Sample records for identify biologically active

  1. Biased and unbiased strategies to identify biologically active small molecules.

    PubMed

    Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël

    2014-08-15

    Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. Copyright © 2014. Published by Elsevier Ltd.

  2. Phytotoxicity of vulpia residues: III. Biological activity of identified allelochemicals from Vulpia myuros.

    PubMed

    An, M; Pratley, J E; Haig, T

    2001-02-01

    Twenty compounds identified in vulpia (Vulpia myuros) residues as allelochemicals were individually and collectively tested for biological activity. Each exhibited characteristic allelochemical behavior toward the test plant, i.e., inhibition at high concentrations and stimulation or no effect at low concentrations, but individual activities varied. Allelopathins present in large quantities, such as syringic, vanillic, and succinic acids, possessed low activity, while those present in small quantities, such as catechol and hydrocinnamic acid, possessed strong inhibitory activity. The concept of a phytotoxic strength index was developed for quantifying the biological properties of each individual allelopathin in a concise, comprehensive, and meaningful format. The individual contribution of each allelopathin, assessed by comparing the phytotoxic strength index to the overall toxicity of vulpia residues, was variable according to structure and was influenced by its relative proportion in the residue. The majority of compounds possessed low or medium biological activity and contributed most of the vulpia phytotoxicity, while compounds with high biological activity were in the minority and only present at low concentration. Artificial mixtures of these pure allelochemicals also produced phytotoxicity. There were additive/synergistic effects evident in the properties of these mixtures. One such mixture, formulated from allelochemicals found in the same proportions as occur in vulpia extract, produced stronger activity than another formulated from the same set of compounds but in equal proportions. These results suggest that the exploration of the relative composition of a cluster of allelopathins may be more important than simply focusing on the identification of one or two compounds with strong biological activity and that synergism is fundamental to the understanding of allelopathy.

  3. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    PubMed

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-10-01

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright

  4. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes

    USGS Publications Warehouse

    Baker, Beth H.; Martinovic-Weigelt, Dalma; Ferrey, Mark L.; Barber, Larry B.; Writer, Jeffrey H.; Rosenberry, Donald O.; Kiesling, Richard L.; Lundy, James R.; Schoenfuss, Heiko L.

    2014-01-01

    Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted.

  5. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    ERIC Educational Resources Information Center

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  6. Can the vector space model be used to identify biological entity activities?

    PubMed Central

    2011-01-01

    Background Biological systems are commonly described as networks of entity interactions. Some interactions are already known and integrate the current knowledge in life sciences. Others remain unknown for long periods of time and are frequently discovered by chance. In this work we present a model to predict these unknown interactions from a textual collection using the vector space model (VSM), a well known and established information retrieval model. We have extended the VSM ability to retrieve information using a transitive closure approach. Our objective is to use the VSM to identify the known interactions from the literature and construct a network. Based on interactions established in the network our model applies the transitive closure in order to predict and rank new interactions. Results We have tested and validated our model using a collection of patent claims issued from 1976 to 2005. From 266,528 possible interactions in our network, the model identified 1,027 known interactions and predicted 3,195 new interactions. Iterating the model according to patent issue dates, interactions found in a given past year were often confirmed by patent claims not in the collection and issued in more recent years. Most confirmation patent claims were found at the top 100 new interactions obtained from each subnetwork. We have also found papers on the Web which confirm new inferred interactions. For instance, the best new interaction inferred by our model relates the interaction between the adrenaline neurotransmitter and the androgen receptor gene. We have found a paper that reports the partial dependence of the antiapoptotic effect of adrenaline on androgen receptor. Conclusions The VSM extended with a transitive closure approach provides a good way to identify biological interactions from textual collections. Specifically for the context of literature-based discovery, the extended VSM contributes to identify and rank relevant new interactions even if these

  7. Structural Identifiability of Dynamic Systems Biology Models

    PubMed Central

    Villaverde, Alejandro F.

    2016-01-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas. PMID:27792726

  8. Measuring job stress among hospital nurses: an attempt to identify biological markers.

    PubMed

    Kawaguchi, Yoshichika; Toyomasu, Kouji; Yoshida, Noriko; Baba, Kaori; Uemoto, Masaharu; Minota, Shoichi

    2007-02-01

    The purpose of this study was to identify biological markers corresponding to job stress among hospital nurses. The subjects of this study were 128 nurses working at a university hospital. The NIOSH job stress questionnaire and the Miki Nurse Stressor 35-item Scale measured their job stress levels. The GHQ28 was also used to measure the subjects' general mental health status. Blood analyses for neuroendocrine function and immunity reaction were performed in order to identify biological markers of job stress. Stress is related to the plasma levels of catecholamine, cortisol, adrenocorticotrophic hormone, and natural killer cell activity, therefore these factors were measured accordingly. In consideration to circadian rhythms, blood was collected from the subjects prior to the start of the day shift. The nurses filled out the questionnaires on the day of the blood tests. In order to investigate the correlation between job stress reactions indicated by the questionnaires and the results of the blood tests, we utilized Pearson's correlation coefficient and partial correlation coefficient for which other affected items were controlled. In this study, significant correlations were found between job stress and biological factors; however, the correlations were not strong. Thus, it can be said that the biological markers associated with a specific kind of job stress remain unclear. In the future, rather than implementing a simple cross-sectional study, a longitudinal study including follow-up research will be more effective in establishing biological markers for job stress.

  9. Activities for Students: Biology as a Source for Algebra Equations--The Heart

    ERIC Educational Resources Information Center

    Horak, Virginia M.

    2005-01-01

    The high school course that integrated first year algebra with an introductory environmental biology/anatomy and physiology course, in order to solve algebra problems is discussed. Lessons and activities for the course were taken by identifying the areas where mathematics and biology content intervenes may help students understand biology concepts…

  10. Assessing Student Behaviors and Motivation for Actively Learning Biology

    ERIC Educational Resources Information Center

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  11. Mostly Plants. Individualized Biology Activities on: I. Investigating Bread Mold; II. Transpiration; III. Botany Project; IV. Collecting/Preserving/Identifying Leaves; [and] V. Student Science Laboratory Write-Ups.

    ERIC Educational Resources Information Center

    Gibson, Paul R.

    Individualized biology activities for secondary students are presented in this teaching guide. The guide is divided into five sections: (1) investigating bread mold; (2) investigating transpiration; (3) completing a botany project; (4) collecting, preserving, and identifying leaves; and (5) writing up science laboratory investigations. The…

  12. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes

    PubMed Central

    Kuang, Zheng; Ji, Zhicheng

    2018-01-01

    Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176

  13. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    PubMed

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Optical techniques for biological triggers and identifiers

    NASA Astrophysics Data System (ADS)

    Grant, Bruce A. C.

    2004-12-01

    Optical techniques for the classification and identification of biological particles provide a number of advantages over traditional 'Wet Chemistry" methods, amongst which are speed of response and the reduction/elimination of consumables. These techniques can be employed in both 'Trigger" and 'Identifier" systems. Trigger systems monitor environmental particulates with the aim of detecting 'unusual" changes in the overall environmental composition and providing an indication of threat. At the present time there is no single optical measurement that can distinguish between benign and hostile events. Therefore, in order to distinguish between these 2 classifications, a number of different measurements must be effected and a decision made on the basis of the 'integrated" data. Smiths Detection have developed a data gathering platform capable of measuring multiple optical, physical and electrical parameters of individual airborne biological particles. The data from all these measurements are combined in a hazard classification algorithm based on Bayesian Inference techniques. Identifier systems give a greater level of information and confidence than triggers, -- although they require reagents and are therefore much more expensive to operate -- and typically take upwards of 20 minutes to respond. Ideally, in a continuous flow mode, identifier systems would respond in real-time, and identify a range of pathogens specifically and simultaneously. The results of recent development work -- carried out by Smiths Detection and its collaborators -- to develop an optical device that meets most of these requirements, and has the stretch potential to meet all of the requirements in a 3-5 year time frame will be presented. This technology enables continuous stand-alone operation for both civil and military defense applications and significant miniaturisation can be achieved with further development.

  15. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes.

    PubMed

    Kuang, Zheng; Ji, Zhicheng; Boeke, Jef D; Ji, Hongkai

    2018-01-09

    Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Biology Myth-Killers

    ERIC Educational Resources Information Center

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  17. Chemical synthesis of biologically active tat trans-activating protein of human immunodeficiency virus type 1.

    PubMed Central

    Chun, R; Glabe, C G; Fan, H

    1990-01-01

    Full-length (86-residue) polypeptide corresponding to the human immunodeficiency virus type 1 tat trans-activating protein was chemically synthesized on a semiautomated apparatus, using an Fmoc amino acid continuous-flow strategy. The bulk material was relatively homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, and it showed trans-activating activity when scrape loaded into cells containing a human immunodeficiency virus long terminal repeat-chloramphenicol acetyl-transferase reporter plasmid. Reverse-phase high-pressure liquid chromatography yielded a rather broad elution profile, and assays across the column for biological activity indicated a sharper peak. Thus, high-pressure liquid chromatography provided for enrichment of biological activity. Fast atom bombardment-mass spectrometry of tryptic digests of synthetic tat identified several of the predicted tryptic peptides, consistent with accurate chemical synthesis. Images PMID:2186178

  18. Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease.

    PubMed

    Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L

    2017-01-01

    Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.

  19. Identifying biologically relevant differences between metagenomic communities.

    PubMed

    Parks, Donovan H; Beiko, Robert G

    2010-03-15

    Metagenomics is the study of genetic material recovered directly from environmental samples. Taxonomic and functional differences between metagenomic samples can highlight the influence of ecological factors on patterns of microbial life in a wide range of habitats. Statistical hypothesis tests can help us distinguish ecological influences from sampling artifacts, but knowledge of only the P-value from a statistical hypothesis test is insufficient to make inferences about biological relevance. Current reporting practices for pairwise comparative metagenomics are inadequate, and better tools are needed for comparative metagenomic analysis. We have developed a new software package, STAMP, for comparative metagenomics that supports best practices in analysis and reporting. Examination of a pair of iron mine metagenomes demonstrates that deeper biological insights can be gained using statistical techniques available in our software. An analysis of the functional potential of 'Candidatus Accumulibacter phosphatis' in two enhanced biological phosphorus removal metagenomes identified several subsystems that differ between the A.phosphatis stains in these related communities, including phosphate metabolism, secretion and metal transport. Python source code and binaries are freely available from our website at http://kiwi.cs.dal.ca/Software/STAMP CONTACT: beiko@cs.dal.ca Supplementary data are available at Bioinformatics online.

  20. Publishing activities improves undergraduate biology education

    PubMed Central

    Smith, Michelle K

    2018-01-01

    Abstract To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom. PMID:29672697

  1. Publishing activities improves undergraduate biology education.

    PubMed

    Smith, Michelle K

    2018-06-01

    To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom.

  2. Temporal and spatial variability of soil biological activity at European scale

    NASA Astrophysics Data System (ADS)

    Mallast, Janine; Rühlmann, Jörg

    2015-04-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. Soil biological activity was investigated using two model concepts: a) Re_clim parameter within the ICBM (Introductory Carbon Balance Model) (Andrén & Kätterer 1997) states a climatic factor summarizing soil water storage and soil temperature and its influence on soil biological activity. b) BAT (biological active time) approach derived from model CANDY (CArbon and Nitrogen Dynamic) (Franko & Oelschlägel 1995) expresses the variation of soil moisture, soil temperature and soil aeration as a time scale and an indicator of biological activity for soil organic matter (SOM) turnover. During an earlier stage both model concepts, Re_clim and BAT, were applied based on a monthly data to assess spatial variability of turnover conditions across Europe. This hampers the investigation of temporal variability (e.g. intra-annual). The improved stage integrates daily data of more than 350 weather stations across Europe presented by Klein Tank et al. (2002). All time series data (temperature, precipitation and potential evapotranspiration and soil texture derived from the European Soil Database (JRC 2006)), are used to calculate soil biological activity in the arable layer. The resulting BAT and Re_clim values were spatio-temporal investigated. While "temporal" refers to a long-term trend analysis, "spatial" includes the investigation of soil biological activity variability per environmental zone (ENZ, Metzger et al. 2005 representing similar

  3. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  4. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    PubMed

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and

  5. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    PubMed

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  6. Identifying biological concepts from a protein-related corpus with a probabilistic topic model

    PubMed Central

    Zheng, Bin; McLean, David C; Lu, Xinghua

    2006-01-01

    Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA) model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO) terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text. PMID:16466569

  7. Assessing Student Behaviors and Motivation for Actively Learning Biology

    NASA Astrophysics Data System (ADS)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  8. Indonesian propolis: chemical composition, biological activity and botanical origin.

    PubMed

    Trusheva, Boryana; Popova, Milena; Koendhori, Eko Budi; Tsvetkova, Iva; Naydenski, Christo; Bankova, Vassya

    2011-03-01

    From a biologically active extract of Indonesian propolis from East Java, 11 compounds were isolated and identified: four alk(en)ylresorcinols (obtained as an inseparable mixture) (1-4) were isolated for the first time from propolis, along with four prenylflavanones (6-9) and three cycloartane-type triterpenes (5, 10 and 11). The structures of the components were elucidated based on their spectral properties. All prenylflavanones demonstrated significant radical scavenging activity against diphenylpicrylhydrazyl radicals, and compound 6 showed significant antibacterial activity against Staphylococcus aureus. For the first time Macaranga tanarius L. and Mangifera indica L. are shown as plant sources of Indonesian propolis.

  9. Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation

    PubMed Central

    2017-01-01

    The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability. PMID:29186132

  10. Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation.

    PubMed

    Villaverde, Alejandro F; Banga, Julio R

    2017-11-01

    The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability.

  11. A data mining paradigm for identifying key factors in biological processes using gene expression data.

    PubMed

    Li, Jin; Zheng, Le; Uchiyama, Akihiko; Bin, Lianghua; Mauro, Theodora M; Elias, Peter M; Pawelczyk, Tadeusz; Sakowicz-Burkiewicz, Monika; Trzeciak, Magdalena; Leung, Donald Y M; Morasso, Maria I; Yu, Peng

    2018-06-13

    A large volume of biological data is being generated for studying mechanisms of various biological processes. These precious data enable large-scale computational analyses to gain biological insights. However, it remains a challenge to mine the data efficiently for knowledge discovery. The heterogeneity of these data makes it difficult to consistently integrate them, slowing down the process of biological discovery. We introduce a data processing paradigm to identify key factors in biological processes via systematic collection of gene expression datasets, primary analysis of data, and evaluation of consistent signals. To demonstrate its effectiveness, our paradigm was applied to epidermal development and identified many genes that play a potential role in this process. Besides the known epidermal development genes, a substantial proportion of the identified genes are still not supported by gain- or loss-of-function studies, yielding many novel genes for future studies. Among them, we selected a top gene for loss-of-function experimental validation and confirmed its function in epidermal differentiation, proving the ability of this paradigm to identify new factors in biological processes. In addition, this paradigm revealed many key genes in cold-induced thermogenesis using data from cold-challenged tissues, demonstrating its generalizability. This paradigm can lead to fruitful results for studying molecular mechanisms in an era of explosive accumulation of publicly available biological data.

  12. Eurotium (Aspergillus) repens metabolites and their biological activity.

    PubMed

    Podojil, M; Sedmera, P; Vokoun, J; Betina, V; Baráthová, H; Duracková, Z; Horáková, K; Nemec, P

    1978-01-01

    Eurotium repens mycelium cultivated under static conditions was used to isolate and identify metabolities--echinulin, physcion, erythroglaucin, flavoglaucin and asperentin; the filtrate of the culture yielded asperentin 8-methylether. The broadest biological activity spectrum was displayed by asperentin which had antibacterial and antifungal effects and, at a concentration of 86 microgram/ml, caused 50% mor7 tality in Artemia saline larvae. The highest cytotoxicity towards HeLa cells was found in physcion which caused 50% growth inhibition at a concentration of 0.1 microgram/ml.

  13. [Cycloferon biological activity characteristics].

    PubMed

    Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S

    2014-01-01

    Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.

  14. Identifying relevant data for a biological database: handcrafted rules versus machine learning.

    PubMed

    Sehgal, Aditya Kumar; Das, Sanmay; Noto, Keith; Saier, Milton H; Elkan, Charles

    2011-01-01

    With well over 1,000 specialized biological databases in use today, the task of automatically identifying novel, relevant data for such databases is increasingly important. In this paper, we describe practical machine learning approaches for identifying MEDLINE documents and Swiss-Prot/TrEMBL protein records, for incorporation into a specialized biological database of transport proteins named TCDB. We show that both learning approaches outperform rules created by hand by a human expert. As one of the first case studies involving two different approaches to updating a deployed database, both the methods compared and the results will be of interest to curators of many specialized databases.

  15. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  16. Soil biological activity at European scale - two calculation concepts

    NASA Astrophysics Data System (ADS)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate

  17. Phytochemistry and biological activities of Heracleum persicum: a review.

    PubMed

    Majidi, Zahra; Sadati Lamardi, S N

    2018-05-24

    Heracleum persicum Desf. ex Fisch is used in Iranian traditional medicines, for the treatment of various diseases including neurological, gastrointestinal, respiratory, rheumatological and urinary tract diseases. In phytochemical analysis of H. persicum, several classes of natural chemicals including volatile (aliphatic esters, carbonyls, phenyl propenes and terpenes) and nonvolatile (flavonoids, furanocoumarins, tannins and alkaloids) constituents as well as different minerals have been identified. Scientific studies on H. persicum proved that it has a wide range of biological and pharmacological activities. This article has provided comprehensive information on Iranian traditional uses, phytochemistry and pharmacological activities of H. persicum. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  18. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    PubMed

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  19. DAISY: a new software tool to test global identifiability of biological and physiological systems

    PubMed Central

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D’Angiò, Leontina

    2009-01-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/. PMID:17707944

  20. Biological Activity Predictions and Hydrogen Bonding Analysis in Quinolines

    NASA Astrophysics Data System (ADS)

    Gupta, Palvi; Kamni

    The paper has been designed to make a comprehensive review of a particular series of organic molecular assembly in the form of compendium. An overview of general description of fifteen quinoline derivatives has been given. The biological activity spectra of quinoline derivatives have been correlated on structure activity relationships base which provides the different Pa (possibility of activity) and Pi (possibility of inactivity) values. Expositions of the role of intermolecular interactions in the identified derivatives have been discussed with the standard distance and angle cut-off criteria criteria as proposed by Desiraju and Steiner (1999) in an International monogram on crystallography. Distance-angle scatter plots for intermolecular interactions are presented for a better understanding of the packing interactions which exist in quinoline derivatives.

  1. Milk Inhibits the Biological Activity of Ricin

    PubMed Central

    Rasooly, Reuven; He, Xiaohua; Friedman, Mendel

    2012-01-01

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food. PMID:22733821

  2. Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, Secondary Metabolites, Biological Activities, and Chemical Ecology.

    PubMed

    Karchesy, Joseph J; Kelsey, Rick G; González-Hernández, M P

    2018-05-01

    Yellow-cedar, Callitropsis nootkatensis, is prevalent in coastal forests of southeast Alaska, western Canada, and inland forests along the Cascades to northern California, USA. These trees have few microbial or animal pests, attributable in part to the distinct groups of biologically active secondary metabolites their tissues store for chemical defense. Here we summarize the new yellow-cedar compounds identified and their biological activities, plus new or expanded activities for tissues, extracts, essential oils and previously known compounds since the last review more than 40 years ago. Monoterpene hydrocarbons are the most abundant compounds in foliage, while heartwood contains substantial quantities of oxygenated monoterpenes and oxygenated sesquiterpenes, with one or more tropolones. Diterpenes occur in foliage and bark, whereas condensed tannins have been isolated from inner bark. Biological activities expressed by one or more compounds in these groups include fungicide, bactericide, sporicide, acaricide, insecticide, general cytotoxicity, antioxidant and human anticancer. The diversity of organisms impacted by whole tissues, essential oils, extracts, or individual compounds now encompasses ticks, fleas, termites, ants, mosquitoes, bacteria, a water mold, fungi and browsing animals. Nootkatone, is a heartwood component with sufficient activity against arthropods to warrant research focused toward potential development as a commercial repellent and biopesticide for ticks, mosquitoes and possibly other arthropods that vector human and animal pathogens.

  3. SORPTION ON WASTEWATER SOLIDS: ELIMINATION OF BIOLOGICAL ACTIVITY

    EPA Science Inventory

    Sorption was found to be greatly affected by the biological activity in wastewater solids. wo experimental techniques, cyanide treatment and pasteurization, were developed for eliminating the biological activity during isotherm measurements. oth methods are effective; however, pa...

  4. Integrative biology approach identifies cytokine targeting strategies for psoriasis.

    PubMed

    Perera, Gayathri K; Ainali, Chrysanthi; Semenova, Ekaterina; Hundhausen, Christian; Barinaga, Guillermo; Kassen, Deepika; Williams, Andrew E; Mirza, Muddassar M; Balazs, Mercedesz; Wang, Xiaoting; Rodriguez, Robert Sanchez; Alendar, Andrej; Barker, Jonathan; Tsoka, Sophia; Ouyang, Wenjun; Nestle, Frank O

    2014-02-12

    Cytokines are critical checkpoints of inflammation. The treatment of human autoimmune disease has been revolutionized by targeting inflammatory cytokines as key drivers of disease pathogenesis. Despite this, there exist numerous pitfalls when translating preclinical data into the clinic. We developed an integrative biology approach combining human disease transcriptome data sets with clinically relevant in vivo models in an attempt to bridge this translational gap. We chose interleukin-22 (IL-22) as a model cytokine because of its potentially important proinflammatory role in epithelial tissues. Injection of IL-22 into normal human skin grafts produced marked inflammatory skin changes resembling human psoriasis. Injection of anti-IL-22 monoclonal antibody in a human xenotransplant model of psoriasis, developed specifically to test potential therapeutic candidates, efficiently blocked skin inflammation. Bioinformatic analysis integrating both the IL-22 and anti-IL-22 cytokine transcriptomes and mapping them onto a psoriasis disease gene coexpression network identified key cytokine-dependent hub genes. Using knockout mice and small-molecule blockade, we show that one of these hub genes, the so far unexplored serine/threonine kinase PIM1, is a critical checkpoint for human skin inflammation and potential future therapeutic target in psoriasis. Using in silico integration of human data sets and biological models, we were able to identify a new target in the treatment of psoriasis.

  5. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    PubMed

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  6. Ferromagnetic nanoparticles containing biologically active alkanolamines: preparation and properties

    NASA Astrophysics Data System (ADS)

    Segal, I.; Zablotskaya, A.; Lukevics, E.; Maiorov, M.; Zablotsky, D.

    2005-12-01

    The objective of the present study is to investigate the possibility of sorption on ultrafine magnetic particles of some model biologically active organosilicon alkanolamines, structural analogs of natural biologically active substances, choline and colamine, with increased lipophilicity. Double-coated ferromagnetic samples containing oleic acid, as a first layer, and organosilicon alcanolamines, as a second layer, were obtained and characterized by their physical/chemical (sorption and magnetisation) and biological (toxicity and cytotoxicity) properties. The present results clearly reveal the sorption of the biologically active alkanolamines on the surface of magnetic particles and a principal possibility to coat magnetite directly with biologically active alkanolamines, creating a mono-layer cover. The data presented in the study of cytotoxic properties of the newly obtained ferromagnetic nanoparticles show that it is reasonable to investigate such systems as potential cytotoxic agents. Tables 3, Figs 3, Refs 16.

  7. An Update on the Biological Activities of Euterpe edulis (Juçara).

    PubMed

    Cardoso, Alyne Lizane; de Liz, Sheyla; Rieger, Débora Kurrle; Farah, Ana Carolina Aguiar; Kunradi Vieira, Francilene Gracieli; Altenburg de Assis, Maria Alice; Di Pietro, Patricia Faria

    2018-05-01

    The palm tree Euterpe edulis , known as juçara, produces spherical and purple fruits, similar to those of the Euterpe oleracea and Euterpe precatoria palm trees, from which the common name açaí originates. Juçara fruit has been gaining prominence in the scientific world for its interesting nutritional composition, which is rich in antioxidants, and for its sustainable production model. Recently, relevant biological activities have been associated with the juçara fruit, and its use in alimentation has become an important nutritional, environmental, and economic alternative. The aim of this review is to compile recent scientific data about the phytochemical characterization and biological activities of E. edulis. A review of the literature was conducted in two electronic databases, Medline and Science Direct. The eligibility criteria were as follows: phytochemicals characterize of the E. edulis fruits and evaluate biological effects in vitro or in vivo with pulp, extract, juice, or product of juçara fruits. Investigations were excluded if they used other parts of the plant (seeds), did not assess biological activities, or have tested methodologies for compound extraction. From the identified reports, 25 articles were eligible for this study. The promotion of health benefits related to juçara fruits seems to have improved antioxidant activity in vivo, benefits to lipid and glycemic profiles, and modulation of inflammatory status in experimental studies in animals. Georg Thieme Verlag KG Stuttgart · New York.

  8. The Biological Activities of Sesterterpenoid-Type Ophiobolins.

    PubMed

    Tian, Wei; Deng, Zixin; Hong, Kui

    2017-07-18

    Ophiobolins (Ophs) are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A-W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR) cells and cancer stem cells (CSCs). Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure-activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  9. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review.

    PubMed

    Wijesinghe, W A J P; Jeon, You-Jin

    2012-03-01

    Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.

  10. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    PubMed Central

    Kalinin, Vladimir I.; Ivanchina, Natalia V.; Krasokhin, Vladimir B.; Makarieva, Tatyana N.; Stonik, Valentin A.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  11. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  12. Six Siderophore-Producing Microorganisms Identified in Biological Soil Crusts

    NASA Astrophysics Data System (ADS)

    Noonan, K.; Anbar, A. D.; Garcia-Pichel, F.; Poret-peterson, A. T.; Hartnett, H. E.

    2011-12-01

    Biological soil crusts (BSCs) are diverse microbial communities that colonize soils in arid and semi-arid environments. Cyanobacteria in BSCs are pioneer organisms that increase ecosystem habitability by providing fixed carbon (C) and nitrogen (N) as well as by reducing water run-off and increasing infiltration. Photosynthesis and N fixation, in particular, require a variety of metals in large quantities, and yet, metals are predominantly insoluble in the environments where BSCs thrive. Therefore, BSC organisms must have efficient strategies for extracting metals from soil minerals. We hypothesized that BSC microbes, particularly the cyanobacteria, produce siderophores to serve their metal-acquisition needs. Siderophores are small organic compounds that bind Fe with high affinity and are produced by a variety of microorganisms, including cyanobacteria. Most siderophores bind Fe, primarily; however, some can also bind Mo, V, and Cu. Soil siderophores are released by microbes to increase the solubility of metals from minerals and to facilitate microbial uptake. Thus, siderophores serve as chemical weathering agents and provide a direct link between soil microbes and minerals. Studying siderophore production in BSCs provides insight into how BSCs tackle the challenge of acquiring insoluble metals, and may help conservationists determine useful fertilizers for BSC growth by facilitating metal acquisition. Biological soil crusts were collected near Moab, UT. Soil slurries were prepared in deionized water and transferred to modified BG-11 agar plates. The O-CAS agar plate assay was used to screen organisms for siderophore production. Siderophore producing microbes were isolated and identified by16S rRNA gene sequencing. Cultures were then grown in 3 L batch cultures under metal limitation, and siderophore presence was monitored using the traditional liquid CAS assay. After siderophore detection, cells were removed by centrifugation, organic compounds were separated using

  13. Gemini ester quat surfactants and their biological activity.

    PubMed

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  14. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones.

    PubMed

    Jimenez-Aleman, Guillermo H; Machado, Ricardo A R; Görls, Helmar; Baldwin, Ian T; Boland, Wilhelm

    2015-06-07

    Jasmonates are phytohormones involved in a wide range of plant processes, including growth, development, senescence, and defense. Jasmonoyl-L-isoleucine (JA-Ile, 2), an amino acid conjugate of jasmonic acid (JA, 1), has been identified as a bioactive endogenous jasmonate. However, JA-Ile (2) analogues trigger different responses in the plant. ω-Hydroxylation of the pentenyl side chain leads to the inactive 12-OH-JA-Ile (3) acting as a “stop” signal. On the other hand, a lactone derivative of 12-OH-JA (5) (jasmine ketolactone, JKL) occurs in nature, although with no known biological function. Inspired by the chemical structure of JKL (6) and in order to further explore the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation to a similar extent as methyl jasmonate does in Nicotiana attenuata leaves. Surprisingly, the highest nicotine contents were found in plants treated with the JA-Ile-lactone (4b), which has (3S,7S) configuration at the cyclopentanone not known from natural jasmonates. Macrolactone (4a) is a valuable standard to explore for its occurrence in nature.

  15. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  16. Haplotype analysis of the germacrene A synthase gene and association with cynaropicrin content and biological activities in Cynara cardunculus.

    PubMed

    Ferro, Ana Margarida; Ramos, Patrícia; Guerra, Ângela; Parreira, Paula; Brás, Teresa; Guerreiro, Olinda; Jerónimo, Eliana; Capel, Carmen; Capel, Juan; Yuste-Lisbona, Fernando J; Duarte, Maria F; Lozano, Rafael; Oliveira, M Margarida; Gonçalves, Sónia

    2018-04-01

    Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.

  17. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  18. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  19. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  20. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  1. Biological Characterization of an Improved Pyrrole-Based Colchicine Site Agent Identified through Structure-Based Design

    PubMed Central

    Rohena, Cristina C.; Telang, Nakul S.; Da, Chenxiao; Risinger, April L.; Sikorski, James A.; Kellogg, Glen E.; Gupton, John T.

    2016-01-01

    A refined model of the colchicine site on tubulin was used to design an improved analog of the pyrrole parent compound, JG-03-14. The optimized compound, NT-7-16, was evaluated in biological assays that confirm that it has potent activities as a new colchicine site microtubule depolymerizer. NT-7-16 exhibits antiproliferative and cytotoxic activities against multiple cancer cell lines, with IC50 values of 10–16 nM, and it is able to overcome drug resistance mediated by the expression of P-glycoprotein and the βIII isotype of tubulin. NT-7-16 initiated the concentration-dependent loss of cellular microtubules and caused the formation of abnormal mitotic spindles, leading to mitotic accumulation. The direct interaction of NT-7-16 with purified tubulin was confirmed, and it was more potent than combretastatin A-4 in these assays. Binding studies verified that NT-7-16 binds to tubulin within the colchicine site. The antitumor effects of NT-7-16 were evaluated in an MDA-MB-435 xenograft model and it had excellent activity at concentrations that were not toxic. A second compound, NT-9-21, which contains dichloro moieties in place of the 3,5-dibromo substituents of NT-7-16, had a poorer fit within the colchicine site as predicted by modeling and the Hydropathic INTeractions score. Biological evaluations showed that NT-9-21 has 10-fold lower potency than NT-7-16, confirming the modeling predictions. These studies highlight the value of the refined colchicine-site model and identify a new pyrrole-based colchicine-site agent with potent in vitro activities and promising in vivo antitumor actions. PMID:26655304

  2. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    USDA-ARS?s Scientific Manuscript database

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  3. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Abdul Kadir, Habsah

    2013-01-01

    Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus. PMID:24109490

  4. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    PubMed

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  5. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    PubMed Central

    2012-01-01

    Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm. PMID:22540963

  6. Investigating biological activity spectrum for novel quinoline analogues.

    PubMed

    Musiol, Robert; Jampilek, Josef; Kralova, Katarina; Richardson, Des R; Kalinowski, Danuta; Podeszwa, Barbara; Finster, Jacek; Niedbala, Halina; Palka, Anna; Polanski, Jaroslaw

    2007-02-01

    The lack of the wide spectrum of biological data is an important obstacle preventing the efficient molecular design. Quinoline derivatives are known to exhibit a variety of biological effects. In the current publication, we tested a series of novel quinoline analogues for their photosynthesis-inhibiting activity (the inhibition of photosynthetic electron transport in spinach chloroplasts (Spinacia oleracea L.) and the reduction of chlorophyll content in Chlorella vulgaris Beij.). Moreover, antiproliferative activity was measured using SK-N-MC neuroepithelioma cell line. We described the structure-activity relationships (SAR) between the chemical structure and biological effects of the synthesized compounds. We also measured the lipophilicity of the novel compounds by means of the RP-HPLC and illustrate the relationships between the RP-HPLC retention parameter logK (the logarithm of capacity factor K) and logP data calculated by available programs.

  7. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  8. Parsley: a review of ethnopharmacology, phytochemistry and biological activities.

    PubMed

    Farzaei, Mohammad Hosein; Abbasabadi, Zahra; Ardekani, Mohammad Reza Shams; Rahimi, Roja; Farzaei, Fatemeh

    2013-12-01

    To summarize comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of parsley. Databases including PubMed, Scopus, Google Scholar, and Web of Science were searched for studies focusing on the ethnomedicinal use, phytochemical compounds and biological and pharmacological activities of parsley. Data were collected from 1966 to 2013. The search terms were: "Parsley" or "Petroselinum crispum" or "Petroselinum hortence". Parsley has been used as carminative, gastro tonic, diuretic, antiseptic of urinary tract, anti-urolithiasis, anti-dote and anti-inflammatory and for the treatment of amenorrhea, dysmenorrhea, gastrointestinal disorder, hypertension, cardiac disease, urinary disease, otitis, sniffle, diabetes and also various dermal disease in traditional and folklore medicines. Phenolic compounds and flavonoids particularly apigenin, apiin and 6"-Acetylapiin; essential oil mainly myristicin and apiol; and also coumarins are the active compounds identified in Petroselinum crispum. Wide range of pharmacological activity including antioxidant, hepatoprotective, brain protective, anti-diabetic, analgesic, spasmolytic, immunosuppressant, anti-platelet, gastroprotective, cytoprotective, laxative, estrogenic, diuretic, hypotensive, antibacterial and antifungal activities have been exhibited for this plant in modern medicine. It is expectant that this study resulted in improvement the tendencies toward Petroselinum crispum as a useful and important medicinal plant with wide range of proven medicinal activity.

  9. Phytochemical Composition and Biological Activities of Dyssodia tagetiflora Lag.

    PubMed

    García-Bores, Ana María; Arciniegas-Arciniegas, Amira; Reyna-Campos, Alma; Céspedes-Acuña, Carlos; Avila-Suárez, Betsaida; Alarcón-Enos, Julio; Flores-Maya, Saul; Espinosa-González, Adriana Montserrat; de Vivar-Romo, Alfonso Romo; Pérez-Plasencia, Carlos; Avila-Acevedo, José Guillermo

    2018-02-01

    While plants of the genus Dyssodia are used by man to a certain extent, few phytochemical and pharmacological studies have been performed with species of this genus. D. tagetiflora is an endemic plant of Mexico and has been used as fodder. The aim of this research was to isolate and identify the main bioactive components and evaluate the insecticidal, antioxidant, genotoxic and cytoprotective activities of D. tagetiflora. The isolated substances included an essential oil composed of six monoterpenes, and extracts containing two flavonols, three flavonol-glycosides and four thiophenes. The compounds were characterized using spectroscopic and spectrometric methods, including GC/MS, MS and NMR. The essential oil showed insecticidal activity against Drosophila melanogaster larvae. The methanolic extract of D. tagetiflora (DTME) had strong antioxidant activity against DPPH and ABTS radicals; DTME showed no evidence of genotoxic or cytotoxic effects. In contrast, DTME showed a cytoprotective effect attenuating the formation of H 2 O 2 -induced micronuclei in Vicia faba roots. This report is the first to describe the phytochemical and biological activity of D. tagetiflora. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  10. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities

    PubMed Central

    Fouillaud, Mireille; Venkatachalam, Mekala; Girard-Valenciennes, Emmanuelle; Caro, Yanis; Dufossé, Laurent

    2016-01-01

    Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi′s productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances. PMID:27023571

  11. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    PubMed

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  12. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities

    PubMed Central

    Hong, Joo-Hyun; Jang, Seokyoon; Heo, Young Mok; Min, Mihee; Lee, Hwanhwi; Lee, Young Min; Lee, Hanbyul; Kim, Jae-Jin

    2015-01-01

    Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL). PMID:26133554

  13. Transport of biologically active material in laser cutting.

    PubMed

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  14. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  15. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)

    2012-01-01

    A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.

