Viveka Thangaraj, Soundara; Periasamy, Jayaprakash; Bhaskar Rao, Divya; Barnabas, Georgina D.; Raghavan, Swetha; Ganesan, Kumaresan
2013-01-01
Genomic aberrations are common in cancers and the long arm of chromosome 1 is known for its frequent amplifications in breast cancer. However, the key candidate genes of 1q, and their contribution in breast cancer pathogenesis remain unexplored. We have analyzed the gene expression profiles of 1635 breast tumor samples using meta-analysis based approach and identified clinically significant candidates from chromosome 1q. Seven candidate genes including exonuclease 1 (EXO1) are consistently over expressed in breast tumors, specifically in high grade and aggressive breast tumors with poor clinical outcome. We derived a EXO1 co-expression module from the mRNA profiles of breast tumors which comprises 1q candidate genes and their co-expressed genes. By integrative functional genomics investigation, we identified the involvement of EGFR, RAS, PI3K / AKT, MYC, E2F signaling in the regulation of these selected 1q genes in breast tumors and breast cancer cell lines. Expression of EXO1 module was found as indicative of elevated cell proliferation, genomic instability, activated RAS/AKT/MYC/E2F1 signaling pathways and loss of p53 activity in breast tumors. mRNA–drug connectivity analysis indicates inhibition of RAS/PI3K as a possible targeted therapeutic approach for the patients with activated EXO1 module in breast tumors. Thus, we identified seven 1q candidate genes strongly associated with the poor survival of breast cancer patients and identified the possibility of targeting them with EGFR/RAS/PI3K inhibitors. PMID:24147022
Jahchan, Nadine S; Dudley, Joel T; Mazur, Pawel K; Flores, Natasha; Yang, Dian; Palmerton, Alec; Zmoos, Anne-Flore; Vaka, Dedeepya; Tran, Kim QT; Zhou, Margaret; Krasinska, Karolina; Riess, Jonathan W; Neal, Joel W; Khatri, Purvesh; Park, Kwon S; Butte, Atul J; Sage, Julien
2013-01-01
Small cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with high mortality. We used a systematic drug-repositioning bioinformatics approach querying a large compendium of gene expression profiles to identify candidate FDA-approved drugs to treat SCLC. We found that tricyclic antidepressants and related molecules potently induce apoptosis in both chemonaïve and chemoresistant SCLC cells in culture, in mouse and human SCLC tumors transplanted into immunocompromised mice, and in endogenous tumors from a mouse model for human SCLC. The candidate drugs activate stress pathways and induce cell death in SCLC cells, at least in part by disrupting autocrine survival signals involving neurotransmitters and their G protein-coupled receptors. The candidate drugs inhibit the growth of other neuroendocrine tumors, including pancreatic neuroendocrine tumors and Merkel cell carcinoma. These experiments identify novel targeted strategies that can be rapidly evaluated in patients with neuroendocrine tumors through the repurposing of approved drugs. PMID:24078773
San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul
2014-12-01
Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.
Spreafico, Filippo; Bongarzone, Italia; Pizzamiglio, Sara; Magni, Ruben; Taverna, Elena; De Bortoli, Maida; Ciniselli, Chiara M; Barzanò, Elena; Biassoni, Veronica; Luchini, Alessandra; Liotta, Lance A; Zhou, Weidong; Signore, Michele; Verderio, Paolo; Massimino, Maura
2017-07-11
Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.
Beer, Lynn A; Wang, Huan; Tang, Hsin-Yao; Cao, Zhijun; Chang-Wong, Tony; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W
2013-01-01
The most cancer-specific biomarkers in blood are likely to be proteins shed directly by the tumor rather than less specific inflammatory or other host responses. The use of xenograft mouse models together with in-depth proteome analysis for identification of human proteins in the mouse blood is an under-utilized strategy that can clearly identify proteins shed by the tumor. In the current study, 268 human proteins shed into mouse blood from human OVCAR-3 serous tumors were identified based upon human vs. mouse species differences using a four-dimensional plasma proteome fractionation strategy. A multi-step prioritization and verification strategy was subsequently developed to efficiently select some of the most promising biomarkers from this large number of candidates. A key step was parallel analysis of human proteins detected in the tumor supernatant, because substantially greater sequence coverage for many of the human proteins initially detected in the xenograft mouse plasma confirmed assignments as tumor-derived human proteins. Verification of candidate biomarkers in patient sera was facilitated by in-depth, label-free quantitative comparisons of serum pools from patients with ovarian cancer and benign ovarian tumors. The only proteins that advanced to multiple reaction monitoring (MRM) assay development were those that exhibited increases in ovarian cancer patients compared with benign tumor controls. MRM assays were facilely developed for all 11 novel biomarker candidates selected by this process and analysis of larger pools of patient sera suggested that all 11 proteins are promising candidate biomarkers that should be further evaluated on individual patient blood samples.
Identification of cancer genes that are independent of dominant proliferation and lineage programs
Selfors, Laura M.; Stover, Daniel G.; Harris, Isaac S.; Brugge, Joan S.; Coloff, Jonathan L.
2017-01-01
Large, multidimensional cancer datasets provide a resource that can be mined to identify candidate therapeutic targets for specific subgroups of tumors. Here, we analyzed human breast cancer data to identify transcriptional programs associated with tumors bearing specific genetic driver alterations. Using an unbiased approach, we identified thousands of genes whose expression was enriched in tumors with specific genetic alterations. However, expression of the vast majority of these genes was not enriched if associations were analyzed within individual breast tumor molecular subtypes, across multiple tumor types, or after gene expression was normalized to account for differences in proliferation or tumor lineage. Together with linear modeling results, these findings suggest that most transcriptional programs associated with specific genetic alterations in oncogenes and tumor suppressors are highly context-dependent and are predominantly linked to differences in proliferation programs between distinct breast cancer subtypes. We demonstrate that such proliferation-dependent gene expression dominates tumor transcriptional programs relative to matched normal tissues. However, we also identified a relatively small group of cancer-associated genes that are both proliferation- and lineage-independent. A subset of these genes are attractive candidate targets for combination therapy because they are essential in breast cancer cell lines, druggable, enriched in stem-like breast cancer cells, and resistant to chemotherapy-induced down-regulation. PMID:29229826
Aguado, Brian A.; Caffe, Jordan R.; Nanavati, Dhaval; Rao, Shreyas S.; Bushnell, Grace G.; Azarin, Samira M.; Shea, Lonnie D.
2016-01-01
Metastatic tumor cells colonize the pre-metastatic niche, which is a complex microenvironment consisting partially of extracellular matrix (ECM) proteins. We sought to identify and validate novel contributors to tumor cell colonization using ECM coated poly(ε-caprolactone) (PCL) scaffolds as mimics of the pre-metastatic niche. Utilizing orthotopic breast cancer mouse models, fibronectin and collagen IV-coated scaffolds implanted in the subcutaneous space captured colonizing tumor cells, showing a greater than 2-fold increase in tumor cell accumulation at the implant site compared to uncoated scaffolds. As a strategy to identify additional ECM colonization contributors, decellularized matrix (DCM) from lungs and livers containing metastatic tumors were characterized. In vitro, metastatic cell adhesion was increased on DCM coatings from diseased organs relative to healthy DCM. Furthermore, in vivo implantations of diseased DCM-coated scaffolds had increased tumor cell colonization relative to healthy DCM coatings. Mass-spectrometry proteomics was performed on healthy and diseased DCM to identify candidates associated with colonization. Myeloperoxidase was identified as abundantly present in diseased organs and validated as a contributor to colonization using myeloperoxidase-coated scaffold implants. This work identified novel ECM proteins associated with colonization using decellularization and proteomics techniques and validated candidates using a scaffold to mimic the pre-metastatic niche. PMID:26844426
Beer, Lynn A.; Wang, Huan; Tang, Hsin-Yao; Cao, Zhijun; Chang-Wong, Tony; Tanyi, Janos L.; Zhang, Rugang; Liu, Qin; Speicher, David W.
2013-01-01
The most cancer-specific biomarkers in blood are likely to be proteins shed directly by the tumor rather than less specific inflammatory or other host responses. The use of xenograft mouse models together with in-depth proteome analysis for identification of human proteins in the mouse blood is an under-utilized strategy that can clearly identify proteins shed by the tumor. In the current study, 268 human proteins shed into mouse blood from human OVCAR-3 serous tumors were identified based upon human vs. mouse species differences using a four-dimensional plasma proteome fractionation strategy. A multi-step prioritization and verification strategy was subsequently developed to efficiently select some of the most promising biomarkers from this large number of candidates. A key step was parallel analysis of human proteins detected in the tumor supernatant, because substantially greater sequence coverage for many of the human proteins initially detected in the xenograft mouse plasma confirmed assignments as tumor-derived human proteins. Verification of candidate biomarkers in patient sera was facilitated by in-depth, label-free quantitative comparisons of serum pools from patients with ovarian cancer and benign ovarian tumors. The only proteins that advanced to multiple reaction monitoring (MRM) assay development were those that exhibited increases in ovarian cancer patients compared with benign tumor controls. MRM assays were facilely developed for all 11 novel biomarker candidates selected by this process and analysis of larger pools of patient sera suggested that all 11 proteins are promising candidate biomarkers that should be further evaluated on individual patient blood samples. PMID:23544127
Ramraj, Satish Kumar; Aravindan, Sheeja; Somasundaram, Dinesh Babu; Herman, Terence S; Natarajan, Mohan; Aravindan, Natarajan
2016-04-05
Circulating miRNAs have momentous clinical relevance as prognostic biomarkers and in the progression of solid tumors. Recognizing novel candidates of neuroblastoma-specific circulating miRNAs would allow us to identify potential prognostic biomarkers that could predict the switch from favorable to high-risk metastatic neuroblastoma (HR-NB). Utilizing mouse models of favorable and HR-NB and whole miRnome profiling, we identified high serum levels of 34 and low levels of 46 miRNAs in animals with HR-NB. Preferential sequence homology exclusion of mouse miRNAs identified 25 (11 increased; 14 decreased) human-specific prognostic marker candidates, of which, 21 were unique to HR-NB. miRNA QPCR validated miRnome profile. Target analysis defined the candidate miRNAs' signal transduction flow-through and demonstrated their converged roles in tumor progression. miRNA silencing studies verified the function of select miRNAs on the translation of at least 14 target proteins. Expressions of critical targets that correlate tumor progression in tissue of multifarious organs identify the orchestration of HR-NB. Significant (>10 fold) increase in serum levels of miR-381, miR-548h, and miR-580 identify them as potential prognostic markers for neuroblastoma progression. For the first time, we identified serum-circulating miRNAs that predict the switch from favorable to HR-NB and, further imply that these miRNAs could play a functional role in tumor progression.
How-Kit, Alexandre; Dejeux, Emelyne; Dousset, Bertrand; Renault, Victor; Baudry, Marion; Terris, Benoit; Tost, Jörg
2015-01-01
Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.
Naruto, Takuya; Kohmoto, Tomohiro; Watabnabe, Miki; Tsuboi, Mitsuhiro; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira; Imoto, Issei
2017-01-01
In this study, we aimed to identify novel drivers that would be epigenetically altered through aberrant methylation in early-stage lung adenocarcinoma (LADC), regardless of the presence or absence of tobacco smoking-induced epigenetic field defects. Through genome-wide screening for aberrantly methylated CpG islands (CGIs) in 12 clinically uniform, stage-I LADC cases affecting six non-smokers and six smokers, we identified candidate tumor-suppressor genes (TSGs) inactivated by hypermethylation. Through systematic expression analyses of those candidates in panels of additional tumor samples and cell lines treated or not treated with 5-aza-deoxycitidine followed by validation analyses of cancer-specific silencing by CGI hypermethylation using a public database, we identified TRIM58 as the most prominent candidate for TSG. TRIM58 was robustly silenced by hypermethylation even in early-stage primary LADC, and the restoration of TRIM58 expression in LADC cell lines inhibited cell growth in vitro and in vivo in anchorage-dependent and -independent manners. Our findings suggest that aberrant inactivation of TRIM58 consequent to CGI hypermethylation might stimulate the early carcinogenesis of LADC regardless of smoking status; furthermore, TRIM58 methylation might be a possible early diagnostic and epigenetic therapeutic target in LADC. PMID:27926516
Kajiura, Koichiro; Masuda, Kiyoshi; Naruto, Takuya; Kohmoto, Tomohiro; Watabnabe, Miki; Tsuboi, Mitsuhiro; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira; Imoto, Issei
2017-01-10
In this study, we aimed to identify novel drivers that would be epigenetically altered through aberrant methylation in early-stage lung adenocarcinoma (LADC), regardless of the presence or absence of tobacco smoking-induced epigenetic field defects. Through genome-wide screening for aberrantly methylated CpG islands (CGIs) in 12 clinically uniform, stage-I LADC cases affecting six non-smokers and six smokers, we identified candidate tumor-suppressor genes (TSGs) inactivated by hypermethylation. Through systematic expression analyses of those candidates in panels of additional tumor samples and cell lines treated or not treated with 5-aza-deoxycitidine followed by validation analyses of cancer-specific silencing by CGI hypermethylation using a public database, we identified TRIM58 as the most prominent candidate for TSG. TRIM58 was robustly silenced by hypermethylation even in early-stage primary LADC, and the restoration of TRIM58 expression in LADC cell lines inhibited cell growth in vitro and in vivo in anchorage-dependent and -independent manners. Our findings suggest that aberrant inactivation of TRIM58 consequent to CGI hypermethylation might stimulate the early carcinogenesis of LADC regardless of smoking status; furthermore, TRIM58 methylation might be a possible early diagnostic and epigenetic therapeutic target in LADC.
Wong, Jason C; Tang, Guozhi; Wu, Xihan; Liang, Chungen; Zhang, Zhenshan; Guo, Lei; Peng, Zhenghong; Zhang, Weixing; Lin, Xianfeng; Wang, Zhanguo; Mei, Jianghua; Chen, Junli; Pan, Song; Zhang, Nan; Liu, Yongfu; Zhou, Mingwei; Feng, Lichun; Zhao, Weili; Li, Shijie; Zhang, Chao; Zhang, Meifang; Rong, Yiping; Jin, Tai-Guang; Zhang, Xiongwen; Ren, Shuang; Ji, Ying; Zhao, Rong; She, Jin; Ren, Yi; Xu, Chunping; Chen, Dawei; Cai, Jie; Shan, Song; Pan, Desi; Ning, Zhiqiang; Lu, Xianping; Chen, Taiping; He, Yun; Chen, Li
2012-10-25
Herein, we describe the pharmacokinetic optimization of a series of class-selective histone deacetylase (HDAC) inhibitors and the subsequent identification of candidate predictive biomarkers of hepatocellular carcinoma (HCC) tumor response for our clinical lead using patient-derived HCC tumor xenograft models. Through a combination of conformational constraint and scaffold hopping, we lowered the in vivo clearance (CL) and significantly improved the bioavailability (F) and exposure (AUC) of our HDAC inhibitors while maintaining selectivity toward the class I HDAC family with particular potency against HDAC1, resulting in clinical lead 5 (HDAC1 IC₅₀ = 60 nM, mouse CL = 39 mL/min/kg, mouse F = 100%, mouse AUC after single oral dose at 10 mg/kg = 6316 h·ng/mL). We then evaluated 5 in a biomarker discovery pilot study using patient-derived tumor xenograft models, wherein two out of the three models responded to treatment. By comparing tumor response status to compound tumor exposure, induction of acetylated histone H3, candidate gene expression changes, and promoter DNA methylation status from all three models at various time points, we identified preliminary candidate response prediction biomarkers that warrant further validation in a larger cohort of patient-derived tumor models and through confirmatory functional studies.
TCGA's Testicular Germ Cell Tumor Study - TCGA
TCGA network researchers identify molecular characteristics that classify testicular germ cell tumor types, including a separate subset of seminomas defined by KIT mutations. This provides a set of candidate biomarkers for risk stratification and potential therapeutic targeting.
Identifying candidate driver genes by integrative ovarian cancer genomics data
NASA Astrophysics Data System (ADS)
Lu, Xinguo; Lu, Jibo
2017-08-01
Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.
Gaykalova, Daria A; Vatapalli, Rajita; Wei, Yingying; Tsai, Hua-Ling; Wang, Hao; Zhang, Chi; Hennessey, Patrick T; Guo, Theresa; Tan, Marietta; Li, Ryan; Ahn, Julie; Khan, Zubair; Westra, William H; Bishop, Justin A; Zaboli, David; Koch, Wayne M; Khan, Tanbir; Ochs, Michael F; Califano, Joseph A
2015-01-01
Head and Neck Squamous Cell Carcinoma (HNSCC) is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas). Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC.
Proteogenomic characterization of human colon and rectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bing; Wang, Jing; Wang, Xiaojing
2014-09-18
We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less
Jiao, Jing; Ishikawa, Tomo-O; Dumlao, Darren S; Norris, Paul C; Magyar, Clara E; Mikulec, Carol; Catapang, Art; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey R
2014-11-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2-expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type-specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors. ©2014 American Association for Cancer Research.
Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W
2017-04-01
Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.
Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.
2016-01-01
Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318
Jiao, Jing; Ishikawa, Tomo-o; Dumlao, Darren S.; Norris, Paul C.; Magyar, Clara E.; Mikulec, Carol; Catapang, Art; Dennis, Edward A.; Fischer, Susan M.; Herschman, Harvey R.
2014-01-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX2) plays a critical role in DMBA/TPA-induced skin tumor induction. While many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell-type specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared to littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2 expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell-type specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biological responses. PMID:25063587
Aguado, Brian A; Caffe, Jordan R; Nanavati, Dhaval; Rao, Shreyas S; Bushnell, Grace G; Azarin, Samira M; Shea, Lonnie D
2016-03-01
Metastatic tumor cells colonize the pre-metastatic niche, which is a complex microenvironment consisting partially of extracellular matrix (ECM) proteins. We sought to identify and validate novel contributors to tumor cell colonization using ECM-coated poly(ε-caprolactone) (PCL) scaffolds as mimics of the pre-metastatic niche. Utilizing orthotopic breast cancer mouse models, fibronectin and collagen IV-coated scaffolds implanted in the subcutaneous space captured colonizing tumor cells, showing a greater than 2-fold increase in tumor cell accumulation at the implant site compared to uncoated scaffolds. As a strategy to identify additional ECM colonization contributors, decellularized matrix (DCM) from lungs and livers containing metastatic tumors were characterized. In vitro, metastatic cell adhesion was increased on DCM coatings from diseased organs relative to healthy DCM. Furthermore, in vivo implantations of diseased DCM-coated scaffolds had increased tumor cell colonization relative to healthy DCM coatings. Mass-spectrometry proteomics was performed on healthy and diseased DCM to identify candidates associated with colonization. Myeloperoxidase was identified as abundantly present in diseased organs and validated as a contributor to colonization using myeloperoxidase-coated scaffold implants. This work identified novel ECM proteins associated with colonization using decellularization and proteomics techniques and validated candidates using a scaffold to mimic the pre-metastatic niche. The pre-metastatic niche consists partially of ECM proteins that promote metastatic cell colonization to a target organ. We present a biomaterials-based approach to mimic this niche and identify ECM mediators of colonization. Using murine breast cancer models, we implanted microporous PCL scaffolds to recruit colonizing tumor cells in vivo. As a strategy to modulate colonization, we coated scaffolds with various ECM proteins, including decellularized lung and liver matrix from tumor-bearing mice. After characterizing the organ matrices using proteomics, myeloperoxidase was identified as an ECM protein contributing to colonization and validated using our scaffold. Our scaffold provides a platform to identify novel contributors to colonization and allows for the capture of colonizing tumor cells for a variety of downstream clinical applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
CT-guided automated detection of lung tumors on PET images
NASA Astrophysics Data System (ADS)
Cui, Yunfeng; Zhao, Binsheng; Akhurst, Timothy J.; Yan, Jiayong; Schwartz, Lawrence H.
2008-03-01
The calculation of standardized uptake values (SUVs) in tumors on serial [ 18F]2-fluoro-2-deoxy-D-glucose ( 18F-FDG) positron emission tomography (PET) images is often used for the assessment of therapy response. We present a computerized method that automatically detects lung tumors on 18F-FDG PET/Computed Tomography (CT) images using both anatomic and metabolic information. First, on CT images, relevant organs, including lung, bone, liver and spleen, are automatically identified and segmented based on their locations and intensity distributions. Hot spots (SUV >= 1.5) on 18F-FDG PET images are then labeled using the connected component analysis. The resultant "hot objects" (geometrically connected hot spots in three dimensions) that fall into, reside at the edges or are in the vicinity of the lungs are considered as tumor candidates. To determine true lesions, further analyses are conducted, including reduction of tumor candidates by the masking out of hot objects within CT-determined normal organs, and analysis of candidate tumors' locations, intensity distributions and shapes on both CT and PET. The method was applied to 18F-FDG-PET/CT scans from 9 patients, on which 31 target lesions had been identified by a nuclear medicine radiologist during a Phase II lung cancer clinical trial. Out of 31 target lesions, 30 (97%) were detected by the computer method. However, sensitivity and specificity were not estimated because not all lesions had been marked up in the clinical trial. The method effectively excluded the hot spots caused by mediastinum, liver, spleen, skeletal muscle and bone metastasis.
2013-08-01
like ( NBL ) corresponding to tumors predicted to have a BRCAness phenotype (BL tumors) or not ( NBL tumors). In the previous years we performed a...TCGA EOC project that have been characterized as BL or NBL by our profile to identify 3 candidate miRNAs (let-7f-2*, miR-744*, miR-342-5p) that may be
Gene Expression Profiling of Gastric Cancer
Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh
2015-01-01
Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788
Weiser, Keith C.; Liu, Bin; Hansen, Gwenn M.; Skapura, Darlene; Hentges, Kathryn E.; Yarlagadda, Sujatha; Morse III, Herbert C.
2007-01-01
AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision. PMID:17926094
Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J
2007-10-01
AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .
Thomassen, Mads; Tan, Qihua; Kruse, Torben A
2009-01-01
Breast cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth whereas others are causal for the various steps of metastasis. In a fraction of tumors deregulation of the same genes might be caused by epigenetic modulations, point mutations or the influence of other genes. We have investigated the relation of gene expression and chromosomal position, using eight datasets including more than 1200 breast tumors, to identify chromosomal regions and candidate genes possibly causal for breast cancer metastasis. By use of "Gene Set Enrichment Analysis" we have ranked chromosomal regions according to their relation to metastasis. Overrepresentation analysis identified regions with increased expression for chromosome 1q41-42, 8q24, 12q14, 16q22, 16q24, 17q12-21.2, 17q21-23, 17q25, 20q11, and 20q13 among metastasizing tumors and reduced gene expression at 1p31-21, 8p22-21, and 14q24. By analysis of genes with extremely imbalanced expression in these regions we identified DIRAS3 at 1p31, PSD3, LPL, EPHX2 at 8p21-22, and FOS at 14q24 as candidate metastasis suppressor genes. Potential metastasis promoting genes includes RECQL4 at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13.
Protein profiles associated with survival in lung adenocarcinoma
Chen, Guoan; Gharib, Tarek G; Wang, Hong; Huang, Chiang-Ching; Kuick, Rork; Thomas, Dafydd G.; Shedden, Kerby A.; Misek, David E.; Taylor, Jeremy M. G.; Giordano, Thomas J.; Kardia, Sharon L. R.; Iannettoni, Mark D.; Yee, John; Hogg, Philip J.; Orringer, Mark B.; Hanash, Samir M.; Beer, David G.
2003-01-01
Morphologic assessment of lung tumors is informative but insufficient to adequately predict patient outcome. We previously identified transcriptional profiles that predict patient survival, and here we identify proteins associated with patient survival in lung adenocarcinoma. A total of 682 individual protein spots were quantified in 90 lung adenocarcinomas by using quantitative two-dimensional polyacrylamide gel electrophoresis analysis. A leave-one-out cross-validation procedure using the top 20 survival-associated proteins identified by Cox modeling indicated that protein profiles as a whole can predict survival in stage I tumor patients (P = 0.01). Thirty-three of 46 survival-associated proteins were identified by using mass spectrometry. Expression of 12 candidate proteins was confirmed as tumor-derived with immunohistochemical analysis and tissue microarrays. Oligonucleotide microarray results from both the same tumors and from an independent study showed mRNAs associated with survival for 11 of 27 encoded genes. Combined analysis of protein and mRNA data revealed 11 components of the glycolysis pathway as associated with poor survival. Among these candidates, phosphoglycerate kinase 1 was associated with survival in the protein study, in both mRNA studies and in an independent validation set of 117 adenocarcinomas and squamous lung tumors using tissue microarrays. Elevated levels of phosphoglycerate kinase 1 in the serum were also significantly correlated with poor outcome in a validation set of 107 patients with lung adenocarcinomas using ELISA analysis. These studies identify new prognostic biomarkers and indicate that protein expression profiles can predict the outcome of patients with early-stage lung cancer. PMID:14573703
Bodnar, Magdalena; Luczak, Magdalena; Bednarek, Kinga; Szylberg, Lukasz; Marszalek, Andrzej; Grenman, Reidar; Szyfter, Krzysztof; Jarmuz-Szymczak, Malgorzata; Giefing, Maciej
2016-06-01
Relapse and metastasis are the main causes of unfavorable outcome in head and neck cancers. Whereas, understanding of the molecular background of these processes is far from being complete. Therefore, in this study we aimed to identify potential biomarker candidates of relapse and metastasis in laryngeal squamous cell carcinoma (LSCC) by combining the 2D electrophoresis based protein screen and immunohistochemical analysis of candidate proteins. We screened three groups of LSCC cell lines derived from primary tumors, recurrent tumors and metastases and identified seven proteins that differed significantly in relative abundance between the analyzed groups. Among the identified proteins were the heat shock proteins HSP60 and HSP70 that were significantly downregulated both in recurrences- and metastases-derived cell lines but not in primary tumor-derived cell lines. Moreover, we identified significant upregulation of the annexin V, calreticulin and the inorganic pyrophosphatase (PPA1) exclusively in the metastases-derived cell lines. As these upregulated proteins could potentially become novel biomarkers of metastasis, we have compared their abundance in primary tumor LSCC N(0) cases, primary tumor LSCC N(+) cases as well as in LSCC metastases N(+). Our results show an intense increase of cytoplasmic PPA1 abundance in the N(+) (p = 0.000042) compared to the N(0) group. In summary, we show a group of proteins deregulated in recurrences and metastases of LSCC. Moreover, we suggest the PPA1 protein as a potential new biomarker for metastasis in this cancer.
Sokolowska, Izabela; Woods, Alisa G; Gawinowicz, Mary Ann; Roy, Urmi; Darie, Costel C
2012-07-01
Tumor differentiation factor (TDF) is a pituitary protein that is secreted into the bloodstream and has an endocrine function. TDF and TDF-P1, a 20-residue peptide selected from the ORF of TDF, induce differentiation in human breast and prostate cancer cells, but not in other cells. TDF has no known mechanism of action. In our recent study, we identified heat shock 70 kDa proteins (HSP70s) as TDF receptors (TDF-Rs) in breast cancer cells. Therefore, we sought to investigate whether TDF-R candidates from prostate cancer cells are the same as those identified in breast cancer cells. Here, we used TDF-P1 to purify the potential TDF-R candidates by affinity purification chromatography from DU145 and PC3 steroid-resistant prostate cancer cells, LNCaP steroid-responsive prostate cancer cells, and nonprostate NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. We identified the purified proteins by MS, and validated them by western blotting, immunofluorescence microscopy, immunoaffinity purification chromatography, and structural biology. We identified seven candidate proteins, of which three were from the HSP70 family. These three proteins were validated as potential TDF-R candidates in LNCaP steroid-responsive and in DU145 and PC3 steroid-resistant prostate cancer cells, but not in NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. Our previous study and the current study suggest that GRP78, and perhaps HSP70s, are strong TDF-R candidates, and further suggest that TDF interacts with its receptors exclusively in breast and prostate cells, inducing cell differentiation through a novel, steroid-independent pathway. © 2012 The Authors Journal compilation © 2012 FEBS.
Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.
Hainfellner, J A; Heinzl, H
2010-01-01
Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.
Personalized Therapy: Tumor Antigen Discovery for Adoptive Cellular Therapy.
Yee, Cassian; Lizee, Gregory A
Adoptive cell therapy using endogenous T cells involves the ex vivo isolation and expansion of antigen-specific T cells from the peripheral blood and is uniquely suited for validating and translating antigen discovery. Endogenous T-cell therapy does not require accessible tumor as a source of infiltrating T cells and is free of regulatory and logistical constraints associated with engineering T cells. Candidate epitope peptides identified through antigen discovery may be rapidly implemented as targets in clinical trials of endogenous T-cell therapy and even incorporated as an "ad hoc" approach to personalized treatment when autologous tumor is available. Several first-in-human studies using a uniform population of antigen-specific T cells defined by phenotype and specificity have provided a means to confirm candidate antigens as potential tumor rejection antigens and to evaluate the reasons for success or failure using as a "transferrable cellular biomarker" the adoptively transferred T cells.
Tsai, Pei-Chien; Breen, Matthew
2012-09-01
To identify suitable reference genes for normalization of real-time quantitative PCR (RT-qPCR) assay data for common tumors of dogs. Malignant lymph node (n = 8), appendicular osteosarcoma (9), and histiocytic sarcoma (12) samples and control samples of various nonneoplastic canine tissues. Array-based comparative genomic hybridization (aCGH) data were used to guide selection of 9 candidate reference genes. Expression stability of candidate reference genes and 4 commonly used reference genes was determined for tumor samples with RT-qPCR assays and 3 software programs. LOC611555 was the candidate reference gene with the highest expression stability among the 3 tumor types. Of the commonly used reference genes, expression stability of HPRT was high in histiocytic sarcoma samples, and expression stability of Ubi and RPL32 was high in osteosarcoma samples. Some of the candidate reference genes had higher expression stability than did the commonly used reference genes. Data for constitutively expressed genes with high expression stability are required for normalization of RT-qPCR assay results. Without such data, accurate quantification of gene expression in tumor tissue samples is difficult. Results of the present study indicated LOC611555 may be a useful RT-qPCR assay reference gene for multiple tissue types. Some commonly used reference genes may be suitable for normalization of gene expression data for tumors of dogs, such as lymphomas, osteosarcomas, or histiocytic sarcomas.
Genomic analysis of fibrolamellar hepatocellular carcinoma.
Xu, Lei; Hazard, Florette K; Zmoos, Anne-Flore; Jahchan, Nadine; Chaib, Hassan; Garfin, Phillip M; Rangaswami, Arun; Snyder, Michael P; Sage, Julien
2015-01-01
Pediatric tumors are relatively infrequent, but are often associated with significant lethality and lifelong morbidity. A major goal of pediatric cancer research has been to identify key drivers of tumorigenesis to eventually develop targeted therapies to enhance cure rate and minimize acute and long-term toxic effects. Here, we used genomic approaches to identify biomarkers and candidate drivers for fibrolamellar hepatocellular carcinoma (FL-HCC), a very rare subtype of pediatric liver cancer for which limited therapeutic options exist. In-depth genomic analyses of one tumor followed by immunohistochemistry validation on seven other tumors showed expression of neuroendocrine markers in FL-HCC. DNA and RNA sequencing data further showed that common cancer pathways are not visibly altered in FL-HCC but identified two novel structural variants, both resulting in fusion transcripts. The first, a 400 kb deletion, results in a DNAJB1-PRKCA fusion transcript, which leads to increased cAMP-dependent protein kinase (PKA) activity in the index tumor case and other FL-HCC cases compared with normal liver. This PKA fusion protein is oncogenic in HCC cells. The second gene fusion event, a translocation between the CLPTM1L and GLIS3 genes, generates a transcript whose product also promotes cancer phenotypes in HCC cell lines. These experiments further highlight the tumorigenic role of gene fusions in the etiology of pediatric solid tumors and identify both candidate biomarkers and possible therapeutic targets for this lethal pediatric disease. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Genome-Scale Screen for DNA Methylation-Based Detection Markers for Ovarian Cancer
Houshdaran, Sahar; Shen, Hui; Widschwendter, Martin; Daxenbichler, Günter; Long, Tiffany; Marth, Christian; Laird-Offringa, Ite A.; Press, Michael F.; Dubeau, Louis; Siegmund, Kimberly D.; Wu, Anna H.; Groshen, Susan; Chandavarkar, Uma; Roman, Lynda D.; Berchuck, Andrew; Pearce, Celeste L.; Laird, Peter W.
2011-01-01
Background The identification of sensitive biomarkers for the detection of ovarian cancer is of high clinical relevance for early detection and/or monitoring of disease recurrence. We developed a systematic multi-step biomarker discovery and verification strategy to identify candidate DNA methylation markers for the blood-based detection of ovarian cancer. Methodology/Principal Findings We used the Illumina Infinium platform to analyze the DNA methylation status of 27,578 CpG sites in 41 ovarian tumors. We employed a marker selection strategy that emphasized sensitivity by requiring consistency of methylation across tumors, while achieving specificity by excluding markers with methylation in control leukocyte or serum DNA. Our verification strategy involved testing the ability of identified markers to monitor disease burden in serially collected serum samples from ovarian cancer patients who had undergone surgical tumor resection compared to CA-125 levels. We identified one marker, IFFO1 promoter methylation (IFFO1-M), that is frequently methylated in ovarian tumors and that is rarely detected in the blood of normal controls. When tested in 127 serially collected sera from ovarian cancer patients, IFFO1-M showed post-resection kinetics significantly correlated with serum CA-125 measurements in six out of 16 patients. Conclusions/Significance We implemented an effective marker screening and verification strategy, leading to the identification of IFFO1-M as a blood-based candidate marker for sensitive detection of ovarian cancer. Serum levels of IFFO1-M displayed post-resection kinetics consistent with a reflection of disease burden. We anticipate that IFFO1-M and other candidate markers emerging from this marker development pipeline may provide disease detection capabilities that complement existing biomarkers. PMID:22163280
Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike
2016-01-01
Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672
Jang, Jee-Eun; Kim, Hwang-Phill; Han, Sae-Won; Jang, Hoon; Lee, Si-Hyun; Song, Sang-Hyun; Bang, Duhee; Kim, Tae-You
2018-06-14
This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer lines. We performed paired-end RNA sequencing of 28 colorectal cancer (CRC) cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. 1,380 FT candidates were detected through bioinformatics filtering. We selected 6 candidate FTs, including 4 inter-chromosomal and 2 intra-chromosomal FTs and each FT was found in at least 1 of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3-PLA2G15 FT was found in 2. Knockdown of NFATC3-PLA2G15 using siRNA reduced mRNA expression of epithelial-mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal-epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3-PLA2G15 FT. The NFATC3-PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. These results suggest that that NFATC3-PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.
Montero-Conde, Cristina; Leandro-Garcia, Luis J; Chen, Xu; Oler, Gisele; Ruiz-Llorente, Sergio; Ryder, Mabel; Landa, Iñigo; Sanchez-Vega, Francisco; La, Konnor; Ghossein, Ronald A; Bajorin, Dean F; Knauf, Jeffrey A; Riordan, Jesse D; Dupuy, Adam J; Fagin, James A
2017-06-20
Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with Hras G12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-Hras G12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7 , a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.
Montero-Conde, Cristina; Leandro-Garcia, Luis J.; Chen, Xu; Oler, Gisele; Ruiz-Llorente, Sergio; Ryder, Mabel; Landa, Iñigo; Sanchez-Vega, Francisco; La, Konnor; Ghossein, Ronald A.; Bajorin, Dean F.; Knauf, Jeffrey A.; Riordan, Jesse D.; Dupuy, Adam J.; Fagin, James A.
2017-01-01
Oncogenic RAS mutations are present in 15–30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene. PMID:28584132
Lamy, Philippe; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Thomsen, Mathilde Borg Houlberg; Villesen, Palle; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen Bjerggaard; Høyer, Søren; Pedersen, Jakob Skou; Ørntoft, Torben F; Dyrskjøt, Lars
2016-10-01
Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR. ©2016 American Association for Cancer Research.
Effect of Physical Forces on the Metastatic Bone Microenvironment
2013-10-01
G.R., et al., Cell proliferation of cultured human cancer cells are affected by the elevated tumor pressures that exist in vivo. Ann Biomed Eng, 2005... cell lines. In vitro experiments have shown that increased pressure leads to decreased PCa proliferation. Osteoblasts also have inhibited...applied to tumor cells . Novel candidate genes with altered expression due to pressure have been identified and are currently undergoing further
USDA-ARS?s Scientific Manuscript database
Trichinella spiralis infection confers effective resistance to tumor cell expansion. In this study, a T7 phage cDNA display library was constructed to express genes encoded by T. spiralis. Organic phase multi-cell screening was used to sort through candidate proteins in a transfected human chronic m...
Biomarkers for Prostate and Bladder Cancer — EDRN Public Portal
CD26+ cancer cells and CD90+ tumor-associated stromal cells were sorted from tumor tissue. Dataset analysis with transcriptomes of CD26+ luminal, CD104+ basal, CD49a+ stromal and CD31+ endothelial was carried out to identify candidates: CD90, AGR2, BCMP11, CEACAM5, CRISP3. Quantitative protomics was applied to measure these proteins in urine samples.
Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John
2007-06-01
We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.
Whole-Exome Sequencing Study of Thyrotropin-Secreting Pituitary Adenomas.
Sapkota, Santosh; Horiguchi, Kazuhiko; Tosaka, Masahiko; Yamada, Syozo; Yamada, Masanobu
2017-02-01
Thyrotropin (TSH)-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism, and the genetic aberrations responsible remain unknown. To identify somatic genetic abnormalities in TSHomas. A single-nucleotide polymorphism (SNP) array analysis was performed on 8 TSHomas. Four tumors with no allelic losses or limited loss of heterozygosity were selected, and whole-exome sequencing was performed, including their corresponding blood samples. Somatic variants were confirmed by Sanger sequencing. A set of 8 tumors was also assessed to validate candidate genes. Twelve patients with sporadic TSHomas were examined. The overall performance of whole-exome sequencing was good, with an average coverage of each base in the targeted region of 97.6%. Six DNA variants were confirmed as candidate driver mutations, with an average of 1.5 somatic mutations per tumor. No mutations were recurrent. Two of these mutations were found in genes with an established role in malignant tumorigenesis (SMOX and SYTL3), and 4 had unknown roles (ZSCAN23, ASTN2, R3HDM2, and CWH43). Similarly, an SNP array analysis revealed frequent chromosomal regions of copy number gains, including recurrent gains at loci harboring 4 of these 6 genes. Several candidate somatic mutations and changes in copy numbers for TSHomas were identified. The results showed no recurrence of mutations in the tumors studied but a low number of mutations, thereby highlighting their benign nature. Further studies on a larger cohort of TSHomas, along with the use of epigenetic and transcriptomic approaches, may reveal the underlying genetic lesions. Copyright © 2017 by the Endocrine Society
Findeisen, Peter; Röckel, Matthias; Nees, Matthias; Röder, Christian; Kienle, Peter; Von Knebel Doeberitz, Magnus; Kalthoff, Holger; Neumaier, Michael
2008-11-01
The presence of tumor cells in peripheral blood is being regarded increasingly as a clinically relevant prognostic factor for colorectal cancer patients. Current molecular methods are very sensitive but due to low specificity their diagnostic value is limited. This study was undertaken in order to systematically identify and validate new colorectal cancer (CRC) marker genes for improved detection of minimal residual disease in peripheral blood mononuclear cells of colorectal cancer patients. Marker genes with upregulated gene expression in colorectal cancer tissue and cell lines were identified using microarray experiments and publicly available gene expression data. A systematic iterative approach was used to reduce a set of 346 candidate genes, reportedly associated with CRC to a selection of candidate genes that were then further validated by relative quantitative real-time RT-PCR. Analytical sensitivity of RT-PCR assays was determined by spiking experiments with CRC cells. Diagnostic sensitivity as well as specificity was tested on a control group consisting of 18 CRC patients compared to 12 individuals without malignant disease. From a total of 346-screened genes only serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5 (SERPINB5) showed significantly elevated transcript levels in peripheral venous blood specimens of tumor patients when compared to the nonmalignant control group. These results were confirmed by analysis of an enlarged collective consisting of 63 CRC patients and 36 control individuals without malignant disease. In conclusion SERPINB5 seems to be a promising marker for detection of circulating tumor cells in peripheral blood of colorectal cancer patients.
