9) is active in both mouse pituitary LβT2 and human placenta JEG3 cells, but not in rat adrenal PC12 cells. Furthermore, within this construct separate cis-elements are responsible for pituitary- and placenta-specific expression. Pituitary-specific expression is governed by Egr-1 binding sites in the proximal 250 bp of the promoter, whereas placenta-specific expression is controlled by AP-2 sites further upstream. Thus, selective expression of the squirrel monkey CGβ promoter in pituitary and placental cells is governed by distinct cis-elements that exhibit homology with human LHβ and marmoset CGβ promoters, respectively. PMID:21130091

  10. Tissue-specific expression of squirrel monkey chorionic gonadotropin.

    PubMed

    Vasauskas, Audrey A; Hubler, Tina R; Boston, Lori; Scammell, Jonathan G

    2011-02-01

    Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary. Instead, chorionic gonadotropin (CG), which is normally only expressed in the placenta of Old World primates, is the active luteotropic pituitary hormone in these animals. The goal of this study was to investigate the tissue-specific regulation of squirrel monkey CG. We isolated the squirrel monkey CGβ gene and promoter from genomic DNA from squirrel monkey B-lymphoblasts and compared the promoter sequence to that of the common marmoset, another New World primate, and human and rhesus macaque CGβ and LHβ. Using reporter gene assays, we found that a squirrel monkey CGβ promoter fragment (-1898/+9) is active in both mouse pituitary LβT2 and human placenta JEG3 cells, but not in rat adrenal PC12 cells. Furthermore, within this construct separate cis-elements are responsible for pituitary- and placenta-specific expression. Pituitary-specific expression is governed by Egr-1 binding sites in the proximal 250 bp of the promoter, whereas placenta-specific expression is controlled by AP-2 sites further upstream. Thus, selective expression of the squirrel monkey CGβ promoter in pituitary and placental cells is governed by distinct cis-elements that exhibit homology with human LHβ and marmoset CGβ promoters, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  12. Cell-specific dysregulation of microRNA expression in obese white adipose tissue.

    PubMed

    Oger, Frédérik; Gheeraert, Celine; Mogilenko, Denis; Benomar, Yacir; Molendi-Coste, Olivier; Bouchaert, Emmanuel; Caron, Sandrine; Dombrowicz, David; Pattou, François; Duez, Hélène; Eeckhoute, Jérome; Staels, Bart; Lefebvre, Philippe

    2014-08-01

    Obesity is characterized by the excessive accumulation of dysfunctional white adipose tissue (WAT), leading to a strong perturbation of metabolic regulations. However, the molecular events underlying this process are not fully understood. MicroRNAs (miRNAs) are small noncoding RNAs acting as posttranscriptional regulators of gene expression in multiple tissues and organs. However, their expression and roles in WAT cell subtypes, which include not only adipocytes but also immune, endothelial, and mesenchymal stem cells as well as preadipocytes, have not been characterized. Design/Results: By applying differential miRNome analysis, we demonstrate that the expression of several miRNAs is dysregulated in epididymal WAT from ob/ob and high-fat diet-fed mice. Adipose tissue-specific down-regulation of miR-200a and miR-200b and the up-regulation of miR-342-3p, miR-335-5p, and miR-335-3p were observed. Importantly, a similarly altered expression of miR-200a and miR-200b was observed in obese diabetic patients. Furthermore, cell fractionation of mouse adipose tissue revealed that miRNAs are differentially expressed in adipocytes and in subpopulations from the stromal vascular fraction. Finally, integration of transcriptomic data showed that bioinformatically predicted miRNA target genes rarely showed anticorrelated expression with that of targeting miRNA, in contrast to experimentally validated target genes. Taken together, our data indicate that the dysregulated expression of miRNAs occurs in distinct cell types and is likely to affect cell-specific function(s) of obese WAT.

  13. Automated tissue classification of pediatric brains from magnetic resonance images using age-specific atlases

    NASA Astrophysics Data System (ADS)

    Metzger, Andrew; Benavides, Amanda; Nopoulos, Peg; Magnotta, Vincent

    2016-03-01

    The goal of this project was to develop two age appropriate atlases (neonatal and one year old) that account for the rapid growth and maturational changes that occur during early development. Tissue maps from this age group were initially created by manually correcting the resulting tissue maps after applying an expectation maximization (EM) algorithm and an adult atlas to pediatric subjects. The EM algorithm classified each voxel into one of ten possible tissue types including several subcortical structures. This was followed by a novel level set segmentation designed to improve differentiation between distal cortical gray matter and white matter. To minimize the req uired manual corrections, the adult atlas was registered to the pediatric scans using high -dimensional, symmetric image normalization (SyN) registration. The subject images were then mapped to an age specific atlas space, again using SyN registration, and the resulting transformation applied to the manually corrected tissue maps. The individual maps were averaged in the age specific atlas space and blurred to generate the age appropriate anatomical priors. The resulting anatomical priors were then used by the EM algorithm to re-segment the initial training set as well as an independent testing set. The results from the adult and age-specific anatomical priors were compared to the manually corrected results. The age appropriate atlas provided superior results as compared to the adult atlas. The image analysis pipeline used in this work was built using the open source software package BRAINSTools.

  14. Interactome Mapping Guided by Tissue-Specific Phosphorylation in Age-Related Macular Degeneration

    PubMed Central

    Sripathi, Srinivas R.; He, Weilue; Prigge, Cameron L.; Sylvester, O’Donnell; Um, Ji-Yeon; Powell, Folami L.; Neksumi, Musa; Bernstein, Paul S.; Choo, Dong-Won; Bartoli, Manuela; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    The current study aims to determine the molecular mechanisms of age-related macular degeneration (AMD) using the phosphorylation network. Specifically, we examined novel biomarkers for oxidative stress by protein interaction mapping using in vitro and in vivo models that mimic the complex and progressive characteristics of AMD. We hypothesized that the early apoptotic reactions could be initiated by protein phosphorylation in region-dependent (peripheral retina vs. macular) and tissue-dependent (retinal pigment epithelium vs. retina) manner under chronic oxidative stress. The analysis of protein interactome and oxidative biomarkers showed the presence of tissue- and region-specific post-translational mechanisms that contribute to AMD progression and suggested new therapeutic targets that include ubiquitin, erythropoietin, vitronectin, MMP2, crystalline, nitric oxide, and prohibitin. Phosphorylation of specific target proteins in RPE cells is a central regulatory mechanism as a survival tool under chronic oxidative imbalance. The current interactome map demonstrates a positive correlation between oxidative stress-mediated phosphorylation and AMD progression and provides a basis for understanding oxidative stress-induced cytoskeletal changes and the mechanism of aggregate formation induced by protein phosphorylation. This information could provide an effective therapeutic approach to treat age-related neurodegeneration. PMID:28580316

  15. Interactome Mapping Guided by Tissue-Specific Phosphorylation in Age-Related Macular Degeneration.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Prigge, Cameron L; Sylvester, O'Donnell; Um, Ji-Yeon; Powell, Folami L; Neksumi, Musa; Bernstein, Paul S; Choo, Dong-Won; Bartoli, Manuela; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-02-01

    The current study aims to determine the molecular mechanisms of age-related macular degeneration (AMD) using the phosphorylation network. Specifically, we examined novel biomarkers for oxidative stress by protein interaction mapping using in vitro and in vivo models that mimic the complex and progressive characteristics of AMD. We hypothesized that the early apoptotic reactions could be initiated by protein phosphorylation in region-dependent (peripheral retina vs. macular) and tissue-dependent (retinal pigment epithelium vs. retina) manner under chronic oxidative stress. The analysis of protein interactome and oxidative biomarkers showed the presence of tissue- and region-specific post-translational mechanisms that contribute to AMD progression and suggested new therapeutic targets that include ubiquitin, erythropoietin, vitronectin, MMP2, crystalline, nitric oxide, and prohibitin. Phosphorylation of specific target proteins in RPE cells is a central regulatory mechanism as a survival tool under chronic oxidative imbalance. The current interactome map demonstrates a positive correlation between oxidative stress-mediated phosphorylation and AMD progression and provides a basis for understanding oxidative stress-induced cytoskeletal changes and the mechanism of aggregate formation induced by protein phosphorylation. This information could provide an effective therapeutic approach to treat age-related neurodegeneration.

  16. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice.

    PubMed

    Wijayatunga, Nadeeja N; Pahlavani, Mandana; Kalupahana, Nishan S; Kottapalli, Kameswara Rao; Gunaratne, Preethi H; Coarfa, Cristian; Ramalingam, Latha; Moustaid-Moussa, Naima

    2018-02-06

    Obesity contributes to metabolic disorders such as diabetes and cardiovascular disease. Characterization of differences between the main adipose tissue depots, white (WAT) [including subcutaneous (SAT) and visceral adipose tissue (VAT)] and brown adipose tissue (BAT) helps to identify their roles in obesity. Thus, we studied depot-specific differences in whole transcriptome and miRNA profiles of SAT, VAT and BAT from high fat diet (HFD/45% of calories from fat) fed mice using RNA sequencing and small RNA-Seq. Using quantitative real-time polymerase chain reaction, we validated depot-specific differences in endoplasmic reticulum (ER) stress related genes and miRNAs using mice fed a HFD vs. low fat diet (LFD/10% of calories from fat). According to the transcriptomic analysis, lipogenesis, adipogenesis, inflammation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were higher in VAT compared to BAT, whereas energy expenditure, fatty acid oxidation and oxidative phosphorylation were higher in BAT than in VAT of the HFD fed mice. In contrast to BAT, ER stress marker genes were significantly upregulated in VAT of HFD fed mice than the LFD fed mice. For the first time, we report depot specific differences in ER stress related miRNAs including; downregulation of miR-125b-5p, upregulation miR-143-3p, and miR-222-3p in VAT following HFD and upregulation of miR-30c-2-3p only in BAT following a HFD in mice than the LFD mice. In conclusion, HFD differentially regulates miRNAs and genes in different adipose depots with significant induction of genes related to lipogenesis, adipogenesis, inflammation, ER stress, and UPR in WAT compared to BAT.

  17. Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology.

    PubMed

    Liu, Tao; Sims, David; Baum, Buzz

    2009-01-01

    In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.

  18. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

    PubMed Central

    Smibert, Peter; Miura, Pedro; Westholm, Jakub O.; Shenker, Sol; May, Gemma; Duff, Michael O.; Zhang, Dayu; Eads, Brian D.; Carlson, Joe; Brown, James B.; Eisman, Robert C.; Andrews, Justen; Kaufman, Thomas; Cherbas, Peter; Celniker, Susan E.; Graveley, Brenton R.; Lai, Eric C.

    2012-01-01

    SUMMARY We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. PMID:22685694

  19. Improvement of FK506 Production in Streptomyces tsukubaensis by Genetic Enhancement of the Supply of Unusual Polyketide Extender Units via Utilization of Two Distinct Site-Specific Recombination Systems

    PubMed Central

    Chen, Dandan; Zhang, Qi; Zhang, Qinglin; Cen, Peilin

    2012-01-01

    FK506 is a potent immunosuppressant that has a wide range of clinical applications. Its 23-member macrocyclic scaffold, mainly with a polyketide origin, features two methoxy groups at C-13 and C-15 and one allyl side chain at C-21, due to the region-specific incorporation of two unusual extender units derived from methoxymalonyl-acyl carrier protein (ACP) and allylmalonyl-coenzyme A (CoA), respectively. Whether their intracellular formations can be a bottleneck for FK506 production remains elusive. In this study, we report the improvement of FK506 yield in the producing strain Streptomyces tsukubaensis by the duplication of two sets of pathway-specific genes individually encoding the biosyntheses of these two extender units, thereby providing a promising approach to generate high-FK506-producing strains via genetic manipulation. Taking advantage of the fact that S. tsukubaensis is amenable to two actinophage (ΦC31 and VWB) integrase-mediated recombination systems, we genetically enhanced the biosyntheses of methoxymalonyl-ACP and allylmalonyl-CoA, as indicated by transcriptional analysis. Together with the optimization of glucose supplementation, the maximal FK506 titer eventually increased by approximately 150% in comparison with that of the original strain. The strategy of engineering the biosynthesis of unusual extender units described here may be applicable to improving the production of other polyketide or nonribosomal peptide natural products that contain pathway-specific building blocks. PMID:22582065

  20. Unusual Sleep Experiences, Dissociation, and Schizotypy: Evidence for a Common Domain

    PubMed Central

    Koffel, Erin; Watson, David

    2009-01-01

    This paper reviews studies that have examined associations between unusual sleep experiences (including nightmares, vivid dreaming, narcolepsy symptoms, and complex nighttime behaviors) and dissociation and schizotypy. Using correlational studies and structural analyses, evidence is provided that unusual sleep experiences, dissociation, and schizotypy belong to a common domain. It is demonstrated that unusual sleep experiences show specificity to dissociation and schizotypy compared to other daytime symptoms (e.g., anxiety, depression, substance use) and other sleep disturbances (e.g., insomnia, lassitude/fatigue). The paper also outlines the methodological limitations of the existing evidence and makes suggestions for future research. Finally, three models for the overlap of daytime and nighttime symptoms are reviewed, including biological abnormalities, trauma, and personality traits. Although further research is needed, it is suggested that daytime and nighttime symptoms result from problems with sleep-wake state boundaries, which may be precipitated by stress or trauma. In addition, association between daytime and nighttime symptoms can be attributed to the higher order personality trait of Oddity. PMID:19581031

  1. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression

    PubMed Central

    Parks, Matthew M.; Kurylo, Chad M.; Dass, Randall A.; Bojmar, Linda; Lyden, David; Vincent, C. Theresa; Blanchard, Scott C.

    2018-01-01

    The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome’s molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease. PMID:29503865

  2. The landscape of genomic imprinting across diverse adult human tissues

    PubMed Central

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli

    2015-01-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  3. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Smith, Lachlan J; Mauck, Robert L; Elliott, Dawn M

    2013-08-06

    Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in

  4. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  5. Ruptured profunda femoris aneurysm secondary to neurofibromatosis: vascular involvement in an unusual location.

    PubMed

    Emrecan, Bilgin; Onem, Gokhan; Susam, Ibrahim

    2010-01-01

    Neurofibromatosis is an autosomal dominant genetic disease characterized by abnormal growth that involves tissues of mesodermal and neuroectodermal origin. Aneurysms are rarely seen in peripheral arteries. This report presents a case of ruptured arterial aneurysm secondary to neurofibromatosis; the lesion occurred in the profunda femoris artery, a highly unusual location. Treatment of patients with ruptured arterial aneurysm secondary to neurofibromatosis may be interventional or surgical. In this case, a surgical approach was successful.

  6. Unusual masturbatory practice as an etiological factor in the diagnosis and treatment of sexual dysfunction in young men.

    PubMed

    Bronner, Gila; Ben-Zion, Itzhak Z

    2014-07-01

    Masturbation is a common sexual activity among people of all ages throughout life. It has been traditionally prohibited and judged as immoral and sinful by several religions. Although it is no longer perceived as a negative behavior, masturbation is often omitted in the diagnostic inquiry of patients with sexual problems. The aims of this study are to increase the awareness of clinicians to the importance of including questions regarding masturbatory habits in the process of sexual history taking, to analyze cases of male sexual dysfunction (SD) associated with unusual masturbatory practices, and to propose a practical tool for clinicians to diagnose and manage such problems. A clinical study of four cases that include a range of unusual masturbatory practices by young males who applied for sex therapy is described. An intervention plan involving specific questions in case history taking was devised. It was based on detailed understanding of each patient's masturbatory practice and its manifestation in his SD. Effects of identifying and altering masturbatory practices on sexual function. The four men described unusual and awkward masturbatory practices, each of which was associated with different kinds of SD. The unlearning of the masturbatory practices contributed notably to improvement of their sexual function. The four cases in this study indicate that the detailed questioning of masturbatory habits is crucial for a thorough assessment and adequate treatment of sexual problems in men. We propose specific questions on masturbatory behavior as well as a diagnostic and therapeutic flowchart for physicians and sex therapists to address those problems. © 2014 International Society for Sexual Medicine.

  7. Tissue specific resonance frequencies of water and metabolites within the human brain

    NASA Astrophysics Data System (ADS)

    Chadzynski, Grzegorz L.; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe

    2011-09-01

    Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3 T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14 ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible.

  8. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    PubMed

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  9. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease

    PubMed Central

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-01-01

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease. PMID:27409675

  10. Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell

    PubMed Central

    Villarino, Gonzalo H.; Hu, Qiwen; Scanlon, Michael J.; Mueller, Lukas; Mattson, Neil S.

    2017-01-01

    One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq) has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1), a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species. PMID:28771200

  11. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  12. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation

    PubMed Central

    Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W.; Chinnery, Patrick F.; Schara, Ulrike; Thorburn, David R.; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna

    2015-01-01

    The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes. PMID:25705216

  13. A systematic survey of lipids across mouse tissues

    PubMed Central

    Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.

    2014-01-01

    Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676

  14. Tissue Specific Diurnal Rhythms of Metabolites and Their Regulation during Herbivore Attack in a Native Tobacco, Nicotiana attenuata

    PubMed Central

    Kim, Sang-Gyu; Gulati, Jyotasana; Baldwin, Ian T.