  16. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    PubMed

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities.

    PubMed

    Mawa, Shukranul; Husain, Khairana; Jantan, Ibrahim

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  18. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  19. Isolation, identification, synthesis and biological activity of volatile compounds from the heads of Atta ants

    Treesearch

    R. G. Riley; R. M. Silverstein; John C. Moser

    1974-01-01

    S-(+)-4-methyl-3-hetanone has been identified as the principal alarm pheromone of Atta texana and Atta cephalotes. Both enantiomers of 4-methyl-3-heptanone have been synthesized and their biological activities have been compared on both species of ants. Comparison of the geometric averages of responnse rations, at...

  20. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle.

    PubMed

    Doran, Anthony G; Berry, Donagh P; Creevey, Christopher J

    2014-10-01

    Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth

  1. Biological Activities of Stilbenoids.

    PubMed

    Akinwumi, Bolanle C; Bordun, Kimberly-Ann M; Anderson, Hope D

    2018-03-09

    Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.

  2. Biological Activities of Stilbenoids

    PubMed Central

    Bordun, Kimberly-Ann M.

    2018-01-01

    Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids. PMID:29522491

  3. Extraction, Identification and Biological Activities of Saponins in Sea Cucumber Pearsonothuria graeffei.

    PubMed

    Khattab, Rafat Afifi; Elbandy, Mohamed; Lawrence, Andrew; Paget, Tim; Rae-Rho, Jung; Binnaser, Yaser S; Ali, Imran

    2018-01-01

    Secondary metabolism in marine organisms produces a diversity of biologically important natural compounds that are not present in terrestrial species. Sea cucumbers belong to the invertebrate Echinodermata and are famous for their nutraceutical, medical and food values. They are known for possession triterpenoid glycosides (saponins) with various ecological roles. The current work aimed to separate, identify and test various biological activities (antibacterial, antifungal, antileishmanial and anticancer properties) of saponins produced by the holothurian Pearsonothuria graeffei from the Red Sea, Egypt. The structures were identified by 1D and 2D NMR (1H, 13C, TOCSY, COSY, HSQC, HMBC, and ROESY) experiments and acid hydrolysis. The crude and purified fractions was analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)/MS to identify saponins and characterize their molecular structures. Partially purified fraction, mainly containing compounds 1 and 2, was screened for its antifungal activity against three clinical isolates of Candida albicans (Candida 580 (1), Candida 581(2) and Candida MEO47228. Antileishmanial activity against Leishmania major and toxicity on colon cell-line were also evaluated. Two lanostane type sulfated triterpene monoglycosides were isolated from the Holothurian Pearsonothuria graeffei from the Red Sea, Egypt. Holothurin A (1) and echinoside A (2) triterpene saponins were separated by reversed phase semi-preparative HPLC. LC50 values (µg/mL); calculated for the fraction containing saponins 1 and 2 as major constituents; against Candida albicans, Leishmania major and colon cell-line were 10, 20 and 0.50, respectively. Consequently, this study demonstrated the potential use of sea cucumber Pearsonothuria graeffei not only as appreciated functional food or nutraceuticals but also as the source of functional ingredients for pharmaceutical products with antifungal, antileishmanial and anticancer properties

  4. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    NASA Astrophysics Data System (ADS)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  5. A theoretical framework for biological control of soil-borne plant pathogens: Identifying effective strategies.

    PubMed

    Cunniffe, Nik J; Gilligan, Christopher A

    2011-06-07

    We develop and analyse a flexible compartmental model of the interaction between a plant host, a soil-borne pathogen and a microbial antagonist, for use in optimising biological control. By extracting invasion and persistence thresholds of host, pathogen and biological control agent, performing an equilibrium analysis, and numerical investigation of sensitivity to parameters and initial conditions, we determine criteria for successful biological control. We identify conditions for biological control (i) to prevent a pathogen entering a system, (ii) to eradicate a pathogen that is already present and, if that is not possible, (iii) to reduce the density of the pathogen. Control depends upon the epidemiology of the pathogen and how efficiently the antagonist can colonise particular habitats (i.e. healthy tissue, infected tissue and/or soil-borne inoculum). A sharp transition between totally effective control (i.e. eradication of the pathogen) and totally ineffective control can follow slight changes in biologically interpretable parameters or to the initial amounts of pathogen and biological control agent present. Effective biological control requires careful matching of antagonists to pathosystems. For preventative/eradicative control, antagonists must colonise susceptible hosts. However, for reduction in disease prevalence, the range of habitat is less important than the antagonist's bulking-up efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Reading about the actions of others: biological motion imagery and action congruency influence brain activity.

    PubMed

    Deen, Ben; McCarthy, Gregory

    2010-05-01

    Prior neuroimaging research has implicated regions within and near the posterior superior temporal sulcus (pSTS) in the visual processing of biological motion and of the intentions implied by specific movements. However, it is unknown whether this region is engaged during the processing of human motion at a conceptual level, such as during story comprehension. Here, we obtained functional magnetic resonance images from subjects reading brief stories that described a human character's background and then concluded with an action or decision made by the character. Half of the stories contained incidental descriptions of biological motion (such as the character's walking or grasping) while the remaining half did not. As a second factor, the final action of the story was either congruent or incongruent with the character's background and implied goals and intentions. Stories that contained biological motion strongly activated the pSTS bilaterally, along with ventral temporal areas, premotor cortex, left motor cortex, and the precuneus. Active regions of pSTS in individual subjects closely overlapped with regions identified with a separate biological motion localizer (point-light display) task. Reading incongruent versus congruent stories activated dorsal anterior cingulate cortex and bilateral anterior insula. These results support the hypothesis that reading can engage higher visual cortex in a content-specific manner, and suggest that the presence of biological motion should be controlled as a potential confound in fMRI studies using story comprehension tasks. 2010. Published by Elsevier Ltd.

  7. Nonequilibrium phase transition in a self-activated biological network.

    PubMed

    Berry, Hugues

    2003-03-01

    We present a lattice model for a two-dimensional network of self-activated biological structures with a diffusive activating agent. The model retains basic and simple properties shared by biological systems at various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase transition from an active state, where activators are present, to an absorbing, activator-free state, where each structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the possibility of a separate universality class.

  8. Biological age and sex-related declines in physical activity during adolescence.

    PubMed

    Cairney, John; Veldhuizen, Scott; Kwan, Matthew; Hay, John; Faught, Brent E

    2014-04-01

    Sex differences in the rate of decline in physical activity (PA) are most pronounced during adolescence. However, once boys and girls are aligned on biological age, sex differences in the patterns of PA become attenuated. The aim of this study was to test whether biological maturation can account for sex differences in participation in PA over time from late childhood to early adolescence. A prospective cohort of children (N = 2100; 1064 boys) was followed from ages 11 to 14 yr, with repeated assessments of PA and anthropometry. Self-reported participation in organized and free play activities was used to track participation in PA. Biological age was measured using an estimate of years to attainment of peak height velocity. Mixed-effects models were used to test whether controlling for biological age attenuates the effect of chronological age and sex on PA. As expected, the rate of decline in participation in PA was greater for girls than for boys (B = -1.18, P < 0.01). In multivariable analyses, adjusting for biological age completely attenuated the effect of sex and chronological age for participation in free play activities, but not for participation in organized play. Overall, biological age was a stronger predictor of participation than chronological age. The effect of biological age on sex by chronological age differences may be specific to certain types of PA participation. Given the importance of maturation to participation in activity, it is suggested that public health strategies target biological not chronological age to prevent declines in PA during adolescence particularly when promoting habitual or lifestyle activity.

  9. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  10. Chemical and Biological Defense: Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure

    DTIC Science & Technology

    2015-06-01

    Designated Leader, GAO-10-645 (Washington, D.C.: June 30, 2010). 35See GAO, Biological Defense: DOD Has Strengthened Coordination on Medical... on track to be designated a Leadership in Energy and Environmental Design facility. metabolic poisons, and pulmonary toxicants; nerve agent...CHEMICAL AND BIOLOGICAL DEFENSE Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure

  11. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach.

    PubMed

    Ravichandran, Srikanth; Del Sol, Antonio

    2017-02-01

    Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell-niche interactions. Here, we propose a systems biology view that considers stem cell-niche interactions as a many-body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell-based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  12. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    PubMed Central

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students’ LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. PMID:27543636

  13. A Systems Biology Approach To Identify the Combination Effects of Human Herpesvirus 8 Genes on NF-κB Activation▿

    PubMed Central

    Konrad, Andreas; Wies, Effi; Thurau, Mathias; Marquardt, Gaby; Naschberger, Elisabeth; Hentschel, Sonja; Jochmann, Ramona; Schulz, Thomas F.; Erfle, Holger; Brors, Benedikt; Lausen, Berthold; Neipel, Frank; Stürzl, Michael

    2009-01-01

    Human herpesvirus 8 (HHV-8) is the etiologic agent of Kaposi's sarcoma and primary effusion lymphoma. Activation of the cellular transcription factor nuclear factor-kappa B (NF-κB) is essential for latent persistence of HHV-8, survival of HHV-8-infected cells, and disease progression. We used reverse-transfected cell microarrays (RTCM) as an unbiased systems biology approach to systematically analyze the effects of HHV-8 genes on the NF-κB signaling pathway. All HHV-8 genes individually (n = 86) and, additionally, all K and latent genes in pairwise combinations (n = 231) were investigated. Statistical analyses of more than 14,000 transfections identified ORF75 as a novel and confirmed K13 as a known HHV-8 activator of NF-κB. K13 and ORF75 showed cooperative NF-κB activation. Small interfering RNA-mediated knockdown of ORF75 expression demonstrated that this gene contributes significantly to NF-κB activation in HHV-8-infected cells. Furthermore, our approach confirmed K10.5 as an NF-κB inhibitor and newly identified K1 as an inhibitor of both K13- and ORF75-mediated NF-κB activation. All results obtained with RTCM were confirmed with classical transfection experiments. Our work describes the first successful application of RTCM for the systematic analysis of pathofunctions of genes of an infectious agent. With this approach, ORF75 and K1 were identified as novel HHV-8 regulatory molecules on the NF-κB signal transduction pathway. The genes identified may be involved in fine-tuning of the balance between latency and lytic replication, since this depends critically on the state of NF-κB activity. PMID:19129458

  14. A Review on Phytoconstituents and Biological activities of Cuscuta species.

    PubMed

    Ahmad, Ateeque; Tandon, Sudeep; Xuan, Tran Dang; Nooreen, Zulfa

    2017-08-01

    The genus Cuscuta belonging to the Cuscutaceae family comprises of about 100-170 species spread around the world. Although several species have been studied for their phytochemical characterization and biological activities but still many species are yet unexplored till date. Cuscuta are parasitic plants generally of yellow, orange, red or rarely green color. The Cuscuta species were reported rich in flavonoid and glycosidic constituents along with alkaloids, fatty acids, fixed oil, minerals, essential oil and others phytomolecules also etc. Flavonoids and other molecules of Cuscuta species were reported for different types of biological activities such as antiproliferative activity, antioxidant activity, anti-inflammatory, hepatoprotective, antimicrobial and anxiolytic activity, while some other flavonoids have exhibited potential antiviral and anticancer especially in ovarian and breast cancer activities. This review is an attempt to compile all the available data for the 24 different of Cuscuta species on the basis of different types of phytochemical constituents and biological studies as above. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Milk inhibits the biological activity of ricin

    USDA-ARS?s Scientific Manuscript database

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that compon...

  16. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells

    PubMed Central

    Orellana, Adelina; García-González, Vicente; López, Rosa; Pascual-Guiral, Sonia; Lozoya, Estrella; Díaz, Julia; Casals, Daniel; Barrena, Antolín; Paris, Stephane; Andrés, Miriam; Segarra, Victor; Vilella, Dolors; Malhotra, Rajneesh; Eastwood, Paul; Planagumà, Anna; Miralpeix, Montserrat

    2018-01-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology

  17. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  18. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species?

    PubMed

    Levina, Aviva; Lay, Peter A

    2017-07-18

    Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H 2 VO 4 - ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to V V and/or V IV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates

    PubMed Central

    Peng, Hao; Yang, Yifan; Zhe, Shandian; Wang, Jian; Gribskov, Michael; Qi, Yuan

    2017-01-01

    Abstract Motivation High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy. Results We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature. Availability and implementation The software is available at https

  20. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves.

    PubMed

    Kohoude, Midéko Justin; Gbaguidi, Fernand; Agbani, Pierre; Ayedoun, Marc-Abel; Cazaux, Sylvie; Bouajila, Jalloul

    2017-12-01

    Boswellia dalzielii Hutch. (Burseraceae) is an aromatic plant. The leaves are used for beverage flavouring. This study investigates the chemical composition and biological activities of various extracts. The essential oil was prepared via hydrodistillation. Identification and quantification were realized via GC-MS and GC-FID. Consecutive extractions (cyclohexane, dichloromethane, ethyl acetate and methanol) were carried out and various chemical groups (phenolics, flavonoids, tannins, antocyanins and sugar) were quantified. The volatile compounds of organic extracts were identified before and after derivatization. Antioxidant, antihyperuricemia, anti-Alzheimer, anti-inflammatory and anticancer activities were evaluated. In the essential oil, 50 compounds were identified, including 3-carene (27.72%) and α-pinene (15.18%). 2,5-Dihydroxy acetophenone and β-d-xylopyranose were identified in the methanol extract. Higher phenolic (315.97 g GAE/kg dry mass) and flavonoid (37.19 g QE/kg dry mass) contents were observed in the methanol extract. The methanol extract has presented remarkable IC 50  =   6.10 mg/L for antiDPPH, 35.10 mg/L for antixanthine oxidase and 28.01 mg/L for anti-5-lipoxygenase. For acetylcholinesterase inhibition, the best IC 50 (76.20 and 67.10 mg/L) were observed, respectively, with an ethyl acetate extract and the essential oil. At 50 mg/L, the dichloromethane extract inhibited OVCAR-3 cell lines by 65.10%, while cyclohexane extract inhibited IGROV-1 cell lines by 92.60%. Biological activities were fully correlated with the chemical groups of the extracts. The ethyl acetate and methanol extracts could be considered as potential alternatives for use in dietary supplements for the prevention or treatment of diseases because of these extracts natural antioxidant, antihyperuricemic and anti-inflammatory activities.

  1. Global proteome analysis identifies active immunoproteasome subunits in human platelets.

    PubMed

    Klockenbusch, Cordula; Walsh, Geraldine M; Brown, Lyda M; Hoffman, Michael D; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-12-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Should soil testing services measure soil biological activity

    USDA-ARS?s Scientific Manuscript database

    Health of agricultural soils depends largely on conservation management to promote soil organic C accumulation. Total soil organic C changes slowly, but active fractions are more dynamic. A key indicator of healthy soil is potential biological activity, which could be measured rapidly with soil te...

  3. Synthesis and Structure activity relationships of EGCG Analogues, A Recently Identified Hsp90 Inhibitor

    PubMed Central

    Khandelwal, Anuj; Hall, Jessica

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90, however structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Anti-proliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of four most potent analogues was further evaluated by western blot analyses and degradation of Hsp90-dependent client proteins. Prenyl substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as novel scaffold that exhibit Hsp90 inhibitory activity. PMID:23834230

  4. The Biological and Toxicological Activity of Gases and Vapors

    PubMed Central

    Sánchez-Moreno, Ricardo; Gil-Lostes, Javier; Acree, William E.; Cometto-Muñiz, J. Enrique; Cain, William S.

    2010-01-01

    A large amount of data on the biological and toxicological activity of gases and vapors has been collected from the literature. Processes include sensory irritation thresholds, the Alarie mouse test, inhalation anesthesia, etc. It is shown that a single equation using only five descriptors (properties of the gases and vapors) plus a set of indicator variables for the given processes can correlate 643 biological and non-lethal toxicological activities of ‘non-reactive’ compounds with a standard deviation of 0.36 log unit. The equation is scaled to sensory irritation thresholds obtained by the procedure of Cometto-Muñiz, and Cain, and provides a general equation for the prediction of sensory irritation thresholds in man. It is suggested that differences in biological/toxicological activity arise primarily from transport from the gas phase to a receptor phase or area, except for odor detection thresholds where interaction with a receptor(s) is important. PMID:19913608

  5. ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions

    PubMed Central

    Roux, Philippe P.; Blenis, John

    2004-01-01

    Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries. PMID:15187187

  6. Does disease activity at start of biologic therapy influence work-loss in RA patients?

    PubMed

    Olofsson, Tor; Johansson, Kari; Eriksson, Jonas K; van Vollenhoven, Ronald; Miller, Heather; Petersson, Ingemar F; Askling, Johan; Neovius, Martin

    2016-04-01

    To compare work-loss in RA patients starting their first biologic with high vs moderate disease activity. We identified all RA patients aged 20-63 years in the Swedish Biologics Register who started their first biologic 2007-09 with high disease activity (DAS28 >5.1; n = 868) or moderate disease activity (DAS28 3.2-5.1; n = 854). Work days lost, defined as sick leave and disability pension days from the Swedish Social Insurance Agency, were assessed over 5 years after first bio-start. We estimated between-group mean differences adjusted for age, sex, calendar year, education level, disease duration, comorbidities and work-loss the month before bio-start. During 5 years after anti-TNF start, mean monthly work days lost declined from 16.0 to 9.2 (42%; P < 0.001) in patients with high disease activity at baseline and from 12.0 to 7.2 (40%; P < 0.001) in patients with moderate disease activity, with no between-group difference (adjusted mean difference 0.81; 95% CI - 0.44, 2.05). Accumulated 5-year work-loss was, however, higher in the high activity group (724 vs 548 days; adjusted mean difference 70; 95% CI 20, 120), but after stratification on baseline disability pension status, no differences in accumulated work-loss were detected. Substantial work-loss was seen in both patients with high and patients with moderate disease activity at anti-TNF start, with a 5-year decline in mean monthly work days lost by ∼40% in both groups and no between-group difference. Accumulated work-loss over 5 years was higher in the high-activity group, which may be explained by differences in baseline disability pension status. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Biological activity and photostability of biflorin micellar nanostructures.

    PubMed

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  8. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  9. Liposomal Packaging Generates Wnt Protein with In Vivo Biological Activity

    PubMed Central

    Zhao, Ludan; Kim, Jae-Beom; ten Berge, Derk; Ponnusamy, Karthik; Carre, A. Lyonel; Dudek, Henryk; Zachlederova, Marie; McElhaney, Michael; Brunton, Shirley; Gunzner, Janet; Callow, Marinella; Polakis, Paul; Costa, Mike; Zhang, Xiaoyan M.; Helms, Jill A.; Nusse, Roel

    2008-01-01

    Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context. PMID:18698373

  10. Liposomal packaging generates Wnt protein with in vivo biological activity.

    PubMed

    Morrell, Nathan T; Leucht, Philipp; Zhao, Ludan; Kim, Jae-Beom; ten Berge, Derk; Ponnusamy, Karthik; Carre, A Lyonel; Dudek, Henryk; Zachlederova, Marie; McElhaney, Michael; Brunton, Shirley; Gunzner, Janet; Callow, Marinella; Polakis, Paul; Costa, Mike; Zhang, Xiaoyan M; Helms, Jill A; Nusse, Roel

    2008-08-13

    Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  11. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    PubMed

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols.

  12. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    PubMed

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  13. Marine natural flavonoids: chemistry and biological activities.

    PubMed

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  14. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students.

    PubMed

    Cooper, Katelyn M; Brownell, Sara E

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students' LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. © 2016 K. M. Cooper and S. E. Brownell. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Polysulfides as biologically active ingredients of garlic.

    PubMed

    Münchberg, Ute; Anwar, Awais; Mecklenburg, Susanne; Jacob, Claus

    2007-05-21

    Garlic has long been considered as a natural remedy against a range of human illnesses, including various bacterial, viral and fungal infections. This kind of antibiotic activity of garlic has mostly been associated with the thiosulfinate allicin. Even so, recent studies have pointed towards a significant biological activity of trisulfides and tetrasulfides found in various Allium species, including a wide range of antibiotic properties and the ability of polysulfides to cause the death of certain cancer cells. The chemistry underlying the biological activity of these polysulfides is currently emerging. It seems to include a combination of several distinct transformations, such as oxidation reactions, superoxide radical and peroxide generation, decomposition with release of highly electrophilic S(x) species, inhibition of metalloenzymes, disturbance of metal homeostasis and membrane integrity and interference with different cellular signalling pathways. Further research in this area is required to provide a better understanding of polysulfide reactions within a biochemical context. This knowledge may ultimately form the basis for the development of 'green' antibiotics, fungicides and possibly anticancer agents with dramatically reduced side effects in humans.

  16. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    PubMed Central

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication

  17. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  18. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    NASA Astrophysics Data System (ADS)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  19. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    PubMed Central

    Burri, Lena; Hoem, Nils; Banni, Sebastiano; Berge, Kjetil

    2012-01-01

    The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs. PMID:23203133

  20. Validation of biological activity testing procedure of recombinant human interleukin-7.

    PubMed

    Lutsenko, T N; Kovalenko, M V; Galkin, O Yu

    2017-01-01

    Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation charac­teristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.

  1. Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns.

    PubMed

    Supek, Fran; Ramljak, Tatjana Šumanovac; Marjanović, Marko; Buljubašić, Maja; Kragol, Goran; Ilić, Nataša; Smuc, Tomislav; Zahradka, Davor; Mlinarić-Majerski, Kata; Kralj, Marijeta

    2011-08-01

    18-crown-6 ethers are known to exert their biological activity by transporting K(+) ions across cell membranes. Using non-linear Support Vector Machines regression, we searched for structural features that influence antiproliferative activity in a diverse set of 19 known oxa-, monoaza- and diaza-18-crown-6 ethers. Here, we show that the logP of the molecule is the most important molecular descriptor, among ∼1300 tested descriptors, in determining biological potency (R(2)(cv) = 0.704). The optimal logP was at 5.5 (Ghose-Crippen ALOGP estimate) while both higher and lower values were detrimental to biological potency. After controlling for logP, we found that the antiproliferative activity of the molecule was generally not affected by side chain length, molecular symmetry, or presence of side chain amide links. To validate this QSAR model, we synthesized six novel, highly lipophilic diaza-18-crown-6 derivatives with adamantane moieties attached to the side arms. These compounds have near-optimal logP values and consequently exhibit strong growth inhibition in various human cancer cell lines and a bacterial system. The bioactivities of different diaza-18-crown-6 analogs in Bacillus subtilis and cancer cells were correlated, suggesting conserved molecular features may be mediating the cytotoxic response. We conclude that relying primarily on the logP is a sensible strategy in preparing future 18-crown-6 analogs with optimized biological activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Biological activity of antitumoural MGBG: the structural variable.

    PubMed

    Marques, M P M; Gil, F P S C; Calheiros, R; Battaglia, V; Brunati, A M; Agostinelli, E; Toninello, A

    2008-05-01

    The present study aims at determining the structure-activity relationships (SAR's) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG's structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.

  3. Biologic Activity of Porphyromonas endodontalis complex lipids

    PubMed Central

    Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.

    2014-01-01

    Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013

  4. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  5. Zoanthid mucus as new source of useful biologically active proteins.

    PubMed

    Guarnieri, Míriam Camargo; de Albuquerque Modesto, Jeanne Claíne; Pérez, Carlos Daniel; Ottaiano, Tatiana Fontes; Ferreira, Rodrigo da Silva; Batista, Fabrício Pereira; de Brito, Marlon Vilela; Campos, Ikaro Henrique Mendes Pinto; Oliva, Maria Luiza Vilela

    2018-03-01

    Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A 2 ), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A 2 , low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O + , B + , and A + erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching

  6. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes

    PubMed Central

    Sykes, Melissa L.; Avery, Vicky M.

    2015-01-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069

  7. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes.

    PubMed

    Sykes, Melissa L; Avery, Vicky M

    2015-12-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Efficiently Photocontrollable or not? Biological Activity of Photoisomerizable Diarylethenes.

    PubMed

    Komarov, Igor V; Afonin, Sergii; Babii, Oleg; Schober, Tim; Ulrich, Anne S

    2018-04-06

    Diarylethene derivatives, whose biological activity can be reversibly changed by irradiation with light of different wavelengths, have shown promise as scientific tools and as candidates for photocontrollable drugs. However, examples demonstrating efficient photocontrol of their biological activity are still relatively rare. This concept article discusses the possible reasons for this situation and presents a critical analysis of existing data and hypotheses in this field, in order to extract the design principles enabling the construction of efficient photocontrollable diarylethene-based molecules. Papers addressing biologically relevant interactions between diarylethenes and biomolecules are analyzed; however, in most published cases, the efficiency of photocontrol in living systems remains to be demonstrated. We hope that this article will encourage further discussion of design principles, primarily among pharmacologists and synthetic and medicinal chemists. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-02

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    PubMed

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-02-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.

  12. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    PubMed Central

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  13. Dereplication by HPLC-DAD-ESI-MS/MS and Screening for Biological Activities of Byrsonima Species (Malpighiaceae).

    PubMed

    Fraige, Karina; Dametto, Alessandra Cristina; Zeraik, Maria Luiza; de Freitas, Larissa; Saraiva, Amanda Correia; Medeiros, Alexandra Ivo; Castro-Gamboa, Ian; Cavalheiro, Alberto José; Silva, Dulce Helena S; Lopes, Norberto Peporine; Bolzani, Vanderlan S

    2018-03-01

    Byrsonima species have been used in the treatment of gastrointestinal and gynecological inflammations, skin infections and snakebites. Based on their biological activities, it is important to study other organisms from this genus and to identify their metabolites. To determine the metabolic fingerprinting of methanol and ethyl acetate extracts of four Byrsonima species (B. intermedia, B. coccolobifolia, B. verbascifolia and B. sericea) by HPLC-DAD-ESI-MS/MS and evaluate their in vitro antioxidant, anti-glycation, anti-inflammatory and cytotoxic activities. Antioxidant activity was determined by DPPH˙, ABTS˙ + and ROO˙ scavenging assays. Anti-glycation activity was evaluated by the ability to inhibit the formation of advanced glycation endproducts (AGEs). Anti-inflammatory activity was evaluated using a murine macrophage cell line (RAW 264-7) in the presence of lipopolysaccharide (LPS). Tumour necrosis factor alpha (TNF-α) and nitrite (NO 2 - ) production were measured by ELISA and the Griess reaction, respectively. The compounds present in the extracts were tentatively identified by HPLC-DAD-ESI-MS/MS. The evaluation of the biological activities showed the potential of the extracts. The activities were assigned to the presence of glycoside flavonoids mainly derived from quercetin, quinic acid derivatives, gallic acid derivatives, galloylquinic acids and proanthocyanidins. Two isomers of sinapic acid-O-hexoside were described for the first time in a Byrsonima species. This research contributes to the study of the genus, it is the first report of the chemical composition of B. sericea and demonstrates the importance of the dereplication process, allowing the identification of known compounds without time-consuming procedures. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Biologic activity of porphyromonas endodontalis complex lipids.

    PubMed

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Does controlling for biological maturity improve physical activity tracking?

    PubMed

    Erlandson, Marta C; Sherar, Lauren B; Mosewich, Amber D; Kowalski, Kent C; Bailey, Donald A; Baxter-Jones, Adam D G

    2011-05-01

    Tracking of physical activity through childhood and adolescence tends to be low. Variation in the timing of biological maturation within youth of the same chronological age (CA) might affect participation in physical activity and may partially explain the low tracking. To examine the stability of physical activity over time from childhood to late adolescence when aligned on CA and biological age (BA). A total of 91 males and 96 females aged 8-15 yr from the Saskatchewan Pediatric Bone Mineral Accrual Study (PBMAS) were assessed annually for 8 yr. BA was calculated as years from age at peak height velocity. Physical activity was assessed using the Physical Activity Questionnaire for Children/Adolescents. Tracking was analyzed using intraclass correlations for both CA and BA (2-yr groupings). To be included in the analysis, an individual required a measure at both time points within an interval; however, not all individuals were present at all tracking intervals. Physical activity tracking by CA 2-yr intervals were, in general, moderate in males (r=0.42-0.59) and females (r=0.43-0.44). However, the 9- to 11-yr CA interval was low and nonsignificant (r=0.23-0.30). Likewise, tracking of physical activity by BA 2-yr intervals was moderate to high in males (r=0.44-0.60) and females (r=0.39-0.62). Accounting for differences in the timing of biological maturity had little effect on tracking physical activity. However, point estimates for tracking are higher in early adolescence in males and to a greater extent in females when aligned by BA versus CA. This suggests that maturity may be more important in physical activity participation in females than males. © 2011 by the American College of Sports Medicine

  16. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review.

    PubMed

    Singh, Arashdeep; Sharma, Savita

    2017-09-22

    Whole grains provide energy, nutrients, fibers, and bioactive compounds that may synergistically contribute to their protective effects. A wide range of these compounds is affected by germination. While some compounds, such as β-glucans are degraded, others, like antioxidants and total phenolics are increased by means of biological activation of grains. The water and oil absorption capacity as well as emulsion and foaming capacity of biologically activated grains are also improved. Application of biological activation of grains is of emerging interest, which may significantly enhance the nutritional, functional, and bioactive content of grains, as well as improve palatability of grain foods in a natural way. Therefore, biological activation of cereals can be a way to produce food grains enriched with health-promoting compounds and enhanced functional attributes.

  17. Biological activity of Stevia rebaudiana Bertoni and their relationship to health.

    PubMed

    Ruiz-Ruiz, Jorge Carlos; Moguel-Ordoñez, Yolanda Beatriz; Segura-Campos, Maira Rubi

    2017-08-13

    The leaves of Stevia rebaudiana Bertoni has nutrients and phytochemicals, which make it an adequate source for the extraction and production of functional food ingredients. Preclinical and clinical studies suggest therapeutic and pharmacological applications for stevia and their extracts because they are not toxic and exhibit several biological activities. This review presents the biological activity of Stevia rebaudiana Bertoni and their relationship to antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor activities. Consumption and adverse effects were also reviewed.

  18. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100.

    PubMed

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2005-01-01

    We have previously reported that the C-Med 100 extract of the plant Uncaria tomentosa induces prolonged lymphocyte half life and hence increased spleen cell number in mice receiving the extract in their drinking water. Further, the extract induces cell proliferation arrest and inhibits activation of the transcriptional regulator nuclear factor kappaB (NF-kappaB) in vitro. We now report that mice exposed to quinic acid (QA), a component of this extract, had significantly increased number of spleen cells, thus recapitulating the in vivo biological effect of C-Med 100 exposure. Commercially supplied QA (H(+) form) did not, however, inhibit cell proliferation in vitro, while the ammonia-treated QA (QAA) was a potent inhibitor. Both QA and QAA inhibited NF-kappaB activity in exposed cells at similar concentrations. Thus, our present data identify QA as a candidate component for both in vivo and in vitro biological effects of the C-Med 100 extract.

  19. Chemistry and biological activity of platinum amidine complexes.

    PubMed

    Michelin, Rino A; Sgarbossa, Paolo; Sbovata, Silvia Mazzega; Gandin, Valentina; Marzano, Cristina; Bertani, Roberta

    2011-07-04

    Platinum amidine complexes represent a new class of potential antitumor drugs that contain the imino moiety HN=C(sp(2)) bonded to the platinum center. They can be related to the iminoether derivatives, which were recently shown to be the first Pt(II) compounds with a trans configuration endowed with anticancer activity. The chemical and biological properties of platinum amidine complexes, and more generally of platinum imino derivatives, can be rationally modified through suitable synthetic procedures with the aim of improving their cytotoxicity and antitumor activity. The addition of protic nucleophiles to nitriles coordinated to platinum in various oxidation states can offer a wide variety of complexes with chemical, structural, and physical properties specifically tuned for a more efficacious biological response. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. New approaches to estimation of peat deposits for production of biologically active compounds

    NASA Astrophysics Data System (ADS)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  1. Incorporating ToxCast and Tox21 datasets to rank biological activity of chemicals at Superfund sites in North Carolina.

    PubMed

    Tilley, Sloane K; Reif, David M; Fry, Rebecca C

    2017-04-01

    The Superfund program of the Environmental Protection Agency (EPA) was established in 1980 to address public health concerns posed by toxic substances released into the environment in the United States. Forty-two of the 1328 hazardous waste sites that remain on the Superfund National Priority List are located in the state of North Carolina. We set out to develop a database that contained information on both the prevalence and biological activity of chemicals present at Superfund sites in North Carolina. A chemical characterization tool, the Toxicological Priority Index (ToxPi), was used to rank the biological activity of these chemicals based on their predicted bioavailability, documented associations with biological pathways, and activity in in vitro assays of the ToxCast and Tox21 programs. The ten most prevalent chemicals found at North Carolina Superfund sites were chromium, trichloroethene, lead, tetrachloroethene, arsenic, benzene, manganese, 1,2-dichloroethane, nickel, and barium. For all chemicals found at North Carolina Superfund sites, ToxPi analysis was used to rank their biological activity. Through this data integration, residual pesticides and organic solvents were identified to be some of the most highly-ranking predicted bioactive chemicals. This study provides a novel methodology for creating state or regional databases of biological activity of contaminants at Superfund sites. These data represent a novel integrated profile of the most prevalent chemicals at North Carolina Superfund sites. This information, and the associated methodology, is useful to toxicologists, risk assessors, and the communities living in close proximity to these sites. Copyright © 2016. Published by Elsevier Ltd.

  2. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    PubMed

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  4. Exploring the biological activities of Echeveria leucotricha.

    PubMed

    Martínez Ruiz, María G; Gómez-Velasco, Anaximandro; Juárez, Zaida N; Hernández, Luis R; Bach, Horacio

    2013-01-01

    Echeveria leucotricha J. A. Purpus (Crassulaceae) was evaluated for its potential antibacterial, antifungal, antiparasitic, cytotoxic and anti-inflammatory bioactivities. Aerial parts were extracted with hexane, methanol and chloroform, and fractionated accordingly. Biological activity was assessed in vitro against five Gram-positive and four Gram-negative bacteria, four human pathogenic fungi and the protozoan Leishmania donovani. Extracts and fractions showing bioactivities were further investigated for their cytotoxic activities on macrophages. Results show that several extracts and fractions exhibited significant antibacterial, antifungal, and antiparasitic activities, but no anti-inflammatory activity was recorded. Here, we report for the first time, and to the best of our knowledge, these bioactivities, which suggest that this plant can be used in the traditional Mexican medicine.