NASA Astrophysics Data System (ADS)
Chen, Lei; Huang, Tao; Zhang, Yu-Hang; Jiang, Yang; Zheng, Mingyue; Cai, Yu-Dong
2016-07-01
Tumors are formed by the abnormal proliferation of somatic cells with disordered growth regulation under the influence of tumorigenic factors. Recently, the theory of “cancer drivers” connects tumor initiation with several specific mutations in the so-called cancer driver genes. According to the differentiation of four basic levels between tumor and adjacent normal tissues, the cancer drivers can be divided into the following: (1) Methylation level, (2) microRNA level, (3) mutation level, and (4) mRNA level. In this study, a computational method is proposed to identify novel lung adenocarcinoma drivers based on dysfunctional genes on the methylation, microRNA, mutation and mRNA levels. First, a large network was constructed using protein-protein interactions. Next, we searched all of the shortest paths connecting dysfunctional genes on different levels and extracted new candidate genes lying on these paths. Finally, the obtained candidate genes were filtered by a permutation test and an additional strict selection procedure involving a betweenness ratio and an interaction score. Several candidate genes remained, which are deemed to be related to two different levels of cancer. The analyses confirmed our assertions that some have the potential to contribute to the tumorigenesis process on multiple levels.
Identification of novel tumor antigens with patient-derived immune-selected antibodies
Rodriguez-Pinto, Daniel; Sparkowski, Jason; Keough, Martin P.; Phoenix, Kathryn N.; Vumbaca, Frank; Han, David K.; Gundelfinger, Eckart D.; Beesley, Philip
2010-01-01
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions. PMID:18568347
Rrp1b, a New Candidate Susceptibility Gene for Breast Cancer Progression and Metastasis
Crawford, Nigel P. S; Qian, Xiaolan; Ziogas, Argyrios; Papageorge, Alex G; Boersma, Brenda J; Walker, Renard C; Lukes, Luanne; Rowe, William L; Zhang, Jinghui; Ambs, Stefan; Lowy, Douglas R; Anton-Culver, Hoda; Hunter, Kent W
2007-01-01
A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis. PMID:18081427
Wu, Long; Peng, Chun-Wei; Hou, Jin-Xuan; Zhang, Yan-Hua; Chen, Chuang; Chen, Liang-Dong; Li, Yan
2010-02-24
To better search for potential markers for hepatocellular carcinoma (HCC) invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC) of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Coronin-1C could be a candidate biomarker to predict HCC invasive behavior.
Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival
Fink, Stephen P.; Myeroff, Lois L.; Kariv, Revital; Platzer, Petra; Xin, Baozhong; Mikkola, Debra; Lawrence, Earl; Morris, Nathan; Nosrati, Arman; Willson, James K. V.; Willis, Joseph; Veigl, Martina; Barnholtz-Sloan, Jill S.; Wang, Zhenghe; Markowitz, Sanford D.
2015-01-01
Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target. PMID:26437221
The Quest for the 1p36 Tumor Suppressor
Bagchi, Anindya; Mills, Alea A.
2010-01-01
Genomic analyses of late-stage human cancers have uncovered deletions encompassing 1p36, thereby providing an extensive body of literature supporting the idea that a potent tumor suppressor resides in this interval. Although a number of genes have been proposed as 1p36 candidate tumor suppressors, convincing evidence that their encoded products protect from cancer has been scanty. A recent functional study identified CHD5 as a novel tumor suppressor mapping to 1p36. Here we discuss evidence supporting CHD5’s tumor suppressive role. Together, these findings suggest that strategies designed to enhance CHD5 activity could provide novel approaches for treating a broad range of human malignancies. PMID:18413720
Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States
Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric
2013-01-01
Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029
Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States.
Dela Cruz, Florante N; Giannitti, Federico; Li, Linlin; Woods, Leslie W; Del Valle, Luis; Delwart, Eric; Pesavento, Patricia A
2013-01-01
Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010-May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons.
Court, Colin M; Harlander-Locke, Michael P; Markovic, Daniela; French, Samuel W; Naini, Bita V; Lu, David S; Raman, Steven S; Kaldas, Fady M; Zarrinpar, Ali; Farmer, Douglas G; Finn, Richard S; Sadeghi, Saeed; Tomlinson, James S; Busuttil, Ronald W; Agopian, Vatche G
2017-09-01
The objective of this article is to evaluate the utility of preoperative needle biopsy (PNB) grading of hepatocellular carcinoma (HCC) as a biomarker for liver transplantation (LT) candidate selection. Given the prognostic significance of HCC tumor grade, PNB grading has been proposed as a biomarker for LT candidate selection. Clinicopathologic characteristics of HCC LT recipients (1989-2014) with a PNB were analyzed, and the concordance of PNB grade to explant grade and vascular invasion was assessed to determine whether incorporation of PNB grade to accepted transplant criteria improved candidate selection. Of 965 patients undergoing LT for HCC, 234 (24%) underwent PNB at a median of 280 days prior to transplant. Grade by PNB had poor concordance to final explant pathology (κ = 0.22; P = 0.003), and low sensitivity (29%) and positive predictive value (35%) in identifying poorly differentiated tumors. Vascular invasion was predicted by explant pathologic grade (r s = 0.24; P < 0.001) but not PNB grade (r s = -0.05; P = 0.50). Increasing explant pathology grade (P = 0.02), but not PNB grade (P = 0.65), discriminated post-LT HCC recurrence risk. The incorporation of PNB grade to the established radiologic Milan criteria (MC) did not result in improved prognostication of post-LT recurrence (net reclassification index [NRI] = 0%), whereas grade by explant pathology resulted in significantly improved reclassification of risk (NRI = 19%). Preoperative determination of HCC grade by PNB has low concordance with explant pathologic grade and low sensitivity and positive predictive value in identifying poorly differentiated tumors. PNB grade did not accurately discriminate post-LT HCC recurrence and had no utility in improving prognostication compared with the MC alone. Incorporation of PNB to guide transplant candidate selection appears unjustified. Liver Transplantation 23 1123-1132 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
Roy, Janine; Aust, Daniela; Knösel, Thomas; Rümmele, Petra; Jahnke, Beatrix; Hentrich, Vera; Rückert, Felix; Niedergethmann, Marco; Weichert, Wilko; Bahra, Marcus; Schlitt, Hans J.; Settmacher, Utz; Friess, Helmut; Büchler, Markus; Saeger, Hans-Detlev; Schroeder, Michael; Pilarsky, Christian; Grützmann, Robert
2012-01-01
Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice. PMID:22615549
Kim, Kyu-Tae; Lee, Hye Won; Lee, Hae-Ock; Kim, Sang Cheol; Seo, Yun Jee; Chung, Woosung; Eum, Hye Hyeon; Nam, Do-Hyun; Kim, Junhyong; Joo, Kyeung Min; Park, Woong-Yang
2015-06-19
Intra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses. However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of heterogeneous tumor cell functional responses into customized anti-cancer treatments. We isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRAS(G12D), were observed to be heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRAS(G12D) mutant expression and a risk score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the group characterized by KRAS(G12D) and low risk score. Single-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.
AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira
2000-02-04
To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold andmore » a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.« less
Li, Ellen; Ji, Ping; Ouyang, Nengtai; Zhang, Yuanhao; Wang, Xin Yu; Rubin, Deborah C; Davidson, Nicholas O; Bergamaschi, Roberto; Shroyer, Kenneth R; Burke, Stephanie; Zhu, Wei; Williams, Jennie L
2014-08-01
Colorectal cancer (CRC) incidence and mortality are higher in African Americans (AAs) than in Caucasian Americans (CAs) and microRNAs (miRNAs) have been found to be dysregulated in colonic and other neoplasias. The aim of this exploratory study was to identify candidate miRNAs that could contribute to potential biological differences between AA and CA colon cancers. Total RNA was isolated from tumor and paired adjacent normal colon tissue from 30 AA and 31 CA colon cancer patients archived at Stony Brook University (SBU) and Washington University (WU)‑St. Louis Medical Center. miRNA profiles were determined by probing human genome-wide miRNA arrays with RNA isolated from each sample. Using repeated measures analysis of variance (RANOVA), miRNAs were selected that exhibited significant (p<0.05) interactions between race and tumor or significant (fold change >1.5, p<0.05) main effects of race and/or tumor. Quantitative polymerase chain reaction (q-PCR) was used to confirm miRNAs identified by microarray analysis. Candidate miRNA targets were analyzed using immunohistochemistry. RANOVA results indicated that miR-182, miR152, miR-204, miR-222 and miR-202 exhibited significant race and tumor main effects. Of these miRNAs, q-PCR analysis confirmed that miR-182 was upregulated in AA vs. CA tumors and exhibited significant race:tumor interaction. Immunohistochemical analysis revealed that the levels of FOXO1 and FOXO3A, two potential miR-182 targets, are reduced in AA tumors. miRNAs may play a role in the differences between AA and CA colon cancer. Specifically, differences in miRNA expression levels of miR-182 may contribute to decreased survival in AA colon cancer patients.
Winter, Jean M; Curry, Natasha L; Gildea, Derek M; Williams, Kendra A; Lee, Minnkyong; Hu, Ying; Crawford, Nigel P S
2018-06-11
It is well known that development of prostate cancer (PC) can be attributed to somatic mutations of the genome, acquired within proto-oncogenes or tumor-suppressor genes. What is less well understood is how germline variation contributes to disease aggressiveness in PC patients. To map germline modifiers of aggressive neuroendocrine PC, we generated a genetically diverse F2 intercross population using the transgenic TRAMP mouse model and the wild-derived WSB/EiJ (WSB) strain. The relevance of germline modifiers of aggressive PC identified in these mice was extensively correlated in human PC datasets and functionally validated in cell lines. Aggressive PC traits were quantified in a population of 30 week old (TRAMP x WSB) F2 mice (n = 307). Correlation of germline genotype with aggressive disease phenotype revealed seven modifier loci that were significantly associated with aggressive disease. RNA-seq were analyzed using cis-eQTL and trait correlation analyses to identify candidate genes within each of these loci. Analysis of 92 (TRAMP x WSB) F2 prostates revealed 25 candidate genes that harbored both a significant cis-eQTL and mRNA expression correlations with an aggressive PC trait. We further delineated these candidate genes based on their clinical relevance, by interrogating human PC GWAS and PC tumor gene expression datasets. We identified four genes (CCDC115, DNAJC10, RNF149, and STYXL1), which encompassed all of the following characteristics: 1) one or more germline variants associated with aggressive PC traits; 2) differential mRNA levels associated with aggressive PC traits; and 3) differential mRNA expression between normal and tumor tissue. Functional validation studies of these four genes using the human LNCaP prostate adenocarcinoma cell line revealed ectopic overexpression of CCDC115 can significantly impede cell growth in vitro and tumor growth in vivo. Furthermore, CCDC115 human prostate tumor expression was associated with better survival outcomes. We have demonstrated how modifier locus mapping in mouse models of PC, coupled with in silico analyses of human PC datasets, can reveal novel germline modifier genes of aggressive PC. We have also characterized CCDC115 as being associated with less aggressive PC in humans, placing it as a potential prognostic marker of aggressive PC.
Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin
2016-01-01
Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10−8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility. PMID:27171399
Forrest, Megan E; Saiakhova, Alina; Beard, Lydia; Buchner, David A; Scacheri, Peter C; LaFramboise, Thomas; Markowitz, Sanford; Khalil, Ahmad M
2018-05-09
Long non-coding RNAs (lncRNAs) are frequently dysregulated in many human cancers. We sought to identify candidate oncogenic lncRNAs in human colon tumors by utilizing RNA sequencing data from 22 colon tumors and 22 adjacent normal colon samples from The Cancer Genome Atlas (TCGA). The analysis led to the identification of ~200 differentially expressed lncRNAs. Validation in an independent cohort of normal colon and patient-derived colon cancer cell lines identified a novel lncRNA, lincDUSP, as a potential candidate oncogene. Knockdown of lincDUSP in patient-derived colon tumor cell lines resulted in significantly decreased cell proliferation and clonogenic potential, and increased susceptibility to apoptosis. The knockdown of lincDUSP affects the expression of ~800 genes, and NCI pathway analysis showed enrichment of DNA damage response and cell cycle control pathways. Further, identification of lincDUSP chromatin occupancy sites by ChIRP-Seq demonstrated association with genes involved in the replication-associated DNA damage response and cell cycle control. Consistent with these findings, lincDUSP knockdown in colon tumor cell lines increased both the accumulation of cells in early S-phase and γH2AX foci formation, indicating increased DNA damage response induction. Taken together, these results demonstrate a key role of lincDUSP in the regulation of important pathways in colon cancer.
confFuse: High-Confidence Fusion Gene Detection across Tumor Entities.
Huang, Zhiqin; Jones, David T W; Wu, Yonghe; Lichter, Peter; Zapatka, Marc
2017-01-01
Background: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.
Senkowski, Wojciech; Zhang, Xiaonan; Olofsson, Maria Hägg; Isacson, Ruben; Höglund, Urban; Gustafsson, Mats; Nygren, Peter; Linder, Stig; Larsson, Rolf; Fryknäs, Mårten
2015-06-01
Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials. ©2015 American Association for Cancer Research.
Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib
Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.
2015-01-01
Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567
2010-01-01
Background To better search for potential markers for hepatocellular carcinoma (HCC) invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Methods Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC) of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Results Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Conclusions Coronin-1C could be a candidate biomarker to predict HCC invasive behavior. PMID:20181269
2014-01-01
Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC. PMID:24552139
A sequence-based survey of the complex structural organization of tumor genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav
2008-04-03
The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison ofmore » the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.« less
Genomic analysis and selected molecular pathways in rare cancers
NASA Astrophysics Data System (ADS)
Liu, Stephen V.; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Demeure, Michael J.; Eng, Cathy; Ramanathan, Ramesh K.; Von Hoff, Daniel D.; Barrett, Michael T.
2012-12-01
It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer.
Genomic analysis and selected molecular pathways in rare cancers.
Liu, Stephen V; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Demeure, Michael J; Eng, Cathy; Ramanathan, Ramesh K; Von Hoff, Daniel D; Barrett, Michael T
2012-12-01
It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer.
Takeda, Haruna; Rust, Alistair G.; Ward, Jerrold M.; Yew, Christopher Chin Kuan; Jenkins, Nancy A.; Copeland, Neal G.
2016-01-01
Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4+/− mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC. PMID:27006499
Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G
2016-04-05
Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.
Mapping the HLA ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation.
Löffler, Markus W; Kowalewski, Daniel J; Backert, Linus; Bernhardt, Jörg; Adam, Patrick; Schuster, Heiko; Dengler, Florian; Backes, Daniel; Kopp, Hans-Georg; Beckert, Stefan; Wagner, Silvia; Königsrainer, Ingmar; Kohlbacher, Oliver; Kanz, Lothar; Königsrainer, Alfred; Rammensee, Hans-Georg; Stevanovic, Stefan; Haen, Sebastian P
2018-05-22
Immune cell infiltrates have proven highly relevant for colorectal carcinoma (CRC) prognosis, making CRC a promising candidate for immunotherapy. Since tumors interact with the immune system via HLA-presented peptide ligands, exact knowledge of the peptidome constitution is fundamental for understanding this relationship. Here we comprehensively describe the naturally presented HLA-ligandome of CRC and corresponding non-malignant colon (NMC) tissue. Mass spectrometry identified 35,367 and 28,132 HLA-class I ligands on CRC and NMC, attributable to 7,684 and 6,312 distinct source proteins, respectively. Cancer-exclusive peptides were assessed on source protein level using Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein analysis through evolutionary relationships (PANTHER), revealing pathognomonic CRC-associated pathways including Wnt, TGF-β, PI3K, p53, and RTK-RAS. Relative quantitation of peptide presentation on paired CRC and NMC tissue further identified source proteins from cancer- and infection-associated pathways to be over-represented merely within the CRC ligandome. From the pool of tumor-exclusive peptides, a selected HLA-ligand subset was assessed for immunogenicity, with the majority exhibiting an existing T cell repertoire. Overall, these data show that the HLA-ligandome reflects cancer-associated pathways implicated in CRC oncogenesis, suggesting that alterations in tumor cell metabolism could result in cancer-specific, albeit not mutation-derived tumor-antigens. Hence, a defined pool of unique tumor peptides, attributable to complex cellular alterations that are exclusive to malignant cells might comprise promising candidates for immunotherapeutic applications. Copyright ©2018, American Association for Cancer Research.
Bateman, Nicholas W; Dubil, Elizabeth A; Wang, Guisong; Hood, Brian L; Oliver, Julie M; Litzi, Tracy A; Gist, Glenn D; Mitchell, David A; Blanton, Brian; Phippen, Neil T; Tian, Chunqiao; Zahn, Christopher M; Cohn, David E; Havrilesky, Laura J; Berchuck, Andrew; Shriver, Craig D; Darcy, Kathleen M; Hamilton, Chad A; Conrads, Thomas P; Maxwell, G Larry
2017-10-15
The objective of this study was to identify molecular alterations associated with disease outcomes for white and black patients with endometrioid endometrial cancer (EEC). EEC samples from black (n = 17) and white patients (n = 13) were analyzed by proteomics (liquid chromatography-tandem mass spectrometry) and transcriptomics (RNA-seq). Coordinate alterations were validated with RNA-seq data from black (n = 49) and white patients (n = 216). Concordantly altered candidates were further tested for associations with race-specific progression-free survival (PFS) in black (n = 64) or white patients (n = 267) via univariate and multivariate Cox regression modeling and log-rank testing. Discovery analyses revealed significantly altered candidate proteins and transcripts between black and white patients, suggesting modulation of tumor cell viability in black patients and cell death signaling in black and white patients. Eighty-nine candidates were validated as altered between these patient cohorts, and a subset significantly correlated with differential PFS. White-specific PFS candidates included serpin family A member 4 (SERPINA4; hazard ratio [HR], 0.89; Wald P value = .02), integrin subunit α3 (ITGA3; HR, 0.76; P = .03), and Bet1 Golgi vesicular membrane trafficking protein like (BET1L; HR, 0.48; P = .04). Black-specific PFS candidates included family with sequence similarity 228 member B (FAM228B; HR, 0.13; P = .001) and HEAT repeat containing 6 (HEATR6; HR, 4.94; P = .047). Several candidates were also associated with overall survival (SERPINA4 and ITGA3) as well as PFS independent of disease stage, grade and myometrial invasion (SERPINA4, BET1L and FAM228B). This study has identified and validated molecular alterations in tumors from black and white EEC patients, including candidates significantly associated with altered disease outcomes within these patient cohorts. Cancer 2017;123:4004-12. © 2017 American Cancer Society. © 2017 American Cancer Society.
Belousov, Pavel V; Bogolyubova, Apollinariya V; Kim, Yan S; Abrosimov, Alexander Y; Kopylov, Arthur T; Tvardovskiy, Andrey A; Lanshchakov, Kirill V; Sazykin, Alexei Y; Dvinskikh, Nina Y; Bobrovskaya, Yana I; Selivanova, Lilia S; Shilov, Evgeniy S; Schwartz, Anton M; Shebzukhov, Yuriy V; Severskaia, Natalya V; Vanushko, Vladimir E; Moshkovskii, Sergei A; Nedospasov, Sergei A; Kuprash, Dmitry V
2015-09-01
Current methods of preoperative diagnostics frequently fail to discriminate between benign and malignant thyroid neoplasms. In encapsulated follicular-patterned tumors (EnFPT), this discrimination is challenging even using histopathological analysis. Autoantibody response against tumor-associated antigens is a well-documented phenomenon with prominent diagnostic potential; however, autoantigenicity of thyroid tumors remains poorly explored. Objectives were exploration of tumor-associated antigen repertoire of thyroid tumors and identification of candidate autoantibody biomarkers capable of discrimination between benign and malignant thyroid neoplasms. Proteins isolated from FTC-133 cells were subjected to two-dimensional Western blotting using pooled serum samples of patients originally diagnosed with either papillary thyroid carcinoma (PTC) or EnFPT represented by apparently benign follicular thyroid adenomas, as well as healthy individuals. Immunoreactive proteins were identified using liquid chromatography-tandem mass-spectrometry. Pathological reassessment of EnFPT was performed applying nonconservative criteria for capsular invasion and significance of focal PTC nuclear changes (PTC-NCs). Recombinant T-complex protein 1 subunitζ (TCP-1ζ) was used to examine an expanded serum sample set of patients with various thyroid neoplasms (n = 89) for TCP-1ζ autoantibodies. All patients were included in tertiary referral centers. A protein demonstrating a distinct pattern of EnFPT-specific seroreactivity was identified as TCP-1ζ protein. A subsequent search for clinicopathological correlates of TCP-1ζ seroreactivity revealed nonclassical capsular invasion or focal PTC-NC in all TCP-1ζ antibody-positive cases. Further studies in an expanded sample set confirmed the specificity of TCP-1ζ autoantibodies to malignant EnFPT. We identified TCP-1ζ autoantibodies as a potential biomarker for presurgical discrimination between benign and malignant encapsulated follicular-patterned thyroid tumors. Our results suggest the use of nonconservative morphological criteria for diagnosis of malignant EnFPT in biomarker identification studies and provide a peculiar example of uncovering the diagnostic potential of a candidate biomarker using incorporation of pathological reassessment in the pipeline of immunoproteomic research.
Wake, Naomi C; Ricketts, Christopher J; Morris, Mark R; Prigmore, Elena; Gribble, Susan M; Skytte, Anne-Bine; Brown, Michael; Clarke, Noel; Banks, Rosamonde E; Hodgson, Shirley; Turnell, Andrew S; Maher, Eamonn R; Woodward, Emma R
2013-01-01
Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gene. PMID:24000165
PHGDH as a key enzyme for serine biosynthesis in HIF2α-targeting therapy for renal cell carcinoma
Yoshino, Hirofumi; Nohata, Nijiro; Miyamoto, Kazutaka; Yonemori, Masaya; Sakaguchi, Takashi; Sugita, Satoshi; Itesako, Toshihiko; Kofuji, Satoshi; Nakagawa, Masayuki; Dahiya, Rajvir; Enokida, Hideki
2018-01-01
Continuous activation of hypoxia-inducible factor (HIF) is important for progression of renal cell carcinoma (RCC) and acquired resistance to anti-angiogenic multi-kinase and mTOR inhibitors. Recently, HIF2α antagonists PT2385 and PT2399 were developed and are being evaluated in a Phase I clinical trial for advanced or metastatic clear cell RCC (ccRCC). However, resistance to HIF2α antagonists would be expected to develop. In this study, we identified signals activated by HIF2α deficiency as candidate mediators of resistance to the multi-kinase inhibitor sunitinib. We established sunitinib-resistant tumor cells in vivo and created HIF2α-deficient variants of these cells using CRISPR/Cas9 technology. Mechanistic investigations revealed that a regulator of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), was upregulated commonly in HIF2α-deficient tumor cells along with the serine biosynthesis pathway itself. Accordingly, treatment with a PHGDH inhibitor reduced the growth of HIF2α-deficient tumor cells in vivo and in vitro by inducing apoptosis. Our findings identify the serine biosynthesis pathway as a source of candidate therapeutic targets to eradicate advanced or metastatic ccRCC resistant to HIF2α antagonists. PMID:28951458
PHGDH as a Key Enzyme for Serine Biosynthesis in HIF2α-Targeting Therapy for Renal Cell Carcinoma.
Yoshino, Hirofumi; Nohata, Nijiro; Miyamoto, Kazutaka; Yonemori, Masaya; Sakaguchi, Takashi; Sugita, Satoshi; Itesako, Toshihiko; Kofuji, Satoshi; Nakagawa, Masayuki; Dahiya, Rajvir; Enokida, Hideki
2017-11-15
Continuous activation of hypoxia-inducible factor (HIF) is important for progression of renal cell carcinoma (RCC) and acquired resistance to antiangiogenic multikinase and mTOR inhibitors. Recently, HIF2α antagonists PT2385 and PT2399 were developed and are being evaluated in a phase I clinical trial for advanced or metastatic clear cell RCC (ccRCC). However, resistance to HIF2α antagonists would be expected to develop. In this study, we identified signals activated by HIF2α deficiency as candidate mediators of resistance to the HIF2α antagonists. We established sunitinib-resistant tumor cells in vivo and created HIF2α-deficient variants of these cells using CRISPR/Cas9 technology. Mechanistic investigations revealed that a regulator of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), was upregulated commonly in HIF2α-deficient tumor cells along with the serine biosynthesis pathway itself. Accordingly, treatment with a PHGDH inhibitor reduced the growth of HIF2α-deficient tumor cells in vivo and in vitro by inducing apoptosis. Our findings identify the serine biosynthesis pathway as a source of candidate therapeutic targets to eradicate advanced or metastatic ccRCC resistant to HIF2α antagonists. Cancer Res; 77(22); 6321-9. ©2017 AACR . ©2017 American Association for Cancer Research.
Gaponova, Anna V.; Deneka, Alexander Y.; Beck, Tim N.; Liu, Hanqing; Andrianov, Gregory; Nikonova, Anna S.; Nicolas, Emmanuelle; Einarson, Margret B.; Golemis, Erica A.; Serebriiskii, Ilya G.
2017-01-01
Ovarian, head and neck, and other cancers are commonly treated with cisplatin and other DNA damaging cytotoxic agents. Altered DNA damage response (DDR) contributes to resistance of these tumors to chemotherapies, some targeted therapies, and radiation. DDR involves multiple protein complexes and signaling pathways, some of which are evolutionarily ancient and involve protein orthologs conserved from yeast to humans. To identify new regulators of cisplatin-resistance in human tumors, we integrated high throughput and curated datasets describing yeast genes that regulate sensitivity to cisplatin and/or ionizing radiation. Next, we clustered highly validated genes based on chemogenomic profiling, and then mapped orthologs of these genes in expanded genomic networks for multiple metazoans, including humans. This approach identified an enriched candidate set of genes involved in the regulation of resistance to radiation and/or cisplatin in humans. Direct functional assessment of selected candidate genes using RNA interference confirmed their activity in influencing cisplatin resistance, degree of γH2AX focus formation and ATR phosphorylation, in ovarian and head and neck cancer cell lines, suggesting impaired DDR signaling as the driving mechanism. This work enlarges the set of genes that may contribute to chemotherapy resistance and provides a new contextual resource for interpreting next generation sequencing (NGS) genomic profiling of tumors. PMID:27863405
Bii, Victor M; Rae, Dustin T; Trobridge, Grant D
2015-11-24
Breast cancer (BC) is the second leading cause of malignancy among U.S. women. Metastasis results in a poor prognosis and increased mortality, but the molecular mechanisms by which metastatic tumors occur are not well understood. Identifying the genes that drive the metastatic process could provide targets for improved therapy and biomarkers to improve BC patient outcomes. Using a forward mutagenesis screen, BC cells mutagenized with a replication-incompetent gammaretroviral vector (γRV) were xenotransplanted into the mammary fat pad of immunodeficient mice. In this approach the vector provirus dysregulates nearby genes, providing a selective advantage to transduced cells to form metastases. Metastatic tumors were analyzed for proviral integration sites to identify nearby candidate metastasis genes. The γRV has a transgene cassette that allows for rescue in bacteria and rapid identification of vector integration sites. Using this approach, we identified the previously described metastasis gene WWTR1 (TAZ), and three other novel candidate metastasis genes including SHARPIN. SHARPIN was independently validated in vivo as a BC metastasis gene. Analysis of patient data showed that SHARPIN expression predicts metastasis-free survival after adjuvant therapy. Our approach has broad potential to identify genes involved in oncogenic processes for BC and other cancers. We show here it can identify both known (WWTR1) and novel (SHARPIN) BC metastasis genes.
Regenfuß, Birgit; Dreisow, Marie-Luise; Hos, Deniz; Masli, Sharmila; Bock, Felix; Cursiefen, Claus
2015-06-01
In the murine cornea, which is an established model for analyzing pathologic lymphatic vessel growth, phenotypic heterogeneity of the endogenous lymphatic vessels in the limbus of the cornea was previously described. In this study, the cornea of BALB/c, C57BL/6, and FVB mice with different limbal lymphangiogenic phenotypes was analyzed to identify novel candidates potentially influencing lymphatic vessel growth. Pathway specific expression analysis of the cornea was performed to identify novel candidate genes. Corneal protein expression of the respective candidates was analyzed by fluorescent immunohistochemistry. The effect of the candidates on proliferation of human dermal lymphatic endothelial cells (HDLECs) was analyzed by BrdU proliferation ELISA. Thirteen genes were differentially regulated in corneas of mouse strains with more endogenous limbal lymphatic vessels (high-lymphangiogenic) (C57BL/6) compared to mouse strains with less endogenous limbal lymphatic vessels (low-lymphangiogenic) (BALB/c, FVB). Two candidates, Tumor necrosis factor (ligand) superfamily member 10 (Tnfsf10/Trail) and Plasminogen activator, tissue (Plat/tPA) were expressed in the cornea of BALB/c and C57BL/6 mice on the protein level. In vitro, Trail and recombinant tPA inhibited the proliferation of human dermal lymphatic endothelial cells. Molecular analysis of the naive cornea in mouse strains with different limbal lymphatic phenotypes is a valuable model to identify novel endogenous regulators of lymphangiogenesis.
Cody, Neal A L; Shen, Zhen; Ripeau, Jean-Sebastien; Provencher, Diane M; Mes-Masson, Anne-Marie; Chevrette, Mario; Tonin, Patricia N
2009-12-01
The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.
Kumar, Aparna; Rao, Arvind; Bhavani, Santosh; Newberg, Justin Y; Murphy, Robert F
2014-12-23
Molecular biomarkers are changes measured in biological samples that reflect disease states. Such markers can help clinicians identify types of cancer or stages of progression, and they can guide in tailoring specific therapies. Many efforts to identify biomarkers consider genes that mutate between normal and cancerous tissues or changes in protein or RNA expression levels. Here we define location biomarkers, proteins that undergo changes in subcellular location that are indicative of disease. To discover such biomarkers, we have developed an automated pipeline to compare the subcellular location of proteins between two sets of immunohistochemistry images. We used the pipeline to compare images of healthy and tumor tissue from the Human Protein Atlas, ranking hundreds of proteins in breast, liver, prostate, and bladder based on how much their location was estimated to have changed. The performance of the system was evaluated by determining whether proteins previously known to change location in tumors were ranked highly. We present a number of candidate location biomarkers for each tissue, and identify biochemical pathways that are enriched in proteins that change location. The analysis technology is anticipated to be useful not only for discovering new location biomarkers but also for enabling automated analysis of biomarker distributions as an aid to determining diagnosis.
Proteomics of gliomas: Initial biomarker discovery and evolution of technology
Kalinina, Juliya; Peng, Junmin; Ritchie, James C.; Van Meir, Erwin G.
2011-01-01
Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers. PMID:21852429
Namiki, Takeshi; Tanemura, Atsushi; Valencia, Julio C; Coelho, Sergio G; Passeron, Thierry; Kawaguchi, Masakazu; Vieira, Wilfred D; Ishikawa, Masashi; Nishijima, Wataru; Izumo, Toshiyuki; Kaneko, Yasuhiko; Katayama, Ichiro; Yamaguchi, Yuji; Yin, Lanlan; Polley, Eric C; Liu, Hongfang; Kawakami, Yutaka; Eishi, Yoshinobu; Takahashi, Eishi; Yokozeki, Hiroo; Hearing, Vincent J
2011-04-19
The identification of genes that participate in melanomagenesis should suggest strategies for developing therapeutic modalities. We used a public array comparative genomic hybridization (CGH) database and real-time quantitative PCR (qPCR) analyses to identify the AMP kinase (AMPK)-related kinase NUAK2 as a candidate gene for melanomagenesis, and we analyzed its functions in melanoma cells. Our analyses had identified a locus at 1q32 where genomic gain is strongly associated with tumor thickness, and we used real-time qPCR analyses and regression analyses to identify NUAK2 as a candidate gene at that locus. Associations of relapse-free survival and overall survival of 92 primary melanoma patients with NUAK2 expression measured using immunohistochemistry were investigated using Kaplan-Meier curves, log rank tests, and Cox regression models. Knockdown of NUAK2 induces senescence and reduces S-phase, decreases migration, and down-regulates expression of mammalian target of rapamycin (mTOR). In vivo analysis demonstrated that knockdown of NUAK2 suppresses melanoma tumor growth in mice. Survival analysis showed that the risk of relapse is greater in acral melanoma patients with high levels of NUAK2 expression than in acral melanoma patients with low levels of NUAK2 expression (hazard ratio = 3.88; 95% confidence interval = 1.44-10.50; P = 0.0075). These data demonstrate that NUAK2 expression is significantly associated with the oncogenic features of melanoma cells and with the survival of acral melanoma patients. NUAK2 may provide a drug target to suppress melanoma progression. This study further supports the importance of NUAK2 in cancer development and tumor progression, while AMPK has antioncogenic properties.
Mendrzyk, Frank; Radlwimmer, Bernhard; Joos, Stefan; Kokocinski, Felix; Benner, Axel; Stange, Daniel E; Neben, Kai; Fiegler, Heike; Carter, Nigel P; Reifenberger, Guido; Korshunov, Andrey; Lichter, Peter
2005-12-01
Medulloblastoma is the most common malignant brain tumor in children. Despite multimodal aggressive treatment, nearly half of the patients die as a result of this tumor. Identification of molecular markers for prognosis and development of novel pathogenesis-based therapies depends crucially on a better understanding of medulloblastoma pathomechanisms. We performed genome-wide analysis of DNA copy number imbalances in 47 medulloblastomas using comparative genomic hybridization to large insert DNA microarrays (matrix-CGH). The expression of selected candidate genes identified by matrix-CGH was analyzed immunohistochemically on tissue microarrays representing medulloblastomas from 189 clinically well-documented patients. To identify novel prognostic markers, genomic findings and protein expression data were correlated to patient survival. Matrix-CGH analysis revealed frequent DNA copy number alterations of several novel candidate regions. Among these, gains at 17q23.2-qter (P < .01) and losses at 17p13.1 to 17p13.3 (P = .04) were significantly correlated to poor prognosis. Within 17q23.2-qter and 7q21.2, two of the most frequently gained chromosomal regions, confined amplicons were identified that contained the PPM1D and CDK6 genes, respectively. Immunohistochemistry revealed strong expression of PPM1D in 148 (88%) of 168 and CDK6 in 50 (30%) of 169 medulloblastomas. Overexpression of CDK6 correlated significantly with poor prognosis (P < .01) and represented an independent prognostic marker of overall survival on multivariate analysis (P = .02). We identified CDK6 as a novel molecular marker that can be determined by immunohistochemistry on routinely processed tissue specimens and may facilitate the prognostic assessment of medulloblastoma patients. Furthermore, increased protein-levels of PPM1D and CDK6 may link the TP53 and RB1 tumor suppressor pathways to medulloblastoma pathomechanisms.
CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.
Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2013-12-17
Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.
Letouzé, Eric; Rosati, Roberto; Komechen, Heloisa; Doghman, Mabrouka; Marisa, Laetitia; Flück, Christa; de Krijger, Ronald R; van Noesel, Max M; Mas, Jean-Christophe; Pianovski, Mara A D; Zambetti, Gerard P; Figueiredo, Bonald C; Lalli, Enzo
2012-07-01
Childhood adrenocortical tumors (ACT) are rare malignancies, except in southern Brazil, where a higher incidence rate is associated to a high frequency of the founder R337H TP53 mutation. To date, copy number alterations in these tumors have only been analyzed by low-resolution comparative genomic hybridization. We analyzed an international series of 25 childhood ACT using high-resolution single nucleotide polymorphism arrays to: 1) detect focal copy number alterations highlighting candidate driver genes; and 2) compare genetic alterations between Brazilian patients carrying the R337H TP53 mutation and non-Brazilian patients. We identified 16 significantly recurrent chromosomal alterations (q-value < 0.05), the most frequent being -4q34, +9q33-q34, +19p, loss of heterozygosity (LOH) of chromosome 17 and 11p15. Focal amplifications and homozygous deletions comprising well-known oncogenes (MYC, MDM2, PDGFRA, KIT, MCL1, BCL2L1) and tumor suppressors (TP53, RB1, RPH3AL) were identified. In addition, eight focal deletions were detected at 4q34, defining a sharp peak region around the noncoding RNA LINC00290 gene. Although non-Brazilian tumors with a mutated TP53 were similar to Brazilian tumors, those with a wild-type TP53 displayed distinct genomic profiles, with significantly fewer rearrangements (P = 0.019). In particular, three alterations (LOH of chromosome 17, +9q33-q34, and -4q34) were significantly more frequent in TP53-mutated samples. Finally, two of four TP53 wild-type tumors displayed as sole rearrangement a copy-neutral LOH of the imprinted region at 11p15, supporting a major role for this region in ACT development. Our findings highlight potential driver genes and cellular pathways implicated in childhood ACT and demonstrate the existence of different oncogenic routes in this pathology.
Qiu, Peiyu; Man, Shuli; Yang, He; Fan, Wei; Yu, Peng; Gao, Wenyuan
2016-08-25
Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the application of RPS in the future. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gladitz, Josef; Klink, Barbara; Seifert, Michael
2018-06-11
Oligodendrogliomas are primary human brain tumors with a characteristic 1p/19q co-deletion of important prognostic relevance, but little is known about the pathology of this chromosomal mutation. We developed a network-based approach to identify novel cancer gene candidates in the region of the 1p/19q co-deletion. Gene regulatory networks were learned from gene expression and copy number data of 178 oligodendrogliomas and further used to quantify putative impacts of differentially expressed genes of the 1p/19q region on cancer-relevant pathways. We predicted 8 genes with strong impact on signaling pathways and 14 genes with strong impact on metabolic pathways widespread across the region of the 1p/19 co-deletion. Many of these candidates (e.g. ELTD1, SDHB, SEPW1, SLC17A7, SZRD1, THAP3, ZBTB17) are likely to push, whereas others (e.g. CAP1, HBXIP, KLK6, PARK7, PTAFR) might counteract oligodendroglioma development. For example, ELTD1, a functionally validated glioblastoma oncogene located on 1p, was overexpressed. Further, the known glioblastoma tumor suppressor SLC17A7 located on 19q was underexpressed. Moreover, known epigenetic alterations triggered by mutated SDHB in paragangliomas suggest that underexpressed SDHB in oligodendrogliomas may support and possibly enhance the epigenetic reprogramming induced by the IDH-mutation. We further analyzed rarely observed deletions and duplications of chromosomal arms within oligodendroglioma subcohorts identifying putative oncogenes and tumor suppressors that possibly influence the development of oligodendroglioma subgroups. Our in-depth computational study contributes to a better understanding of the pathology of the 1p/19q co-deletion and other chromosomal arm mutations. This might open opportunities for functional validations and new therapeutic strategies.
Genome Wide Methylome Alterations in Lung Cancer.
Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D
2015-01-01
Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.
SEREX analysis for tumor antigen identification in a mouse model of adenocarcinoma.
Hampton, T A; Conry, R M; Khazaeli, M B; Shaw, D R; Curiel, D T; LoBuglio, A F; Strong, T V
2000-03-01
Evaluation of immunotherapy strategies in mouse models of carcinoma is hampered by the limited number of known murine tumor antigens (Ags). Although tumor Ags can be identified based on cytotoxic T-cell activation, this approach is not readily accomplished for many tumor types. We applied an alternative strategy based on a humoral immune response, SEREX, to the identification of tumor Ags in the murine colon adenocarcinoma cell line MC38. Immunization of syngeneic C57BL/6 mice with MC38 cells by three different methods induced a protective immune response with concomitant production of anti-MC38 antibodies. Immunoscreening of an MC38-derived expression library resulted in the identification of the endogenous ecotropic leukemia virus envelope (env) protein and the murine ATRX protein as candidate tumor Ags. Northern blot analysis demonstrated high levels of expression of the env transcript in MC38 cells and in several other murine tumor cell lines, whereas expression in normal colonic epithelium was absent. ATRX was found to be variably expressed in tumor cell lines and in normal tissue. Further analysis of the expressed env sequence indicated that it represents a nonmutated tumor Ag. Polynucleotide immunization with DNA encoding the env polypeptide resulted in strong and specific antibody responses to this self Ag in all immunized mice. Thus, SEREX offers a rapid means of identifying tumor Ags in murine cancer models.