    2011-01-01

    Ecological performance is all about timing and the endogenous clock that allows the entrainment of rhythms and anticipation of fitness-determining events is being rapidly characterized. How plants anticipate daily abiotic stresses, such as cold in early mornings and drought at noon, as well as biotic stresses, such as the timing of pathogen infections, is being explored, but little is known about the clock's role in regulating responses to insect herbivores and mutualists, whose behaviors are known to be strongly diurnally regulated and whose attack is known to reconfigure plant metabolomes. We developed a liquid chromatography-mass spectrometry procedure and analyzed its output with model-based peak picking algorithms to identify metabolites with diurnal accumulation patterns in sink/source leaves and roots in an unbiased manner. The response of metabolites with strong diurnal patterns to simulated attack from the specialist herbivore, Manduca sexta larvae was analyzed and annotated with in-house and public databases. Roots and leaves had largely different rhythms and only 10 ions of 182 oscillating ions in leaves and 179 oscillating ions in roots were rhythmic in both tissues: root metabolites mainly peaked at dusk or night, while leaf metabolites peaked during the day. Many oscillating metabolites showed tissue-specific regulation by simulated herbivory of which systemic responses in unattacked tissues were particularly pronounced. Diurnal and herbivory-elicited accumulation patterns of disaccharide, phenylalanine, tyrosine, lyciumoside I, coumaroyl tyramine, 12-oxophytodienoic acid and jasmonic acid and those of their related biosynthetic transcripts were examined in detail. We conclude that oscillating metabolites of N. attenuata accumulate in a highly tissue-specific manner and the patterns reveal pronounced diurnal rhythms in the generalized and specialized metabolism that mediates the plant's responses to herbivores and mutualists. We propose that diurnal

  15. The landscape of genomic imprinting across diverse adult human tissues.

    PubMed

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K; Rivas, Manuel A; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S; Kukurba, Kim R; Zhang, Rui; Eng, Celeste; Torgerson, Dara G; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R; Burchard, Esteban G; Seibold, Max A; MacArthur, Daniel G; Montgomery, Stephen B; Zaitlen, Noah A; Lappalainen, Tuuli

    2015-07-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. © 2015 Baran et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Donor cornea tissue in cases of drowning or water submersion: eye banks practice patterns and tissue outcomes.

    PubMed

    Vijayakumar, Nithya P; Parikh, Purak; Mian, Shahzad I; Tennant, Brad; Grossman, Gregory H; Albrecht, Bob; Niziol, Leslie M; Woodward, Maria A

    2018-03-01

    Surgical use of donor corneal tissue from victims of water submersion (drowning or submersion secondary to death) remains controversial due to limited evidence about the quality of these tissues. To assess the safety of donor corneal tissue from victims of water submersion, an investigation of eye banks' practice patterns and tissue outcomes was conducted. All 79 Eye Bank Association of America accredited eye banks were contacted for a phone interview of practices regarding tissue from victims of water submersion. A retrospective review of corneal tissues from 2014 to 2016 from a large eye bank network was performed to identify all donors submerged in water. Corneal epithelial integrity, endothelial cell density (ECD), rim cultures, and adverse events were analyzed for associations with water submersion characteristics. 49 eye banks (62% response) participated in the survey. 55% of these eye banks had specific, written protocol for tissue eligibility from donors submerged in water. With or without specific protocol, eye banks reported considering water type (84%) and length of time submerged (92%) to determine eligibility. 22% of eye banks reported medical director involvement when eligibility determination was unclear. 79 tissues from 40 donors who were submerged were identified in 2014-2016 eye bank data. No donor tissues had pre-processing corneal infiltrates, positive rim cultures, or adverse events post-keratoplasty. Corneal epithelial integrity and ECD were not associated with water type or length of time submerged. In conclusion, data from a large eye bank network showed no adverse events or outcomes, indicating these tissues may be safe.

  17. MicroRNA Expression in Formalin-fixed Paraffin-embedded Cancer Tissue: Identifying Reference MicroRNAs and Variability.

    PubMed

    Boisen, Mogens Karsbøl; Dehlendorff, Christian; Linnemann, Dorte; Schultz, Nicolai Aagaard; Jensen, Benny Vittrup; Høgdall, Estrid Vilma Solyom; Johansen, Julia Sidenius

    2015-12-29

    Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. High-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering. We created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50% reduction over 20 years) but not in CRC. Formalin fixation for 2-6 days decreased miRNA expression 30-65%. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results. We identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE

  18. Primary Respiratory Chain Disease Causes Tissue-Specific Dysregulation of the Global Transcriptome and Nutrient-Sensing Signaling Network

    PubMed Central

    Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.

    2013-01-01

    Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis

  19. Fabrication of Extracellular Matrix-derived Foams and Microcarriers as Tissue-specific Cell Culture and Delivery Platforms.

    PubMed

    Kornmuller, Anna; Brown, Cody F C; Yu, Claire; Flynn, Lauren E

    2017-04-11

    Cell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries. The approach involves mechanical processing and mild enzymatic digestion to yield an ECM suspension that is used to fabricate the three-dimensional foams or microcarriers through controlled freezing and lyophilization procedures. These pure ECM-derived scaffolds are highly porous, yet stable without the need for chemical crosslinking agents or other additives that may negatively impact cell function. The scaffold properties can be tuned to some extent by varying factors such as the ECM suspension concentration, mechanical processing methods, or synthesis conditions. In general, the scaffolds are robust and easy to handle, and can be processed as tissues for most standard biological assays, providing a versatile and user-friendly 3D cell culture platform that mimics the native ECM composition. Overall, these straightforward methods for fabricating customized ECM-derived foams and microcarriers may be of interest to both biologists and biomedical engineers as tissue-specific cell-instructive platforms for in vitro and in vivo applications.

  20. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  1. Genetic effects on gene expression across human tissues

    PubMed Central

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease. PMID:29022597

  2. Genetic effects on gene expression across human tissues.

    PubMed

    Battle, Alexis; Brown, Christopher D; Engelhardt, Barbara E; Montgomery, Stephen B

    2017-10-11

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

  3. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    PubMed

    Lu, Hong; Patil, Prabhu; Van Sluys, Marie-Anne; White, Frank F; Ryan, Robert P; Dow, J Maxwell; Rabinowicz, Pablo; Salzberg, Steven L; Leach, Jan E; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J

    2008-01-01

    Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or

  4. Tissue-specific impact of FADS cluster variants on FADS1 and FADS2 gene expression.

    PubMed

    Reynolds, Lindsay M; Howard, Timothy D; Ruczinski, Ingo; Kanchan, Kanika; Seeds, Michael C; Mathias, Rasika A; Chilton, Floyd H

    2018-01-01

    Omega-6 (n-6) and omega-3 (n-3) long (≥ 20 carbon) chain polyunsaturated fatty acids (LC-PUFAs) play a critical role in human health and disease. Biosynthesis of LC-PUFAs from dietary 18 carbon PUFAs in tissues such as the liver is highly associated with genetic variation within the fatty acid desaturase (FADS) gene cluster, containing FADS1 and FADS2 that encode the rate-limiting desaturation enzymes in the LC-PUFA biosynthesis pathway. However, the molecular mechanisms by which FADS genetic variants affect LC-PUFA biosynthesis, and in which tissues, are unclear. The current study examined associations between common single nucleotide polymorphisms (SNPs) within the FADS gene cluster and FADS1 and FADS2 gene expression in 44 different human tissues (sample sizes ranging 70-361) from the Genotype-Tissue Expression (GTEx) Project. FADS1 and FADS2 expression were detected in all 44 tissues. Significant cis-eQTLs (within 1 megabase of each gene, False Discovery Rate, FDR<0.05, as defined by GTEx) were identified in 12 tissues for FADS1 gene expression and 23 tissues for FADS2 gene expression. Six tissues had significant (FDR< 0.05) eQTLs associated with both FADS1 and FADS2 (including artery, esophagus, heart, muscle, nerve, and thyroid). Interestingly, the identified eQTLs were consistently found to be associated in opposite directions for FADS1 and FADS2 expression. Taken together, findings from this study suggest common SNPs within the FADS gene cluster impact the transcription of FADS1 and FADS2 in numerous tissues and raise important questions about how the inverse expression of these two genes impact intermediate molecular (such a LC-PUFA and LC-PUFA-containing glycerolipid levels) and ultimately clinical phenotypes associated with inflammatory diseases and brain health.

  5. Characterization of human breast cancer tissues by infrared imaging.

    PubMed

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  6. Female-specific down-regulation of tissue-PMN drives impaired Treg and amplified effector T cell responses in autoimmune dry eye disease1

    PubMed Central

    Gao, Yuan; Min, Kyungji; Zhang, Yibing; Su, John; Greenwood, Matthew; Gronert, Karsten

    2015-01-01

    Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. PMN have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMN in dry eye disease remains unexplored. We discovered a LXA4-producing tissue-PMN population in the corneal limbus, lacrimal glands and cervical lymph nodes of healthy male and female mice. These tissue-PMN, unlike inflammatory-PMN, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in T effector cells (TH1 and TH17), a decrease in regulatory T cells (Treg) and increased dry eye pathogenesis. Antibody depletion of tissue-PMN abrogated LXA4 formation in lymph nodes, caused a marked increase in TH1 and TH17 and decrease in Treg cells. To establish an immune regulatory role for PMN-derived LXA4 in dry eye females were treated with LXA4. LXA4 treatment markedly inhibited TH1 and TH17 and amplified Treg cells in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue-PMN as a potential key factor in aberrant T effector cell activation and initiation of immune-driven dry eye disease. PMID:26324767

  7. Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules

    PubMed Central

    Faure, Andre J.; Schmidt, Dominic; Watt, Stephen; Schwalie, Petra C.; Wilson, Michael D.; Xu, Huiling; Ramsay, Robert G.; Odom, Duncan T.; Flicek, Paul

    2012-01-01

    The cohesin protein complex contributes to transcriptional regulation in a CTCF-independent manner by colocalizing with master regulators at tissue-specific loci. The regulation of transcription involves the concerted action of multiple transcription factors (TFs) and cohesin's role in this context of combinatorial TF binding remains unexplored. To investigate cohesin-non-CTCF (CNC) binding events in vivo we mapped cohesin and CTCF, as well as a collection of tissue-specific and ubiquitous transcriptional regulators using ChIP-seq in primary mouse liver. We observe a positive correlation between the number of distinct TFs bound and the presence of CNC sites. In contrast to regions of the genome where cohesin and CTCF colocalize, CNC sites coincide with the binding of master regulators and enhancer-markers and are significantly associated with liver-specific expressed genes. We also show that cohesin presence partially explains the commonly observed discrepancy between TF motif score and ChIP signal. Evidence from these statistical analyses in wild-type cells, and comparisons to maps of TF binding in Rad21-cohesin haploinsufficient mouse liver, suggests that cohesin helps to stabilize large protein–DNA complexes. Finally, we observe that the presence of mirrored CTCF binding events at promoters and their nearby cohesin-bound enhancers is associated with elevated expression levels. PMID:22780989

  8. Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism.

    PubMed

    Carneiro-Ramos, M S; Silva, V B; Santos, R A S; Barreto-Chaves, M L M

    2006-11-01

    We have previously demonstrated the interaction between the RAS and thyroid hormones (TH). The present study was designed to determine the role of TH in the local regulation of ACE activity and expression in different tissues. Adult male Wistar rats were randomized into three groups: T4-25 and T4-100 (0.025 and 0.100mg/kg of body weight/day of l-thyroxine for 14 days, respectively) and control. Hemodynamic parameters as well as cardiac and renal hypertrophy were evaluated. ACE activity and mRNA levels were determined by Fluorimetric and Northern blot assays, respectively. Both doses increased SBP and HR, as well as inducing cardiac and renal hypertrophy. Pulmonary and serum ACE levels were comparable among the groups. Both doses promoted increased renal ACE activity and expression but surprisingly ACE was diminished in the heart in both hyperthyroid groups. This change was mediated by a tissue-specific transcription mechanism.

  9. Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex

    PubMed Central

    Schweitzer, Mary Higby; Zheng, Wenxia; Zanno, Lindsay; Werning, Sarah; Sugiyama, Toshie

    2016-01-01

    Medullary bone (MB), an estrogen-dependent reproductive tissue present in extant gravid birds, is texturally, histologically and compositionally distinct from other bone types. Phylogenetic proximity led to the proposal that MB would be present in non-avian dinosaurs, and recent studies have used microscopic, morphological, and regional homologies to identify this reproductive tissue in both theropod and ornithischian dinosaurs. Here, we capitalize on the unique chemical and histological fingerprint of MB in birds to characterize, at the molecular level, MB in the non-avian theropod Tyrannosaurus rex (MOR 1125), and show that the retention of original molecular components in fossils allows deeper physiological and evolutionary questions to be addressed. PMID:26975806

  10. Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex.

    PubMed

    Schweitzer, Mary Higby; Zheng, Wenxia; Zanno, Lindsay; Werning, Sarah; Sugiyama, Toshie

    2016-03-15

    Medullary bone (MB), an estrogen-dependent reproductive tissue present in extant gravid birds, is texturally, histologically and compositionally distinct from other bone types. Phylogenetic proximity led to the proposal that MB would be present in non-avian dinosaurs, and recent studies have used microscopic, morphological, and regional homologies to identify this reproductive tissue in both theropod and ornithischian dinosaurs. Here, we capitalize on the unique chemical and histological fingerprint of MB in birds to characterize, at the molecular level, MB in the non-avian theropod Tyrannosaurus rex (MOR 1125), and show that the retention of original molecular components in fossils allows deeper physiological and evolutionary questions to be addressed.

  11. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus

    PubMed Central

    Bondarenko, Semen M.; Artemov, Gleb N.; Stegniy, Vladimir N.

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO—a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells. PMID:28158219

  12. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus.

    PubMed

    Bondarenko, Semen M; Artemov, Gleb N; Sharakhov, Igor V; Stegniy, Vladimir N

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO-a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.

  13. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification.

    PubMed

    Yasuoka, Yuuri; Suzuki, Yutaka; Takahashi, Shuji; Someya, Haruka; Sudou, Norihiro; Haramoto, Yoshikazu; Cho, Ken W; Asashima, Makoto; Sugano, Sumio; Taira, Masanori

    2014-07-09

    Head specification by the head-selector gene, orthodenticle (otx), is highly conserved among bilaterian lineages. However, the molecular mechanisms by which Otx and other transcription factors (TFs) interact with the genome to direct head formation are largely unknown. Here we employ ChIP-seq and RNA-seq approaches in Xenopus tropicalis gastrulae and find that occupancy of the corepressor, TLE/Groucho, is a better indicator of tissue-specific cis-regulatory modules (CRMs) than the coactivator p300, during early embryonic stages. On the basis of TLE binding and comprehensive CRM profiling, we define two distinct types of Otx2- and TLE-occupied CRMs. Using these devices, Otx2 and other head organizer TFs (for example, Lim1/Lhx1 (activator) or Goosecoid (repressor)) are able to upregulate or downregulate a large battery of target genes in the head organizer. An underlying principle is that Otx marks target genes for head specification to be regulated positively or negatively by partner TFs through specific types of CRMs.

  14. Maternal xNorrin, a Canonical Wnt Signaling Agonist and TGF-β Antagonist, Controls Early Neuroectoderm Specification in Xenopus

    PubMed Central

    Xu, Suhong; Cheng, Feng; Liang, Juan; Wu, Wei; Zhang, Jian

    2012-01-01

    Dorsal–ventral specification in the amphibian embryo is controlled by β-catenin, whose activation in all dorsal cells is dependent on maternal Wnt11. However, it remains unknown whether other maternally secreted factors contribute to β-catenin activation in the dorsal ectoderm. Here, we show that maternal Xenopus Norrin (xNorrin) promotes anterior neural tissue formation in ventralized embryos. Conversely, when xNorrin function is inhibited, early canonical Wnt signaling in the dorsal ectoderm and the early expression of the zygotic neural inducers Chordin, Noggin, and Xnr3 are severely suppressed, causing the loss of anterior structures. In addition, xNorrin potently inhibits BMP- and Nodal/Activin-related functions through direct binding to the ligands. Moreover, a subset of Norrin mutants identified in humans with Norrie disease retain Wnt activation but show defective inhibition of Nodal/Activin-related signaling in mesoderm induction, suggesting that this disinhibition causes Norrie disease. Thus, xNorrin is an unusual molecule that acts on two major signaling pathways, Wnt and TGF-β, in opposite ways and is essential for early neuroectoderm specification. PMID:22448144

  15. The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation

    PubMed Central

    Jiang, Jianqiao; White-Cooper, Helen

    2013-01-01

    The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955

  16. FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications.

    PubMed

    Backenroth, Daniel; He, Zihuai; Kiryluk, Krzysztof; Boeva, Valentina; Pethukova, Lynn; Khurana, Ekta; Christiano, Angela; Buxbaum, Joseph D; Ionita-Laza, Iuliana

    2018-05-03

    We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we show that eQTLs in specific tissues tend to be most enriched among the predicted functional variants in relevant tissues in Roadmap. We further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlation matrix of various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex traits, and FUN-LDA yielded higher enrichment estimates than existing methods. Finally, using experimentally validated functional variants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each ENCODE and Roadmap tissue are available online (see Web Resources). Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Tissue specific resonance frequencies of water and metabolites within the human brain.

    PubMed

    Chadzynski, Grzegorz L; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe

    2011-09-01

    Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    PubMed

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (p<0.05). Blood-derived DNA methylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves1

    PubMed Central

    Hübner, Michaela; Matsubara, Shizue; Beyer, Peter

    2015-01-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. PMID:26134165

  20. Visceral and Somatic Disorders: Tissue Softening with Frequency-Specific Microcurrent

    PubMed Central

    Oschman, James L.