  5. Perceptions of Prospective Biology Teachers on Scientific Argumentation in Microbiology Inquiry Lab Activities

    NASA Astrophysics Data System (ADS)

    Roviati, E.; Widodo, A.; Purwianingsih, W.; Riandi, R.

    2017-09-01

    Inquiry laboratory activity and scientific argumentation in science education should be promoted and explicitly experienced by prospective biology teacher students in classes, including in microbiology courses. The goal of this study is to get information about perceptions of prospective biology teachers on scientific argumentation in microbiology inquiry lab activities. This study reported the result of a survey research to prospective biology teachers about how their perception about microbiology lab classes and their perception about inquiry and argumentation in microbiology lab activities should be. The participants of this study were 100 students of biology education department from an institute in Cirebon, West Java taking microbiology lecture during the fifth semester. The data were collected using questionnaire to explore the perceptions and knowledge of prospective biology teachers about microbiology, inquiry lab activities and argumentation. The result showed that students thought that the difficulties of microbiology as a subject were the lack of references and the way lecturer teaching. The students’ perception was that argumentation and inquiry should be implemented in microbiology courses and lab activities. Based on the data from questionnaire, It showed that prospective biology teacher students had very little knowledge about scientific argumentation and its implementation in science education. When the participants made arguments based on the problems given, they showed low quality of arguments.

  6. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    PubMed

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  7. Biological Activities of Extracts from Loquat (Eriobotrya japonica Lindl.): A Review

    PubMed Central

    Liu, Yilong; Zhang, Wenna; Xu, Changjie; Li, Xian

    2016-01-01

    Loquat (Eriobotrya japonica Lindl.) is a subtropical fruit tree with high medicinal value native to China. Different organs of loquat have been used historically as folk medicines and this has been recorded in Chinese history for thousands of years. Research shows that loquat extracts contain many antioxidants, and different extracts exhibit bioactivity capable of counteracting inflammation, diabetes, cancer, bacterial infection, aging, pain, allergy and other health issues. Bioactive compounds such as phenolics and terpenoids have been isolated and characterized to provide a better understanding of the chemical mechanisms underlying the biological activities of loquat extracts. As the identification of compounds progresses, studies investigating the in vivo metabolism, bioavailability, and structure–activity relationships, as well as potential toxicity of loquat extracts in animal or cell models are receiving more attention. In addition, genetic studies and breeding of loquat germplasms for high contents of health-benefiting compounds may provide new insight for the loquat industry and research. This review is focused on the main medicinal properties reported and the possible pharmaceutically active compounds identified in different loquat extracts. PMID:27929430

  8. Synthesis and biological activity of chloroethyl pyrimidine nucleosides.

    PubMed

    Colombeau, Ludovic; Teste, Karine; Hadj-Bouazza, Amel; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Catherine, Odile Sainte

    2008-02-01

    The synthesis and biological activity of chloroethyl pyrimidine nucleosides is presented. One of these new nucleosides analogues significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  9. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples.

    PubMed

    Grison, Stéphane; Favé, Gaëlle; Maillot, Matthieu; Manens, Line; Delissen, Olivia; Blanchardon, Eric; Banzet, Nathalie; Defoort, Catherine; Bott, Romain; Dublineau, Isabelle; Aigueperse, Jocelyne; Gourmelon, Patrick; Martin, Jean-Charles; Souidi, Maâmar

    2013-01-01

    Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC-MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N -methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.

  10. Predicted Biological Activity of Purchasable Chemical Space

    PubMed Central

    2017-01-01

    Whereas 400 million distinct compounds are now purchasable within the span of a few weeks, the biological activities of most are unknown. To facilitate access to new chemistry for biology, we have combined the Similarity Ensemble Approach (SEA) with the maximum Tanimoto similarity to the nearest bioactive to predict activity for every commercially available molecule in ZINC. This method, which we label SEA+TC, outperforms both SEA and a naïve-Bayesian classifier via predictive performance on a 5-fold cross-validation of ChEMBL’s bioactivity data set (version 21). Using this method, predictions for over 40% of compounds (>160 million) have either high significance (pSEA ≥ 40), high similarity (ECFP4MaxTc ≥ 0.4), or both, for one or more of 1382 targets well described by ligands in the literature. Using a further 1347 less-well-described targets, we predict activities for an additional 11 million compounds. To gauge whether these predictions are sensible, we investigate 75 predictions for 50 drugs lacking a binding affinity annotation in ChEMBL. The 535 million predictions for over 171 million compounds at 2629 targets are linked to purchasing information and evidence to support each prediction and are freely available via https://zinc15.docking.org and https://files.docking.org. PMID:29193970

  11. Investigating the Use of Inquiry & Web-Based Activities with Inclusive Biology Learners

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Waller, Patricia L.; Edwards, Lana; Darlene Kale, Santoro

    2007-01-01

    A Web-integrated biology program is used to explore how to best assist inclusive high school students to learn biology with inquiry-based activities. Classroom adaptations and instructional strategies teachers may use to assist in promoting biology learning with inclusive learners are discussed.

  12. Biologically active chitosan systems for tissue engineering and regenerative medicine.

    PubMed

    Jiang, Tao; Kumbar, Sangamesh G; Nair, Lakshmi S; Laurencin, Cato T

    2008-01-01

    Biodegradable polymeric scaffolds are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine. By physical adsorption of biomolecules on scaffold surface, physical entrapment of biomolecules in polymer microspheres or hydrogels, and chemical immobilization of oligopeptides or proteins on biomaterials, biologically active biomaterials and scaffolds can be derived. These bioactive systems show great potential in tissue engineering in rendering bioactivity and/or specificity to scaffolds. This review highlights some of the biologically active chitosan systems for tissue engineering application and the associated strategies to develop such bioactive chitosan systems.

  13. Biological activities of xanthatin from Xanthium strumarium leaves.

    PubMed

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    PubMed Central

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-01-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates. PMID:28165013

  15. Biological activity of aldose reductase and lipophilicity of pyrrolyl-acetic acid derivatives

    NASA Astrophysics Data System (ADS)

    Kumari, A.; Kumari, R.; Kumar, R.; Gupta, M.

    2011-12-01

    Quantitative Structure-Activity Relationship modeling is a powerful approach for correlating an organic compound to its lipophilicity. In this paper QSAR models are established for estimation of correlation of the lipophilicity of a series of pyrrolyl-acetic acid derivatives, inhibitors of the aldose reductase enzyme, in the n-octanol-water system with biological activity of aldose reductase. Lipophilicity, expressed by the logarithm of n-octnol-water partition coefficient log P and biological activity of aldose reductase inhibitory activity by log it. Result obtained by QSAR modeling of compound series reveal a definite trend in biological activity and a further improvement in quantitative relationships are established if, beside log P, Hammett electronic constant σ and connectivity index chi-3 (3 χ) term included in the regression equation. The tri-parametric model with log P, 3 χ and σ as correlating parameters have been found to be the best which gives a variance of 87% ( R 2 = 0.8743). A compound has been found to be serious outlier and when the same has been excluded the model explains about 94% variance of the data set ( R 2 = 0.9447). The topological index (3 χ) has been found to be a good parameter for modeling the biological activity.

  16. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  17. Kantorovich-Wasserstein Distance for Identifying the Dynamic of Some Compartmental Models in Biology

    NASA Astrophysics Data System (ADS)

    Pousin, Jérôme

    2008-09-01

    Determining the influence of a biological species to the evolution of an other one strongly depends on the choice of mathematical models in biology. In this work we consider the case of distribution of lipids (docosahexaenoic acid (DHA)) in two compartments of the plasma, the platelets and the erythrocytes, and we compare three different mathematical approaches. The first one, consists of a system of differential equations the coefficients of which are identified through a least square procedure. The second one is made of a system of differential equations on a graph, the adjacency matrix of which represents the interplay between the species. The third one consists of mapping the provider curves to the target curves. Thus we have a distance between two families of curves, the curves of providers and the curves of targets, and by comparing the distances, we are able to decide which provider delivers preferentially to a target according to cumulative species mass curves. Numerical results are presented, and we show that the ordinary differential least square model provides qualitatively the same result as the Kantorovich-Wasserstein distance strategy. Finally, we discuss the potential ability of the presented Kantorovich-Wasserstein distance to perform the biological properties of a system.

  18. Integrity and Biological Activity of DNA after UV Exposure

    NASA Astrophysics Data System (ADS)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  19. Automated Inference of Chemical Discriminants of Biological Activity.

    PubMed

    Raschka, Sebastian; Scott, Anne M; Huertas, Mar; Li, Weiming; Kuhn, Leslie A

    2018-01-01

    Ligand-based virtual screening has become a standard technique for the efficient discovery of bioactive small molecules. Following assays to determine the activity of compounds selected by virtual screening, or other approaches in which dozens to thousands of molecules have been tested, machine learning techniques make it straightforward to discover the patterns of chemical groups that correlate with the desired biological activity. Defining the chemical features that generate activity can be used to guide the selection of molecules for subsequent rounds of screening and assaying, as well as help design new, more active molecules for organic synthesis.The quantitative structure-activity relationship machine learning protocols we describe here, using decision trees, random forests, and sequential feature selection, take as input the chemical structure of a single, known active small molecule (e.g., an inhibitor, agonist, or substrate) for comparison with the structure of each tested molecule. Knowledge of the atomic structure of the protein target and its interactions with the active compound are not required. These protocols can be modified and applied to any data set that consists of a series of measured structural, chemical, or other features for each tested molecule, along with the experimentally measured value of the response variable you would like to predict or optimize for your project, for instance, inhibitory activity in a biological assay or ΔG binding . To illustrate the use of different machine learning algorithms, we step through the analysis of a dataset of inhibitor candidates from virtual screening that were tested recently for their ability to inhibit GPCR-mediated signaling in a vertebrate.

  20. IDENTIFYING THE "SLOW LEARNER" IN BSCS HIGH SCHOOL BIOLOGY.

    ERIC Educational Resources Information Center

    GROBMAN, HULDA

    THE SUITABILITY OF THE BLUE, GREEN, AND YELLOW VERSION BIOLOGICAL SCIENCES CURRICULUM STUDY (BSCS) FOR THE UPPER 75 PERCENT OF THE STUDENTS TAKING TENTH GRADE BIOLOGY IN THE UNITED STATES IS EXAMINED AND PROCEDURES USED IN ASSIGNING SLOW LEARNERS TO CLASSES USING BSCS SPECIAL MATERIALS ARE SURVEYED. THE SUITABILITY STUDY INVOLVED 12,602 STUDENTS…

  1. Effects of biology teachers' professional knowledge and cognitive activation on students' achievement

    NASA Astrophysics Data System (ADS)

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-11-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.

  2. System and method for preconcentrating, identifying, and quantifying chemical and biological substances

    DOEpatents

    Yu, Conrad M.; Koo, Jackson C.

    2000-01-01

    A system and method for preconcentrating, identifying, and quantifying chemical and biological substances is disclosed. An input valve directs a first volume of a sample gas to a surface acoustic wave (SAW) device. The SAW device preconcentrates and detects a mass of a substance within the sample gas. An output valve receives a second volume of the sample gas containing the preconcentrated substance from the SAW device and directs the second volume to a gas chromatograph (GC). The GC identifies the preconcentrated substance within the sample gas. A shunt valve exhausts a volume of the sample gas equal to the first volume minus the second volume away from the SAW device and the GC. The method of the present invention includes the steps of opening an input valve for passing a first volume of a sample gas to a SAW device; preconcentrating and detecting a mass of a substance within the sample gas using the SAW device; opening an output valve for passing a second volume of the sample gas containing the preconcentrated substance to a gas chromatograph (GC); and then identifying the preconcentrated substance within the sample gas using the GC.

  3. Identifying Emotions on the Basis of Neural Activation

    PubMed Central

    Kassam, Karim S.; Markey, Amanda R.; Cherkassky, Vladimir L.; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing. PMID:23840392

  4. Identifying Emotions on the Basis of Neural Activation.

    PubMed

    Kassam, Karim S; Markey, Amanda R; Cherkassky, Vladimir L; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  5. Fluid dynamics in biological active nematics

    NASA Astrophysics Data System (ADS)

    Tan, Amanda; Hirst, Linda

    We use biological materials to form a self-mixing active system that consists of microtubules driven by kinesin clusters. Microtubules are rigid biopolymers that are a part of the cytoskeleton. Kinesin motors are molecular motors that walk along microtubules to transport cellular cargo. In this system, microtubules are bundled together, and as the kinesin clusters walk along the filaments, the microtubule bundles move relative to each other. As microtubules shear against each other, they extend, bend, buckle and fracture. When confined in a 2D water-oil interface, the system becomes an active nematic that self-mixes due to the buckling and fracturing. To quantify this self-mixing, we attached beads to the microtubules, and tracked their motion. We quantify the quality of mixing using the bead trajectories. This new active material has potential applications as a self-mixing solvent. CCBM NSF-CREST, UC Merced Health Science Research Institute.

  6. Epidemiology and biology of physical activity and cancer recurrence.

    PubMed

    Friedenreich, Christine M; Shaw, Eileen; Neilson, Heather K; Brenner, Darren R

    2017-10-01

    Physical activity is emerging from epidemiologic research as a lifestyle factor that may improve survival from colorectal, breast, and prostate cancers. However, there is considerably less evidence relating physical activity to cancer recurrence and the biologic mechanisms underlying this association remain unclear. Cancer patients are surviving longer than ever before, and fear of cancer recurrence is an important concern. Herein, we provide an overview of the current epidemiologic evidence relating physical activity to cancer recurrence. We review the biologic mechanisms most commonly researched in the context of physical activity and cancer outcomes, and, using the example of colorectal cancer, we explore hypothesized mechanisms through which physical activity might intervene in the colorectal recurrence pathway. Our review highlights the importance of considering pre-diagnosis and post-diagnosis activity, as well as cancer stage and timing of recurrence, in epidemiologic studies. In addition, more epidemiologic research is needed with cancer recurrence as a consistently defined outcome studied separately from survival. Future mechanistic research using randomized controlled trials, specifically those demonstrating the exercise responsiveness of hypothesized mechanisms in early stages of carcinogenesis, are needed to inform recommendations about when to exercise and to anticipate additive or synergistic effects with other preventive behaviors or treatments.

  7. Investigating biological activity spectrum for novel quinoline analogues 2: hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity.

    PubMed

    Musiol, Robert; Tabak, Dominik; Niedbala, Halina; Podeszwa, Barbara; Jampilek, Josef; Kralova, Katarina; Dohnal, Jiri; Finster, Jacek; Mencel, Agnieszka; Polanski, Jaroslaw

    2008-04-15

    Two series of amides based on quinoline scaffold were designed and synthesized in search of photosynthesis inhibitors. The compounds were tested for their photosynthesis-inhibiting activity against Spinacia oleracea L. and Chlorella vulgaris Beij. The compounds lipophilicity was determined by the RP-HPLC method. Several compounds showed biological activity similar or even higher than that of the standard (DCMU). The structure-activity relationships are discussed.

  8. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes

    PubMed Central

    Dutta, B; Pusztai, L; Qi, Y; André, F; Lazar, V; Bianchini, G; Ueno, N; Agarwal, R; Wang, B; Shiang, C Y; Hortobagyi, G N; Mills, G B; Symmans, W F; Balázsi, G

    2012-01-01

    Background: The rapid collection of diverse genome-scale data raises the urgent need to integrate and utilise these resources for biological discovery or biomedical applications. For example, diverse transcriptomic and gene copy number variation data are currently collected for various cancers, but relatively few current methods are capable to utilise the emerging information. Methods: We developed and tested a data-integration method to identify gene networks that drive the biology of breast cancer clinical subtypes. The method simultaneously overlays gene expression and gene copy number data on protein–protein interaction, transcriptional-regulatory and signalling networks by identifying coincident genomic and transcriptional disturbances in local network neighborhoods. Results: We identified distinct driver-networks for each of the three common clinical breast cancer subtypes: oestrogen receptor (ER)+, human epidermal growth factor receptor 2 (HER2)+, and triple receptor-negative breast cancers (TNBC) from patient and cell line data sets. Driver-networks inferred from independent datasets were significantly reproducible. We also confirmed the functional relevance of a subset of randomly selected driver-network members for TNBC in gene knockdown experiments in vitro. We found that TNBC driver-network members genes have increased functional specificity to TNBC cell lines and higher functional sensitivity compared with genes selected by differential expression alone. Conclusion: Clinical subtype-specific driver-networks identified through data integration are reproducible and functionally important. PMID:22343619

  9. Dispensing Processes Impact Apparent Biological Activity as Determined by Computational and Statistical Analyses

    PubMed Central

    Ekins, Sean; Olechno, Joe; Williams, Antony J.

    2013-01-01

    Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research. PMID:23658723

  10. Essential Oils from Neotropical Piper Species and Their Biological Activities

    PubMed Central

    da Trindade, Rafaela; Alves, Nayara Sabrina; Figueiredo, Pablo Luís; Maia, José Guilherme S.; Setzer, William N.

    2017-01-01

    The Piper genus is the most representative of the Piperaceae reaching around 2000 species distributed in the pantropical region. In the Neotropics, its species are represented by herbs, shrubs, and lianas, which are used in traditional medicine to prepare teas and infusions. Its essential oils (EOs) present high yield and are chemically constituted by complex mixtures or the predominance of main volatile constituents. The chemical composition of Piper EOs displays interspecific or intraspecific variations, according to the site of collection or seasonality. The main volatile compounds identified in Piper EOs are monoterpenes hydrocarbons, oxygenated monoterpenoids, sesquiterpene hydrocarbons, oxygenated sesquiterpenoids and large amounts of phenylpropanoids. In this review, we are reporting the biological potential of Piper EOs from the Neotropical region. There are many reports of Piper EOs as antimicrobial agents (fungi and bacteria), antiprotozoal (Leishmania spp., Plasmodium spp., and Trypanosoma spp.), acetylcholinesterase inhibitor, antinociceptive, anti-inflammatory and cytotoxic activity against different tumor cells lines (breast, leukemia, melanoma, gastric, among others). These studies can contribute to the rational and economic exploration of Piper species, once they have been identified as potent natural and alternative sources to treat human diseases. PMID:29240662

  11. Identifying biologically relevant putative mechanisms in a given phenotype comparison

    PubMed Central

    Hanoudi, Samer; Donato, Michele; Draghici, Sorin

    2017-01-01

    A major challenge in life science research is understanding the mechanism involved in a given phenotype. The ability to identify the correct mechanisms is needed in order to understand fundamental and very important phenomena such as mechanisms of disease, immune systems responses to various challenges, and mechanisms of drug action. The current data analysis methods focus on the identification of the differentially expressed (DE) genes using their fold change and/or p-values. Major shortcomings of this approach are that: i) it does not consider the interactions between genes; ii) its results are sensitive to the selection of the threshold(s) used, and iii) the set of genes produced by this approach is not always conducive to formulating mechanistic hypotheses. Here we present a method that can construct networks of genes that can be considered putative mechanisms. The putative mechanisms constructed by this approach are not limited to the set of DE genes, but also considers all known and relevant gene-gene interactions. We analyzed three real datasets for which both the causes of the phenotype, as well as the true mechanisms were known. We show that the method identified the correct mechanisms when applied on microarray datasets from mouse. We compared the results of our method with the results of the classical approach, showing that our method produces more meaningful biological insights. PMID:28486531

  12. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    PubMed

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  15. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  16. Biologically active ligands for yersinia outer protein H (YopH): feature based pharmacophore screening, docking and molecular dynamics studies.

    PubMed

    Tamilvanan, Thangaraju; Hopper, Waheeta

    2014-01-01

    Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.

  17. Defining the Synthetic Biology Supply Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and meansmore » to interdict, detect, or deter suspicious activity.« less

  18. Isolation of biologically-active exosomes from human plasma.

    PubMed

    Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L

    2014-09-01

    Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  20. Quantitative Protein Sulfenic Acid Analysis Identifies Platelet Releasate-Induced Activation of Integrin β2 on Monocytes via NADPH Oxidase.

    PubMed

    Li, Ru; Klockenbusch, Cordula; Lin, Liwen; Jiang, Honghui; Lin, Shujun; Kast, Juergen

    2016-12-02

    Physiological stimuli such as thrombin, or pathological stimuli such as lysophosphatidic acid (LPA), activate platelets. The activated platelets bind to monocytes through P-selectin-PSGL-1 interactions but also release the contents of their granules, commonly called "platelet releasate". It is known that monocytes in contact with platelet releasate produce reactive oxygen species (ROS). Reversible cysteine oxidation by ROS is considered to be a potential regulator of protein function. In a previous study, we used THP-1 monocytic cells exposed to LPA- or thrombin-induced platelet releasate and a modified biotin switch assay to unravel the biological processes that are influenced by reversible cysteine oxidation. To gain a better understanding of the redox regulation of monocytes in atherosclerosis, we have now altered the modified biotin switch to selectively quantify protein sulfenic acid, a subpopulation of reversible cysteine oxidation. Using arsenite as reducing agent in the modified biotin switch assay, we were able to quantify 1161 proteins, in which more than 100 sulfenic acid sites were identified. Bioinformatics analysis of the quantified sulfenic acid sites highlighted the relevant, previously missed biological process of monocyte transendothelial migration, which included integrin β 2 . Flow cytometry validated the activation of LFA-1 (α L β 2 ) and Mac-1 (α M β 2 ), two subfamilies of integrin β 2 complexes, on human primary monocytes following platelet releasate treatment. The activation of LFA-1 was mediated by ROS from NADPH oxidase (NOX) activation. Production of ROS and activation of LFA-1 in human primary monocytes were independent of P-selectin-PSGL-1 interaction. Our results proved the modified biotin switch assay to be a powerful tool with the ability to reveal new regulatory mechanisms and identify new therapeutic targets.

  1. Generation of structurally novel short carotenoids and study of their biological activity

    PubMed Central

    Kim, Se H.; Kim, Moon S.; Lee, Bun Y.; Lee, Pyung C.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4′-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli. PMID:26902326

  2. Generation of structurally novel short carotenoids and study of their biological activity.

    PubMed

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  3. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  4. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  5. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    PubMed

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  6. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    PubMed Central

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-01-01

    Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia. PMID:29182587

  7. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  8. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    NASA Astrophysics Data System (ADS)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  9. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    PubMed

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation

    PubMed Central

    2016-01-01

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome. PMID:27325789

  11. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  12. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    PubMed Central

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K.

    2011-01-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details. PMID:22247887

  13. Gynura procumbens: An Overview of the Biological Activities

    PubMed Central

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Gynura procumbens (Lour.) Merr. (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation, and hypertension. Based on the traditional uses of G. procumbens, it seems to possess high therapeutic potential for treatment of various diseases making it a target for pharmacological studies aiming to validate and provide scientific evidence for the traditional claims of its efficacy. Although there has been considerable progress in the research on G. procumbens, to date there is no review paper gathering the reported biological activities of G. procumbens. Hence, this review aims to provide an overview of the biological activities of G. procumbens based on reported in vitro and in vivo studies. In brief, G. procumbens has been reported to exhibit antihypertensive, cardioprotective, antihyperglycemic, fertility enhancement, anticancer, antimicrobial, antioxidant, organ protective, and antiinflammatory activity. The commercial applications of G. procumbens have also been summarized in this paper based on existing patents. The data compiled illustrate that G. procumbens is a potential natural source of compounds with various pharmacological actions which can be utilized for the development of novel therapeutic agents. PMID:27014066

  14. Synthesis and biological activity of mustard derivatives of thymine.

    PubMed

    Hadj-Bouazza, Amel; Teste, Karine; Colombeau, Ludovic; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Sainte Catherine, Odile

    2008-05-01

    The synthesis and biological activity of a novel DNA cross-linking antitumor agent is presented. The new alkylating agent significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  15. Adjudin--A Male Contraceptive with Other Biological Activities.

    PubMed

    Cheng, Yan-Ho; Xia, Weiliang; Wong, Elissa W P; Xie, Qian R; Shao, Jiaxiang; Liu, Tengyuan; Quan, Yizhou; Zhang, Tingting; Yang, Xiao; Geng, Keyi; Silvestrini, Bruno; Cheng, Chuen-Yan

    2015-01-01

    Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated. Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents. Results of these findings likely spark the interest of investigators to explore other medical use of this and other indazole-based compounds, possibly mediated by the signaling pathway(s) in the mitochondria of mammalian cells following treatment with adjudin. In this review, we carefully evaluate these recent findings. Papers published and listed at www.pubmed.org and patents pertinent to adjudin and its related compounds were searched. Findings were reviewed and critically evaluated, and summarized herein. Adjudin is a novel compound that possesses anti-spermatogenetic activity. Furthermore, it possesses anti-cancer, anti-inflammation, anti-neurodegeneration, and anti-ototoxicity activities based on studies using different in vitro and in vivo models. Studies on adjudin should be expanded to better understand its biological activities so that it can become a useful drug for treatment of other ailments besides serving as a male contraceptive.

  16. Euphorbia neriifolia L.: Review on botany, ethnomedicinal uses, phytochemistry and biological activities.

    PubMed

    Mali, Prashant Y; Panchal, Shital S

    2017-05-01

    The present review is intended to provide information on botany, ethnomedicinal uses, phytochemistry and biological activities of various parts of Euphorbia neriifolia (E. neriifolia). E. neriifolia has several ethnomedicinal uses. The latex of E. neriifolia is used as laxative, purgative, rubefacient, carminative and expectorant as well as in treatment of whooping cough, gonorrhoea, leprosy, asthma, dyspepsia, jaundice, enlargement of the spleen, tumours, stone in the bladder, abdominal troubles and leucoderma. Leaves are brittle, heating, carminative, and good for improving the appetite and treatment of tumours, pains, inflammations, abdominal swellings and bronchial infections. Roots are used as symptomatic treatment of snake bite, scorpion sting and antispasmodic. Various plant parts or whole E. neriifolia extract and its isolates have been reported scientifically using various in-vivo and in-vitro experimental methods for anaesthetic, analgesic, anti-anxiety, anti-convulsant, anti-psychotic, anti-arthritis, anti-carcinogenic, antidiabetic, anti-diarrhoeal, anti-inflammatory, anti-thrombotic, antimicrobial, antioxidant, antiulcer, cytotoxic, death-receptor expression enhancing, dermal irritation, diuretic, haemolytic, immunomodulatory, radioprotective, scorpion venom and wound healing properties. It is reported to have chemical constituents like, neriifolin-S, neriifolin, neriifoliene, euphol, neriifolione, cycloartenol, nerifoliol, lectin, euphonerins A-G, 3-O-acetyl-8-O-tigloylingol, taraxerol, antiquorin, etc. Identified chemical constituents are still required to be explored for their advanced isolation techniques and biological activities. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  17. Low Budget Biology. A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains a collection of low cost labs and activities. The activities are organized into the following units: Chemistry; Microbiology; DNA to Chromosomes; Genetics; Evolution; Classification, Protist, and Fungus; Plant; Invertebrate; Human Biology; and Ecology and Miscellaneous. Some of the activities within these units include: (1)…

  18. Synthesis and biological activities of fluorinated chalcone derivatives.

    PubMed

    Nakamura, Chika; Kawasaki, Nobuhide; Miyataka, Hideki; Jayachandran, Ezhuthachan; Kim, In Ho; Kirk, Kenneth L; Taguchi, Takeo; Takeuchi, Yoshio; Hori, Hitoshi; Satoh, Toshio

    2002-03-01

    We have designed and synthesized new 5-lipoxygenase inhibitors, fluorinated 3,4-dihydroxychalcones, and evaluated their biological activities with respect to antiperoxidation activity and in vitro antitumor activities. All fluorinated chalcones tested showed 5-lipoxygenase inhibition on rat basophilic leukemia-1 (RBL-1) cells and inhibitory action on Fe(3+)-ADP induced NADPH-dependent lipid peroxidation in rat liver microsomes. The potencies were comparable or better to that of the lead 3,4-dihydroxychalcone. 6-Fluoro-3,4-dihydroxy-2',4'-dimethoxy chalcone (7) was the most effective compound in the in vitro assay using a human cancer cell line panel (HCC panel) consisting of 39 systems.

  19. Three Activities To Assist Biology Teachers in Presenting Conceptually Difficult Topics.

    ERIC Educational Resources Information Center

    Taylor, Neil; Tulip, David

    1997-01-01

    Outlines three activities for different areas of biology that can serve as motivators for students or as demonstrations. Each activity is easy to organize and uses available materials. Topics include evolution, anaerobic respiration, and heat loss. (DDR)

  20. Whole Exome Sequencing, Familial Genomic Triangulation, and Systems Biology Converge to Identify a Novel Nonsense Mutation in TAB2-encoded TGF-beta Activated Kinase 1 in a Child with Polyvalvular Syndrome.

    PubMed

    Ackerman, Jaeger P; Smestad, John A; Tester, David J; Qureshi, Muhammad Y; Crabb, Beau A; Mendelsohn, Nancy J; Ackerman, Michael J

    2016-09-01

    To use whole exome sequencing (WES) of a family trio to identify a genetic cause for polyvalvular syndrome. A male child was born with mild pulmonary valve stenosis and mild aortic root dilatation, and an atrial septal defect, ventricular septal defect, and patent ductus arteriosus that were closed surgically. Subsequently, the phenotype of polyvalvular syndrome with involvement of both semilunar and both atrioventricular valves emerged. His family history was negative for congenital heart disease. Because of hypotonia, myopia, soft pale skin, joint hypermobility, and mild facial dysmorphism, either Noonan syndrome- or William syndrome-spectrum disorders were suspected clinically. However, chromosomal analysis was normal and commercially available Noonan syndrome and William syndrome genetic tests were negative. Whole exome sequencing of the patient and both parents was performed. Variants were analyzed by sporadic and autosomal recessive inheritance models. A sporadic mutation, annotated as c.1491 T > A, in TAB2, resulting in a nonsense mutation, p.Y497X, in the TAB2-encoded TGF-beta activated kinase 1 (TAK1) was identified as the most likely disease-susceptibility gene. This mutation results in elimination of the terminal 197 amino acids, including the C-terminal binding motif critical for interactions with TRAF6 and TAK1. The combination of WES, genomic triangulation, and systems biology has uncovered perturbations in TGF-beta activated kinase 1 signaling as a novel pathogenic substrate for polyvalvular syndrome. © 2016 Wiley Periodicals, Inc.

  1. Incorporating ToxCast and Tox21 Datasets to Rank Biological Activity of Chemicals at Superfund Sites in North Carolina

    PubMed Central

    Tilley, Sloane K.; Reif, David M.; Fry, Rebecca C.

    2017-01-01

    Background The Superfund program of the Environmental Protection Agency (EPA) was established in 1980 to address public health concerns posed by toxic substances released into the environment in the United States. Forty-two of the 1328 hazardous waste sites that remain on the Superfund National Priority List are located in the state of North Carolina. Methods We set out to develop a database that contained information on both the prevalence and biological activity of chemicals present at Superfund sites in North Carolina. A chemical characterization tool, the Toxicological Priority Index (ToxPi), was used to rank the biological activity of these chemicals based on their predicted bioavailability, documented associations with biological pathways, and activity in in vitro assays of the ToxCast and Tox21 programs. Results The ten most prevalent chemicals found at North Carolina Superfund sites were chromium, trichloroethene, lead, tetrachloroethene, arsenic, benzene, manganese, 1,2-dichloroethane, nickel, and barium. For all chemicals found at North Carolina Superfund sites, ToxPi analysis was used to rank their biological activity. Through this data integration, residual pesticides and organic solvents were identified to be some of the most highly-ranking predicted bioactive chemicals. This study provides a novel methodology for creating state or regional databases of Superfund sites. Conclusions These data represent a novel integrated profile of the most prevalent chemicals at North Carolina Superfund sites. This information, and the associated methodology, is useful to toxicologists, risk assessors, and the communities living in close proximity to these sites. PMID:28153528

  2. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  3. Omics of Brucella: Species-Specific sRNA-Mediated Gene Ontology Regulatory Networks Identified by Computational Biology.

    PubMed

    Vishnu, Udayakumar S; Sankarasubramanian, Jagadesan; Gunasekaran, Paramasamy; Sridhar, Jayavel; Rajendhran, Jeyaprakash

    2016-06-01

    Brucella is an intracellular bacterium that causes the zoonotic infectious disease, brucellosis. Brucella species are currently intensively studied with a view to developing novel global health diagnostics and therapeutics. In this context, small RNAs (sRNAs) are one of the emerging topical areas; they play significant roles in regulating gene expression and cellular processes in bacteria. In the present study, we forecast sRNAs in three Brucella species that infect humans, namely Brucella melitensis, Brucella abortus, and Brucella suis, using a computational biology analysis. We combined two bioinformatic algorithms, SIPHT and sRNAscanner. In B. melitensis 16M, 21 sRNA candidates were identified, of which 14 were novel. Similarly, 14 sRNAs were identified in B. abortus, of which four were novel. In B. suis, 16 sRNAs were identified, and five of them were novel. TargetRNA2 software predicted the putative target genes that could be regulated by the identified sRNAs. The identified mRNA targets are involved in carbohydrate, amino acid, lipid, nucleotide, and coenzyme metabolism and transport, energy production and conversion, replication, recombination, repair, and transcription. Additionally, the Gene Ontology (GO) network analysis revealed the species-specific, sRNA-based regulatory networks in B. melitensis, B. abortus, and B. suis. Taken together, although sRNAs are veritable modulators of gene expression in prokaryotes, there are few reports on the significance of sRNAs in Brucella. This report begins to address this literature gap by offering a series of initial observations based on computational biology to pave the way for future experimental analysis of sRNAs and their targets to explain the complex pathogenesis of Brucella.

  4. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The coronafacoyl phytotoxins: structure, biosynthesis, regulation and biological activities.

    PubMed

    Bignell, Dawn R D; Cheng, Zhenlong; Bown, Luke

    2018-05-01

    Phytotoxins are secondary metabolites that contribute to the development and/or severity of diseases caused by various plant pathogenic microorganisms. The coronafacoyl phytotoxins are an important family of plant toxins that are known or suspected to be produced by several phylogenetically distinct plant pathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabies. At least seven different family members have been identified, of which coronatine was the first to be described and is the best-characterized. Though nonessential for disease development, coronafacoyl phytotoxins appear to enhance the severity of disease symptoms induced by pathogenic microbes during host infection. In addition, the identification of coronafacoyl phytotoxin biosynthetic genes in organisms not known to be plant pathogens suggests that these metabolites may have additional roles other than as virulence factors. This review focuses on our current understanding of the structures, biosynthesis, regulation, biological activities and evolution of coronafacoyl phytotoxins as well as the different methods that are used to detect these metabolites and the organisms that produce them.