French, Juliet D.; Ghoussaini, Maya; Edwards, Stacey L.; Meyer, Kerstin B.; Michailidou, Kyriaki; Ahmed, Shahana; Khan, Sofia; Maranian, Mel J.; O’Reilly, Martin; Hillman, Kristine M.; Betts, Joshua A.; Carroll, Thomas; Bailey, Peter J.; Dicks, Ed; Beesley, Jonathan; Tyrer, Jonathan; Maia, Ana-Teresa; Beck, Andrew; Knoblauch, Nicholas W.; Chen, Constance; Kraft, Peter; Barnes, Daniel; González-Neira, Anna; Alonso, M. Rosario; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Loehberg, Christian R.; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Aitken, Zoe; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Benitez, Javier; Anton-Culver, Hoda; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Lichtner, Peter; Schmutzler, Rita K.; Engel, Christoph; Brauch, Hiltrud; Hamann, Ute; Justenhoven, Christina; Aaltonen, Kirsimari; Heikkilä, Päivi; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Lambrechts, Diether; Peeters, Stephanie; Smeets, Ann; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Sardella, Domenico; Couch, Fergus J.; Wang, Xianshu; Pankratz, Vernon S.; Lee, Adam; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Teo, Soo Hwang; Yip, Cheng Har; Ng, Char-Hong; Vithana, Eranga Nishanthie; Kristensen, Vessela; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Klevebring, Daniel; Schoof, Nils; Hooning, Maartje J.; Martens, John W.M.; Collée, J. Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Balasubramanian, Sabapathy P.; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D.P.; Healey, Catherine S.; Shah, Mitul; Pooley, Karen A.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Sng, Jen-Hwei; Sim, Xueling; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; McKay, James; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Godwin, Andrew K.; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Chen, Shou-Tung; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Ponder, Bruce A.J.; Nevanlinna, Heli; Brown, Melissa A.; Chenevix-Trench, Georgia; Easton, Douglas F.; Dunning, Alison M.
2013-01-01
Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1. PMID:23540573
Evaluation of Radioresponse and Radiosensitizers in Glioblastoma Organotypic Cultures.
Bayin, N Sumru; Ma, Lin; Placantonakis, Dimitris G; Barcellos-Hoff, Mary Helen
2018-01-01
Glioblastoma (GBM), a deadly primary brain malignancy, manifests pronounced radioresistance. Identifying agents that improve the sensitivity of tumor tissue to radiotherapy is critical for improving patient outcomes. The response to ionizing radiation is regulated by both cell-intrinsic and -extrinsic mechanisms. In particular, the tumor microenvironment is known to promote radioresistance in GBM. Therefore, model systems used to test radiosensitizing agents need to take into account the tumor microenvironment. We recently showed that GBM explant cultures represent an adaptable ex vivo platform for rapid and personalized testing of radiosensitizers. These explants preserve the cellular composition and tissue architecture of parental patient tumors and therefore capture the microenvironmental context that critically determines the response to radiotherapy. This chapter focuses on the detailed protocol for testing candidate radiosensitizing agents in GBM explants.
Oncolytic Virus Therapy of Glioblastoma Multiforme – Concepts and Candidates
Wollmann, Guido; Ozduman, Koray; van den Pol, Anthony N.
2012-01-01
Twenty years of oncolytic virus (OV) development have created a field that is driven by the potential promise of lasting impact on our cancer treatment repertoire. With the field constantly expanding – over 20 viruses have been recognized as potential OVs – new virus candidates continue to emerge even as established viruses reach clinical trials. They all share the defining commonalities of selective replication in tumors, subsequent tumor cell lysis, and dispersion within the tumor. Members from diverse virus classes with distinctly different biologies and host species have been identified. Of these viruses, 15 have been tested on human glioblastoma multiforme (GBM). So far, 20 clinical trials have been conducted or initiated using attenuated strains of 7 different oncolytic viruses against GBM. In this review, we present an overview of viruses that have been developed or considered for GBM treatment. We outline the principles of tumor targeting and selective viral replication, which include mechanisms of tumor-selective binding, and molecular elements usurping cellular biosynthetic machinery in transformed cells. Results from clinical trials have clearly established the proof of concept and have confirmed the general safety of OV application in the brain. The moderate clinical efficacy has not yet matched the promising preclinical lab results; next-generation OVs that are either “armed” with therapeutic genes or that are embedded in a multimodality treatment regimen should enhance the clinical results. PMID:22290260
Miles, Wayne O.; Lembo, Antonio; Volorio, Angela; Brachtel, Elena; Tian, Bin; Sgroi, Dennis; Provero, Paolo; Dyson, Nicholas
2017-01-01
Alternative polyadenylation (APA) is a process that changes the posttranscriptional regulation and translation potential of mRNAs via addition or deletion of 3′ untranslated region (3′ UTR) sequences. To identify posttranscriptional-regulatory events affected by APA in breast tumors, tumor datasets were analyzed for recurrent APA events. Motif mapping of the changed 3′ UTR regions found that APA-mediated removal of Pumilio regulatory elements (PRE) was unusually common. Breast tumor subtype–specific APA profiling identified triple-negative breast tumors as having the highest levels of APA. To determine the frequency of these events, an independent cohort of triple-negative breast tumors and normal breast tissue was analyzed for APA. APA-mediated shortening of NRAS and c-JUN was seen frequently, and this correlated with changes in the expression of downstream targets. mRNA stability and luciferase assays demonstrated APA-dependent alterations in RNA and protein levels of affected candidate genes. Examination of clinical parameters of these tumors found those with APA of NRAS and c-JUN to be smaller and less proliferative, but more invasive than non-APA tumors. RT-PCR profiling identified elevated levels of polyadenylation factor CSTF3 in tumors with APA. Overexpression of CSTF3 was common in triple-negative breast cancer cell lines, and elevated CSTF3 levels were sufficient to induce APA of NRAS and c-JUN. Our results support the hypothesis that PRE-containing mRNAs are disproportionately affected by APA, primarily due to high sequence similarity in the motifs utilized by polyadenylation machinery and the PUM complex. PMID:27758885
Serikawa, Tatsuo; Spanos, Christos; von Hacht, Annekathrin; Budisa, Nediljko; Rappsilber, Juri; Kurreck, Jens
2018-01-01
G-quadruplex structures in the 5' UTR of mRNAs are widely considered to suppress translation without affecting transcription. The current study describes the comprehensive analysis of proteins binding to four different G-quadruplex motifs located in mRNAs of the cancer-related genes Bcl-2, NRAS, MMP16, and ARPC2. Following metabolic labeling (Stable Isotope Labeling with Amino acids in Cell culture, SILAC) of proteins in the human cell line HEK293, G-quadruplex binding proteins were enriched by pull-down assays and identified by LC-orbitrap mass spectrometry. We found different patterns of interactions for the G-quadruplex motifs under investigation. While the G-quadruplexes in the mRNAs of NRAS and MMP16 specifically interacted with a small number of proteins, the Bcl-2 and ARPC2 G-quadruplexes exhibited a broad range of proteinaceous interaction partners with 99 and 82 candidate proteins identified in at least two replicates, respectively. The use of a control composed of samples from all G-quadruplex-forming sequences and their mutated controls ensured that the identified proteins are specific for RNA G-quadruplex structures and are not general RNA-binding proteins. Independent validation experiments based on pull-down assays and Western blotting confirmed the MS data. Among the interaction partners were many proteins known to bind to RNA, including multiple heterogenous nuclear ribonucleoproteins (hnRNPs). Several of the candidate proteins are likely to reflect stalling of the ribosome by RNA G-quadruplex structures. Interestingly, additional proteins were identified that have not previously been described to interact with RNA. Gene ontology analysis of the candidate proteins revealed that many interaction partners are known to be tumor related. The majority of the identified RNA G-quadruplex interacting proteins are thought to be involved in post-transcriptional processes, particularly in splicing. These findings indicate that protein-G-quadruplex interactions are not only important for the fine-tuning of translation but are also relevant to the regulation of mRNA maturation and may play an important role in tumor biology. Proteomic data are available via ProteomeXchange with identifier PXD005761. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Kwei, Kevin A; Baker, Joffre B; Pelham, Robert J
2012-01-01
The phosphoinositide 3-kinase (PI3K) signaling pathway is significantly altered in a wide variety of human cancers, driving cancer cell growth and survival. Consequently, a large number of PI3K inhibitors are now in clinical development. To begin to improve the selection of patients for treatment with PI3K inhibitors and to identify de novo determinants of patient response, we sought to identify and characterize candidate genomic and phosphoproteomic biomarkers predictive of response to the selective PI3K inhibitor, GDC-0941, using the NCI-60 human tumor cell line collection. In this study, sixty diverse tumor cell lines were exposed to GDC-0941 and classified by GI(50) value as sensitive or resistant. The most sensitive and resistant cell lines were analyzed for their baseline levels of gene expression and phosphorylation of key signaling nodes. Phosphorylation or activation status of both the PI3K-Akt signaling axis and PARP were correlated with in vitro response to GDC-0941. A gene expression signature associated with in vitro sensitivity to GDC-0941 was also identified. Furthermore, in vitro siRNA-mediated silencing of two genes in this signature, OGT and DDN, validated their role in modulating sensitivity to GDC-0941 in numerous cell lines and begins to provide biological insights into their role as chemosensitizers. These candidate biomarkers will offer useful tools to begin a more thorough understanding of determinants of patient response to PI3K inhibitors and merit exploration in human cancer patients treated with PI3K inhibitors.
Kwei, Kevin A.; Baker, Joffre B.; Pelham, Robert J.
2012-01-01
The phosphoinositide 3-kinase (PI3K) signaling pathway is significantly altered in a wide variety of human cancers, driving cancer cell growth and survival. Consequently, a large number of PI3K inhibitors are now in clinical development. To begin to improve the selection of patients for treatment with PI3K inhibitors and to identify de novo determinants of patient response, we sought to identify and characterize candidate genomic and phosphoproteomic biomarkers predictive of response to the selective PI3K inhibitor, GDC-0941, using the NCI-60 human tumor cell line collection. In this study, sixty diverse tumor cell lines were exposed to GDC-0941 and classified by GI50 value as sensitive or resistant. The most sensitive and resistant cell lines were analyzed for their baseline levels of gene expression and phosphorylation of key signaling nodes. Phosphorylation or activation status of both the PI3K-Akt signaling axis and PARP were correlated with in vitro response to GDC-0941. A gene expression signature associated with in vitro sensitivity to GDC-0941 was also identified. Furthermore, in vitro siRNA-mediated silencing of two genes in this signature, OGT and DDN, validated their role in modulating sensitivity to GDC-0941 in numerous cell lines and begins to provide biological insights into their role as chemosensitizers. These candidate biomarkers will offer useful tools to begin a more thorough understanding of determinants of patient response to PI3K inhibitors and merit exploration in human cancer patients treated with PI3K inhibitors. PMID:23029544
Yang, Xinan Holly; Tang, Fangming; Shin, Jisu; Cunningham, John M
2017-10-03
Previous studies suggested that cancer cells possess traits reminiscent of the biological mechanisms ascribed to normal embryonic stem cells (ESCs) regulated by MYC and Polycomb repressive complex 2 (PRC2). Several poorly differentiated adult tumors showed preferentially high expression levels in targets of MYC, coincident with low expression levels in targets of PRC2. This paper will reveal this ESC-like cancer signature in high-risk neuroblastoma (HR-NB), the most common extracranial solid tumor in children. We systematically assembled genomic variants, gene expression changes, priori knowledge of gene functions, and clinical outcomes to identify prognostic multigene signatures. First, we assigned a new, individualized prognostic index using the relative expressions between the poor- and good-outcome signature genes. We then characterized HR-NB aggressiveness beyond these prognostic multigene signatures through the imbalanced effects of MYC and PRC2 signaling. We further analyzed Retinoic acid (RA)-induced HR-NB cells to model tumor cell differentiation. Finally, we performed in vitro validation on ZFHX3, a cell differentiation marker silenced by PRC2, and compared cell morphology changes before and after blocking PRC2 in HR-NB cells. A significant concurrence existed between exons with verified variants and genes showing MYCN-dependent expression in HR-NB. From these biomarker candidates, we identified two novel prognostic gene-set pairs with multi-scale oncogenic defects. Intriguingly, MYC targets over-represented an unfavorable component of the identified prognostic signatures while PRC2 targets over-represented a favorable component. The cell cycle arrest and neuronal differentiation marker ZFHX3 was identified as one of PRC2-silenced tumor suppressor candidates. Blocking PRC2 reduced tumor cell growth and increased the mRNA expression levels of ZFHX3 in an early treatment stage. This hypothesis-driven systems bioinformatics work offered novel insights into the PRC2-mediated tumor cell growth and differentiation in neuroblastoma, which may exert oncogenic effects together with MYC regulation. Our results propose a prognostic effect of imbalanced MYC and PRC2 moderations in pediatric HR-NB for the first time. This study demonstrates an incorporation of genomic landscapes and transcriptomic profiles into the hypothesis-driven precision prognosis and biomarker discovery. The application of this approach to neuroblastoma, as well as other cancer more broadly, could contribute to reduced relapse and mortality rates in the long term.
Onsurathum, Sudarat; Haonon, Ornuma; Pinlaor, Porntip; Pairojkul, Chawalit; Khuntikeo, Narong; Thanan, Raynoo; Roytrakul, Sittiruk; Pinlaor, Somchai
2018-04-01
Tumor interstitial fluid contains tumor-specific proteins that may be useful biomarkers for cancers. In this study, we identified proteins present in cholangiocarcinoma interstitial fluid. Proteins derived from three samples of tumor interstitial fluid and paired samples of adjacent normal interstitial fluid from cholangiocarcinoma patients were subjected to two-dimensional liquid chromatography with tandem mass spectrometry. Candidate proteins were selected based on a greater than twofold change in expression levels between tumor interstitial fluid and normal interstitial fluid. Upregulation of six proteins in tumor interstitial fluid, including S100 calcium binding protein A6 (S100A6), S100 calcium binding protein A9, aldo-keto reductase family 1 member C4, neuropilin-1, 14-3-3 zeta/delta, and triosephosphate isomerase was assessed by western blot and immunohistochemistry. Their potential as markers was evaluated in human cholangiocarcinoma tissue arrays, and in serum using enzyme-linked immunosorbent assay. Expression of S100A6 was higher in tumor interstitial fluid than in normal interstitial fluid and showed the highest positive rate (98.96%) in cholangiocarcinoma tissues. Serum levels of S100A6 did not differ between cholangitis and cholangiocarcinoma patients, but were significantly higher than in healthy individuals ( p < 0.0001). In cholangiocarcinoma cases, S100A6 level was associated with vascular invasion ( p = 0.007) and could distinguish cholangiocarcinoma patients from healthy individuals as effectively as the carbohydrate antigen 19-9. In addition, potential for drug treatment targeting S100A6 and other candidate proteins was also demonstrated using STITCH analysis. In conclusion, proteomics analysis of tumor interstitial fluid could be a new approach for biomarker discovery, and S100A6 is a potential risk marker for screening of cholangiocarcinoma.
Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma
Mann, Karen M.; Ward, Jerrold M.; Yew, Christopher Chin Kuan; Kovochich, Anne; Dawson, David W.; Black, Michael A.; Brett, Benjamin T.; Sheetz, Todd E.; Dupuy, Adam J.; Chang, David K.; Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Grimmond, Sean M.; Rust, Alistair G.; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.
2012-01-01
Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma. PMID:22421440
Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression
Rangel, Roberto; Lee, Song-Choon; Hon-Kim Ban, Kenneth; Guzman-Rojas, Liliana; Mann, Michael B.; Newberg, Justin Y.; McNoe, Leslie A.; Selvanesan, Luxmanan; Ward, Jerrold M.; Rust, Alistair G.; Chin, Kuan-Yew; Black, Michael A.; Jenkins, Nancy A.; Copeland, Neal G.
2016-01-01
Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1. Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC. PMID:27849608
S100A8 and S100A9: New Insights into Their Roles in Malignancy
Srikrishna, Geetha
2011-01-01
Recent studies have highlighted key roles played by non-neoplastic host cells of the tumor microenvironment, and by secreted factors from tumor and host cells, in promoting malignancy. In this regard, damage-associated molecular pattern (DAMP) molecules such as S100A8 and S100A9, with well-known functions in inflammation, have been increasingly recognized not only as markers, but also as new candidates with important roles in modulating tumor growth and metastasis. This review focuses on our current understanding of the pro- and anti-tumorigenic functions of S100A8 and S100A9. Elucidating molecular pathways mediated by these proteins promises to provide potential novel targets for the development of cancer therapeutics and to establish valid biomarkers to identify early stages of tumor progression. PMID:21912088
P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase
Myers, Michael P.; Stolarov, Javor P.; Eng, Charis; Li, Jing; Wang, Steven I.; Wigler, Michael H.; Parsons, Ramon; Tonks, Nicholas K.
1997-01-01
Protein tyrosine phosphatases (PTPs) have long been thought to play a role in tumor suppression due to their ability to antagonize the growth promoting protein tyrosine kinases. Recently, a candidate tumor suppressor from 10q23, termed P-TEN, was isolated, and sequence homology was demonstrated with members of the PTP family, as well as the cytoskeletal protein tensin. Here we show that recombinant P-TEN dephosphorylated protein and peptide substrates phosphorylated on serine, threonine, and tyrosine residues, indicating that P-TEN is a dual-specificity phosphatase. In addition, P-TEN exhibited a high degree of substrate specificity, showing selectivity for extremely acidic substrates in vitro. Furthermore, we demonstrate that mutations in P-TEN, identified from primary tumors, tumor cells lines, and a patient with Bannayan–Zonana syndrome, resulted in the ablation of phosphatase activity, demonstrating that enzymatic activity of P-TEN is necessary for its ability to function as a tumor suppressor. PMID:9256433
Dreijerink, Koen; Braga, Eleonora; Kuzmin, Igor; Geil, Laura; Duh, Fuh-Mei; Angeloni, Debora; Zbar, Berton; Lerman, Michael I.; Stanbridge, Eric J.; Minna, John D.; Protopopov, Alexei; Li, Jingfeng; Kashuba, Vladimir; Klein, George; Zabarovsky, Eugene R.
2001-01-01
Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1A's GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region. PMID:11390984
Methylation signature of lymph node metastases in breast cancer patients
2012-01-01
Background Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. Methods The quantitative methylation analysis was performed using the SEQUENOM’s EpiTYPER™ assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Results The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. Conclusions The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis. PMID:22695536
Jacus, M.O.; Throm, S.L.; Turner, D.C.; Patel, Y.T.; Freeman, B.B.; Morfouace, M.; Boulos, N.; Stewart, C. F.
2014-01-01
The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to support the rational testing and usage of innovative therapies in children with CNS tumors. PMID:24269626
Son, Ji Woong; Jeong, Kang Jin; Jean, Woo-Sean; Park, Soon Young; Jheon, Sanghoon; Cho, Hyun Min; Park, Chang Gyo; Lee, Hoi Young; Kang, Jaeku
2011-12-01
Early detection of lung cancer provides the highest potential for saving lives. To date, no routine screening method enabling early detection is available, which is a key factor in the disease's high mortality rate. Copy number changes and DNA methylation alterations are good indicators of carcinogenesis and cancer prognosis. In this study, we attempted to combine profiles of DNA copy number and methylation patterns in 20 paired cancerous and noncancerous tissue samples from non-small cell lung cancer (NSCLC) patients, and we detected several clinically important genes with genetic and epigenetic relationships. Using array comparative genomic hybridization (aCGH), statistically significant differences were observed across the histological subtypes for gains at 1p31.1, 3q26.1, and 3q26.31-3q29 as well as for losses at 1p21.1, 2q33.3, 2q37.3, 3p12.3, 4q35.2, and 13q34 in squamous cell carcinoma (SQ) patients, and losses at 12q24.33 were measured in adenocarcinoma (AD) patients (p < 0.05). In an analysis of DNA methylation at 1505 autosomal CpG loci that are associated with 807 cancer-related genes, we identified six and nine loci with higher and lower DNA methylation levels, respectively, in tumor tissue compared to non-tumor lung tissues from AD patients. In addition, three loci with higher and seven loci with lower DNA methylation levels were identified in tumor tissue from SQ patients compared to non-tumor lung tissue. Subsequently, we searched for regions exhibiting concomitant hypermethylation and genomic loss in both ADs and SQs. One clone representing 7p15.2 (which includes candidate genes such as HOXA9 and HOXA11) and one target ID representing HOXA9_E252_R were detected. Quantitative real-time PCR identified the potential candidate gene HOXA9 as being down-regulated in the majority of NSCLC patients. Moreover, following HOXA9 over-expression, the invasion of representative cell lines, A549 and HCC95, were significantly inhibited. Taken together, our results show that the combined profiling analysis technique is a useful tool for identifying biomarkers in lung cancer and that HOXA9 might be a potential candidate gene for the pathogenesis and diagnosis of NSCLC patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4.
Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier
2008-12-22
B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2-EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies.
Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4
Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier
2008-01-01
B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2–EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies. PMID:19075289
Qiu, Guo-Hua; Tan, Luke K S; Loh, Kwok Seng; Lim, Chai Yen; Srivastava, Gopesh; Tsai, Sen-Tien; Tsao, Sai Wah; Tao, Qian
2004-06-10
Loss of heterozygosity at 3p21 is common in various cancers including nasopharyngeal carcinoma (NPC). BLU is one of the candidate tumor suppressor genes (TSGs) in this region. Ectopic expression of BLU results in the inhibition of colony formation of cancer cells, suggesting that BLU is a tumor suppressor. We have identified a functional BLU promoter and found that it can be activated by environmental stresses such as heat shock, and is regulated by E2F. The promoter and first exon are located within a CpG island. BLU is highly expressed in testis and normal upper respiratory tract tissues including nasopharynx. However, in all seven NPC cell lines examined, BLU expression was downregulated and inversely correlated with promoter hypermethylation. Biallelic epigenetic inactivation of BLU was also observed in three cell lines. Hypermethylation was further detected in 19/29 (66%) of primary NPC tumors, but not in normal nasopharyngeal tissues. Treatment of NPC cell lines with 5-aza-2'-deoxycytidine activated BLU expression along with promoter demethylation. Although hypermethylation of RASSF1A, another TSG located immediately downstream of BLU, was detected in 20/27 (74%) of NPC tumors, no correlation between the hypermethylation of these two TSGs was observed (P=0.6334). In addition to methylation, homozygous deletion of BLU was found in 7/29 (24%) of tumors. Therefore, BLU is a stress-responsive gene, being disrupted in 83% (24/29) of NPC tumors by either epigenetic or genetic mechanisms. Our data are consistent with the interpretation that BLU is a TSG for NPC.
Truncation- and motif-based pan-cancer analysis reveals tumor-suppressing kinases.
Hudson, Andrew M; Stephenson, Natalie L; Li, Cynthia; Trotter, Eleanor; Fletcher, Adam J; Katona, Gitta; Bieniasz-Krzywiec, Patrycja; Howell, Matthew; Wirth, Chris; Furney, Simon; Miller, Crispin J; Brognard, John
2018-04-17
A major challenge in cancer genomics is identifying "driver" mutations from the many neutral "passenger" mutations within a given tumor. To identify driver mutations that would otherwise be lost within mutational noise, we filtered genomic data by motifs that are critical for kinase activity. In the first step of our screen, we used data from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas to identify kinases with truncation mutations occurring within or before the kinase domain. The top 30 tumor-suppressing kinases were aligned, and hotspots for loss-of-function (LOF) mutations were identified on the basis of amino acid conservation and mutational frequency. The functional consequences of new LOF mutations were biochemically validated, and the top 15 hotspot LOF residues were used in a pan-cancer analysis to define the tumor-suppressing kinome. A ranked list revealed MAP2K7, an essential mediator of the c-Jun N-terminal kinase (JNK) pathway, as a candidate tumor suppressor in gastric cancer, despite its mutational frequency falling within the mutational noise for this cancer type. The majority of mutations in MAP2K7 abolished its catalytic activity, and reactivation of the JNK pathway in gastric cancer cells harboring LOF mutations in MAP2K7 or the downstream kinase JNK suppressed clonogenicity and growth in soft agar, demonstrating the functional relevance of inactivating the JNK pathway in gastric cancer. Together, our data highlight a broadly applicable strategy to identify functional cancer driver mutations and define the JNK pathway as tumor-suppressive in gastric cancer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors
Birsoy, Kivanc; Wang, Tim; Possemato, Richard; Yilmaz, Omer H.; Koch, Catherine E.; Chen, Walter W.; Hutchins, Amanda W.; Gultekin, Yetis; Peterson, Tim R.; Carette, Jan E.; Brummelkamp, Thijn R.; Clish, Clary B.; Sabatini, David M.
2012-01-01
SUMMARY There is increasing evidence that oncogenic transformation modifies the metabolic program of cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic enzymes for anti-cancer therapy are underway. Here, we performed a genome-wide haploid genetic screen to identify resistance mechanisms to 3-bromopyruvate (3-BrPA), a drug candidate that inhibits glycolysis in a poorly understood fashion. We identified the SLC16A1 gene product, MCT1, as the main determinant of 3-BrPA sensitivity. MCT1 is necessary and sufficient for 3-BrPA uptake by cancer cells. Additionally, MCT1 mRNA levels are the best predictor of 3-BrPA sensitivity and are most elevated in glycolytic cancer cells. Lastly, forced MCT1 expression in 3-BrPA resistant cancer cells sensitizes tumor xenografts to 3-BrPA treatment in vivo. Our results identify a potential biomarker for 3-BrPA sensitivity and provide proof of concept that the selectivity of cancer-expressed transporters can be exploited for delivering toxic molecules to tumors. PMID:23202129
Wells, Julie; Rivera, Miguel N; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A
2010-07-01
WT1 encodes a tumor suppressor first identified by its inactivation in Wilms' Tumor. Although one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three-amino acid (KTS) insertion. Using cells that conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning analysis to identify candidate WT1(+KTS)-regulated promoters. We identified the planar cell polarity gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33-nucleotide region within the Scribble promoter in mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway.
Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max
2014-01-01
Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype. PMID:24416132
Kamstra, Rhiannon L; Floriano, Wely B
2014-11-01
Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates. Copyright © 2014 Elsevier Inc. All rights reserved.
Diagnosis and therapy of oral squamous cell carcinoma.
Konkimalla, V Badireenath; Suhas, Venkatramana Laxminarayana; Chandra, Nagasuma R; Gebhart, Erich; Efferth, Thomas
2007-03-01
Oral squamous cell carcinoma ranks among the top ten most common cancers worldwide. Despite the success in diagnosis and therapy during the past 30 years, oral squamous cell carcinoma still belongs to the tumor types with a very unfavorable prognosis. In an effort to identify genomic alterations with prognostic relevance, we applied the comparative genomic hybridization technique on oral squamous cell carcinoma. The tumors exhibited from five up to 47 DNA copy number alterations, indicating a considerable degree of genomic imbalance. Out of 35 tumors, 19 showed a gain of chromosome band 7p12. Genomic imbalances were investigated by hierarchical cluster analysis and clustered image mapping to investigate whether genomic profiles correlate with clinical data. Results of the present investigation show that profiling of genomic imbalances in general, and especially of the epidermal growth factor receptor (EGFR) on 7p12, may be suitable as prognostic factors. In order to identify small-molecule inhibitors for EGFR, we established a database of 531 natural compounds derived from medicinal plants used in traditional Chinese medicine. Candidate compounds were identified by correlation analysis using the Kendall tau-test of IC50 values of tumor cell lines and microarray-based EGFR mRNA expression. Further validation was performed by molecular docking studies using the AutoDock program with the crystal structure of EGFR tyrosine kinase domain as docking template. We estimate these results will be a further step toward the ultimate goal of individualized, patient-adapted tumor treatment based on tumor molecular profiling.
LING, SHIZHANG; RETTIG, ELENI M.; TAN, MARIETTA; CHANG, XIAOFEI; WANG, ZHIMING; BRAIT, MARIANA; BISHOP, JUSTIN A.; FERTIG, ELANA J.; CONSIDINE, MICHAEL; WICK, MICHAEL J.; HA, PATRICK K.
2016-01-01
Salivary gland adenoid cystic carcinoma (ACC) is a rare head and neck malignancy without molecular biomarkers that can be used to predict the chemotherapeutic response or prognosis of ACC. The regulation of gene expression of oncogenes and tumor suppressor genes (TSGs) through DNA promoter methylation may play a role in the carcinogenesis of ACC. To identify differentially methylated genes in ACC, a global demethylating agent, 5-aza-2′-deoxycytidine (5-AZA) was utilized to unmask putative TSG silencing in ACC xenograft models in mice. Fresh xenografts were passaged, implanted in triplicate in mice that were treated with 5-AZA daily for 28 days. These xenografts were then evaluated for genome-wide DNA methylation patterns using the Illumina Infinium HumanMethylation27 BeadChip array. Validation of the 32 candidate genes was performed by bisulfite sequencing (BS-seq) in a separate cohort of 6 ACC primary tumors and 6 normal control salivary gland tissues. Hypermethylation was identified in the HCN2 gene promoter in all 6 control tissues, but hypomethylation was found in all 6 ACC tumor tissues. Quantitative validation of HCN2 promoter methylation level in the region detected by BS-seq was performed in a larger cohort of primary tumors (n=32) confirming significant HCN2 hypomethylation in ACCs compared with normal samples (n=10; P=0.04). HCN2 immunohistochemical staining was performed on an ACC tissue microarray. HCN2 staining intensity and H-score, but not percentage of the positively stained cells, were significantly stronger in normal tissues than those of ACC tissues. With our novel screening and sequencing methods, we identified several gene candidates that were methylated. The most significant of these genes, HCN2, was actually hypomethylated in tumors. However, promoter methylation status does not appear to be a major determinant of HCN2 expression in normal and ACC tissues. HCN2 hypomethylation is a biomarker of ACC and may play an important role in the carcinogenesis of ACC. PMID:27212063
Proteogenomic characterization of human colon and rectal cancer
Zhang, Bing; Wang, Jing; Wang, Xiaojing; Zhu, Jing; Liu, Qi; Shi, Zhiao; Chambers, Matthew C.; Zimmerman, Lisa J.; Shaddox, Kent F.; Kim, Sangtae; Davies, Sherri R.; Wang, Sean; Wang, Pei; Kinsinger, Christopher R.; Rivers, Robert C.; Rodriguez, Henry; Townsend, R. Reid; Ellis, Matthew J.C.; Carr, Steven A.; Tabb, David L.; Coffey, Robert J.; Slebos, Robbert J.C.; Liebler, Daniel C.
2014-01-01
Summary We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. mRNA transcript abundance did not reliably predict protein abundance differences between tumors. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA “MSI/CIMP” transcriptomic subtype, but had distinct mutation, methylation, and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates including HNF4A, TOMM34 and SRC. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology. PMID:25043054
WT1: a weak spot in KRAS-induced transformation
Licciulli, Silvia; Kissil, Joseph L.
2010-01-01
Activating mutations in the Ras alleles are found frequently in tumors, making the proteins they encode highly attractive candidate therapeutic targets. However, Ras proteins have proven difficult to target directly. Recent approaches have therefore focused on identifying indirect targets to inhibit Ras-induced oncogenesis. For example, RNAi-based negative selection screens to identify genes that when silenced in concert with activating Ras mutations are incompatible with cellular proliferation, a concept known as synthetic lethality. In this issue of the JCI, Vicent et al. report on the identification of Wilms tumor 1 (Wt1) as a Kras synthetic-lethal gene in a mouse model of lung adenocarcinoma. Silencing of Wt1 in cells expressing an endogenous allele of activated Kras triggers senescence in vitro and has an impact on tumor progression in vivo. These findings are of significant interest given previous studies suggesting that the ability of oncogenic Kras to induce senescence versus proliferation depends on its levels of expression. PMID:20972324
Bagley, Alexander F; Hill, Samuel; Rogers, Gary S; Bhatia, Sangeeta N
2013-09-24
Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to gold nanorod-based strategies is the adequate delivery of NIR light to tumors located at varying depths within the body. To address this limitation, a series of implanted NIR illumination sources are described for the specific heating of gold nanorod-containing tissues. Through computational modeling and ex vivo studies, a candidate device is identified and validated in a model of orthotopic ovarian cancer. As the therapeutic, imaging, and diagnostic applications of plasmonic nanomaterials progress, effective methods for NIR light delivery to challenging anatomical regions will complement ongoing efforts to advance plasmonic photothermal therapy toward clinical use.
Gao, Bo; Shao, Qin; Choudhry, Hani; Marcus, Victoria; Dong, Kung; Ragoussis, Jiannis; Gao, Zu-Hua
2016-09-01
Approximately 9% of cancer-related deaths are caused by colorectal cancer (CRC). CRC patients are prone to liver metastasis, which is the most important cause for the high CRC mortality rate. Understanding the molecular mechanism of CRC liver metastasis could help us to find novel targets for the effective treatment of this deadly disease. Using weighted gene co-expression network analysis on the sequencing data of CRC with and with metastasis, we identified 5 colorectal cancer liver metastasis related modules which were labeled as brown, blue, grey, yellow and turquoise. In the brown module, which represents the metastatic tumor in the liver, gene ontology (GO) analysis revealed functions including the G-protein coupled receptor protein signaling pathway, epithelial cell differentiation and cell surface receptor linked signal transduction. In the blue module, which represents the primary CRC that has metastasized, GO analysis showed that the genes were mainly enriched in GO terms including G-protein coupled receptor protein signaling pathway, cell surface receptor linked signal transduction, and negative regulation of cell differentiation. In the yellow and turquoise modules, which represent the primary non-metastatic CRC, 13 downregulated CRC liver metastasis-related candidate miRNAs were identified (e.g. hsa-miR-204, hsa-miR-455, etc.). Furthermore, analyzing the DrugBank database and mining the literature identified 25 and 12 candidate drugs that could potentially block the metastatic processes of the primary tumor and inhibit the progression of metastatic tumors in the liver, respectively. Data generated from this study not only furthers our understanding of the genetic alterations that drive the metastatic process, but also guides the development of molecular-targeted therapy of colorectal cancer liver metastasis.
Angstadt, Andrea Y; Motsinger-Reif, Alison; Thomas, Rachael; Kisseberth, William C; Guillermo Couto, C; Duval, Dawn L; Nielsen, Dahlia M; Modiano, Jaime F; Breen, Matthew
2011-11-01
Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts. Copyright © 2011 Wiley-Liss, Inc.
Computational selection of antibody-drug conjugate targets for breast cancer
Fauteux, François; Hill, Jennifer J.; Jaramillo, Maria L.; Pan, Youlian; Phan, Sieu; Famili, Fazel; O'Connor-McCourt, Maureen
2016-01-01
The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain. Breast cancer samples were classified into molecular subtypes using an iterative ensemble approach combining six classification algorithms and three feature selection techniques, including a novel kernel density-based method. This feature selection method was used in conjunction with differential expression and subcellular localization information to assemble a primary list of targets. A total of 50 cell membrane targets were identified, including one target for which an antibody-drug conjugate is in clinical use, and six targets for which antibody-drug conjugates are in clinical trials for the treatment of breast cancer and other solid tumors. In addition, 50 extracellular proteins were identified as potential targets for non-internalizing strategies and alternative modalities. Candidate targets linked with the epithelial-to-mesenchymal transition were identified by analyzing differential gene expression in epithelial and mesenchymal tumor-derived cell lines. Overall, these results show that mining human gene expression data has the power to select and prioritize breast cancer antibody-drug conjugate targets, and the potential to lead to new and more effective cancer therapeutics. PMID:26700623
Ji, Xinglai; Tang, Jie; Halberg, Richard; Busam, Dana; Ferriera, Steve; Peña, Maria Marjorette O; Venkataramu, Chinnambally; Yeatman, Timothy J; Zhao, Shaying
2010-08-13
We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates.
Wong, Ada Hang-Heng; Vazquez-Ortiz, Guelaguetza; Chen, Weiping; Xu, Xiaoling; Deng, Chu-Xia
2016-01-01
Cisplatin is an effective breast cancer drug but resistance often develops over prolonged chemotherapy. Therefore, we performed a candidate approach RNAi screen in combination with cisplatin treatment to identify molecular pathways conferring survival advantages. The screen identified ATP7A as a therapeutic target. ATP7A is a copper ATPase transporter responsible for intercellular movement and sequestering of cisplatin. Pharmaceutical replacement for ATP7A by ammonium tetrathiomolybdate (TM) enhanced cisplatin treatment in breast cancer cells. Allograft and xenograft models in athymic nude mice treated with cisplatin/TM exhibited retarded tumor growth, reduced accumulation of cancer stem cells and decreased cell proliferation as compared to mono-treatment with cisplatin or TM. Cisplatin/TM treatment of cisplatin-resistant tumors reduced ATP7A protein levels, attenuated cisplatin sequestering by ATP7A, increased nuclear availability of cisplatin, and subsequently enhanced DNA damage and apoptosis. Microarray analysis of gene ontology pathways that responded uniquely to cisplatin/TM double treatment depicted changes in cell cycle regulation, specifically in the G1/S transition. These findings offer the potential to combat platinum-resistant tumors and sensitize patients to conventional breast cancer treatment by identifying and targeting the resistant tumors' unique molecular adaptations. PMID:27806319
Kim, Yunee; Ignatchenko, Vladimir; Yao, Cindy Q.; Kalatskaya, Irina; Nyalwidhe, Julius O.; Lance, Raymond S.; Gramolini, Anthony O.; Troyer, Dean A.; Stein, Lincoln D.; Boutros, Paul C.; Medin, Jeffrey A.; Semmes, O. John; Drake, Richard R.; Kislinger, Thomas
2012-01-01
Current protocols for the screening of prostate cancer cannot accurately discriminate clinically indolent tumors from more aggressive ones. One reliable indicator of outcome has been the determination of organ-confined versus nonorgan-confined disease but even this determination is often only made following prostatectomy. This underscores the need to explore alternate avenues to enhance outcome prediction of prostate cancer patients. Fluids that are proximal to the prostate, such as expressed prostatic secretions (EPS), are attractive sources of potential prostate cancer biomarkers as these fluids likely bathe the tumor. Direct-EPS samples from 16 individuals with extracapsular (n = 8) or organ-confined (n = 8) prostate cancer were used as a discovery cohort, and were analyzed in duplicate by a nine-step MudPIT on a LTQ-Orbitrap XL mass spectrometer. A total of 624 unique proteins were identified by at least two unique peptides with a 0.2% false discovery rate. A semiquantitative spectral counting algorithm identified 133 significantly differentially expressed proteins in the discovery cohort. Integrative data mining prioritized 14 candidates, including two known prostate cancer biomarkers: prostate-specific antigen and prostatic acid phosphatase, which were significantly elevated in the direct-EPS from the organ-confined cancer group. These and five other candidates (SFN, MME, PARK7, TIMP1, and TGM4) were verified by Western blotting in an independent set of direct-EPS from patients with biochemically recurrent disease (n = 5) versus patients with no evidence of recurrence upon follow-up (n = 10). Lastly, we performed proof-of-concept SRM-MS-based relative quantification of the five candidates using unpurified heavy isotope-labeled synthetic peptides spiked into pools of EPS-urines from men with extracapsular and organ-confined prostate tumors. This study represents the first efforts to define the direct-EPS proteome from two major subclasses of prostate cancer using shotgun proteomics and verification in EPS-urine by SRM-MS. PMID:22986220
Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis.
Yancovitch, Alan; Hershkovitz, Dov; Indelman, Margareta; Galloway, Peter; Whiteford, Margo; Sprecher, Eli; Kılıç, Esra
2011-09-01
Hyperphosphatemic familial tumoral calcinosis (HFTC) is known to be caused by mutations in at least three genes: FGF23, GALNT3 and KL. Two families with two affected members suffering from HFTC were scrutinized for mutations in these candidate genes. We identified in both families homozygous missense mutations affecting highly conserved amino acids in GALNT3. One of the mutations is a novel mutation, whereas the second mutation was reported before in a compound heterozygous state. Our data expand the spectrum of known mutations in GALNT3 and contribute to a better understanding of the phenotypic manifestations of mutations in this gene.
Pollard, Harvey B.; Shivakumar, Chittari; Starr, Joshua; Eidelman, Ofer; Jacobowitz, David M.; Dalgard, Clifton L.; Srivastava, Meera; Wilkerson, Matthew D.; Stein, Murray B.; Ursano, Robert J.