    2013-01-01

    Abstract Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena are often observed with successful acupuncture, cranial-sacral, and other energy-based techniques. This article explores possible mechanisms involved in tissue softening. In the 1970s, neuroscientist and osteopathic researcher Irvin Korr developed a “γ-loop hypothesis” to explain the persistence of increased systemic muscle tone associated with various somatic dysfunctions. This article summarizes how physiologists, neuroscientists, osteopaths, chiropractors, and fascial researchers have expanded on Korr's ideas by exploring various mechanisms by which injury or disease increase local muscle tension or systemic muscle tone. Following on Korr's hypothesis, it is suggested that most patients actually present with elevated muscle tone or tense areas due to prior traumas or other disorders, and that tissue softening indicates that FSM or other methods are affecting the cause of their pathophysiology. The authors believe this concept and the research it has led to will be of interest to a wide range of energetic, bodywork, and movement therapists. PMID:22775307

  1. Choice of surrogate tissue influences neonatal EWAS findings.

    PubMed

    Lin, Xinyi; Teh, Ai Ling; Chen, Li; Lim, Ives Yubin; Tan, Pei Fang; MacIsaac, Julia L; Morin, Alexander M; Yap, Fabian; Tan, Kok Hian; Saw, Seang Mei; Lee, Yung Seng; Holbrook, Joanna D; Godfrey, Keith M; Meaney, Michael J; Kobor, Michael S; Chong, Yap Seng; Gluckman, Peter D; Karnani, Neerja

    2017-12-05

    Epigenomes are tissue specific and thus the choice of surrogate tissue can play a critical role in interpreting neonatal epigenome-wide association studies (EWAS) and in their extrapolation to target tissue. To develop a better understanding of the link between tissue specificity and neonatal EWAS, and the contributions of genotype and prenatal factors, we compared genome-wide DNA methylation of cord tissue and cord blood, two of the most accessible surrogate tissues at birth. In 295 neonates, DNA methylation was profiled using Infinium HumanMethylation450 beadchip arrays. Sites of inter-individual variability in DNA methylation were mapped and compared across the two surrogate tissues at birth, i.e., cord tissue and cord blood. To ascertain the similarity to target tissues, DNA methylation profiles of surrogate tissues were compared to 25 primary tissues/cell types mapped under the Epigenome Roadmap project. Tissue-specific influences of genotype on the variable CpGs were also analyzed. Finally, to interrogate the impact of the in utero environment, EWAS on 45 prenatal factors were performed and compared across the surrogate tissues. Neonatal EWAS results were tissue specific. In comparison to cord blood, cord tissue showed higher inter-individual variability in the epigenome, with a lower proportion of CpGs influenced by genotype. Both neonatal tissues were good surrogates for target tissues of mesodermal origin. They also showed distinct phenotypic associations, with effect sizes of the overlapping CpGs being in the same order of magnitude. The inter-relationship between genetics, prenatal factors and epigenetics is tissue specific, and requires careful consideration in designing and interpreting future neonatal EWAS. This birth cohort is a prospective observational study, designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .

  2. Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators.

    PubMed

    Hoehn, Kyle L; Hudachek, Susan F; Summers, Scott A; Florant, Gregory L

    2004-03-01

    Yellow-bellied marmots (Marmota flaviventris) exhibit a circannual cycle of hyperphagia and nutrient storage in the summer followed by hibernation in the winter. This annual cycle of body mass gain and loss is primarily due to large-scale accumulation of lipid in the summer, which is then mobilized and oxidized for energy during winter. The rapid and predictable change in body mass makes these animals ideal for studies investigating the molecular basis for body weight regulation. In the study described herein, we monitored seasonal changes in the protein levels and activity of a central regulator of anabolic metabolism, the serine-threonine kinase Akt-protein kinase B (Akt/PKB), during the months accompanying maximal weight gain and entry into hibernation (June-November). Interestingly, under fasting conditions, Akt/PKB demonstrated a tissue-specific seasonal activation. Specifically, although Akt/PKB levels did not change, the activity of Akt/PKB (isoforms 1/alpha and 2/beta) in white adipose tissue (WAT) increased significantly in July. Moreover, glycogen synthase, which lies downstream of Akt/PKB on a linear pathway linking the enzyme to the stimulation of glycogen synthesis, demonstrated a similar pattern of seasonal activation. By contrast, Akt/PKB activity in skeletal muscle peaked much later (i.e., September). These data suggest the existence of a novel, tissue-specific mechanism regulating Akt/PKB activation during periods of marked anabolism.

  3. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds.

    PubMed

    Lu, Shaoping; Sturtevant, Drew; Aziz, Mina; Jin, Cheng; Li, Qing; Chapman, Kent D; Guo, Liang

    2018-06-01

    Despite the importance of oilseeds to worldwide human nutrition, and more recently to the production of bio-based diesel fuels, the detailed mechanisms regulating seed oil biosynthesis remain only partly understood, especially from a tissue-specific perspective. Here, we investigated the spatial distributions of lipid metabolites and transcripts involved in oil biosynthesis from seeds of two low-erucic acid genotypes of Brassica napus with high and low seed-oil content. Integrated results from matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) of lipids in situ, lipidome profiling of extracts from seed tissues, and tissue-specific transcriptome analysis revealed complex spatial distribution patterns of lipids and transcripts. In general, it appeared that many triacylglycerol and phosphatidylcholine species distributed heterogeneously throughout the embryos. Tissue-specific transcriptome analysis identified key genes involved in de novo fatty acid biosynthesis in plastid, triacylglycerols assembly and lipid droplet packaging in the endoplasmic reticulum (ER) that may contribute to the high or low oil phenotype and heterogeneity of lipid distribution. Our results imply that transcriptional regulation represents an important means of impacting lipid compartmentalization in oil seeds. While much information remains to be learned about the intricacies of seed oil accumulation and distribution, these studies highlight the advances that come from evaluating lipid metabolism within a spatial context and with multiple omics level datasets. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  4. Unusual Metastases in Renal Cell Carcinoma: A Single Institution Experience and Review of Literature

    PubMed Central

    Villarreal-Garza, Cynthia; Perez-Alvarez, Sandra I.; Gonzalez-Espinoza, Ivan R.; Leon-Rodriguez, Eucario

    2010-01-01

    Background To report location and management of atypical metastases from renal cell carcinoma (RCC) in the Instituto Nacional de Ciencias Medicas e Investigacion Salvador Zubiran (INCMNSZ) in Mexico City. Methods Between 1987 to 2009, 545 patients with RCC were retrospectively identified at the INCMNSZ. Patients with unusual metastases confirmed by histopathology were analyzed. Epidemiological, clinical, diagnosis, treatment and outcome data were reviewed. Results Sixty patients developed 98 unusual metastases secondary to RCC. The group was comprised of 35 men (58.3%), with a median age of 60 years at diagnosis. Metachronous unusual metastases with primary renal cancer were observed in 37 individuals (61.7%). Median time from primary RCC diagnosis to the first unusual metastasis was 16.5 months. Median survival from diagnosis of the first unusual metastasis to death was 5.0 months (CI 95%: 2.8-7.2 months). Patients with an initial solitary metastatic lesion in an unusual site (28.3%) had a better survival compared to patients who primarily presented with multiple metastases, 17.0 (CI 95%: 6.1-27.9) Vs 3.0 months (CI 95%: 0.9-5.1), p = 0.001. Unusual metastasis resection (21 patients) improved survival, 25.0 (CI 95%: 5.1-44.9) Vs 3.0 months (CI 95%: 0.8-5.2), p < 0.0001. No survival difference was observed between localization of unsual metastases (p = 0.72). Conclusions In patients with advanced RCC we suggest an individual diagnostic and surgical approach to achieve complete resection with disease-free margins, even in the presence of unusual metastatic sites, multifocality, or history of metastasectomy. These strategy might provide not only palliation for symptoms, but an opportunity for meaningful disease free and overall survival. PMID:29147198

  5. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    PubMed Central

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  6. Structural and Mechanistic Insights into Unusual Thiol Disulfide Oxidoreductase

    PubMed Central

    Garcin, Edwige B.; Bornet, Olivier; Elantak, Latifa; Vita, Nicolas; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2012-01-01

    Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity. We have used NMR spectroscopy to gain insights into the structure and the catalytic mechanism of this unusual Dtrx. The redox potential of Dtrx (−181 mV) is significantly less reducing than that of canonical Trx. A pH dependence study allowed the determination of the pKa of all protonable residues, including the cysteine and histidine residues. Thus, the pKa values for the thiol group of Cys31 and Cys34 are 4.8 and 11.3, respectively. The His33 pKa value, experimentally determined for the first time, differs notably as a function of the redox states, 7.2 for the reduced state and 4.6 for the oxidized state. These data suggest an important role for His33 in the molecular mechanism of Dtrx catalysis that is confirmed by the properties of mutant DtrxH33G protein. The NMR structure of Dtrx shows a different charge repartition compared with canonical Trx. The results presented are likely indicative of the involvement of this protein in the catalysis of substrates specific of the anaerobe cytoplasm of DvH. The study of Dtrx is an important step toward revealing the molecular details of the thiol-disulfide oxidoreductase catalytic mechanism. PMID:22128175

  7. A Tissue-Specific Approach to the Analysis of Metabolic Changes in Caenorhabditis elegans

    PubMed Central

    Pujol, Claire; Ipsen, Sabine; Brodesser, Susanne; Mourier, Arnaud; Tolnay, Markus; Frank, Stephan; Trifunović, Aleksandra

    2011-01-01

    The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E) stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX) to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens. PMID:22162770

  8. Comprehensive analyses of tissue-specific networks with implications to psychiatric diseases

    PubMed Central

    Lin, Guan Ning; Corominas, Roser; Nam, Hyun-Jun; Urresti, Jorge; Iakoucheva, Lilia M.

    2017-01-01

    Recent advances in genome sequencing and “omics” technologies are opening new opportunities for improving diagnosis and treatment of human diseases. The precision medicine initiative in particular aims at developing individualized treatment options that take into account individual variability in genes and environment of each person. Systems biology approaches that group genes, transcripts and proteins into functionally meaningful networks will play crucial role in the future of personalized medicine. They will allow comparison of healthy and disease-affected tissues and organs from the same individual, as well as between healthy and disease-afflicted individuals. However, the field faces a multitude of challenges ranging from data integration to statistical and combinatorial issues in data analyses. This chapter describes computational approaches developed by us and the others to tackle challenges in tissue-specific network analyses, with the main focus on psychiatric diseases. PMID:28849569

  9. The trigeminal trophic syndrome: an unusual cause of nasal ulceration.

    PubMed

    Monrad, Seetha U; Terrell, Jeffrey E; Aronoff, David M

    2004-06-01

    Trigeminal trophic syndrome (TTS) is an unusual complication after peripheral or central damage to the trigeminal nerve, characterized by anesthesia, paresthesias, and ala nasi ulceration. We describe a patient with classic TTS after trigeminal rhizotomy who underwent several extensive evaluations for nasal ulceration and received prolonged immunosuppressive therapy for a presumed autoimmune disorder before the correct diagnosis was made. An understanding of the predisposing factors and clinical presentation of TTS is important to ensure a timely diagnosis of this difficult-to-treat illness. Differentiation of TTS from malignancy, infection, or vasculitis is possible on the basis of clinical history, tissue biopsy, and serologic evaluation.

  10. Unusual and Interesting Adverse Cutaneous Drug Reactions.

    PubMed

    Masatkar, Vaishali; Nagure, Ashok; Gupta, Lalit Kumar

    2018-01-01

    Any drug can cause any rash! Cutaneous adverse drug reactions (CADRs) are great mimickers and can be included in the differential diagnosis of any inflammatory dermatoses. Several drugs can cause rash of similar morphology and the same drug can cause rash of different morphology. While some common and specific drug reaction patterns are recognized easily by the clinicians, many a times unusual and interesting patterns can be induced by drug(s), thus leading to erroneous diagnosis and mistreatment. This review aims to familiarize clinicians with some rare, yet interesting patterns of CADR.

  11. Unusual and Interesting Adverse Cutaneous Drug Reactions

    PubMed Central

    Masatkar, Vaishali; Nagure, Ashok; Gupta, Lalit Kumar

    2018-01-01

    Any drug can cause any rash! Cutaneous adverse drug reactions (CADRs) are great mimickers and can be included in the differential diagnosis of any inflammatory dermatoses. Several drugs can cause rash of similar morphology and the same drug can cause rash of different morphology. While some common and specific drug reaction patterns are recognized easily by the clinicians, many a times unusual and interesting patterns can be induced by drug(s), thus leading to erroneous diagnosis and mistreatment. This review aims to familiarize clinicians with some rare, yet interesting patterns of CADR. PMID:29692451

  12. Migration of antigen-presenting B cells from peripheral to mucosal lymphoid tissues may induce intestinal antigen-specific IgA following parenteral immunization.

    PubMed

    Coffin, S E; Clark, S L; Bos, N A; Brubaker, J O; Offit, P A

    1999-09-15

    Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.

  13. Tissue-Specific Profiling Reveals Transcriptome Alterations in Arabidopsis Mutants Lacking Morphological Phenotypes[C][W

    PubMed Central

    Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John

    2013-01-01

    Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549

  14. Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum.

    PubMed

    Miyazaki, S; Koga, R; Bohnert, H J; Fukuhara, T

    1999-03-01

    Ten transcripts (Mpc1-10) homologous to protein phosphatases of the 2C family have been isolated from the halophyte Mesembryanthemum crystallinum (common ice plant). Transcripts range in size from 1.6 to 2.6 kb, and encode proteins whose catalytic domains are between 24% and 62% identical to that of the Arabidopsis PP2C, ABI1. Transcript expression is tissue specific. Two isoforms are present only in roots (Mpc1 and Mpc5), three in young leaves (Mpc6, 8 and 9), two in old leaves (Mpc6 and Mpc8), and two in post-flowering leaves (Mpc8 and Mpc9). Mpc2 is strongly expressed in roots and also in seeds, meristematic tissues and mature flowers. Mpc3 is specific for leaf meristems, and Mpc4 is found in root and leaf meristems. Mpc7 is restricted to meristematic tissues. Mpc10 is only present in mature flowers. Mpc2 (in roots and leaves), Mpc5 (in roots) and Mpc8 (weakly in leaves) are induced by salinity stress and drought conditions with different kinetics in different tissues, but other Mpcs are downregulated by stress. Cold stress (4 degrees C) leads to a decline in Mpc5 and Mp6, but low temperature provoked a long-term (days) increase in Mpc2 levels in leaves and a transient increase (less than 24 h) in roots. Four full-length transcripts have been obtained. In each case, after over-expression in E. coli, the isolated proteins exhibited (Mg2+-dependent, okadeic acid-insensitive) protein phosphatase activity, although activity against 32P-phosphocasein varied among different PP2Cs. Determination of tissue developmental and stress response specificity of PP2C will facilitate functional studies of signal-transducing enzymes in this halophytic organism.

  15. Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat

    PubMed Central

    Fu, Xiumin; Feng, Chao; Wang, Chunyan; Yin, Xueren; Lu, Pengjun; Grierson, Don; Xu, Changjie; Chen, Kunsong

    2014-01-01

    Differences in carotenoid accumulation between tissues and cultivars is common in plants. White-fleshed loquat cultivars had low levels of carotenoids in the flesh, but accumulated carotenoids in peel when ripe, and the leaves accumulated similar carotenoids to those in the red-fleshed loquat cultivars. The catalytic activity and expression patterns of four phytoene synthase (PSY) genes, EjPSY1, EjPSY2A, EjPSY2B, and EjPSY3, were analysed to understand their roles in different loquat (Eriobotrya japonica Lindl.) types. EjPSY1 was responsible for carotenoid synthesis in the fruit peel but not the flesh, whereas EjPSY2A was responsible for carotenoid accumulation in flesh of ripening fruit. A mutant EjPSY2A d, with the same tissue specificity and expression level as EjPSY2A, but lacking the C-terminal region and corresponding catalytic activity, was discovered in white-fleshed varieties, explaining the lack of carotenoids in the white flesh. The catalytic role of EjPSY2B was most significant in leaves. The tissue-specific expression of EjPSY1 and EjPSY2B explained well how peel and leaf tissues can still accumulate carotenoids in white-fleshed cultivars, which have lost the functional EjPSY2A. EjPSY3 mRNA abundance was ~1000-fold less than that of other PSY mRNAs in all tissues examined. In addition, neither the normal sized transcript nor two alternatively spliced forms, EjPSY3α in LYQ and EjPSY3β in BS cultivars, encoded functional enzymes, and it is concluded that EjPSY3 plays no role in carotenoid accumulation. In addition, it was noted that recruitment of PSY genes for expression in specific tissues of different plants has occurred independently of gene structure and evolutionary origin. PMID:24935622

  16. An unusual tachycardia.

    PubMed

    Hanon, Sam; Shapiro, Michael; Schweitzer, Paul

    2004-07-01

    The following article presents an unusual case of atrial tachycardia, initially misdiagnosed due to a lack of clear P waves. The diagnosis was eventually confirmed using the atrial electrogram from the patient's pacemaker.

  17. Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis

    PubMed Central

    Yang, Fan; Wang, Jiebiao; Pierce, Brandon L.; Chen, Lin S.

    2017-01-01

    The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes (cis-eQTLs). More research is needed to identify effects of genetic variation on distant genes (trans-eQTLs) and understand their biological mechanisms. One common trans-eQTLs mechanism is “mediation” by a local (cis) transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are “cis-mediators” of trans-eQTLs, including those “cis-hubs” involved in regulation of many trans-genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying trans-eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study cis-mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of cis-hubs and trans-eQTL regulation across tissue types. PMID:29021290

  18. Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis.

    PubMed

    Yang, Fan; Wang, Jiebiao; Pierce, Brandon L; Chen, Lin S

    2017-11-01

    The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes ( cis -eQTLs). More research is needed to identify effects of genetic variation on distant genes ( trans -eQTLs) and understand their biological mechanisms. One common trans -eQTLs mechanism is "mediation" by a local ( cis ) transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are " cis -mediators" of trans -eQTLs, including those " cis -hubs" involved in regulation of many trans -genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying trans -eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study cis -mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of cis -hubs and trans -eQTL regulation across tissue types. © 2017 Yang et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Unusual Bone Superscan, MIBG Superscan, and 68Ga DOTATATE PET/CT in Metastatic Pheochromocytoma.