  6. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops

  7. Identifying cooperative transcriptional regulations using protein–protein interactions

    PubMed Central

    Nagamine, Nobuyoshi; Kawada, Yuji; Sakakibara, Yasubumi

    2005-01-01

    Cooperative transcriptional activations among multiple transcription factors (TFs) are important to understand the mechanisms of complex transcriptional regulations in eukaryotes. Previous studies have attempted to find cooperative TFs based on gene expression data with gene expression profiles as a measure of similarity of gene regulations. In this paper, we use protein–protein interaction data to infer synergistic binding of cooperative TFs. Our fundamental idea is based on the assumption that genes contributing to a similar biological process are regulated under the same control mechanism. First, the protein–protein interaction networks are used to calculate the similarity of biological processes among genes. Second, we integrate this similarity and the chromatin immuno-precipitation data to identify cooperative TFs. Our computational experiments in yeast show that predictions made by our method have successfully identified eight pairs of cooperative TFs that have literature evidences but could not be identified by the previous method. Further, 12 new possible pairs have been inferred and we have examined the biological relevances for them. However, since a typical problem using protein–protein interaction data is that many false-positive data are contained, we propose a method combining various biological data to increase the prediction accuracy. PMID:16126847

  8. PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables.

    PubMed

    Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C; Downing, James R; Lamba, Jatinder

    2009-08-15

    In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org.

  9. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    PubMed Central

    Ambati, Ranga Rao; Siew Moi, Phang; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  10. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  11. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  12. Models Role within Active Learning in Biology. A Case Study

    ERIC Educational Resources Information Center

    Pop-Pacurar, Irina; Tirla, Felicia-Doina

    2009-01-01

    In order to integrate ideas and information creatively, to motivate students and activate their thinking, we have used in Biology classes a series of active methods, among which the methods of critical thinking, which had very good results. Still, in the case of some intuitive, abstract, more difficult topics, such as the cell structure,…

  13. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    ERIC Educational Resources Information Center

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  14. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    PubMed Central

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation. PMID:23569975

  15. Biological Activities of Polyphenols from Grapes

    PubMed Central

    Xia, En-Qin; Deng, Gui-Fang; Guo, Ya-Jun; Li, Hua-Bin

    2010-01-01

    The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included. PMID:20386657

  16. Effects of Biology Teachers' Professional Knowledge and Cognitive Activation on Students' Achievement

    ERIC Educational Resources Information Center

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-01-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge--pedagogical content knowledge (PCK) and content knowledge (CK)--and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on…

  17. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  18. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    PubMed

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Adjudin - A Male Contraceptive with Other Biological Activities

    PubMed Central

    Cheng, Yan-Ho; Xia, Weiliang; Wong, Elissa W.P.; Xie, Qian R.; Shao, Jiaxiang; Liu, Tengyuan; Quan, Yizhou; Zhang, Tingting; Yang, Xiao; Geng, Keyi; Silvestrini, Bruno; Cheng, Chuen-Yan

    2018-01-01

    Background Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated. Objective Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents. Results of these findings likely spark the interest of investigators to explore other medical use of this and other indazole-based compounds, possibly mediated by the signaling pathway(s) in the mitochondria of mammalian cells following treatment with adjudin. In this review, we carefully evaluate these recent findings. Methods Papers published and listed at www.pubmed.org and patents pertinent to adjudin and its related compounds were searched. Findings were reviewed and critically evaluated, and summarized herein. Results Adjudin is a novel compound that possesses anti-spermatogenetic activity. Furthermore, it possesses anti-cancer, anti-inflammation, anti-neurodegeneration, and anti-ototoxicity activities based on studies using different in vitro and in vivo models. Conclusion: Studies on adjudin should be expanded to better understand its biological activities so that it can become a useful drug for treatment of other ailments besides serving as a male contraceptive. PMID:26510796

  20. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  1. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    PubMed

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  3. Biologically active traditional medicinal herbs from Balochistan, Pakistan.

    PubMed

    Zaidi, Mudassir A; Crow, Sidney A

    2005-01-04

    The biological activities of the following four important medicinal plants of Balochistan, Pakistan were checked; Grewia erythraea Schwein f. (Tiliaceae), Hymenocrater sessilifolius Fisch. and C.A. Mey (Lamiaceae), Vincetoxicum stocksii Ali and Khatoon (Asclepiadaceae) and Zygophyllum fabago L. (Zygophyllaceae). The methanolic extracts were fractionated into hexane, ethyl acetate, chloroform, butanol and water. The antifungal and antibacterial activities of these plants were determined against 12 fungal and 12 bacterial strains by agar well diffusion and disk diffusion assays. The extract of Zygophyllum fabago was found to be highly effective against Candida albicans and Escherichia coli. The extract of Vincetoxicum stocksii was also found to be significantly active against Candida albicans, Bacillus subtilis and Bacillus cereus. Extracts of Hymenocrater sessilifolius and Grewia erythraea showed good activity only against Pseudomonas aeruginosa.

  4. CASE STUDY DEMONSTRATING THE STRESSOR IDENTIFICATION PROCESS THAT IDENTIFIES CAUSES OF BIOLOGICAL IMPAIRMENT IN THE NATION'S WATER BODIES

    EPA Science Inventory

    The stressor identification program developed guidance for identifying the causes of biological impairments in the nation's waters:

    U.S. EPA. 2000. Stressor identification guidance document. EPA/822/B-00/025. U.S. Environmental Protection Agency, Washington, DC.

    The ...

  5. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities.

    PubMed

    Pei, Kehan; Ou, Juanying; Huang, Junqing; Ou, Shiyi

    2016-07-01

    p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Effect of cooking and cold storage on biologically active antibiotic residues in meat.

    PubMed Central

    O'Brien, J. J.; Campbell, N.; Conaghan, T.

    1981-01-01

    An investigation was undertaken to see if cooking or cold storage would destroy or decrease the level of biologically active antibiotic in tissues from animals given therapeutic doses of antibiotic on three occasions prior to slaughter. The effects of cooking and cold storage on the biological activity of the residues of ampicillin, chloramphenicol, oxytetracycline, streptomycin and sulphadimidine were varied; in some instances the effects were minimal, in others nil. PMID:7310129

  7. Identifying clusters of active transportation using spatial scan statistics.

    PubMed

    Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David

    2009-08-01

    There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.

  8. Identifying Clusters of Active Transportation Using Spatial Scan Statistics

    PubMed Central

    Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David

    2009-01-01

    Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451

  9. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  10. Examples of testing global identifiability of biological and biomedical models with the DAISY software.

    PubMed

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina

    2010-04-01

    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. 2010 Elsevier Ltd. All rights reserved.

  11. COMPUTER PREDICTION OF BIOLOGICAL ACTIVITY OF DIMETHYL-N-(BENZOYL)AMIDOPHOSPHATE AND DIMETHYL-N-(PHENYLSULFONYL)AMIDOPHOSPHATE, EVALUATION OF THEIR CYTOTOXIC ACTIVITY AGAINST LEUKEMIC CELLS IN VITRO.

    PubMed

    Grynyuk, I I; Prylutska, S V; Kariaka, N S; Sliva, T Yu; Moroz, O V; Franskevych, D V; Amirkhanov, V M; Matyshevska, O P; Slobodyanik, M S

    2015-01-01

    Structural analogues of β-diketones--dimethyl-N-(benzoyl)amidophosphate (HCP) and dimethyl-N-(phenylsulfonyl)amidophosphate (HSP) were synthesized and identified by the methods of IR, 1H and 31P NMR spectroscopy. Screening of biological activity and calculation of physicochemical parameters of HCP and HSP compounds were done with the use of PASS and ACD/Labs computer programs. A wide range of biological activity of synthesized compounds, antitumor activity in particular, has been found. Calculations of the bioavailability criteria indicate that the investigated compounds have no deviations from Lipinski's rules. HCP compound is characterized by a high lipophilicity at physiological pH as compared to HSP. It was found that cytotoxic effect of the studied compounds on the leukemic L1210 cells was of time- and dose-dependent character. HCP is characterized by more pronounced and early cytotoxic effects as compared to HSP. It was shown that 2.5 mM HCP increased ROS production 3 times in the early period of incubation, and decreased cell viability by 40% after 48 h, and by 66%--after 72 h. Based on the computer calculation and undertaken research, HCP was selected for target chemical modifications and enhancement of its antitumor effect.

  12. Biological activities of crystalline pertussigen from Bordetella pertussis.

    PubMed Central

    Munoz, J J; Arai, H; Bergman, R K; Sadowski, P L

    1981-01-01

    We studied various biological activities of crystalline pertussigen and found that in mice as little as 0.5 ng of pertussigen induced hypersensitivity to histamine, 8 to 40 ng induced leukocytosis, 2 ng increased production of insulin, 0.1 ng increased production of immunoglobulin E and immunoglobulin G1 antibodies to hen egg albumin, 9.5 ng increased susceptibility to anaphylactic shock, and 0.5 ng increased the vascular permeability of striated muscle. We also found that in Lewis rats 20 ng of pertussigen promoted the induction of hyperacute experimental allergic encephalomyelitis. Pertussigen given intraperitoneally was toxic to mice at a dose of 546 ng. Treatment of pertussigen with glutaraldehyde eliminated this toxicity. Mice immunized with 1,700 ng of detoxified pertussigen were protected against intracerebral challenge with 3 x 10(4) viable Bordetella pertussis cells. When as little as 0.5 ng of pertussigen was given intravenously to mice, the increased susceptibility of the animals to histamine could still be detected 84 days later. The biological properties of crystalline pertussigen indicate its similarity to leukocytosis-promoting factor, Islet-activating protein, late-appearing toxic factor, and mouse-protective antigen of B. pertussis. PMID:6269999

  13. Occurrence, biological activity and metabolism of 6-shogaol.

    PubMed

    Kou, Xingran; Wang, Xiaoqi; Ji, Ruya; Liu, Lang; Qiao, Yening; Lou, Zaixiang; Ma, Chaoyang; Li, Shiming; Wang, Hongxin; Ho, Chi-Tang

    2018-03-01

    As one of the main bioactive compounds of dried ginger, 6-shogaol has been widely used to alleviate many ailments. It is also a major pungent flavor component, and its precursor prior to dehydration is 6-gingerol, which is reported to be responsible for the pungent flavor and biological activity of fresh ginger. Structurally, gingerols including 6-gingerol have a β-hydroxyl ketone moiety and is liable to dehydrate to generate an α,β-unsaturated ketone under heat and/or acidic conditions. The conjugation of the α,β-unsaturated ketone skeleton in the chemical structure of 6-shogaol explicates its higher potency and efficacy than 6-gingerol in terms of antioxidant, anti-inflammatory, anticancer, antiemetic and other bioactivities. Research on the health benefits of 6-shogaol has been conducted and results have been reported recently; however, scientific data are scattered due to a lack of systematic collection. In addition, action mechanisms of the preventive and/or therapeutic actions of 6-shogaol remain obscurely non-collective. Herein, we review the preparations, biological activity and mechanisms, and metabolism of 6-shogaol as well as the properties of 6-shogaol metabolites.

  14. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  15. Tocotrienols: A Family of Molecules with Specific Biological Activities

    PubMed Central

    Comitato, Raffaella; Ambra, Roberto

    2017-01-01

    Vitamin E is a generic term frequently used to group together eight different molecules, namely: α-, β-, γ- and δ-tocopherol and the corresponding tocotrienols. The term tocopherol and eventually Vitamin E and its related activity was originally based on the capacity of countering foetal re-absorption in deficient rodents or the development of encephalomalacia in chickens. In humans, Vitamin E activity is generally considered to be solely related to the antioxidant properties of the tocolic chemical structure. In recent years, several reports have shown that specific activities exist for each different tocotrienol form. In this short review, tocotrienol ability to inhibit cancer cell growth and induce apoptosis thanks to specific mechanisms, not shared by tocopherols, such as the binding to Estrogen Receptor-β (ERβ) and the triggering of endoplasmic reticulum (EndoR) stress will be described. The neuroprotective activity will also be presented and discussed. We propose that available studies strongly indicate that specific forms of tocotrienols have a distinct mechanism and biological activity, significantly different from tocopherol and more specifically from α-tocopherol. We therefore suggest not pooling them together within the broad term “Vitamin E” on solely the basis of their putative antioxidant properties. This option implies obvious consequences in the assessment of dietary Vitamin E adequacy and, probably more importantly, on the possibility of evaluating a separate biological variable, determinant in the relationship between diet and health. PMID:29156559

  16. Mango ginger (Curcuma amada Roxb.)--a promising spice for phytochemicals and biological activities.

    PubMed

    Policegoudra, R S; Aradhya, S M; Singh, L

    2011-09-01

    Mango ginger (Curcuma amada Roxb.) is a unique spice having morphological resemblance with ginger but imparts a raw mango flavour. The main use of mango ginger rhizome is in the manufacture of pickles and culinary preparations. Ayurveda and Unani medicinal systems have given much importance to mango ginger as an appetizer, alexteric, antipyretic, aphrodisiac, diuretic, emollient, expectorant and laxative and to cure biliousness, itching, skin diseases, bronchitis, asthma, hiccough and inflammation due to injuries. The biological activities of mango ginger include antioxidant activity, antibacterial activity, antifungal activity, anti-inflammatory activity, platelet aggregation inhibitory activity, cytotoxicity, antiallergic activity, hypotriglyceridemic activity, brine-shrimp lethal activity, enterokinase inhibitory activity, CNS depressant and analgesic activity. The major chemical components include starch, phenolic acids, volatile oils, curcuminoids and terpenoids like difurocumenonol, amadannulen and amadaldehyde. This article brings to light the major active components present in C. amada along with their biological activities that may be important from the pharmacological point of view.

  17. Identifying Crucial Parameter Correlations Maintaining Bursting Activity

    PubMed Central

    Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358

  18. A review of active learning approaches to experimental design for uncovering biological networks

    PubMed Central

    2017-01-01

    Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area. PMID:28570593

  19. Humic substances biological activity at the plant-soil interface

    PubMed Central

    Trevisan, Sara; Francioso, Ornella; Nardi, Serenella

    2010-01-01

    Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an “auxin-like” activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities. PMID:20495384

  20. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  1. Investigating biological activity spectrum for novel styrylquinazoline analogues.

    PubMed

    Jampilek, Josef; Musiol, Robert; Finster, Jacek; Pesko, Matus; Carroll, James; Kralova, Katarina; Vejsova, Marcela; O'Mahony, Jim; Coffey, Aidan; Dohnal, Jiri; Polanski, Jaroslaw

    2009-10-23

    In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  2. Biological activities of aqueous extract from Cinnamomum porrectum

    NASA Astrophysics Data System (ADS)

    Farah, H. Siti; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.

  3. Active matter at the interface between materials science and cell biology

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel; Dogic, Zvonimir

    2017-09-01

    The remarkable processes that characterize living organisms, such as motility, self-healing and reproduction, are fuelled by a continuous injection of energy at the microscale. The field of active matter focuses on understanding how the collective behaviours of internally driven components can give rise to these biological phenomena, while also striving to produce synthetic materials composed of active energy-consuming components. The synergistic approach of studying active matter in both living cells and reconstituted systems assembled from biochemical building blocks has the potential to transform our understanding of both cell biology and materials science. This methodology can provide insight into the fundamental principles that govern the dynamical behaviours of self-organizing subcellular structures, and can lead to the design of artificial materials and machines that operate away from equilibrium and can thus attain life-like properties. In this Review, we focus on active materials made of cytoskeletal components, highlighting the role of active stresses and how they drive self-organization of both cellular structures and macroscale materials, which are machines powered by nanomachines.

  4. Identifying transcription factor functions and targets by phenotypic activation

    PubMed Central

    Chua, Gordon; Morris, Quaid D.; Sopko, Richelle; Robinson, Mark D.; Ryan, Owen; Chan, Esther T.; Frey, Brendan J.; Andrews, Brenda J.; Boone, Charles; Hughes, Timothy R.

    2006-01-01

    Mapping transcriptional regulatory networks is difficult because many transcription factors (TFs) are activated only under specific conditions. We describe a generic strategy for identifying genes and pathways induced by individual TFs that does not require knowledge of their normal activation cues. Microarray analysis of 55 yeast TFs that caused a growth phenotype when overexpressed showed that the majority caused increased transcript levels of genes in specific physiological categories, suggesting a mechanism for growth inhibition. Induced genes typically included established targets and genes with consensus promoter motifs, if known, indicating that these data are useful for identifying potential new target genes and binding sites. We identified the sequence 5′-TCACGCAA as a binding sequence for Hms1p, a TF that positively regulates pseudohyphal growth and previously had no known motif. The general strategy outlined here presents a straightforward approach to discovery of TF activities and mapping targets that could be adapted to any organism with transgenic technology. PMID:16880382

  5. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants.

    PubMed

    Al-Momani, Shireen; Qi, Da; Ren, Zhe; Jones, Andrew R

    2018-06-15

    Phosphorylation is one of the most prevalent post-translational modifications and plays a key role in regulating cellular processes. We carried out a bioinformatics analysis of pre-existing phosphoproteomics data, to profile two model species representing the largest subclasses in flowering plants the dicot Arabidopsis thaliana and the monocot Oryza sativa, to understand the extent to which phosphorylation signaling and function is conserved across evolutionary divergent plants. We identified 6537 phosphopeptides from 3189 phosphoproteins in Arabidopsis and 2307 phosphopeptides from 1613 phosphoproteins in rice. We identified phosphorylation motifs, finding nineteen pS motifs and two pT motifs shared in rice and Arabidopsis. The majority of shared motif-containing proteins were mapped to the same biological processes with similar patterns of fold enrichment, indicating high functional conservation. We also identified shared patterns of crosstalk between phosphoserines with enrichment for motifs pSXpS, pSXXpS and pSXXXpS, where X is any amino acid. Lastly, our results identified several pairs of motifs that are significantly enriched to co-occur in Arabidopsis proteins, indicating cross-talk between different sites, but this was not observed in rice. Our results demonstrate that there are evolutionary conserved mechanisms of phosphorylation-mediated signaling in plants, via analysis of high-throughput phosphorylation proteomics data from key monocot and dicot species: rice and Arabidposis thaliana. The results also suggest that there is increased crosstalk between phosphorylation sites in A. thaliana compared with rice. The results are important for our general understanding of cell signaling in plants, and the ability to use A. thaliana as a general model for plant biology. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Saponins from sea cucumber and their biological activities.

    PubMed

    Zhao, Yingcai; Xue, Changhu; Zhang, Tiantian; Wang, YuMing

    2018-06-22

    Sea cucumbers, belonging to the phylum Echinodermata, have been valued for centuries as a nutritious and functional food with various bioactivities. Sea cucumbers can produce highly active substances, notably saponins, the main secondary metabolites, which are the basis of their chemical defense. The saponins are mostly triterpene glycosides with triterpenes or steroid in aglycone, which possess multiple biological properties including anti-tumor, hypolipidemic activity, improvement of nonalcoholic fatty liver, inhibition of fat accumulation, anti-hyperuricemia, promotion of bone marrow hematopoiesis, anti-hypertension, etc. Sea cucumber saponins have received attention due to their rich sources, low toxicity, high efficiency, and few side effects. This review summarizes current research on the structure and activities of sea cucumber saponins based on the physiological and pharmacological activities from source, experimental models, efficacy and mechanisms, which may provide a valuable reference for the development of sea cucumber saponins.

  7. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    PubMed

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  8. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  9. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    PubMed Central

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  10. Biological activities of extracts from Chenopodium ambrosioides Lineu and Kielmeyera neglecta Saddi

    PubMed Central

    2012-01-01

    Background Chenopodium ambrosioides and Kielmeyera neglecta are plants traditionally used in Brazil to treat various infectious diseases. The study of the biological activities of these plants is of great importance for the detection of biologically active compounds. Methods Extracts from these plants were extracted with hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol (EtOH) and assessed for their antimicrobial properties, bioactivity against Artemia salina Leach and antifungal action on the cell wall of Neurospora crassa. Results Extracts from C. ambrosioides (Hex, DCM and EtOH) and K. neglecta (EtOAc and EtOH) showed high bioactivity against A. salina (LD50 < 1000 μg/mL), which might be associated with cytotoxic activity against cancer cells. C. ambrosioides Hex and DCM showed specific activity against yeasts, highlighting the activity of hexanic extract against Candida krusei (MIC = 100 μg/mL). By comparing the inhibitory concentration of 50% growth (IC 50%) with the growth control, extracts from K. neglecta EtOAc and EtOH have shown activities against multidrug-resistant bacteria (Enterococcus faecalis ATCC 51299 and Staphylococcus aureus ATCC 43300), with IC 50% of 12.5 μg/mL The assay carried out on N. crassa allowed defining that extracts with antifungal activity do not have action through inhibition of cell wall synthesis. Conclusions Generally speaking, extracts from C. ambrosioides and K. neglecta showed biological activities that have made the search for bioactive substances in these plants more attractive, illustrating the success of their use in the Brazilian folk medicine. PMID:22839690

  11. Low Budget Biology 3: A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains biology labs, demonstrations, and activities that use low budget materials. The goal is to get students involved in the learning process by experiencing biology. Each lab has a teacher preparation section which outlines the purpose of the lab, some basic information, a list of materials , and how to prepare the different…

  12. Biological Activities and Chemical Composition of Methanolic Extracts of Selected Autochthonous Microalgae Strains from the Red Sea.

    PubMed

    Pereira, Hugo; Custódio, Luísa; Rodrigues, Maria João; de Sousa, Carolina Bruno; Oliveira, Marta; Barreira, Luísa; Neng, Nuno da Rosa; Nogueira, José Manuel Florêncio; Alrokayan, Salman A; Mouffouk, Fouzi; Abu-Salah, Khalid M; Ben-Hamadou, Radhouan; Varela, João

    2015-06-03

    Four lipid-rich microalgal species from the Red Sea belonging to three different genera (Nannochloris, Picochlorum and Desmochloris), previously isolated as novel biodiesel feedstocks, were bioprospected for high-value, bioactive molecules. Methanol extracts were thus prepared from freeze-dried biomass and screened for different biological activities. Nannochloris sp. SBL1 and Desmochloris sp. SBL3 had the highest radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, and the best copper and iron chelating activities. All species had potent butyrylcholinesterase inhibitory activity (>50%) and mildly inhibited tyrosinase. Picochlorum sp. SBL2 and Nannochloris sp. SBL4 extracts significantly reduced the viability of tumoral (HepG2 and HeLa) cells with lower toxicity against the non-tumoral murine stromal (S17) cells. Nannochloris sp. SBL1 significantly reduced the viability of Leishmania infantum down to 62% (250 µg/mL). Picochlorum sp. SBL2 had the highest total phenolic content, the major phenolic compounds identified being salicylic, coumaric and gallic acids. Neoxanthin, violaxanthin, zeaxanthin, lutein and β-carotene were identified in the extracts of all strains, while canthaxanthin was only identified in Picochlorum sp. SBL2. Taken together, these results strongly suggest that the microalgae included in this work could be used as sources of added-value products that could be used to upgrade the final biomass value.

  13. Biological Activities and Chemical Composition of Methanolic Extracts of Selected Autochthonous Microalgae Strains from the Red Sea

    PubMed Central

    Pereira, Hugo; Custódio, Luísa; Rodrigues, Maria João; Bruno de Sousa, Carolina; Oliveira, Marta; Barreira, Luísa; Neng, Nuno da Rosa; Nogueira, José Manuel Florêncio; Alrokayan, Salman A.; Mouffouk, Fouzi; Abu-Salah, Khalid M.; Ben-Hamadou, Radhouan; Varela, João

    2015-01-01

    Four lipid-rich microalgal species from the Red Sea belonging to three different genera (Nannochloris, Picochlorum and Desmochloris), previously isolated as novel biodiesel feedstocks, were bioprospected for high-value, bioactive molecules. Methanol extracts were thus prepared from freeze-dried biomass and screened for different biological activities. Nannochloris sp. SBL1 and Desmochloris sp. SBL3 had the highest radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, and the best copper and iron chelating activities. All species had potent butyrylcholinesterase inhibitory activity (>50%) and mildly inhibited tyrosinase. Picochlorum sp. SBL2 and Nannochloris sp. SBL4 extracts significantly reduced the viability of tumoral (HepG2 and HeLa) cells with lower toxicity against the non-tumoral murine stromal (S17) cells. Nannochloris sp. SBL1 significantly reduced the viability of Leishmania infantum down to 62% (250 µg/mL). Picochlorum sp. SBL2 had the highest total phenolic content, the major phenolic compounds identified being salicylic, coumaric and gallic acids. Neoxanthin, violaxanthin, zeaxanthin, lutein and β-carotene were identified in the extracts of all strains, while canthaxanthin was only identified in Picochlorum sp. SBL2. Taken together, these results strongly suggest that the microalgae included in this work could be used as sources of added-value products that could be used to upgrade the final biomass value. PMID:26047482

  14. Myricetin: A Dietary Molecule with Diverse Biological Activities

    PubMed Central

    Semwal, Deepak Kumar; Semwal, Ruchi Badoni; Combrinck, Sandra; Viljoen, Alvaro

    2016-01-01

    Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities. PMID:26891321

  15. Milk kefir: composition, microbial cultures, biological activities, and related products.

    PubMed

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  16. Identifying Metabolically Active Chemicals Using a Consensus ...

    EPA Pesticide Factsheets

    Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals across hundreds of biological targets through use of in vitro assays. Endocrine disrupting chemicals (EDCs) are of concern due to their ability to alter neurodevelopment, behavior, and reproductive success of humans and other species. A recent integrated computational model examined results across 18 ER-related assays in the ToxCast in vitro screening program to eliminate chemicals that produce a false signal by possibly interfering with the technological attributes of an individual assay. However, in vitro assays can also lead to false negatives when the complex metabolic processes that render a chemical bioactive in a living system might be unable to be replicated in an in vitro environment. In the current study, the influence of metabolism was examined for over 1,400 chemicals considered inactive using the integrated computational model. Over 2,000 first-generation and over 4,000 second-generation metabolites were generated for the inactive chemicals using in silico techniques. Next, a consensus model comprised of individual structure activity relationship (SAR) models was used to predict ER-binding activity for each of the metabolites. Binding activity was predicted for 8-10% of the meta

  17. Microbial survey of a full-scale, biologically active filter for treatment of drinking water.

    PubMed

    White, Colin P; Debry, Ronald W; Lytle, Darren A

    2012-09-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods.

  18. Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms.

    PubMed

    Boland, Mary Regina; Jacunski, Alexandra; Lorberbaum, Tal; Romano, Joseph D; Moskovitch, Robert; Tatonetti, Nicholas P

    2016-01-01

    Small molecules are indispensable to modern medical therapy. However, their use may lead to unintended, negative medical outcomes commonly referred to as adverse drug reactions (ADRs). These effects vary widely in mechanism, severity, and populations affected, making ADR prediction and identification important public health concerns. Current methods rely on clinical trials and postmarket surveillance programs to find novel ADRs; however, clinical trials are limited by small sample size, whereas postmarket surveillance methods may be biased and inherently leave patients at risk until sufficient clinical evidence has been gathered. Systems pharmacology, an emerging interdisciplinary field combining network and chemical biology, provides important tools to uncover and understand ADRs and may mitigate the drawbacks of traditional methods. In particular, network analysis allows researchers to integrate heterogeneous data sources and quantify the interactions between biological and chemical entities. Recent work in this area has combined chemical, biological, and large-scale observational health data to predict ADRs in both individual patients and global populations. In this review, we explore the rapid expansion of systems pharmacology in the study of ADRs. We enumerate the existing methods and strategies and illustrate progress in the field with a model framework that incorporates crucial data elements, such as diet and comorbidities, known to modulate ADR risk. Using this framework, we highlight avenues of research that may currently be underexplored, representing opportunities for future work. © 2015 Wiley Periodicals, Inc.

  19. Biological conversion system

    DOEpatents

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  20. Identifying key features of effective active learning: the effects of writing and peer discussion.

    PubMed

    Linton, Debra L; Pangle, Wiline M; Wyatt, Kevin H; Powell, Karli N; Sherwood, Rachel E

    2014-01-01

    We investigated some of the key features of effective active learning by comparing the outcomes of three different methods of implementing active-learning exercises in a majors introductory biology course. Students completed activities in one of three treatments: discussion, writing, and discussion + writing. Treatments were rotated weekly between three sections taught by three different instructors in a full factorial design. The data set was analyzed by generalized linear mixed-effect models with three independent variables: student aptitude, treatment, and instructor, and three dependent (assessment) variables: change in score on pre- and postactivity clicker questions, and coding scores on in-class writing and exam essays. All independent variables had significant effects on student performance for at least one of the dependent variables. Students with higher aptitude scored higher on all assessments. Student scores were higher on exam essay questions when the activity was implemented with a writing component compared with peer discussion only. There was a significant effect of instructor, with instructors showing different degrees of effectiveness with active-learning techniques. We suggest that individual writing should be implemented as part of active learning whenever possible and that instructors may need training and practice to become effective with active learning. © 2014 D. L. Linton et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin.

    PubMed

    Kim, Hyun-Joo; Yong, Hae In; Park, Sanghoo; Kim, Kijung; Kim, Tae Hoon; Choe, Wonho; Jo, Cheorun

    2014-10-01

    The biological activity of naringin treated with atmospheric pressure plasma was evaluated to investigate whether exposure to plasma can be used as a method to improve the biological activity of natural materials. Naringin was dissolved in methanol (at 500 ppm) and transferred to a container. A dielectric barrier discharge (DBD) (250 W, 15 kHz, ambient air) was then generated. Treatment with the plasma for 20 min increased the radical-scavenging activity, FRAP value, and the total phenolic compound content of naringin from 1.45% to 38.20%, from 27.78 to 207.78 μM/g, and from 172.50 to 225.83 ppm, respectively. Moreover, the tyrosinase-inhibition effect of naringin increased from 6.12% to 83.30% upon plasma treatment. Naringin treated with plasma exhibited antimicrobial activity against foodborne pathogens, especially Salmonella Typhimurium; an activity that was absent before plasma treatment. Structural modifications induced in the naringin molecule by plasma might be responsible for improving the biological activity of naringin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Preparation and characterization of new biologically active polyurethane foams.

    PubMed

    Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara

    2014-12-01

    Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non

  3. A study on biological activity of marine fungi from different habitats in coastal regions.

    PubMed

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  4. Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris.

    PubMed

    Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-06-05

    Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all

  5. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume

  6. PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables

    PubMed Central

    Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R.; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C.; Downing, James R.; Lamba, Jatinder

    2009-01-01

    Motivation: In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Results: Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Availability: Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org. Contact: stanley.pounds@stjude.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19528086

  7. Structure Diversity, Synthesis, and Biological Activity of Cyathane Diterpenoids in Higher Fungi.

    PubMed

    Tang, Hao-Yu; Yin, Xia; Zhang, Cheng-Chen; Jia, Qian; Gao, Jin-Ming

    2015-01-01

    Cyathane diterpenoids, occurring exclusively in higher basidiomycete (mushrooms), represent a structurally diverse class of natural products based on a characteristic 5-6-7 tricyclic carbon scaffold, including 105 members reported to date. These compounds show a diverse range of biological activities, such as antimicrobial, anti-MRSA, agonistic toward the kappa-opioid receptor, antiinflammatory, anti-proliferative and nerve growth factor (NGF)-like properties. The present review focuses on the structure diversity, structure elucidation and biological studies of these compounds, including mechanisms of actions and structure-activity relationships (SARs). In addition, new progress in chemical synthesis of cyathane diterpenoids is discussed.

  8. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  9. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    PubMed Central

    DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods. PMID:22752177

  10. Plasma-Induced Degradation of Quercetin Associated with the Enhancement of Biological Activities.

    PubMed

    Kim, Tae Hoon; Lee, Jaemin; Kim, Hyun-Joo; Jo, Cheorun

    2017-08-16

    Nonthermal plasma is a promising technology to improve the safety and to extend the shelf-life of various minimally processed foods. However, research on plasma-induced systemic degradation related to changes in chemical structure and biological activity is still very limited. In this study, the enhancement of biological activity and the mechanism of degradation of the most common type of flavonol, quercetin, induced by a dielectric barrier discharge (DBD) plasma were investigated. Quercetin is dissolved in methanol and exposed to nonthermal DBD plasma for 5, 10, 20, and 30 min. The quercetin treated with the plasma for 20 min showed rapidly increased α-glucosidase inhibitory and radical scavenging activities compared to those of parent quercetin. The structures of the degradation products 1-3 from the quercetin treated with the plasma for 20 min were isolated and characterized by interpretation of their spectroscopic data. Among the generated products, (±)-alphitonin (1) exhibited significantly improved antidiabetic and antioxidant properties compared to those of the parent quercetin. The antidiabetic and antioxidant properties were measured by α-glucosidase inhibition and 1,1-diphenyl-2-picrylhydrazyl radical scavenging assays. These results suggested that structural changes in quercetin induced by DBD plasma might be attributable to improving the biological activity.

  11. The Biological Activities of Oleocanthal from a Molecular Perspective

    PubMed Central

    Pang, Kok-Lun; Chin, Kok-Yong

    2018-01-01

    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies. PMID:29734791

  12. The Biological Activities of Oleocanthal from a Molecular Perspective.

    PubMed

    Pang, Kok-Lun; Chin, Kok-Yong

    2018-05-06

    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.

  13. Urine: Waste product or biologically active tissue?

    PubMed

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  14. The biological activity of alpha-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor.

    PubMed

    Larson, Ryan T; Lorch, Jeffrey M; Pridgeon, Julia W; Becnel, James J; Clark, Gary G; Lan, Que

    2010-03-01

    alpha-Mangostin derived from mangosteen was identified as a mosquito sterol carrier protein-2 inhibitor via high throughput insecticide screening, alpha-Mangostin was tested for its larvicidal activity against third instar larvae of six mosquito species, and the median lethal concentration values range from 0.84 to 2.90 ppm. The residual larvicidal activity of alpha-mangostin was examined under semifield conditions. The results indicated that alpha-mangostin was photolytic with a half-life of 53 min in water under full sunlight exposure. The effect of alpha-mangostin on activities of major detoxification enzymes such as P450, glutathione S-transferase, and esterase was investigated. The results showed that alpha-mangostin significantly elevated activities of P450 and glutathione S-transferase in larvae, whereas it suppressed esterase activity. Toxicity of alpha-mangostin against young rats was studied, and there was no detectable adverse effect at dosages as high as 80 mg/kg. This is the first multifaceted study of the biological activity of alpha-mangostin in mosquitoes. The results suggest that alpha-mangostin may be a lead compound for the development of a new organically based mosquito larvicide.

  15. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages

    PubMed Central

    Wan, W. Brad; Migawa, Michael T.; Vasquez, Guillermo; Murray, Heather M.; Nichols, Josh G.; Gaus, Hans; Berdeja, Andres; Lee, Sam; Hart, Christopher E.; Lima, Walt F.; Swayze, Eric E.; Seth, Punit P.