2016-01-01
“Soldier's Heart,” is an American Civil War term linking post-traumatic stress disorder (PTSD) with increased propensity for cardiovascular disease (CVD). We have hypothesized that there might be a quantifiable genetic basis for this linkage. To test this hypothesis we identified a comprehensive set of candidate risk genes for PTSD, and tested whether any were also independent risk genes for CVD. A functional analysis algorithm was used to identify associated signaling networks. We identified 106 PTSD studies that report one or more polymorphic variants in 87 candidate genes in 83,463 subjects and controls. The top upstream drivers for these PTSD risk genes are predicted to be the glucocorticoid receptor (NR3C1) and Tumor Necrosis Factor alpha (TNFA). We find that 37 of the PTSD candidate risk genes are also candidate independent risk genes for CVD. The association between PTSD and CVD is significant by Fisher's Exact Test (P = 3 × 10−54). We also find 15 PTSD risk genes that are independently associated with Type 2 Diabetes Mellitus (T2DM; also significant by Fisher's Exact Test (P = 1.8 × 10−16). Our findings offer quantitative evidence for a genetic link between post-traumatic stress and cardiovascular disease, Computationally, the common mechanism for this linkage between PTSD and CVD is innate immunity and NFκB-mediated inflammation. PMID:27721742
Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K
2015-01-01
Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Pollard, Harvey B; Shivakumar, Chittari; Starr, Joshua; Eidelman, Ofer; Jacobowitz, David M; Dalgard, Clifton L; Srivastava, Meera; Wilkerson, Matthew D; Stein, Murray B; Ursano, Robert J
2016-01-01
"Soldier's Heart," is an American Civil War term linking post-traumatic stress disorder (PTSD) with increased propensity for cardiovascular disease (CVD). We have hypothesized that there might be a quantifiable genetic basis for this linkage. To test this hypothesis we identified a comprehensive set of candidate risk genes for PTSD, and tested whether any were also independent risk genes for CVD. A functional analysis algorithm was used to identify associated signaling networks. We identified 106 PTSD studies that report one or more polymorphic variants in 87 candidate genes in 83,463 subjects and controls. The top upstream drivers for these PTSD risk genes are predicted to be the glucocorticoid receptor (NR3C1) and Tumor Necrosis Factor alpha (TNFA). We find that 37 of the PTSD candidate risk genes are also candidate independent risk genes for CVD. The association between PTSD and CVD is significant by Fisher's Exact Test ( P = 3 × 10 -54 ). We also find 15 PTSD risk genes that are independently associated with Type 2 Diabetes Mellitus (T2DM; also significant by Fisher's Exact Test ( P = 1.8 × 10 -16 ). Our findings offer quantitative evidence for a genetic link between post-traumatic stress and cardiovascular disease, Computationally, the common mechanism for this linkage between PTSD and CVD is innate immunity and NFκB-mediated inflammation.
Le Gallo, Matthieu; Rudd, Meghan L; Urick, Mary Ellen; Hansen, Nancy F; Zhang, Suiyuan; Lozy, Fred; Sgroi, Dennis C; Vidal Bel, August; Matias-Guiu, Xavier; Broaddus, Russell R; Lu, Karen H; Levine, Douglas A; Mutch, David G; Goodfellow, Paul J; Salvesen, Helga B; Mullikin, James C; Bell, Daphne W
2017-09-01
The molecular pathogenesis of clear cell endometrial cancer (CCEC), a tumor type with a relatively unfavorable prognosis, is not well defined. We searched exome-wide for novel somatically mutated genes in CCEC and assessed the mutational spectrum of known and candidate driver genes in a large cohort of cases. We conducted whole exome sequencing of paired tumor-normal DNAs from 16 cases of CCEC (12 CCECs and the CCEC components of 4 mixed histology tumors). Twenty-two genes-of-interest were Sanger-sequenced from another 47 cases of CCEC. Microsatellite instability (MSI) and microsatellite stability (MSS) were determined by genotyping 5 mononucleotide repeats. Two tumor exomes had relatively high mutational loads and MSI. The other 14 tumor exomes were MSS and had 236 validated nonsynonymous or splice junction somatic mutations among 222 protein-encoding genes. Among the 63 cases of CCEC in this study, we identified frequent somatic mutations in TP53 (39.7%), PIK3CA (23.8%), PIK3R1 (15.9%), ARID1A (15.9%), PPP2R1A (15.9%), SPOP (14.3%), and TAF1 (9.5%), as well as MSI (11.3%). Five of 8 mutations in TAF1, a gene with no known role in CCEC, localized to the putative histone acetyltransferase domain and included 2 recurrently mutated residues. Based on patterns of MSI and mutations in 7 genes, CCEC subsets molecularly resembled serous endometrial cancer (SEC) or endometrioid endometrial cancer (EEC). Our findings demonstrate molecular similarities between CCEC and SEC and EEC and implicate TAF1 as a novel candidate CCEC driver gene. Cancer 2017;123:3261-8. © 2017 American Cancer Society. © 2017 American Cancer Society.
Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.
Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata
2017-06-26
Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.
Integrated computational biology analysis to evaluate target genes for chronic myelogenous leukemia.
Zheng, Yu; Wang, Yu-Ping; Cao, Hongbao; Chen, Qiusheng; Zhang, Xi
2018-06-05
Although hundreds of genes have been linked to chronic myelogenous leukemia (CML), many of the results lack reproducibility. In the present study, data across multiple modalities were integrated to evaluate 579 CML candidate genes, including literature‑based CML‑gene relation data, Gene Expression Omnibus RNA expression data and pathway‑based gene‑gene interaction data. The expression data included samples from 76 patients with CML and 73 healthy controls. For each target gene, four metrics were proposed and tested with case/control classification. The effectiveness of the four metrics presented was demonstrated by the high classification accuracy (94.63%; P<2x10‑4). Cross metric analysis suggested nine top candidate genes for CML: Epidermal growth factor receptor, tumor protein p53, catenin β 1, janus kinase 2, tumor necrosis factor, abelson murine leukemia viral oncogene homolog 1, vascular endothelial growth factor A, B‑cell lymphoma 2 and proto‑oncogene tyrosine‑protein kinase. In addition, 145 CML candidate pathways enriched with 485 out of 579 genes were identified (P<8.2x10‑11; q=0.005). In conclusion, weighted genetic networks generated using computational biology may be complementary to biological experiments for the evaluation of known or novel CML target genes.
Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant.
van Roosmalen, Wies; Le Dévédec, Sylvia E; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M; Look, Maxime P; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A C 't; Martens, John W M; Foekens, John A; Geiger, Benjamin; van de Water, Bob
2015-04-01
Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3-binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.
Tahiri, Andliena; Leivonen, Suvi-Katri; Lüders, Torben; Steinfeld, Israel; Ragle Aure, Miriam; Geisler, Jürgen; Mäkelä, Rami; Nord, Silje; Riis, Margit L H; Yakhini, Zohar; Kleivi Sahlberg, Kristine; Børresen-Dale, Anne-Lise; Perälä, Merja; Bukholm, Ida R K; Kristensen, Vessela N
2014-01-01
MicroRNAs (miRNAs) are endogenous non-coding RNAs, which play an essential role in the regulation of gene expression during carcinogenesis. The role of miRNAs in breast cancer has been thoroughly investigated, and although many miRNAs are identified as cancer related, little is known about their involvement in benign tumors. In this study, we investigated miRNA expression profiles in the two most common types of human benign tumors (fibroadenoma/fibroadenomatosis) and in malignant breast tumors and explored their role as oncomirs and tumor suppressor miRNAs. Here, we identified 33 miRNAs with similar deregulated expression in both benign and malignant tumors compared with the expression levels of those in normal tissue, including breast cancer-related miRNAs such as let-7, miR-21 and miR-155. Additionally, messenger RNA (mRNA) expression profiles were obtained for some of the same samples. Using integrated mRNA/miRNA expression analysis, we observed that overexpression of certain miRNAs co-occurred with a significant downregulation of their candidate target mRNAs in both benign and malignant tumors. In support of these findings, in vitro functional screening of the downregulated miRNAs in non-malignant and breast cancer cell lines identified several possible tumor suppressor miRNAs, including miR-193b, miR-193a-3p, miR-126, miR-134, miR-132, miR-486-5p, miR-886-3p, miR-195 and miR-497, showing reduced growth when re-expressed in cancer cells. The finding of deregulated expression of oncomirs and tumor suppressor miRNAs in benign breast tumors is intriguing, indicating that they may play a role in proliferation. A role of cancer-related miRNAs in the early phases of carcinogenesis and malignant transformation can, therefore, not be ruled out.
Molecular Targeted Therapies of Childhood Choroid Plexus Carcinoma
2013-10-01
Microarray intensities were analyzed in PGS, using the benign human choroid plexus papilloma (CPP) samples as an expression baseline reference. This...additional human and mouse CPC genomic profiles (timeframe: months 1-5). The goal of these studies is to expand our number of genomic profiles (DNA and...mRNA arrays) of both human and mouse CPCs to provide a comprehensive dataset with which to identify key candidate oncogenes, tumor suppressor genes
Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A.
2016-01-01
Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732
Vecchione, A; Fassan, M; Anesti, V; Morrione, A; Goldoni, S; Baldassarre, G; Byrne, D; D'Arca, D; Palazzo, J P; Lloyd, J; Scorrano, L; Gomella, L G; Iozzo, R V; Baffa, R
2009-01-15
Allelic deletions on human chromosome 12q24 are frequently reported in a variety of malignant neoplasms, indicating the presence of a tumor suppressor gene(s) in this chromosomal region. However, no reasonable candidate has been identified so far. In this study, we report the cloning and functional characterization of a novel mitochondrial protein with tumor suppressor activity, henceforth designated MITOSTATIN. Human MITOSTATIN was found within a 3.2-kb transcript, which encoded a approximately 62 kDa, ubiquitously expressed protein with little homology to any known protein. We found homozygous deletions and mutations of MITOSTATIN gene in approximately 5 and approximately 11% of various cancer-derived cells and solid tumors, respectively. When transiently overexpressed, MITOSTATIN inhibited colony formation, tumor cell growth and was proapoptotic, all features shared by established tumor suppressor genes. We discovered a specific link between MITOSTATIN overexpression and downregulation of Hsp27. Conversely, MITOSTATIN knockdown cells showed an increase in cell growth and cell survival rates. Finally, MITOSTATIN expression was significantly reduced in primary bladder and breast tumors, and its reduction was associated with advanced tumor stages. Our findings support the hypothesis that MITOSTATIN has many hallmarks of a classical tumor suppressor in solid tumors and may play an important role in cancer development and progression.
Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn
2015-11-01
Arginine-arginine-leucine (RRL) is considered a tumor endothelial cell-specific binding sequence. RRL-containing peptide targeting tumor vessels is an excellent candidate for tumor imaging. In this study, we developed RRL-containing hexapeptides and evaluated their feasibility as a tumor imaging agent in a HT-1080 fibrosarcoma-bearing murine model. The hexapeptide, glutamic acid-cysteine-glycine (ECG)-RRL was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling efficiency was evaluated using instant thin-layer chromatography. Uptake of Tc-99m ECG-RRL within HT-1080 cells was evaluated in vitro by confocal microscopy and cellular binding affinity was calculated. Gamma images were acquired In HT-1080 fibrosarcoma tumor-bearing mice, and the tumor-to-muscle uptake ratio was calculated. The inflammatory-to-normal muscle uptake ratio was also calculated in an inflammation mouse model. A biodistribution study was performed to calculate %ID/g. A high yield of Tc-99m ECG-RRL complexes was prepared after Tc-99m radiolabeling. Binding of Tc-99m ECG-RRL to tumor cells had was confirmed by in vitro studies. Gamma camera imaging in the murine model showed that Tc-99m ECG-RRL accumulated substantially in the subcutaneously engrafted tumor and that tumoral uptake was blocked by co-injecting excess RRL. Moreover, Tc-99m ECG-RRL accumulated minimally in inflammatory lesions. We successfully developed Tc-99m ECG-RRL as a new tumor imaging candidate. Specific tumoral uptake of Tc-99m ECG-RRL was evaluated both in vitro and in vivo, and it was determined to be a good tumor imaging candidate. Additionally, Tc-99m ECG-RRL effectively distinguished between cancerous tissue and inflammatory lesions.
Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.
2016-01-01
Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392
Kikuta, Kazutaka; Kubota, Daisuke; Yoshida, Akihiko; Qiao, Zhiwei; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Chuman, Hirokazu; Kawai, Akira; Kondo, Tadashi
2017-09-01
Myxofibrosarcoma (MFS) is a mesenchymal malignancy characterized by frequent recurrence even after radical wide resection. To optimize therapy for MFS patients, we aimed to identify candidate tissue biomarkers of MFS invasion potential. Invasion characteristics of MFS were evaluated by magnetic resonance imaging and protein expression profiling of primary tumor tissues performed using two-dimensional difference gel electrophoresis (2D-DIGE). Protein expression profiles were compared between invasive and non-invasive tumors surgically resected from 11 patients. Among the 3453 protein spots observed, 59 demonstrated statistically significant difference in intensity (≥2-fold) between invasive and non-invasive tumors (p<0.01 by Wilkoxon test), and were identified by mass spectrometry as 47 individual proteins. Among them, we further focused on discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2), a receptor tyrosine kinase with aberrant expression in malignant tumors. Immunohistochemistry analysis of 21 additional MFS cases revealed that higher DCBLD2 expression was significantly associated with invasive properties of tumor cells. DCBLD2 sensitivity and specificity, and positive and negative predictive values for MFS invasion were 69.2%, 87.5%, 90%, and 63.6%, respectively. The expression level of DCBLD2 was consistent in different portions of tumor tissues. Thus, DCBLD2 expression can be a useful biomarker to evaluate invasive properties of MFS. Further validation studies based on multi-institutional collaboration and comprehensive analysis of DCBLD2 biological functions in MFS are required to confirm its prognostic utility for clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.
Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.
Sumazin, Pavel; Chen, Yidong; Treviño, Lisa R; Sarabia, Stephen F; Hampton, Oliver A; Patel, Kayuri; Mistretta, Toni-Ann; Zorman, Barry; Thompson, Patrick; Heczey, Andras; Comerford, Sarah; Wheeler, David A; Chintagumpala, Murali; Meyers, Rebecka; Rakheja, Dinesh; Finegold, Milton J; Tomlinson, Gail; Parsons, D Williams; López-Terrada, Dolores
2017-01-01
Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity. Analysis of immunohistochemical assays using antibodies targeting these genes in a prospective study of 35 HBs suggested that these candidate biomarkers have the potential to improve risk stratification and guide treatment decisions for HB patients at diagnosis; our results pave the way for clinical collaborative studies to validate candidate biomarkers and test their potential to improve outcome for HB patients. (Hepatology 2017;65:104-121). © 2016 by the American Association for the Study of Liver Diseases.
Lempiäinen, Harri; Couttet, Philippe; Bolognani, Federico; Müller, Arne; Dubost, Valérie; Luisier, Raphaëlle; Del Rio Espinola, Alberto; Vitry, Veronique; Unterberger, Elif B; Thomson, John P; Treindl, Fridolin; Metzger, Ute; Wrzodek, Clemens; Hahne, Florian; Zollinger, Tulipan; Brasa, Sarah; Kalteis, Magdalena; Marcellin, Magali; Giudicelli, Fanny; Braeuning, Albert; Morawiec, Laurent; Zamurovic, Natasa; Längle, Ulrich; Scheer, Nico; Schübeler, Dirk; Goodman, Jay; Chibout, Salah-Dine; Marlowe, Jennifer; Theil, Diethilde; Heard, David J; Grenet, Olivier; Zell, Andreas; Templin, Markus F; Meehan, Richard R; Wolf, Roland C; Elcombe, Clifford R; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G
2013-02-01
The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.
Advances in personalized cancer immunotherapy.
Kakimi, Kazuhiro; Karasaki, Takahiro; Matsushita, Hirokazu; Sugie, Tomoharu
2017-01-01
There are currently three major approaches to T cell-based cancer immunotherapy, namely, active vaccination, adoptive cell transfer therapy and immune checkpoint blockade. Recently, this latter approach has demonstrated remarkable clinical benefits, putting cancer immunotherapy under the spotlight. Better understanding of the dynamics of anti-tumor immune responses (the "Cancer-Immunity Cycle") is crucial for the further development of this form of treatment. Tumors employ multiple strategies to escape from anti-tumor immunity, some of which result from the selection of cancer cells with immunosuppressive activity by the process of cancer immunoediting. Apart from this selective process, anti-tumor immune responses can also be inhibited in multiple different ways which vary from patient to patient. This implies that cancer immunotherapy must be personalized to (1) identify the rate-limiting steps in any given patient, (2) identify and combine strategies to overcome these hurdles, and (3) proceed with the next round of the "Cancer-Immunity Cycle". Cancer cells have genetic alterations which can provide the immune system with targets by which to recognize and eradicate the tumor. Mutated proteins expressed exclusively in cancer cells and recognizable by the immune system are known as neoantigens. The development of next-generation sequencing technology has made it possible to determine the genetic landscape of human cancer and facilitated the utilization of genomic information to identify such candidate neoantigens in individual cancers. Future immunotherapies will need to be personalized in terms of the identification of both patient-specific immunosuppressive mechanisms and target neoantigens.
Wells, Julie; Rivera, Miguel N.; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A.
2010-01-01
WT1 encodes a tumor suppressor, first identified by its inactivation in Wilms Tumor. While one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three amino acid (KTS) insertion. Using cells which conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning (ChIP-cloning) analysis to identify candidate WT1(+KTS) regulated promoters. We identified the planar cell polarity (PCP) gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33 nucleotide region within the Scribble promoter in both mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064
Iskit, Sedef; Lieftink, Cor; Halonen, Pasi; Shahrabi, Aida; Possik, Patricia A; Beijersbergen, Roderick L; Peeper, Daniel S
2016-07-12
Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer.
Koifman, Leandro; Ornellas, Paulo; Ornellas, Antonio Augusto; Pereira, Denise de Abreu; Zingali, Benedeta Russolina; Cavalcanti, Silvia Maria Baeta; Afonso, Larissa Alves; Sandim, Vanessa; Alves, Gilda
2015-01-01
The aim of this study was to identify possible protein biomarkers and/or candidates for therapeutic targets in tissues of patients with SCCP, infected by HPV, applying one dimensional electrophoresis (1DE), followed by direct mass spectrometry (MS) analysis. Tissues from 10 HPV positive patients with SCCP and from 10 patients with HPV negative non-tumorous penile foreskins were analyzed applying 1D electrophoresis, followed by analysis with direct mass spectrometry (MS). Sixty-three different proteins were identified in the first group and 50 in the second group. Recognition was possible for 28 proteins exclusively detected in Group 1 and 21 proteins presented only in Group 2. Some proteins in the first group are directly involved in the development of other types of cancer, and therefore, suitable for analysis. Complement C3 protein is a strong candidate for evaluating SCCP patients.
Ferreira, Ana M; Tuominen, Iina; Sousa, Sónia; Gerbens, Frans; van Dijk-Bos, Krista; Osinga, Jan; Kooi, Krista A; Sanjabi, Bahram; Esendam, Chris; Oliveira, Carla; Terpstra, Peter; Hardonk, Menno; van der Sluis, Tineke; Zazula, Monika; Stachura, Jerzy; van der Zee, Ate G; Hollema, Harry; Sijmons, Rolf H; Aaltonen, Lauri A; Seruca, Raquel; Hofstra, Robert M W; Westers, Helga
2014-12-01
Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development. © 2014 WILEY PERIODICALS, INC.
Pinheiro, Céline; Granja, Sara; Longatto-Filho, Adhemar; Faria, André M; Fragoso, Maria C B V; Lovisolo, Silvana M; Bonatelli, Murilo; Costa, Ricardo F A; Lerário, Antonio M; Almeida, Madson Q; Baltazar, Fátima; Zerbini, Maria C N
2017-09-08
Discrimination between benign and malignant tumors is a challenging process in pediatric adrenocortical tumors. New insights in the metabolic profile of pediatric adrenocortical tumors may contribute to this distinction, predict prognosis, as well as identify new molecular targets for therapy. The aim of this work is to characterize the expression of the metabolism-related proteins MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX in a series of pediatric adrenocortical tumors. A total of 50 pediatric patients presenting adrenocortical tumors, including 41 clinically benign and 9 clinically malignant tumors, were included. Protein expression was evaluated using immunohistochemistry in samples arranged in tissue microarrays. The immunohistochemical analysis showed a significant increase in plasma membrane expression of GLUT1 in malignant lesions, when compared to benign lesions ( p =0.004), being the expression of this protein associated with shorter overall and disease-free survival ( p =0.004 and p =0.001, respectively). Although significant differences were not observed for proteins other than GLUT1, MCT1, MCT4 and CD147 were highly expressed in pediatric adrenocortical neoplasias (around 90%). GLUT1 expression was differentially expressed in pediatric adrenocortical tumors, with higher expression in clinically malignant tumors, and associated with shorter survival, suggesting a metabolic remodeling towards a hyperglycolytic phenotype in this malignancy.
Gamma Knife radiosurgery for intracranial hemangioblastoma.
Silva, Danilo; Grabowski, Mathew M; Juthani, Rupa; Sharma, Mayur; Angelov, Lilyana; Vogelbaum, Michael A; Chao, Samuel; Suh, John; Mohammadi, Alireza; Barnett, Gene H
2016-09-01
Gamma knife radiosurgery (GKRS) has become a treatment option for intracranial hemangioblastomas, especially in patients with poor clinical status and also high-risk surgical candidates. The objective of this study was to analyze clinical outcome and tumor control rates. Retrospective chart review revealed 12 patients with a total of 20 intracranial hemangioblastomas treated with GKRS from May 1998 until December 2014. Kaplan-Meier plots were used to calculate the actuarial local tumor control rates and rate of recurrence following GKRS. Univariate analysis, including log rank test and Wilcoxon test were used on the Kaplan-Meier plots to evaluate the predictors of tumor progression. Two-tailed p value of <0.05 was considered as significant. Median follow-up was 64months (2-184). Median tumor volume pre-GKRS was 946mm(3) (79-15970), while median tumor volume post-GKRS was 356mm(3) (30-5404). Complications were seen in two patients. Tumor control rates were 100% at 1year, 90% at 3years, and 85% at 5years, using the Kaplan-Meier method. There were no statistically significant univariate predictors of progression identified, although there was a trend towards successful tumor control in solid tumors (p=0.07). GKRS is an effective and safe option for treating intracranial hemangioblastoma with favorable tumor control rates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Young; Stahl, Christopher C; Makramalla, Abouelmagd; Olowokure, Olugbenga O; Ristagno, Ross L; Dhar, Vikrom K; Schoech, Michael R; Chadalavada, Seetharam; Latif, Tahir; Kharofa, Jordan; Bari, Khurram; Shah, Shimul A
2017-12-01
Orthotopic liver transplantation is a curative treatment for hepatocellular carcinoma within Milan criteria, but these criteria preclude many patients from transplant candidacy. Recent studies have demonstrated that downstaging therapy can reduce tumor burden to meet conventional criteria. The present study reports a single-center experience with tumor downstaging and its effects on post-orthotopic liver transplantation outcomes. All patients with hepatocellular carcinoma who were evaluated by our multidisciplinary liver services team from 2012 to 2016 were identified (N = 214). Orthotopic liver transplantation candidates presenting outside of Milan criteria at initial radiographic diagnosis and/or an initial alpha-fetoprotein >400 ng/mL were categorized as at high risk for tumor recurrence and post-transplant mortality. Of the 214 patients newly diagnosed with hepatocellular carcinoma, 73 (34.1%) eventually underwent orthotopic liver transplantation. The majority of patients who did not undergo orthotopic liver transplantation were deceased or lost to follow-up (47.5%), with 14 of 141 (9.9%) currently listed for transplantation. Among transplanted patients, 21 of 73 (28.8%) were considered high-risk candidates. All 21 patients were downstaged to within Milan criteria with an alpha-fetoprotein <400 ng/mL before orthotopic liver transplantation, through locoregional therapies. Recurrence of hepatocellular carcinoma was higher but acceptable between downstaged high-risk and traditional candidates (9.5% vs 1.9%; P > .05) at a median follow-up period of 17 months. Downstaged high-risk candidates had a similar overall survival compared with those transplanted within Milan criteria (log-rank P > .05). In highly selected cases, patients with hepatocellular carcinoma outside of traditional criteria for orthotopic liver transplantation may undergo downstaging therapy in a multidisciplinary fashion with excellent post-transplant outcomes. These data support an aggressive downstaging approach for selected patients who would otherwise be deemed ineligible for transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.
Ho, T H; Serie, D J; Parasramka, M; Cheville, J C; Bot, B M; Tan, W; Wang, L; Joseph, R W; Hilton, T; Leibovich, B C; Parker, A S; Eckel-Passow, J E
2017-03-01
The majority of renal cell carcinoma (RCC) studies analyze primary tumors, and the corresponding results are extrapolated to metastatic RCC tumors. However, it is unknown if gene expression profiles from primary RCC tumors differs from patient-matched metastatic tumors. Thus, we sought to identify differentially expressed genes between patient-matched primary and metastatic RCC tumors in order to understand the molecular mechanisms underlying the development of RCC metastases. We compared gene expression profiles between patient-matched primary and metastatic RCC tumors using a two-stage design. First, we used Affymetrix microarrays on 15 pairs of primary RCC [14 clear cell RCC (ccRCC), 1 papillary] tumors and patient-matched pulmonary metastases. Second, we used a custom NanoString panel to validate seven candidate genes in an independent cohort of 114 ccRCC patients. Differential gene expression was evaluated using a mixed effect linear model; a random effect denoting patient was included to account for the paired data. Third, The Cancer Genome Atlas (TCGA) data were used to evaluate associations with metastasis-free and overall survival in primary ccRCC tumors. We identified and validated up regulation of seven genes functionally involved in the formation of the extracellular matrix (ECM): DCN, SLIT2, LUM, LAMA2, ADAMTS12, CEACAM6 and LMO3. In primary ccRCC, CEACAM6 and LUM were significantly associated with metastasis-free and overall survival (P < 0.01). We evaluated gene expression profiles using the largest set to date, to our knowledge, of patient-matched primary and metastatic ccRCC tumors and identified up regulation of ECM genes in metastases. Our study implicates up regulation of ECM genes as a critical molecular event leading to visceral, bone and soft tissue metastases in ccRCC. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Cody, N A L; Ouellet, V; Manderson, E N; Quinn, M C J; Filali-Mouhim, A; Tellis, P; Zietarska, M; Provencher, D M; Mes-Masson, A-M; Chevrette, M; Tonin, P N
2007-01-25
Multiple chromosome 3p tumor suppressor genes (TSG) have been proposed in the pathogenesis of ovarian cancer based on complex patterns of 3p loss. To attain functional evidence in support of TSGs and identify candidate regions, we applied a chromosome transfer method involving cell fusions of the tumorigenic OV90 human ovarian cancer cell line, monoallelic for 3p and an irradiated mouse cell line containing a human chromosome 3 in order to derive OV90 hybrids containing normal 3p fragments. The resulting hybrids showed complete or incomplete suppression of tumorigenicity in nude mouse xenograft assays, and varied in their ability to form colonies in soft agarose and three-dimensional spheroids in a manner consistent with alteration of their in vivo tumorigenic phenotypes. Expression microarray analysis identified a set of common differentially expressed genes, such as SPARC, DAB2 and VEGF, some of which have been shown implicated in ovarian cancer. Genotyping assays revealed that they harbored normal 3p fragments, some of which overlapped candidate TSG regions (3p25-p26, 3p24 and 3p14-pcen) identified previously in loss of heterozygosity analyses of ovarian cancers. However, only the 3p12-pcen region was acquired in common by all hybrids where expression microarray analysis identified differentially expressed genes. The correlation of 3p12-pcen transfer and tumor suppression with a concerted re-programming of the cellular transcriptome suggest that the putative TSG may have affected key underlying events in ovarian cancer.
A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.
Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R
2008-11-01
Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.
Reis, Henning; Pütter, Carolin; Megger, Dominik A; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-C; Bertram, Stefanie; Wohlschläger, Jeremias; Hagemann, Sascha; Eisenacher, Martin; Scherag, André; Schlaak, Jörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A
2015-06-01
Hepatocellular carcinoma (HCC) is a major lethal cancer worldwide. Despite sophisticated diagnostic algorithms, the differential diagnosis of small liver nodules still is difficult. While imaging techniques have advanced, adjuvant protein-biomarkers as glypican3 (GPC3), glutamine-synthetase (GS) and heat-shock protein 70 (HSP70) have enhanced diagnostic accuracy. The aim was to further detect useful protein-biomarkers of HCC with a structured systematic approach using differential proteome techniques, bring the results to practical application and compare the diagnostic accuracy of the candidates with the established biomarkers. After label-free and gel-based proteomics (n=18 HCC/corresponding non-tumorous liver tissue (NTLT)) biomarker candidates were tested for diagnostic accuracy in immunohistochemical analyses (n=14 HCC/NTLT). Suitable candidates were further tested for consistency in comparison to known protein-biomarkers in HCC (n=78), hepatocellular adenoma (n=25; HCA), focal nodular hyperplasia (n=28; FNH) and cirrhosis (n=28). Of all protein-biomarkers, 14-3-3Sigma (14-3-3S) exhibited the most pronounced up-regulation (58.8×) in proteomics and superior diagnostic accuracy (73.0%) in the differentiation of HCC from non-tumorous hepatocytes also compared to established biomarkers as GPC3 (64.7%) and GS (45.4%). 14-3-3S was part of the best diagnostic three-biomarker panel (GPC3, HSP70, 14-3-3S) for the differentiation of HCC and HCA which is of most important significance. Exclusion of GS and inclusion of 14-3-3S in the panel (>1 marker positive) resulted in a profound increase in specificity (+44.0%) and accuracy (+11.0%) while sensitivity remained stable (96.0%). 14-3-3S is an interesting protein biomarker with the potential to further improve the accuracy of differential diagnostic process of hepatocellular tumors. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.
Chevillet, John R.; Khokhlova, Tatiana D.; Giraldez, Maria D.; Schade, George R.; Starr, Frank; Wang, Yak-Nam; Gallichotte, Emily N.; Wang, Kai; Hwang, Joo Ha
2017-01-01
Purpose To compare the abilities of three pulsed focused ultrasound regimes (that cause tissue liquefaction, permeabilization, or mild heating) to release tumor-derived microRNA into the circulation in vivo and to evaluate release dynamics. Materials and Methods All rat experiments were approved by the University of Washington Institutional Animal Care and Use Committee. Reverse-transcription quantitative polymerase chain reaction array profiling was used to identify candidate microRNA biomarkers in a rat solid tumor cell line. Rats subcutaneously grafted with these cells were randomly assigned among three pulsed focused ultrasound treatment groups: (a) local tissue liquefaction via boiling histotripsy, (b) tissue permeabilization via inertial cavitation, and (c) mild (<10°C) heating of tissue, as well as a sham-treated control group. Blood specimens were drawn immediately prior to treatment and serially over 24 hours afterward. Plasma microRNA was quantified with reverse-transcription quantitative polymerase chain reaction, and statistical significance was determined with one-way analysis of variance (Kruskal-Wallis and Friedman tests), followed by the Dunn multiple-comparisons test. Results After tissue liquefaction and cavitation treatments (but not mild heating), plasma quantities of candidate biomarkers increased significantly (P value range, <.0001 to .04) relative to sham-treated controls. A threefold to 32-fold increase occurred within 15 minutes after initiation of pulsed focused ultrasound tumor treatment, and these increases persisted for 3 hours. Histologic examination confirmed complete liquefaction of the targeted tumor area with boiling histotripsy, in addition to areas of petechial hemorrhage and tissue disruption by means of cavitation-based treatment. Conclusion Mechanical tumor tissue disruption with pulsed focused ultrasound–induced bubble activity significantly increases the plasma abundance of tumor-derived microRNA rapidly after treatment. © RSNA, 2016 Online supplemental material is available for this article. PMID:27802108
Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii
2015-01-01
Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC. PMID:26420960
Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii
2015-09-28
Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC.
Modeling Human Cancers in Drosophila.
Sonoshita, M; Cagan, R L
2017-01-01
Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.
SASH1: a candidate tumor suppressor gene on chromosome 6q24.3 is downregulated in breast cancer.
Zeller, Constanze; Hinzmann, Bernd; Seitz, Susanne; Prokoph, Helmuth; Burkhard-Goettges, Elke; Fischer, Jörg; Jandrig, Burkhard; Schwarz, Lope-Estevez; Rosenthal, André; Scherneck, Siegfried
2003-05-15
Loss of heterozygosity (LOH) and in silico expression analysis were applied to identify genes significantly downregulated in breast cancer within the genomic interval 6q23-25. Systematic comparison of candidate EST sequences with genomic sequences from this interval revealed the genomic structure of a potential target gene on 6q24.3, which we called SAM and SH3 domain containing 1 (SASH1). Loss of the gene-internal marker D6S311, found in 30% of primary breast cancer, was significantly correlated with poor survival and increase in tumor size. Two SASH1 transcripts of approximately 4.4 and 7.5 kb exist and are predominantly transcribed in the human breast, lung, thyroid, spleen, placenta and thymus. In breast cancer cell lines, SASH1 is only expressed at low levels. SASH1 is downregulated in the majority (74%) of breast tumors in comparison with corresponding normal breast epithelial tissues. In addition, SASH1 is also downregulated in tumors of the lung and thyroid. Analysis of the protein domain structure revealed that SASH1 is a member of a recently described family of SH3/SAM adapter molecules and thus suggests a role in signaling pathways. We assume that SASH1 is a new tumor suppressor gene possibly involved in tumorigenesis of breast and other solid cancers. We were unable to find mutations in the coding region of the gene in primary breast cancers showing LOH within the critical region. We therefore hypothesize that other mechanisms as for instance methylation of the promoter region of SASH1 are responsible for the loss of expression of SASH1 in primary and metastatic breast cancer.
Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant
van Roosmalen, Wies; Le Dévédec, Sylvia E.; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M.; Look, Maxime P.; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A.C. ‘t; Martens, John W.M.; Foekens, John A.; Geiger, Benjamin; van de Water, Bob
2015-01-01
Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3–binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis. PMID:25774502
Sethi, Manveen K; Thaysen-Andersen, Morten; Kim, Hoguen; Park, Cheol Keun; Baker, Mark S; Packer, Nicolle H; Paik, Young-Ki; Hancock, William S; Fanayan, Susan
2015-08-03
Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Jianguo; Pan, Cong; Jiang, Jun; Deng, Mingsen; Gao, Hengjun; Men, Bozhao; McClelland, Michael; Mercola, Dan; Zhong, Wei-De; Jia, Zhenyu
2015-01-01
We previously analyzed human prostate tissue containing stroma near to tumor and from cancer-negative tissues of volunteers. Over 100 candidate gene expression differences were identified and used to develop a classifier that could detect nearby tumor with an accuracy of 97% (sensitivity = 98% and specificity = 88%) based on 364 independent test cases from primarily European American cases. These stroma-based gene signatures have the potential to identify cancer patients among those with negative biopsies. In this study, we used prostate tissues from Chinese cases to validate six of these markers (CAV1, COL4A2, HSPB1, ITGB3, MAP1A and MCAM). In validation by real-time PCR, four genes (COL4A2, HSPB1, ITGB3, and MAP1A) demonstrated significantly lower expression in tumor-adjacent stroma compared to normal stroma (p value ≤ 0.05). Next, we tested whether these expression differences could be extended to the protein level. In IHC assays, all six selected proteins showed lower expression in tumor-adjacent stroma compared to the normal stroma, of which COL4A2, HSPB1 and ITGB3 showed significant differences (p value ≤ 0.05). These results suggest that biomarkers for diagnosing prostate cancer based on tumor microenvironment may be applicable across multiple racial groups. PMID:26158290
IL-15 Deficient Tax Mice Reveal a Role for IL-1α in Tumor Immunity
Rauch, Daniel A.; Harding, John C.; Ratner, Lee
2014-01-01
IL-15 is recognized as a promising candidate for tumor immunotherapy and has been described as both a promoter of cancer and a promoter of anti-cancer immunity. IL-15 was discovered in cells transformed by HTLV-1, the etiologic agent of adult T cell leukemia/lymphoma (ATL) and the human retrovirus that carries the Tax oncogene. We have developed the TAX-LUC mouse model of ATL in which Tax expression drives both malignant transformation and luciferase expression, enabling non-invasive imaging of tumorigenesis in real time. To identify the role of IL-15 in spontaneous development of lymphoma in vivo, an IL-15−/− TAX-LUC strain was developed and examined. The absence of IL-15 resulted in aggressive tumor growth and accelerated mortality and demonstrated that IL-15 was not required for Tax-mediated lymphoma but was essential for anti-tumor immunity. Further analysis revealed a unique transcriptional profile in tumor cells that arise in the absence of IL-15 that included a significant increase in the expression of IL-1α and IL-1α-regulated cytokines. Moreover, anti-IL-1α antibodies and an IL-1 receptor antagonist (Anakinra) were used to interrogate the potential of IL-1α targeted therapies in this model. Taken together, these findings identify IL-15 and IL-1α as therapeutic targets in lymphoma. PMID:24416335
Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M
2016-11-01
Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K trans and ν e ) and the Brix model (A Brix , k ep and k el ). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.
Fagerholm, Rainer; Khan, Sofia; Schmidt, Marjanka K.; GarcClosas, Montserrat; Heikkilä, Päivi; Saarela, Jani; Beesley, Jonathan; Jamshidi, Maral; Aittomäki, Kristiina; Liu, Jianjun; Raza Ali, H.; Andrulis, Irene L.; Beckmann, Matthias W.; Behrens, Sabine; Blows, Fiona M.; Brenner, Hermann; Chang-Claude, Jenny; Couch, Fergus J.; Czene, Kamila; Fasching, Peter A.; Figueroa, Jonine; Floris, Giuseppe; Glendon, Gord; Guo, Qi; Hall, Per; Hallberg, Emily; Hamann, Ute; Holleczek, Bernd; Hooning, Maartje J.; Hopper, John L.; Jager, Agnes; Kabisch, Maria; Investigators, kConFab/AOCS; Keeman, Renske; Kosma, Veli-Matti; Lambrechts, Diether; Lindblom, Annika; Mannermaa, Arto; Margolin, Sara; Provenzano, Elena; Shah, Mitul; Southey, Melissa C.; Dennis, Joe; Lush, Michael; Michailidou, Kyriaki; Wang, Qin; Bolla, Manjeet K.; Dunning, Alison M.; Easton, Douglas F.; Pharoah, Paul D.P .; Chenevix-Trench, Georgia; Blomqvist, Carl; Nevanlinna, Heli
2017-01-01
TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes. In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 05E010-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 05E010-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines. If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer. PMID:28179588
Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming
2015-11-01
Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.
Tamilzhalagan, Sembulingam; Rathinam, Dhanasekaran; Ganesan, Kumaresan
2017-06-01
Frequent amplification of 7q21-22 genomic region is known in gastric cancer. Multiple genes including SHFM1, MCM7, and COL1A2 were reported to be the potential cancer candidate genes of this 20 Mb amplicon. This amplicon has two polycistrionic miRNA clusters and in the present study, miR-106b-25 cluster located in intron-13 of MCM7 was identified to express in gastric tumors. Among the 7q21-22 candidate genes, SHFM1 and MCM7 are expressed in intestinal type gastric tumors, whereas COL1A2 is expressed in diffuse type gastric tumors. Across gastric tumors, miR-25 was identified to co-express with MCM7 and SHFM1. On the other hand, negative correlation was observed between miR-25 and COL1A2 expression. miR-25 originating from MCM7 was found capable of selectively targeting the adjacent gene COL1A2. Silencing of miR-25 was found capable of elevating the expression of COL1A2 and inhibiting E-cadherin expression, revealing the diffuse type gastric cancer suppressive role conferred by miR-25. miR-25 was also found to suppress p53, and activate c-Src revealing its intestinal type gastric cancer associated oncogenic functions. Genome-wide expression profiling upon miR-25 silencing reveals that miR-25 is capable of suppressing 40 genes which are co-expressed with COL1A2, involved in epithelial to mesenchymal transition and angiogenesis which are the typical diffuse type gastric cancer features. The results clearly demonstrate 7q21-22 amplification, MCM7, and its intronic miR-25 are the major molecular switches involved in the complex oncogenic circuits of gastric cancer. © 2017 Wiley Periodicals, Inc.
Transcriptional Analysis of Aggressiveness and Heterogeneity across Grades of Astrocytomas
Wang, Chunjing; Funk, Cory C.; Eddy, James A.; Price, Nathan D.