    PubMed

    Tan, Teik Hin; Wong, Teck Huat; Hassan, Siti Zarina Amir; Lee, Boon Nang

    2015-11-01

    A 17-year-old adolescent boy with biochemically raised 2-hour urinary metanephrine and normetanephrine as well as CT findings of retroperitoneal soft tissue mass and bony metastases was referred for further assessment. Apart from Ga DOTATATE PET/CT evaluation, pretargeted systemic radionuclide therapy assessment with I-MIBG scintigraphy showed unusual phenomenon of MIBG superscan. Postsurgically, restaging Tc-MDP bone scintigraphy showed typical bone superscan features. The MIBG superscan was better delineated on post-I-MIBG therapy images.

  20. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  1. Tissue-Specific Reduction in Splicing Efficiency of IKBKAP Due to the Major Mutation Associated with Familial Dysautonomia

    PubMed Central

    Cuajungco, Math P.; Leyne, Maire; Mull, James; Gill, Sandra P.; Lu, Weining; Zagzag, David; Axelrod, Felicia B.; Maayan, Channa; Gusella, James F.; Slaugenhaupt, Susan A.

    2003-01-01

    We recently identified a mutation in the I-κB kinase associated protein (IKBKAP) gene as the major cause of familial dysautonomia (FD), a recessive sensory and autonomic neuropathy. This alteration, located at base pair 6 of the intron 20 donor splice site, is present on >99.5% of FD chromosomes and results in tissue-specific skipping of exon 20. A second FD mutation, a missense change in exon 19 (R696P), was seen in only four patients heterozygous for the major mutation. Here, we have further characterized the consequences of the major mutation by examining the ratio of wild-type to mutant (WT:MU) IKBKAP transcript in EBV-transformed lymphoblast lines, primary fibroblasts, freshly collected blood samples, and postmortem tissues from patients with FD. We consistently found that WT IKBKAP transcripts were present, albeit to varying extents, in all cell lines, blood, and postmortem FD tissues. Further, a corresponding decrease in the level of WT protein is seen in FD cell lines and tissues. The WT:MU ratio in cultured lymphoblasts varied with growth phase but not with serum concentration or inclusion of antibiotics. Using both densitometry and real-time quantitative polymerase chain reaction, we found that relative WT:MU IKBKAP RNA levels were highest in cultured patient lymphoblasts and lowest in postmortem central and peripheral nervous tissues. These observations suggest that the relative inefficiency of WT IKBKAP mRNA production from the mutant alleles in the nervous system underlies the selective degeneration of sensory and autonomic neurons in FD.Therefore, exploration of methods to increase the WT:MU IKBKAP transcript ratio in the nervous system offers a promising approach for developing an effective therapy for patients with FD. PMID:12577200

  2. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  3. Unusual ISS Rate Signature

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.

    2011-01-01

    On November 23, 2011 International Space Station Guidance, Navigation, and Control reported unusual pitch rate disturbance. These disturbances were an order of magnitude greater than nominal rates. The Loads and Dynamics team was asked to review and analyze current accelerometer data to investigate this disturbance. This paper will cover the investigation process under taken by the Loads and Dynamics group. It will detail the accelerometers used and analysis performed. The analysis included performing Frequency Fourier Transform of the data to identify the mode of interest. This frequency data is then reviewed with modal analysis of the ISS system model. Once this analysis is complete and the disturbance quantified, a forcing function was produced to replicate the disturbance. This allows the Loads and Dynamics team to report the load limit values for the 100's of interfaces on the ISS.

  4. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    PubMed Central

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  5. Emerging Functions of Regulatory T Cells in Tissue Homeostasis

    PubMed Central

    Sharma, Amit; Rudra, Dipayan

    2018-01-01

    CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses. PMID:29887862

  6. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  7. A functional genomics screen identifies an Importin-α homolog as a regulator of stem cell function and tissue patterning during planarian regeneration.

    PubMed

    Hubert, Amy; Henderson, Jordana M; Cowles, Martis W; Ross, Kelly G; Hagen, Matthew; Anderson, Christa; Szeterlak, Claudia J; Zayas, Ricardo M

    2015-10-12

    Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea. We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes. Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration. Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community.

  8. High Mobility Group N Proteins Modulate the Fidelity of the Cellular Transcriptional Profile in a Tissue- and Variant-specific Manner*

    PubMed Central

    Kugler, Jamie E.; Horsch, Marion; Huang, Di; Furusawa, Takashi; Rochman, Mark; Garrett, Lillian; Becker, Lore; Bohla, Alexander; Hölter, Sabine M.; Prehn, Cornelia; Rathkolb, Birgit; Racz, Ildikó; Aguilar-Pimentel, Juan Antonio; Adler, Thure; Adamski, Jerzy; Beckers, Johannes; Busch, Dirk H.; Eickelberg, Oliver; Klopstock, Thomas; Ollert, Markus; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Gailus-Durner, Valérie; Fuchs, Helmut; Hrabě de Angelis, Martin; Garfinkel, Benny; Orly, Joseph; Ovcharenko, Ivan; Bustin, Michael

    2013-01-01

    The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1tm1/tm1, Hmgn3tm1/tm1, and Hmgn5tm1/tm1 mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgntm1/tm1 lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner. PMID:23620591

  9. Variable Combinations of Specific Ephrin Ligand/Eph Receptor Pairs Control Embryonic Tissue Separation

    PubMed Central

    Rohani, Nazanin; Parmeggiani, Andrea; Winklbauer, Rudolf; Fagotto, François

    2014-01-01

    Ephrins and Eph receptors are involved in the establishment of vertebrate tissue boundaries. The complexity of the system is puzzling, however in many instances, tissues express multiple ephrins and Ephs on both sides of the boundary, a situation that should in principle cause repulsion between cells within each tissue. Although co-expression of ephrins and Eph receptors is widespread in embryonic tissues, neurons, and cancer cells, it is still unresolved how the respective signals are integrated into a coherent output. We present a simple explanation for the confinement of repulsion to the tissue interface: Using the dorsal ectoderm–mesoderm boundary of the Xenopus embryo as a model, we identify selective functional interactions between ephrin–Eph pairs that are expressed in partial complementary patterns. The combined repulsive signals add up to be strongest across the boundary, where they reach sufficient intensity to trigger cell detachments. The process can be largely explained using a simple model based exclusively on relative ephrin and Eph concentrations and binding affinities. We generalize these findings for the ventral ectoderm–mesoderm boundary and the notochord boundary, both of which appear to function on the same principles. These results provide a paradigm for how developmental systems may integrate multiple cues to generate discrete local outcomes. PMID:25247423

  10. Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation.

    PubMed

    Rohani, Nazanin; Parmeggiani, Andrea; Winklbauer, Rudolf; Fagotto, François

    2014-09-01

    Ephrins and Eph receptors are involved in the establishment of vertebrate tissue boundaries. The complexity of the system is puzzling, however in many instances, tissues express multiple ephrins and Ephs on both sides of the boundary, a situation that should in principle cause repulsion between cells within each tissue. Although co-expression of ephrins and Eph receptors is widespread in embryonic tissues, neurons, and cancer cells, it is still unresolved how the respective signals are integrated into a coherent output. We present a simple explanation for the confinement of repulsion to the tissue interface: Using the dorsal ectoderm-mesoderm boundary of the Xenopus embryo as a model, we identify selective functional interactions between ephrin-Eph pairs that are expressed in partial complementary patterns. The combined repulsive signals add up to be strongest across the boundary, where they reach sufficient intensity to trigger cell detachments. The process can be largely explained using a simple model based exclusively on relative ephrin and Eph concentrations and binding affinities. We generalize these findings for the ventral ectoderm-mesoderm boundary and the notochord boundary, both of which appear to function on the same principles. These results provide a paradigm for how developmental systems may integrate multiple cues to generate discrete local outcomes.

  11. A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses.

    PubMed

    Baranski, Thomas J; Kraja, Aldi T; Fink, Jill L; Feitosa, Mary; Lenzini, Petra A; Borecki, Ingrid B; Liu, Ching-Ti; Cupples, L Adrienne; North, Kari E; Province, Michael A

    2018-04-01

    Human GWAS of obesity have been successful in identifying loci associated with adiposity, but for the most part, these are non-coding SNPs whose function, or even whose gene of action, is unknown. To help identify the genes on which these human BMI loci may be operating, we conducted a high throughput screen in Drosophila melanogaster. Starting with 78 BMI loci from two recently published GWAS meta-analyses, we identified fly orthologs of all nearby genes (± 250KB). We crossed RNAi knockdown lines of each gene with flies containing tissue-specific drivers to knock down (KD) the expression of the genes only in the brain and the fat body. We then raised the flies on a control diet and compared the amount of fat/triglyceride in the tissue-specific KD group compared to the driver-only control flies. 16 of the 78 BMI GWAS loci could not be screened with this approach, as no gene in the 500-kb region had a fly ortholog. Of the remaining 62 GWAS loci testable in the fly, we found a significant fat phenotype in the KD flies for at least one gene for 26 loci (42%) even after correcting for multiple comparisons. By contrast, the rate of significant fat phenotypes in RNAi KD found in a recent genome-wide Drosophila screen (Pospisilik et al. (2010) is ~5%. More interestingly, for 10 of the 26 positive regions, we found that the nearest gene was not the one that showed a significant phenotype in the fly. Specifically, our screen suggests that for the 10 human BMI SNPs rs11057405, rs205262, rs9925964, rs9914578, rs2287019, rs11688816, rs13107325, rs7164727, rs17724992, and rs299412, the functional genes may NOT be the nearest ones (CLIP1, C6orf106, KAT8, SMG6, QPCTL, EHBP1, SLC39A8, ADPGK /ADPGK-AS1, PGPEP1, KCTD15, respectively), but instead, the specific nearby cis genes are the functional target (namely: ZCCHC8, VPS33A, RSRC2; SPDEF, NUDT3; PAGR1; SETD1, VKORC1; SGSM2, SRR; VASP, SIX5; OTX1; BANK1; ARIH1; ELL; CHST8, respectively). The study also suggests further functional

  12. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism[W][OA

    PubMed Central

    Takos, Adam; Lai, Daniela; Mikkelsen, Lisbeth; Abou Hachem, Maher; Shelton, Dale; Motawia, Mohammed Saddik; Olsen, Carl Erik; Wang, Trevor L.; Martin, Cathie; Rook, Fred

    2010-01-01

    Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants. PMID:20453117

  13. Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    DOE PAGES

    Bansal, Sunil; Durrett, Timothy P.

    2016-11-08

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. Inmore » vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. As a result, this improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants.« less

  14. Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    PubMed Central

    Bansal, Sunil; Durrett, Timothy P.

    2016-01-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants. PMID:27688773

  15. Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Sunil; Durrett, Timothy P.

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. Inmore » vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. As a result, this improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants.« less

  16. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study.

    PubMed

    Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M

    2015-08-01

    Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients' tumor stage and metabolic profiles was assessed. Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I-IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina's HumanHT-12 Expression BeadChips. Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis-related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients' adipose tissues, which were associated with CRC tumor stage. As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which

  17. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus.

    PubMed

    Chen, Siyu; Qu, Mengjie; Ding, Jiawei; Zhang, Yifei; Wang, Yi; Di, Yanan

    2018-04-18

    Both benzo(α)pyrene (BaP) and metals are frequently found in marine ecosystem and can cause detrimental effects in marine organism, especially the filter feeder-marine mussels. Although the biological responses in mussels have been well-studied upon the single metal or BaP exposure, the information about antioxidant defense, especially in different tissues of mussels, are still limited. Considering the variety of contaminants existing in the actual marine environment, single BaP (56 μg/L) and the co-exposure with Cu, Cd and Pb (50 μg/L, 50 μg/L and 3 mg/L respectively) were applied in a 6 days exposure followed by 6 days depuration experiment. The alterations of superoxide dismutase (SOD), catalase (CAT) activities and total antioxidant capacity (TAC) level were assessed in haemolymph, gills and digestive glands of marine mussels, Mytilus coruscus. An unparalleled change in antioxidant biomarkers was observed in all cells/tissues, with the SOD activity showing higher sensitivity to exposure. A tissue-specific response showing unique alteration in gill was investigated, indicating the different function of tissues during stress responses. Depressed antioxidant effects were induced by BaP-metals co-exposure, indicating the interaction may alter the intact properties of BaP. To our knowledge, this is the first research to explore the antioxidant defense induced by combined exposure of BaP-metals regarding to tissue-specific responses in marine mussels. The results and experimental model will provide valuable information and can be utilized in the investigation of stress response mechanisms, especially in relation to tissue functions in marine organism in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. In vivo tissue engineering of musculoskeletal tissues.

    PubMed

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Circulating testosterone and prostate-specific antigen in nipple aspirate fluid and tissue are associated with breast cancer.

    PubMed Central

    Sauter, Edward R; Tichansky, David S; Chervoneva, Inna; Diamandis, Eleftherios P

    2002-01-01

    Preliminary evidence has associated testosterone and prostate-specific antigen (PSA) with breast cancer. Our objective was to determine whether a) testosterone levels in nipple aspirate fluid (NAF), serum, or breast tissue are associated with breast cancer; b) testosterone levels in serum are associated with levels in NAF; c) PSA in NAF, serum, or breast tissue is associated with breast cancer; and d) serum PSA is associated with NAF PSA levels. We obtained 342 NAF specimens from 171 women by means of a modified breast pump. Additionally, we collected 201 blood samples from 99 women and 51 tissue samples from 41 subjects who underwent surgical resection for suspected disease. Women currently using birth control pills or hormone replacement therapy were excluded from the study. Controlling for age and menopausal status, serum testosterone was significantly increased in women with breast cancer (p = 0.002). NAF and serum testosterone levels were not associated. Neither NAF nor tissue testosterone was associated with breast cancer. Controlling for menopausal status and age, NAF PSA was significantly decreased in women with breast cancer (p < 0.001). We did not find serum PSA to be associated with breast cancer, although we found an indication that, in postmenopausal women, its levels were lower in women with cancer. Serum PSA was associated with NAF PSA in postmenopausal women (p < 0.001). PSA levels in cancerous tissue were significantly lower than in benign breast specimens from subjects without cancer (p = 0.011), whereas levels of PSA in histologically benign specimens from subjects with cancer were intermediate. Our results suggest that serum testosterone is increased and NAF PSA is decreased in women with breast cancer, with PSA expression being higher in normal than in cancerous breast tissues. NAF and serum PSA levels in postmenopausal women are correlated, suggesting that as laboratory assessment of PSA becomes more sensitive, serum PSA may become useful in

  20. Mucormycosis Caused by Unusual Mucormycetes, Non-Rhizopus, -Mucor, and -Lichtheimia Species

    PubMed Central

    Gomes, Marisa Z. R.; Lewis, Russell E.; Kontoyiannis, Dimitrios P.

    2011-01-01

    Summary: Rhizopus, Mucor, and Lichtheimia (formerly Absidia) species are the most common members of the order Mucorales that cause mucormycosis, accounting for 70 to 80% of all cases. In contrast, Cunninghamella, Apophysomyces, Saksenaea, Rhizomucor, Cokeromyces, Actinomucor, and Syncephalastrum species individually are responsible for fewer than 1 to 5% of reported cases of mucormycosis. In this review, we provide an overview of the epidemiology, clinical manifestations, diagnosis of, treatment of, and prognosis for unusual Mucormycetes infections (non-Rhizopus, -Mucor, and -Lichtheimia species). The infections caused by these less frequent members of the order Mucorales frequently differ in their epidemiology, geographic distribution, and disease manifestations. Cunninghamella bertholletiae and Rhizomucor pusillus affect primarily immunocompromised hosts, mostly resulting from spore inhalation, causing pulmonary and disseminated infections with high mortality rates. R. pusillus infections are nosocomial or health care related in a large proportion of cases. While Apophysomyces elegans and Saksenaea vasiformis are occasionally responsible for infections in immunocompromised individuals, most cases are encountered in immunocompetent individuals as a result of trauma, leading to soft tissue infections with relatively low mortality rates. Increased knowledge of the epidemiology and clinical presentations of these unusual Mucormycetes infections may improve early diagnosis and treatment. PMID:21482731

  1. Tissue-Specific Fatty Acids Response to Different Diets in Common Carp (Cyprinus carpio L.)

    PubMed Central

    Böhm, Markus; Schultz, Sebastian; Koussoroplis, Apostolos-Manuel; Kainz, Martin J.

    2014-01-01

    Fish depend on dietary fatty acids (FA) to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio), one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively) in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue) of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO) with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption. PMID:24733499

  2. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is

  3. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease.

    PubMed

    Kottyan, Leah C; Davis, Benjamin P; Sherrill, Joseph D; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M; Kohram, Mojtaba; Stucke, Emily M; Kemme, Katherine A; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A; Pesek, Robbie D; Vickery, Brian P; Fleischer, David M; Lindbad, Robert; Sampson, Hugh A; Mukkada, Vincent A; Putnam, Phil E; Abonia, J Pablo; Martin, Lisa J; Harley, John B; Rothenberg, Marc E

    2014-08-01

    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in EoE cases of European ancestry and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replicating association of the 5q22 locus (meta-analysis P=1.9×10(-16)), we identified an association at 2p23 spanning CAPN14 (P=2.5×10(-10)). CAPN14 was specifically expressed in the esophagus, was dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to interleukin (IL)-13, and was located in an epigenetic hotspot modified by IL-13. Genes neighboring the top 208 EoE-associated sequence variants were enriched for esophageal expression, and multiple loci for allergic sensitization were associated with EoE susceptibility (4.8×10(-2)tissue-specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13-inducible esophageal response involving CAPN14.