    2014-01-01

    Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability. PMID:25398895

  16. Structure-activity analysis and biological studies of chensinin-1b analogues.

    PubMed

    Dong, Weibing; Dong, Zhe; Mao, Xiaoman; Sun, Yue; Li, Fei; Shang, Dejing

    2016-06-01

    Chensinin-1b shows a potent and broad-spectrum bactericidal activity and no hemolytic activity and thus is a potential therapeutic agent against bacterial infection. The NMR structure of chensinin-1b consists of a partially α-helical region (residues 8-14) in a membrane-mimic environment that is distinct from other common antimicrobial peptides. However, further analysis of the structural features of chensinin-1b is required to better understand its bactericidal activity. In this study, a series of N- and C-terminally truncated or amino acid-substituted chensinin-1b analogues were synthesized. Next, the bactericidal activity and bacterial membrane effects of the analogues were investigated. The results indicated that the N-terminal residues play a more significant role than the C-terminal residues in the antimicrobial activity of chensinin-1b. The removal of five amino acids from the C-terminus of chensinin-1b did not affect its biological properties, but helix disruption significantly decreased bactericidal activity. The substitution of positively charged residues increased the helicity and antimicrobial activity of the peptide. We also identified a novel analogue [R(4),R(10)]C1b(3-13) that exhibited similar bactericidal properties with its parent peptide chensinin-1b. Electrostatic interactions between the selected analogues and lipopolysaccharides or cells were detected using isothermal titration calorimetry or zeta potential. The thermodynamic parameters ΔH and ΔS for [R(4),R(10)]C1b(3-13) were -20.48kcalmol(-1) and -0.0408kcalmol(-1)deg(-1), respectively. Chensinin-1b yielded similar results of -26.36kcalmol(-1) and -0.0559kcalmol(-1)deg(-1) for ΔH and ΔS, respectively. These results are consistence with their antimicrobial activities. Lastly, membrane depolarization studies showed that selected analogues exerted bactericidal activity by damaging the cytoplasmic membrane. Antimicrobial peptide chensinin-1b is a candidate for the development of new drugs

  17. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  18. Student perception of relevance of biology content to everyday life: A study in higher education biology courses

    NASA Astrophysics Data System (ADS)

    Himschoot, Agnes Rose

    The purpose of this mixed method case study was to examine the effects of methods of instruction on students' perception of relevance in higher education non-biology majors' courses. Nearly ninety percent of all students in a liberal arts college are required to take a general biology course. It is proposed that for many of those students, this is the last science course they will take for life. General biology courses are suspected of discouraging student interest in biology with large enrollment, didactic instruction, covering a huge amount of content in one semester, and are charged with promoting student disengagement with biology by the end of the course. Previous research has been aimed at increasing student motivation and interest in biology as measured by surveys and test results. Various methods of instruction have been tested and show evidence of improved learning gains. This study focused on students' perception of relevance of biology content to everyday life and the methods of instruction that increase it. A quantitative survey was administered to assess perception of relevance pre and post instruction over three topics typically taught in a general biology course. A second quantitative survey of student experiences during instruction was administered to identify methods of instruction used in the course lecture and lab. While perception of relevance dropped in the study, qualitative focus groups provided insight into the surprising results by identifying topics that are more relevant than the ones chosen for the study, conveying the affects of the instructor's personal and instructional skills on student engagement, explanation of how active engagement during instruction promotes understanding of relevance, the roll of laboratory in promoting students' understanding of relevance as well as identifying external factors that affect student engagement. The study also investigated the extent to which gender affected changes in students' perception of

  19. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge.

    PubMed

    Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng

    2008-09-01

    In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.

  20. Milk kefir: composition, microbial cultures, biological activities, and related products

    PubMed Central

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R.; Thomaz-Soccol, Vanete; Soccol, Carlos R.

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  1. [Correction of schoolchildren's diets with biologically active additives].

    PubMed

    Diudiakov, A A; Rakhmanov, R S; Korotunov, Iu V; Gruzdeva, A E

    2002-01-01

    The actual nutrition of schoolchildren in the Nizni-Novgorod district is imbalanced due to the deficiency of protein and vitamins and to the high contents of fats and carbohydrates. The authors provide evidence for a combined preparation to correct the children's diets, which incorporates animal protein, biologically active plant additives, and egg-shell calcium. The use of the preparation in combination with liquid bifidumbacterin contributes to increases in morphofunctional parameters in adolescents.

  2. A method to identify and analyze biological programs through automated reasoning

    PubMed Central

    Yordanov, Boyan; Dunn, Sara-Jane; Kugler, Hillel; Smith, Austin; Martello, Graziano; Emmott, Stephen

    2016-01-01

    Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich, but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function. PMID:27668090

  3. Progeny Clustering: A Method to Identify Biological Phenotypes

    PubMed Central

    Hu, Chenyue W.; Kornblau, Steven M.; Slater, John H.; Qutub, Amina A.

    2015-01-01

    Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476

  4. Identifying biological pathways that underlie primordial short stature using network analysis.

    PubMed

    Hanson, Dan; Stevens, Adam; Murray, Philip G; Black, Graeme C M; Clayton, Peter E

    2014-06-01

    Mutations in CUL7, OBSL1 and CCDC8, leading to disordered ubiquitination, cause one of the commonest primordial growth disorders, 3-M syndrome. This condition is associated with i) abnormal p53 function, ii) GH and/or IGF1 resistance, which may relate to failure to recycle signalling molecules, and iii) cellular IGF2 deficiency. However the exact molecular mechanisms that may link these abnormalities generating growth restriction remain undefined. In this study, we have used immunoprecipitation/mass spectrometry and transcriptomic studies to generate a 3-M 'interactome', to define key cellular pathways and biological functions associated with growth failure seen in 3-M. We identified 189 proteins which interacted with CUL7, OBSL1 and CCDC8, from which a network including 176 of these proteins was generated. To strengthen the association to 3-M syndrome, these proteins were compared with an inferred network generated from the genes that were differentially expressed in 3-M fibroblasts compared with controls. This resulted in a final 3-M network of 131 proteins, with the most significant biological pathway within the network being mRNA splicing/processing. We have shown using an exogenous insulin receptor (INSR) minigene system that alternative splicing of exon 11 is significantly changed in HEK293 cells with altered expression of CUL7, OBSL1 and CCDC8 and in 3-M fibroblasts. The net result is a reduction in the expression of the mitogenic INSR isoform in 3-M syndrome. From these preliminary data, we hypothesise that disordered ubiquitination could result in aberrant mRNA splicing in 3-M; however, further investigation is required to determine whether this contributes to growth failure. © 2014 The authors.

  5. Identifying Metabolically Active Chemicals Using a Consensus ...

    EPA Pesticide Factsheets

    Endocrine disrupting chemicals (EDCs) are abundant throughout the environment and can alter neurodevelopment, behavior, and reproductive success of humans and other species by perturbing signaling pathways related to the estrogen receptor (ER). A recent study compared results across 18 ER-related assays in the ToxCast™ in vitro screening program to predict the likelihood of a chemical exhibiting in vivo estrogenic activity, with the purpose of eliminating chemicals that may produce a false signal by interfering with the technological attributes of an individual assay. However, flaws in in vitro assay design can also prevent induction of signal activity by EDCs. Another reason for not observing activity for some EDCs in in vitro assays is that metabolic activation is required to perturb ER-related pathways. In the current study, 1,024 chemicals were identified as lacking ER activity after establishing a consensus across each of the 18 ER-related in vitro assays, and nearly 2,000 primary and 3,700 secondary unique metabolites were predicted for these chemicals. The ER binding activity for each metabolite was then predicted using an existing ER activity quantitative structure activity relationship (QSAR) consensus model. Binding activity was predicted for 2-3% of the metabolites within each generation. Of the inactive parent compounds generating at least one metabolite predicted to have ER-binding activity, nearly 30% were found to have metabolites from both gene

  6. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions.

    PubMed

    Honda, Toshio

    2012-01-01

    Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.

  7. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically

  8. Biology and Systematics of Echinococcus.

    PubMed

    Thompson, R C A

    2017-01-01

    The biology of Echinococcus, the causative agent of echinococcosis (hydatid disease) is reviewed with emphasis on the developmental biology of the adult and metacestode stages of the parasite. Major advances include determining the origin, structure and functional activities of the laminated layer and its relationship with the germinal layer; and the isolation, in vitro establishment and characterization of the multipotential germinal cells. Future challenges are to identify the mechanisms that provide Echinococcus with its unique developmental plasticity and the nature of activities at the parasite-host interface, particularly in the definitive host. The revised taxonomy of Echinococcus is presented and the solid nomenclature it provides will be essential in understanding the epidemiology of echinococcosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  10. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    PubMed Central

    Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna

    2014-01-01

    The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. PMID:24623976

  11. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    ERIC Educational Resources Information Center

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  12. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    PubMed

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  13. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    PubMed Central

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  14. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  15. Biological Activity of Peanut (Arachis hypogaea) Phytoalexins and Selected Natural and Synthetic Stilbenoids

    PubMed Central

    SOBOLEV, VICTOR S.; KHAN, SHABANA I.; TABANCA, NURHAYAT; WEDGE, DAVID E.; MANLY, SUSAN P.; CUTLER, STEPHEN J.; COY, MONIQUE R.; BECNEL, JAMES J.; NEFF, SCOTT A.; GLOER, JAMES B.

    2011-01-01

    The peanut plant (Arachis hypogaea L.), when infected by a microbial pathogen, is capable of producing stilbene-derived compounds that are considered antifungal phytoalexins. In addition, the potential health benefits of other stilbenoids from peanuts, including resveratrol and pterostilbene, have been acknowledged by several investigators. Despite considerable progress in peanut research, relatively little is known about the biological activity of the stilbenoid phytoalexins. This study investigated the activities of some of these compounds in a broad spectrum of biological assays. Since peanut stilbenoids appear to play roles in plant defense mechanisms, they were evaluated for their effects on economically important plant pathogenic fungi of the genera Colletotrichum, Botrytis, Fusarium, and Phomopsis. We further investigated these peanut phytoalexins, together with some related natural and synthetic stilbenoids (a total of 24 compounds) in a panel of bioassays to determine their anti-inflammatory, cytotoxic, and antioxidant activities in mammalian cells. Several of these compounds were also evaluated as mammalian opioid receptor competitive antagonists. Assays for adult mosquito and larvae toxicity were also performed. The results of these studies reveal that peanut stilbenoids, as well as related natural and synthetic stilbene derivatives, display a diverse range of biological activities. PMID:21314127

  16. A Review on the Medicinal Plant Dalbergia odorifera Species: Phytochemistry and Biological Activity

    PubMed Central

    2017-01-01

    The crucial medicinal plant Dalbergia odorifera T. Chen species belongs to genus Dalbergia, with interesting secondary metabolites, consisting of main classes of flavonoid, phenol, and sesquiterpene derivatives, as well as several arylbenzofurans, quinones, and fatty acids. Biological studies were carried out on extracts, fractions, and compounds from this species involved in cytotoxic assays; antibacterial, antioxidative, anti-inflammatory, antithrombotic, antiplatelet, antiosteosarcoma, antiosteoporosis, antiangiogenesis, and prostaglandin biosynthetic enzyme inhibition activities; vasorelaxant activities; alpha-glucosidase inhibitory activities; and many other effects. In terms of the valuable resources for natural new drugs development, D. odorifera species are widely used as medicinal drugs in many countries for treatment of cardiovascular diseases, cancer, diabetes, blood disorders, ischemia, swelling, necrosis, or rheumatic pain. Although natural products from this plant have been increasingly playing an important role in drug discovery programs, there is no supportive evidence to provide a general insight into phytochemical studies on D. odorifera species and biological activities of extracts, fractions, and isolated compounds. To a certain extent, this review deals with an overview of almost naturally occurring compounds from this species, along with extensive coverage of their biological evaluations. PMID:29348771

  17. Triterpene Esters and Biological Activities from Edible Fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae

    PubMed Central

    Fernandes, Caio P.; Corrêa, Arthur L.; Lobo, Jonathas F. R.; Caramel, Otávio P.; de Almeida, Fernanda B.; Castro, Elaine S.; Souza, Kauê F. C. S.; Burth, Patrícia; Amorim, Lidia M. F.; Santos, Marcelo G.; Ferreira, José Luiz P.; Falcão, Deborah Q.; Carvalho, José C. T.; Rocha, Leandro

    2013-01-01

    Manilkara subsericea (Mart.) Dubard (Sapotaceae) is popularly known in Brazil as “guracica.” Studies with Manilkara spp indicated the presence of triterpenes, saponins, and flavonoids. Several activities have been attributed to Manilkara spp such as antimicrobial, antiparasitic and antitumoral, which indicates the great biological potential of this genus. In all, 87.19% of the hexanic extract from fruits relative composition were evaluated, in which 72.81% were beta- and alpha-amyrin esters, suggesting that they may be chemical markers for M. subsericea. Hexadecanoic acid, hexadecanoic acid ethyl ester, (E)-9-octadecenoic acid ethyl ester, and octadecanoic acid ethyl ester were also identified. Ethanolic crude extracts from leaves, stems, and hexanic extract from fruits exhibited antimicrobial activity against Staphylococcus aureus ATCC25923. These extracts had high IC50 values against Vero cells, demonstrating weak cytotoxicity. This is the first time, to our knowledge, that beta- and alpha-amyrin caproates and caprylates are described for Manilkara subsericea. PMID:23509702

  18. Comparison of Biological Activity of Human Anti-Apical Membrane Antigen-1 Antibodies Induced by Natural Infection and Vaccination

    PubMed Central

    Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.

    2009-01-01

    Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299

  19. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    PubMed

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  20. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis.

    PubMed

    Han, Xiuli; Yang, Yongqing; Wu, Yujiao; Liu, Xiaohui; Lei, Xiaoguang; Guo, Yan

    2017-05-17

    Plasma membrane (PM) H+-ATPase is essential for plant growth and development. Various environmental stimuli regulate its activity, a process that involves many protein cofactors. However, whether endogenous small molecules play a role in this regulation remains unknown. Here, we describe a bio-guided isolation method to identify endogenous small molecules that regulate PM H+-ATPase activity. We obtained crude extracts from Arabidopsis seedlings with or without salt treatment and then purified them into fractions based on polarity and molecular mass by repeated column chromatography. By evaluating the effect of each fraction on PM H+-ATPase activity, we found that fractions containing the endogenous, free unsaturated fatty acids oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) extracted from salt-treated seedlings stimulate PM H+-ATPase activity. These results were further confirmed by the addition of exogenous C18:1, C18:2, or C18:3 in the activity assay. The ssi2 mutant, with reduced levels of C18:1, C18:2, and C18:3, displayed reduced PM H+-ATPase activity. Furthermore, C18:1, C18:2, and C18:3 directly bound to the C-terminus of the PM H+-ATPase AHA2. Collectively, our results demonstrate that the binding of free unsaturated fatty acids to the C-terminus of PM H+-ATPase is required for its activation under salt stress. The bio-guided isolation model described in this study could enable the identification of new endogenous small molecules that modulate essential protein functions, as well as signal transduction, in plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Method for photo-altering a biological system to improve biological effect

    DOEpatents

    Hill, Richard A.; Doiron, Daniel R.; Crean, David H.

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  2. Evaluating Effect of Students' Academic Achievement on Identified Difficult Concepts in Senior Secondary School Biology in Delta State

    ERIC Educational Resources Information Center

    Agboghoroma, Tim E.; Oyovwi, E. O.

    2015-01-01

    This study evaluated the effect of students' academic achievement on identified difficult concepts or topics in Senior Secondary School Biology in Delta State, Nigeria. The study was quasi-experimental and the design was a 2X2 factorial non-randomized pretest-posttest control group design. The sample was drawn from intact classes from four…

  3. Phytochemicals from Mangifera pajang Kosterm and their biological activities.

    PubMed

    Ahmad, Sadikah; Sukari, Mohd Aspollah; Ismail, Nurussaadah; Ismail, Intan Safinar; Abdul, Ahmad Bustamam; Abu Bakar, Mohd Fadzelly; Kifli, Nurolaini; Ee, Gwendoline C L

    2015-03-26

    Mangifera pajang Kosterm is a plant species from the mango family (Anacardiaceae). The fruits are edible and have been reported to have high antioxidant content. However, the detailed phytochemical studies of the plant have not been reported previously. This study investigates the phytochemicals and biological activities of different parts of Mangifera pajang. The plant samples were extracted with solvents of different polarity to obtain the crude extracts. The isolated compounds were characterized using spectroscopic methods. The extracts and isolated compounds were subjected to cytotoxicity tests using human breast cancer (MCF-7), human cervical cancer (HeLa) and human colon cancer (HT-29) cells. The free radical scavenging activity test was conducted using the DPPH assay. Antimicrobial activity tests were carried out by using the disc diffusion method. Phytochemical investigation on the kernel, stem bark and leaves of Mangifera pajang led to the isolation of methyl gallate (1), mixture of benzaldehyde (2) and benzyl alcohol (3), mangiferonic acid (4), 3β-hydroxy-cycloart-24-ene-26-oic acid (5), 3β,23-dihydroxy-cycloart-24-ene-26-oic acid (6), lupeol(7) lupenone(8), β-sitosterol(9), stigmasterol(10), trans-sobrerol(11) and quercitrin (12). Crude ethyl acetate and methanol extracts from the kernel indicated strong cytotoxic activity towards MCF-7 and HeLa cells with IC50 values of less than 10 μg/mL, while petroleum ether, chloroform and ethyl acetate extracts of the stem bark showed strong to moderate activity against MCF-7, HeLa and HT-29 cancer cell lines with IC50 values ranging from 5 to 30 μg/mL. As for the antimicrobial assays, only the ethyl acetate and methanol extracts from the kernel displayed some inhibition against the microbes in the antibacterial assays. The kernel extracts showed highest free radical scavenging activity with IC50 values of less than 10 μg/mL, while the ethyl acetate and methanol extracts of leaves displayed only weak

  4. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii.

    PubMed

    Xie, Chunliang; Yan, Li; Gong, Wenbing; Zhu, Zuohua; Tan, Senwei; Chen, Du; Hu, Zhenxiu; Peng, Yuande

    2016-01-01

    Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Reduced physical activity and risk of chronic disease: the biology behind the consequences.

    PubMed

    Booth, Frank W; Laye, Matthew J; Lees, Simon J; Rector, R Scott; Thyfault, John P

    2008-03-01

    This review focuses on three preserved, ancient, biological mechanisms (physical activity, insulin sensitivity, and fat storage). Genes in humans and rodents were selected in an environment of high physical activity that favored an optimization of aerobic metabolic pathways to conserve energy for a potential, future food deficiency. Today machines and other technologies have replaced much of the physical activity that selected optimal gene expression for energy metabolism. Distressingly, the negative by-product of a lack of ancient physical activity levels in our modern civilization is an increased risk of chronic disease. We have been employing a rodent wheel-lock model to approximate the reduction in physical activity in humans from the level under which genes were selected to a lower level observed in modern daily functioning. Thus far, two major changes have been identified when rats undertaking daily, natural voluntary running on wheels experience an abrupt cessation of the running (wheel lock model). First, insulin sensitivity in the epitrochlearis muscle of rats falls to sedentary values after 2 days of the cessation of running, confirming the decline to sedentary values in whole-body insulin sensitivity when physically active humans stop high levels of daily exercise. Second, visceral fat increases within 1 week after rats cease daily running, confirming the plasticity of human visceral fat. This review focuses on the supporting data for the aforementioned two outcomes. Our primary goal is to better understand how a physically inactive lifestyle initiates maladaptations that cause chronic disease.

  6. Synthesis of Mono-PEGylated Growth Hormone Releasing Peptide-2 and Investigation of its Biological Activity.

    PubMed

    Hu, Xiaoyu; Xu, Beihua; Zhou, Ziniu

    2015-10-01

    The purpose of this study was to investigate an efficient synthetic route to the mono-PEGylated growth hormone releasing peptide-2 (GHRP-2) and its biological activity in vivo. The commercially available key PEGylating reagent, mPEG-NHS ester, was successfully utilized to the synthesis of mono-PEGylated GHRP-2, during which the PEGylation profiles of GHRP-2 were monitored by high-performance liquid chromatography (HPLC). The product was purified by cation exchange chromatography, and its biological activity was conducted in rats. The desired mono-PEGylated GHRP-2 as the major product was readily obtained in anhydrous aprotic solvent, such as dimethyl formamide (DMF) and dimethylsulfoxide (DMSO), when the molar ratio of mPEG-NHS ester to GHRP-2 was fixed to be 0.8:1. The products were characterized by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The evaluation of the biological activity for the products showed that the mono-PEGylated GHRP-2 gave a more stable activity than GHRP-2, suggesting that PEGylation led to the increase in the half-life of GHRP-2 in plasma without greatly impairing the biological activity. PEGylation of the GHRP-2 is a good choice for the development of the GHRP-2 applications.

  7. Evaluating the biological activity of oil-polluted soils using a complex index

    NASA Astrophysics Data System (ADS)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  8. Biological Activity of Polynesian Calophyllum inophyllum Oil Extract on Human Skin Cells.

    PubMed

    Ansel, Jean-Luc; Lupo, Elise; Mijouin, Lily; Guillot, Samuel; Butaud, Jean-François; Ho, Raimana; Lecellier, Gaël; Raharivelomanana, Phila; Pichon, Chantal

    2016-07-01

    Oil from the nuts of Calophyllum inophyllum, locally called "Tamanu oil" in French Polynesia, was traditionally used for wound healing and to cure various skin problems and ailments. The skin-active effect of "Tamanu oil emulsion" was investigated on human skin cells (keratinocytes and dermal fibroblasts) and showed cell proliferation, glycosaminoglycan and collagen production, and wound healing activity. Transcriptomic analysis of the treated cells revealed gene expression modulation including genes involved in the metabolic process implied in O-glycan biosynthesis, cell adhesion, and cell proliferation. The presence of neoflavonoids as bioactive constituents in Tamanu oil emulsion may contribute to these biological activities. Altogether, consistent data related to targeted histological and cellular functions brought new highlights on the mechanisms involved in these biological processes induced by Tamanu oil effects in skin cells. Georg Thieme Verlag KG Stuttgart · New York.

  9. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects

    PubMed Central

    Pei, Yanping; Liu, Huan; Yang, Yi; Yang, Yanwei

    2018-01-01

    N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine. PMID:29849877

  10. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  11. Phage Display of a Biologically Active Bacillus thuringiensis Toxin

    PubMed Central

    Kasman, Laura M.; Lukowiak, Andrew A.; Garczynski, Stephen F.; McNall, Rebecca J.; Youngman, Phil; Adang, Michael J.

    1998-01-01

    Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To this end, we show that activated B. thuringiensis toxin (Cry1Ac) can be expressed in E. coli as a translational fusion with the minor phage coat protein of filamentous phage. Phage particles displaying this fusion protein were viable, infectious, and as lethal as pure toxin on a molar basis when the phage particles were fed to insects susceptible to native Cry1Ac. Enzyme-linked immunosorbent assay and Western blot analysis showed the fusion protein to be antigenically equivalent to native toxin, and micropanning with anti-Cry1Ac antibody was positive for the toxin-expressing phage. Phage display of B. thuringiensis toxins has many advantages over previous expression systems for these proteins and should make it possible to construct large libraries of toxin variants for screening or biopanning. PMID:9687463

  12. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    PubMed Central

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  13. Student Acquisition of Biological Evolution-Related Misconceptions: The Role of Public High School Introductory Biology Teachers

    ERIC Educational Resources Information Center

    Yates, Tony Brett

    2011-01-01

    In order to eliminate student misconceptions concerning biological evolution, it is important to identify their sources. The purposes of this study were to: (a) identify biological evolution-related misconceptions held by Oklahoma public high school Biology I teachers; (b) identify biological evolution-related misconceptions held by Oklahoma…

  14. Evidence for a reduced heparin cofactor II biological activity in diabetes.

    PubMed

    Ceriello, A; Quatraro, A; Dello Russo, P; Marchi, E; Milani, M R; Giugliano, D

    1990-01-01

    A reduction of heparin cofactor II (HCII) biological activity, despite its normal plasma concentration, is reported in insulin-dependent diabetic patients. A good linear correlation between HCII activity and concentration is present in normal controls but not in diabetics. In these subjects HCII activity correlates inversely with fasting blood glucose and glycated proteins but not with Hb A1. These data demonstrate the presence of a depressed HCII activity in the presence of its normal plasma concentration in insulin-dependent diabetics and suggest a role for short-term metabolic control in conditioning this phenomenon.

  15. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    PubMed

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  16. Auto-induction for high level production of biologically active reteplase in Escherichia coli.

    PubMed

    Fathi-Roudsari, Mehrnoosh; Maghsoudi, Nader; Maghsoudi, Amirhossein; Niazi, Sepideh; Soleiman, Morvarid

    2018-06-07

    Reteplase is a third generation tissue plasminogen activator (tPA) with a modified structure and prolonged half-life in comparison to native tPA. As a non-glycosylated protein, reteplase is expressed in Escherichia coli. Due to presence of several disulfide bonds, high level production of reteplase is complicated and needs extra steps for conversion to biologically active form. Auto-induction represents a method for high-yield growth of bacterial cells and higher expression of recombinant proteins. Here we have tried to optimize the auto-induction procedure for soluble and active expression of reteplase in E. coli. Results showed that using auto-induction strategy at 37 °C, Rosetta-gami (DE3) had the highest level of active and soluble reteplase production in comparison to E. coli strains BL21 (DE3), and Shuffel T7. Temperature dominantly affected the level of active reteplase production. Decreasing the temperature to 25 and 18 °C increased the level of active reteplase by 20 and 60%, respectively. The composition of auto-induction medium also dramatically changed the active production of reteplase in cytoplasm. Using higher enriched auto-induction medium, super broth base including trace elements, significantly increased biologically active reteplase by 30%. It is demonstrated here that auto-induction is a powerful method for expression of biologically active reteplase in oxidative cytoplasm of Rosetta-gami. Optimizing expression condition by decreasing temperature and using an enriched auto-induction medium resulted in at least three times higher level of active reteplase production. Production of correctly folded and active reteplase in spite of its complex structure helps for removal of inefficient and cumbersome step of refolding. Copyright © 2018. Published by Elsevier Inc.

  17. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species.

    PubMed

    Sowndhararajan, Kandasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun

    2017-09-20

    A number of Angelica species have been used in traditional systems of medicine to treat many ailments. Especially, essential oils (EOs) from the Angelica species have been used for the treatment of various health problems, including malaria, gynecological diseases, fever, anemia, and arthritis. EOs are complex mixtures of low molecular weight compounds, especially terpenoids and their oxygenated compounds. These components deliver specific fragrance and biological properties to essential oils. In this review, we summarized the chemical composition and biological activities of EOs from different species of Angelica . For this purpose, a literature search was carried out to obtain information about the EOs of Angelica species and their bioactivities from electronic databases such as PubMed, Science Direct, Wiley, Springer, ACS, Google, and other journal publications. There has been a lot of variation in the EO composition among different Angelica species. EOs from Angelica species were reported for different kinds of biological activities, such as antioxidant, anti-inflammatory, antimicrobial, immunotoxic, and insecticidal activities. The present review is an attempt to consolidate the available data for different Angelica species on the basis of major constituents in the EOs and their biological activities.

  18. Biological activity of common mullein, a medicinal plant.

    PubMed

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  19. Synthesis and biological activity of imidazopyridine anticoccidial agents: part I.

    PubMed

    Scribner, Andrew; Dennis, Richard; Hong, Jean; Lee, Shuliang; McIntyre, Donald; Perrey, David; Feng, Dennis; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2007-01-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we present the synthesis and biological activity of imidazo[1,2-a]pyridine anticoccidial agents. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  20. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts

    PubMed Central

    Wang, Jianghua; Cai, Yi; Yu, Wendong; Ren, Chengxi; Spencer, David M.; Ittmann, Michael

    2008-01-01

    TMPRSS2/ERG gene fusions are found in the majority of prostate cancers; however, there is significant heterogeneity in the 5′ region of the alternatively spliced fusion gene transcripts. We have found that there is also significant heterogeneity within the coding exons as well. There is variable inclusion of a 72-bp exon and other novel alternatively spliced isoforms. To assess the biological significance of these alternatively spliced transcripts, we expressed various transcripts in primary prostatic epithelial cells and in an immortalized prostatic epithelial cell line, PNT1a. The fusion gene transcripts promoted proliferation, invasion and motility with variable activities that depended on the structure of the 5′ region encoding the TMPRSS2/ERG fusion and the presence of the 72-bp exon. Cotransfection of different isoforms further enhanced biological activity, mimicking the situation in vivo, in which multiple isoforms are expressed. Finally, knockdown of the fusion gene in VCaP cells resulted in inhibition of proliferation in vitro and tumor progression in an in vivo orthotopic mice model. Our results indicate that TMPRSS2/ERG fusion isoforms have variable biological activities promoting tumor initiation and progression and are consistent with our previous clinical observations indicating that certain TMPRSS2/ERG fusion isoforms are significantly correlated with more aggressive disease. PMID:18922926

  1. Biological activities of red propolis: a rewiew

    PubMed

    de Figueiredo, Sonia M; de Freitas, Marcia Christina Dornelas; de Oliveira, Daiana Teixeira; de Miranda, Marina Barcelos; Vieira-Filho, Sidney Augusto; Caligiorne, Rachel Basques

    2018-02-23

    • Background: The red propolis (RdProp) is a resin produced by Apis mellifera bees, which collect the reddish exudate on the surface of its botanic source, the species Dalbergiae castophyllum, popularly known in Brazil as "rabo de bugio". Considered as the 13th type of Brazilian propolis, this resin has been gaining prominence due to its natural composition, rich in bioactive substances not found in other types of propolis. • Objective: This review aims to address the most important characteristics of PV, its botanical origin, the main constituents, its biological properties and the patents related to this natural product. • Method: By means of the SciFinder, Google Patents, Patus® and Spacenet, scientific articles and patents involving the term "red propolis" were searched until August 2017 • Results: A number of biological properties, including antimicrobial, anti-inflammatory, antiparasitic, antitumor, antioxidant, metabolic and nutraceutical activities are attributed to RdProp, demonstrating the great potential of its use in the food, pharmaceutical and cosmetics industries. • Conclusion: The available papers are associated to pharmacological potential of RdProp, but the molecular mechanisms or bioactive compounds responsible for each activity have not yet been fully elucidated. The RdProp patents currently found are directed to components for the pharmaceutical industry (EP2070543A1; WO2014186851A1; FR3006589A1; CN1775277A; CN105797149A; CN1879859A), cosmetic (JP6012138B2; JP2008247830A; JP6012138B2) and food (JP5478392B2; CN101380052A; WO2006038690A1). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Biological activity studies of the novel glucagon-like peptide-1 derivative HJ07.

    PubMed

    Han, Jing; Sun, Li-Dan; Qian, Hai; Huang, Wen-Long

    2014-08-01

    To identify the glucose lowering ability and chronic treatment effects of a novel coumarin-glucagon-like peptide-1 (GLP-1) conjugate HJ07. A receptor activation experiment was performed in HEK 293 cells and the glucose lowering ability was evaluated with hypoglycemic duration and glucose stabilizing tests. Chronic treatment was performed by daily injection of exendin-4, saline, and HJ07. Body weight and HbA1c were measured every week, and an intraperitoneal glucose tolerance test was performed before treatment and after treatment. HJ07 showed well-preserved receptor activation efficacy. The hypoglycemic duration test showed that HJ07 possessed a long-acting, glucose-lowering effect and the glucose stabilizing test showed that the antihyperglycemic activity of HJ07 was still evident at a predetermined time (12 h) prior to the glucose challenge (0 h). The long time glucose-lowering effect of HJ07 was better than native GLP-1 and exendin-4. Furthermore, once daily injection of HJ07 to db/db mice achieved long-term beneficial effects on HbA1c lowering and glucose tolerance. The biological activity results of HJ07 suggest that HJ07 is a potential long-acting agent for the treatment of type 2 diabetes. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  3. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    PubMed Central

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  4. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    PubMed Central

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated. PMID:27525023

  5. SABER: A computational method for identifying active sites for new reactions

    PubMed Central

    Nosrati, Geoffrey R; Houk, K N

    2012-01-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  6. SABER: a computational method for identifying active sites for new reactions.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. Copyright © 2012 The Protein Society.

  7. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae).

    PubMed

    da Silva, Marcelo Felipe Rodrigues; Bezerra-Silva, Patrícia Cristina; de Lira, Camila Soledade; de Lima Albuquerque, Bheatriz Nunes; Agra Neto, Afonso Cordeiro; Pontual, Emmanuel Viana; Maciel, Jefferson Rodrigues; Paiva, Patrícia Maria Guedes; Navarro, Daniela Maria do Amaral Ferraz

    2016-06-01

    Essential oil from fresh leaves of the shrub Piper corcovadensis (Miq.) C. DC was obtained in 0.21% (w/w) yield by hydrodistillation in a Clevenger type apparatus. Thirty-one components, accounting for 96.61% of the leaf oil, were identified by gas chromatography-mass spectrometry. The major constituents of the oil were 1-butyl-3,4-methylenedioxybenzene (30.62%), terpinolene (17.44%), trans -caryophyllene (6.27%), α-pinene (5.92%), δ-cadinene (4.92%), and Limonene (4.46%). Bioassays against larvae of the Dengue mosquito (Aedes aegypti) revealed that leaf oil (LC50 = 30.52 ppm), terpinolene (LC50 = 31.16 ppm), and pure 1-butyl-3,4-methylenedioxybenzene (LC50 = 22.1 ppm) possessed larvicidal activities and are able to interfere with the activity of proteases from L4 gut enzymes. Additionally, the essential oil exhibited a strong oviposition deterrent activity at 50 and 5 ppm. This paper constitutes the first report of biological activities associated with the essential oil of leaves of P. corcovadensis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Inclusion bodies and purification of proteins in biologically active forms.

    PubMed

    Mukhopadhyay, A

    1997-01-01

    Even though recombinant DNA technology has made possible the production of valuable therapeutic proteins, its accumulation in the host cell as inclusion body poses serious problems in the recovery of functionally active proteins. In the last twenty years, alternative techniques have been evolved to purify biologically active proteins from inclusion bodies. Most of these remain only as inventions and very few are commercially exploited. This review summarizes the developments in isolation, refolding and purification of proteins from inclusion bodies that could be used for vaccine and non-vaccine applications. The second section involves a discussion on inclusion bodies, how they are formed, and their physicochemical properties. In vivo protein folding in Escherichia coli and kinetics of in vitro protein folding are the subjects of the third and fourth sections respectively. The next section covers the recovery of bioactive protein from inclusion bodies: it includes isolation of inclusion body from host cell debris, purification in denatured state alternate refolding techniques, and final purification of active molecules. Since purity and safety are two important issues in therapeutic grade proteins, the following three sections are devoted to immunological and biological characterization of biomolecules, nature, and type of impurities normally encountered, and their detection. Lastly, two case studies are discussed to demonstrate the sequence of process steps involved.

  9. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk.

    PubMed

    Warren, Helen R; Evangelou, Evangelos; Cabrera, Claudia P; Gao, He; Ren, Meixia; Mifsud, Borbala; Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Lepe, Marcelo P Segura; O'Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V

    2017-03-01

    Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.

  10. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk

    PubMed Central

    Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Segura Lepe, Marcelo P; O’Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V

    2017-01-01

    Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. Combined with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure raising genetic variants on future cardiovascular disease risk. PMID:28135244

  11. Tracing molecular dephasing in biological tissue

    NASA Astrophysics Data System (ADS)

    Mokim, M.; Carruba, C.; Ganikhanov, F.