2013-01-01
Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades and hopefully can contribute towards improvements in diagnosis and therapy choices. Our results also identify a number of testable hypotheses relating to astrocytoma etiology that may prove helpful in developing much-needed biomarkers for earlier disease detection. PMID:24146911
Transcriptional analysis of aggressiveness and heterogeneity across grades of astrocytomas.
Wang, Chunjing; Funk, Cory C; Eddy, James A; Price, Nathan D
2013-01-01
Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades and hopefully can contribute towards improvements in diagnosis and therapy choices. Our results also identify a number of testable hypotheses relating to astrocytoma etiology that may prove helpful in developing much-needed biomarkers for earlier disease detection.
Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers.
Labay, Edwardine; Mauceri, Helena J; Efimova, Elena V; Flor, Amy C; Sutton, Harold G; Kron, Stephen J; Weichselbaum, Ralph R
2016-06-07
Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy.
Warmann, Steven W; Schenk, Andrea; Schaefer, Juergen F; Ebinger, Martin; Blumenstock, Gunnar; Tsiflikas, Ilias; Fuchs, Joerg
2016-11-01
In complex malignant pediatric liver tumors there is an ongoing discussion regarding surgical strategy; for example, primary organ transplantation versus extended resection in hepatoblastoma involving 3 or 4 sectors of the liver. We evaluated the possible role of computer-assisted surgery planning in children with complex hepatic tumors. Between May 2004 and March 2016, 24 Children with complex liver tumors underwent standard multislice helical CT scan or MRI scan at our institution. Imaging data were processed using the software assistant LiverAnalyzer (Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany). Results were provided as Portable Document Format (PDF) with embedded interactive 3-dimensional surface mesh models. Median age of patients was 33months. Diagnoses were hepatoblastoma (n=14), sarcoma (n=3), benign parenchyma alteration (n=2), as well as hepatocellular carcinoma, rhabdoid tumor, focal nodular hyperplasia, hemangioendothelioma, or multiple hepatic metastases of a pancreas carcinoma (each n=1). Volumetry of liver segments identified remarkable variations and substantial aberrances from the Couinaud classification. Computer-assisted surgery planning was used to determine surgical strategies in 20/24 children; this was especially relevant in tumors affecting 3 or 4 liver sectors. Primary liver transplantation could be avoided in 12 of 14 hepaoblastoma patients who theoretically were candidates for this approach. Computer-assisted surgery planning substantially contributed to the decision for surgical strategies in children with complex hepatic tumors. This tool possibly allows determination of specific surgical procedures such as extended surgical resection instead of primary transplantation in certain conditions. Copyright © 2016. Published by Elsevier Inc.
Zhu, Zhou; Ihle, Nathan T; Rejto, Paul A; Zarrinkar, Patrick P
2016-06-13
Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.
2016-10-01
cells as the pre-existing “lurker” cells in primary prostate tumors, to evaluate potential therapeutic targets in intermediate luminal progenitor cells...intermediate luminal progenitor cells as the pre-existing “lurker” cells in primary prostate tumors, to evaluate potential therapeutic targets in...candidate target expressed in CD38-lo cells and evaluated the role of CD38 in cell proliferation. No prior Hormonal *** No prior therapy
Zhou, Bin; Irwanto, Astrid; Guo, Yun-Miao; Bei, Jin-Xin; Wu, Qiao; Chen, Ge; Zhang, Tai-Ping; Lei, Jin-Jv; Feng, Qi-Sheng; Chen, Li-Zhen; Liu, Jianjun; Zhao, Yu-Pei
2012-08-01
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers with more than 94% mortality rate mainly due to the widespread metastases. To find out the somatically mutated genes related to the metastasis of PDAC, we analyzed the matched tumor and normal tissue samples from a patient diagnosed with liver metastatic PDAC using intensive exome capture-sequencing analysis (> 170× coverage). Searching for the somatic mutations that drive the clonal expansion of metastasis, we identified 12 genes with higher allele frequencies (AFs) of functional mutations in the metastatic tumor, including known genes KRAS and TP53 for metastasis. Of the 10 candidate genes, 6 (ADRB1, DCLK1, KCNH2, NOP14, SIGLEC1, and ZC3H7A), together with KRAS and TP53, were clustered into a single network (p value = 1 × 10(-22)) that is related to cancer development. Moreover, these candidate genes showed abnormal expression in PDAC tissues and functional impacts on the migration, proliferation, and colony formation abilities of pancreatic cancer cell lines. Furthermore, through digital PCR analysis, we revealed potential genomic mechanisms for the KRAS and TP53 mutations in the metastatic tumor. Taken together, our study shows the possibility for such personalized genomic profiling to provide new biological insight into the metastasis of PDAC.
Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji
2017-06-06
Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC.
Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji
2017-01-01
Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC. PMID:28465481
Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors
Bii, Victor M.; Trobridge, Grant D.
2016-01-01
Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types. PMID:27792127
Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun
2010-01-01
A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072
2013-01-01
Background To detect genes correlated with hepatocellular carcinoma (HCC), we developed a triple combination array consisting of methylation array, gene expression array and single nucleotide polymorphism (SNP) array analysis. Methods A surgical specimen obtained from a 68-year-old female HCC patient was analyzed by triple combination array, which identified doublecortin domain-containing 2 (DCDC2) as a candidate tumor suppressor gene of HCC. Subsequently, samples from 48 HCC patients were evaluated for their DCDC2 methylation and expression status using methylation specific PCR (MSP) and semi-quantitative reverse transcriptase (RT) PCR, respectively. Then, we investigated the relationship between clinicopathological factors and methylation status of DCDC2. Results DCDC2 was revealed to be hypermethylated (methylation value 0.846, range 0–1.0) in cancer tissue, compared with adjacent normal tissue (0.212) by methylation array in the 68-year-old female patient. Expression array showed decreased expression of DCDC2 in cancerous tissue. SNP array showed that the copy number of chromosome 6p22.1, in which DCDC2 resides, was normal. MSP revealed hypermethylation of the promoter region of DCDC2 in 41 of the tumor samples. DCDC2 expression was significantly decreased in the cases with methylation (P = 0.048). Furthermore, the methylated cases revealed worse prognosis for overall survival than unmethylated cases (P = 0.048). Conclusions The present study indicates that triple combination array is an effective method to detect novel genes related to HCC. We propose that DCDC2 is a tumor suppressor gene of HCC. PMID:24034596
Association of BCSC-1 and MMP-14 with human breast cancer.
Di, Dalin; Chen, Lei; Guo, Yingying; Wang, Lina; Wang, Huidong; Ju, Jiyu
2018-04-01
Breast cancer suppressor candidate-1 (BCSC-1) is a candidate tumor suppressor gene that was identified recently. Decreased levels of BCSC-1 have been detected in a variety of cancer types in previous studies. Matrix metalloproteinase (MMP)-14 is a membrane-type MMP that plays an important role in tumor progression and prognosis. Previous research has indicated that MMP-14 is highly expressed in different cancer types and promotes tumor invasion or metastasis by remodeling the extracellular matrix. However, there have been few reports on BCSC-1 and MMP-14 in human breast cancer in recent years. In the present study, the association of BCSC-1 and MMP-14 with human breast cancer was investigated. The immunohistochemical analysis results revealed reduced expression of BCSC-1 and overexpression of MMP-14 in breast cancer tissues compared with adjacent normal breast tissues. Quantitative polymerase chain reaction and western blot analyses also showed that BCSC-1 was expressed at significantly lower levels, and that MMP-14 was expressed at significantly higher levels in breast cancer tissues compared with healthy breast tissue. Furthermore, decreased expression of BCSC-1 and overexpression of MMP-14 were associated with tumor cellular differentiation, lymph node metastasis and distant metastasis. A correlational analysis between BCSC-1 and MMP-14 was also conducted, and the results indicated a negative correlation between the two. In conclusion, the current findings indicate that BCSC-1 is downregulated, while MMP-14 is overexpressed in human breast cancer. These two genes may play important roles during the process of human breast cancer development.
Image-Guided Ablation of Adrenal Lesions
Yamakado, Koichiro
2014-01-01
Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444
Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle
2011-07-01
Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.
Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik
2014-01-01
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994
Nabavi, Sheida
2016-08-15
With advances in technologies, huge amounts of multiple types of high-throughput genomics data are available. These data have tremendous potential to identify new and clinically valuable biomarkers to guide the diagnosis, assessment of prognosis, and treatment of complex diseases, such as cancer. Integrating, analyzing, and interpreting big and noisy genomics data to obtain biologically meaningful results, however, remains highly challenging. Mining genomics datasets by utilizing advanced computational methods can help to address these issues. To facilitate the identification of a short list of biologically meaningful genes as candidate drivers of anti-cancer drug resistance from an enormous amount of heterogeneous data, we employed statistical machine-learning techniques and integrated genomics datasets. We developed a computational method that integrates gene expression, somatic mutation, and copy number aberration data of sensitive and resistant tumors. In this method, an integrative method based on module network analysis is applied to identify potential driver genes. This is followed by cross-validation and a comparison of the results of sensitive and resistance groups to obtain the final list of candidate biomarkers. We applied this method to the ovarian cancer data from the cancer genome atlas. The final result contains biologically relevant genes, such as COL11A1, which has been reported as a cis-platinum resistant biomarker for epithelial ovarian carcinoma in several recent studies. The described method yields a short list of aberrant genes that also control the expression of their co-regulated genes. The results suggest that the unbiased data driven computational method can identify biologically relevant candidate biomarkers. It can be utilized in a wide range of applications that compare two conditions with highly heterogeneous datasets.
Segara, Davendra; Biankin, Andrew V; Kench, James G; Langusch, Catherine C; Dawson, Amanda C; Skalicky, David A; Gotley, David C; Coleman, Maxwell J; Sutherland, Robert L; Henshall, Susan M
2005-05-01
Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARalpha, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and PanIN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early PanIN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.
Vidak, Marko; Jovcevska, Ivana; Samec, Neja; Zottel, Alja; Liovic, Mirjana; Rozman, Damjana; Dzeroski, Saso; Juvan, Peter; Komel, Radovan
2018-05-04
Glioblastoma (GB) is the most aggressive brain malignancy. Although some potential glioblastoma biomarkers have already been identified, there is a lack of cell membrane-bound biomarkers capable of distinguishing brain tissue from glioblastoma and/or glioblastoma stem cells (GSC), which are responsible for the rapid post-operative tumor reoccurrence. In order to find new GB/GSC marker candidates that would be cell surface proteins (CSP), we have performed meta-analysis of genome-scale mRNA expression data from three data repositories (GEO, ArrayExpress and GLIOMASdb). The search yielded ten appropriate datasets, and three (GSE4290/GDS1962, GSE23806/GDS3885, and GLIOMASdb) were used for selection of new GB/GSC marker candidates, while the other seven (GSE4412/GDS1975, GSE4412/GDS1976, E-GEOD-52009, E-GEOD-68848, E-GEOD-16011, E-GEOD-4536, and E-GEOD-74571) were used for bioinformatic validation. The selection identified four new CSP-encoding candidate genes— CD276 , FREM2 , SPRY1 , and SLC47A1 —and the bioinformatic validation confirmed these findings. A review of the literature revealed that CD276 is not a novel candidate, while SLC47A1 had lower validation test scores than the other new candidates and was therefore not considered for experimental validation. This validation revealed that the expression of FREM2—but not SPRY1—is higher in glioblastoma cell lines when compared to non-malignant astrocytes. In addition, FREM2 gene and protein expression levels are higher in GB stem-like cell lines than in conventional glioblastoma cell lines. FREM2 is thus proposed as a novel GB biomarker and a putative biomarker of glioblastoma stem cells. Both FREM2 and SPRY1 are expressed on the surface of the GB cells, while SPRY1 alone was found overexpressed in the cytosol of non-malignant astrocytes.
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells
Sajesh, Babu V.; McManus, Kirk J.
2015-01-01
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study. PMID:26318585
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.
Sajesh, Babu V; McManus, Kirk J
2015-09-29
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.
Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization.
Fantes, J A; Bickmore, W A; Fletcher, J M; Ballesta, F; Hanson, I M; van Heyningen, V
1992-12-01
Fluorescence in situ hybridization (FISH) with biotin-labeled probes mapping to 11p13 has been used for the molecular analysis of deletions of the WAGR (Wilms tumor, aniridia, genitourinary abnormalities, and mental retardation) locus. We have detected a submicroscopic 11p13 deletion in a child with inherited aniridia who subsequently presented with Wilms tumor in a horseshoe kidney, only revealed at surgery. The mother, who has aniridia, was also found to carry a deletion including both the aniridia candidate gene (AN2) and the Wilms tumor predisposition gene (WT1). This is therefore a rare case of an inherited WAGR deletion. Wilms tumor has so far only been associated with sporadic de novo aniridia cases. We have shown that a cosmid probe for a candidate aniridia gene, homologous to the mouse Pax-6 gene, is deleted in cell lines from aniridia patients with previously characterized deletions at 11p13, while another cosmid marker mapping between two aniridia-associated translocation breakpoints (and hence a second candidate marker) is present on both chromosomes. These results support the Pax-6 homologue as a strong candidate for the AN2 gene. FISH with cosmid probes has proved to be a fast and reliable technique for the molecular analysis of deletions. It can be used with limited amounts of material and has strong potential for clinical applications.
Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates
Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A.; Yu, Shuai; Hans, Michael; Geahlen, Robert L.; Tao, W. Andy
2012-01-01
Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900
Cimmino, Flora; Spano, Daniela; Capasso, Mario; Zambrano, Nicola; Russo, Roberta; Zollo, Massimo; Iolascon, Achille
2007-07-01
Neuroblastoma (NB) is an infant tumor which frequently differentiates into neurons. We used two-dimensional differential in-gel electrophoresis (2D-DIGE) to analyze the cytosolic and nuclear protein expression patterns of LAN-5 cells following neuronal differentiating agent all-trans-retinoic acid treatment. We identified several candidate proteins, from which G beta2 and Prefoldin 3 may have a role on NB development. These results strength the use of proteomics to discover new putative protein targets in cancer.
MicroRNA genes are frequently located near mouse cancer susceptibility loci
Sevignani, Cinzia; Calin, George A.; Nnadi, Stephanie C.; Shimizu, Masayoshi; Davuluri, Ramana V.; Hyslop, Terry; Demant, Peter; Croce, Carlo M.; Siracusa, Linda D.
2007-01-01
MicroRNAs (miRNAs) are short 19- to 24-nt RNA molecules that have been shown to regulate the expression of other genes in a variety of eukaryotic systems. Abnormal expression of miRNAs has been observed in several human cancers, and furthermore, germ-line and somatic mutations in human miRNAs were recently identified in patients with chronic lymphocytic leukemia. Thus, human miRNAs can act as tumor suppressor genes or oncogenes, where mutations, deletions, or amplifications can underlie the development of certain types of leukemia. In addition, previous studies have shown that miRNA expression profiles can distinguish among human solid tumors from different organs. Because a single miRNA can simultaneously influence the expression of two or more protein-coding genes, we hypothesized that miRNAs could be candidate genes for cancer risk. Research in complex trait genetics has demonstrated that genetic background determines cancer susceptibility or resistance in various tissues, such as colon and lung, of different inbred mouse strains. We compared the genome positions of mouse tumor susceptibility loci with those of mouse miRNAs. Here, we report a statistically significant association between the chromosomal location of miRNAs and those of mouse cancer susceptibility loci that influence the development of solid tumors. Furthermore, we identified distinct patterns of flanking DNA sequences for several miRNAs located at or near susceptibility loci in inbred strains with different tumor susceptibilities. These data provide a catalog of miRNA genes in inbred strains that could represent genes involved in the development and penetrance of solid tumors. PMID:17470785
de Souza, Camila Ferreira; Sabedot, Thais S; Malta, Tathiane M; Stetson, Lindsay; Morozova, Olena; Sokolov, Artem; Laird, Peter W; Wiznerowicz, Maciej; Iavarone, Antonio; Snyder, James; deCarvalho, Ana; Sanborn, Zachary; McDonald, Kerrie L; Friedman, William A; Tirapelli, Daniela; Poisson, Laila; Mikkelsen, Tom; Carlotti, Carlos G; Kalkanis, Steven; Zenklusen, Jean; Salama, Sofie R; Barnholtz-Sloan, Jill S; Noushmehr, Houtan
2018-04-10
Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors) to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
HAMLET - A protein-lipid complex with broad tumoricidal activity.
Ho, James C S; Nadeem, Aftab; Svanborg, Catharina
2017-01-15
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a tumoricidal protein-lipid complex with broad effects against cancer cells of different origin. The therapeutic potential is emphasized by a high degree of specificity for tumor tissue. Here we review early studies of HAMLET, in collaboration with the Orrenius laboratory, and some key features of the subsequent development of the HAMLET project. The early studies focused on the apoptotic response that accompanies death in HAMLET treated tumor cells and the role of mitochondria in this process. In subsequent studies, we have identified a sequence of interactions that starts with the membrane integration of HAMLET and the activation of ion fluxes followed by HAMLET internalization, progressive inhibition of MAPK kinases and GTPases and sorting of HAMLET to different cellular compartments, including the nuclei. Therapeutic efficacy of HAMLET has been demonstrated in animal models of glioblastoma, bladder cancer and intestinal cancer. In clinical studies, HAMLET has been shown to target skin papillomas and bladder cancers. The findings identify HAMLET as a new drug candidate with promising selectivity for cancer cells and a strong therapeutic potential. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, M.; Zhang, Z. F.; Reuter, V. E.; Cordon-Cardo, C.
1996-01-01
A deletion analysis of chromosome 3 was conducted in 72 cases of transitional cell carcinoma of the urinary bladder using seven microsatellites spanning the 3p arm and two additional microsatellites in 3q. Results showed that 19 of 72 (26.4%) cases had deletions in one or more 3p regions. Two regions of frequent deletion were identified: 3p12-14 and 3p21-23. Less frequent deletions at 3p24.2-25 were also observed. Deletions at 3p were weakly correlated with tumor grade, but strongly with pathological stage. Among 70 cases with histological grade available, 4 of 29 (13.8%) grade 1 and 2 tumors, and 15 of 41 (36.6%) grade 3 tumors showed allelic losses in one or more of the 3p regions studied (P = 0.055). Among 69 cases with pathological stage available, none of 27 superficial carcinomas (pTa, pTis, and pT1) showed 3p deletions, whereas 18 of 42 (42.9%) muscle invasive lesions (pT2, pT3, and pT4) displayed allelic losses at 3p (P < 0.001). In addition, 12 cases showed microsatellite instability, but there was no correlation between abnormalities and tumor grade or stage. No correlation was found between deletions at 3p21-23 and microsatellite instability. In conclusion, deletions at three discrete regions of 3p were identified in bladder carcinoma, suggesting the involvement of candidate tumor suppressor genes residing in these regions. Moreover, detection of allelic losses in these regions was associated with higher tumor grade and more advanced stage, suggesting their potential involvement in bladder tumor progression. Images Figure 1 Figure 3 PMID:8686747
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaoka, Kazuko; Imajoh-Ohmi, Shinobu; Fukuda, Hiroyuki
2006-07-07
To identify phosphotyrosine-containing proteins essential for maintaining the transformed state, we studied the tyrosine phosphorylation profile of temperature-sensitive mutant of Rous sarcoma virus, tsNY68, infected cells (68N7). Shifting the temperature from 39 {sup o}C (nonpermissive) to 32 {sup o}C (permissive) markedly increased the expression of phosphotyrosine-containing cell membrane proteins of {approx}40 kDa, as assessed by SDS-PAGE. Membrane and nuclear proteins were separated by two-dimensional gel electrophoresis and immunoblotted with anti-phosphotyrosine antibody. Proteins showing temperature-dependent changes in phosphorylation profile were subjected to in-gel digestion with trypsin and analyzed by mass spectrometry. Five proteins were identified: heterogeneous nuclear ribonucleoprotein (hnRNP) A3, hnRNPmore » A2, annexin II, phosphoglycerate mutase 1, and triosephosphate isomerase 1. hnRNP A3 was phosphorylated at serine residues and had both serine and tyrosine phosphorylated sites. These results suggest an important complementary role for proteomics in identifying molecular abnormalities associated with tumor progression that may be attractive candidates for tumor diagnosis.« less
Segmentation of liver region with tumorous tissues
NASA Astrophysics Data System (ADS)
Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji
2007-03-01
Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.
A Surgical Perspective on Targeted Therapy of Hepatocellular Carcinoma
Faltermeier, Claire; Busuttil, Ronald W.; Zarrinpar, Ali
2015-01-01
Hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide, is difficult to treat and highly lethal. Since HCC is predominantly diagnosed in patients with cirrhosis, treatment planning must consider both the severity of liver disease and tumor burden. To minimize the impact to the patient while treating the tumor, techniques have been developed to target HCC. Anatomical targeting by surgical resection or locoregional therapies is generally reserved for patients with preserved liver function and minimal to moderate tumor burden. Patients with decompensated cirrhosis and small tumors are optimal candidates for liver transplantation, which offers the best chance of long-term survival. Yet, only 20%–30% of patients have disease amenable to anatomical targeting. For the majority of patients with advanced HCC, chemotherapy is used to target the tumor biology. Despite these treatment options, the five-year survival of patients in the United States with HCC is only 16%. In this review we provide a comprehensive overview of current approaches to target HCC. We also discuss emerging diagnostic and prognostic biomarkers, novel therapeutic targets identified by recent genomic profiling studies, and potential applications of immunotherapy in the treatment of HCC. PMID:28943622
Reducing the background fluorescence in mice receiving fluorophore/inhibitor DNA duplexes.
Liang, Minmin; Liu, Xinrong; Liu, Guozheng; Dou, Shuping; Cheng, Dengfeng; Liu, Yuxia; Rusckowski, Mary; Hnatowich, Donald J
2011-02-07
In principle, a DNA duplex consisting of an antisense fluorophore-conjugated major strand hybridized to a shorter complementary inhibitor-conjugated minor strand should provide fluorescence only in the tumor after intravenous administration if designed to remain intact except in the presence in tumor of its mRNA target. While we have obtained impressive tumor images in mice using this approach, there remains some background fluorescence. In this study, tissue homogenates of selected mouse organs were incubated with a test duplex and the kinetics of duplex dissociation in normal tissues were measured. In this manner we were able to identify the liver as the likely major source responsible for the duplex dissociation providing this fluorescence background. Thereafter liver homogenates were used to screen a series of duplex candidates with variable-length minor strands, and dissociation was measured by gel electrophoresis. The selected fluorophore/inhibitor duplex with improved stability displayed an insignificant (P > 0.05) background fluorescence after administration to SKH-1 normal mice and apparently without affecting target mRNA binding in vitro in cell culture or in vivo in tumor bearing mice.
Glial tumors with neuronal differentiation.
Park, Chul-Kee; Phi, Ji Hoon; Park, Sung-Hye
2015-01-01
Immunohistochemical studies for neuronal differentiation in glial tumors revealed subsets of tumors having both characteristics of glial and neuronal lineages. Glial tumors with neuronal differentiation can be observed with diverse phenotypes and histologic grades. The rosette-forming glioneuronal tumor of the fourth ventricle and papillary glioneuronal tumor have been newly classified as distinct disease entities. There are other candidates for classification, such as the glioneuronal tumor without pseudopapillary architecture, glioneuronal tumor with neuropil-like islands, and the malignant glioneuronal tumor. The clinical significance of these previously unclassified tumors should be confirmed. Copyright © 2015 Elsevier Inc. All rights reserved.
Yin, Runting; Guo, Le; Zhang, Jie; Liu, Guangzhao; Yao, Wenjuan; Zhu, Hongyan; Xu, Xiaole; Zhang, Wei
2016-07-01
Maspin, a non-inhibitory member of serine protease family, acts as an effective tumor suppressor by inhibiting cell inhesion and mobility. We found that exogenous wild-type rMaspin had a low effect on tumor growth in vivo. However, when the peptide Arg-Gly-Asp-hexahistidine (RGD-6His) was introduced into rMaspin, the modified rMaspin showed significant inhibitory activity in angiogenic assays and tumor-bearing animal models. Overall, our data suggested that both the RGD and hexahistidine fragments contributed to improve the fusion protein activity and polyhistidine peptide could be considered as flexible linker to separate RGD and Maspin moieties to avoid function interference. Besides, it is an efficient tag to achieve purified recombinant proteins. Furthermore, rMaspin fusing with RGD and hexahistidine could be a viable anticancer candidate.
Genomic alterations in Warthin tumors of the parotid gland.
Wemmert, Silke; Willnecker, Vivienne; Sauter, Birgit; Schuh, Sebastian; Brunner, Christian; Bohle, Rainer Maria; Urbschat, Steffi; Schick, Bernhard
2014-04-01
Despite the fact that Warthin tumors are the second most common type of benign salivary gland tumors, information regarding genetic alterations is extremely limited, and the tumorigenesis of these tumors has not been elucidated. The present results of the largest series of 30 tumors analyzed by comparative genomic hybridization (CGH) to date confirmed previous genetic findings and identified significant new candidate regions. The most commonly observed alterations were deletions of the short arm of chromosome 8, followed by deletions on 9p. Further representative changes were deletions on 16p and 22q with the minimal overlapping region at 16p12p13.1 and 22q12.1q12.3. Moreover, we indicated two different patterns of chromosomal aberrations. One group harbors deletions on 8p partly apparent with deletions on 9q, 11q 15q, 16p and 22. The second group shows gains on 22, partly apparent with gains on 1p and 20q and deletions on 9p. This leads to the assumption that Warthin tumors, in particular those with a high number of alterations, can be divided into two different genetic groups based on the pattern of numerical chromosomal aberrations. Further studies should address whether these subgroups also reflect a different clinical presentation.
Comparing the landcapes of common retroviral insertion sites across tumor models
NASA Astrophysics Data System (ADS)
Weishaupt, Holger; Čančer, Matko; Engström, Cristopher; Silvestrov, Sergei; Swartling, Fredrik J.
2017-01-01
Retroviral tagging represents an important technique, which allows researchers to screen for candidate cancer genes. The technique is based on the integration of retroviral sequences into the genome of a host organism, which might then lead to the artificial inhibition or expression of proximal genetic elements. The identification of potential cancer genes in this framework involves the detection of genomic regions (common insertion sites; CIS) which contain a number of such viral integration sites that is greater than expected by chance. During the last two decades, a number of different methods have been discussed for the identification of such loci and the respective techniques have been applied to a variety of different retroviruses and/or tumor models. We have previously established a retrovirus driven brain tumor model and reported the CISs which were found based on a Monte Carlo statistics derived detection paradigm. In this study, we consider a recently proposed alternative graph theory based method for identifying CISs and compare the resulting CIS landscape in our brain tumor dataset to those obtained when using the Monte Carlo approach. Finally, we also employ the graph-based method to compare the CIS landscape in our brain tumor model with those of other published retroviral tumor models.
Mikami, Yoshikazu; Fukushima, Atsushi; Komiyama, Yusuke; Iwase, Takashi; Tsuda, Hiromasa; Higuchi, Yasuhiko; Hayakawa, Satoshi; Kuyama, Kayo; Komiyama, Kazuo
2016-08-28
Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that diminishes tissue destruction during inflammation. A recent report revealed high levels of SLPI expression in the oral carcinoma cell. In addition, overexpression of SLPI up-regulates metastasis in lung carcinoma cells. On the other hand, matrix metalloproteinases (MMPs) are proteinases that participate in extracellular matrix degradation. SLPI and MMPs are involved as accelerators of the tumor invasion process; however, their exact roles are not fully understood. Understanding the mechanism of tumor invasion requires models that take the effect of microenvironmental factors into account. In one such in vitro model, different carcinoma cells have been shown to invade myoma tissue in highly distinct patterns. We have used this myoma model, as it provides a more natural stroma-like environment, to investigate the role of SLPI in tumor invasion. Our results indicate that the model provides a relevant matrix for tumor invasion studies, and that SLPI is important for the invasion of oral carcinoma Ca9-22 cells in conjunction with MMPs. Furthermore, using bioinformatics analysis, we have identified candidates as key molecules involved in SLPI-mediated tumor invasion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A; Kiebler, Michael; Temple, Sally
2012-10-05
Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here, we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2(+) neuroblast daughter, taking with it a subset of RNAs. Knockdown of Stau2 stimulates differentiation and overexpression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified candidates, including a subset involved in primary cilium function. Copyright © 2012 Elsevier Inc. All rights reserved.
Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A.; Kiebler, Michael; Temple, Sally
2012-01-01
Summary Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2+ neuroblast daughter, taking with it a sub-set of RNAs. Knockdown of Stau2 stimulates differentiation and over-expression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified novel candidates, including a subset involved in primary cilium function. PMID:22902295
Holm, Karolina; Staaf, Johan; Lauss, Martin; Aine, Mattias; Lindgren, David; Bendahl, Pär-Ola; Vallon-Christersson, Johan; Barkardottir, Rosa Bjork; Höglund, Mattias; Borg, Åke; Jönsson, Göran; Ringnér, Markus
2016-02-29
Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized. Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states. We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern correlated with gene expression levels and was associated with methylation in luminal tumors and genes with active promoters in normal epithelial cells. Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.
Baysan, Mehmet; Woolard, Kevin; Cam, Margaret C; Zhang, Wei; Song, Hua; Kotliarova, Svetlana; Balamatsias, Demosthenes; Linkous, Amanda; Ahn, Susie; Walling, Jennifer; Belova, Galina I; Fine, Howard A
2017-11-15
Intratumoral heterogeneity at the genetic, epigenetic, transcriptomic, and morphologic levels is a commonly observed phenomenon in many aggressive cancer types. Clonal evolution during tumor formation and in response to therapeutic intervention can be predicted utilizing reverse engineering approaches on detailed genomic snapshots of heterogeneous patient tumor samples. In this study, we developed an extensive dataset for a GBM case via the generation of polyclonal and monoclonal glioma stem cell lines from initial diagnosis, and from multiple sections of distant tumor locations of the deceased patient's brain following tumor recurrence. Our analyses revealed the tissue-wide expansion of a new clone in the recurrent tumor and chromosome 7 gain and chromosome 10 loss as repeated genomic events in primary and recurrent disease. Moreover, chromosome 7 gain and chromosome 10 loss produced similar alterations in mRNA expression profiles in primary and recurrent tumors despite possessing other highly heterogeneous and divergent genomic alterations between the tumors. We identified ETV1 and CDK6 as putative candidate genes, and NFKB (complex), IL1B, IL6, Akt and VEGF as potential signaling regulators, as potentially central downstream effectors of chr7 gain and chr10 loss. Finally, the differences caused by the transcriptomic shift following gain of chromosome 7 and loss of chromosome 10 were consistent with those generally seen in GBM samples compared to normal brain in large-scale patient-tumor data sets. © 2017 UICC.
Genomic similarity between gastroesophageal junction and esophageal Barrett's adenocarcinomas
Kuick, Rork; Thomas, Dafydd G.; Nadal, Ernest; Lin, Jules; Chang, Andrew C.; Reddy, Rishindra M.; Orringer, Mark B.; Taylor, Jeremy M. G.; Wang, Thomas D.; Beer, David G.
2016-01-01
The current high mortality rate of esophageal adenocarcinoma (EAC) reflects frequent presentation at an advanced stage. Recent efforts utilizing fluorescent peptides have identified overexpressed cell surface targets for endoscopic detection of early stage Barrett's-derived EAC. Unfortunately, 30% of EAC patients present with gastroesophageal junction adenocarcinomas (GEJAC) and lack premalignant Barrett's metaplasia, limiting this early detection strategy. We compared mRNA profiles from 52 EACs (tubular EAC; tEAC) collected above the gastroesophageal junction with 70 GEJACs, 8 normal esophageal and 5 normal gastric mucosa samples. We also analyzed our previously published whole-exome sequencing data in a large cohort of these tumors. Principal component analysis, hierarchical clustering and survival-based analyses demonstrated that GEJAC and tEAC were highly similar, with only modest differences in expression and mutation profiles. The combined expression cohort allowed identification of 49 genes coding cell surface targets overexpressed in both GEJAC and tEAC. We confirmed that three of these candidates (CDH11, ICAM1 and CLDN3) were overexpressed in tumors when compared to normal esophagus, normal gastric and non-dysplastic Barrett's, and localized to the surface of tumor cells. Molecular profiling of tEAC and GEJAC tumors indicated extensive similarity and related molecular processes. Identified genes that encode cell surface proteins overexpressed in both Barrett's-derived EAC and those that arise without Barrett's metaplasia will allow simultaneous detection strategies. PMID:27363029
Patel, Ami V.; Eaves, David; Jessen, Walter J.; Rizvi, Tilat A.; Ecsedy, Jeffrey A.; Qian, Mark G.; Aronow, Bruce J.; Perentesis, John P.; Serra, Eduard; Cripe, Timothy P.; Miller, Shyra J.; Ratner, Nancy
2013-01-01
Purpose Patients with Neurofibromatosis Type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST) which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to utilize comprehensive gene expression analysis to identify novel therapeutic targets. Experimental Design Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST due to the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively-active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase over-expression in MPNST in vitro and in vivo using Aurora kinase shRNAs and compounds that inhibit Aurora kinase. Results We identified 2000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically over-expressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. Conclusion Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST. PMID:22811580
Quantitative Expression and Immunogenicity of MAGE-3 and -6 in Upper Aerodigestive Tract Cancer
Andrade Filho, Pedro A.; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L.
2009-01-01
The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aero-digestive tract (UADT) tumor cells and its association with T cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using western blot. HLA-A*0201:MAGE-3(271–279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. Based on MAGE-3/6 expression we could identify 31 (47%) of the 65 UADT tumors which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, two MAGE-3/6 mRNAhigh SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6 specific knockdown. RNAi–transfected cells showed that MAGE expression, and MAGE-CTL recognition, were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials. PMID:19610063
Quantitative expression and immunogenicity of MAGE-3 and -6 in upper aerodigestive tract cancer.
Filho, Pedro A Andrade; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L
2009-10-15
The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aerodigestive tract (UADT) tumor cells and its association with T-cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE-specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+ squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using Western blot. HLA-A*0201:MAGE-3- (271-279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. On the basis of the MAGE-3/6 expression, we could identify 31 (47%) of the 65 UADT tumors, which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, 2 MAGE-3/6 mRNA(high) SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6-specific knockdown. RNAi-transfected cells showed that MAGE expression and MAGE-CTL recognition were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR-based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials.
Yu, Su Jong; Kim, Hyunsoo; Min, Hophil; Sohn, Areum; Cho, Young Youn; Yoo, Jeong-Ju; Lee, Dong Hyeon; Cho, Eun Ju; Lee, Jeong-Hoon; Gim, Jungsoo; Park, Taesung; Kim, Yoon Jun; Kim, Chung Yong; Yoon, Jung-Hwan; Kim, Youngsoo
2017-03-03
This study was aimed to identify blood-based biomarkers to predict a sustained complete response (CR) after transarterial chemoembolization (TACE) using targeted proteomics. Consecutive patients with HCC who had undergone TACE were prospectively enrolled (training (n = 100) and validation set (n = 80)). Serum samples were obtained before and 6 months after TACE. Treatment responses were evaluated using the modified Response Evaluation Criteria in Solid Tumors (mRECIST). In the training set, the MRM-MS assay identified five marker candidate proteins (LRG1, APCS, BCHE, C7, and FCN3). When this five-marker panel was combined with the best-performing clinical variables (tumor number, baseline PIVKA, and baseline AFP), the resulting ensemble model had the highest area under the receiver operating curve (AUROC) value in predicting a sustained CR after TACE in the training and validation sets (0.881 and 0.813, respectively). Furthermore, the ensemble model was an independent predictor of rapid progression (hazard ratio (HR), 2.889; 95% confidence interval (CI), 1.612-5.178; P value < 0.001) and overall an unfavorable survival rate (HR, 1.985; 95% CI, 1.024-3.848; P value = 0.042) in the entire population by multivariate analysis. Targeted proteomics-based ensemble model can predict clinical outcomes after TACE. Therefore, this model can aid in determining the best candidates for TACE and the need for adjuvant therapy.
Huynh, Thu P.; Barwe, Sonali P.; Lee, Seung J.; McSpadden, Ryan; Franco, Omar E.; Hayward, Simon W.; Damoiseaux, Robert; Grubbs, Stephen S.; Petrelli, Nicholas J.; Rajasekaran, Ayyappan K.
2015-01-01
Glucocorticoids are commonly used as palliative or chemotherapeutic clinical agents for treatment of a variety of cancers. Although steroid treatment is beneficial, the mechanisms by which steroids improve outcome in cancer patients are not well understood. Na,K-ATPase beta-subunit isoform 1 (NaK-β1) is a cell-cell adhesion molecule, and its expression is down-regulated in cancer cells undergoing epithelial-to mesenchymal-transition (EMT), a key event associated with cancer progression to metastatic disease. In this study, we performed high-throughput screening to identify small molecules that could up-regulate NaK-β1 expression in cancer cells. Compounds related to the glucocorticoids were identified as drug candidates enhancing NaK-β1 expression. Of these compounds, triamcinolone, dexamethasone, and fluorometholone were validated to increase NaK-β1 expression at the cell surface, enhance cell-cell adhesion, attenuate motility and invasiveness and induce mesenchymal to epithelial like transition of renal cell carcinoma (RCC) cells in vitro. Treatment of NaK-β1 knockdown cells with these drug candidates confirmed that these compounds mediate their effects through up-regulating NaK-β1. Furthermore, we demonstrated that these compounds attenuate tumor growth in subcutaneous RCC xenografts and reduce local invasiveness in orthotopically-implanted tumors. Our results strongly indicate that the addition of glucocorticoids in the treatment of RCC may improve outcome for RCC patients by augmenting NaK-β1 cell-cell adhesion function. PMID:25836370
Nguyen, Dinh-Duc; Lee, Dong Gyu; Kim, Sinae; Kang, Keunsoo; Rhee, Je-Keun; Chang, Suhwan
2018-05-14
BRCA1 is a multifunctional tumor suppressor involved in several essential cellular processes. Although many of these functions are driven by or related to its transcriptional/epigenetic regulator activity, there has been no genome-wide study to reveal the transcriptional/epigenetic targets of BRCA1. Therefore, we conducted a comprehensive analysis of genomics/transcriptomics data to identify novel BRCA1 target genes. We first analyzed ENCODE data with BRCA1 chromatin immunoprecipitation (ChIP)-sequencing results and identified a set of genes with a promoter occupied by BRCA1. We collected 3085 loci with a BRCA1 ChIP signal from four cell lines and calculated the distance between the loci and the nearest gene transcription start site (TSS). Overall, 66.5% of the BRCA1-bound loci fell into a 2-kb region around the TSS, suggesting a role in transcriptional regulation. We selected 45 candidate genes based on gene expression correlation data, obtained from two GEO (Gene Expression Omnibus) datasets and TCGA data of human breast cancer, compared to BRCA1 expression levels. Among them, we further tested three genes ( MEIS2 , CKS1B and FADD ) and verified FADD as a novel direct target of BRCA1 by ChIP, RT-PCR, and a luciferase reporter assay. Collectively, our data demonstrate genome-wide transcriptional regulation by BRCA1 and suggest target genes as biomarker candidates for BRCA1-associated breast cancer.
Emerging Indications for Fractionated Gamma Knife Radiosurgery.
McTyre, Emory; Helis, Corbin A; Farris, Michael; Wilkins, Lisa; Sloan, Darrell; Hinson, William H; Bourland, J Daniel; Dezarn, William A; Munley, Michael T; Watabe, Kounosuke; Xing, Fei; Laxton, Adrian W; Tatter, Stephen B; Chan, Michael D
2017-02-01
Gamma Knife radiosurgery (GKRS) allows for the treatment of intracranial tumors with a high degree of dose conformality and precision. There are, however, certain situations wherein the dose conformality of GKRS is desired, but single session treatment is contraindicated. In these situations, a traditional pin-based GKRS head frame cannot be used, as it precludes fractionated treatment. To report our experience in treating patients with fractionated GKRS using a relocatable, noninvasive immobilization system. Patients were considered candidates for fractionated GKRS if they had one or more of the following indications: a benign tumor >10 cc in volume or abutting the optic pathway, a vestibular schwannoma with the intent of hearing preservation, or a tumor previously irradiated with single fraction GKRS. The immobilization device used for all patients was the Extend system (Leksell Gamma Knife Perfexion, Elekta, Kungstensgatan, Stockholm). We identified 34 patients treated with fractionated GKRS between August 2013 and February 2015. There were a total of 37 tumors treated including 15 meningiomas, 11 pituitary adenomas, 6 brain metastases, 4 vestibular schwannomas, and 1 hemangioma. At last follow-up, all 21 patients treated for perioptic tumors had stable or improved vision and all 4 patients treated for vestibular schwannoma maintained serviceable hearing. No severe adverse events were reported. Fractionated GKRS was well-tolerated in the treatment of large meningiomas, perioptic tumors, vestibular schwannomas with intent of hearing preservation, and in reirradiation of previously treated tumors.