  4. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease

    PubMed Central

    Kottyan, Leah C.; Davis, Benjamin P.; Sherrill, Joseph D.; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T.; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M.; Kohram, Mojtaba; Stucke, Emily M.; Kemme, Katherine A.; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A.; Pesek, Robbie D.; Vickery, Brian P.; Fleischer, David M.; Lindbad, Robert; Sampson, Hugh A.; Mukkada, Vince; Putnam, Phil E.; Abonia, J. Pablo; Martin, Lisa J.; Harley, John B.; Rothenberg, Marc E.

    2014-01-01

    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10−16), we identified association at 2p23 (encoding CAPN14, p = 2.5×10−10). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10−2 < p < 5.1×10−11). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14. PMID:25017104

  5. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    PubMed

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  6. Unusual Fears in Children with Autism

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Aggarwal, Richa; Baker, Courtney; Mathapati, Santosh; Molitoris, Sarah; Mayes, Rebecca D.

    2013-01-01

    Unusual fears have long been recognized as common in autism, but little research exists. In our sample of 1033 children with autism, unusual fears were reported by parents of 421 (41%) of the children, representing 92 different fears. Many additional children had common childhood fears (e.g., dogs, bugs, and the dark). More than half of children…

  7. Tissue specificity and regulation of the N-terminal diversity of reticulon 3

    PubMed Central

    Di Scala, Franck; Dupuis, Luc; Gaiddon, Christian; De Tapia, Marc; Jokic, Natasa; Gonzalez De Aguilar, Jose-Luis; Raul, Jean-Sébastien; Ludes, Bertrand; Loeffler, Jean-Philippe

    2004-01-01

    Over the last few years, the widely distributed family of reticulons (RTNs) is receiving renewed interest because of the implication of RTN4/Nogo in neurite regeneration. Four genes were identified in mammals and are referred to as RTN1, 2, 3 and the neurite outgrowth inhibitor RTN4/Nogo. In the present paper, we describe the existence of five new isoforms of RTN3 that differ in their N-termini, and analysed their tissue distribution and expression in neurons. We redefined the structure of human and murine rtn3 genes, and identified two supplementary exons that may generate up to seven putative isoforms arising by alternative splicing or differential promoter usage. We confirmed the presence of five of these isoforms at the mRNA and protein levels, and showed their preferential expression in the central nervous system. We analysed rtn3 expression in the cerebellum further, and observed increased levels of several of the RTN3 isoforms during cerebellum development and during in vitro maturation of cerebellar granule cells. This pattern of expression paralleled that shown by RTN4/Nogo isoforms. Specifically, RTN3A1 expression was down-regulated upon cell death of cerebellar granule neurons triggered by potassium deprivation. Altogether, our results demonstrate that the rtn3 gene generates multiple isoforms varying in their N-termini, and that their expression is tightly regulated in neurons. These findings suggest that RTN3 isoforms may contribute, by as yet unknown mechanisms, to neuronal survival and plasticity. PMID:15350194

  8. Antibodies against Escherichia coli O24 and O56 O-Specific Polysaccharides Recognize Epitopes in Human Glandular Epithelium and Nervous Tissue

    PubMed Central

    Korzeniowska-Kowal, Agnieszka; Kochman, Agata; Gamian, Elżbieta; Lis-Nawara, Anna; Lipiński, Tomasz; Seweryn, Ewa; Ziółkowski, Piotr; Gamian, Andrzej

    2015-01-01

    Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, contains the O-polysaccharide, which is important to classify bacteria into different O-serological types within species. The O-polysaccharides of serotypes O24 and O56 of E. coli contain sialic acid in their structures, already established in our previous studies. Here, we report the isolation of specific antibodies with affinity chromatography using immobilized lipopolysaccharides. Next, we evaluated the reactivity of anti-O24 and anti-O56 antibody on human tissues histologically. The study was conducted under the assumption that the sialic acid based molecular identity of bacterial and tissue structures provides not only an understanding of the mimicry-based bacterial pathogenicity. Cross-reacting antibodies could be used to recognize specific human tissues depending on their histogenesis and differentiation, which might be useful for diagnostic purposes. The results indicate that various human tissues are recognized by anti-O24 and anti-O56 antibodies. Interestingly, only a single specific reactivity could be found in the anti-O56 antibody preparation. Several tissues studied were not reactive with either antibody, thus proving that the presence of cross-reactive antigens was tissue specific. In general, O56 antibody performed better than O24 in staining epithelial and nervous tissues. Positive staining was observed for both normal (ganglia) and tumor tissue (ganglioneuroma). Epithelial tissue showed positive staining, but an epitope recognized by O56 antibody should be considered as a marker of glandular epithelium. The reason is that malignant glandular tumor and its metastasis are stained, and also epithelium of renal tubules and glandular structures of the thyroid gland are stained. Stratified epithelium such as that of skin is definitely not stained. Therefore, the most relevant observation is that the epitope recognized by anti-O56 antibodies is a new marker

  9. Containing Unusual Resistance

    MedlinePlus

    ... by germs resistant to antibiotics. While antibiotic resistance (AR) threats vary nationwide, AR has been found in every state. And unusual ... Coordinate with affected health care facilities, the new AR Lab Network regional labs, and CDC for every ...

  10. Intramyocardial Injection of siRNAs Can Efficiently Establish Myocardial Tissue-Specific Renalase Knockdown Mouse Model.

    PubMed

    Huang, Kun; Liu, Ju; Zhang, Hui; Wang, Jiliang; Li, Huili

    2016-01-01

    Ischaemia/reperfusion (I/R) injury will cause additional death of cardiomyocytes in ischaemic heart disease. Recent studies revealed that renalase was involved in the I/R injury. So, the myocardial tissue-specific knockdown mouse models were needed for the investigations of renalase. To establish the mouse models, intramyocardial injection of siRNAs targeting renalase was performed in mice. The wild distribution and high transfection efficiency of the siRNAs were approved. And the renalase expression was efficiently suppressed in myocardial tissue. Compared with the high cost, time consumption, and genetic compensation risk of the Cre/loxP technology, RNA interference (RNAi) technology is much cheaper and less time-consuming. Among the RNAi technologies, injection of siRNAs is safer than virus. And considering the properties of the I/R injury mouse models, the efficiency and durability of injection with siRNAs are acceptable for the studies. Altogether, intramyocardial injection of siRNAs targeting renalase is an economical, safe, and efficient method to establish myocardial tissue-specific renalase knockdown mouse models.

  11. Myasthenia Gravis: Unusual Presentations and Diagnostic Pitfalls.

    PubMed

    Rodolico, Carmelo; Parisi, Daniela; Portaro, Simona; Biasini, Fiammetta; Sinicropi, Stefano; Ciranni, Annamaria; Toscano, Antonio; Messina, Sonia; Musumeci, Olimpia; Vita, Giuseppe; Girlanda, Paolo

    2016-08-30

    Myasthenia gravis (MG) is an autoimmune disorder presenting with fluctuating, fatigable muscle weakness. Initial symptoms classically involve ocular and proximal limb muscles. Rarely, MG may onset with unusual features, so it can be misdiagnosed with other neuromuscular diseases. To describe unusual and atypical presentations of MG in a large cohort of patients, considering and discussing diagnostic difficulties and pitfalls. We report on 21 out of 508 MG patients, coming to our department in the last 27 years and presenting with atypical or unusual features. The diagnosis was achieved performing a careful clinical examination, a proper neurophysiological assessment, the neostigmine test, the AChR and MuSK antibodies assay and chest CT-scan. Patients with atypical/unusual MG onset were the 4.4% of all MG patients population. We describe seven different clinical categories: asymmetric distal upper limbs weakness, foot drop, isolated triceps brachii weakness and foot drop, post exertional axial weakness with dropped head, acute facial dyplegia, limb-girdle MG and MG with sudden lower limbs weakness and recurrent falls. Atypical and unusual presentations may increase the risk to misdiagnose or delay MG diagnosis. Isolated limb-girdle presentation is the most frequent atypical form in our series.

  12. Network-Based Method for Identifying Co-Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues

    PubMed Central

    Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Cai, Yu-Dong

    2017-01-01

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein–protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method. PMID:28974058

  13. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    PubMed

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  14. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes

    PubMed Central

    Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded

    2016-01-01

    Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950

  15. "Unusual brain stone": heavily calcified primary neoplasm with some features suggestive of angiocentric glioma.

    PubMed

    Sajjad, Jahangir; Kaliaperumal, Chandrasekaran; Bermingham, Niamh; Marks, Charles; Keohane, Catherine

    2015-11-01

    This 40-year-old man presented with a 5-month history of progressive right-sided headache associated with visual blurring. He also had a history of epilepsy but had been seizure free with medication for the past 10 years. An initial CT scan of his brain performed 16 years previously had revealed a small area of calcification in the right parietal region. In the current presentation, he had a left-sided homonymous hemianopia but no other neurological deficits. A CT scan of his brain showed a much larger calcified, partly cystic lesion in the right parietal region. Because he was symptomatic, the lesion was excised and the cyst was drained. Histological examination of the excised tissue showed an unusual primary tumor that was difficult to classify but had some features of angiocentric glioma. The heavy calcification, mixed-density cell population, and regions with features of angiocentric glioma were most unusual. The patient remained asymptomatic 5 years after surgery, and follow-up scans did not show recurrence.

  16. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.

    PubMed

    Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G

    2018-05-25

    GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.

  17. A painful perineal lump: an unusual case of ectopic breast tissue

    PubMed Central

    Yongue, G; Leff, D; Lamb, BW; Karim, S; Aref, F; Vashisht, R

    2011-01-01

    We report the case of a 40-year-old lady who presented with an episodically painful perineal lump. Clinical and radiological investigations were inconclusive. Excision biopsy confirmed an ectopic breast mass. Ectopic breast tissue is difficult to diagnose but close attention to clinical findings can help to guide further investigation and diagnosis. PMID:22004627

  18. A Statistical Procedure for Testing Unusually Frequent Exactly Matching Responses and Nearly Matching Responses. Research Report. ETS RR-17-23

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Lee, Yi-Hsuan

    2017-01-01

    In investigations of unusual testing behavior, a common question is whether a specific pattern of responses occurs unusually often within a group of examinees. In many current tests, modern communication techniques can permit quite large numbers of examinees to share keys, or common response patterns, to the entire test. To address this issue,…

  19. MACF1, versatility in tissue-specific function and in human disease.

    PubMed

    Hu, Lifang; Xiao, Yunyun; Xiong, Zhipeng; Zhao, Fan; Yin, Chong; Zhang, Yan; Su, Peihong; Li, Dijie; Chen, Zhihao; Ma, Xiaoli; Zhang, Ge; Qian, Airong

    2017-09-01

    Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies. Copyright © 2017. Published by Elsevier Ltd.

  20. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis.

    PubMed

    Millward, Geoffrey E; Kadam, Sandeep; Jha, Awadhesh N

    2012-03-01

    The tissue-specific accumulation and time-dependent depuration of radioactive (63)Ni by the byssus, gut, foot, gills, kidney, adductor muscle and faeces of Mytilus edulis has been investigated using a pulse-chase technique. The rate and extent of depuration of (63)Ni varied between tissues and, after 168 h, the concentration factors and assimilation efficiencies ranged from 1 to 35 L kg(-1) and 5%-13%, respectively. Mussels were also exposed to a range of environmentally-realistic concentrations of dissolved Ni, prior to the analysis of biological endpoints. The clearance rate was concentration-dependent and at the highest concentration decreased by 30%. Neutral red retention (NRR) assays indicated a cytotoxic response and DNA strand breaks were observed in the haemocytes. The association of DNA damage with that of physiological and cytotoxic effects suggests that Ni exerts a significant impact on Mytilus edulis at cellular and genetic levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    PubMed

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 ( SIK2 and 3 ) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  2. Combining Evidence of Preferential Gene-Tissue Relationships from Multiple Sources

    PubMed Central

    Guo, Jing; Hammar, Mårten; Öberg, Lisa; Padmanabhuni, Shanmukha S.; Bjäreland, Marcus; Dalevi, Daniel

    2013-01-01

    An important challenge in drug discovery and disease prognosis is to predict genes that are preferentially expressed in one or a few tissues, i.e. showing a considerably higher expression in one tissue(s) compared to the others. Although several data sources and methods have been published explicitly for this purpose, they often disagree and it is not evident how to retrieve these genes and how to distinguish true biological findings from those that are due to choice-of-method and/or experimental settings. In this work we have developed a computational approach that combines results from multiple methods and datasets with the aim to eliminate method/study-specific biases and to improve the predictability of preferentially expressed human genes. A rule-based score is used to merge and assign support to the results. Five sets of genes with known tissue specificity were used for parameter pruning and cross-validation. In total we identify 3434 tissue-specific genes. We compare the genes of highest scores with the public databases: PaGenBase (microarray), TiGER (EST) and HPA (protein expression data). The results have 85% overlap to PaGenBase, 71% to TiGER and only 28% to HPA. 99% of our predictions have support from at least one of these databases. Our approach also performs better than any of the databases on identifying drug targets and biomarkers with known tissue-specificity. PMID:23950964

  3. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration.

    PubMed

    Rudqvist, Nils; Schüler, Emil; Parris, Toshima Z; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-03-01

    In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after (131)I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with (131)I exposure in normal mouse thyroid tissue and 2) propose biomarkers for (131)I exposure of the thyroid. Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of (131)I and killed 24h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. In total, 497, 546, and 90 transcripts were regulated (fold change ≥1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to (131)I exposure of thyroid. During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low, intermediate, and high absorbed doses from (131)I exposure in vivo

  4. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    PubMed Central

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-01-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets. PMID:28593951

  5. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    NASA Astrophysics Data System (ADS)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-06-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.

  6. Identifying clusters of active transportation using spatial scan statistics.

    PubMed

    Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David

    2009-08-01

    There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.

  7. Identifying Clusters of Active Transportation Using Spatial Scan Statistics

    PubMed Central

    Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David

    2009-01-01

    Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451

  8. Unusual tremor syndromes: know in order to recognise.

    PubMed

    Ure, Robert J; Dhanju, Sanveer; Lang, Anthony E; Fasano, Alfonso

    2016-11-01

    Tremor is a common neurological condition in clinical practice; yet, few syndromes are widely recognised and discussed in the literature. As a result, there is an overdiagnosis of well-known causes, such as essential tremor. Many important unusual syndromes should be considered in the differential diagnosis of patients with tremor. The objective of this review is to provide broad clinical information to aid in the recognition and treatment of various unusual tremor syndromes in the adult and paediatric populations. The review comprised of a comprehensive online search using PubMed, Ovid database and Google Scholar to identify the available literature for each unusual tremor syndrome. The review includes fragile X-associated tremor/ataxia syndrome, spinocerebellar ataxia type 12, tremors caused by autosomal recessive cerebellar ataxias, myorhythmia, isolated tongue tremor, Wilson's disease, slow orthostatic tremor, peripheral trauma-induced tremor, tardive tremor and rabbit syndrome, paroxysmal tremors (hereditary chin tremor, bilateral high-frequency synchronous discharges, head tremor, limb-shaking transient ischaemic attack), bobble-head doll syndrome, spasmus nutans and shuddering attacks. Rare tremors generally present with an action tremor and a variable combination of postural and kinetic components with resting tremors less frequently seen. The phenomenology of myorhythmia is still vague and a clinical definition is proposed. The recognition of these entities should facilitate the correct diagnosis and guide the physician to a prompt intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. An Unusual Foreign Body in the Urinary Bladder Mimicking a Parasitic Worm

    PubMed Central

    Schmitt, Bryan H.; Feder, Marc T.; Rokke, Denise L.; Moyer, Thomas P.

    2012-01-01

    We report an unusual case of a foreign body removed from the urinary bladder of a 63-year-old male which mimicked a parasitic worm. The foreign body was identified as an artificial fishing worm by morphological comparison to a similar commercially produced product and by infrared spectrum analysis. PMID:22535991

  10. Identifying Group-Specific Sequences for Microbial Communities Using Long k-mer Sequence Signatures

    PubMed Central

    Wang, Ying; Fu, Lei; Ren, Jie; Yu, Zhaoxia; Chen, Ting; Sun, Fengzhu

    2018-01-01

    Comparing metagenomic samples is crucial for understanding microbial communities. For different groups of microbial communities, such as human gut metagenomic samples from patients with a certain disease and healthy controls, identifying group-specific sequences offers essential information for potential biomarker discovery. A sequence that is present, or rich, in one group, but absent, or scarce, in another group is considered “group-specific” in our study. Our main purpose is to discover group-specific sequence regions between control and case groups as disease-associated markers. We developed a long k-mer (k ≥ 30 bps)-based computational pipeline to detect group-specific sequences at strain resolution free from reference sequences, sequence alignments, and metagenome-wide de novo assembly. We called our method MetaGO: Group-specific oligonucleotide analysis for metagenomic samples. An open-source pipeline on Apache Spark was developed with parallel computing. We applied MetaGO to one simulated and three real metagenomic datasets to evaluate the discriminative capability of identified group-specific markers. In the simulated dataset, 99.11% of group-specific logical 40-mers covered 98.89% disease-specific regions from the disease-associated strain. In addition, 97.90% of group-specific numerical 40-mers covered 99.61 and 96.39% of differentially abundant genome and regions between two groups, respectively. For a large-scale metagenomic liver cirrhosis (LC)-associated dataset, we identified 37,647 group-specific 40-mer features. Any one of the features can predict disease status of the training samples with the average of sensitivity and specificity higher than 0.8. The random forests classification using the top 10 group-specific features yielded a higher AUC (from ∼0.8 to ∼0.9) than that of previous studies. All group-specific 40-mers were present in LC patients, but not healthy controls. All the assembled 11 LC-specific sequences can be mapped to two

  11. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a.