    2017-10-01

    We demonstrate the quantitative spectroscopic characterization and imaging of biological tissue using coherent time-domain microscopy with a femtosecond resolution. We identify tissue constituents and perform dephasing time (T2) measurements of characteristic Raman active vibrations. This was shown in subcutaneous mouse fat embedded within collagen rich areas of the dermis and the muscle connective tissue. The demonstrated equivalent spectral resolution (<0.3 cm-1) is an order of magnitude better compared to commonly used frequency-domain methods for characterization of biological media. This provides with the important dimensions and parameters in biological media characterization and can become an effective tool in detecting minute changes in the bio-molecular composition and environment that is critical for molecular level diagnosis.

  12. Golden Needle Mushroom: A Culinary Medicine with Evidenced-Based Biological Activities and Health Promoting Properties

    PubMed Central

    Tang, Calyn; Hoo, Pearl Ching-Xin; Tan, Loh Teng-Hern; Pusparajah, Priyia; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing; Chan, Kok-Gan

    2016-01-01

    Flammulina velutipes (enoki, velvet shank, golden needle mushroom or winter mushroom), one of the main edible mushrooms on the market, has long been recognized for its nutritional value and delicious taste. In recent decades, research has expanded beyond detailing its nutritional composition and delved into the biological activities and potential health benefits of its constituents. Many bioactive constituents from a range of families have been isolated from different parts of the mushroom, including carbohydrates, protein, lipids, glycoproteins, phenols, and sesquiterpenes. These compounds have been demonstrated to exhibit various biological activities, such as antitumour and anticancer activities, anti-atherosclerotic and thrombosis inhibition activity, antihypertensive and cholesterol lowering effects, anti-aging and antioxidant properties, ability to aid with restoring memory and overcoming learning deficits, anti-inflammatory, immunomodulatory, anti-bacterial, ribosome inactivation and melanosis inhibition. This review aims to consolidate the information concerning the phytochemistry and biological activities of various compounds isolated from F. velutipes to demonstrate that this mushroom is not only a great source of nutrients but also possesses tremendous potential in pharmaceutical drug development. PMID:28003804

  13. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance

    PubMed Central

    van Oers, Johanna M. M.; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Sellers, Rani S.; Modrich, Paul; Scharff, Matthew D.; Edelmann, Winfried

    2010-01-01

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2−/− mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression. PMID:20624957

  14. Differential loss of biological activity of the enkephalins induced by current.

    PubMed

    Kitchen, I; Hart, S L

    1981-01-29

    Passage of current across solutions of enkephalins caused loss of biological activity of the peptides, this loss increasing as current strength was increased. The presence of a vas deferens tissue prevented the current-induced loss of activity of Leu-enkephalin but had no effect on the loss of activity of Met-enkephalin. These results provide a possible explanation for the differential potency of the enkephalins on the vas and provide a reason for the inability of several laboratories to show electrically induced enkephalin release.

  15. Purification, characterization, and biological activities of broccolini lectin.

    PubMed

    Xu, Pingping; Zhang, Ting; Guo, Xiaolei; Ma, Chungwah; Zhang, Xuewu

    2015-01-01

    Plant lectins have displayed a variety of biological activities. In this study, for the first time, a 27 kDa arabinose- and mannose-specific lectin from Broccolini (Brassica oleracea Italica × Alboglabra), named as BL (Broccolini lectin), was purified by an activity-driven protocol. Mass spectrometry analysis and database search indicated that no matches with any plant lectin were found, but BL contained some peptide fragments (QQQGQQGQQLQQVISR, QQGQQQGQQGQQLQQVISR and VCNIPQVSVCPF QK). BL exhibited hemagglutinating activity against chicken erythrocytes at 4 µg/mL. BL retained full hemagglutinating activity at pH 7-8 and temperature 30-40°C, and had an optimal activity in Ca(2+) solution. Bioactivity assay revealed that BL exhibited dose-dependent inhibition activity on 5 bacterial species with IC50 values of 143.95-486.33 μg/mL, and on 3 cancer cells with IC50 values of 178.82-350.93 μg/mL. Notably, 5-fold reduction in IC50 values was observed on normal L-O2 vs cancerous HepG-2 cells (924.35 vs. 178.82 μg/mL). This suggests that BL should be promising in food and medicine. © 2015 American Institute of Chemical Engineers.

  16. Biological Activity of Bacillus thuringiensis (Bacillales: Bacillaceae) in Anastrepha fraterculus (Diptera: Tephritidae).

    PubMed

    Martins, Liliane Nachtigall; Lara, Ana Paula de Souza Stori de; Ferreira, Márcio Soares; Nunes, Adrise Medeiros; Bernardi, Daniel; Leite, Fábio Pereira Leivas; Garcia, Flávio Roberto Mello

    2018-05-28

    Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) is considered to be one of the major pest insects in fruit orchards worldwide. Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) strains are widely used as biological control agents and show high biological activity against different insect species. The objective of this study was to evaluate the biological activity of different strains of B. thuringiensis against A. fraterculus larvae and adults. Bioassays were performed using suspensions of bacterial spores/crystals of B. thuringiensis var. israelensis (Bti), kurstaki (Btk), and oswaldocruzi (Bto) strains at three concentrations [2 × 107, 2 × 108, and 2 × 109 colony-forming units per ml (CFU ml-1)]. At a concentration of 2 × 109 CFU ml-1, a significant larval effect (mortality 60%) was observed when compared with the control treatment. Larvae that ingested spore/crystal suspensions of Bti, Btk, or Bto bacterial strains exhibited significant larval and pupal deformations, leading to a significant decrease (~50%) in the completion of the insects' biological cycle (egg to adult). The B. thuringiensis strains (Bti, Btk, or Bto) at a concentration of 2 × 109 CFU ml-1 in combination with one food attractant (BioAnastrepha 3% or CeraTrap 1.5%) in formulations of toxic baits provided high mortality (mortality > 85%) of A. fraterculus adults 7 d after treatment. However, the Btk strain in combination with CeraTrap 1.5% caused mortality of 40%. On the basis of these results, the native bacterial strains Bti, Btk, and Bto were considered to be promising candidates as biological control agents against A. fraterculus.

  17. Synthesis, investigation of the new derivatives of dihydropyrimidines and determination of their biological activity

    NASA Astrophysics Data System (ADS)

    Maharramov, A. M.; Ramazanov, M. A.; Guliyeva, G. A.; Huseynzada, A. E.; Hasanova, U. A.; Shikhaliyev, N. G.; Eyvazova, G. M.; Hajiyeva, S. F.; Mamedov, I. G.; Aghayev, M. M.

    2017-08-01

    We reported of synthesis and investigation of the new biologically active derivatives of dihydropyrimidines 2 and 3. The investigation of structures of compounds by various experiments of NMR spectroscopy revealed the splitting of the signals to doublets and multiplets that confirms the presence of diastereomers in solution of compound 2 and the presence of diastereomers and tautomers in solution of compound 3. The individual diastereomer of compound 3 has been isolated. Biological activity of the synthesized compounds was studied on various species of genus Aspergillus fungi.

  18. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José

    2013-10-25

    Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. CONCEPTUAL APPROACHES TO IDENTIFY AND ASSESS MULTPLE STRESSORS, SECTION 1.1

    EPA Science Inventory

    Every ecosystem is subject to multiple stressors arising from the interactions of biological, physical, and socioeconomic processes (e.g. exploitation and development). These stressors and their interactions need to be identified if risks associated with a planned activity are to...

  20. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.

    PubMed

    Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C

    2017-10-11

    Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.

  1. Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    PubMed Central

    Bhat, Nisar A.; Riar, Amritbir; Ramesh, Aketi; Iqbal, Sanjeeda; Sharma, Mahaveer P.; Sharma, Sanjay K.; Bhullar, Gurbir S.

    2017-01-01

    Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate

  2. A "Vision and Change" Reform of Introductory Biology Shifts Faculty Perceptions and Use of Active Learning

    ERIC Educational Resources Information Center

    Auerbach, Anna Jo; Schussler, Elisabeth

    2017-01-01

    Increasing faculty use of active-learning (AL) pedagogies in college classrooms is a persistent challenge in biology education. A large research-intensive university implemented changes to its biology majors' two-course introductory sequence as outlined by the "Vision and Change in Undergraduate Biology Education" final report. One goal…

  3. Effect of gamma irradiation on phenol content, antioxidant activity and biological activity of black maca and red maca extracts (Lepidium meyenii walp).

    PubMed

    Zevallos-Concha, A; Nuñez, D; Gasco, M; Vasquez, C; Quispe, M; Gonzales, G F

    2016-01-01

    This study was performed to determine the effects of gamma irradiation on UV spectrum on maca, total content of polyphenols, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities and in vivo biological activities of red and black maca extracts (Lepidium meyenii). Adult mice of the strain Swiss aged 3 months and weighing 30-35 g in average were used to determine biological activities. Daily sperm production, effect on testosterone-induced prostate hyperplasia and forced swimming test were used to determine the effect of irradiation on biological activities of maca extracts. Irradiation did not show differences in UV spectrum but improves the amount of total polyphenols in red maca as well as in black maca extracts. In both cases, black maca extract has more content of polyphenols than red maca extract (p < 0.01). Gamma irradiation significantly increased the antioxidant capacity (p < 0.05). No difference was observed in daily sperm production when irradiated and nonirradiated maca extract were administered to mice (p > 0.05). Black maca extract but not red maca extract has more swimming endurance capacity in the forced swimming test. Irradiation of black maca extract increased the swimming time to exhaustion (p < 0.05). This is not observed with red maca extract (p > 0.05). Testosterone enanthate (TE) increased significantly the ventral prostate weight. Administration of red maca extract in animals treated with TE prevented the increase in prostate weight. Irradiation did not modify effect of red maca extract on prostate weight (p > 0.05). In conclusion, irradiation does not alter the biological activities of both black maca and red maca extracts. It prevents the presence of microorganisms in the extracts of black or red maca, but the biological activities were maintained.

  4. Local or distributed activation? The view from biology

    NASA Astrophysics Data System (ADS)

    Reimers, Mark

    2011-06-01

    There is considerable disagreement among connectionist modellers over whether to represent distinct properties by distinct nodes of a network or whether properties should be represented by patterns of activity across all nodes. This paper draws on the literature of neuroscience to say that a more subtle way of describing how different brain regions contribute to a behaviour, in terms of individual learning and in terms of degrees of importance, may render the current debate moot: both sides of the 'localist' versus 'distributed' debate emphasise different aspects of biology.

  5. The activation of fibroblast growth factors by heparin: synthesis, structure, and biological activity of heparin-like oligosaccharides.

    PubMed

    de Paz, J L; Angulo, J; Lassaletta, J M; Nieto, P M; Redondo-Horcajo, M; Lozano, R M; Giménez-Gallego, G; Martín-Lomas, M

    2001-09-03

    An effective strategy has been designed for the synthesis of oligosaccharides of different sizes structurally related to the regular region of heparin; this is illustrated by the preparation of hexasaccharide 1 and octasaccharide 2. This synthetic strategy provides the oligosaccharide sequence containing a D-glucosamine unit at the nonreducing end that is not available either by enzymatic or chemical degradation of heparin. It may permit, after slight modifications, the preparation of oligosaccharide fragments with different charge distribution as well. NMR spectroscopy and molecular dynamics simulations have shown that the overall structure of 1 in solution is a stable right-hand helix with four residues per turn. Hexasaccharide 1 and, most likely, octasaccharide 2 are, therefore, chemically well-defined structural models of naturally occurring heparin-like oligosaccharides for use in binding and biological activity studies. Both compounds 1 and 2 induce the mitogenic activity of acid fibroblast growth factor (FGF1), with the half-maximum activating concentration of 2 being equivalent to that of heparin. Sedimentation equilibrium analysis with compound 2 suggests that heparin-induced FGF1 dimerization is not an absolute requirement for biological activity.

  6. Co-evaluation of plant extracts as petrochemical substitutes and for biologically active compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McChesney, J.D.; Adams, R.P.

    Recent efforts to discover phytochemicals that could substitute for petroleum-derived fuels and industrial feedstocks have not given much attention to the potential of these same phytochemicals to provide sources of biologically active compounds. The suitability of extraction products made to assess specific plants as potential botanochemical sources has been evaluated for use in screening procedures for evidence of biologically active compounds. Screening procedures for antibacterial, antifungal and toxic properties are discussed. Screening results are presented for extracts of nearly 80 species of plants from the southeastern United States and southern Great Plains that had previously been evaluated as sources ofmore » botanochemicals.« less

  7. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    PubMed

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  8. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    PubMed Central

    Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna

    2012-01-01

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313

  9. Antioxidant Peptides Identified from Ovotransferrin by the ORAC Method Did Not Show Anti-Inflammatory and Antioxidant Activities in Endothelial Cells.

    PubMed

    Jahandideh, Forough; Chakrabarti, Subhadeep; Davidge, Sandra T; Wu, Jianping

    2016-01-13

    Oxygen radical absorbance capacity (ORAC) is a widely used method of measuring antioxidant capacities of various antioxidant components. Surprisingly, 16 antioxidant peptides previously identified from egg protein ovotransferrin using the ORAC method did not show any anti-inflammatory and antioxidant activities in cells. After simulated gastro-intestinal digestion (GID), several peptide digests significantly reduced the expression of tumor necrosis factor-α (TNF-α)-induced pro-inflammatory intercellular cell adhesion molecule-1 (ICAM-1) by 65.7 ± 10.4% and vascular cell adhesion molecule-1 (VCAM-1) by 53.5 ± 9.6% to 61.0 ± 14.5%, but only GWNI reduced TNF-α-activated superoxide generation by 71.0 ± 12.9% when tested with dihydroethidium (DHE) assay. Mass spectrometer analysis identified two new peptides, GWN and GW, in the GWNI digest; however, only GW reduced TNF-α-induced VCAM-1 expression (64.3 ± 20.6%) significantly compared to the TNF-α treated cells. Our study suggested that ORAC lacked biological relevance in assessing bioactive peptides.

  10. The metabolomic approach identifies a biological signature of low-dose chronic exposure to cesium 137.

    PubMed

    Grison, Stéphane; Martin, Jean-Charles; Grandcolas, Line; Banzet, Nathalie; Blanchardon, Eric; Tourlonias, Elie; Defoort, Catherine; Favé, Gaëlle; Bott, Romain; Dublineau, Isabelle; Gourmelon, Patrick; Souidi, Maâmar

    2012-01-01

    Reports have described apparent biological effects of (137)Cs (the most persistent dispersed radionuclide) irradiation in people living in Chernobyl-contaminated territory. The sensitive analytical technology described here should now help assess the relation of this contamination to the observed effects. A rat model chronically exposed to (137)Cs through drinking water was developed to identify biomarkers of radiation-induced metabolic disorders, and the biological impact was evaluated by a metabolomic approach that allowed us to detect several hundred metabolites in biofluids and assess their association with disease states. After collection of plasma and urine from contaminated and non-contaminated rats at the end of the 9-months contamination period, analysis with a LC-MS system detected 742 features in urine and 1309 in plasma. Biostatistical discriminant analysis extracted a subset of 26 metabolite signals (2 urinary, 4 plasma non-polar, and 19 plasma polar metabolites) that in combination were able to predict from 68 up to 94% of the contaminated rats, depending on the prediction method used, with a misclassification rate as low as 5.3%. The difference in this metabolic score between the contaminated and non-contaminated rats was highly significant (P = 0.019 after ANOVA cross-validation). In conclusion, our proof-of-principle study demonstrated for the first time the usefulness of a metabolomic approach for addressing biological effects of chronic low-dose contamination. We can conclude that a metabolomic signature discriminated (137)Cs-contaminated from control animals in our model. Further validation is nevertheless required together with full annotation of the metabolic indicators.

  11. Retro-inverso forms of gastrin5-12 are as biologically active as glycine-extended gastrin in vitro but not in vivo.

    PubMed

    Marshall, Kathryn M; Laval, Marie; Sims, Ioulia; Shulkes, Arthur; Baldwin, Graham S

    2015-12-01

    Non-amidated gastrin peptides such as glycine-extended gastrin (Ggly) are biologically active in vitro and in vivo and have been implicated in the development of gastric and colonic cancers. Previous studies have shown that the truncated form of Ggly, the octapeptide LE5AY, was still biologically active in vitro, and that activity was dependent on ferric ion binding but independent of binding to the cholecystokinin 2 (CCK2) receptor. The present work was aimed at creating more stable gastrin-derived 'super agonists' using retro-inverso technology. The truncated LE5AY peptide was synthesized using end protecting groups in three forms with l-amino acids (GL), d-amino acids (GD) or retro-inverso (reverse order with d-amino acids; GRI). All of these peptides bound ferric ions with a 2:1 (Fe: peptide) ratio. As predicted, Ggly, GL and GRI were biologically active in vitro and increased cell proliferation in mouse gastric epithelial (IMGE-5) and human colorectal cancer (DLD-1) cell lines, and increased cell migration in DLD-1 cells. These activities were likely via the same mechanism as Ggly since no CCK1 or CCK2 binding was identified, and GD remained inactive in all assays. Surprisingly, unlike Ggly, GL and GRI were not active in vivo. While Ggly stimulated colonic crypt height and proliferation rates in gastrin knockout mice, GL and GRI did not. The apparent lack of activity may be due to rapid clearance of these smaller peptides. Nevertheless further work designing and testing retro-inverso gastrins is warranted, as it may lead to the generation of super agonists that could potentially be used to treat patients with gastrointestinal disorders with reduced mucosal function. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon system (A/A BAC).

    PubMed

    Pasukphun, N; Vinitnantharat, S; Gheewala, S

    2010-04-01

    The aim of this study is to investigate the decolorization in anaerobic/aerobic biological activated carbon (A/A BAC) system. The experiment was divided into 2 stages; stage I is batch test for preliminary study of dye removal equilibrium time. The preliminary experiment (stage I) provided the optimal data for experimental design of A/A BAC system in SBR (stage II). Stage II is A/A BAC system imitated Sequencing Batch Reactor (SBR) which consist of 5 main periods; fill, react, settle, draw and idle. React period include anaerobic phase followed by aerobic phase. The BAC main media; Granular Activated Carbon (GAC), Mixed Cultures (MC) and Biological Activated Carbon (BAC) were used for dye and organic substances removal in three different solutions; Desizing Agent Solution (DAS), dye Solution (DS) and Synthetic Textile Wastewater (STW). Results indicate that GAC adsorption plays role in dye removal followed by BAC and MC activities, respectively. In the presence desizing agent, decolorization by MC was improved because desizing agent acts as co-substrates for microorganisms. It was found that 50% of dye removal efficiency was achieved in Fill period by MC. GC/MS analysis was used to identify dye intermediate from decolorization. Dye intermediate containing amine group was found in the solution and on BAC surfaces. The results demonstrated that combination of MC and BAC in the system promotes decolorization and dye intermediate removal. In order to improve dye removal efficiency in an A/A BAC system, replacement of virgin GAC, sufficient co-substrates supply and the appropriate anaerobic: aerobic period should be considered.

  13. NANOSILVER MOVEMENT THROUGH BIOLOGICAL BARRIERS RELATES TO PHYSICOCHEMICAL PROPERTIES

    EPA Science Inventory

    Linking the physicochemical (PC) properties of engineered nanomaterials (NM) to their biological activity is critical for identifying their (toxic) mode of action, and developing appropriate and effective risk assessment guidelines. Particle surface charge (zeta potential), surfa...

  14. Identifying the role of conservation biology for solving the environmental crisis.

    PubMed

    Dalerum, Fredrik

    2014-11-01

    Humans are altering their living environment to an extent that could cause environmental collapse. Promoting change into environmental sustainability is therefore urgent. Despite a rapid expansion in conservation biology, appreciation of underlying causes and identification of long-term solutions have largely been lacking. I summarized knowledge regarding the environmental crisis, and argue that the most important contributions toward solutions come from economy, political sciences, and psychology. Roles of conservation biology include providing environmental protection until sustainable solutions have been found, evaluating the effectiveness of implemented solutions, and providing societies with information necessary to align effectively with environmental values. Because of the potential disciplinary discrepancy between finding long-term solutions and short-term protection, we may face critical trade-offs between allocations of resources toward achieving sustainability. Since biological knowledge is required for such trade-offs, an additional role for conservation biologists may be to provide guidance toward finding optimal strategies in such trade-offs.

  15. Synthesis and biological activities of turkesterone 11α-acyl derivatives

    PubMed Central

    Dinan, Laurence; Bourne, Pauline; Whiting, Pensri; Tsitsekli, Ada; Saatov, Ziyadilla; Dhadialla, Tarlochan S.; Hormann, Robert E.; Lafont, René; Coll, Josep

    2003-01-01

    Turkesterone is a phytoecdysteroid possessing an 11α-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid. We report the regioselective synthesis of a series of turkesterone 11α-acyl derivatives in order to explore this possibility. The structures of the analogues have been unambiguously determined by spectroscopic means (NMR and low-resolution mass spectrometry). Purity was verified by HPLC. Biological activities have been determined in Drosophila melanogaster BII cell-based bioassay for ecdysteroid agonists and in an in vitro radioligand-displacement assay using bacterially-expressed D. melanogaster EcR/USP receptor proteins. The 11α-acyl derivatives do retain a significant amount of biological activity relative to the parent ecdysteroid. Further, although activity initially drops with the extension of the acyl chain length (C2 to C4), it then increases (C6 to C10), before decreasing again (C14 and C20). The implications of these findings for the interaction of ecdysteroids with the ecdysteroid receptor and potential applications in the generation of affinity-labelled and fluorescently-tagged ecdysteroids are discussed. Abbreviation: CoMFA comparative molecular field analysis DCM dichloromethane DMF dimethylformamide DMP 2,2-dimethoxypropane 4D-QSAR 4-dimensional quantitative structure-activity relationship EcR ecdysteroid receptor EcRE ecdysteroid response element HPLC high-performance liquid chromatography LBD ligand-binding domain NMR nuclear magnetic resonance ponA ponasterone A QSAR quantitative structure-activity relationship RXR retinoid X receptor SAR structure-activity relationship SPE solid-phase extraction THF tetrahydrofuran TLC thin-layer chromatography p-TsOH para-toluenesulphonic acid USP ultraspiracle UV

  16. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  17. Chemistry and Biological Activities of Flavonoids: An Overview

    PubMed Central

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  18. Biological Activity and Phytochemical Study of Scutellaria platystegia.

    PubMed

    Madani Mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh

    2015-01-01

    This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives.

  19. In vitro and in silico studies on the anticancer and apoptosis-inducing activities of the sterols identified from the soft coral, subergorgia reticulata

    PubMed Central

    Byju, Kuniyil; Anuradha, Vattoni; Vasundhara, Gopalakrishnapai; Nair, S. Muraleedharan; Kumar, N. Chandramohana

    2014-01-01

    Background: Gorgonians and other octocorals are known to possess a huge array of secondary metabolites in which sterols are the major group of secondary metabolites apart from sesquiterpenes and diterpenes, and the bioactive metabolites could show marked biomedical potential for future drug discovery. Objective: This study was intended for the isolation and identification of sterols from the octocoral Subergorgia reticulata and to evaluate the anticancer and apoptosis-inducing activities of the identified sterols through in vitro and in silico approach. Materials and Methods: The organism was collected from Lakshadweep Island. The isolated sterols were identified using Gas chromatography-mass spectrometry (GC-MS). The structure was confirmed by using comparison of their spectra those in National Institute of Standard Technology (NIST) library. The apoptosis inducing effect of identified sterols were determined by PASS online prediction. In vitro cytotoxity studies were carried out using Dalton's lymphoma ascites cells (DLA) and the cell viability was determined by trypan blue exclusion method. Results: Six sterols were identified from the soft coral S. reticulata. They are Cholesta-5,22-diene-3ol (3β), Ergosta-5-22-dien-3ol (3β,22E 24S), Cholesterol, 26,26-Dimethyl-5,24(28)-ergostadien-3β-ol. β-sitosterol, and Fucosterol. In silico predictions showed that the identified sterols exhibited remarkable apoptosis agonist activity. The probability of apoptosis agonist activity were found maximum for 26,26-Dimethyl-5,24 (28)-S. reticulata sterol fractions isolated were found to be having anticancer activity. Conclusions: These findings suggest that S. reticulata contained biologically active sterol compounds that may be useful in the treatment of cancer. PMID:24914311

  20. CONDITIONAL PROBABILITY ANALYSIS APPROACH FOR IDENTIFYING BIOLOGICAL THRESHOLD OF IMPACT FOR SEDIMENTATION: APPICATION TO FRESHWATER STREAMS IN OREGON COAST RANGE ECOREGION

    EPA Science Inventory

    A conditional probability analysis (CPA) approach has been developed for identifying biological thresholds of impact for use in the development of geographic-specific water quality criteria for protection of aquatic life. This approach expresses the threshold as the likelihood ...

  1. Biosimilars: Company Strategies to Capture Value from the Biologics Market

    PubMed Central

    Calo-Fernández, Bruno; Martínez-Hurtado, Juan Leonardo

    2012-01-01

    Patents for several biologic blockbusters will expire in the next few years. The arrival of biosimilars, the biologic equivalent of chemical generics, will have an impact on the current biopharmaceuticals market. Five core capabilities have been identified as paramount for those companies aiming to enter the biosimilars market: research and development, manufacturing, supporting activities, marketing, and lobbying. Understanding the importance of each of these capabilities will be key to maximising the value generated from the biologics patent cliff. PMID:24281342

  2. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  3. Active faults newly identified in Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    The Bellingham Basin, which lies north of Seattle and south of Vancouver around the border between the United States and Canada in the northern part of the Cascadia subduction zone, is important for understanding the regional tectonic setting and current high rates of crustal deformation in the Pacific Northwest. Using a variety of new data, Kelsey et al. identified several active faults in the Bellingham Basin that had not been previously known. These faults lie more than 60 kilometers farther north of the previously recognized northern limit of active faulting in the area. The authors note that the newly recognized faults could produce earthquakes with magnitudes between 6 and 6.5 and thus should be considered in hazard assessments for the region. (Journal of Geophysical Reserch-Solid Earth, doi:10.1029/2011JB008816, 2012)

  4. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P.

    2018-01-01

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).

  5. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  6. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    PubMed

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Separation of phytochemicals from Helichrysum italicum: An analysis of different isolation techniques and biological activity of prepared extracts.

    PubMed

    Maksimovic, Svetolik; Tadic, Vanja; Skala, Dejan; Zizovic, Irena

    2017-06-01

    Helichrysum italicum presents a valuable source of natural bioactive compounds. In this work, a literature review of terpenes, phenolic compounds, and other less common phytochemicals from H. italicum with regard to application of different separation methods is presented. Data including extraction/separation methods and experimental conditions applied, obtained yields, number of identified compounds, content of different compound groups, and analytical techniques applied are shown as corresponding tables. Numerous biological activities of both isolates and individual compounds are emphasized. In addition, the data reported are discussed, and the directions for further investigations are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Traditional Uses, Chemical Constituents, and Biological Activities of Bixa orellana L.: A Review

    PubMed Central

    Vilar, Daniela de Araújo; Vilar, Marina Suênia de Araujo; Moura, Túlio Flávio Accioly de Lima e; Raffin, Fernanda Nervo; de Oliveira, Márcia Rosa; Franco, Camilo Flamarion de Oliveira; de Athayde-Filho, Petrônio Filgueiras; Diniz, Margareth de Fátima Formiga Melo; Barbosa-Filho, José Maria

    2014-01-01

    Bixa orellana L., popularly known as “urucum,” has been used by indigenous communities in Brazil and other tropical countries for several biological applications, which indicates its potential use as an active ingredient in pharmaceutical products. The aim of this work was to report the main evidence found in the literature, concerning the ethnopharmacology, the biological activity, and the phytochemistry studies related to Bixa orellana L. Therefore, this work comprises a systematic review about the use of Bixa orellana in the American continent and analysis of the data collected. This study shows the well-characterized pharmacological actions that may be considered relevant for the future development of an innovative therapeutic agent. PMID:25050404

  9. Design, Synthesis and Biological Activities of Novel Gemini 20S-Hydroxyvitamin D3 Analogs

    PubMed Central

    LIN, ZONGTAO; MAREPALLY, SRINIVASA R.; KIM, TAE-KANG; JANJETOVIC, ZORICA; OAK, ALLEN SW.; POSTLETHWAITE, ARNOLD E.; MYERS, LINDA K.; TUCKEY, ROBERT C.; SLOMINSKI, ANDRZEJ T.; MILLER, DUANE D.; LI, WEI

    2017-01-01

    Vitamin D3 (D3) can be metabolized by cytochrome P450scc (CYP11A1) into 20S-hydroxyvitamin D3 (20D3) as a major metabolite. This bioactive metabolite has shown strong antiproliferative, antifibrotic, pro-differentiation and anti-inflammatory effects while being non-toxic (non-calcemic) at high concentrations. Since D3 analogs with two symmetric side chains (Gemini analogs) result in potent activation of the vitamin D receptor (VDR), we hypothesized that the chain length and composition of these types of analogs also containing a 20-hydroxyl group would affect their biological activities. In this study, we designed and synthesized a series of Gemini 20D3 analogs. Biological tests showed that some of these analogs are partial VDR activators and can significantly stimulate the expression of mRNA for VDR and VDR-regulated genes including CYP24A1 and transient receptor potential cation channel V6 (TRPV6). These analogs inhibited the proliferation of melanoma cells with potency comparable to that of 1α,25-dihydroxyvitamin D3. Moreover, these analogs reduced the level of interferon γ and up-regulated the expression of leukocyte associated immunoglobulin-like receptor 1 in splenocytes, indicating that they have potent anti-inflammatory activities. There are no clear correlations between the Gemini chain length and their VDR activation or biological activities, consistent with the high flexibility of the ligand-binding pocket of the VDR. PMID:26976974

  10. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    PubMed

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis.

  11. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    ERIC Educational Resources Information Center

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  12. The effect of storage temperature on the biological activity of extracellular vesicles for the complement system.

    PubMed

    Park, Sang June; Jeon, Hyungtaek; Yoo, Seung-Min; Lee, Myung-Shin

    2018-05-10

    Extracellular vesicles (EVs) are mediators of intercellular communication by transporting cargo containing proteins, lipids, mRNA, and miRNA. There is increasing evidence that EVs have various roles in regulating migration, invasion, stemness, survival, and immune functions. Previously, we have found that EVs from Kaposi's sarcoma-associated herpesvirus (KSHV)-infected human endothelial cells have the potential to activate the complement system. Although many studies have shown that the physical properties of EVs can be changed by their storage condition, there have been few studies for the stability of biological activity of EVs in various storage conditions. In this study, we investigated various conditions to identify the best conditions to store EVs with functional stability for 25 d. Furthermore, the correlation between the function and other characteristics of EVs, including the expression of EV markers, size distribution, and particle number, were also analyzed. Our results demonstrated that storage temperature is an important factor to maintain the activity of EVs and would be useful information for basic research and clinical application using EVs.

  13. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II.

    PubMed

    Scribner, Andrew; Dennis, Richard; Lee, Shuliang; Ouvry, Gilles; Perrey, David; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2008-06-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Recently, we reported the synthesis and biological activity of potent imidazo[1,2-a]pyridine anticoccidial agents. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we report the synthesis and anticoccidial activity of a second set of such compounds, focusing on derivatization of the amine side chain at the imidazopyridine 7-position. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  14. Physical and biological mechanisms of nanosecond- and microsecond-pulsed FE-DBD plasma interaction with biological objects

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil

    2013-09-01

    Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.

  15. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review.

    PubMed

    Ryu, Ji Hyeon; Kang, Dawon

    2017-06-01

    Garlic (Allium sativum) has been used as a medicinal food since ancient times. However, some people are reluctant to ingest raw garlic due to its unpleasant odor and taste. Therefore, many types of garlic preparations have been developed to reduce these attributes without losing biological functions. Aged black garlic (ABG) is a garlic preparation with a sweet and sour taste and no strong odor. It has recently been introduced to Asian markets as a functional food. Extensive in vitro and in vivo studies have demonstrated that ABG has a variety of biological functions such as antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-allergic, cardioprotective, and hepatoprotective effects. Recent studies have compared the biological activity and function of ABG to those of raw garlic. ABG shows lower anti-inflammatory, anti-coagulation, immunomodulatory, and anti-allergic effects compared to raw garlic. This paper reviews the physicochemical properties, biological activity, health benefits, adverse effects, and general limitations of ABG.

  16. Ethnobotany, chemical constituents and biological activities of the flowers of Hydnora abyssinica A.Br. (Hydnoraceae).

    PubMed

    Al-Fatimi, M; Ali, N A A; Kilian, N; Franke, K; Arnold, N; Kuhnt, C; Schmidt, J; Lindequist, U

    2016-04-01

    Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg/mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen.

  17. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities.

    PubMed

    Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru

    2013-08-01

    Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Evaluation of DNA extraction methods for the analysis of microbial community in biological activated carbon.

    PubMed

    Zheng, Lu; Gao, Naiyun; Deng, Yang

    2012-01-01

    It is difficult to isolate DNA from biological activated carbon (BAC) samples used in water treatment plants, owing to the scarcity of microorganisms in BAC samples. The aim of this study was to identify DNA extraction methods suitable for a long-term, comprehensive ecological analysis of BAC microbial communities. To identify a procedure that can produce high molecular weight DNA, maximizes detectable diversity and is relatively free from contaminants, the microwave extraction method, the cetyltrimethylammonium bromide (CTAB) extraction method, a commercial DNA extraction kit, and the ultrasonic extraction method were used for the extraction of DNA from BAC samples. Spectrophotometry, agarose gel electrophoresis and polymerase chain reaction (PCR)-restriction fragment length polymorphisms (RFLP) analysis were conducted to compare the yield and quality of DNA obtained using these methods. The results showed that the CTAB method produce the highest yield and genetic diversity of DNA from BAC samples, but DNA purity was slightly less than that obtained with the DNA extraction-kit method. This study provides a theoretical basis for establishing and selecting DNA extraction methods for BAC samples.

  19. In Search of a Better Bean: A Simple Activity to Introduce Plant Biology

    ERIC Educational Resources Information Center

    Spaccarotella, Kim; James, Roxie

    2014-01-01

    Measuring plant stem growth over time is a simple activity commonly used to introduce concepts in growth and development in plant biology (Reid & Pu, 2007). This Quick Fix updates the activity and incorporates a real-world application: students consider possible effects of soil substrate and sunlight conditions on plant growth without needing…

  20. Biological and therapeutic activities, and anticancer properties of curcumin.

    PubMed

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  1. Polymer application for separation/filtration of biological active compounds

    NASA Astrophysics Data System (ADS)

    Tylkowski, B.; Tsibranska, I.

    2017-06-01

    Membrane technology is an important part of the engineer's toolbox. This is especially true for industries that process food and other products with their primary source from nature. This review is focused on ongoing development work using membrane technologies for concentration and separation of biologically active compounds, such as polyphenols and flavonoids. We provide the readers not only with the last results achieve in this field but also, we deliver detailed information about the membrane types and polymers used for their preparation.

  2. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.

    PubMed

    Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz

    2018-05-29

    The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.