Is Perineural Invasion of Head and Neck Squamous Cell Carcinomas Linked to Tobacco Consumption?
Baumeister, Philipp; Welz, Christian; Jacobi, Christian; Reiter, Maximilian
2018-05-01
Perineural invasion (PNI) is an underrecognized path of cancer spread, and its causes and mechanisms are poorly understood. Recent research indicates a mutual attraction of neuronal and cancer cells, largely dependent on neurotrophic factors and their receptors. Interestingly, the release of neurotrophic factors occurs upon cigarette smoke/nicotine exposure in a dose-dependent manner, and serum levels correlate with current smoking, number of smoking years, and smoking severity. Among cell types capable of neurotrophic factors secretion are lung and oral fibroblasts. In our study of 178 patients with head and neck squamous cell carcinoma, tumors of current and former smokers showed PNI significantly more often than tumors of never smokers. Moreover, PNI was a marker for aggressive tumor growth. Surprisingly, PNI was more significant for survival than p16 status. Our study warrants further research on PNI in head and neck squamous cell carcinoma with special emphasis on the impact of tobacco consumption to identify suitable candidates for therapeutic interventions.
Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers
Flor, Amy C.; Sutton, Harold G.; Kron, Stephen J.; Weichselbaum, Ralph R.
2016-01-01
Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy. PMID:27129153
Identifying the potential long-term survivors among breast cancer patients with distant metastasis.
Lee, E S; Jung, S Y; Kim, J Y; Kim, J J; Yoo, T K; Kim, Y G; Lee, K S; Lee, E S; Kim, E K; Min, J W; Han, W; Noh, D Y; Moon, H G
2016-05-01
We aimed to develop a prediction model to identify long-term survivors after developing distant metastasis from breast cancer. From the institution's database, we collected data of 547 patients who developed distant metastasis during their follow-ups. We developed a model that predicts the post-metastasis overall survival (PMOS) based on the clinicopathologic factors of the primary tumors and the characteristics of the distant metastasis. For validation, the survival data of 254 patients from four independent institutions were used. The median duration of the PMOS was 31.0 months. The characteristics of the initial primary tumor, such as tumor stage, hormone receptor status, and Ki-67 expression level, and the characteristics of the distant metastasis presentation including the duration of disease-free interval, the site of metastasis, and the presence of metastasis-related symptoms were independent prognostic factors determining the PMOS. The association between tumor stage and the PMOS was only seen in tumors with early relapses. The PMOS score, which was developed based on the above six factors, successfully identified patients with superior survival after metastasis. The median PMOS for patients with a PMOS score of <2 and for patients with a PMOS score of >5 were 71.0 and 12 months, respectively. The clinical significance of the PMOS score was further validated using independent multicenter datasets. We have developed a novel prediction model that can classify breast cancer patients with distant metastasis according to their survival after metastasis. Our model can be a valuable tool to identify long-term survivors who can be potential candidates for more intensive multidisciplinary approaches. Furthermore, our model can provide a more reliable survival information for both physicians and patients during their informed decision-making process. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Whiteaker, Jeffrey R; Zhang, Heidi; Zhao, Lei; Wang, Pei; Kelly-Spratt, Karen S; Ivey, Richard G; Piening, Brian D; Feng, Li-Chia; Kasarda, Erik; Gurley, Kay E; Eng, Jimmy K; Chodosh, Lewis A; Kemp, Christopher J; McIntosh, Martin W; Paulovich, Amanda G
2007-10-01
Despite their potential to impact diagnosis and treatment of cancer, few protein biomarkers are in clinical use. Biomarker discovery is plagued with difficulties ranging from technological (inability to globally interrogate proteomes) to biological (genetic and environmental differences among patients and their tumors). We urgently need paradigms for biomarker discovery. To minimize biological variation and facilitate testing of proteomic approaches, we employed a mouse model of breast cancer. Specifically, we performed LC-MS/MS of tumor and normal mammary tissue from a conditional HER2/Neu-driven mouse model of breast cancer, identifying 6758 peptides representing >700 proteins. We developed a novel statistical approach (SASPECT) for prioritizing proteins differentially represented in LC-MS/MS datasets and identified proteins over- or under-represented in tumors. Using a combination of antibody-based approaches and multiple reaction monitoring-mass spectrometry (MRM-MS), we confirmed the overproduction of multiple proteins at the tissue level, identified fibulin-2 as a plasma biomarker, and extensively characterized osteopontin as a plasma biomarker capable of early disease detection in the mouse. Our results show that a staged pipeline employing shotgun-based comparative proteomics for biomarker discovery and multiple reaction monitoring for confirmation of biomarker candidates is capable of finding novel tissue and plasma biomarkers in a mouse model of breast cancer. Furthermore, the approach can be extended to find biomarkers relevant to human disease.
King, Carly J.; Woodward, Josha; Schwartzman, Jacob; Coleman, Daniel J.; Lisac, Robert; Wang, Nicholas J.; Van Hook, Kathryn; Gao, Lina; Urrutia, Joshua; Dane, Mark A.; Heiser, Laura M.; Alumkal, Joshi J.
2017-01-01
Recent work demonstrates that castration-resistant prostate cancer (CRPC) tumors harbor countless genomic aberrations that control many hallmarks of cancer. While some specific mutations in CRPC may be actionable, many others are not. We hypothesized that genomic aberrations in cancer may operate in concert to promote drug resistance and tumor progression, and that organization of these genomic aberrations into therapeutically targetable pathways may improve our ability to treat CRPC. To identify the molecular underpinnings of enzalutamide-resistant CRPC, we performed transcriptional and copy number profiling studies using paired enzalutamide-sensitive and resistant LNCaP prostate cancer cell lines. Gene networks associated with enzalutamide resistance were revealed by performing an integrative genomic analysis with the PAthway Representation and Analysis by Direct Reference on Graphical Models (PARADIGM) tool. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with MEK, EGFR, RAS, and NFKB. Functional validation studies of 64 genes identified 10 candidate genes whose suppression led to greater effects on cell viability in enzalutamide-resistant cells as compared to sensitive parental cells. Examination of a patient cohort demonstrated that several of our functionally-validated gene hits are deregulated in metastatic CRPC tumor samples, suggesting that they may be clinically relevant therapeutic targets for patients with enzalutamide-resistant CRPC. Altogether, our approach demonstrates the potential of integrative genomic analyses to clarify determinants of drug resistance and rational co-targeting strategies to overcome resistance. PMID:29340039
Quantitative genome-wide methylation analysis of high-grade non-muscle invasive bladder cancer
Kitchen, Mark O.; Bryan, Richard T.; Emes, Richard D.; Glossop, John R.; Luscombe, Christopher; Cheng, K. K.; Zeegers, Maurice P.; James, Nicholas D.; Devall, Adam J.; Mein, Charles A.; Gommersall, Lyndon; Fryer, Anthony A.; Farrell, William E.
2016-01-01
ABSTRACT High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable disease with greater risks of recurrence and progression relative to their low-intermediate-grade counterparts. The molecular events, including those affecting the epigenome, that characterize this disease entity in the context of tumor development, recurrence, and progression, are incompletely understood. We therefore interrogated genome-wide DNA methylation using HumanMethylation450 BeadChip arrays in 21 primary HG-NMIBC tumors relative to normal bladder controls. Using strict inclusion-exclusion criteria we identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, representing 256 genes. We validated the array data by bisulphite pyrosequencing and examined 25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-intermediate-grade NMIBC. These analyses revealed significantly higher methylation frequencies in high-grade tumors relative to low-intermediate-grade tumors for the ATP5G2, IRX1 and VAX2 genes (P<0.05), and similarly significant increases in mean levels of methylation in high-grade tumors for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, TFAP2b, PRRX1, and HIST1H4F genes (P<0.05). Although inappropriate promoter methylation was not invariantly associated with reduced transcript expression, a significant association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts (P<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal bladder and low-intermediate-grade tumors. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination, with more conventional therapeutic options in the treatment of this clinically unpredictable disease. PMID:26929985
Cardó-Vila, Marina; Marchiò, Serena; Sato, Masanori; Staquicini, Fernanda I; Smith, Tracey L; Bronk, Julianna K; Yin, Guosheng; Zurita, Amado J; Sun, Menghong; Behrens, Carmen; Sidman, Richard L; Lee, J Jack; Hong, Waun K; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata
2016-08-01
We previously isolated an IL-11-mimic motif (CGRRAGGSC) that binds to IL-11 receptor (IL-11R) in vitro and accumulates in IL-11R-expressing tumors in vivo. This synthetic peptide ligand was used as a tumor-targeting moiety in the rational design of BMTP-11, which is a drug candidate in clinical trials. Here, we investigated the specificity and accessibility of IL-11R as a target and the efficacy of BMTP-11 as a ligand-targeted drug in lung cancer. We observed high IL-11R expression levels in a large cohort of patients (n = 368). In matching surgical specimens (i.e., paired tumors and nonmalignant tissues), the cytoplasmic levels of IL-11R in tumor areas were significantly higher than in nonmalignant tissues (n = 36; P = 0.003). Notably, marked overexpression of IL-11R was observed in both tumor epithelial and vascular endothelial cell membranes (n = 301; P < 0.0001). BMTP-11 induced in vitro cell death in a representative panel of human lung cancer cell lines. BMTP-11 treatment attenuated the growth of subcutaneous xenografts and reduced the number of pulmonary tumors after tail vein injection of human lung cancer cells in mice. Our findings validate BMTP-11 as a pharmacologic candidate drug in preclinical models of lung cancer and patient-derived tumors. Moreover, the high expression level in patients with non-small cell lung cancer is a promising feature for potential translational applications. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Identification of aberrantly expressed long non-coding RNAs in stomach adenocarcinoma.
Gu, Jianbin; Li, Yong; Fan, Liqiao; Zhao, Qun; Tan, Bibo; Hua, Kelei; Wu, Guobin
2017-07-25
Stomach adenocarcinoma (STAD) is a common malignancy worldwide. This study aimed to identify the aberrantly expressed long non-coding RNAs (lncRNAs) in STAD. Total of 74 DElncRNAs and 449 DEmRNAs were identified in STAD compared with paired non-tumor tissues. The DElncRNA/DEmRNA co-expression network was constructed, which covered 519 nodes and 2993 edges. The qRT-PCR validation results of DElncRNAs were consistent with our bioinformatics analysis based on RNA-sequencing. The DEmRNAs co-expressed with DElncRNAs were significantly enriched in gastric acid secretion, complement and coagulation cascades, pancreatic secretion, cytokine-cytokine receptor interaction and Jak-STAT signaling pathway. The expression levels of the nine candidate DElncRNAs in TCGA database were compatible with our RNA-sequencing. FEZF1-AS1, HOTAIR and LINC01234 had the potential diagnosis value for STAD. The lncRNA and mRNA expression profile of 3 STAD tissues and 3 matched adjacent non-tumor tissues was obtained through high-throughput RNA-sequencing. Differentially expressed lncRNAs/mRNAs (DElncRNAs/DEmRNAs) were identified in STAD. DElncRNA/DEmRNA co-expression network construction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predict the biological functions of DElncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was subjected to validate the expression levels of DEmRNAs and DElncRNAs. Moreover, the expression of DElncRNAs was validated through The Cancer Genome Atlas (TCGA) database. The diagnosis value of candidate DElncRNAs was accessed by receiver operating characteristic (ROC) analysis. Our work might provide useful information for exploring the tumorigenesis mechanism of STAD and pave the road for identification of diagnostic biomarkers in STAD.
de Bruin, Christiaan; Mericq, Verónica; Andrew, Shayne F.; van Duyvenvoorde, Hermine A.; Verkaik, Nicole S.; Losekoot, Monique; Porollo, Aleksey; Garcia, Hernán; Kuang, Yi; Hanson, Dan; Clayton, Peter; van Gent, Dik C.; Wit, Jan M.; Hwa, Vivian
2015-01-01
Context: Severe short stature can be caused by defects in numerous biological processes including defects in IGF-1 signaling, centromere function, cell cycle control, and DNA damage repair. Many syndromic causes of short stature are associated with medical comorbidities including hypogonadism and microcephaly. Objective: To identify an underlying genetic etiology in two siblings with severe short stature and gonadal failure. Design: Clinical phenotyping, genetic analysis, complemented by in vitro functional studies of the candidate gene. Setting: An academic pediatric endocrinology clinic. Patients or Other Participants: Two adult siblings (male patient [P1] and female patient 2 [P2]) presented with a history of severe postnatal growth failure (adult heights: P1, −6.8 SD score; P2, −4 SD score), microcephaly, primary gonadal failure, and early-onset metabolic syndrome in late adolescence. In addition, P2 developed a malignant gastrointestinal stromal tumor at age 28. Intervention(s): Single nucleotide polymorphism microarray and exome sequencing. Results: Combined microarray analysis and whole exome sequencing of the two affected siblings and one unaffected sister identified a homozygous variant in XRCC4 as the probable candidate variant. Sanger sequencing and mRNA studies revealed a splice variant resulting in an in-frame deletion of 23 amino acids. Primary fibroblasts (P1) showed a DNA damage repair defect. Conclusions: In this study we have identified a novel pathogenic variant in XRCC4, a gene that plays a critical role in non-homologous end-joining DNA repair. This finding expands the spectrum of DNA damage repair syndromes to include XRCC4 deficiency causing severe postnatal growth failure, microcephaly, gonadal failure, metabolic syndrome, and possibly tumor predisposition. PMID:25742519
Riquelme, Erick; Tang, Moying; Baez, Sergio; Diaz, Alfonso; Pruyas, Martha; Wistuba, Ignacio I; Corvalan, Alejandro
2007-05-18
Gallbladder carcinoma (GBC) is a highly malignant neoplasm that represents the leading cause of death for cancer in Chilean females. There is limited information about the molecular abnormalities involved in its pathogenesis. We have identified a number of molecular changes in GBC, including frequent allelic losses at chromosome 3p regions. Four distinct 3p sites (3p12, 3p14.2, 3p21.3 and 3p22-24) with frequent and early allelic losses in the sequential pathogenesis of this neoplasm have been detected. We investigated epigenetic and genetic abnormalities in GBC affecting 6 candidate tumor suppressor genes (TSG) located in chromosome 3p, including DUTT1 (3p12), FHIT (3p14.2), BLU, RASSF1A, SEMA3B and hMLH1 (3p21.3). DNA extracted from frozen tissue obtained from 50 surgical resected GBCs was examined for gene promoter methylation using MSP (methylation-specific PCR) technique after bisulfite treatment in all 6 genes. In addition, we performed PCR-based mutation examination using SSCP in FHIT and RASSF1A genes and loss of heterozygosity (LOH) analysis using microdissected tissue in a subset of tumors for the 3p21.3 region with 8 microsatellite markers. A very high frequency of GBC methylation was detected in SEMA3B (46/50, 92%) and FHIT (33/50, 66%), intermediate incidences in BLU (13/50, 26%) and DUTT1 (11/50, 22%) and very low frequencies in RASSF1A (4/50, 8%) and hMLH1 (2/50, 4%). Allelic loss at 3p21.3 was found in nearly half of the GBCs examined. We conclude that epigenetic inactivation by abnormal promoter methylation is a frequent event in chromosome 3p candidate TSGs in GBC pathogenesis, especially affecting genes SEMA3B (3p21.3) and FHIT (3p14.2).
A Mouse to Human Search for Plasma Proteome Changes Associated with Pancreatic Tumor Development
Faca, Vitor M; Song, Kenneth S; Wang, Hong; Zhang, Qing; Krasnoselsky, Alexei L; Newcomb, Lisa F; Plentz, Ruben R; Gurumurthy, Sushma; Redston, Mark S; Pitteri, Sharon J; Pereira-Faca, Sandra R; Ireton, Renee C; Katayama, Hiroyuki; Glukhova, Veronika; Phanstiel, Douglas; Brenner, Dean E; Anderson, Michelle A; Misek, David; Scholler, Nathalie; Urban, Nicole D; Barnett, Matt J; Edelstein, Cim; Goodman, Gary E; Thornquist, Mark D; McIntosh, Martin W; DePinho, Ronald A; Bardeesy, Nabeel; Hanash, Samir M
2008-01-01
Background The complexity and heterogeneity of the human plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. Refined genetically engineered mouse (GEM) models of human cancer have been shown to faithfully recapitulate the molecular, biological, and clinical features of human disease. Here, we sought to exploit the merits of a well-characterized GEM model of pancreatic cancer to determine whether proteomics technologies allow identification of protein changes associated with tumor development and whether such changes are relevant to human pancreatic cancer. Methods and Findings Plasma was sampled from mice at early and advanced stages of tumor development and from matched controls. Using a proteomic approach based on extensive protein fractionation, we confidently identified 1,442 proteins that were distributed across seven orders of magnitude of abundance in plasma. Analysis of proteins chosen on the basis of increased levels in plasma from tumor-bearing mice and corroborating protein or RNA expression in tissue documented concordance in the blood from 30 newly diagnosed patients with pancreatic cancer relative to 30 control specimens. A panel of five proteins selected on the basis of their increased level at an early stage of tumor development in the mouse was tested in a blinded study in 26 humans from the CARET (Carotene and Retinol Efficacy Trial) cohort. The panel discriminated pancreatic cancer cases from matched controls in blood specimens obtained between 7 and 13 mo prior to the development of symptoms and clinical diagnosis of pancreatic cancer. Conclusions Our findings indicate that GEM models of cancer, in combination with in-depth proteomic analysis, provide a useful strategy to identify candidate markers applicable to human cancer with potential utility for early detection. PMID:18547137
Johnson, Jennifer; Ascierto, Maria Libera; Mittal, Sandeep; Newsome, David; Kang, Liang; Briggs, Michael; Tanner, Kirk; Marincola, Francesco M; Berens, Michael E; Vande Woude, George F; Xie, Qian
2015-09-17
Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Interrogation of genomic data from TCGA GBM (Student's t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student's t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student's t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFR(amp) was tested for MET activation as a mechanism of erlotinib resistance. We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFR (amp) tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors. Human and mouse microarrays maybe used to dissect the tumor-host interactions. Targeting MET in EGFR (amp) GBM may delay the acquired resistance developed during treatment with erlotinib.
Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng
2018-04-01
Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
2011-03-01
with Dr. Arkin to address compound selectivity for human RAD54 by testing the 5 lead candidate compounds identified in the HTS in malachite green...Mukherjee is on track to achieve this goal. Task 3 (Months 3-6): Development of malachite green ATPase assay for RAD51/RAD54 Deliverable: HTS...assay for RAD51/RAD54 Dr. Kirk Ehmsen successfully developed and optimized the malachite green ATPase assay (7) for human RAD54 in year 1 of the
Wittig-Blaich, Stephanie; Wittig, Rainer; Schmidt, Steffen; Lyer, Stefan; Bewerunge-Hudler, Melanie; Gronert-Sum, Sabine; Strobel-Freidekind, Olga; Müller, Carolin; List, Markus; Jaskot, Aleksandra; Christiansen, Helle; Hafner, Mathias; Schadendorf, Dirk; Block, Ines; Mollenhauer, Jan
2017-01-01
Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes. This was facilitated by a novel system for the construction of isogenic constitutive and inducible gain- and loss-of-function cell lines. Additionally, we demonstrate the construction of isogenic cell lines with combinations of the traits for advanced functional in vitro analyses. In a proof-of-concept experiment, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential to identify new drug targets via the identification of the tumor suppressor DUSP6 as potential synthetic lethal target in melanoma cell lines with BRAF V600E mutations and high DUSP6 expression. PMID:28423600
Candidate immune biomarkers for radioimmunotherapy.
Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric
2017-08-01
Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy. Copyright © 2017. Published by Elsevier B.V.
Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong
2018-06-11
We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.
Chang, Hae Ryung; Nam, Seungyoon; Lee, Jinhyuk; Kim, Jin-Hee; Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui
2016-12-06
Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer "Big Data" has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of "hit" compounds.
Frerich, Candace A.; Brayer, Kathryn J.; Painter, Brandon M.; Kang, Huining; Mitani, Yoshitsugu; El-Naggar, Adel K.; Ness, Scott A.
2018-01-01
The relative rarity of salivary gland adenoid cystic carcinoma (ACC) and its slow growing yet aggressive nature has complicated the development of molecular markers for patient stratification. To analyze molecular differences linked to the protracted disease course of ACC and metastases that form 5 or more years after diagnosis, detailed RNA-sequencing (RNA-seq) analysis was performed on 68 ACC tumor samples, starting with archived, formalin-fixed paraffin-embedded (FFPE) samples up to 25 years old, so that clinical outcomes were available. A statistical peak-finding approach was used to classify the tumors that expressed MYB or MYBL1, which had overlapping gene expression signatures, from a group that expressed neither oncogene and displayed a unique phenotype. Expression of MYB or MYBL1 was closely correlated to the expression of the SOX4 and EN1 genes, suggesting that they are direct targets of Myb proteins in ACC tumors. Unsupervised hierarchical clustering identified a subgroup of approximately 20% of patients with exceptionally poor overall survival (median less than 30 months) and a unique gene expression signature resembling embryonic stem cells. The results provide a strategy for stratifying ACC patients and identifying the high-risk, poor-outcome group that are candidates for personalized therapies. PMID:29484115
Coherent Raman Scattering Microscopy for Evaluation of Head and Neck Carcinoma.
Hoesli, Rebecca C; Orringer, Daniel A; McHugh, Jonathan B; Spector, Matthew E
2017-09-01
Objective We aim to describe a novel, label-free, real-time imaging technique, coherent Raman scattering (CRS) microscopy, for histopathological evaluation of head and neck cancer. We evaluated the ability of CRS microscopy to delineate between tumor and nonneoplastic tissue in tissue samples from patients with head and neck cancer. Study Design Prospective case series. Setting Tertiary care medical center. Subjects and Methods Patients eligible were surgical candidates with biopsy-proven, previously untreated head and neck carcinoma and were consented preoperatively for participation in this study. Tissue was collected from 50 patients, and after confirmation of tumor and normal specimens by hematoxylin and eosin (H&E), there were 42 tumor samples and 42 normal adjacent controls. Results There were 42 confirmed carcinoma specimens on H&E, and CRS microscopy identified 37 as carcinoma. Of the 42 normal specimens, CRS microscopy identified 40 as normal. This resulted in a sensitivity of 88.1% and specificity of 95.2% in distinguishing between neoplastic and nonneoplastic images. Conclusion CRS microscopy is a unique label-free imaging technique that can provide rapid, high-resolution images and can accurately determine the presence of head and neck carcinoma. This holds potential for implementation into standard practice, allowing frozen margin evaluation even at institutions without a histopathology laboratory.
Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina
2004-03-15
Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.
Srivatsan, Avinash; Wang, Yanfang; Joshi, Penny; Sajjad, Munawwar; Chen, Yihui; Liu, Chao; Thankppan, Krishnakumar; Missert, Joseph R.; Tracy, Erin; Morgan, Janet; Rigual, Nestor; Baumann, Heinz; Pandey, Ravindra K.
2011-01-01
Among the photosensitizers investigated, both ring-D and ring-B reduced chlorins containing the m-iodobenzyloxyethyl group at position-3 and a carboxylic acid functionality at position-172 showed highest uptake by tumor cells and light-dependent photo reaction that correlated with maximal tumor-imaging [positron emission tomography (PET) and fluorescence] and long-term photodynamic therapy (PDT) efficacy in BALB/c mice bearing Colon26 tumors. However, among the ring-D reduced compounds, the isomer containing 1′-m-iobenzyloxyethyl group at position-3 was more effective than the corresponding 8-(1′-m-iodobenzyloxyethyl) derivative. All photosensitizers showed maximum uptake by tumor tissue 24h after injection and the tumors exposed with light at low fluence and fluence rates (128 J/cm2, 14 mW/cm2) produced significantly enhanced tumor eradication than those exposed at higher fluence and fluence rate (135 J/cm,2 75mW/cm2). Interestingly, dose-dependent cellular uptake of the compounds and light-dependent STAT3 dimerization have emerged as sensitive rapid indicators for PDT efficacy in vitro and in vivo and could be used as in vitro/in vivo biomarkers for evaluating and optimizing the in vivo treatment parameters of the existing and new PDT candidates. PMID:21842893
Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy
NASA Astrophysics Data System (ADS)
Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.
2015-07-01
The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.
Automated detection of pulmonary nodules in CT images with support vector machines
NASA Astrophysics Data System (ADS)
Liu, Lu; Liu, Wanyu; Sun, Xiaoming
2008-10-01
Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.
Mehrian-Shai, Ruty; Yalon, Michal; Moshe, Itai; Barshack, Iris; Nass, Dvorah; Jacob, Jasmine; Dor, Chen; Reichardt, Juergen K V; Constantini, Shlomi; Toren, Amos
2016-01-14
The genetic mechanisms underlying hemangioblastoma development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays and droplet digital PCR analysis to detect copy number variations (CNVs) in total of 45 hemangioblastoma tumors. We identified 94 CNVs with a median of 18 CNVs per sample. The most frequently gained regions were on chromosomes 1 (p36.32) and 7 (p11.2). These regions contain the EGFR and PRDM16 genes. Recurrent losses were located at chromosome 12 (q24.13), which includes the gene PTPN11. Our findings provide the first high-resolution genome-wide view of chromosomal changes in hemangioblastoma and identify 23 candidate genes: EGFR, PRDM16, PTPN11, HOXD11, HOXD13, FLT3, PTCH, FGFR1, FOXP1, GPC3, HOXC13, HOXC11, MKL1, CHEK2, IRF4, GPHN, IKZF1, RB1, HOXA9, and micro RNA, such as hsa-mir-196a-2 for hemangioblastoma pathogenesis. Furthermore, our data implicate that cell proliferation and angiogenesis promoting pathways may be involved in the molecular pathogenesis of hemangioblastoma.
Two Novel Determinants of Etoposide Resistance in Small Cell Lung Cancer
Lawson, Malcolm H; Cummings, Natalie M; Rassl, Doris M; Russell, Roslin; Brenton, James D; Rintoul, Robert C; Murphy, Gillian
2011-01-01
Patient survival in small cell lung cancer (SCLC) is limited by acquired chemoresistance. Here we report the use of a biologically relevant model to identify novel candidate genes mediating in vivo acquired resistance to etoposide. Candidate genes derived from a cDNA microarray analysis were cloned and transiently overexpressed to evaluate their potential functional roles. We identified two promising genes in the DNA repair enzyme DNA Polymerase β and in the neuroendocrine transcription factor NKX2.2. Specific inhibition of DNA Polymerase β reduced the numbers of cells surviving treatment with etoposide and increased the amount of DNA damage in cells. Conversely, stable overexpression of NKX2.2 increased cell survival in response to etoposide in SCLC cell lines. Consistent with these findings, we found that an absence of nuclear staining for NKX2.2 in SCLC primary tumors was an independent predictor of improved outcomes in chemotherapy-treated patients. Taken together, our findings justify future prospective studies to confirm the roles of these molecules in mediating chemotherapy resistance in SCLC. PMID:21642373
Adam, Ronja; Spier, Isabel; Zhao, Bixiao; Kloth, Michael; Marquez, Jonathan; Hinrichsen, Inga; Kirfel, Jutta; Tafazzoli, Aylar; Horpaopan, Sukanya; Uhlhaas, Siegfried; Stienen, Dietlinde; Friedrichs, Nicolaus; Altmüller, Janine; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Kayser, Katrin; Thiele, Holger; Holinski-Feder, Elke; Marra, Giancarlo; Kristiansen, Glen; Nöthen, Markus M; Büttner, Reinhard; Möslein, Gabriela; Betz, Regina C; Brieger, Angela; Lifton, Richard P; Aretz, Stefan
2016-08-04
In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Dunning, Alison M; Michailidou, Kyriaki; Kuchenbaecker, Karoline B; Thompson, Deborah; French, Juliet D; Beesley, Jonathan; Healey, Catherine S; Kar, Siddhartha; Pooley, Karen A; Lopez-Knowles, Elena; Dicks, Ed; Barrowdale, Daniel; Sinnott-Armstrong, Nicholas A; Sallari, Richard C; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; Moradi Marjaneh, Mahdi; Lee, Jason S; Hills, Margaret; Jarosz, Monika; Drury, Suzie; Canisius, Sander; Bolla, Manjeet K; Dennis, Joe; Wang, Qin; Hopper, John L; Southey, Melissa C; Broeks, Annegien; Schmidt, Marjanka K; Lophatananon, Artitaya; Muir, Kenneth; Beckmann, Matthias W; Fasching, Peter A; Dos-Santos-Silva, Isabel; Peto, Julian; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; González-Neira, Anna; Perez, Jose I A; Anton-Culver, Hoda; Eunjung, Lee; Arndt, Volker; Brenner, Hermann; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Aittomäki, Kristiina; Blomqvist, Carl; Ito, Hidemi; Matsuo, Keitaro; Bogdanova, Natasha; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Kosma, Veli-Matti; Mannermaa, Arto; Tseng, Chiu-Chen; Wu, Anna H; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Peterlongo, Paolo; Radice, Paolo; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Henderson, Brian E; Goldberg, Mark S; Teo, Soo H; Yip, Cheng Har; Nord, Silje; Borresen-Dale, Anne-Lise; Kristensen, Vessela; Long, Jirong; Zheng, Wei; Pylkäs, Katri; Winqvist, Robert; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; Figueroa, Jonine; Sherman, Mark E; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; van den Ouweland, Ans M W; Humphreys, Keith; Gao, Yu-Tang; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Ghoussaini, Maya; Perkins, Barbara J; Shah, Mitul; Choi, Ji-Yeob; Kang, Daehee; Lee, Soo Chin; Hartman, Mikael; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Brennan, Paul; Sangrajrang, Suleeporn; Ambrosone, Christine B; Toland, Amanda E; Shen, Chen-Yang; Wu, Pei-Ei; Orr, Nick; Swerdlow, Anthony; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Kapuscinski, Miroslav; John, Esther M; Terry, Mary Beth; Daly, Mary B; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ejlertsen, Bent; Hansen, Thomas V O; Osorio, Ana; Benitez, Javier; Rando, Rachel; Weitzel, Jeffrey N; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Papi, Laura; Ottini, Laura; Konstantopoulou, Irene; Apostolou, Paraskevi; Garber, Judy; Rashid, Muhammad Usman; Frost, Debra; Izatt, Louise; Ellis, Steve; Godwin, Andrew K; Arnold, Norbert; Niederacher, Dieter; Rhiem, Kerstin; Bogdanova-Markov, Nadja; Sagne, Charlotte; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Sinilnikova, Olga M; Mazoyer, Sylvie; Isaacs, Claudine; Claes, Kathleen B M; De Leeneer, Kim; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Khan, Sofia; Mensenkamp, Arjen R; Hooning, Maartje J; Rookus, Matti A; Kwong, Ava; Olah, Edith; Diez, Orland; Brunet, Joan; Pujana, Miquel Angel; Gronwald, Jacek; Huzarski, Tomasz; Barkardottir, Rosa B; Laframboise, Rachel; Soucy, Penny; Montagna, Marco; Agata, Simona; Teixeira, Manuel R; Park, Sue Kyung; Lindor, Noralane; Couch, Fergus J; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Singer, Christian F; Rappaport, Christine; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Hulick, Peter J; Phillips, Kelly-Anne; Piedmonte, Marion; Mulligan, Anna Marie; Glendon, Gord; Bojesen, Anders; Thomassen, Mads; Caligo, Maria A; Yoon, Sook-Yee; Friedman, Eitan; Laitman, Yael; Borg, Ake; von Wachenfeldt, Anna; Ehrencrona, Hans; Rantala, Johanna; Olopade, Olufunmilayo I; Ganz, Patricia A; Nussbaum, Robert L; Gayther, Simon A; Nathanson, Katherine L; Domchek, Susan M; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Maskarinec, Gertraud; Woolcott, Christy; Scott, Christopher; Stone, Jennifer; Apicella, Carmel; Tamimi, Rulla; Luben, Robert; Khaw, Kay-Tee; Helland, Åslaug; Haakensen, Vilde; Dowsett, Mitch; Pharoah, Paul D P; Simard, Jacques; Hall, Per; García-Closas, Montserrat; Vachon, Celine; Chenevix-Trench, Georgia; Antoniou, Antonis C; Easton, Douglas F; Edwards, Stacey L
2016-04-01
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
Dunning, Alison M; Michailidou, Kyriaki; Kuchenbaecker, Karoline B; Thompson, Deborah; French, Juliet D; Beesley, Jonathan; Healey, Catherine S; Kar, Siddhartha; Pooley, Karen A; Lopez-Knowles, Elena; Dicks, Ed; Barrowdale, Daniel; Sinnott-Armstrong, Nicholas A; Sallari, Richard C; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; Marjaneh, Mahdi Moradi; Lee, Jason S; Hills, Margaret; Jarosz, Monika; Drury, Suzie; Canisius, Sander; Bolla, Manjeet K; Dennis, Joe; Wang, Qin; Hopper, John L; Southey, Melissa C; Broeks, Annegien; Schmidt, Marjanka K; Lophatananon, Artitaya; Muir, Kenneth; Beckmann, Matthias W; Fasching, Peter A; dos-Santos-Silva, Isabel; Peto, Julian; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; González-Neira, Anna; Perez, Jose I A; Anton-Culver, Hoda; Eunjung, Lee; Arndt, Volker; Brenner, Hermann; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Aittomäki, Kristiina; Blomqvist, Carl; Ito, Hidemi; Matsuo, Keitaro; Bogdanova, Natasha; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Kosma, Veli-Matti; Mannermaa, Arto; Tseng, Chiu-chen; Wu, Anna H; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Peterlongo, Paolo; Radice, Paolo; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Henderson, Brian E; Goldberg, Mark S; Teo, Soo H; Yip, Cheng Har; Nord, Silje; Borresen-Dale, Anne-Lise; Kristensen, Vessela; Long, Jirong; Zheng, Wei; Pylkäs, Katri; Winqvist, Robert; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; Figueroa, Jonine; Sherman, Mark E; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; van den Ouweland, Ans M W; Humphreys, Keith; Gao, Yu-Tang; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Ghoussaini, Maya; Perkins, Barbara J; Shah, Mitul; Choi, Ji-Yeob; Kang, Daehee; Lee, Soo Chin; Hartman, Mikael; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Brennan, Paul; Sangrajrang, Suleeporn; Ambrosone, Christine B; Toland, Amanda E; Shen, Chen-Yang; Wu, Pei-Ei; Orr, Nick; Swerdlow, Anthony; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Kapuscinski, Miroslav; John, Esther M; Terry, Mary Beth; Daly, Mary B; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ejlertsen, Bent; Hansen, Thomas V O; Osorio, Ana; Benitez, Javier; Rando, Rachel; Weitzel, Jeffrey N; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Papi, Laura; Ottini, Laura; Konstantopoulou, Irene; Apostolou, Paraskevi; Garber, Judy; Rashid, Muhammad Usman; Frost, Debra; Izatt, Louise; Ellis, Steve; Godwin, Andrew K; Arnold, Norbert; Niederacher, Dieter; Rhiem, Kerstin; Bogdanova-Markov, Nadja; Sagne, Charlotte; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Sinilnikova, Olga M; Mazoyer, Sylvie; Isaacs, Claudine; Claes, Kathleen B M; De Leeneer, Kim; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Khan, Sofia; Mensenkamp, Arjen R; Hooning, Maartje J; Rookus, Matti A; Kwong, Ava; Olah, Edith; Diez, Orland; Brunet, Joan; Pujana, Miquel Angel; Gronwald, Jacek; Huzarski, Tomasz; Barkardottir, Rosa B; Laframboise, Rachel; Soucy, Penny; Montagna, Marco; Agata, Simona; Teixeira, Manuel R; Park, Sue Kyung; Lindor, Noralane; Couch, Fergus J; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Singer, Christian F; Rappaport, Christine; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Hulick, Peter J; Phillips, Kelly-Anne; Piedmonte, Marion; Mulligan, Anna Marie; Glendon, Gord; Bojesen, Anders; Thomassen, Mads; Caligo, Maria A; Yoon, Sook-Yee; Friedman, Eitan; Laitman, Yael; Borg, Ake; von Wachenfeldt, Anna; Ehrencrona, Hans; Rantala, Johanna; Olopade, Olufunmilayo I; Ganz, Patricia A; Nussbaum, Robert L; Gayther, Simon A; Nathanson, Katherine L; Domchek, Susan M; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Maskarinec, Gertraud; Woolcott, Christy; Scott, Christopher; Stone, Jennifer; Apicella, Carmel; Tamimi, Rulla; Luben, Robert; Khaw, Kay-Tee; Helland, Åslaug; Haakensen, Vilde; Dowsett, Mitch; Pharoah, Paul D P; Simard, Jacques; Hall, Per; García-Closas, Montserrat; Vachon, Celine; Chenevix-Trench, Georgia; Antoniou, Antonis C; Easton, Douglas F; Edwards, Stacey L
2016-01-01
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER+ or ER−) and human ERBB2 (HER2+ or HER2−) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER− tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression. PMID:26928228
2002-07-01
Loss of heterozygosity is also observed in a number of other tumor types, notably rhabdomyosarcoma [3,4], adrenocortical carcinoma [5], hepatocellular ... carcinoma [6], and Wilm’s tumor [7]. A second line of evidence suggesting that 1 lp15.5 may play a key role in tumorigenesis is the association of a
Tran, Nhan L.
2014-01-01
The long-term survival of patients with glioblastoma is compromised by the proclivity for local invasion into the surrounding normal brain, escaping surgical resection and contributing to therapeutic resistance. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the Rho guanosine triphosphatase family member Rac1. Here, we demonstrate that TWEAK acts as a chemotactic factor for glioma cells, a potential process for driving cell invasion into the surrounding brain tissue. TWEAK exposure induced the activation of Src family kinases (SFKs), and pharmacologic suppression of SFK activity inhibited TWEAK-induced chemotactic migration. We employed a multiplexed Luminex assay and identified Lyn as a candidate SFK activated by TWEAK. Depletion of Lyn suppressed TWEAK-induced chemotaxis and Rac1 activity. Furthermore, Lyn gene expression levels increase with primary glioma tumor grade and inversely correlate with patient survival. These results show that TWEAK-induced glioma cell chemotaxis is dependent upon Lyn kinase function and, thus, provides opportunities for therapeutic targeting of this deadly disease. PMID:23975833
Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.
2014-04-01
X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.
Hayashi, Masamichi; Bernert, Heike; Kagohara, Luciane Tsukamoto; Maldonado, Leonel; Brait, Mariana; Schoenberg, Mark; Bivalacqua, Trinity; Netto, George J; Koch, Wayne; Sidransky, David; Hoque, Mohammad O
2014-05-30
To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors. We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines. Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth. Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes.
White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati
2014-09-15
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.