    PubMed

    Yelin-Bekerman, Laura; Elbaz, Idan; Diber, Alex; Dahary, Dvir; Gibbs-Bar, Liron; Alon, Shahar; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-10-01

    Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep\\wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a (kcnh4a(-/-)) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

  12. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Alexandra S., E-mail: alexandra.long@hc-sc.gc.ca; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON; Lemieux, Christine L.

    Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures ofmore » male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity = 100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity = 56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed. - Highlights: • The Muta™Mouse is a reliable tool for in vivo mutagenicity assessment of PAHs. • All 9 PAHs induced lacZ transgene mutations in small intestine. • Only 5 of 9 PAHs induced lacZ mutations and micronuclei

  13. 48 CFR 50.104-3 - Special procedures for unusually hazardous or nuclear risks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... identifying the risks insured against and the coverage extended to persons or property, or both; (C) Dollar... unusually hazardous or nuclear risks. 50.104-3 Section 50.104-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT...

  14. An unusual case of priapism.

    PubMed Central

    Jam, M.; Datta, N. S.; Askari, A.

    1993-01-01

    A case of sickle cell disease with 63 documented episodes of priapism that were managed medically is presented. The case is very unusual because of the fact that despite so many episodes of priapism, he did not lose sexual potency. On the contrary, over a period of time, his penis hypertrophied. To the best of our knowledge, this is the first such case with so many episodes of priapism reported in the English literature. We present a hypothesis for such unusual occurrence. PMID:8366540

  15. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Sterling, D; Higgins, P

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less

  16. UNUSUAL BACTEROIDES-LIKE ORGANISM

    PubMed Central

    Goldberg, Herbert S.; Barnes, Ella M.; Charles, Anthony B.

    1964-01-01

    Goldberg, Herbert S. (University of Missouri, Columbia), Ella M. Barnes, and Anthony B. Charles. Unusual Bacteroides-like organism. J. Bacteriol. 87:737–742. 1964.—An organism is described which appears to be a new species of gram-negative, anaerobic, nonsporulating rod. It was isolated from poultry caeca at levels of 107 to 108 per g. It is primarily distinguished from related organisms by its unusual size (2.0 by 10.0 μ). It is biochemically differentiated from known species of Bacteroides, Fusobacterium, Sphaerophorous, and other accepted related genera. Its presence in large numbers in the gut of poultry, and its high metabolic activity would seem to indicate an important intestinal organism. Images PMID:14127590

  17. 48 CFR 632.114 - Unusual contract financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Unusual contract financing. 632.114 Section 632.114 Federal Acquisition Regulations System DEPARTMENT OF STATE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 632.114 Unusual contract financing. The...

  18. 48 CFR 2432.114 - Unusual contract financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Unusual contract financing... DEVELOPMENT GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 2432.114 Unusual contract financing. The Senior Procurement Executive is the agency head for the purpose of...

  19. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Preethi; Prabhakaran, Molamma P.; Sireesha, Merum; Ramakrishna, Seeram

    The extracellular matrix is a complex biological structure encoded with various proteins, among which the collagen family is the most significant and abundant of all, contributing 30-35% of the whole-body protein. "Collagen" is a generic term for proteins that forms a triple-helical structure with three polypeptide chains, and around 29 types of collagen have been identified up to now. Although most of the members of the collagen family form such supramolecular structures, extensive diversity exists between each type of collagen. The diversity is not only based on the molecular assembly and supramolecular structures of collagen types but is also observed within its tissue distribution, function, and pathology. Collagens possess complex hierarchical structures and are present in various forms such as collagen fibrils (1.5-3.5 nm wide), collagen fibers (50-70 nm wide), and collagen bundles (150-250 nm wide), with distinct properties characteristic of each tissue providing elasticity to skin, softness of the cartilage, stiffness of the bone and tendon, transparency of the cornea, opaqueness of the sclera, etc. There exists an exclusive relation between the structural features of collagen in human tissues (such as the collagen composition, collagen fibril length and diameter, collagen distribution, and collagen fiber orientation) and its tissue-specific mechanical properties. In bone, a transverse collagen fiber orientation prevails in regions of higher compressive stress whereas longitudinally oriented collagen fibers correlate to higher tensile stress. The immense versatility of collagen compels a thorough understanding of the collagen types and this review discusses the major types of collagen found in different human tissues, highlighting their tissue-specific uniqueness based on their structure and mechanical function. The changes in collagen during a specific tissue damage or injury are discussed further, focusing on the many tissue engineering applications for

  20. Localization of Legionella pneumophila in Tissue Using FITC-Conjugated Specific Antibody and a Background Stain

    DTIC Science & Technology

    1982-05-01

    Legionnaires ’ disease in tissue. N Engi J Med 1977; Manual of Clinical Microbiology. Third edition. Edited by EH 297:1218-1220 Lennette, A Balows, WJ Hausler...Pathologits P6 i U. S . A. Localization of Legionella pneumophila in Tissue Using FITC- Conjuga ted Specific Antibody and a Background Stain BARBARA S . LOWRY...M.D., FILIBERTO G. VEGA, JR., AND KENNETH W. HEDLUND, M.D. Lowry, Barbara S4, Vega, Filibert. G., Jr., and Hedlund, Ken- U. S . Army Medcal Rleserch

  1. Esophageal lichen planus: An unusual cause of dysphagia in the elderly.

    PubMed

    Carbonari, Augusto Pinke Cruz; Imada, Regina Rie; Nakamura, Romeu; Araki, Osvaldo; Cristina, Kelly; Balancin, Marcelo Luiz; Ibrahim, Roberto El

    2018-03-01

    An 82-year-old man sought our service with dysphagia and was referred for upper endoscopy with biopsies, which evidenced multiple ulcers of the esophagus and oropharinx. Histopathology confirmed the unusual diagnosis of esophageal lichen planus. The correct clinical suspicion of this disease can facilitate the diagnosis and guide specific treatment, which can drastically change the natural course of the disease.

  2. Heavy metals in wild marine fish from South China Sea: levels, tissue- and species-specific accumulation and potential risk to humans.

    PubMed

    Liu, Jin-Ling; Xu, Xiang-Rong; Ding, Zhen-Hua; Peng, Jia-Xi; Jin, Ming-Hua; Wang, You-Shao; Hong, Yi-Guo; Yue, Wei-Zhong

    2015-10-01

    Heavy metal pollution in marine fish has become an important worldwide concern, not only because of the threat to fish in general, but also due to human health risks associated with fish consumption. To investigate the occurrence of heavy metals in marine fish species from the South China Sea, 14 fish species were collected along the coastline of Hainan China during the spring of 2012 and examined for species- and tissue-specific accumulation. The median concentrations of Cd, Cr, Cu, Zn, Pb and As in muscle tissue of the examined fish species were not detectable (ND), 2.02, 0.24, 2.64, 0.025, and 1.13 mg kg(-1) wet weight, respectively. Levels of Cu, Zn, Cd and Cr were found to be higher in the liver and gills than in muscle, while Pb was preferentially accumulated in the gills. Differing from other heavy metals, As did not exhibit tissue-specific accumulation. Inter-species differences of heavy metal accumulation were attributed to the different habitat and diet characteristics of marine fish. Human dietary exposure assessment suggested that the amounts of both Cr and As in marine wild fish collected from the sites around Hainan, China were not compliant with the safety standard of less than 79.2 g d(-1) for wild marine fish set by the Joint FAO/WHO Expert Committee on Food Additives. Further research to identify the explicit sources of Cr and As in marine fish from South China Sea should be established.

  3. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    PubMed Central

    Chen, I-Ping

    2014-01-01

    More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts. PMID:25621177

  4. Snakes exhibit tissue-specific variation in cardiotonic steroid sensitivity of Na+/K+-ATPase.

    PubMed

    Mohammadi, Shabnam; Petschenka, Georg; French, Susannah S; Mori, Akira; Savitzky, Alan H

    2018-03-01

    Toads are among several groups of organisms chemically defended with lethal concentrations of cardiotonic steroids. As a result, most predators that prey on amphibians avoid toads. However, several species of snakes have gained resistance-conferring mutations of Na + /K + -ATPase, the molecular target of cardiotonic steroids, and can feed on toads readily. Despite recent advances in our understanding of this adaptation at the genetic level, we have lacked functional evidence for how mutations of Na + /K + -ATPase account for cardiotonic steroid resistance in snake tissues. To address this issue, it is necessary to determine how the Na + /K + -ATPases of snakes react to the toxins. Some tissues might have Na + /K + -ATPases that are more susceptible than others and can thus provide clues about how the toxins influence organismal function. Here we provide a mechanistic link between observed Na + /K + -ATPase substitutions and observed resistance using actual snake Na + /K + -ATPases. We used an in vitro approach to determine the tissue-specific levels of sensitivity to cardiotonic steroids in select resistant and non-resistant snakes. We compared the sensitivities of select tissues within and between species. Our results suggest that resistant snakes contain highly resistant Na + /K + -ATPases in their heart and kidney, both of which rely heavily on the enzymes to function, whereas tissues that do not rely as heavily on Na + /K + -ATPases or might be protected from cardiotonic steroids by other means (liver, gut, and brain) contain non-resistant forms of the enzyme. This study reveals functional evidence that tissue-level target-site insensitivity to cardiotonic steroids varies not only among species but also across tissues within resistant taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Forecasting the student–professor matches that result in unusually effective teaching

    PubMed Central

    Gross, Jennifer; Lakey, Brian; Lucas, Jessica L; LaCross, Ryan; R Plotkowski, Andrea; Winegard, Bo

    2015-01-01

    Background Two important influences on students' evaluations of teaching are relationship and professor effects. Relationship effects reflect unique matches between students and professors such that some professors are unusually effective for some students, but not for others. Professor effects reflect inter-rater agreement that some professors are more effective than others, on average across students. Aims We attempted to forecast students' evaluations of live lectures from brief, video-recorded teaching trailers. Sample Participants were 145 college students (74% female) enrolled in introductory psychology courses at a public university in the Great Lakes region of the United States. Methods Students viewed trailers early in the semester and attended live lectures months later. Because subgroups of students viewed the same professors, statistical analyses could isolate professor and relationship effects. Results Evaluations were influenced strongly by relationship and professor effects, and students' evaluations of live lectures could be forecasted from students' evaluations of teaching trailers. That is, we could forecast the individual students who would respond unusually well to a specific professor (relationship effects). We could also forecast which professors elicited better evaluations in live lectures, on average across students (professor effects). Professors who elicited unusually good evaluations in some students also elicited better memory for lectures in those students. Conclusions It appears possible to forecast relationship and professor effects on teaching evaluations by presenting brief teaching trailers to students. Thus, it might be possible to develop online recommender systems to help match students and professors so that unusually effective teaching emerges. PMID:24953773

  6. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. SMM-system: A mining tool to identify specific markers in Salmonella enterica.

    PubMed

    Yu, Shuijing; Liu, Weibing; Shi, Chunlei; Wang, Dapeng; Dan, Xianlong; Li, Xiao; Shi, Xianming

    2011-03-01

    This report presents SMM-system, a software package that implements various personalized pre- and post-BLASTN tasks for mining specific markers of microbial pathogens. The main functionalities of SMM-system are summarized as follows: (i) converting multi-FASTA file, (ii) cutting interesting genomic sequence, (iii) automatic high-throughput BLASTN searches, and (iv) screening target sequences. The utility of SMM-system was demonstrated by using it to identify 214 Salmonella enterica-specific protein-coding sequences (CDSs). Eighteen primer pairs were designed based on eighteen S. enterica-specific CDSs, respectively. Seven of these primer pairs were validated with PCR assay, which showed 100% inclusivity for the 101 S. enterica genomes and 100% exclusivity of 30 non-S. enterica genomes. Three specific primer pairs were chosen to develop a multiplex PCR assay, which generated specific amplicons with a size of 180bp (SC1286), 238bp (SC1598) and 405bp (SC4361), respectively. This study demonstrates that SMM-system is a high-throughput specific marker generation tool that can be used to identify genus-, species-, serogroup- and even serovar-specific DNA sequences of microbial pathogens, which has a potential to be applied in food industries, diagnostics and taxonomic studies. SMM-system is freely available and can be downloaded from http://foodsafety.sjtu.edu.cn/SMM-system.html. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Immuno-proteomic discovery of tumor tissue autoantigens identifies olfactomedin 4, CD11b, and integrin alpha-2 as markers of colorectal cancer with liver metastases.

    PubMed

    Yang, Qian; Bavi, Prashant; Wang, Julia Y; Roehrl, Michael H

    2017-09-25

    Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Hence, we embarked on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were obtained from colon cancer patients. Tissue proteins were extracted, and autoantigens were uncovered by immunoblotting with autoantibodies and sequenced by mass spectrometry. Informatics analyses identified 48 proteins that were found in tumor only but were absent in normal tissue. Five of these were reproducibly found in two independent experiments, including olfactomedin 4 (OLFM4), CD11b, integrin α2 (ITGA2), periostin, and thrombospondin-2. Further confirmation with tissue from 43 patients by Western blotting, immunohistochemistry, and tissue microarray deemed OLFM4, CD11b, and ITGA2 to be significantly overexpressed in both primary colon tumors and liver metastases. These tumor tissue autoantigens may serve as promising markers for developing differential diagnostics and immunotherapies for colorectal cancers, in particular, those with tendency to progress to liver metastases. Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Cancer tissue immunogens - antigens capable of inducing specific antibody production in patients - are promising targets for development of precision diagnostics and immunotherapies. In our manuscript, we describe on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were

  9. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    PubMed

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  10. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  11. FNA, core biopsy, or both for the diagnosis of lung carcinoma: Obtaining sufficient tissue for a specific diagnosis and molecular testing.

    PubMed

    Coley, Shana M; Crapanzano, John P; Saqi, Anjali

    2015-05-01

    Increasingly, minimally invasive procedures are performed to assess lung lesions and stage lung carcinomas. In cases of advanced-stage lung cancer, the biopsy may provide the only diagnostic tissue. The aim of this study was to determine which method-fine-needle aspiration (FNA), core biopsy (CBx), or both (B)--is optimal for providing sufficient tissue for rendering a specific diagnosis and pursuing molecular studies for guiding tumor-specific treatment. A search was performed for computed tomography-guided lung FNA, CBx, or B cases with rapid onsite evaluation. Carcinomas were assessed for the adequacy to render a specific diagnosis; this was defined as enough refinement to subtype a primary carcinoma or to assess a metastatic origin morphologically and/or immunohistochemically. In cases of primary lung adenocarcinoma, the capability of each modality to yield sufficient tissue for molecular studies (epidermal growth factor receptor, KRAS, or anaplastic lymphoma kinase) was also assessed. There were 210 cases, and 134 represented neoplasms, including 115 carcinomas. For carcinomas, a specific diagnosis was reached in 89% of FNA cases (33 of 37), 98% of CBx cases (43 of 44), and 100% of B cases (34 of 34). For primary lung adenocarcinomas, adequate tissue remained to perform molecular studies in 94% of FNA cases (16 of 17), 100% of CBx cases (19 of 19), and 86% of B cases (19 of 22). No statistical difference was found among the modalities for either reaching a specific diagnosis (p = .07, Fisher exact test) or providing sufficient tissue for molecular studies (p = .30, Fisher exact test). The results suggest that FNA, CBx, and B are comparable for arriving at a specific diagnosis and having sufficient tissue for molecular studies: they specifically attained the diagnostic and prognostic goals of minimally invasive procedures for lung carcinoma. © 2015 American Cancer Society.

  12. 48 CFR 2832.114 - Unusual contract financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Unusual contract financing... Contracting Requirements CONTRACT FINANCING Non-Commercial Item Purchase Financing 2832.114 Unusual contract financing. The HCA, or designee at a level not lower than the BPC, is the official authorized to approve...

  13. The development of the immune tissues in marsupial pouch young.

    PubMed

    Borthwick, Casey R; Young, Lauren J; Old, Julie M

    2014-07-01

    Current knowledge of the development of the marsupial immune system, particularly in the context of lymphoid tissue development and the appearance of lymphocytes, has been examined and limitations identified. While primary lymphoid tissues like the thymus have been extensively studied, secondary lymphoid tissues such as the spleen and lymph nodes have been examined to a lesser extent, partly due to the difficulty of macroscopically identifying these structures, particularly in very small neonates. In addition, little research has been conducted on the mucosal-associated lymphoid tissues; tissues that directly trap antigens and play an important role in the maturity of adaptive immune responses. Research on the development of the marsupial immune tissues to date serves as a solid foundation for further research, particularly on the mechanisms behind the development of the immune system of marsupials. With the recent sequencing and annotation of whole marsupial genomes, the current wealth of sequence data will be essential in the development of marsupial specific reagents, including antibodies, that are required to widen our specific knowledge of the complex marsupial immune system and its development. © 2014 Wiley Periodicals, Inc.

  14. Queensland tick typhus: three cases with unusual clinical features.

    PubMed

    Wilson, P A; Tierney, L; Lai, K; Graves, S

    2013-07-01

    Queensland tick typhus (QTT), caused by Rickettsia australis, is usually a relatively mild illness but can occasionally be severe. We describe three cases of probable QTT with unusual clinical features, namely splenic infarction, fulminant myopericarditis and severe leukocytoclastic vasculitis. QTT may present with uncommon clinical features in addition to the more common manifestations. A high index of suspicion enables specific antibiotic therapy that may hasten recovery. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  15. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.; Wentz, Anna E.; André d'Avignon, D.