  3. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil

    PubMed Central

    Machado, Bruna Aparecida Souza; Silva, Rejane Pina Dantas; Barreto, Gabriele de Abreu; Costa, Samantha Serra; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Dellagostin, Odir Antônio; Henriques, João Antônio Pegas; Umsza-Guez, Marcelo Andres; Padilha, Francine Ferreira

    2016-01-01

    The variations in the chemical composition, and consequently, on the biological activity of the propolis, are associated with its type and geographic origin. Considering this fact, this study evaluated propolis extracts obtained by supercritical extraction (SCO2) and ethanolic extraction (EtOH), in eight samples of different types of propolis (red, green and brown), collected from different regions in Brazil. The content of phenolic compounds, flavonoids, in vitro antioxidant activity (DPPH and ABTS), Artepillin C, p-coumaric acid and antimicrobial activity against two bacteria were determined for all extracts. For the EtOH extracts, the anti-proliferative activity regarding the cell lines of B16F10, were also evaluated. Amongst the samples evaluated, the red propolis from the Brazilian Northeast (states of Sergipe and Alagoas) showed the higher biological potential, as well as the larger content of antioxidant compounds. The best results were shown for the extracts obtained through the conventional extraction method (EtOH). However, the highest concentrations of Artepillin C and p-coumaric acid were identified in the extracts from SCO2, indicating a higher selectivity for the extraction of these compounds. It was verified that the composition and biological activity of the Brazilian propolis vary significantly, depending on the type of sample and geographical area of collection. PMID:26745799

  4. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    PubMed

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  5. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism

    PubMed Central

    Gut, Philipp; Baeza-Raja, Bernat; Andersson, Olov; Hasenkamp, Laura; Hsiao, Joseph; Hesselson, Daniel; Akassoglou, Katerina; Verdin, Eric; Hirschey, Matthew D.; Stainier, Didier Y.R.

    2012-01-01

    Improving the control of energy homeostasis can lower cardiovascular risk in metabolically compromised individuals. To identify new regulators of whole-body energy control, we conducted a high-throughput screen in transgenic reporter zebrafish for small molecules that modulate the expression of the fasting-inducible gluconeogenic gene pck1. We show that this in vivo strategy identified several drugs that impact gluconeogenesis in humans, as well as metabolically uncharacterized compounds. Most notably, we find that the Translocator Protein (TSPO) ligands PK 11195 and Ro5-4864 are glucose lowering agents despite a strong inductive effect on pck1 expression. We show that these drugs are activators of a fasting-like energy state, and importantly that they protect high-fat diet induced obese mice from hepatosteatosis and glucose intolerance, two pathological manifestations of metabolic dysregulation. Thus, using a whole-organism screening strategy, this study has identified new small molecule activators of fasting metabolism. PMID:23201900

  6. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities

    PubMed Central

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  7. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  8. DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes.

    PubMed

    Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel; Antonczak, Serge

    2007-02-07

    Quercetin, one of the most representative flavonoid compounds, is involved in antiradical, antioxidant, and prooxidant biological processes. Despite a constant increase of knowledge on both positive and negative activities of quercetin, it is unclear which activated form (quinone, semiquinone, or deprotonated) actually plays a role in each of these processes. Structural, electronic, and energetic characteristics of quercetin, as well as the influence of a copper ion on all of these parameters, are studied by means of quantum chemical electronic structure calculations. Introduction of thermodynamic cycles together with the role of coreactive compounds, such as reactive oxygen species, gives a glimpse of the most probable reaction schemes. Such a theoretical approach provides another hint to clarify which reaction is likely to occur within the broad range of quercetin biological activities.

  9. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives.

    PubMed

    Sun, Yichun

    2014-07-01

    Poria cocos has a long history of medicinal use in Asian countries such as China, Japan, Korea and Thailand. It is a kind of edible and pharmaceutical mushroom. The chemical compositions of Poria cocos mainly include triterpenes, polysaccharides, steroids, amino acids, choline, histidine, etc. Great advances have been made in chemical and bioactive studies on Poria cocos polysaccharides (PCP) and their derivatives in recent decades. These PCP and their derivatives exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. Therefore, PCP and their derivatives have great potential for further development as therapy or adjuvant therapy for cancer, immune-modulatory and antiviral drugs. This paper presents an overview of biological activities and potential health benefits of PCP and their derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.

    PubMed

    Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi

    2011-10-13

    Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  11. Molybdenum isotope fractionation in scleractinian corals and its implications on biological activities

    NASA Astrophysics Data System (ADS)

    Wei, G.; Wang, Z.; Li, J.; Deng, W.; Chen, X.; Ma, J.; Zeng, T.

    2017-12-01

    Molybdenum can actively involve in many biological processes on coral reefs, and its isotope fractionation in coral skeleton is possibly linked to some biological activities. We have performed a 3-days' time-series observation in a time interval of 4 hours on both Mo concentrations and δ98/85Mo of the seawater of the Luhuitou Reef in Sanya of Southern Hainan Islands in the northern South China Sea. Both Mo concentrations and δ98/85Mo show in pace diurnal variations with temperature, pH, dissolved oxygen (DO) contents, dissolved inorganic carbon (DIC) contents and its δ13C. High Mo concentrations and low δ98/85Mo generally occur during day time, and low Mo concentrations and high δ98/85Mo occur at night, suggesting that respiration of coral dominated at night tends to uptake more Mo from seawater. A further analysis on the Mo isotopic compositions of 6 different coral species on the Luhuitou Reef indicates that different coral species has different δ98/85Mo values in their skeleton. The lowest δ98/85Mo value occurs in Fungia of 0.34 ‰, and the highest occurs in Acropora sp of 1.91 ‰. These are all lower than that of the seawater, 2.04 ‰, suggesting a specie-depended Mo fractionation on coral skeleton. Meanwhile, we measured a 32-year time series of both Mo concentrations and δ98/85Mo of a Porites coral from the Great Barrier Reefs of Australia in annual resolution. The Mo concentrations vary from 12.5 to 78.0 ng/g, with an average of 21.4 ± 0.02 ng/g, and the δ98/95Mo values change from 0.46 to 1.83‰, with an average of 1.34 ± 0.09‰. A significant negative correlation occurs between the δ98/95Mo and the Mo concentration, and a positive correlation occurs between the δ98/95Mo and the seawater surface temperature. All these suggest that Mo isotope fractionation in coral skeleton is associated with biological activities of coral, such as respiration, and the δ98/95Mo values may be used to indicate changes in the related biological activities.

  12. The biological activity of chernozems in the Central Caucasus Mountains (Terskii variant of altitudinal zonality), Kabardino-Balkaria

    NASA Astrophysics Data System (ADS)

    Gedgafova, F. V.; Uligova, T. S.; Gorobtsova, O. N.; Tembotov, R. Kh.

    2015-12-01

    Some parameters of the biological activity (humus content; activity of hydrolytic enzymes invertase, phosphatase, urease; and the intensity of carbon dioxide emission) were studied in the chernozems of agrocenoses and native biogeocenoses in the foothills of the Caucasus Mountains representing the Terskii variant of the altitudinal zonality. The statistically significant differences were revealed between the relevant characteristics of the soils of the agrocenoses and of the native biogeocenoses. The integral index of the ecological-biological state of the soils was used to estimate changes in the biological activity of the arable chernozems. The 40-60% decrease of this index in the cultivated chernozems testified to their degradation with a decrease in fertility and the disturbance of ecological functions as compared to these characteristics in the virgin chernozems.

  13. Effect of Locked-Nucleic Acid on a Biologically Active G-Quadruplex. A Structure-Activity Relationship of the Thrombin Aptamer

    PubMed Central

    Bonifacio, Laura; Church, Frank C.; Jarstfer, Michael B.

    2008-01-01

    Here we tested the ability to augment the biological activity of the thrombin aptamer, d(GGTTGGTGTGGTTGG), by using locked nucleic acid (LNA) to influence its G-quadruplex structure. Compared to un-substituted control aptamer, LNA-containing aptamers displayed varying degrees of thrombin inhibition. Aptamers with LNA substituted in either positions G5, T7, or G8 showed decreased thrombin inhibition, whereas LNA at position G2 displayed activity comparable to un-substituted control aptamer. Interestingly, the thermal stability of the substituted aptamers does not correlate to activity – the more stable aptamers with LNA in position G5, T7, or G8 showed the least thrombin inhibition, while a less stable aptamer with LNA at G2 was as active as the un-substituted aptamer. These results suggest that LNA substitution at sites G5, T7, and G8 directly perturbs aptamer-thrombin affinity. This further implies that for the thrombin aptamer, activity is not dictated solely by the stability of the G-quadruplex structure, but by specific interactions between the central TGT loop and thrombin and that LNA can be tolerated in a biologically active nucleic acid structure albeit in a position dependent fashion. PMID:19325759

  14. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.

    PubMed

    Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J

    2016-03-18

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.

  15. Excretion of lead and its biological activity several years after termination of exposure

    PubMed Central

    Přerovská, I.; Teisinger, J.

    1970-01-01

    Přerovská, and Teisinger, J. (1970).Brit. J. industr. Med.,27, 352-355. Excretion of lead and its biological activity several years after termination of exposure. A group of 27 persons who had been treated some years previously for chronic lead poisoning at our clinic, and who had not come into occupational contact with lead since, was examined. Half of them had had no occupational exposure to lead for 3 to 5 years and the others for 8 to 17 years. In most of these persons there is still an increased lead excretion, originating from an increased deposit in the bones. The mobilization test after calcium versenate (CaEDTA) injection was greater than 0·350 mg/24 hours. The values found for haemoglobin, punctate basophilia, coproporphyrin and ALA in urine were normal, but there was, in all cases, a decreased ALA-D activity. This finding suggests biological activity of such negligible lead flow many years after termination of exposure. PMID:5488694

  16. Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica.

    PubMed

    Yang, Baoru; Liu, Pengzhan

    2014-01-22

    Fruits of emblic leafflower have been used as food and traditional medicine in Asia. A wide range of biological activities have been shown in modern research suggesting potential of the fruits as healthy food and raw material for bioactive ingredients of food. Hydrolyzable tannins are among the major bioactive components of the fruits. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid are the most abundant hydrolyzable tannins. The compositional profiles of tannins in the fruits vary depending on the cultivars as well as ripening stages. Fruits and tannin-rich extracts of fruits have shown antidiabetic, antimicrobial, anti-inflammatory, and immune-regulating activities in vitro and in animal studies. The fruits and fruit extracts have manifested protective effects on organs/tissues from damages induced by chemicals, stresses, and aging in animal models. The fruits and fruit extracts have potential in inhibiting the growth of cancer cells and reducing DNA damage induced by chemicals and radiation. Antioxidative activities are likely among the mechanisms of the biological activities and physiological effects. Human intervention/clinical studies are needed to investigate the bioavailability and metabolism of the tannins and to substantiate the health benefits in humans. Emblic leafflower may be a potential raw material for natural food preservatives.

  17. New biologically active epidioxysterols from Stereum hirsutum.

    PubMed

    Cateni, Francesca; Doljak, Bojan; Zacchigna, Marina; Anderluh, Marko; Piltaver, Andrej; Scialino, Giuditta; Banfi, Elena

    2007-11-15

    From the fungus Stereum hirsutum have been isolated and identified two new epidioxysterols 1, 4, together with two known ones 2 and 3. Their structures were elucidated on the basis of spectroscopic analysis and chemical reactions. Epidioxysterols 1-4 have been shown to possess a significant activity against Mycobacterium tuberculosis.

  18. [Biological properties of bacteriophages, active to Yersinia enterocolitica].

    PubMed

    Darsavelidze, M A; Kapanadze, Zh S; Chanishvili, T G

    2004-01-01

    The biological properties of 16 clones of Y. enterolitica bacteriophages were tested to select the most active for subsequent use. For the first time Y. enterocolitica virulent phages belonging to the family of Podoviridae were described and 7 serological groups of phages with no cross reactions were registered. The technology for the production of new therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage under laboratory conditions was developed. The effective multiplicity of contamination ensuring the maximum release of phages from bacterial cells, the optimum incubation temperature and the time of exposure were established. The experimental batches of therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage thus obtained met the requirements for antibacterial preparations.

  19. ORF phage display to identify cellular proteins with different functions.

    PubMed

    Li, Wei

    2012-09-01

    Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Use of the short-term inflammatory response in the mouse peritoneal cavity to assess the biological activity of leached vitreous fibers.

    PubMed Central

    Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M

    1994-01-01

    We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922

  1. Combining functional genomics and chemical biology to identify targets of bioactive compounds.

    PubMed

    Ho, Cheuk Hei; Piotrowski, Jeff; Dixon, Scott J; Baryshnikova, Anastasia; Costanzo, Michael; Boone, Charles

    2011-02-01

    Genome sequencing projects have revealed thousands of suspected genes, challenging researchers to develop efficient large-scale functional analysis methodologies. Determining the function of a gene product generally requires a means to alter its function. Genetically tractable model organisms have been widely exploited for the isolation and characterization of activating and inactivating mutations in genes encoding proteins of interest. Chemical genetics represents a complementary approach involving the use of small molecules capable of either inactivating or activating their targets. Saccharomyces cerevisiae has been an important test bed for the development and application of chemical genomic assays aimed at identifying targets and modes of action of known and uncharacterized compounds. Here we review yeast chemical genomic assays strategies for drug target identification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  3. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    PubMed

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  4. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    PubMed

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Structure and Chemical Synthesis of a Biologically Active Form of Renilla (Sea Pansy) Luciferin*

    PubMed Central

    Hori, Kazuo; Cormier, Milton J.

    1973-01-01

    The structure of a biologically active form of Renilla (sea pansy) luciferin has been elucidated; this structure, confirmed by total chemical synthesis, is 3,7-dihydro-2-methyl-6-(p-hydroxyphenyl)-8-benzylimidazo [1,2-a] pyrazin-3-one. In the natural compound the methyl group at the 2 position is replaced by an unknown, more complex group. For this reason the synthetic compound is 10% as active as the natural compound in producing light with Renilla luciferase. However, the spectral properties of the two compounds are identical. In addition the rates of the luminescent reaction with both compounds are similar, and the color of the light produced is identical in each case. A compound isolated from the calcium-triggered photoprotein aequorin has been identified by Shimomura and Johnson [(1972) Biochemistry 11, 1602] to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine. This compound forms an integral part of the structure of Renilla luciferin. This, and other evidence, suggests that the structure elucidated for Renilla luciferin is a more general one associated with the luciferins of most, if not all, bioluminescent coelenterates. PMID:16592045

  6. [Effects of biologically active pectin-containing dietary supplement on gastroduodenal motility in patients with a functional dyspepsia].

    PubMed

    Loranskaia, T I; Kabanova, I N; Klykova, E V

    2002-01-01

    For 21 patients with a functional dyspepsia the influencing biologically active additives to nutrition "Pekcecom" on dynamics of clinical symptoms and parameters gastroduodenal motility under the data gastroduodenoscintigraphy was studied. The usage of biologically active additives during 4 weeks was accompanied by deboosting of accelerated gastric emptying for want of statistically significant influencing on a normal and delayed gastric emptying and parameters of duodenal transit.

  7. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils.

    PubMed

    Barbosa, Luiz Claudio Almeida; Filomeno, Claudinei Andrade; Teixeira, Robson Ricardo

    2016-12-07

    Many plant species produce mixtures of odorous and volatile compounds known as essential oils (EOs). These mixtures play important roles in Nature and have been utilized by mankind for different purposes, such as pharmaceuticals, agrochemicals, aromatherapy, and food flavorants. There are more than 3000 EOs reported in the literature, with approximately 300 in commercial use, including the EOs from Eucalyptus species. Most EOs from Eucalyptus species are rich in monoterpenes and many have found applications in pharmaceuticals, agrochemicals, food flavorants, and perfumes. Such applications are related to their diverse biological and organoleptic properties. In this study, we review the latest information concerning the chemical composition and biological activities of EOs from different species of Eucalyptus . Among the 900 species and subspecies of the Eucalyptus genus, we examined 68 species. The studies associated with these species were conducted in 27 countries. We have focused on the antimicrobial, acaricidal, insecticidal and herbicidal activities, hoping that such information will contribute to the development of research in this field. It is also intended that the information described in this study can be useful in the rationalization of the use of Eucalyptus EOs as components for pharmaceutical and agrochemical applications as well as food preservatives and flavorants.

  8. Biological tracer method

    DOEpatents

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  9. Biological tracer method

    DOEpatents

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  10. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate

    NASA Astrophysics Data System (ADS)

    Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo

    2017-01-01

    Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.

  11. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.

  12. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  13. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors thatmore » block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.« less

  14. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited.

    PubMed

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P

    2018-01-15

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    USDA-ARS?s Scientific Manuscript database

    Furan fatty acids (F-acids) gain special attentions since they are known to play important roles in biological systems including humans. Specifically F-acids are known to have strong antioxidant activity like radical scavenging activity. Although widely distributed in most biological systems, F-ac...

  16. Using Indices of Fidelity to Intervention Core Components to Identify Program Active Ingredients

    ERIC Educational Resources Information Center

    Abry, Tashia; Hulleman, Chris S.; Rimm-Kaufman, Sara E.

    2015-01-01

    Identifying the active ingredients of an intervention--intervention-specific components serving as key levers of change--is crucial for unpacking the intervention black box. Measures of intervention fidelity can be used to identify specific active ingredients, yet such applications are rare. We illustrate how fidelity measures can be used to…

  17. Protein aggregates as depots for the release of biologically active compounds.

    PubMed

    Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya

    2008-12-12

    Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.

  18. Hydrology or biology? Modeling simplistic physical constraints on lake carbon biogeochemistry to identify when and where biology is likely to matter

    NASA Astrophysics Data System (ADS)

    Jones, S.; Zwart, J. A.; Solomon, C.; Kelly, P. T.

    2017-12-01

    Current efforts to scale lake carbon biogeochemistry rely heavily on empirical observations and rarely consider physical or biological inter-lake heterogeneity that is likely to regulate terrestrial dissolved organic carbon (tDOC) decomposition in lakes. This may in part result from a traditional focus of lake ecologists on in-lake biological processes OR physical-chemical pattern across lake regions, rather than on process AND pattern across scales. To explore the relative importance of local biological processes and physical processes driven by lake hydrologic setting, we created a simple, analytical model of tDOC decomposition in lakes that focuses on the regulating roles of lake size and catchment hydrologic export. Our simplistic model can generally recreate patterns consistent with both local- and regional-scale patterns in tDOC concentration and decomposition. We also see that variation in lake hydrologic setting, including the importance of evaporation as a hydrologic export, generates significant, emergent variation in tDOC decomposition at a given hydrologic residence time, and creates patterns that have been historically attributed to variation in tDOC quality. Comparing predictions of this `biologically null model' to field observations and more biologically complex models could indicate when and where biology is likely to matter most.

  19. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    PubMed

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  20. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text

    PubMed Central

    2011-01-01

    Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications. PMID:21995939

  1. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    PubMed

    Cunningham, Susan J; Kruger, Andries C; Nxumalo, Mthobisi P; Hockey, Philip A R

    2013-01-01

    Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh)) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh) values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh) = 35.5 °C) and the common fiscal Lanius collaris (T(thresh) = 33 °C). We used these T(thresh) values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh)), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh) technique as a conservation tool.

  2. Identifying Biologically Meaningful Hot-Weather Events Using Threshold Temperatures That Affect Life-History

    PubMed Central

    Cunningham, Susan J.; Kruger, Andries C.; Nxumalo, Mthobisi P.

    2013-01-01

    Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (Tthresh) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using Tthresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (Tthresh = 35.5°C) and the common fiscal Lanius collaris (Tthresh = 33°C). We used these Tthresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > Tthresh), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the Tthresh technique as a conservation tool. PMID:24349296

  3. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  4. Nitrogen-Containing Constituents of Black Cohosh: Chemistry, Structure Elucidation, and Biological Activities

    PubMed Central

    Lankin, David C.; Cisowska, Tamara; Chen, Shao-Nong; Pauli, Guido F.; van Breemen, Richard B.

    2016-01-01

    The roots/rhizomes of black cohosh (Actaea racemosa L. syn. Cimicifuga racemosa [L]. Nutt., Ranunculaceae) have been used traditionally by Native Americans to treat colds, rheumatism, and a variety of conditions related to women’s health. In recent years black cohosh preparations have become popular dietary supplements among women seeking alternative treatments for menopausal complaints. The popularity of the plant has led to extensive phytochemical and biological investigations, including several clinical trials. Most of the phytochemical and biological research has focused on two abundant classes of compounds: the triterpene glycosides and phenolic acids. A third group of phytoconstituents that has received far less attention consists of the alkaloids and related compounds that contain nitrogen. This chapter summarizes the current state of knowledge of the chemistry and biological activities associated with this group of constituents and provides some perspective on their significance for future research on this interesting plant. PMID:27795590

  5. Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time.

    PubMed

    Djouahri, Abderrahmane; Saka, Boualem; Boudarene, Lynda; Baaliouamer, Aoumeur

    2016-12-01

    In the present work, the hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD) kinetics of essential oil (EO) extracted from Tetraclinis articulata (Vahl) Mast. wood was conducted, in order to assess the impact of extraction time and technique on chemical composition and biological activities. Gas chromatography (GC) and GC/mass spectrometry analyses showed significant differences between the extracted EOs, where each family class or component presents a specific kinetic according to extraction time, technique and especially for the major components: camphene, linalool, cedrol, carvacrol and α-acorenol. Furthermore, our findings showed a high variability for both antioxidant and anti-inflammatory activities, where each activity has a specific effect according to extraction time and technique. The highlighted variability reflects the high impact of extraction time and technique on chemical composition and biological activities, which led to conclude that we should select EOs to be investigated carefully depending on extraction time and technique, in order to isolate the bioactive components or to have the best quality of EO in terms of biological activities and preventive effects in food. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  6. Detecting Biological Warfare Agents

    PubMed Central

    Song, Linan; Ahn, Soohyoun

    2005-01-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712

  7. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    PubMed

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  8. Identifying facilitators and barriers to physical activity for adults with Down syndrome.

    PubMed

    Mahy, J; Shields, N; Taylor, N F; Dodd, K J

    2010-09-01

    Adults with Down syndrome are typically sedentary, and many do not participate in the recommended levels of physical activity per week. The aim of this study was to identify the facilitators and barriers to physical activity for this group. Semi-structured interviews were conducted to elicit the views of adults with Down syndrome and their support people about what factors facilitate physical activity and what factors are barriers to activity. A sample of 18 participants (3 men, 15 women) was recruited through two agencies providing services for adults with disabilities; six participants were adults with Down syndrome and 12 participants were support people (four were parents of adults with Down syndrome and eight participants were employed by day programmes attended by the adults with Down syndrome). The interviews were recorded, transcribed verbatim and independently coded by two researchers. Three themes around facilitators to physical activity were identified: (1) support from others; (2) that the physical activity was fun or had an interesting purpose; and (3) routine and familiarity. Three themes around barriers were also identified: (1) lack of support; (2) not wanting to engage in physical activity; and (3) medical and physiological factors. The results suggest that support people play a key role, both as facilitators and barriers, in the participation by adults with Down syndrome in physical activity. Many of the barriers and facilitators of activity for adults with Down syndrome indentified are similar to those reported for adults without impairment. Our findings are also consistent with established theories in the field of health behaviour change.

  9. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants

    PubMed Central

    Le Roy, Julien; Huss, Brigitte; Creach, Anne; Hawkins, Simon; Neutelings, Godfrey

    2016-01-01

    The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity. PMID:27303427

  10. Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities

    NASA Astrophysics Data System (ADS)

    Lv, Haitao; Duan, Ke; Shan, Hu

    2018-04-01

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.

  11. Investigating the Relationship between Instructors’ Use of Active-Learning Strategies and Students’ Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    PubMed Central

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students’ conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants’ conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students’ attitudes and motivation in the domain. PMID:28389428

  12. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests.

    PubMed

    Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A

    2009-08-01

    Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.

  13. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    PubMed

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  14. The Use of Group Activities in Introductory Biology Supports Learning Gains and Uniquely Benefits High-Achieving Students†

    PubMed Central

    Marbach-Ad, Gili; Rietschel, Carly H.; Saluja, Neeti; Carleton, Karen L.; Haag, Eric S.

    2016-01-01

    This study describes the implementation and effectiveness of small-group active engagement (GAE) exercises in an introductory biology course (BSCI207) taught in a large auditorium setting. BSCI207 (Principles of Biology III—Organismal Biology) is the third introductory core course for Biological Sciences majors. In fall 2014, the instructors redesigned one section to include GAE activities to supplement lecture content. One section (n = 198) employed three lectures per week. The other section (n = 136) replaced one lecture per week with a GAE class. We explored the benefits and challenges associated with implementing GAE exercises and their relative effectiveness for unique student groups (e.g., minority students, high- and low-grade point average [GPA] students). Our findings show that undergraduates in the GAE class exhibited greater improvement in learning outcomes than undergraduates in the traditional class. Findings also indicate that high-achieving students experienced the greatest benefit from GAE activities. Some at-risk student groups (e.g., two-year transfer students) showed comparably low learning gains in the course, despite the additional support that may have been afforded by active learning. Collectively, these findings provide valuable feedback that may assist other instructors who wish to revise their courses and recommendations for institutions regarding prerequisite coursework approval policies. PMID:28101262

  15. The Use of Group Activities in Introductory Biology Supports Learning Gains and Uniquely Benefits High-Achieving Students.

    PubMed

    Marbach-Ad, Gili; Rietschel, Carly H; Saluja, Neeti; Carleton, Karen L; Haag, Eric S

    2016-12-01

    This study describes the implementation and effectiveness of small-group active engagement (GAE) exercises in an introductory biology course (BSCI207) taught in a large auditorium setting. BSCI207 (Principles of Biology III-Organismal Biology) is the third introductory core course for Biological Sciences majors. In fall 2014, the instructors redesigned one section to include GAE activities to supplement lecture content. One section ( n = 198) employed three lectures per week. The other section ( n = 136) replaced one lecture per week with a GAE class. We explored the benefits and challenges associated with implementing GAE exercises and their relative effectiveness for unique student groups (e.g., minority students, high- and low-grade point average [GPA] students). Our findings show that undergraduates in the GAE class exhibited greater improvement in learning outcomes than undergraduates in the traditional class. Findings also indicate that high-achieving students experienced the greatest benefit from GAE activities. Some at-risk student groups (e.g., two-year transfer students) showed comparably low learning gains in the course, despite the additional support that may have been afforded by active learning. Collectively, these findings provide valuable feedback that may assist other instructors who wish to revise their courses and recommendations for institutions regarding prerequisite coursework approval policies.

  16. Nonexercise activity thermogenesis (NEAT): environment and biology.

    PubMed

    Levine, James A

    2004-05-01

    Nonexercise activity thermogenesis (NEAT) is the energy expended for everything that is not sleeping, eating, or sports-like exercise. It includes the energy expended walking to work, typing, performing yard work, undertaking agricultural tasks, and fidgeting. NEAT can be measured by one of two approaches. The first is to measure or estimate total NEAT. Here, total daily energy expenditure is measured, and from it "basal metabolic rate-plus-thermic effect of food" is subtracted. The second is the factoral approach, whereby the components of NEAT are quantified, and total NEAT is calculated by summing these components. The amount of NEAT that humans perform represents the product of the amount and types of physical activities and the thermogenic cost of each activity. The factors that impact a human's NEAT are readily divisible into environmental factors, such as occupation or dwelling within a "concrete jungle," and biological factors such as weight, gender, and body composition. The combined impact of these factors explains the substantial variance in human NEAT. The variability in NEAT might be viewed as random, but human and animal data contradict this. It appears that changes in NEAT subtly accompany experimentally induced changes in energy balance and are important in the physiology of weight change. Inadequate modulation of NEAT plus a sedentary lifestyle may thus be important in obesity. It then becomes intriguing to dissect mechanistic studies that delineate how NEAT is regulated into neural, peripheral, and humoral factors. A scheme is described in this review in which NEAT corresponds to a carefully regulated "tank" of physical activity that is crucial for weight control.

  17. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  18. Actionable, long-term stable and semantic web compatible identifiers for access to biological collection objects

    PubMed Central

    Hyam, Roger; Hagedorn, Gregor; Chagnoux, Simon; Röpert, Dominik; Casino, Ana; Droege, Gabi; Glöckler, Falko; Gödderz, Karsten; Groom, Quentin; Hoffmann, Jana; Holleman, Ayco; Kempa, Matúš; Koivula, Hanna; Marhold, Karol; Nicolson, Nicky; Smith, Vincent S.; Triebel, Dagmar

    2017-01-01

    With biodiversity research activities being increasingly shifted to the web, the need for a system of persistent and stable identifiers for physical collection objects becomes increasingly pressing. The Consortium of European Taxonomic Facilities agreed on a common system of HTTP-URI-based stable identifiers which is now rolled out to its member organizations. The system follows Linked Open Data principles and implements redirection mechanisms to human-readable and machine-readable representations of specimens facilitating seamless integration into the growing semantic web. The implementation of stable identifiers across collection organizations is supported with open source provider software scripts, best practices documentations and recommendations for RDF metadata elements facilitating harmonized access to collection information in web portals. Database URL: http://cetaf.org/cetaf-stable-identifiers PMID:28365724

  19. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  20. Salinity fluctuation influencing biological adaptation: growth dynamics and Na+ /K+ -ATPase activity in a euryhaline bacterium.

    PubMed

    Yang, Hao; Meng, Yang; Song, Youxin; Tan, Yalin; Warren, Alan; Li, Jiqiu; Lin, Xiaofeng

    2017-07-01

    Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na + /K + -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na + /K + -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na + /K + -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na + /K + -ATPase activity, and tradeoffs between r, K, and Na + /K + -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrodynamic theory of active matter

    NASA Astrophysics Data System (ADS)

    Jülicher, Frank; Grill, Stephan W.; Salbreux, Guillaume

    2018-07-01

    We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

  2. Application of chemical biology in target identification and drug discovery.

    PubMed

    Zhu, Yue; Xiao, Ting; Lei, Saifei; Zhou, Fulai; Wang, Ming-Wei

    2015-09-01

    Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.

  3. Biological effects of space radiation and development of effective countermeasures

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  4. Performance of biological magnetic powdered activated carbon for drinking water purification.

    PubMed

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2016-06-01

    Combining the high adsorption capacity of powdered activated carbon (PAC) with magnetic properties of iron oxide nanoparticles (NPs) leads to a promising composite material, magnetic PAC or MPAC, which can be separated from water using magnetic separators. We propose MPAC as an alternative adsorbent in the biological hybrid membrane process and demonstrate that PAC covered with magnetic NPs is suitable as growth support for heterotrophic and nitrifying bacteria. MPAC with mass fractions of 0; 23; 38 and 54% maghemite was colonized in small bioreactors for over 90 days. Although the bacterial community composition (16s rRNA analysis) was different on MPAC compared to PAC, NPs neither inhibited dissolved organic carbon and ammonia biological removals nor contributed to significant adsorption of these compounds. The same amount of active heterotrophic biomass (48 μg C/cm(3)) developed on MPAC with a mass fraction of 54% NPs as on the non-magnetic PAC control. While X-ray diffraction confirmed that size and type of iron oxides did not change over the study period, a loss in magnetization between 10% and 34% was recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Identifying the missing proteins in human proteome by biological language model.

    PubMed

    Dong, Qiwen; Wang, Kai; Liu, Xuan

    2016-12-23

    With the rapid development of high-throughput sequencing technology, the proteomics research becomes a trendy field in the post genomics era. It is necessary to identify all the native-encoding protein sequences for further function and pathway analysis. Toward that end, the Human Proteome Organization lunched the Human Protein Project in 2011. However many proteins are hard to be detected by experiment methods, which becomes one of the bottleneck in Human Proteome Project. In consideration of the complicatedness of detecting these missing proteins by using wet-experiment approach, here we use bioinformatics method to pre-filter the missing proteins. Since there are analogy between the biological sequences and natural language, the n-gram models from Natural Language Processing field has been used to filter the missing proteins. The dataset used in this study contains 616 missing proteins from the "uncertain" category of the neXtProt database. There are 102 proteins deduced by the n-gram model, which have high probability to be native human proteins. We perform a detail analysis on the predicted structure and function of these missing proteins and also compare the high probability proteins with other mass spectrum datasets. The evaluation shows that the results reported here are in good agreement with those obtained by other well-established databases. The analysis shows that 102 proteins may be native gene-coding proteins and some of the missing proteins are membrane or natively disordered proteins which are hard to be detected by experiment methods.

  6. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    PubMed

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  7. Cooperativity to increase Turing pattern space for synthetic biology.

    PubMed

    Diambra, Luis; Senthivel, Vivek Raj; Menendez, Diego Barcena; Isalan, Mark

    2015-02-20

    It is hard to bridge the gap between mathematical formulations and biological implementations of Turing patterns, yet this is necessary for both understanding and engineering these networks with synthetic biology approaches. Here, we model a reaction-diffusion system with two morphogens in a monostable regime, inspired by components that we recently described in a synthetic biology study in mammalian cells.1 The model employs a single promoter to express both the activator and inhibitor genes and produces Turing patterns over large regions of parameter space, using biologically interpretable Hill function reactions. We applied a stability analysis and identified rules for choosing biologically tunable parameter relationships to increase the likelihood of successful patterning. We show how to control Turing pattern sizes and time evolution by manipulating the values for production and degradation relationships. More importantly, our analysis predicts that steep dose-response functions arising from cooperativity are mandatory for Turing patterns. Greater steepness increases parameter space and even reduces the requirement for differential diffusion between activator and inhibitor. These results demonstrate some of the limitations of linear scenarios for reaction-diffusion systems and will help to guide projects to engineer synthetic Turing patterns.

  8. Synthetic biology: An emerging research field in China

    PubMed Central

    Pei, Lei; Schmidt, Markus; Wei, Wei

    2011-01-01

    Synthetic biology is considered as an emerging research field that will bring new opportunities to biotechnology. There is an expectation that synthetic biology will not only enhance knowledge in basic science, but will also have great potential for practical applications. Synthetic biology is still in an early developmental stage in China. We provide here a review of current Chinese research activities in synthetic biology and its different subfields, such as research on genetic circuits, minimal genomes, chemical synthetic biology, protocells and DNA synthesis, using literature reviews and personal communications with Chinese researchers. To meet the increasing demand for a sustainable development, research on genetic circuits to harness biomass is the most pursed research within Chinese researchers. The environmental concerns are driven force of research on the genetic circuits for bioremediation. The research on minimal genomes is carried on identifying the smallest number of genomes needed for engineering minimal cell factories and research on chemical synthetic biology is focused on artificial proteins and expanded genetic code. The research on protocells is more in combination with the research on molecular-scale motors. The research on DNA synthesis and its commercialisation are also reviewed. As for the perspective on potential future Chinese R&D activities, it will be discussed based on the research capacity and governmental policy. PMID:21729747

  9. Cysteine cathepsin S processes leptin, inactivating its biological activity.

    PubMed

    Oliveira, Marcela; Assis, Diego M; Paschoalin, Thaysa; Miranda, Antonio; Ribeiro, Eliane B; Juliano, Maria A; Brömme, Dieter; Christoffolete, Marcelo Augusto; Barros, Nilana M T; Carmona, Adriana K

    2012-08-01

    Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.