Suzuki, Ryuichiro; Matsushima, Yasuaki; Okudaira, Noriyuki; Sakagami, Hiroshi; Shirataki, Yoshiaki
2016-11-01
The 5-year survival rate of patients with oral cancer has remained approximately 50% during the past 30 years, possibly due to the poor tumor selectivity of conventional anticancer drugs. This prompted us to search for new candidates for anticancer drugs that have higher cytotoxicity and tumor selectivity. Dried leaves of Andrographis paniculata were supplied from a market in Shanghai. The methanolic fraction of A. paniculata was further fractionated to identify cytotoxic principles by spectroscopic analysis and comparison with literature values. Viable cell number was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method, and tumor specificity was calculated by relative cytotoxicity against oral squamous cell carcinoma cell lines compared to that against normal oral cells. Apoptosis induction was detected by cleaved poly (ADP-ribose) polymerase and caspase-3 on western blot analysis. Major cytotoxicity in the methanol extract of a leaf of A. paniculata was recovered by partitioning with EtOAc, followed by silica gel chromatography. Further purification with reversed-phase high-performance liquid chromatography led to isolation of four known cytotoxic compounds, 14-deoxyandrographolide, andrographolide, neoandrographolide and deoxyandrographiside. Among them, andrographolide had the greatest cytotoxicity and tumor specificity, also inducing caspase-3 activation of HSC-2 oral squamous cell carcinoma cells. The present study identified andrographolide as a major antitumor principle in the methanolic extract of leaves of A. paniculata. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Lulli, Valentina; Buccarelli, Mariachiara; Martini, Maurizio; Signore, Michele; Biffoni, Mauro; Giannetti, Stefano; Morgante, Liliana; Marziali, Giovanna; Ilari, Ramona; Pagliuca, Alfredo; Larocca, Luigi Maria; De Maria, Ruggero; Pallini, Roberto; Ricci-Vitiani, Lucia
2015-11-10
Glioblastoma multiforme (GBM) is the most common and fatal malignant adult primary brain tumor. Currently, the overall prognosis for GBM patients remains poor despite advances in neurosurgery and adjuvant treatments. MicroRNAs (miRNAs) contribute to the pathogenesis of various types of tumor, including GBM. In this study we analyzed the expression of a panel of miRNAs, which are known to be differentially expressed by the brain and GBM tumor, in a collection of patient-derived GBM stem-like cells (GSCs). Notably, the average expression level of miR-135b, was the most downregulated compared to its normal counterpart, suggesting a potential role as anti-oncogene.Restoration of miR-135b in GSCs significantly decreased proliferation, migration and clonogenic abilities. More importantly, miR-135b restoration was able to significantly reduce brain infiltration in mouse models of GBM obtained by intracerebral injection of GSC lines. We identified ADAM12 and confirmed SMAD5 and GSK3β as miR-135b targets and potential mediators of its effects. The whole transcriptome analysis ascertained that the expression of miR-135b downmodulated additional genes driving key pathways in GBM survival and infiltration capabilities.Our results identify a critical role of miR-135b in the regulation of GBM development, suggesting that miR-135b might act as a tumor-suppressor factor and thus providing a potential candidate for the treatment of GBM patients.
Emerging Indications for Fractionated Gamma Knife Radiosurgery
McTyre, Emory; Helis, Corbin A.; Farris, Michael; Wilkins, Lisa; Sloan, Darrell; Hinson, William H.; Bourland, J. Daniel; Dezarn, William. A.; Munley, Michael T.; Watabe, Kounosuke; Xing, Fei; Laxton, Adrian W.; Tatter, Stephen B.; Chan, Michael D.
2016-01-01
BACKGROUND Gamma Knife radiosurgery (GKRS) allows for the treatment of intracranial tumors with a high degree of dose conformality and precision. There are, however, certain situations wherein the dose conformality of GKRS is desired, but single session treatment is contraindicated. In these situations, a traditional pin-based GKRS head frame cannot be used, as it precludes fractionated treatment. OBJECTIVE To report our experience in treating patients with fractionated GKRS using a relocatable, noninvasive immobilization system. METHODS Patients were considered candidates for fractionated GKRS if they had one or more of the following indications: a benign tumor >10 cc in volume or abutting the optic pathway, a vestibular schwannoma with the intent of hearing preservation, or a tumor previously irradiated with single fraction GKRS. The immobilization device used for all patients was the Extend system (Leksell Gamma Knife Perfexion, Elekta, Kungstensgatan, Stockholm). RESULTS We identified 34 patients treated with fractionated GKRS between August 2013 and February 2015. There were a total of 37 tumors treated including 15 meningiomas, 11 pituitary adenomas, 6 brain metastases, 4 vestibular schwannomas, and 1 hemangioma. At last follow-up, all 21 patients treated for perioptic tumors had stable or improved vision and all 4 patients treated for vestibular schwannoma maintained serviceable hearing. No severe adverse events were reported. CONCLUSION Fractionated GKRS was well-tolerated in the treatment of large meningiomas, perioptic tumors, vestibular schwannomas with intent of hearing preservation, and in reirradiation of previously treated tumors. PMID:28536486
A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening
Rijal, Girdhari; Li, Weimin
2017-01-01
Most of the anticancer drug candidates entering preclinical trials fail to be approved for clinical applications. The following are among the main causes of these failures: studying molecular mechanisms of cancer development, identifying therapeutic targets, and testing drug candidates using inappropriate tissue culture models, which do not recapitulate the native microenvironment where the cancer cells originate. It has become clear that three-dimensional (3D) cell cultures are more biologically and clinically relevant than 2D models. The spatial and mechanical conditions of 3D cultures enable the cancer cells to display heterogeneous growth, assume diverse phenotypes, express distinct gene and protein products, and attain metastatic potential and resistance to drugs that are reminiscent of tumors in humans. However, the current 3D culture systems using synthetic polymers or selected components of the extracellular matrix (ECM) are defective (particularly the biophysical and biochemical properties of the native ECM) and remain distant to optimally support the signaling cue–oriented cell survival and growth. We introduce a reconstitutable tissue matrix scaffold (TMS) system fabricated using native tissue ECM, with tissue-like architecture and resilience. The structural and compositional properties of TMS favor robust cell survival, proliferation, migration, and invasion in culture and vascularized tumor formation in animals. The combination of porous and hydrogel TMS allows compartmental culture of cancerous and stromal cells, which are distinguishable by biomarkers. The response of the cancer cells grown on TMS to drugs well reflects animal and clinical observations. TMS enables more biologically relevant studies and is suitable for preclinical drug screening. PMID:28924608
Klajic, Jovana; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise; Tost, Jörg; Kristensen, Vessela N
2013-10-05
Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above.
Protein Expression Profile using Two-Dimensional Gel Analysis in Squamous Cervical Cancer Patients
Bae, Su-Mi; Min, Hyun-Jin; Ding, Guo Hua; Kwak, Sun-Young; Cho, Young-Lae; Nam, Kye-Hyun; Park, Choong Hak; Kim, Yong-Wan; Kim, Chong-Kook; Han, Byoung-Don; Lee, Young-Joo; Kim, Do Kang
2006-01-01
Purpose Screening in cervical cancer is now progressing to discover candidate genes and proteins that may serve as biological markers and that play a role in tumor progression. We examined the protein expression patterns of the squamous cell carcinoma (SCC) tissues from Korean women with using two- dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight (MALDI- TOF) mass spectrometer. Materials and Methods Normal cervix and SCC tissues were solubilized and 2-DE was performed using pH 3~10 linear IPG strips of 17 cm length. The protein expression was evaluated using PDQuest 2-D software™. The differentially expressed protein spots were identified with a MALDI-TOF mass spectrometer, and the peptide mass spectra identifications were performed using the Mascot program and by searching the Swiss-prot or NCBInr databases. Results A total of 35 proteins were detected in SCC. 17 proteins were up-regulated and 18 proteins weredown-regulated. Among the proteins that were identified, 12 proteins (pigment epithelium derived factor, annexin A2 and A5, keratin 19 and 20, heat shock protein 27, smooth muscle protein 22 alpha, α-enolase, squamous cell carcinoma antigen 1 and 2, glutathione S-transferase and apolipoprotein a1) were protein previously known to be involved in tumor, and 21 proteins were newly identified in this study. Conclusion 2-DE offers the total protein expression profiles of SCC tissues; further characterization of these differentially expressed proteins will give a chance to identify the badly needed tumor-specific diagnostic markers for SCC. PMID:19771267
High resolution array CGH and gene expression profiling of alveolar soft part sarcoma
Selvarajah, Shamini; Pyne, Saumyadipta; Chen, Eleanor; Sompallae, Ramakrishna; Ligon, Azra H.; Nielsen, Gunnlaugur P.; Dranoff, Glenn; Stack, Edward; Loda, Massimo; Flavin, Richard
2014-01-01
Purpose Alveolar soft part sarcoma (ASPS) is a soft tissue sarcoma with poor prognosis, and little molecular evidence for its origin, initiation and progression. The aim of this study was to elucidate candidate molecular pathways involved in tumor pathogenesis. Experimental Design We employed high-throughput array comparative genomic hybridization and cDNA-Mediated Annealing, Selection, Ligation, and Extension Assay to profile the genomic and expression signatures of primary and metastatic ASPS from 17 tumors derived from 11 patients. We used an integrative bioinformatics approach to elucidate the molecular pathways associated with ASPS progression. Fluorescence in situ hybridization was performed to validate the presence of the t(X;17)(p11.2;q25) ASPL-TFE3 fusion and hence confirm the aCGH observations. Results FISH analysis identified the ASPL-TFE3 fusion in all cases. ArrayCGH revealed a higher number of numerical aberrations in metastatic tumors relative to primaries, but failed to identify consistent alterations in either group. Gene expression analysis highlighted 1,063 genes which were differentially expressed between the two groups. Gene set enrichment analysis identified 16 enriched gene sets (p < 0.1) associated with differentially expressed genes. Notable among these were several stem cell gene expression signatures and pathways related to differentiation. In particular, the paired box transcription factor PAX6 was up-regulated in the primary tumors, along with several genes whose mouse orthologs have previously been implicated in Pax6-DNA binding during neural stem cell differentiation. Conclusion In addition to suggesting a tentative neural line of differentiation for ASPS, these results implicate transcriptional deregulation from fusion genes in the pathogenesis of ASPS. PMID:24493828
Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gad; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna V; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David
2009-02-15
A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.
Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti
2016-01-01
Objective Currently, there is a disconnect between finding a patient’s relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. Methods and materials The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. Results IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. Conclusion IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine. IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. PMID:27026619
Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti; Robinson, William A; Tan, Aik Choon
2016-07-01
Currently, there is a disconnect between finding a patient's relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine.IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel
2015-12-15
Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.
Witt, Davis A; Donson, Andrew M; Amani, Vladimir; Moreira, Daniel C; Sanford, Bridget; Hoffman, Lindsey M; Handler, Michael H; Levy, Jean M Mulcahy; Jones, Kenneth L; Nellan, Anandani; Foreman, Nicholas K; Griesinger, Andrea M
2018-05-01
A desperate need for novel therapies in pediatric ependymoma (EPN) exists, as chemotherapy remains ineffective and radiotherapy often fails. EPN have significant infiltration of immune cells, which correlates with outcome. Immune checkpoint inhibitors provide an avenue for new treatments. This study characterizes tumor-infiltrating immune cells in EPN and aims at predicting candidates for clinical trials using checkpoint inhibitors targeting PD-L1/PD-1 (programmed death ligand 1/programmed death 1). The transcriptomic profiles of the primary study cohort of EPN and other pediatric brain tumors were interrogated to identify PD-L1 expression levels. Transcriptomic findings were validated using the western blotting, immunohistochemistry and flow cytometry. We evaluated PD-L1 mRNA expression across four intracranial subtypes of EPN in two independent cohorts and found supratentorial RELA fusion (ST-RELA) tumors to have significantly higher levels. There was a correlation between high gene expression and protein PD-L1 levels in ST-RELA tumors by both the western blot and immunohistochemisty. The investigation of EPN cell populations revealed PD-L1 was expressed on both tumor and myeloid cells in ST-RELA. Other subtypes had little PD-L1 in either tumor or myeloid cell compartments. Lastly, we measured PD-1 levels on tumor-infiltrating T cells and found ST-RELA tumors express PD-1 in both CD4 and CD8 T cells. A functional T-cell exhaustion assay found ST-RELA T cells to be exhausted and unable to secrete IFNγ on stimulation. These findings in ST-RELA suggest tumor evasion and immunsuppression due to PD-L1/PD-1-mediated T-cell exhaustion. Trials of checkpoint inhibitors in EPN should be enriched for ST-RELA tumors. © 2018 Wiley Periodicals, Inc.
Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander
2002-06-28
Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.
Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes.
Cobleigh, Melody A; Tabesh, Bita; Bitterman, Pincas; Baker, Joffre; Cronin, Maureen; Liu, Mei-Lan; Borchik, Russell; Mosquera, Juan-Miguel; Walker, Michael G; Shak, Steven
2005-12-15
This study, along with two others, was done to develop the 21-gene Recurrence Score assay (Oncotype DX) that was validated in a subsequent independent study and is used to aid decision making about chemotherapy in estrogen receptor (ER)-positive, node-negative breast cancer patients. Patients with >or=10 nodes diagnosed from 1979 to 1999 were identified. RNA was extracted from paraffin blocks, and expression of 203 candidate genes was quantified using reverse transcription-PCR (RT-PCR). Seventy-eight patients were studied. As of August 2002, 77% of patients had distant recurrence or breast cancer death. Univariate Cox analysis of clinical and immunohistochemistry variables indicated that HER2/immunohistochemistry, number of involved nodes, progesterone receptor (PR)/immunohistochemistry (% cells), and ER/immunohistochemistry (% cells) were significantly associated with distant recurrence-free survival (DRFS). Univariate Cox analysis identified 22 genes associated with DRFS. Higher expression correlated with shorter DRFS for the HER2 adaptor GRB7 and the macrophage marker CD68. Higher expression correlated with longer DRFS for tumor protein p53-binding protein 2 (TP53BP2) and the ER axis genes PR and Bcl2. Multivariate methods, including stepwise variable selection and bootstrap resampling of the Cox proportional hazards regression model, identified several genes, including TP53BP2 and Bcl2, as significant predictors of DRFS. Tumor gene expression profiles of archival tissues, some more than 20 years old, provide significant information about risk of distant recurrence even among patients with 10 or more nodes.
Roca, Elisa; Lacroix, Romaric; Judicone, Coralie; Laroumagne, Sophie; Robert, Stéphane; Cointe, Sylvie; Muller, Alexandre; Kaspi, Elise; Roll, Patrice; Brisson, Alain R.; Tantucci, Claudio
2016-01-01
Pleural biomarkers allowing to mini-invasively discriminate benign from malignant pleural effusions are needed. Among potential candidates, microparticles (MPs) are extracellular vesicles that vectorize antigen derived from the parent cell. We hypothesized that tumor-derived MPs could be present in the pleural liquid and help to identify patients with malignant pleural effusions. Using highly sensitive flow cytometry and cryo-electron microscopy, we showed that large amounts of MPs from hematopoïetic and vascular origin could be detectable in pleural fluids. Their level did not differ between benign (n = 14) and malignant (n = 71) pleural effusions. Analysis of selected tumoral associated antigens (podoplanin, mucin 1 and EpCAM, epithelial-cell-adhesion-molecule) evidenced for the first time the presence of tumor-derived MPs expressing EpCAM in malignant pleural fluids only (Specificity = 93%, Sensitivity = 49% and 45% for flow cytometry and ELISA, respectively). The detection of EpCAM-positive-MPs (EpCAM + MPs) by flow cytometry showed a better specificity and sensitivity than ELISA to distinguish between pleural carcinoma and the others malignant pleural effusions (MPE; Sp: 96% vs 89%; Se: 79% vs 66%). Combining EpCAM+ MPs and cytology improved the diagnosis of MPE compared to cytology alone. This study establishes the basis for using EpCAM+ MPs as a promising new biomarker that could be added to the armamentarium to mini-invasively identify patients with malignant pleural effusions. PMID:26689993
Roca, Elisa; Lacroix, Romaric; Judicone, Coralie; Laroumagne, Sophie; Robert, Stéphane; Cointe, Sylvie; Muller, Alexandre; Kaspi, Elise; Roll, Patrice; Brisson, Alain R; Tantucci, Claudio; Astoul, Philippe; Dignat-George, Françoise
2016-01-19
Pleural biomarkers allowing to mini-invasively discriminate benign from malignant pleural effusions are needed. Among potential candidates, microparticles (MPs) are extracellular vesicles that vectorize antigen derived from the parent cell. We hypothesized that tumor-derived MPs could be present in the pleural liquid and help to identify patients with malignant pleural effusions. Using highly sensitive flow cytometry and cryo-electron microscopy, we showed that large amounts of MPs from hematopoïetic and vascular origin could be detectable in pleural fluids. Their level did not differ between benign (n = 14) and malignant (n = 71) pleural effusions. Analysis of selected tumoral associated antigens (podoplanin, mucin 1 and EpCAM, epithelial-cell-adhesion-molecule) evidenced for the first time the presence of tumor-derived MPs expressing EpCAM in malignant pleural fluids only (Specificity = 93%, Sensitivity = 49% and 45% for flow cytometry and ELISA, respectively). The detection of EpCAM-positive-MPs (EpCAM + MPs) by flow cytometry showed a better specificity and sensitivity than ELISA to distinguish between pleural carcinoma and the others malignant pleural effusions (MPE; Sp: 96% vs 89%; Se: 79% vs 66%). Combining EpCAM+ MPs and cytology improved the diagnosis of MPE compared to cytology alone. This study establishes the basis for using EpCAM+ MPs as a promising new biomarker that could be added to the armamentarium to mini-invasively identify patients with malignant pleural effusions.
Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P.; Suarez, John J.; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M.; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Valle, Adriana Della; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R.; Goldstein, Alisa M.; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R.; Carvajal Carmona, Luis G.
2016-01-01
Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer. PMID:28024868
A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice.
McIntyre, Rebecca E; Nicod, Jérôme; Robles-Espinoza, Carla Daniela; Maciejowski, John; Cai, Na; Hill, Jennifer; Verstraten, Ruth; Iyer, Vivek; Rust, Alistair G; Balmus, Gabriel; Mott, Richard; Flint, Jonathan; Adams, David J
2016-08-09
In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males. Copyright © 2016 McIntyre et al.
Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.
Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G
2018-03-22
Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN-SSL patterns of activity in a large proportion of PTEN-deficient breast cancer cell lines and are potential specific vulnerabilities in PTEN-deficient breast cancer. Furthermore, the NUAK1 PTEN-SSL vulnerability identified by RNA interference techniques can be recapitulated and exploited using the small molecule kinase inhibitor HTH-01-015. Thus, NUAK1 inhibition may be an effective strategy for precision treatment of PTEN-deficient breast tumors.
Al-Hebshi, Nezar Noor; Li, Shiyong; Nasher, Akram Thabet; El-Setouhy, Maged; Alsanosi, Rashad; Blancato, Jan; Loffredo, Christopher
2016-07-15
The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes. © 2016 UICC.
Kidd, Mark; Modlin, Irvin M; Drozdov, Ignat
2014-07-15
Tumor transcriptomes contain information of critical value to understanding the different capacities of a cell at both a physiological and pathological level. In terms of clinical relevance, they provide information regarding the cellular "toolbox" e.g., pathways associated with malignancy and metastasis or drug dependency. Exploration of this resource can therefore be leveraged as a translational tool to better manage and assess neoplastic behavior. The availability of public genome-wide expression datasets, provide an opportunity to reassess neuroendocrine tumors at a more fundamental level. We hypothesized that stringent analysis of expression profiles as well as regulatory networks of the neoplastic cell would provide novel information that facilitates further delineation of the genomic basis of small intestinal neuroendocrine tumors. We re-analyzed two publically available small intestinal tumor transcriptomes using stringent quality control parameters and network-based approaches and validated expression of core secretory regulatory elements e.g., CPE, PCSK1, secretogranins, including genes involved in depolarization e.g., SCN3A, as well as transcription factors associated with neurodevelopment (NKX2-2, NeuroD1, INSM1) and glucose homeostasis (APLP1). The candidate metastasis-associated transcription factor, ST18, was highly expressed (>14-fold, p < 0.004). Genes previously associated with neoplasia, CEBPA and SDHD, were decreased in expression (-1.5 - -2, p < 0.02). Genomic interrogation indicated that intestinal tumors may consist of two different subtypes, serotonin-producing neoplasms and serotonin/substance P/tachykinin lesions. QPCR validation in an independent dataset (n = 13 neuroendocrine tumors), confirmed up-regulated expression of 87% of genes (13/15). An integrated cellular transcriptomic analysis of small intestinal neuroendocrine tumors identified that they are regulated at a developmental level, have key activation of hypoxic pathways (a known regulator of malignant stem cell phenotypes) as well as activation of genes involved in apoptosis and proliferation. Further refinement of these analyses by RNAseq studies of large-scale databases will enable definition of individual master regulators and facilitate the development of novel tissue and blood-based tools to better understand diagnose and treat tumors.
2000-07-01
and N-terminal (right panel) antibodies. Lower center panel demonstrates that the antibodies detect different molecular weight species of OVCA1 (50 kDa...expression and/or post-translational modifications of OVCA1 is associated with the development of breast and ovarian tumors and suggest a potentially new... the involvement of many different genes, including tumor suppressors. According to the two-hit model of Knudson, both alleles encoding for a tumor
Medvetz, Doug; Sun, Yang; Li, Chenggang; Khabibullin, Damir; Balan, Murugabaskar; Parkhitko, Andrey; Priolo, Carmen; Asara, John M; Pal, Soumitro; Yu, Jane; Henske, Elizabeth P
2015-01-01
Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome associated with tumors of the brain, heart, kidney, and lung. The TSC protein complex inhibits the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Inhibitors of mTORC1, including rapamycin, induce a cytostatic response in TSC tumors, resulting in temporary disease stabilization and prompt regrowth when treatment is stopped. The lack of TSC-specific cytotoxic therapies represents an important unmet clinical need. Using a high-throughput chemical screen in TSC2-deficient, patient-derived cells, we identified a series of molecules antagonized by rapamycin and therefore selective for cells with mTORC1 hyperactivity. In particular, the cell-permeable alkaloid chelerythrine induced reactive oxygen species (ROS) and depleted glutathione (GSH) selectively in TSC2-null cells based on metabolic profiling. N-acetylcysteine or GSH cotreatment protected TSC2-null cells from chelerythrine's effects, indicating that chelerythrine-induced cell death is ROS dependent. Induction of heme-oxygenase-1 (HMOX1/HO-1) with hemin also blocked chelerythrine-induced cell death. In vivo, chelerythrine inhibited the growth of TSC2-null xenograft tumors with no evidence of systemic toxicity with daily treatment over an extended period of time. This study reports the results of a bioactive compound screen and the identification of a potential lead candidate that acts via a novel oxidative stress-dependent mechanism to selectively induce necroptosis in TSC2-deficient tumors. This study demonstrates that TSC2-deficient tumor cells are hypersensitive to oxidative stress-dependent cell death, and provide critical proof of concept that TSC2-deficient cells can be therapeutically targeted without the use of a rapalog to induce a cell death response. ©2014 American Association for Cancer Research.
Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K
2011-01-01
Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047
Balog, Crina I A; Stavenhagen, Kathrin; Fung, Wesley L J; Koeleman, Carolien A; McDonnell, Liam A; Verhoeven, Aswin; Mesker, Wilma E; Tollenaar, Rob A E M; Deelder, André M; Wuhrer, Manfred
2012-09-01
Colorectal cancer is the third most common cancer worldwide with an annual incidence of ~1 million cases and an annual mortality rate of ~655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers.
N-glycosylation of Colorectal Cancer Tissues
Balog, Crina I. A.; Stavenhagen, Kathrin; Fung, Wesley L. J.; Koeleman, Carolien A.; McDonnell, Liam A.; Verhoeven, Aswin; Mesker, Wilma E.; Tollenaar, Rob A. E. M.; Deelder, André M.; Wuhrer, Manfred
2012-01-01
Colorectal cancer is the third most common cancer worldwide with an annual incidence of ∼1 million cases and an annual mortality rate of ∼655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers. PMID:22573871
The tumor suppressor CDKN3 controls mitosis
Nalepa, Grzegorz; Barnholtz-Sloan, Jill; Enzor, Rikki; Dey, Dilip; He, Ying; Gehlhausen, Jeff R.; Lehmann, Amalia S.; Park, Su-Jung; Yang, Yanzhu; Yang, Xianlin; Chen, Shi; Guan, Xiaowei; Chen, Yanwen; Renbarger, Jamie; Yang, Feng-Chun; Parada, Luis F.
2013-01-01
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2pThr-161 at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics. PMID:23775190
Epigenetics in breast and prostate cancer.
Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V
2015-01-01
Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.
Molecular targeted therapy for the treatment of gastric cancer.
Xu, Wenting; Yang, Zhen; Lu, Nonghua
2016-01-04
Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.
The anticancer phytochemical rocaglamide inhibits Rho GTPase activity and cancer cell migration
Becker, Michael S.; Müller, Paul M.; Bajorat, Jörg; Schroeder, Anne; Giaisi, Marco; Amin, Ehsan; Ahmadian, Mohammad R.; Rocks, Oliver; Köhler, Rebecca; Krammer, Peter H.; Li-Weber, Min
2016-01-01
Chemotherapy is one of the pillars of anti-cancer therapy. Although chemotherapeutics cause regression of the primary tumor, many chemotherapeutics are often shown to induce or accelerate metastasis formation. Moreover, metastatic tumors are largely resistant against chemotherapy. As more than 90% of cancer patients die due to metastases and not due to primary tumor formation, novel drugs are needed to overcome these shortcomings. In this study, we identified the anticancer phytochemical Rocaglamide (Roc-A) to be an inhibitor of cancer cell migration, a crucial event in metastasis formation. We show that Roc-A inhibits cellular migration and invasion independently of its anti-proliferative and cytotoxic effects in different types of human cancer cells. Mechanistically, Roc-A treatment induces F-actin-based morphological changes in membrane protrusions. Further investigation of the molecular mechanisms revealed that Roc-A inhibits the activities of the small GTPases RhoA, Rac1 and Cdc42, the master regulators of cellular migration. Taken together, our results provide evidence that Roc-A may be a lead candidate for a new class of anticancer drugs that inhibit metastasis formation. PMID:27340868
Lou, Yuanmei; Preobrazhenska, Olena; auf dem Keller, Ulrich; Sutcliffe, Margaret; Barclay, Lorena; McDonald, Paul C; Roskelley, Calvin; Overall, Christopher M; Dedhar, Shoukat
2008-10-01
Epithelial-mesenchymal transition (EMT) has been linked to metastatic propensity. The 4T1 tumor is a clinically relevant model of spontaneous breast cancer metastasis. Here we characterize 4T1-derived cell lines for EMT, in vitro invasiveness and in vivo metastatic ability. Contrary to expectations, 67NR cells, which form primary tumors but fail to metastasize, express vimentin and N-cadherin, but not E-cadherin. 4T1 cells express E-cadherin and ZO-1, but are migratory, invasive, and metastasize to multiple sites. 66cl4 cells form lung metastases and display a mixed phenotype, but are not as migratory or invasive as 67NR cells. These findings demonstrate that the metastatic ability of breast cancer cells does not strictly correlate with genotypic and phenotypic properties of EMT per se, and suggest that other processes may govern metastatic capability. Gene expression analysis of primary tumors did not identify differences in EMT markers, but did reveal candidate genes that may influence metastatic ability. Copyright (c) 2008 Wiley-Liss, Inc.
Epigenetics in Breast and Prostate Cancer
Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.
2015-01-01
SUMMARY Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cuttingedge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy. PMID:25421674
TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo
NASA Astrophysics Data System (ADS)
Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael
2014-01-01
Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.
Breast Reference Set Application: Karen Anderson-ASU (2014) — EDRN Public Portal
In order to increase the predictive value of tumor-specific antibodies for use as immunodiagnostics, our EDRN BDL has developed a novel protein microarray technology, termed Nucleic Acid Protein Programmable Array (NAPPA), which circumvents many of the limitations of traditional protein microarrays. NAPPA arrays are generated by printing full-length cDNAs encoding the target proteins at each feature of the array. The proteins are then transcribed and translated by a cell-free system and immobilized in situ using epitope tags fused to the proteins. Sera are added, and bound IgG is detected by standard secondary reagents. Using a sequential screening strategy to select AAb from 4,988 candidate tumor antigens, we have identified 28 potential AAb biomarkers for the early detection of breast cancer, and here we propose to evaluate these biomarkers using the EDRN Breast Cancer Reference Set.
Involvement of MicroRNAs in Lung Cancer Biology and Therapy
Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan
2011-01-01
MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030
iTRAQ Quantitative Proteomic Comparison of Metastatic and Non-Metastatic Uveal Melanoma Tumors
Crabb, John W.; Hu, Bo; Crabb, John S.; Triozzi, Pierre; Saunthararajah, Yogen; Singh, Arun D.
2015-01-01
Background Uveal melanoma is the most common malignancy of the adult eye. The overall mortality rate is high because this aggressive cancer often metastasizes before ophthalmic diagnosis. Quantitative proteomic analysis of primary metastasizing and non-metastasizing tumors was pursued for insights into mechanisms and biomarkers of uveal melanoma metastasis. Methods Eight metastatic and 7 non-metastatic human primary uveal melanoma tumors were analyzed by LC MS/MS iTRAQ technology with Bruch’s membrane/choroid complex from normal postmortem eyes as control tissue. Tryptic peptides from tumor and control proteins were labeled with iTRAQ tags, fractionated by cation exchange chromatography, and analyzed by LC MS/MS. Protein identification utilized the Mascot search engine and the human Uni-Prot/Swiss-Protein database with false discovery ≤ 1%; protein quantitation utilized the Mascot weighted average method. Proteins designated differentially expressed exhibited quantitative differences (p ≤ 0.05, t-test) in a training set of five metastatic and five non-metastatic tumors. Logistic regression models developed from the training set were used to classify the metastatic status of five independent tumors. Results Of 1644 proteins identified and quantified in 5 metastatic and 5 non-metastatic tumors, 12 proteins were found uniquely in ≥ 3 metastatic tumors, 28 were found significantly elevated and 30 significantly decreased only in metastatic tumors, and 31 were designated differentially expressed between metastatic and non-metastatic tumors. Logistic regression modeling of differentially expressed collagen alpha-3(VI) and heat shock protein beta-1 allowed correct prediction of metastasis status for each of five independent tumor specimens. Conclusions The present data provide new clues to molecular differences in metastatic and non-metastatic uveal melanoma tumors. While sample size is limited and validation required, the results support collagen alpha-3(VI) and heat shock protein beta-1 as candidate biomarkers of uveal melanoma metastasis and establish a quantitative proteomic database for uveal melanoma primary tumors. PMID:26305875
Identification of Methylated Genes Associated with Aggressive Bladder Cancer
Marsit, Carmen J.; Houseman, E. Andres; Christensen, Brock C.; Gagne, Luc; Wrensch, Margaret R.; Nelson, Heather H.; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K.; Andrew, Angeline S.; Schned, Alan R.; Karagas, Margaret R.; Kelsey, Karl T.
2010-01-01
Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment. PMID:20808801
Identification of methylated genes associated with aggressive bladder cancer.
Marsit, Carmen J; Houseman, E Andres; Christensen, Brock C; Gagne, Luc; Wrensch, Margaret R; Nelson, Heather H; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K; Andrew, Angeline S; Schned, Alan R; Karagas, Margaret R; Kelsey, Karl T
2010-08-23
Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.
P18 tumor suppressor gene and progression of oligodendrogliomas to anaplasia.
He, J; Hoang-Xuan, K; Marie, Y; Leuraud, P; Mokhtari, K; Kujas, M; Delattre, J Y; Sanson, M
2000-09-26
P18INK4C is a good candidate to be the tumor suppressor gene involved in oligodendrogliomas on 1p32. Loss of heterozygosity on 1p, mutation(s), homozygous deletion(s), and expression of p18 in 30 oligodendroglial tumors were investigated. Loss of heterozygosity on 1p was found in 15 tumors. A p18 mutation was found at an recurrence of an anaplastic oligodendroglioma, but not in the primary, low-grade tumor. No homozygous deletions were found and p18 was expressed in all cases. These results show that p18 alteration is involved in tumor progression in a subset of oligodendrogliomas.
Jia, Zhongwei; Wan, Fangning; Zhu, Yao; Shi, Guohai; Zhang, Hailiang; Dai, Bo; Ye, Dingwei
2018-06-01
Previous studies have demonstrated that several members of the Forkhead-box (FOX) family of genes are associated with tumor progression and metastasis. The objective of the current study was to screen candidate FOX family genes identified from analysis of molecular networks in clear cell renal cell carcinoma (ccRCC). The expression of FOX family genes as well as FOX family-associated genes was examined, and Kaplan-Meier survival analysis was performed in The Cancer Genome Atlas (TCGA) cohort (n=525). Patient characteristics, including sex, age, tumor diameter, laterality, tumor-node-metastasis, tumor grade, stage, white blood cell count, platelet count, the levels of hemoglobin, overall survival (OS) and disease-free survival (DFS), were collected for univariate and multivariate Cox proportional hazards ratio analyses. A total of seven candidate FOX family genes were selected from the TCGA database subsequent to univariate and multivariate Cox proportional hazards ratio analyses. FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1 were associated with poor OS time, while FOXA1, FOXA2, FOXD1 and FOXK2 were associated with poor DFS time (P<0.05). FOXN2 was associated with favorable outcomes for overall and disease-free survival (P<0.05). In the gene cluster network analysis, the expression of FOX family-associated genes, including nuclear receptor coactivator ( NCOA ) 1 , NADH-ubiquinone oxidoreductase flavoprotein 3 ( NDUFV3 ), phosphatidylserine decarboxylase ( PISD ) and pyruvate kinase liver and red blood cell ( PKLR ), were independent prognostic factors for OS in patients with ccRCC. Results of the present study revealed that the expression of FOX family genes, including FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1 , and FOX family-associated genes, including NCOA1, NDUFV3, PISD and PKLR , are independent prognostic factors for patients with ccRCC.
Provenzano, Paolo P; Inman, David R; Eliceiri, Kevin W; Beggs, Hilary E; Keely, Patricia J
2008-11-01
Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G(2) and G(2)/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers.
Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI.
Gensheimer, Michael F; Hawkins, Douglas S; Ermoian, Ralph P; Trister, Andrew D
2015-02-07
In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.
NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability
Sommermeyer, Daniel; Conrad, Heinke; Krönig, Holger; Gelfort, Haike; Bernhard, Helga; Uckert, Wolfgang
2013-01-01
The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy. PMID:22907642
Poersch, Aline; Grassi, Mariana Lopes; Carvalho, Vinícius Pereira de; Lanfredi, Guilherme Pauperio; Palma, Camila de Souza; Greene, Lewis Joel; de Sousa, Christiani Bisinoto; Carrara, Hélio Humberto Angotti; Candido Dos Reis, Francisco José; Faça, Vitor Marcel
2016-08-11
Tumor fluid samples have emerged as a rich source for the identification of ovarian cancer in the context of proteomics studies. To uncover differences among benign and malignant ovarian samples, we performed a quantitative proteomic study consisting of albumin immunodepletion, isotope labeling with acrylamide and in-depth proteomic profiling by LC-MS/MS in a pool of 10 samples of each histological type. 1135 proteins were identified, corresponding to 505 gene products. 223 proteins presented associated quantification and the comparative analysis of histological types revealed 75 differentially abundant proteins. Based on this, we developed a panel for targeted proteomic analysis using the multiple reaction monitoring (MRM) method for validation of 51 proteins in individual samples of high-grade serous ovarian tumor fluids (malignant) and benign serous cystadenoma tumor fluids. This analysis showed concordant results in terms of average amounts of proteins, and APOE, SERPINF2, SERPING1, ADAM17, CD44 and OVGP1 were statistically significant between benign and malignant group. The results observed in the MRM for APOE were confirmed by western blotting, where APOE was more abundant in malignant samples. This molecular signature can contribute to improve tumor stratification and shall be investigated in combination with current biomarkers in larger cohorts to improve ovarian cancer diagnosis. Despite advances in cancer research, ovarian cancer has a high mortality and remains a major challenge due to a number of particularities of the disease, especially late diagnosis caused by vague clinical symptoms, the cellular and molecular heterogeneity of tumors, and the lack of effective treatment. Thus, efforts are directed to better understand this neoplasia, its origin, development and, particularly the identification and validation of biomarkers for early detection of the disease in asymptomatic stage. In the present work, we confirmed by MRM method in individual ovarian tumor fluid samples the regulation of 27 proteins out of 33 identified in a highthroughput study. We speculate that the presence and/or differential abundance observed in tumor fluid is a cooperation primarily of high rates of secretion of such tumor proteins to extra tumor environment that will at the end accumulate in plasma, and also the accumulation of acute-phase proteins throughout the entire body. On top of that, consideration of physiological influences in the interpretation of expression observed, including age, menopause status, route-of-elimination kinetics and metabolism of the tumor marker, coexisting disease, hormonal imbalances, life-style influences (smoking, alcoholism, obesity), among others, are mandatory to enable the selection of good protein tumor marker candidates for extensive validation. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Hye-Youn; Kim, Jinhee; Ha Thi, Huyen Trang; Bang, Ok-Sun; Lee, Won-Suk; Hong, Suntaek
2016-11-18
KIOM-CRC#BP3B (BP3B) is a novel herbal prescription that is composed of three plant extracts. Our preliminary study identified that BP3B exhibited potent anti-proliferative activity against various types of cancer cell lines in vitro. Because the in vivo anti-tumor effect of BP3B is not evaluated before clinical trial, we want to test it using patient's samples. To confirm the in vivo anti-cancer effect of BP3B, we used genetically characterized patient-derived colon tumor xenograft (PDTX) mouse model. Anti-cancer activity was evaluated with apoptosis, proliferation, angiogenesis and histological analysis. Oral administration of BP3B significantly inhibited the tumor growth in two PDTX models. Furthermore, TUNEL assay showed that BP3B induced apoptosis of tumor tissues, which was associated with degradation of PARP and Caspase 8 and activation of Caspase 3. We also observed that BP3B inhibited cancer cell proliferation by down-regulation of Cyclin D1 and induction of p27 proteins. Inhibition of angiogenesis in BP3B-treated group was observed with immunofluorescence staining using CD31 and Tie-2 antibodies. These findings indicated that BP3B has a strong growth-inhibitory activity against colon cancer in in vivo model and will be a good therapeutic candidate for treatment of refractory colon cancer.
Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma
Hu, Li-Fu; Moumad, Khalid; Pavlova, Tatiana V.; Kashuba, Vladimir; Almgren, Malin; Zabarovsky, Eugene R.; Ernberg, Ingemar
2015-01-01
Epigenetic silencing of tumor suppressor genes (TSGs) by promoter methylation can be an early event in the multi-step process of carcinogenesis. Human chromosome 3 contains clusters of TSGs involved in many cancer types including nasopharyngeal carcinoma (NPC), the most common cancer in Southern China. Among ten candidate TSGs identified in chromosome 3 using NotI microarray, ITGA9 and WNT7A could be validated. 5′-aza-2′ deoxycytidine treatment restored the expression of ITGA9 and WNT7A in two NPC cell lines. Immunostaining showed strong expression of these genes in the membrane and cytoplasm of adjacent control nasopharyngeal epithelium cells, while they were weakly expressed in NPC tumor cells. The ITGA9 promoter showed marked differentially methylation between tumor and control tissue, whereas no differentially methylation could be detected for the WNT7A promoter. The expression level of ITGA9 in NPC tumors was downregulated 4.9-fold, compared to the expression in control. ITGA9 methylation was detected by methylation specific PCR (MSP) in 56% of EBV positive NPC- cases with 100% specificity. Taken together, this suggests that ITGA9 might be a TSG in NPC that is involved in tumor cell biology. The possibility of using ITGA9 methylation as a marker for early detection of NPC should further be explored. PMID:26372814
Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui
2016-01-01
Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer “Big Data” has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of “hit” compounds. PMID:27806312
Wichmann, Gunnar; Rosolowski, Maciej; Krohn, Knut; Kreuz, Markus; Boehm, Andreas; Reiche, Anett; Scharrer, Ulrike; Halama, Dirk; Bertolini, Julia; Bauer, Ulrike; Holzinger, Dana; Pawlita, Michael; Hess, Jochen; Engel, Christoph; Hasenclever, Dirk; Scholz, Markus; Ahnert, Peter; Kirsten, Holger; Hemprich, Alexander; Wittekind, Christian; Herbarth, Olf; Horn, Friedemann; Dietz, Andreas; Loeffler, Markus
2015-12-15
Stratification of head and neck squamous cell carcinomas (HNSCC) based on HPV16 DNA and RNA status, gene expression patterns, and mutated candidate genes may facilitate patient treatment decision. We characterize head and neck squamous cell carcinomas (HNSCC) with different HPV16 DNA and RNA (E6*I) status from 290 consecutively recruited patients by gene expression profiling and targeted sequencing of 50 genes. We show that tumors with transcriptionally inactive HPV16 (DNA+ RNA-) are similar to HPV-negative (DNA-) tumors regarding gene expression and frequency of TP53 mutations (47%, 8/17 and 43%, 72/167, respectively). We also find that an immune response-related gene expression cluster is associated with lymph node metastasis, independent of HPV16 status and that disruptive TP53 mutations are associated with lymph node metastasis in HPV16 DNA- tumors. We validate each of these associations in another large data set. Four gene expression clusters which we identify differ moderately but significantly in overall survival. Our findings underscore the importance of measuring the HPV16 RNA (E6*I) and TP53-mutation status for patient stratification and identify associations of an immune response-related gene expression cluster and TP53 mutations with lymph node metastasis in HNSCC. © 2015 UICC.