    2013-01-01

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1+/− mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states. PMID:23233542

  16. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  17. Unusual raptor nests around the world

    USGS Publications Warehouse

    Ellis, D.H.; Craig, T.; Craig, E.; Postupalsky, S.; LaRue, C.T.; Nelson, R.W.; Anderson, D.W.; Henny, C.J.; Watson, J.; Millsap, B.A.; Dawson, J.W.; Cole, K.L.; Martin, E.M.; Margalida, A.; Kung, P.

    2009-01-01

    From surveys in many countries, we report raptors using unusual nesting materials (e.g., paper money, rags, metal, antlers, and large bones) and unusual nesting situations. For example, we documented nests of Steppe Eagles Aquila nipalensis and Upland Buzzards Buteo hemilasius on the ground beside well-traveled roads, Saker Falcon Falco cherrug eyries in attics and a cistern, and Osprey Pandion haliaetus nests on the masts of boats and on a suspended automobile. Other records include a Golden Eagle A. chrysaetos nest 7.0 m in height, believed to be the tallest nest ever described, and, for the same species, we report nesting in rudimentary nests. Some nest sites are within a few meters of known predators or competitors. These unusual observations may be important in revealing the plasticity of a species' behavioral repertoire. ?? 2009 The Raptor Research Foundation, Inc.

  18. HOXA5 plays tissue-specific roles in the developing respiratory system.

    PubMed

    Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie

    2017-10-01

    Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.

  19. A Fortunate Story of an Unusual AK-47 Bullet Trajectory: Always Keep a Smartphone in Your Pocket.

    PubMed

    Thabouillot, Oscar; Perrier, Pierre; Roche, Nicolas-Charles; Agard, David; Barbier, Olivier; Martin, Guillaume; Viant, Eric; Leclere, Jean-Baptiste

    2016-06-01

    This is a report of a fortunate story of an unusual AK-47 bullet trajectory which took place during the Paris (France) attack of November 13th, 2015. A young man, trying to protect his girlfriend, interfered between her and a shooter. He had been wounded in the posterior compartment of the thigh. The bullet penetrated him and, instead of exiting, rebound against his Smartphone, which was in the front pocket of his pants. Thanks to that, the missile bullet did not injure his girlfriend but ended its trajectory in the fat tissue of his thigh. Thabouillot O , Perrier P , Roche NC , Agard D , Barbier O , Martin G , Viant E , Leclere JB . A fortunate story of an unusual AK-47 bullet trajectory: always keep a Smartphone in your pocket. Prehosp Disaster Med, 2016;31(3):343-345.

  20. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice.

    PubMed

    Welborn, Joshua P; Davis, Matthew G; Ebers, Steven D; Stodden, Genna R; Hayashi, Kanako; Cheatwood, Joseph L; Rao, Manjeet K; MacLean, James A

    2015-07-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. © 2015 by the Society for the Study of Reproduction, Inc.

  1. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice1

    PubMed Central

    Welborn, Joshua P.; Davis, Matthew G.; Ebers, Steven D.; Stodden, Genna R.; Hayashi, Kanako; Cheatwood, Joseph L.; Rao, Manjeet K.; MacLean, James A.

    2015-01-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  2. Unusual Case of Combined Gliomeningeal Heterotopia on the Nose of an Infant.

    PubMed

    Schauer, Anna; Harvey, Nathan T; Vijayasekaran, Shyan; Wood, Benjamin A

    2017-10-24

    Nasal glial heterotopia ("nasal glioma") and cutaneous heterotopic meningeal nodules ("primary cutaneous meningioma") are rare congenital lesions characterized by the presence of heterotopic mature cerebral tissues. Nasal glial heterotopia occurs predominantly in the nasal area and typically does not contain meningothelial elements, whereas heterotopic meningeal nodules occur predominantly on the scalp and do not contain glial elements. In this article, we report an unusual case of cutaneous heterotopia on the nose of an infant composed of both glial and meningothelial elements. The glial component was characterized by irregular islands of predominantly astrocytic cells, on a fibrillary background. The meningothelial component was characterized by bland ovoid cells with focal intranuclear inclusions forming whorled arrangements, with associated psammomatous calcification. To our knowledge, this is the first time such a lesion has been documented. It has also provided us with an opportunity to review the literature regarding heterotopic deposits of both glial and meningothelial tissues.

  3. Mycobacterium tuberculosis infection modulates adipose tissue biology

    PubMed Central

    Kühl, Anja A.; Kupz, Andreas; Vogelzang, Alexis; Mollenkopf, Hans-Joachim; Löwe, Delia; Bandermann, Silke; Dorhoi, Anca; Brinkmann, Volker

    2017-01-01

    Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. PMID:29040326

  4. Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs.

    PubMed

    Morin, Alexander M; Gatev, Evan; McEwen, Lisa M; MacIsaac, Julia L; Lin, David T S; Koen, Nastassja; Czamara, Darina; Räikkönen, Katri; Zar, Heather J; Koenen, Karestan; Stein, Dan J; Kobor, Michael S; Jones, Meaghan J

    2017-01-01

    Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing.

  5. An Unusual Presentation of Addison's Disease-A Case Report.

    PubMed

    Choudhary, Sandeep; Alam, Anwer; Dewan, Vivek; Yadav, Dinesh; Dubey, N K

    2011-07-01

    Addison's disease is most commonly due to autoimmune adrenalitis and tuberculosis and refers to primary hypoadrenalism caused by a total or near total destruction or dysfunction of both adrenal cortices. Usual manifestations involve chronic fatigue, muscle weakness, loss of appetite, nausea, vomiting, diarrhea, hypotension and hyperpigmentation of skin. We herein report a case of primary adrenal insufficiency presenting with fever and seizures in an 11-yr-old boy. His symptoms resolved after starting specific therapy. This kind of presentation of Addison's disease is rather unusual.

  6. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).

    PubMed

    Zeng, Meijuan; Ximenes, Eduardo; Ladisch, Michael R; Mosier, Nathan S; Vermerris, Wilfred; Huang, Chia-Ping; Sherman, Debra M

    2012-02-01

    Lignin content, composition, distribution as well as cell wall thickness, structures, and type of tissue have a measurable effect on enzymatic hydrolysis of cellulose in lignocellulosic feedstocks. The first part of our work combined compositional analysis, pretreatment and enzyme hydrolysis for fractionated pith, rind, and leaf tissues from a hybrid stay-green corn, in order to identify the role of structural characteristics on enzyme hydrolysis of cell walls. The extent of enzyme hydrolysis follows the sequence rind < leaves < pith with 90% conversion of cellulose to glucose in 24 h in the best cases. Physical fractionation of corn stalks or other C(4) grasses into soft and hard tissue types could reduce cost of cellulose conversion by enabling reduced enzyme loadings to hydrolyze soft tissue, and directing the hard tissue to other uses such as thermal processing, combustion, or recycle to the land from which the corn was harvested. Copyright © 2011 Wiley Periodicals, Inc.

  7. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  8. Depot-specific characteristics of adipose tissue-derived stromal cells in thyroid-associated orbitopathy.

    PubMed

    Wong, Janice Siu Chong; Chu, Wai Kit; Li, Benjamin Fuk-Loi; Pang, Chi-Pui; Chong, Kelvin Kam-Lung

    2018-04-17

    Thyroid-associated orbitopathy (TAO) causes inflammatory fibroproliferation of periocular connective tissues. We compared adipose tissue-derived stem/stromal cells (ADSCs) from three adipose depots of each patient with TAO on mesenchymal, myofibrogenic, adipogenic properties and associated hyaluronan (HA) synthesis. ADSCs were generated from periocular (eyelid, orbital) and subcutaneous (abdominal) adipose tissues of three patients with TAO. Mesenchymal markers were characterised by reverse transcription-PCR and immunofluorescent staining. A 3-week adipogenic induction was evaluated by Nile red staining and quantitative PCR (qPCR) of peroxisome proliferator-activated receptor (PPARγ), adiponectin and hyaluronan synthase (HAS)-2. A 7-day myofibrogenic induction was assayed by immunofluorescent staining and qPCR of α-smooth muscle actin (α-SMA). ADSCs from all depots expressed similar levels of mesenchymal markers CD44, CD90 and CD105 (p=0.288, p=0.43 and p=0.837, respectively). After adipogenic induction, intracellular lipid increased for more than 32% and PPARγ mRNA showed more than twofold increase from all three depots. However, adiponectin and HAS-2 mRNA levels were significantly higher in the eyelid and orbital ADSCs than those from the subcutaneous ADSCs after induction (2.4×10 7 , 3.9×10 6  folds vs below detection limit; 63.3-fold, 26.1-fold, vs 33% reduction, respectively; all p=0.002). Significantly more myofibroblasts and higher mRNA level of α-SMA were obtained from the orbital and eyelid compared with the subcutaneous ADSCs during myofibrogenic induction (80.2%, 70.6% vs 29.3%; 30.2-fold, 24.2-fold vs 1.7-fold, respectively; all p=0.002). ADSCs from different adipose depots of the same donors exhibited similar mesenchymal phenotypes but differed significantly in adipogenic, myofibrogenic potentials and associated HA synthesis. These depot-specific characteristics of ADSCs may contribute to site-specific adipose tissue involvement in TAO.

  9. CD8 down-regulation and functional impairment of SIV-specific cytotoxic T lymphocytes in lymphoid and mucosal tissues during SIV infection.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2013-06-01

    Functional impairment of virus-specific T cells is a hallmark of HIV/SIV infection, but the underlying mechanisms of this dysfunction are not well understood. To address this, we simultaneously analyzed the expression and intensity of CD8 and inhibitory PD-1 on CTL in blood and lymphoid tissues in SIV-infected rhesus macaques. The intensity (mean channel fluorescence) of CD8 expression was transiently down-regulated in early SIV infection (10-14 dpi), despite an increase in CD8(+) T cell proliferation. In chronic infection, CD8 expression was maintained at low levels on CD8(+) T cells in all tissues. Interestingly, Gag-specific CTLs were clearly divided into CD8high- and CD8low-expressing populations in SIV-infected macaques, and CD8low Gag-specific cells increased with disease progression, especially in lymphoid tissues when compared with peripheral blood or in Gag-vaccinated controls. Moreover, the CD8low CTL population secreted lower levels of cytokines upon SIV antigen stimulation and exhibited lower proliferative capacity during infection compared with the CD8high CTL population. Meanwhile, intensity of PD-1 expression on Gag-specific CTL in chronic infection was significantly higher than in acute SIV infection, although the frequencies of PD-1+ Gag-specific cells were similar in acute and chronic stages. In summary, down-regulation of CD8 expression and higher expression of PD-1 on SIV-specific CTLs could coordinately attenuate SIV-specific CTL responses and their ability to recognize virus-infected target cells, especially in lymphoid tissues, resulting in failure to contain viremia, and continued persistence and replication of HIV in lymphoid tissue reservoirs.

  10. Gender-specific reproductive tissue in ratites and Tyrannosaurus rex.

    PubMed

    Schweitzer, Mary H; Wittmeyer, Jennifer L; Horner, John R

    2005-06-03

    Unambiguous indicators of gender in dinosaurs are usually lost during fossilization, along with other aspects of soft tissue anatomy. We report the presence of endosteally derived bone tissues lining the interior marrow cavities of portions of Tyrannosaurus rex (Museum of the Rockies specimen number 1125) hindlimb elements, and we hypothesize that these tissues are homologous to specialized avian tissues known as medullary bone. Because medullary bone is unique to female birds, its discovery in extinct dinosaurs solidifies the link between dinosaurs and birds, suggests similar reproductive strategies, and provides an objective means of gender differentiation in dinosaurs.

  11. Persistent foot-and-mouth disease virus infection in the nasopharynx of cattle: tissue-specific distribution and local cytokine expression

    USDA-ARS?s Scientific Manuscript database

    Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV) were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 st...

  12. Forecasting the student-professor matches that result in unusually effective teaching.

    PubMed

    Gross, Jennifer; Lakey, Brian; Lucas, Jessica L; LaCross, Ryan; Plotkowski, Andrea R; Winegard, Bo

    2015-03-01

    Two important influences on students' evaluations of teaching are relationship and professor effects. Relationship effects reflect unique matches between students and professors such that some professors are unusually effective for some students, but not for others. Professor effects reflect inter-rater agreement that some professors are more effective than others, on average across students. We attempted to forecast students' evaluations of live lectures from brief, video-recorded teaching trailers. Participants were 145 college students (74% female) enrolled in introductory psychology courses at a public university in the Great Lakes region of the United States. Students viewed trailers early in the semester and attended live lectures months later. Because subgroups of students viewed the same professors, statistical analyses could isolate professor and relationship effects. Evaluations were influenced strongly by relationship and professor effects, and students' evaluations of live lectures could be forecasted from students' evaluations of teaching trailers. That is, we could forecast the individual students who would respond unusually well to a specific professor (relationship effects). We could also forecast which professors elicited better evaluations in live lectures, on average across students (professor effects). Professors who elicited unusually good evaluations in some students also elicited better memory for lectures in those students. It appears possible to forecast relationship and professor effects on teaching evaluations by presenting brief teaching trailers to students. Thus, it might be possible to develop online recommender systems to help match students and professors so that unusually effective teaching emerges. © 2014 The Authors. British Journal of Educational Psychology published by John Wiley & Sons Ltd on behalf of the British Psychological Society.

  13. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding.

    PubMed

    Drew, Janice E; Farquharson, Andrew J; Horgan, Graham W; Williams, Lynda M

    2016-11-01

    The sirtuin (SIRT)/nicotinamide adenine dinucleotide (NAD) system is implicated in development of type 2 diabetes (T2D) and diet-induced obesity, a major risk factor for T2D. Mechanistic links have not yet been defined. SIRT/NAD system gene expression and NAD/NADH levels were measured in liver, white adipose tissue (WAT) and skeletal muscle from mice fed either a low-fat diet or high-fat diet (HFD) for 3 days up to 16 weeks. An in-house custom-designed multiplex gene expression assay assessed all 7 mouse SIRTs (SIRT1-7) and 16 enzymes involved in conversion of tryptophan, niacin, nicotinamide riboside and metabolic precursors to NAD. Significantly altered transcription was correlated with body weight, fat mass, plasma lipids and hormones. Regulation of the SIRT/NAD system was associated with early (SIRT4, SIRT7, NAPRT1 and NMNAT2) and late phases (NMNAT3, NMRK2, ABCA1 and CD38) of glucose intolerance. TDO2 and NNMT were identified as markers of HFD consumption. Altered regulation of the SIRT/NAD system in response to HFD was prominent in liver compared with WAT or muscle. Multiple components of the SIRTs and NAD biosynthetic enzymes network respond to consumption of dietary fat. Novel molecular targets identified above could direct strategies for dietary/therapeutic interventions to limit metabolic dysfunction and development of T2D. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    PubMed Central

    Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J

    1994-01-01

    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261

  15. The cruel and unusual phenomenology of solitary confinement.

    PubMed

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a "cruel and unusual punishment," there is no consensus on the definition of the term "cruel" in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of "cruelty" by looking specifically at the phenomenology and psychology of solitary confinement.

  16. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration.

    PubMed

    Bonar, Nicolle A; Petersen, Christian P

    2017-03-01

    Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema. © 2017. Published by The Company of Biologists Ltd.