  10. Generalized query-based active learning to identify differentially methylated regions in DNA.

    PubMed

    Haque, Md Muksitul; Holder, Lawrence B; Skinner, Michael K; Cook, Diane J

    2013-01-01

    Active learning is a supervised learning technique that reduces the number of examples required for building a successful classifier, because it can choose the data it learns from. This technique holds promise for many biological domains in which classified examples are expensive and time-consuming to obtain. Most traditional active learning methods ask very specific queries to the Oracle (e.g., a human expert) to label an unlabeled example. The example may consist of numerous features, many of which are irrelevant. Removing such features will create a shorter query with only relevant features, and it will be easier for the Oracle to answer. We propose a generalized query-based active learning (GQAL) approach that constructs generalized queries based on multiple instances. By constructing appropriately generalized queries, we can achieve higher accuracy compared to traditional active learning methods. We apply our active learning method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the genome that are known to be involved in tissue differentiation, epigenetic regulation, and disease. We also apply our method on 13 other data sets and show that our method is better than another popular active learning technique.

  11. Functional screening for anti-CMV biologics identifies a broadly neutralizing epitope of an essential envelope protein.

    PubMed

    Gardner, Thomas J; Stein, Kathryn R; Duty, J Andrew; Schwarz, Toni M; Noriega, Vanessa M; Kraus, Thomas; Moran, Thomas M; Tortorella, Domenico

    2016-12-14

    The prototypic β-herpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. The CMV envelope consists of various protein complexes that enable wide viral tropism. More specifically, the glycoprotein complex gH/gL/gO (gH-trimer) is required for infection of all cell types, while the gH/gL/UL128/130/131a (gH-pentamer) complex imparts specificity in infecting epithelial, endothelial and myeloid cells. Here we utilize state-of-the-art robotics and a high-throughput neutralization assay to screen and identify monoclonal antibodies (mAbs) targeting the gH glycoproteins that display broad-spectrum properties to inhibit virus infection and dissemination. Subsequent biochemical characterization reveals that the mAbs bind to gH-trimer and gH-pentamer complexes and identify the antibodies' epitope as an 'antigenic hot spot' critical for virus entry. The mAbs inhibit CMV infection at a post-attachment step by interacting with a highly conserved central alpha helix-rich domain. The platform described here provides the framework for development of effective CMV biologics and vaccine design strategies.

  12. An Introduction to Biological Modeling Using Coin Flips to Predict the Outcome of a Diffusion Activity

    ERIC Educational Resources Information Center

    Butcher, Greg Q.; Rodriguez, Juan; Chirhart, Scott; Messina, Troy C.

    2016-01-01

    In order to increase students' awareness for and comfort with mathematical modeling of biological processes, and increase their understanding of diffusion, the following lab was developed for use in 100-level, majors/non-majors biology and neuroscience courses. The activity begins with generation of a data set that uses coin-flips to replicate…

  13. Metal-containing Complexes of Lactams, Imidazoles, and Benzimidazoles and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Kukalenko, S. S.; Bovykin, B. A.; Shestakova, S. I.; Omel'chenko, A. M.

    1985-07-01

    The results of the latest investigations of the problem of the synthesis of metal-containing complexes of lactams, imidazoles, and benzimidazoles, their structure, and their stability in solutions are surveyed. Some data on their biological activity (pesticide and pharmacological) and the mechanism of their physiological action are presented. The bibliography includes 190 references.

  14. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes.

    PubMed

    Lence, Emilio; van der Kamp, Marc W; González-Bello, Concepción; Mulholland, Adrian J

    2018-05-16

    Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.

  15. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunaga, Satoki; Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558; Kakehashi, Anna

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective ofmore » initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.« less

  16. Biological agents for moderately to severely active ulcerative colitis: a systematic review and network meta-analysis.

    PubMed

    Danese, Silvio; Fiorino, Gionata; Peyrin-Biroulet, Laurent; Lucenteforte, Ersilia; Virgili, Gianni; Moja, Lorenzo; Bonovas, Stefanos

    2014-05-20

    Biological agents are emerging treatment options for the management of ulcerative colitis (UC). To assess the comparative efficacy and harm of biological agents in adult patients with moderately to severely active UC who are naive to biological agents. MEDLINE, EMBASE, and Cochrane Library from inception through December 2013, without language restrictions, and ClinicalTrials.gov, European Medicines Agency, and U.S. Food and Drug Administration Web sites. Randomized, placebo-controlled or head-to-head trials assessing biological agents as induction or maintenance therapy for moderately to severely active UC. Two reviewers independently abstracted study data and outcomes and rated each trial's risk of bias. There were no head-to-head trials. There were 7 double-blind, placebo-controlled trials that were rated as low risk of bias and showed that all biological agents (adalimumab, golimumab, infliximab, and vedolizumab) resulted in more clinical responses, clinical remissions, and mucosal healings than placebo for induction therapy. The results of network meta-analysis suggested that infliximab is more effective to induce clinical response (odds ratio, 2.36 [95% credible interval, 1.22 to 4.63]) and mucosal healing (odds ratio, 2.02 [95% credible interval, 1.13 to 3.59]) than adalimumab. No other indirect comparison reached statistical significance. For maintenance, 6 double-blind, placebo-controlled trials that were rated high risk of bias showed that all biological agents have greater clinical efficacy than placebo. The occurrence of adverse events was not different between biological agents and placebo. Few trials, no head-to-head comparisons, and inadequate follow-up in maintenance trials. Biological agents are effective treatments for UC, but head-to-head trials are warranted to establish the best therapeutic option.

  17. Is Biology Boring? Student Attitudes toward Biology

    ERIC Educational Resources Information Center

    Prokop, Pavol; Prokop, Matel; Tunnicliffe, Sue Dale

    2007-01-01

    The study examines the interests and attitudes of school students toward biology: through their interest in out-of-school activities and their attitude towards lessons as measured by interest, importance and difficulty. Biology lessons were relatively popular with the greatest preference found among students learning zoology. Girls showed…

  18. Antimicrobial and biological activity of leachate from light curable pulp capping materials.

    PubMed

    Arias-Moliz, Maria Teresa; Farrugia, Cher; Lung, Christie Y K; Wismayer, Pierre Schembri; Camilleri, Josette

    2017-09-01

    Characterization of a number of pulp capping materials and assessment of the leachate for elemental composition, antimicrobial activity and cell proliferation and expression. Three experimental light curable pulp-capping materials, Theracal and Biodentine were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The elemental composition of the leachate formed after 24h was assessed by inductively coupled plasma (ICP). The antimicrobial activity of the leachate was determined by the minimum inhibitory concentration (MIC) against multispecies suspensions of Streptococcus mutans ATCC 25175, Streptococcus gordonii ATCC 33478 and Streptococcus sobrinus ATCC 33399. Cell proliferation and cell metabolic function over the material leachate was assessed by an indirect contact test using 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydration behavior of the test materials varied with Biodentine being the most reactive and releasing the highest amount of calcium ions in solution. All materials tested except the unfilled resin exhibited depletion of phosphate ions from the solution indicating interaction of the materials with the media. Regardless the different material characteristics, there was a similar antimicrobial activity and cellular activity. All the materials exhibited no antimicrobial activity and were initially cytotoxic with cell metabolic function improving after 3days. The development of light curable tricalcium silicate-based pulp capping materials is important to improve the bonding to the final resin restoration. Testing of both antimicrobial activity and biological behavior is critical for material development. The experimental light curable materials exhibited promising biological properties but require further development to enhance the antimicrobial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications

    PubMed Central

    Yoon, Bo Kyeong; Jackman, Joshua A.; Valle-González, Elba R.

    2018-01-01

    Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids. PMID:29642500

  20. Synthesis of Novel Aza-aromatic Curcuminoids with Improved Biological Activities towards Various Cancer Cell Lines.

    PubMed

    Theppawong, Atiruj; Van de Walle, Tim; Grootaert, Charlotte; Bultinck, Margot; Desmet, Tom; Van Camp, John; D'hooghe, Matthias

    2018-05-01

    Curcumin, a natural compound extracted from the rhizomes of Curcuma longa , displays pronounced anticancer properties but lacks good bioavailability and stability. In a previous study, we initiated structure modification of the curcumin scaffold by imination of the labile β-diketone moiety to produce novel β-enaminone derivatives. These compounds showed promising properties for elaborate follow-up studies. In this work, we focused on another class of nitrogen-containing curcuminoids with a similar objective: to address the bioavailability and stability issues and to improve the biological activity of curcumin. This paper thus reports on the synthesis of new pyridine-, indole-, and pyrrole-based curcumin analogues (aza-aromatic curcuminoids) and discusses their water solubility, antioxidant activity, and antiproliferative properties. In addition, multivariate statistics, including hierarchical clustering analysis and principal component analysis, were performed on a broad set of nitrogen-containing curcuminoids. Compared to their respective mother structures, that is, curcumin and bisdemethoxycurcumin, all compounds, and especially the pyridin-3-yl β-enaminone analogues, showed better water solubility profiles. Interestingly, the pyridine-, indole-, and pyrrole-based curcumin derivatives demonstrated improved biological effects in terms of mitochondrial activity impairment and protein content, in addition to comparable or decreased antioxidant properties. Overall, the biologically active N -alkyl β-enaminone aza-aromatic curcuminoids were shown to offer a desirable balance between good solubility and significant bioactivity.

  1. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.

    PubMed

    Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo

    2005-10-01

    The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.

  2. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  3. Biological shielding test of hot cells with high active source 60Co (300 TBq)

    NASA Astrophysics Data System (ADS)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.

    2017-11-01

    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  4. In vitro and in vivo biological activities of anthocyanins from Nitraria tangutorun Bobr. fruits.

    PubMed

    Ma, Tao; Hu, Na; Ding, Chenxi; Zhang, Qiulong; Li, Wencong; Suo, Yourui; Wang, Honglun; Bai, Bo; Ding, Chenxu

    2016-03-01

    Anthocyanins are the main compounds in Nitraria tangutorun Bobr. The enrichment and purification of anthocyanins on macroporous resins were investigated. Regarding anthocyanin purification, static adsorption and desorption were studied. The optimal experimental conditions were the following: resin type: X-5; static adsorption time: 6h; desorption solution: ethanol-water-HCl (80:19:1, V/V/V; pH 1); desorption time: 40min. Furthermore, the in vitro and in vivo biological activities of the anthocyanins were evaluated. The anthocyanins showed ideal scavenging effects on free radicals in vitro, especially on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl free radical (OH). In the animal experiment, blood lipid metabolism of hyperlipidemia rats was regulated by anthocyanin contents. The superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) of hyperlipidemia rats were also improved by anthocyanins. These results showed that anthocyanins from N. tangutorun Bobr. fruits had potential biological activities in vivo as well as in vitro. Copyright © 2015. Published by Elsevier Ltd.

  5. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  6. The Mediating Role of Physical Self-Concept on Relations between Biological Maturity Status and Physical Activity in Adolescent Females

    ERIC Educational Resources Information Center

    Cumming, Sean P.; Standage, Martyn; Loney, Tom; Gammon, Catherine; Neville, Helen; Sherar, Lauren B.; Malina, Robert M.

    2011-01-01

    The current study examined the mediating role of physical self-concept on relations between biological maturity status and self-reported physical activity in adolescent British females. Biological maturity status, physical self-concept and physical activity were assessed in 407 female British year 7-9 pupils (M age = 13.2 years, SD = 1.0).…

  7. Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses

    PubMed Central

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math–biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology. PMID:21885822

  8. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    PubMed

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.

  9. A modified reverse one-hybrid screen identifies transcriptional activation in Phyochrome-Interacting Factor 3

    USDA-ARS?s Scientific Manuscript database

    Transcriptional activation domains (TAD) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput...

  10. A truncated Wnt7a retains full biological activity in skeletal muscle

    NASA Astrophysics Data System (ADS)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  11. The in vitro biological activity of Lepidium meyenii extracts.

    PubMed

    Valentová, K; Buckiová, D; Kren, V; Peknicová, J; Ulrichová, J; Simánek, V

    2006-03-01

    The biological activity of methanolic and aqueous extracts from dehydrated hypocotyls of Lepidium meyenii (Brassicaceae, vernacular name "maca"), was studied on rat hepatocytes and human breast cancer MCF-7 cells. The extracts did not exhibit cytotoxicity in hepatocyte primary cultures up to 10 mg/ml as measured by the MTT viability test, and lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) leakage. Moreover, after 72 h, extracts inhibited LDH and AST leakage from the hepatocytes. When hepatocytes were intoxicated by t-butyl hydroperoxide, neither extract prevented oxidative damage. Both extracts showed weak antioxidant activity in the DPPH radical scavenging test with IC(50) values of 3.46 +/- 0.16 and 0.71 +/- 0.10 mg/ml, for aqueous and methanolic extracts, respectively. Thus, the observed effect on spontaneous enzyme leakage is probably mediated through mechanisms other than antioxidant activity. Both methanolic and aqueous extracts have shown estrogenic activity comparable with that of silymarin in MCF-7 cell line. Maca estrogenicity was exhibited in the range from 100 to 200 mug of extract per ml. The findings in the present study show that maca does not display in vitro hepatotoxicity. In contrast, a slight cytoprotective effect, probably not mediated by antioxidant capacity, was noted. Maca extracts exhibited estrogenic activity comparably to the effect of silymarin in MCF-7 cells.

  12. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  13. InFlo: a novel systems biology framework identifies cAMP-CREB1 axis as a key modulator of platinum resistance in ovarian cancer.

    PubMed

    Dimitrova, N; Nagaraj, A B; Razi, A; Singh, S; Kamalakaran, S; Banerjee, N; Joseph, P; Mankovich, A; Mittal, P; DiFeo, A; Varadan, V

    2017-04-27

    Characterizing the complex interplay of cellular processes in cancer would enable the discovery of key mechanisms underlying its development and progression. Published approaches to decipher driver mechanisms do not explicitly model tissue-specific changes in pathway networks and the regulatory disruptions related to genomic aberrations in cancers. We therefore developed InFlo, a novel systems biology approach for characterizing complex biological processes using a unique multidimensional framework integrating transcriptomic, genomic and/or epigenomic profiles for any given cancer sample. We show that InFlo robustly characterizes tissue-specific differences in activities of signalling networks on a genome scale using unique probabilistic models of molecular interactions on a per-sample basis. Using large-scale multi-omics cancer datasets, we show that InFlo exhibits higher sensitivity and specificity in detecting pathway networks associated with specific disease states when compared to published pathway network modelling approaches. Furthermore, InFlo's ability to infer the activity of unmeasured signalling network components was also validated using orthogonal gene expression signatures. We then evaluated multi-omics profiles of primary high-grade serous ovarian cancer tumours (N=357) to delineate mechanisms underlying resistance to frontline platinum-based chemotherapy. InFlo was the only algorithm to identify hyperactivation of the cAMP-CREB1 axis as a key mechanism associated with resistance to platinum-based therapy, a finding that we subsequently experimentally validated. We confirmed that inhibition of CREB1 phosphorylation potently sensitized resistant cells to platinum therapy and was effective in killing ovarian cancer stem cells that contribute to both platinum-resistance and tumour recurrence. Thus, we propose InFlo to be a scalable and widely applicable and robust integrative network modelling framework for the discovery of evidence-based biomarkers

  14. Correlation between structure, retention, property, and activity of biologically relevant 1,7-bis(aminoalkyl)diazachrysene derivatives.

    PubMed

    Šegan, Sandra; Trifković, Jelena; Verbić, Tatjana; Opsenica, Dejan; Zlatović, Mario; Burnett, James; Šolaja, Bogdan; Milojković-Opsenica, Dušanka

    2013-01-01

    The physicochemical properties, retention parameters (R(M)(0)), partition coefficients (logP(OW)), and pK(a) values for a series of thirteen 1,7-bis(aminoalkyl) diazachrysene (1,7-DAAC) derivatives were determined in order to reveal the characteristics responsible for their biological behavior. The investigated compounds inhibit three unrelated pathogens (the Botulinum neurotoxin serotype A light chain (BoNT/A LC), Plasmodium falciparum malaria, and Ebola filovirus) via three different mechanisms of action. To determine the most influential factors governing the retention and activities of the investigated diazachrysenes, R(M)(0), logP(OW), and biological activity values were correlated with 2D and 3D molecular descriptors, using a partial least squares regression. The resulting quantitative structure-retention (property) relationships indicate the importance of descriptors related to the hydrophobicity of the molecules (e.g., predicted partition coefficients and hydrophobic surface area). Quantitative structure-activity relationship models for describing biological activity against the BoNT/A LC and malarial strains also include overall compound polarity, electron density distribution, and proton donor/acceptor potential. Furthermore, models for Ebola filovirus inhibition are presented qualitatively to provide insights into parameters that may contribute to the compounds' antiviral activities. Overall, the models form the basis for selecting structural features that significantly affect the compound's absorption, distribution, metabolism, excretion, and toxicity profiles. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Active chiral fluids.

    PubMed

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  16. High-throughput screen of drug repurposing library identifies inhibitors of Sarcocystis neurona growth.

    PubMed

    Bowden, Gregory D; Land, Kirkwood M; O'Connor, Roberta M; Fritz, Heather M

    2018-04-01

    The apicomplexan parasite Sarcocystis neurona is the primary etiologic agent of equine protozoal myeloencephalitis (EPM), a serious neurologic disease of horses. Many horses in the U.S. are at risk of developing EPM; approximately 50% of all horses in the U.S. have been exposed to S. neurona and treatments for EPM are 60-70% effective. Advancement of treatment requires new technology to identify new drugs for EPM. To address this critical need, we developed, validated, and implemented a high-throughput screen to test 725 FDA-approved compounds from the NIH clinical collections library for anti-S. neurona activity. Our screen identified 18 compounds with confirmed inhibitory activity against S. neurona growth, including compounds active in the nM concentration range. Many identified inhibitory compounds have well-defined mechanisms of action, making them useful tools to study parasite biology in addition to being potential therapeutic agents. In comparing the activity of inhibitory compounds identified by our screen to that of other screens against other apicomplexan parasites, we found that most compounds (15/18; 83%) have activity against one or more related apicomplexans. Interestingly, nearly half (44%; 8/18) of the inhibitory compounds have reported activity against dopamine receptors. We also found that dantrolene, a compound already formulated for horses with a peak plasma concentration of 37.8 ± 12.8 ng/ml after 500 mg dose, inhibits S. neurona parasites at low concentrations (0.065 μM [0.036-0.12; 95% CI] or 21.9 ng/ml [12.1-40.3; 95% CI]). These studies demonstrate the use of a new tool for discovering new chemotherapeutic agents for EPM and potentially providing new reagents to elucidate biologic pathways required for successful S. neurona infection. Copyright © 2018. Published by Elsevier Ltd.

  17. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    PubMed

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  18. Effect of amino acid substitution on biological activity of cyanophlyctin-β and brevinin-2R

    NASA Astrophysics Data System (ADS)

    Ghorani-Azam, Adel; Balali-Mood, Mahdi; Aryan, Ehsan; Karimi, Gholamreza; Riahi-Zanjani, Bamdad

    2018-04-01

    Antimicrobial peptides (AMPs), as ancient immune components, are found in almost all types of living organisms. They are bioactive components with strong antibacterial, antiviral, and anti-tumor properties. In this study, we designed three sequences of antimicrobial peptides to study the effects of structural changes in biological activity compared with original peptides, cyanophlyctin β, and brevinin-2R. For antibacterial activity, two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeroginosa) were assayed. Unlike cyanophlyctin β and brevinin-2R, the synthesized peptide (brevinin-M1, brevinin-M2 and brevinin-M3) showed no considerable antibacterial properties. Hemolytic activity of these peptides was also ignorable even at very high concentrations of 2 mg/ml. However, after proteolytic digestion by trypsin, the peptides showed antibacterial activity comparable to their original template sequences. Structural prediction suggested that the motif sequence responsible for antibacterial activity may be re-exposed to bacterial cell membrane after proteolytic digestion. Also, findings showed that only a small change in primary sequence and therefore structure of peptides may result in a significant alteration in biological activity.

  19. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications – A review

    PubMed Central

    Shahid-ul-Islam; Rather, Luqman J.; Mohammad, Faqeer

    2015-01-01

    Bixa orellana commonly known as annatto is one of the oldest known natural dye yielding plants native to Central and South America. Various parts of annatto have been widely used in the traditional medical system for prevention and treatment of a wide number of health disorders. The plethora of traditional uses has encouraged researchers to identify and isolate phytochemicals from all parts of this plant. Carotenoids, apocarotenoids, terpenes, terpenoids, sterols, and aliphatic compounds are main compounds found in all parts of this plant and are reported to exhibit a wide range of pharmacological activities. In recent years annatto has received tremendous scientific interest mainly due to the isolation of yellow–orange natural dye from its seeds which exhibits high biodegradability, low toxicity, and compatibility with the environment. Considerable research work has already been done and is currently underway for its applications in food, textile, leather, cosmetic, solar cells, and other industries. The present review provides up-to-date systematic and organized information on the traditional usage, phytochemistry and pharmacology of annatto. It also highlights its non-food industrial applications in order to bring more interest on this dye plant, identifies the existing gaps and provides potential for future studies. Studies reported in this review have demonstrated that annatto holds a great potential for being exploited as source of drugs and a potential natural dye. However, further efforts are required to identify extract biomolecules and their action mechanisms in exhibiting certain biological activities in order to understand the full phytochemical profile and the complex pharmacological effects of this plant. PMID:27222755

  20. Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): a review.

    PubMed

    Sun, Chongde; Huang, Huizhong; Xu, Changjie; Li, Xian; Chen, Kunsong

    2013-06-01

    Chinese bayberry (Myrica rubra Sieb. et Zucc.) is a subtropical fruit tree native to China and other Asian countries, and culture of this Myricaceae plant has been recorded in Chinese history for more than 2000 years. Bayberry fruit is delicious with attractive color, flavor, and high economic value. Compared with other berries, bayberry fruit is a rich source of cyanidin-3-glucoside (C3G, e.g., 64.8 mg/100 g fresh weight in 'Biqi' cultivar), which accounts for at least 85 % of the anthocyanins in the fruit. Bayberry is also a plant with high medicinal value since different organs have been used historically as folk medicines. Research efforts suggest bayberry extracts contain antioxidants that exhibit bioactivities counteracting inflammation, allergens, diabetes, cancer, bacterial infection, diarrhea and other health issues. Bayberry compounds have been isolated and characterized to provide a better understanding of the chemical mechanisms underlying the biological activities of bayberry extracts and to elaborate the structure-activity relationships. As the identification of compounds progresses, studies investigating the in vivo metabolism and bioavailability as well as potential toxicity of bayberry extracts in animal models are receiving more attention. In addition, breeding and genetic studies of bayberry with high accumulation of health-benefiting compounds may provide new insight for the bayberry research and industry. This review is focused on the main medicinal properties reported and the possible pharmaceutically active compounds identified in different bayberry extracts.

  1. The impact of ozone treatment on changes in biologically active substances of cardamom seeds.

    PubMed

    Joanna Brodowska, Agnieszka; Śmigielski, Krzysztof; Nowak, Agnieszka; Brodowska, Katarzyna; Catthoor, Rik; Czyżowska, Agata

    2014-09-01

    The overall objective of this study was to develop a decontamination method against microorganisms in cardamom (Elettaria cardamomum (L.) Maton) seeds using ozone as a decontaminating agent. Ozone treatment was conducted 3 times, at 24-h intervals, and the parameters of the process were determined assuring the least possible losses of biologically active substances (essential oils and polyphenols): ozone concentration 160 to 165.0 g/m(3) ; flow rate 0.1 L/min; pressure 0.5 atm; time 30 min. After each step of decontamination, the microbiological profile of the cardamom seeds was studied, and the contaminating microflora was identified. Next to the microbiological profile, the total polyphenol content (TPC), composition of essential oils, free radical-scavenging capacity, total antioxidant capacity, ferric-reducing antioxidant power (FRAP), and LC-MS polyphenol analysis were determined. This study shows that extract from cardamom seeds after ozone treatment is characterized by a better radical scavenging activity (IC(50) = 24.18 ± 0.04 mg/mL) than the control sample (IC(50) = 31.94 ± 0.05 mg/mL). The extract from cardamom seeds after ozone treatment showed an improved FRAP activity as well (613.64 ± 49.79 mmol TE/g compared to 480.29 ± 30.91 mmol TE/g of control sample). The TPC and the total antioxidant capacity were negatively affected, respectively, 41.2% and 16.2%, compared to the control sample. © 2014 Institute of Food Technologists®

  2. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    PubMed Central

    Miron, Anca; Corciova, Andreia

    2015-01-01

    Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation. PMID:26495156

  3. The growing role of biologics and biosimilars in the United States: Perspectives from the APhA Biologics and Biosimilars Stakeholder Conference.

    PubMed

    Crespi-Lofton, Judy; Skelton, Jann B

    The American Pharmacists Association (APhA) convened the Biologics and Biosimilars Stakeholder Conference on November 30, 2016, in Washington DC. The objectives of the Conference were to determine the key issues and challenges within the marketplace for biologics, follow-on biologics (FOBs), and biosimilars, identify potential roles and responsibilities of pharmacists regarding biologic and biosimilar medications, and identify actions or activities that pharmacists may take to optimize the safe and cost-effective use of biologics and biosimilars. National thought leaders and stakeholder representatives, including individuals from the Food and Drug Administration, Centers for Medicare and Medicaid Services, a private third-party payer, manufacturers, and several national organizations of health care professionals, participated in the conference. Information shared by this group was supplemented with relevant legal and regulatory information and published literature. Biologics play a valuable role in the treatment of numerous health conditions, but their associated costs, which tend to be greater than those of small-molecule drugs, place a burden on the health care system. Biosimilars (both noninterchangeable and interchangeable) are highly similar copies of the originator biologic and offer the potential to reduce costs and improve patient access to biological products by increasing treatment options and creating a more competitive market. Despite the potential benefits of biosimilars, certain factors may limit their uptake. The conference participants explored issues that different stakeholders think influence the use of biologics, including biosimilars, in the United States. Barriers included technology, prescriber-pharmacist communication, legislation and regulations, limited patient and health care practitioner knowledge of biological products, patient and health care practitioner perceptions of biosimilars, and evolving science or lack of long-term data. After

  4. Risk of Serious Infection in Juvenile Idiopathic Arthritis Patients Associated With Tumor Necrosis Factor Inhibitors and Disease Activity in the German Biologics in Pediatric Rheumatology Registry.

    PubMed

    Becker, Ingrid; Horneff, Gerd

    2017-04-01

    To examine the effects of tumor necrosis factor inhibitors on the risk for serious infections and other influencing factors in a registry. Patients exposed for the first time to etanercept, adalimumab, or methotrexate and serious infections were identified in the German Biologic Registry for Pediatric Rheumatology (BIKER) registry. Serious infection rates per 1,000 observation-years and relative risks were calculated. Cox regression identified risk factors and provided hazard ratios (HRs) for occurrence of infections. A total of 3,350 patients with 5,919 observation-years fulfilled the inclusion criteria for the study. The first biologic agents were etanercept (1,720 cases) and adalimumab (177 cases). A total of 1,453 patients were treated with methotrexate and no biologic agent. In total, 28 serious infections were reported in 26 patients (4.7 per 1,000 patient-years), 5 with methotrexate (1.6 per 1,000 patient-years), 21 with etanercept (8.1 per 1,000 patient-years), and 2 with adalimumab (9.7 per 1,000 patient-years). Significant univariate risk factors for infection were therapy with biologic agents, disease duration before therapy start, corticosteroid medication, nonbiologic premedications, higher clinical Juvenile Arthritis Disease Activity Score including maximal 10 joints (cJADAS10) at therapy start, and higher mean cJADAS10 during therapy. In multivariate Cox regression, only biologic therapy and cJADAS10 at therapy start remained significant. Risk for infection was increased by etanercept (univariate HR 6.0 [95% confidence interval (95% CI) 2.0-17.5]) or adalimumab (HR 7.3 [95% CI 1.3-40.0]) compared to methotrexate as well as by an elevated cJADAS10 at therapy start (HR 1.1 [95% CI 1.0-1.2] per unit increase). The total rate of serious infections reported in the BIKER registry seems low. Treatment with etanercept or adalimumab increases the risk for serious infection slightly, compared to methotrexate. Disease activity expressed by cJADAS10 appears to

  5. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less

  6. LGscore: A method to identify disease-related genes using biological literature and Google data.

    PubMed

    Kim, Jeongwoo; Kim, Hyunjin; Yoon, Youngmi; Park, Sanghyun

    2015-04-01

    Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using Google data and literature data. To implement this method, first, we construct a disease-related gene network using text-mining results. We then extract gene-gene interactions based on co-occurrences in abstract data obtained from PubMed, and calculate the weights of edges in the gene network by means of Z-scoring. The weights contain two values: the frequency and the Google search results. The frequency value is extracted from literature data, and the Google search result is obtained using Google. We assign a score to each gene through a network analysis. We assume that genes with a large number of links and numerous Google search results and frequency values are more likely to be involved in disease. For validation, we investigated the top 20 inferred genes for five different diseases using answer sets. The answer sets comprised six databases that contain information on disease-gene relationships. We identified a significant number of disease-related genes as well as candidate genes for Alzheimer's disease, diabetes, colon cancer, lung cancer, and prostate cancer. Our method was up to 40% more accurate than existing methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Characterization of the corrosion resistance of several alloys to dilute biologically active solutions

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1990-01-01

    Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters.

  8. Biological activities caused by far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  9. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    PubMed

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses

    PubMed Central

    2017-01-01

    Introduction Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. Aim The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. Methods A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. Results The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Conclusion Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor

  11. Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses.

    PubMed

    Sultana, Janet; Calabró, Marco; Garcia-Serna, Ricard; Ferrajolo, Carmen; Crisafulli, Concetta; Mestres, Jordi; Trifirò', Gianluca

    2017-01-01

    Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk

  12. Collaborative Systems Biology Projects for the Military Medical Community.

    PubMed

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts

  13. Books for the Amateur Naturalist: Sources of Experiments and Activities for Outdoor Biology Classes.

    ERIC Educational Resources Information Center

    Clewis, Beth

    1992-01-01

    Presents a series of books that serve as guides regarding outdoor activities for biology classes. Guides are categorized for the general study of nature and for the specific topics of birds, insects, and plants. (25 references) (MDH)

  14. Systems biology combining human- and animal-data miRNA and mRNA data identifies new targets in ureteropelvic junction obstruction.

    PubMed

    Papadopoulos, Theofilos; Casemayou, Audrey; Neau, Eric; Breuil, Benjamin; Caubet, Cécile; Calise, Denis; Thornhill, Barbara A; Bachvarova, Magdalena; Belliere, Julie; Chevalier, Robert L; Moulos, Panagiotis; Bachvarov, Dimcho; Buffin-Meyer, Benedicte; Decramer, Stéphane; Auriol, Françoise Conte; Bascands, Jean-Loup; Schanstra, Joost P; Klein, Julie

    2017-03-01

    Although renal fibrosis and inflammation have shown to be involved in the pathophysiology of obstructive nephropathies, molecular mechanisms underlying evolution of these processes remain undetermined. In an attempt towards improved understanding of obstructive nephropathy and improved translatability of the results to clinical practice we have developed a systems biology approach combining omics data of both human and mouse obstructive nephropathy. We have studied in parallel the urinary miRNome of infants with ureteropelvic junction obstruction and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral obstruction (UUO) mouse model. Several hundreds of miRNAs and mRNAs displayed changed abundance during disease. Combination of miRNAs in both species and associated mRNAs let to the prioritization of five miRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator 1 (NAV1), potentially involved in fibrotic processes, in obstructive nephropathy in both human and mice that would not be identified otherwise. Our study is the first to correlate a mouse model of neonatal partial UUO with human UPJ obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man and mice that would not be identified otherwise.

  15. Design, synthesis, and biological activity of second-generation synthetic oleanane triterpenoids.

    PubMed

    Fu, Liangfeng; Lin, Qi-Xian; Onyango, Evans O; Liby, Karen T; Sporn, Michael B; Gribble, Gordon W

    2017-07-19

    We report the synthesis and biological activity of C-24 demethyl CDDO-Me 2 and the C-28 amide derivatives 3 and 4, which are analogues of the anti-inflammatory synthetic triterpenoid bardoxolone methyl (CDDO-Me) 1. Demethylation of the C-24 methyl group was accomplished via "abnormal Beckmann" rearrangement and subsequent ring A reformation. Amides 3 and 4 were found to be potent inhibitors of the production of the inflammatory mediator NO in vitro.

  16. Coming out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    ERIC Educational Resources Information Center

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual,…

  17. New developments in mast cell biology

    PubMed Central

    Kalesnikoff, Janet; Galli, Stephen J.

    2010-01-01

    Mast cells can function as effector and immunoregulatory cells in IgE-associated allergic disorders, as well as in certain innate and adaptive immune responses. This review will focus on exciting new developments in the field of mast cell biology published within the last year. It will highlight advances in the understanding of FcεRI-mediated signaling and mast cell activation events, as well as in the use of genetic models to study mast cell function in vivo. Finally, we will discuss newly identified roles of mast cells or individual mast cell products, such as proteases and IL-10, in host defense, cardiovascular disease and tumor biology, and in settings in which mast cells have anti-inflammatory or immunosuppressive functions. PMID:18936782

  18. Impact of microencapsulated peptidase (Aspergillus oryzae) on cheddar cheese proteolysis and its biologically active peptide profile.

    PubMed

    Seneweera, Saman; Kailasapathy, Kaila

    2011-07-01

    We investigated the delivery of calcium-alginate encapsulated peptidase (Flavourzyme(®), Aspergillus oryzae) on proteolysis of Cheddar cheese. Physical and chemical characteristics such as moisture, pH and fat content were measured, and no differences were found between control and experimental cheese at day 0. SDS-PAGE analysis clearly showed that proteolysis of α and k casein was significantly accelerated after three months of maturity in the experimental cheese. A large number of low molecular weight peptides were found in the water soluble fraction of the experimental cheeses and some of these peptides were new. N-terminal amino acid sequence analysis identified these as P(1), Leu-Thu-Glu; P(3), Asp-Val-Pro-Ser-Glu) and relatively abundant stable peptides P(2), P(4), Arg-Pro-Lys-His-Pro-Ile; P(5), Arg-Pro-Lys-His-Pro-Ile-Lys and P(6). These peptides were mainly originated from αs1-CN and β-CN. Three of the identified peptides (P(1), P(2), P(3) and P(4)) are known to biologically active and P(1) and P(3) were only present in experimental cheese suggesting that experimental cheese has improved health benefits.

  19. Evolution of activities in international biological standardization since the early days of the Health Organisation of the League of Nations.

    PubMed

    Sizaret, P

    1988-01-01

    The main activities in international biological standardization during the 18 years that followed the first international biological standardization meeting in London in 1921 were concerned with expressing the potencies of test preparations in comparison with reference materials. After the Second World War, however, it became clear that the testing of biological substances against international reference materials was only one among several measures for obtaining safe and potent products. The activities in international biological standardization were therefore widened so that, by the strict observance of specific manufacturing and control requirements, it was possible to gain further in safety and efficacy. At the end of 1987, 42 international requirements for biological substances were available and were being used as national requirements, sometimes after minor modification, by the majority of WHO's Member States. This is of utmost importance for the worldwide use of safe and potent biological products, including vaccines.

  20. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.