  17. High Quality Unigenes and Microsatellite Markers from Tissue Specific Transcriptome and Development of a Database in Clusterbean (Cyamopsis tetragonoloba, L. Taub)

    PubMed Central

    Rawal, Hukam C.; Kumar, Shrawan; Mithra S.V., Amitha; Solanke, Amolkumar U.; Saxena, Swati; Tyagi, Anshika; V., Sureshkumar; Yadav, Neelam R.; Kalia, Pritam; Singh, Narendra Pratap; Singh, Nagendra Kumar; Sharma, Tilak Raj; Gaikwad, Kishor

    2017-01-01

    Clusterbean (Cyamopsis tetragonoloba L. Taub), is an important industrial, vegetable and forage crop. This crop owes its commercial importance to the presence of guar gum (galactomannans) in its endosperm which is used as a lubricant in a range of industries. Despite its relevance to agriculture and industry, genomic resources available in this crop are limited. Therefore, the present study was undertaken to generate RNA-Seq based transcriptome from leaf, shoot, and flower tissues. A total of 145 million high quality Illumina reads were assembled using Trinity into 127,706 transcripts and 48,007 non-redundant high quality (HQ) unigenes. We annotated 79% unigenes against Plant Genes from the National Center for Biotechnology Information (NCBI), Swiss-Prot, Pfam, gene ontology (GO) and KEGG databases. Among the annotated unigenes, 30,020 were assigned with 116,964 GO terms, 9984 with EC and 6111 with 137 KEGG pathways. At different fragments per kilobase of transcript per millions fragments sequenced (FPKM) levels, genes were found expressed higher in flower tissue followed by shoot and leaf. Additionally, we identified 8687 potential simple sequence repeats (SSRs) with an average frequency of one SSR per 8.75 kb. A total of 28 amplified SSRs in 21 clusterbean genotypes resulted in polymorphism in 13 markers with average polymorphic information content (PIC) of 0.21. We also constructed a database named ‘ClustergeneDB’ for easy retrieval of unigenes and the microsatellite markers. The tissue specific genes identified and the molecular marker resources developed in this study is expected to aid in genetic improvement of clusterbean for its end use. PMID:29120386

  18. Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature

    PubMed Central

    De Pittà, Cristiano; Bertolucci, Cristiano; Mazzotta, Gabriella M; Bernante, Filippo; Rizzo, Giorgia; De Nardi, Barbara; Pallavicini, Alberto; Lanfranchi, Gerolamo; Costa, Rodolfo

    2008-01-01

    Background Little is known about the genome sequences of Euphausiacea (krill) although these crustaceans are abundant components of the pelagic ecosystems in all oceans and used for aquaculture and pharmaceutical industry. This study reports the results of an expressed sequence tag (EST) sequencing project from different tissues of Euphausia superba (the Antarctic krill). Results We have constructed and sequenced five cDNA libraries from different Antarctic krill tissues: head, abdomen, thoracopods and photophores. We have identified 1.770 high-quality ESTs which were assembled into 216 overlapping clusters and 801 singletons resulting in a total of 1.017 non-redundant sequences. Quantitative RT-PCR analysis was performed to quantify and validate the expression levels of ten genes presenting different EST countings in krill tissues. In addition, bioinformatic screening of the non-redundant E. superba sequences identified 69 microsatellite containing ESTs. Clusters, consensuses and related similarity and gene ontology searches were organized in a dedicated E. superba database . Conclusion We defined the first tissue transcriptional signatures of E. superba based on functional categorization among the examined tissues. The analyses of annotated transcripts showed a higher similarity with genes from insects with respect to Malacostraca possibly as an effect of the limited number of Malacostraca sequences in the public databases. Our catalogue provides for the first time a genomic tool to investigate the biology of the Antarctic krill. PMID:18226200

  19. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention

    PubMed Central

    Tischner, Christin; Hofer, Annette; Wulff, Veronika; Stepek, Joanna; Dumitru, Iulia; Becker, Lore; Haack, Tobias; Kremer, Laura; Datta, Alexandre N.; Sperl, Wolfgang; Floss, Thomas; Wurst, Wolfgang; Chrzanowska-Lightowlers, Zofia; De Angelis, Martin Hrabe; Klopstock, Thomas; Prokisch, Holger; Wenz, Tina

    2015-01-01

    Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy. PMID:25552653

  20. Cavernous hemangioma of the orbit: an unusual acute presentation

    PubMed Central

    Louisraj, Sophia; Ponnudurai, Thendral; Rodriguez, Dominic; Thomas, Philip A; Nelson Jesudasan, Christadoss Arul

    2017-01-01

    We report an unusual presentation of an orbital cavernous hemangioma in a 26-year-old female, who noted sudden redness and swelling of the left eye (LE) on waking up. At presentation, upper eyelid edema with periorbital ecchymosis and subconjunctival hemorrhage were noted in the LE. Although there was transient symptomatic relief with topical medications, blurring of vision developed in the LE. When seen 10 days later, the patient’s LE showed axial proptosis. Magnetic resonance imaging revealed an intraconal soft tissue mass in the superomedial quadrant of the left orbit. Superior orbitotomy with mass excision was done; histopathological examination of the excised mass revealed a cavernous hemangioma. The patient had complete visual recovery following surgery. To our knowledge, an acute presentation of an orbital cavernous hemangioma with subconjunctival hemorrhage and periorbital ecchymosis has not previously been reported. PMID:28769595

  1. Anomalous glassy dynamics in simple models of dense biological tissue

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-02-01

    In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.

  2. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study12

    PubMed Central

    Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M

    2015-01-01

    Background: Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Objectives: Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients’ tumor stage and metabolic profiles was assessed. Design: Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I–IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina’s HumanHT-12 Expression BeadChips. Results: Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis–related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients’ adipose tissues, which were associated with CRC tumor stage. Conclusions: As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC

  3. A metagenome-derived thermostable β-glucanase with an unusual module architecture which defines the new glycoside hydrolase family GH148.

    PubMed

    Angelov, Angel; Pham, Vu Thuy Trang; Übelacker, Maria; Brady, Silja; Leis, Benedikt; Pill, Nicole; Brolle, Judith; Mechelke, Matthias; Moerch, Matthias; Henrissat, Bernard; Liebl, Wolfgang

    2017-12-11

    The discovery of novel and robust enzymes for the breakdown of plant biomass bears tremendous potential for the development of sustainable production processes in the rapidly evolving new bioeconomy. By functional screening of a metagenomic library from a volcano soil sample a novel thermostable endo-β-glucanase (EngU) which is unusual with regard to its module architecture and cleavage specificity was identified. Various recombinant EngU variants were characterized. Assignment of EngU to an existing glycoside hydrolase (GH) family was not possible. Two regions of EngU showed weak sequence similarity to proteins of the GH clan GH-A, and acidic residues crucial for catalytic activity of EngU were identified by mutation. Unusual, a carbohydrate-binding module (CBM4) which displayed binding affinity for β-glucan, lichenin and carboxymethyl-cellulose was found as an insertion between these two regions. EngU hydrolyzed β-1,4 linkages in carboxymethyl-cellulose, but displayed its highest activity with mixed linkage (β-1,3-/β-1,4-) glucans such as barley β-glucan and lichenin, where in contrast to characterized lichenases cleavage occurred predominantly at the β-1,3 linkages of C4-substituted glucose residues. EngU and numerous related enzymes with previously unknown function represent a new GH family of biomass-degrading enzymes within the GH-A clan. The name assigned to the new GH family is GH148.

  4. Opposing tissue-specific roles of angiotensin in the pathogenesis of obesity, and implications for obesity-related hypertension

    PubMed Central

    Littlejohn, Nicole K.

    2015-01-01

    Metabolic disease, specifically obesity, has now become the greatest challenge to improving cardiovascular health. The renin-angiotensin system (RAS) exists as both a circulating hormone system and as a local paracrine signaling mechanism within various tissues including the brain, kidney, and adipose, and this system is strongly implicated in cardiovascular health and disease. Growing evidence also implicates the RAS in the control of energy balance, supporting the concept that the RAS may be mechanistically involved in the pathogenesis of obesity and obesity hypertension. Here, we review the involvement of the RAS in the entire spectrum of whole organism energy balance mechanisms, including behaviors (food ingestion and spontaneous physical activity) and biological processes (digestive efficiency and both aerobic and nonaerobic resting metabolic rates). We hypothesize that opposing, tissue-specific effects of the RAS to modulate these various components of energy balance can explain the apparently paradoxical results reported by energy-balance studies that involve stimulating, versus disrupting, the RAS. We propose a model in which such opposing and tissue-specific effects of the RAS can explain the failure of simple, global RAS blockade to result in weight loss in humans, and hypothesize that obesity-mediated uncoupling of endogenous metabolic rate control mechanisms can explain the phenomenon of obesity-related hypertension. PMID:26491099

  5. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.

    PubMed

    Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-08-07

    Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation.

  6. Intraoperative Raman Spectroscopy of Soft Tissue Sarcomas

    PubMed Central

    Nguyen, John Q.; Gowani, Zain S.; O’Connor, Maggie; Pence, Isaac J.; Nguyen, The-Quyen; Holt, Ginger E.; Schwartz, Herbert S.; Halpern, Jennifer L.; Mahadevan-Jansen, Anita

    2017-01-01

    Background and Objective Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated through surgical resection. Current intraoperative margin assessment methods are limited and highlight the need for an improved approach with respect to time and specificity. Here we investigate the potential of near-infrared Raman spectroscopy for the intraoperative differentiation of STS from surrounding normal tissue. Materials and Methods In vivo Raman measurements at 785 nm excitation were intraoperatively acquired from subjects undergoing STS resection using a probe based spectroscopy system. A multivariate classification algorithm was developed in order to automatically identify spectral features that can be used to differentiate STS from the surrounding normal muscle and fat. The classification algorithm was subsequently tested using leave-one-subject-out cross-validation. Results With the exclusion of well-differentiated liposarcomas, the algorithm was able to classify STS from the surrounding normal muscle and fat with a sensitivity and specificity of 89.5% and 96.4%, respectively. Conclusion These results suggest that single point near-infrared Raman spectroscopy could be utilized as a rapid and non-destructive surgical guidance tool for identifying abnormal tissue margins in need of further excision. PMID:27454580

  7. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1.

    PubMed

    Galeone, Antonio; Han, Seung Yeop; Huang, Chengcheng; Hosomi, Akira; Suzuki, Tadashi; Jafar-Nejad, Hamed

    2017-08-04

    Mutations in the human N- glycanase 1 ( NGLY1 ) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N -glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N -glycanase enzyme.

  8. Skin and Soft Tissue Infections (Patera Foot) in Immigrants, Spain

    PubMed Central

    Ternavasio-de la Vega, Hugo-Guillermo; Ángel-Moreno, Alfonso; Hernández-Cabrera, Michele; Pisos-Álamo, Elena; Bolaños-Rivero, Margarita; Carranza-Rodriguez, Cristina; Calderín-Ortega, Antonio; Pérez-Arellano, José-Luis

    2009-01-01

    An unusual skin and soft tissue infection of the lower limbs has been observed in immigrants from sub-Saharan Africa who cross the Atlantic Ocean crowded on small fishing boats (pateras). Response to conventional treatment is usually poor. Extreme extrinsic factors (including new pathogens) may contribute to the etiology of the infection and its pathogenesis. PMID:19331742

  9. Effects of ovariectomy and intrinsic aerobic capacity on tissue-specific insulin sensitivity

    PubMed Central

    Park, Young-Min; Rector, R. Scott; Thyfault, John P.; Zidon, Terese M.; Padilla, Jaume; Welly, Rebecca J.; Meers, Grace M.; Morris, Matthew E.; Britton, Steven L.; Koch, Lauren G.; Booth, Frank W.; Kanaley, Jill A.

    2015-01-01

    High-capacity running (HCR) rats are protected against the early (i.e., ∼11 wk postsurgery) development of ovariectomy (OVX)-induced insulin resistance (IR) compared with low-capacity running (LCR) rats. The purpose of this study was to utilize the hyperinsulinemic euglycemic clamp to determine whether 1) HCR rats remain protected from OVX-induced IR when the time following OVX is extended to 27 wk and 2) tissue-specific glucose uptake differences are responsible for the protection in HCR rats under sedentary conditions. Female HCR and LCR rats (n = 40; aged ∼22 wk) randomly received either OVX or sham (SHM) surgeries and then underwent the clamp 27 wk following surgeries. [3-3H]glucose was used to determine glucose clearance, whereas 2-[14C]deoxyglucose (2-DG) was used to assess glucose uptake in skeletal muscle, brown adipose tissue (BAT), subcutaneous white adipose tissue (WAT), and visceral WAT. OVX decreased the glucose infusion rate and glucose clearance in both lines, but HCR had better insulin sensitivity than LCR (P < 0.05). In both lines, OVX significantly reduced glucose uptake in soleus and gastrocnemius muscles; however, HCR showed ∼40% greater gastrocnemius glucose uptake compared with LCR (P < 0.05). HCR also exhibited greater glucose uptake in BAT and visceral WAT compared with LCR (P < 0.05), yet these tissues were not affected by OVX in either line. In conclusion, OVX impairs insulin sensitivity in both HCR and LCR rats, likely driven by impairments in insulin-mediated skeletal muscle glucose uptake. HCR rats have greater skeletal muscle, BAT, and WAT insulin-mediated glucose uptake, which may aid in protection against OVX-associated insulin resistance. PMID:26646101

  10. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    PubMed

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Tissue-specific methylation differences and cognitive function in fragile X premutation females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allingham-Hawkins, D.J.; Babul, R.; Chitayat, D.

    1996-08-09

    Tissue-specific variation in (CGG){sub n} repeat size and methylation status of the FMR1 gene was investigated in 17 female premutation carriers. Minor variation in premutation repeat size among leukocyte, lymphoblast, and fibroblast tissues was noted in some subjects. One subject exhibited a premutation size allele of (CGG){sub 64} in leukocyte and fibroblast tissues by polymerase chain reaction analysis but a normal-size allele of (CGG){sub 46} in lymphoblast cells, suggesting low-level mosaicism in blood and clonality of the lymphoblast cell line. Six subjects exhibited differences in methylation pattern between leukocytes and lymphoblasts but not between leukocytes and fibroblasts, whereas 2 subjectsmore » showed large differences in methylation pattern between leukocytes and fibroblasts. Cognitive function was studied in 14 subjects using the Wechsler Adult Intelligence Scale-Revised. Mean Verbal and Performance IQs were well within the average range as was the mean Full Scale IQ; nevertheless, a trend toward lower Performance IQ compared with Verbal IQ was observed. No significant correlation was apparent between Full Scale IQ and (CGG){sub n} repeat size; however, a significant positive correlation was observed between Full Scale IQ and the proportion of the active X carrying the normal FMR1 allele in fibroblasts but not in leukocytes or lymphoblasts. 24 refs., 1 fig., 2 tabs.« less

  12. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum

    NASA Astrophysics Data System (ADS)

    Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.

    2013-06-01

    Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.

  13. The tissue microarray OWL schema: An open-source tool for sharing tissue microarray data

    PubMed Central

    Kang, Hyunseok P.; Borromeo, Charles D.; Berman, Jules J.; Becich, Michael J.

    2010-01-01

    Background: Tissue microarrays (TMAs) are enormously useful tools for translational research, but incompatibilities in database systems between various researchers and institutions prevent the efficient sharing of data that could help realize their full potential. Resource Description Framework (RDF) provides a flexible method to represent knowledge in triples, which take the form Subject-Predicate-Object. All data resources are described using Uniform Resource Identifiers (URIs), which are global in scope. We present an OWL (Web Ontology Language) schema that expands upon the TMA data exchange specification to address this issue and assist in data sharing and integration. Methods: A minimal OWL schema was designed containing only concepts specific to TMA experiments. More general data elements were incorporated from predefined ontologies such as the NCI thesaurus. URIs were assigned using the Linked Data format. Results: We present examples of files utilizing the schema and conversion of XML data (similar to the TMA DES) to OWL. Conclusion: By utilizing predefined ontologies and global unique identifiers, this OWL schema provides a solution to the limitations of XML, which represents concepts defined in a localized setting. This will help increase the utilization of tissue resources, facilitating collaborative translational research efforts. PMID:20805954

  14. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    PubMed Central

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  15. Selenium and Vitamin E: Cell Type– and Intervention-Specific Tissue Effects in Prostate Cancer

    PubMed Central

    Tsavachidou, Dimitra; McDonnell, Timothy J.; Wen, Sijin; Wang, Xuemei; Vakar-Lopez, Funda; Pisters, Louis L.; Pettaway, Curtis A.; Wood, Christopher G.; Do, Kim-Anh; Thall, Peter F.; Stephens, Clifton; Efstathiou, Eleni; Taylor, Robert; Menter, David G.; Troncoso, Patricia; Lippman, Scott M.; Logothetis, Christopher J.

    2009-01-01

    (difference = 21.3%; 95% CI = 0.7 to 41.8; P = .051). Conclusions We have demonstrated the feasibility and efficiency of the preoperative model and its power as a hypothesis-generating engine. We have also identified cell type– and zone-specific tissue effects of interventions with selenium and vitamin E that may have clinical implications. PMID:19244175

  16. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    PubMed

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  17. Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes.

    PubMed

    Nallani, Gopinath C; Paulos, Peter M; Venables, Barney J; Edziyie, Regina E; Constantine, Lisa A; Huggett, Duane B

    2012-02-01

    The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 μg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 μg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.

  18. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    NASA Astrophysics Data System (ADS)

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-07-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.

  19. Establishing an unusual cell type: How to make a dikaryon

    PubMed Central

    Kruzel, Emilia K.; Hull, Christina M.

    2010-01-01

    Summary The dikaryons of basidiomycete fungi represent an unusual cell type required for complete sexual development. Dikaryon formation occurs via the activities of cell type-specific homeodomain transcription factors, which form regulatory complexes to establish the dikaryotic state. Decades of classical genetic and cell biological studies in mushrooms have provided a foundation for more recent molecular studies in the pathogenic species Ustilago maydis and Cryptococcus neoformans. Studies in these systems have revealed novel mechanisms of regulation that function downstream of classic homeodomain complexes to ensure that dikaryons are established and propagated. Comparisons of these dikaryon-specific networks promise to reveal the nature of regulatory network evolution and the adaptations responsible for driving complex eukaryotic development. PMID:21036099

  20. Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer.

    PubMed

    Wei, Wei; Luo, Weijia; Wu, Feilin; Peng, Xuehui; Zhang, Yao; Zhang, Manli; Zhao, Yan; Su, Na; Qi, YingZi; Chen, Lingsheng; Zhang, Yangjun; Wen, Bo; He, Fuchu; Xu, Ping

    2016-11-04

    Since 2012, missing proteins (MPs) investigation has been one of the critical missions of Chromosome-Centric Human Proteome Project (C-HPP) through various biochemical strategies. On the basis of our previous testis MPs study, faster scanning and higher resolution mass-spectrometry-based proteomics might be conducive to MPs exploration, especially for low-abundance proteins. In this study, Q-Exactive HF (HF) was used to survey proteins from the same testis tissues separated by two separating methods (tricine- and glycine-SDS-PAGE), as previously described. A total of 8526 proteins were identified, of which more low-abundance proteins were uniquely detected in HF data but not in our previous LTQ Orbitrap Velos (Velos) reanalysis data. Further transcriptomics analysis showed that these uniquely identified proteins by HF also had lower expression at the mRNA level. Of the 81 total identified MPs, 74 and 39 proteins were listed as MPs in HF and Velos data sets, respectively. Among the above MPs, 47 proteins (43 neXtProt PE2 and 4 PE3) were ranked as confirmed MPs after verifying with the stringent spectra match and isobaric and single amino acid variants filtering. Functional investigation of these 47 MPs revealed that 11 MPs were testis-specific proteins and 7 MPs were involved in spermatogenesis process. Therefore, we concluded that higher scanning speed and resolution of HF might be factors for improving the low-abundance MP identification in future C-HPP studies. All mass-spectrometry data from this study have been deposited in the ProteomeXchange with identifier PXD004092.