Pott, Leona L; Hagemann, Sascha; Reis, Henning; Lorenz, Kristina; Bracht, Thilo; Herold, Thomas; Skryabin, Boris V; Megger, Dominik A; Kälsch, Julia; Weber, Frank; Sitek, Barbara; Baba, Hideo A
2017-01-01
Hepatocellular carcinoma is a cancer with increasing incidence and largely refractory to current anticancer drugs. Since Sorafenib, a multikinase inhibitor has shown modest efficacy in advanced hepatocellular carcinoma additional treatments are highly needed. Protein phosphorylation via kinases is an important post-translational modification to regulate cell homeostasis including proliferation and apoptosis. Therefore kinases are valuable targets in cancer therapy. To this end we performed 2D differential gel electrophoresis and mass spectrometry analysis of phosphoprotein-enriched lysates of tumor and corresponding non-tumorous liver samples to detect differentially abundant phosphoproteins to screen for novel kinases as potential drug targets. We identified 34 differentially abundant proteins in phosphoprotein enriched lysates. Expression and distribution of the candidate protein eEF2 and its phosphorylated isoform was validated immunohistochemically on 78 hepatocellular carcinoma and non-tumorous tissue samples. Validation showed that total eEF2 and phosphorylated eEF2 at threonine 56 are prognostic markers for overall survival of HCC-patients. The activity of the regulating eEF2 kinase, compared between tumor and non-tumorous tissue lysates by in vitro kinase assays, is more than four times higher in tumor tissues. Functional analyzes regarding eEF2 kinase were performed in JHH5 cells with CRISPR/Cas9 mediated eEF2 kinase knock out. Proliferation and growth is decreased in eEF2 kinase knock out cells. Conclusion eEF2 and phosphorylated eEF2 are prognostic markers for survival of hepatocellular carcinoma patients and the regulating eEF2 kinase is a potential drug target for tumor therapy. PMID:28060762
Array CGH Analysis of Paired Blood and Tumor Samples from Patients with Sporadic Wilms Tumor
del Carmen Crespo, María; Vallespín, Elena; Palomares-Bralo, María; Martin-Arenas, Rubén; Rueda-Arenas, Inmaculada; Silvestre de Faria, Paulo Antonio; García-Miguel, Purificación; Lapunzina, Pablo; Regla Vargas, Fernando; Seuanez, Hector N.; Martínez-Glez, Víctor
2015-01-01
Wilms tumor (WT), the most common cancer of the kidney in infants and children, has a complex etiology that is still poorly understood. Identification of genomic copy number variants (CNV) in tumor genomes provides a better understanding of cancer development which may be useful for diagnosis and therapeutic targets. In paired blood and tumor DNA samples from 14 patients with sporadic WT, analyzed by aCGH, 22% of chromosome abnormalities were novel. All constitutional alterations identified in blood were segmental (in 28.6% of patients) and were also present in the paired tumor samples. Two segmental gains (2p21 and 20q13.3) and one loss (19q13.31) present in blood had not been previously described in WT. We also describe, for the first time, a small, constitutive partial gain of 3p22.1 comprising 2 exons of CTNNB1, a gene associated to WT. Among somatic alterations, novel structural chromosomal abnormalities were found, like gain of 19p13.3 and 20p12.3, and losses of 2p16.1-p15, 4q32.5-q35.1, 4q35.2-q28.1 and 19p13.3. Candidate genes included in these regions might be constitutively (SIX3, SALL4) or somatically (NEK1, PIAS4, BMP2) operational in the development and progression of WT. To our knowledge this is the first report of CNV in paired blood and tumor samples in sporadic WT. PMID:26317783
Pott, Leona L; Hagemann, Sascha; Reis, Henning; Lorenz, Kristina; Bracht, Thilo; Herold, Thomas; Skryabin, Boris V; Megger, Dominik A; Kälsch, Julia; Weber, Frank; Sitek, Barbara; Baba, Hideo A
2017-02-14
Hepatocellular carcinoma is a cancer with increasing incidence and largely refractory to current anticancer drugs. Since Sorafenib, a multikinase inhibitor has shown modest efficacy in advanced hepatocellular carcinoma additional treatments are highly needed. Protein phosphorylation via kinases is an important post-translational modification to regulate cell homeostasis including proliferation and apoptosis. Therefore kinases are valuable targets in cancer therapy. To this end we performed 2D differential gel electrophoresis and mass spectrometry analysis of phosphoprotein-enriched lysates of tumor and corresponding non-tumorous liver samples to detect differentially abundant phosphoproteins to screen for novel kinases as potential drug targets. We identified 34 differentially abundant proteins in phosphoprotein enriched lysates. Expression and distribution of the candidate protein eEF2 and its phosphorylated isoform was validated immunohistochemically on 78 hepatocellular carcinoma and non-tumorous tissue samples. Validation showed that total eEF2 and phosphorylated eEF2 at threonine 56 are prognostic markers for overall survival of HCC-patients. The activity of the regulating eEF2 kinase, compared between tumor and non-tumorous tissue lysates by in vitro kinase assays, is more than four times higher in tumor tissues. Functional analyzes regarding eEF2 kinase were performed in JHH5 cells with CRISPR/Cas9 mediated eEF2 kinase knock out. Proliferation and growth is decreased in eEF2 kinase knock out cells. eEF2 and phosphorylated eEF2 are prognostic markers for survival of hepatocellular carcinoma patients and the regulating eEF2 kinase is a potential drug target for tumor therapy.
Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael
2011-01-01
Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI(+) colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. FSP-specific CD8(+) T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI(+) colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were (386)-FLLALWECSL (FSP18) and (387)-LLALWECSL (FSP19) as well as (403)-IVSRTLLLV (FSP23) and (402)-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI(+)-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or--even more important--preventive purposes.
Identification of constrained cancer driver genes based on mutation timing.
Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko
2015-01-01
Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver-passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression.
Identification of Constrained Cancer Driver Genes Based on Mutation Timing
Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko
2015-01-01
Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148
Zhang, Peng; Yi, Shuhong; Li, Xi; Liu, Ruilei; Jiang, Hua; Huang, Zenan; Liu, Yu; Wu, Juekun; Huang, Yong
2014-01-01
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) in human immune system. DC-based tumor vaccine has met with some success in specific malignancies, inclusive of breast cancer. In this study, we electrofused MDA-MB-231 breast cancer cell line with day-3 DCs derived from peripheral blood monocytes, and explored the biological characteristics of fusion vaccine and its anti-tumor effects in vitro. Day-3 mature DCs were generated from day-2 immature DCs by adding cocktails composed of TNF-α, IL-1β, IL-6 and PEG2. Day-3 mature DCs were identified and electofused with breast cancer cells to generate fusion vaccine. Phenotype of fusion cells were identified by fluorescence microscope and flow cytometer. The fusion vaccine was evaluated for T cell proliferation, secretion of IL-12 and IFN-γ, and induction of tumor-specific CTL response. Despite differences in morphology, day-3 and day-7 DC expressed similar surface markers. The secretion of IL-12 and IFN-γ in fusion vaccine group was much higher than that in the control group. Compared with control group, DC-tumor fusion vaccine could better stimulate the proliferation of allogeneic T lymphocytes and kill more breast cancer cells (MDA-MB-231) in vitro. Day-3 DCs had the same function as the day-7 DCs, but with a shorter culture period. Our findings suggested that day-3 DCs fused with whole apoptotic breast cancer cells could elicit effective specific antitumor T cell responses in vitro and may be developed into a prospective candidate for adoptivet immunotherapy.
Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip
2016-01-01
Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064
Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).
Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P
2016-02-01
Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future analysis in clinical GBM samples. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM)*
Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P.
2016-01-01
Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future analysis in clinical GBM samples. PMID:26243272
Lau, Hiu Yeung; Ramanujulu, Pondy M; Guo, Dianyan; Yang, Tianming; Wirawan, Melissa; Casey, Patrick J; Go, Mei-Lin; Wang, Mei
2014-01-01
Inhibitors of isoprenylcysteine carboxylmethyltransferase (Icmt) are promising anti-cancer agents, as modification by Icmt is an essential component of the protein prenylation pathway for a group of proteins that includes Ras GTPases. Cysmethynil, a prototypical indole-based inhibitor of Icmt, effectively inhibits tumor cell growth. However, the physical properties of cysmethynil, such as its low aqueous solubility, make it a poor candidate for clinical development. A novel amino-derivative of cysmethynil with superior physical properties and marked improvement in efficacy, termed compound 8.12, has recently been reported. We report here that Icmt −/− mouse embryonic fibroblasts (MEFs) are much more resistant to compound 8.12-induced cell death than their wild-type counterparts, providing evidence that the anti-proliferative effects of this compound are mediated through an Icmt specific mechanism. Treatment of PC3 prostate and HepG2 liver cancer cells with compound 8.12 resulted in pre-lamin A accumulation and Ras delocalization from the plasma membrane, both expected outcomes from inhibition of the Icmt-catalyzed carboxylmethylation. Treatment with compound 8.12 induced cell cycle arrest, autophagy and cell death, and abolished anchorage-independent colony formation. Consistent with its greater in vitro efficacy, compound 8.12 inhibited tumor growth with greater potency than cysmethynil in a xenograft mouse model. Further, a drug combination study identified synergistic antitumor efficacy of compound 8.12 and the epithelial growth factor receptor (EGFR)-inhibitor gefitinib, possibly through enhancement of autophagy. This study establishes compound 8.12 as a pharmacological inhibitor of Icmt that is an attractive candidate for further preclinical and clinical development. PMID:24971579
Mutation spectrum and differential gene expression in cystic and solid vestibular schwannoma.
Zhang, Zhihua; Wang, Zhaoyan; Sun, Lianhua; Li, Xiaohua; Huang, Qi; Yang, Tao; Wu, Hao
2014-03-01
We sought to characterize the mutation spectrum of NF2 and the differential gene expression in cystic and solid vestibular schwannomas. We collected tumor tissue and blood samples of 31 cystic vestibular schwannomas and 114 solid vestibular schwannomas. Mutation screening of NF2 was performed in both tumor and blood DNA samples of all patients. cDNA microarray was used to analyze the differential gene expression between 11 cystic vestibular schwannomas and 6 solid vestibular schwannomas. Expression levels of top candidate genes were verified by quantitative reverse transcription PCR. NF2 mutations were identified in 34.5% of sporadic vestibular schwannomas, with all mutations being exclusively somatic. No significant difference was found between the mutation detection rates of cystic vestibular schwannoma (35.5%) and solid vestibular schwannoma (34.2%). cDNA microarray analysis detected a total of 46 differentially expressed genes between the cystic vestibular schwannoma and solid vestibular schwannoma samples. The significantly decreased expression of four top candidate genes, C1orf130, CNTF, COL4A3, and COL4A4, was verified by quantitative reverse transcription PCR. NF2 mutations are not directly involved in the cystic formation of vestibular schwannoma. In addition, the differential gene expression of cystic vestibular schwannoma reported in our study may provide useful insights into the molecular mechanism underlying this process.
Fiorillo, Marco; Sotgia, Federica; Sisci, Diego; Cappello, Anna Rita; Lisanti, Michael P.
2017-01-01
Here, we identified two new molecular targets, which are functionally sufficient to metabolically confer the tamoxifen-resistance phenotype in human breast cancer cells. Briefly, ~20 proteins were first selected as potential candidates, based on unbiased proteomics analysis, using tamoxifen-resistant cell lines. Then, the cDNAs of the most promising candidates were systematically transduced into MCF-7 cells. Remarkably, NQO1 and GCLC were both functionally sufficient to autonomously confer a tamoxifen-resistant metabolic phenotype, characterized by i) increased mitochondrial biogenesis, ii) increased ATP production and iii) reduced glutathione levels. Thus, we speculate that pharmacological inhibition of NQO1 and GCLC may be new therapeutic strategies for overcoming tamoxifen-resistance in breast cancer patients. In direct support of this notion, we demonstrate that treatment with a known NQO1 inhibitor (dicoumarol) is indeed sufficient to revert the tamoxifen-resistance phenotype. As such, these findings could have important translational significance for the prevention of tumor recurrence in ER(+) breast cancers, which is due to an endocrine resistance phenotype. Importantly, we also show here that NQO1 has significant prognostic value as a biomarker for the prediction of tumor recurrence. More specifically, higher levels of NQO1 mRNA strongly predict patient relapse in high-risk ER(+) breast cancer patients receiving endocrine therapy (mostly tamoxifen; H.R. > 2.15; p = 0.007). PMID:28411284
Page-Karjian, Annie; Gottdenker, Nicole L; Whitfield, Jordyn; Herbst, Lawrence; Norton, Terry M; Ritchie, Branson
2017-09-01
Chelonid herpesvirus 5 (ChHV5), the likely etiologic agent of sea turtle fibropapillomatosis (FP), is predicted to be unevenly distributed within an infected turtle, in which productive virus replication and virion shedding occurs in cutaneous tumor keratinocytes. In this study, we measured and compared ChHV5 DNA quantities in tumors, skin, urine, major organs, and nervous tissue samples from green turtles Chelonia mydas. These samples were taken from the carcasses of 10 juvenile green turtles with and without clinical signs of FP that stranded in Florida during 2014. Quantitative PCR for ChHV5 UL30 was used to identify ChHV5 DNA in tumors, skin, heart, kidney, nerves, and urine sampled from five out of five FP-positive and three out of five FP-free turtles. The most frequently co-occurring sites were cutaneous tumor and kidney (n = 4). Novel data presented here include the identification of ChHV5 DNA in kidney, heart, and nerve samples from three FP-free turtles. These data support candidate nontumored anatomic sites of ChHV5 DNA localization and mobilization during two different disease states that may be involved in the ChHV5 infection cycle. Received September 8, 2016; accepted April 17, 2017.
The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins.
Shimamura, Shintaro; Sasaki, Kazuki; Tanaka, Masamitsu
2013-01-11
In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression.
The Src Substrate SKAP2 Regulates Actin Assembly by Interacting with WAVE2 and Cortactin Proteins*
Shimamura, Shintaro; Sasaki, Kazuki; Tanaka, Masamitsu
2013-01-01
In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression. PMID:23161539
Pennacchioli, Elisabetta; Tosti, Giulio; Barberis, Massimo; De Pas, Tommaso M; Verrecchia, Francesco; Menicanti, Claudia; Testori, Alessandro; Mazzarol, Giovanni
2012-10-01
Sarcomas are a heterogeneous group of tumors with specific molecular characteristics and currently classified on the basis of their tissue of origin and histologic appearance. Except for epithelioid sarcoma, clear cell sarcoma, angiosarcoma and rhabdomyosarcoma, which may spread to regional lymph nodes, the other histotypes spread via the vascular system to the lungs most of the time. A variety of molecular approaches, including gene expression profiling, have identified candidate biomarkers and generated insights into sarcoma biology. The comprehension of the pathogenesis of this malignancy according to the mesenchymal stem cell hypothesis parallels the description of several molecular pathways deregulated in sarcoma. Individuation of vascular spread biomarkers is actually focused on the study of factors involved both in hemostasis and angiogenesis. Interestingly the microenvironment of sarcomas showed the very same mesenchymal origin of the surrounding stromal cells. The presence of circulating tumor cells and miRNAs in blood samples of sarcoma patients represents the possibility not only to better stratify patients group according to the prognosis but also to tailor new individualized therapy. So, it could be predicted that some genes expressed in a specific sarcoma might have prognostic significance or therapeutic targeting potential and molecular targets can be identified in the tumor or in the tumor microenvironment. Therefore the initial evaluation of a sarcoma patient should include in-depth genetic evaluation including karyotyping and c-DNA/protein expression profiling. The chemokine signaling demonstrated to be deeply implicated in sarcoma development as well as to have a significant role in development of metastatic disease, especially in directing tumor cells towards the preferential sites of metastases in sarcoma, lung and bone. It is unsolved if the blood stream is a more favorable environment compared to lymphatic or if lymph nodes are more efficient in destroying metastatic sarcoma cells. But the comprehension of the regulatory mechanisms of the behavior of mesenchymal malignant tumors is at its dawn.
Nielsen, Carsten H; Kimura, Richard H; Withofs, Nadia; Tran, Phuoc T; Miao, Zheng; Cochran, Jennifer R; Cheng, Zhen; Felsher, Dean; Kjær, Andreas; Willmann, Juergen K; Gambhir, Sanjiv S
2010-11-15
Due to the high mortality of lung cancer, there is a critical need to develop diagnostic procedures enabling early detection of the disease while at a curable stage. Targeted molecular imaging builds on the positive attributes of positron emission tomography/computed tomography (PET/CT) to allow for a noninvasive detection and characterization of smaller lung nodules, thus increasing the chances of positive treatment outcome. In this study, we investigate the ability to characterize lung tumors that spontaneously arise in a transgenic mouse model. The tumors are first identified with small animal CT followed by characterization with the use of small animal PET with a novel 64Cu-1,4,7,10-tetra-azacylododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-knottin peptide that targets integrins upregulated during angiogenesis on the tumor associated neovasculature. The imaging results obtained with the knottin peptide are compared with standard 18F-fluorodeoxyglucose (FDG) PET small animal imaging. Lung nodules as small as 3 mm in diameter were successfully identified in the transgenic mice by small animal CT, and both 64Cu-DOTA-knottin 2.5F and FDG were able to differentiate lung nodules from the surrounding tissues. Uptake and retention of the 64Cu-DOTA-knottin 2.5F tracer in the lung tumors combined with a low background in the thorax resulted in a statistically higher tumor to background (normal lung) ratio compared with FDG (6.01±0.61 versus 4.36±0.68; P<0.05). Ex vivo biodistribution showed 64Cu-DOTA-knottin 2.5F to have a fast renal clearance combined with low nonspecific accumulation in the thorax. Collectively, these results show 64Cu-DOTA-knottin 2.5F to be a promising candidate for clinical translation for earlier detection and improved characterization of lung cancer. Copyright © 2010 AACR.
miR-206 Inhibits Stemness and Metastasis of Breast Cancer by Targeting MKL1/IL11 Pathway.
Samaeekia, Ravand; Adorno-Cruz, Valery; Bockhorn, Jessica; Chang, Ya-Fang; Huang, Simo; Prat, Aleix; Ha, Nahun; Kibria, Golam; Huo, Dezheng; Zheng, Hui; Dalton, Rachel; Wang, Yuhao; Moskalenko, Grigoriy Y; Liu, Huiping
2017-02-15
Purpose: Effective targeting of cancer stem cells is necessary and important for eradicating cancer and reducing metastasis-related mortality. Understanding of cancer stemness-related signaling pathways at the molecular level will help control cancer and stop metastasis in the clinic. Experimental Design: By analyzing miRNA profiles and functions in cancer development, we aimed to identify regulators of breast tumor stemness and metastasis in human xenograft models in vivo and examined their effects on self-renewal and invasion of breast cancer cells in vitro To discover the direct targets and essential signaling pathways responsible for miRNA functions in breast cancer progression, we performed microarray analysis and target gene prediction in combination with functional studies on candidate genes (overexpression rescues and pheno-copying knockdowns). Results: In this study, we report that hsa-miR-206 suppresses breast tumor stemness and metastasis by inhibiting both self-renewal and invasion. We identified that among the candidate targets, twinfilin ( TWF1 ) rescues the miR-206 phenotype in invasion by enhancing the actin cytoskeleton dynamics and the activity of the mesenchymal lineage transcription factors, megakaryoblastic leukemia (translocation) 1 (MKL1), and serum response factor (SRF). MKL1 and SRF were further demonstrated to promote the expression of IL11 , which is essential for miR-206's function in inhibiting both invasion and stemness of breast cancer. Conclusions: The identification of the miR-206/TWF1/MKL1-SRF/IL11 signaling pathway sheds lights on the understanding of breast cancer initiation and progression, unveils new therapeutic targets, and facilitates innovative drug development to control cancer and block metastasis. Clin Cancer Res; 23(4); 1091-103. ©2016 AACR . ©2016 American Association for Cancer Research.
Kagohara, Luciane Tsukamoto; Maldonado, Leonel; Brait, Mariana; Schoenberg, Mark; Bivalacqua, Trinity; Netto, George J; Koch, Wayne; Sidransky, David; Hoque, Mohammad O.
2014-01-01
Background: To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors. Methods: We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines. Results: Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth. Conclusion: Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes. PMID:24830820
Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki
2016-05-26
Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.
Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki
2016-01-01
Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414
Kapanadze, B; Makeeva, N; Corcoran, M; Jareborg, N; Hammarsund, M; Baranova, A; Zabarovsky, E; Vorontsova, O; Merup, M; Gahrton, G; Jansson, M; Yankovsky, N; Einhorn, S; Oscier, D; Grandér, D; Sangfelt, O
2000-12-15
Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.
Shitara, Kohei; Yokota, Tomoya; Takahari, Daisuke; Shibata, Takashi; Sato, Yozo; Tajika, Masahiro; Ura, Takashi; Muro, Kei
2010-01-01
Introduction Cetuximab-based chemotherapy showed a statistically significantly higher response rate compared with chemotherapy such as FOLFOX. Therefore, FOLFOX plus cetuximab is suspected to be the best regimen to alleviate tumor-related symptoms with a high response rate. Case Report Here we present the results of 8 consecutive patients with metastatic colorectal cancer with poor performance status and/or severe complications who were treated with first-line FOLFOX with cetuximab. Six of 8 patients achieved an apparent clinical benefit, including radiological response and symptoms improvement. Two patients with BRAF mutation could achieve neither clinical benefit nor radiological response. Conclusion Although an optimal line of therapy with cetuximab is unclear yet with bevacizumab in mind, we propose that patients who need a tumor response to alleviate their symptoms due to advanced disease might be candidates for first-line cetuximab-based therapy as shown in our cases. Additionally, patients with BRAF mutant tumors might be important candidates for novel targeted therapy in the future to improve their poor prognosis. PMID:21347194
Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion.
Duivenvoorden, Hendrika M; Rautela, Jai; Edgington-Mitchell, Laura E; Spurling, Alex; Greening, David W; Nowell, Cameron J; Molloy, Timothy J; Robbins, Elizabeth; Brockwell, Natasha K; Lee, Cheok Soon; Chen, Maoshan; Holliday, Anne; Selinger, Cristina I; Hu, Min; Britt, Kara L; Stroud, David A; Bogyo, Matthew; Möller, Andreas; Polyak, Kornelia; Sloane, Bonnie F; O'Toole, Sandra A; Parker, Belinda S
2017-12-01
Mammography screening has increased the detection of early pre-invasive breast cancers, termed ductal carcinoma in situ (DCIS), increasing the urgency of identifying molecular regulators of invasion as prognostic markers to predict local relapse. Using the MMTV-PyMT breast cancer model and pharmacological protease inhibitors, we reveal that cysteine cathepsins have important roles in early-stage tumorigenesis. To characterize the cell-specific roles of cathepsins in early invasion, we developed a DCIS-like model, incorporating an immortalized myoepithelial cell line (N1ME) that restrained tumor cell invasion in 3D culture. Using this model, we identified an important myoepithelial-specific function of the cysteine cathepsin inhibitor stefin A in suppressing invasion, whereby targeted stefin A loss in N1ME cells blocked myoepithelial-induced suppression of breast cancer cell invasion. Enhanced invasion observed in 3D cultures with N1ME stefin A-low cells was reliant on cathepsin B activation, as addition of the small molecule inhibitor CA-074 rescued the DCIS-like non-invasive phenotype. Importantly, we confirmed that stefin A was indeed abundant in myoepithelial cells in breast tissue. Use of a 138-patient cohort confirmed that myoepithelial stefin A (cystatin A) is abundant in normal breast ducts and low-grade DCIS but reduced in high-grade DCIS, supporting myoepithelial stefin A as a candidate marker of lower risk of invasive relapse. We have therefore identified myoepithelial cell stefin A as a suppressor of early tumor invasion and a candidate marker to distinguish patients who are at low risk of developing invasive breast cancer, and can therefore be spared further treatment. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Yang, Mei; Wang, Danhua; Yu, Lingxiang; Guo, Chaonan; Guo, Xiaodong; Lin, Na
2013-01-01
Aim To screen novel markers for hepatocellular carcinoma (HCC) by a combination of expression profile, interaction network analysis and clinical validation. Methods HCC significant molecules which are differentially expressed or had genetic variations in HCC tissues were obtained from five existing HCC related databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and Liverome). Then, the protein-protein interaction (PPI) network of these molecules was constructed. Three topological features of the network ('Degree', 'Betweenness', and 'Closeness') and the k-core algorithm were used to screen candidate HCC markers which play crucial roles in tumorigenesis of HCC. Furthermore, the clinical significance of two candidate HCC markers growth factor receptor-bound 2 (GRB2) and GRB2-associated-binding protein 1 (GAB1) was validated. Results In total, 6179 HCC significant genes and 977 HCC significant proteins were collected from existing HCC related databases. After network analysis, 331 candidate HCC markers were identified. Especially, GAB1 has the highest k-coreness suggesting its central localization in HCC related network, and the interaction between GRB2 and GAB1 has the largest edge-betweenness implying it may be biologically important to the function of HCC related network. As the results of clinical validation, the expression levels of both GRB2 and GAB1 proteins were significantly higher in HCC tissues than those in their adjacent nonneoplastic tissues. More importantly, the combined GRB2 and GAB1 protein expression was significantly associated with aggressive tumor progression and poor prognosis in patients with HCC. Conclusion This study provided an integrative analysis by combining expression profile and interaction network analysis to identify a list of biologically significant HCC related markers and pathways. Further experimental validation indicated that the aberrant expression of GRB2 and GAB1 proteins may be strongly related to tumor progression and prognosis in patients with HCC. The overexpression of GRB2 in combination with upregulation of GAB1 may be an unfavorable prognostic factor for HCC. PMID:24391994
Molecular genetics and genomics progress in urothelial bladder cancer.
Netto, George J
2013-11-01
The clinical management of solid tumor patients has recently undergone a paradigm shift as the result of the accelerated advances in cancer genetics and genomics. Molecular diagnostics is now an integral part of routine clinical management in lung, colon, and breast cancer patients. In a disappointing contrast, molecular biomarkers remain largely excluded from current management algorithms of urologic malignancies. The need for new treatment alternatives and validated prognostic molecular biomarkers that can help clinicians identify patients in need of early aggressive management is pressing. Identifying robust predictive biomarkers that can stratify response to newly introduced targeted therapeutics is another crucially needed development. The following is a brief discussion of some promising candidate biomarkers that may soon become a part of clinical management of bladder cancers. © 2013 Published by Elsevier Inc.
Immunotherapy using regulatory T cells in cancer suggests more flavors of hypersensitivity type IV.
Pakravan, Nafiseh; Hassan, Zuhair Mohammad
2018-03-01
Regulatory T cells (Tregs) profoundly affect tumor microenvironment and exert dominant suppression over antitumor immunity in response to self-antigen expressed by tumor. Immunotherapy targeting Tregs lead to a significant improvement in antitumor immunity. Intradermal injection of tumor antigen results in negative delayed-type hypersensitivity (DTH) type IV. However, anti-Tregs treatment/use of adjuvant along with tumor antigens turns DTH to positive. Considering Tregs as the earliest tumor sensor/responders, tumor can be regarded as Treg-mediated type IV hypersensitivity and negative DTH to tumor antigen is due to anti-inflammatory action of Tregs to tumor antigens at the injection site. Such a view would help us in basic and clinical situations to testify a candidate vaccine via dermal administration and evaluation of Treg proportion at injection site.
Okarvi, Subhani M; Al Jammaz, Ibrahim
2016-07-01
The goal of this study was to prepare a synthetic peptide derived from breast tumor associated antigen and to evaluate its potential as a breast cancer imaging agent. A mucin 1 derived peptide was synthesized by solid-phase peptide synthesis and examined for its radiochemical and metabolic stability. The tumor cell binding affinity of (99m)Tc-MUC1 peptide was investigated on MUC1-positive T47D and MCF7 breast cancer cell lines. In vivo biodistribution was studied in normal Balb/c mice and in vivo tumor targeting and imaging in MCF7 and T47D tumor-bearing nude mice. The synthesized MUC1-derived peptide displayed high radiochemical and metabolic stability. In vitro tumor cell-binding on T47D and MCF7 cell lines demonstrated high affinity of (99m)Tc-MUC1 peptide towards human breast cancer cells (binding affinities in nanomolar range). Pharmacokinetic studies performed on Balb/c mice are characterized by an efficient clearance from the blood and excretion predominantly through the urinary system. In vivo tumor uptake in nude mice with MCF7 tumor xenografts was 2.77±0.63% ID/g as early as 1h p.i. whereas in nude mice with T47D human ductal breast epithelial cancer cells, the accumulation in the tumor was found to be 2.65±0.54% ID/g at 1h p.i. Also tumor lesion was detectable in γ-camera imaging. The tumor uptake values were always higher than the blood and muscle uptake, with good tumor retention and good tumor-to-blood and tumor-to-muscle ratios. A low to moderate (<5% ID/g) accumulation and retention of (99m)Tc-MUC1 was found in the major organs (i.e., lungs, stomach, liver, intestines, kidneys, etc.) in both normal and tumor-bearing mice. This study suggests that (99m)Tc-MUC1 tumor-antigen peptide may be a potential candidate for the targeted imaging of MUC1-positive human tumors and warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.
Yanagawa, Rempei; Furukawa, Yoichi; Tsunoda, Tatsuhiko; Kitahara, Osamu; Kameyama, Masao; Murata, Kohei; Ishikawa, Osamu; Nakamura, Yusuke
2001-01-01
Abstract In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions. PMID:11687950
Genetically engineered mouse models in oncology research and cancer medicine.
Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos
2017-02-01
Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Fine mapping of the NRC-1 tumor suppressor locus within chromosome 3p12.
Zhang, Kun; Lott, Steven T; Jin, Li; Killary, Ann McNeill
2007-08-31
Identification of tumor suppressor genes based on physical mapping exercises has proven to be a challenging endeavor, due to the difficulty of narrowing regions of loss of heterozygosity (LOH), infrequency of homozygous deletions, and the labor-intensive characterization process for screening candidates in a given genomic interval. We previously defined a chromosome 3p12 tumor suppressor locus NRC-1 (Nonpapillary Renal Carcinoma-1) by functional complementation experiments in which renal cell carcinoma microcell hybrids containing introduced normal chromosome 3p fragments were either suppressed or unsuppressed for tumorigenicity following injection into athymic nude mice. We now present the fine-scale physical mapping of NRC-1 using a QPCR-based approach for measuring copy number at sequence tagged sites (STS) which allowed a sub-exon mapping resolution. Using STS-QPCR and a novel statistical algorithm, the NRC-1 locus was narrowed to 4.615-Mb with the distal boundary mapping within a 38-Kb interval between exon 3 and exon 4 of the DUTT1/Robo1 gene, currently the only candidate tumor suppressor gene in the interval. Further mutational screening and gene expression analyses indicate that DUTT1/ROBO1 is not involved in the tumor suppressor activity of NRC-1, suggesting that there are at least two important tumor suppressor genes within the chromosome 3p12 interval.
Proteolysis of EphA2 converts it from a tumor suppressor to an oncoprotein
KOSHIKAWA, Naohiko; HOSHINO, Daisuke; TANIGUCHI, Hiroaki; MINEGISHI, Tomoko; TOMARI, Taizo; NAM, Sung-Ouk; AOKI, Mikiko; SUETA, Takayuki; NAKAGAWA, Takashi; MIYAMOTO, Shingo; NABESHIMA, Kazuki; WEAVER, Alissa M.; SEIKI, Motoharu
2015-01-01
Eph receptor tyrosine kinases are considered candidate therapeutic targets in cancer, but they can exert opposing effects on cell growth. In presence of its ligands, Eph receptor EphA2 suppresses signaling by other growth factor receptors, including ErbB, whereas ligand-independent activation of EphA2 augments ErbB signaling. To deploy EphA2-targeting drugs effectively in tumors, the anti-oncogenic ligand-dependent activation state of EphA2 must be discriminated from its oncogenic ligand-independent state. Since the molecular basis for the latter is little understood, we investigated how the activation state of EphA2 can be switched in tumor tissue. We found that ligand-binding domain of EphA2 is cleaved frequently by the membrane metalloproteinase MT1-MMP, a powerful modulator of the pericellular environment in tumor cells. EphA2 immunostaining revealed a significant loss of the N-terminal portion of EphA2 in areas of tumor tissue that expressed MT1-MMP. Moreover, EphA2 phosphorylation patterns that signify ligand-independent activation were observed specifically in these areas of tumor tissue. Mechanistic experiments revealed that processing of EphA2 by MT1-MMP promoted ErbB signaling, anchorage-independent growth, and cell migration. Conversely, expression of a proteolysis-resistant mutant of EphA2 prevented tumorigenesis and metastasis of human tumor xenografts in mice. Overall, our results showed how the proteolytic state of EphA2 in tumors determines its effector function and influences its status as a candidate biomarker for targeted therapy. PMID:26130649
Cong, Menglin; Li, Jianmin; Jing, Rui; Li, Zhenzhong
2016-07-01
Osteosarcoma is the most common malignant tumor of bone. Recent studies have proven long non-coding RNAs (lncRNAs) play important roles in the tumorigenesis and progression of cancer. However, few lncRNAs have been investigated in osteosarcoma. Here, we reported a novel lncRNA, tumor suppressor candidate 7 (TUSC7), was significantly downregulated in osteosarcoma tissues compared with paired non-tumor tissues and low expression of TUSC7 indicated poor survival (HR = 0.313, 95 % confidence interval (CI) 0.092-0.867) of osteosarcoma patients. Further analysis revealed that loss copy number of TUSC7 was correlated with low expression of TUSC7, and additionally, loss of TUSC7 copy number also indicated poor prognosis (HR = 3.994, 95 % CI 1.147-13.91) of osteosarcoma patients. Two osteosarcoma cell lines, HOS and MG63, were utilized to investigate biological function of TUSC7. Cell counting kit 8 (CCK-8) assay revealed that after silence of TUSC7, cell proliferation ability increased and the colony formation ability also increased. Further results showed that cell cycle was not affected by treatment of si-TUSC7, while the percentage of apoptotic cells decreased. Western blot showed that after silence of TUSC7, the proapoptotic Bcl2 expression was downregulated. Finally, we established xenograft tumor models in nude mice with MG63 cells. Compared with negative control group, silence of TUSC7 significantly promoted tumor growth in vivo. Thus, we demonstrated that TUSC7 could be a potential tumor suppressor in osteosarcoma.
Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn
2015-02-01
Asparagine-glycine-arginine (NGR)-containing peptides targeting aminopeptidase N (APN)/CD13 can be an excellent candidate for targeting ligands in molecular tumor imaging. In this study, we developed two NGR-containing hexapeptides, and evaluated the diagnostic performance of Tc-99m labeled hexapeptides as molecular imaging agents in an HT-1080 fibrosarcoma-bearing murine model. Peptides were synthesized using Fmoc solid-phase peptide synthesis. Radiochemical purity of Tc-99m was evaluated using instant thin-layer chromatography. The uptake of two NGR-containing hexapeptides within HT-1080 cells was evaluated in vitro. In HT-1080 fibrosarcoma tumor-bearing mice, gamma images were acquired. A biodistribution study was performed to calculate percentage of the injected dose per gram of tissue (%ID/g). Two hexapeptides, glutamic acid-cysteine-glycine (ECG)-NGR and NGR-ECG were successfully synthesized. After radiolabeling procedures with Tc-99m, the complexes Tc-99m hexapeptides were prepared in high yield. The uptake of Tc-99m ECG-NGR within the tumor cells had been assured by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-NGR was accumulated substantially in the subcutaneously engrafted tumor. However, Tc-99m NGR-ECG was accumulated minimally in the tumor. Two NGR-containing hexapeptides, ECG-NGR and NGR-ECG were developed as molecular imaging agents to target APN/CD13 in HT-1080 fibrosarcoma. Tc-99m ECG-NGR showed a significant uptake in the tumor, and it is a good candidate for tumor imaging. Copyright © 2015 John Wiley & Sons, Ltd.
Song, Ehwang; Gao, Yuqian; Wu, Chaochao; ...
2017-07-19
Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less
NASA Astrophysics Data System (ADS)
Nakamura, Yoshihiko; Nimura, Yukitaka; Kitasaka, Takayuki; Mizuno, Shinji; Furukawa, Kazuhiro; Goto, Hidemi; Fujiwara, Michitaka; Misawa, Kazunari; Ito, Masaaki; Nawano, Shigeru; Mori, Kensaku
2013-03-01
This paper presents an automated method of abdominal lymph node detection to aid the preoperative diagnosis of abdominal cancer surgery. In abdominal cancer surgery, surgeons must resect not only tumors and metastases but also lymph nodes that might have a metastasis. This procedure is called lymphadenectomy or lymph node dissection. Insufficient lymphadenectomy carries a high risk for relapse. However, excessive resection decreases a patient's quality of life. Therefore, it is important to identify the location and the structure of lymph nodes to make a suitable surgical plan. The proposed method consists of candidate lymph node detection and false positive reduction. Candidate lymph nodes are detected using a multi-scale blob-like enhancement filter based on local intensity structure analysis. To reduce false positives, the proposed method uses a classifier based on support vector machine with the texture and shape information. The experimental results reveal that it detects 70.5% of the lymph nodes with 13.0 false positives per case.
Osteosarcoma Genetics and Epigenetics: Emerging Biology and Candidate Therapies
Morrow, James J.; Khanna, Chand
2016-01-01
Osteosarcoma is the most common primary malignancy of bone, typically presenting in the first or second decade of life. Unfortunately, clinical outcomes for osteosarcoma patients have not substantially improved in over 30 years. This stagnation in therapeutic advances is perhaps explained by the genetic, epigenetic, and biological complexities of this rare tumor. In this review we provide a general background on the biology of osteosarcoma and the clinical status quo. We go on to enumerate the genetic and epigenetic defects identified in osteosarcoma. Finally, we discuss ongoing large-scale studies in the field and potential new therapies that are currently under investigation. PMID:26349415
Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P; Suarez, John J; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Della Valle, Adriana; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R; Goldstein, Alisa M; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R; Carvajal-Carmona, Luis G
2017-04-01
Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers
Haylock, Anna-Karin; Nilvebrant, Johan; Mortensen, Anja; Velikyan, Irina; Nestor, Marika; Falk, Ronny
2017-01-01
Aim The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients. Materials and methods Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I. Results Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p.i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor. Conclusion The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging. PMID:29029420
AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth.
Hu, Brian R; Fairey, Adrian S; Madhav, Anisha; Yang, Dongyun; Li, Meng; Groshen, Susan; Stephens, Craig; Kim, Philip H; Virk, Navneet; Wang, Lina; Martin, Sue Ellen; Erho, Nicholas; Davicioni, Elai; Jenkins, Robert B; Den, Robert B; Xu, Tong; Xu, Yucheng; Gill, Inderbir S; Quinn, David I; Goldkorn, Amir
2016-05-01
Treatment of prostate cancer (PCa) may be improved by identifying biological mechanisms of tumor growth that directly impact clinical disease progression. We investigated whether genes associated with a highly tumorigenic, drug resistant, progenitor phenotype impact PCa biology and recurrence. Radical prostatectomy (RP) specimens (±disease recurrence, N = 276) were analyzed by qRT-PCR to quantify expression of genes associated with self-renewal, drug resistance, and tumorigenicity in prior studies. Associations between gene expression and PCa recurrence were confirmed by bootstrap internal validation and by external validation in independent cohorts (total N = 675) and in silico. siRNA knockdown and lentiviral overexpression were used to determine the effect of gene expression on PCa invasion, proliferation, and tumor growth. Four candidate genes were differentially expressed in PCa recurrence. Of these, low AXIN2 expression was internally validated in the discovery cohort. Validation in external cohorts and in silico demonstrated that low AXIN2 was independently associated with more aggressive PCa, biochemical recurrence, and metastasis-free survival after RP. Functionally, siRNA-mediated depletion of AXIN2 significantly increased invasiveness, proliferation, and tumor growth. Conversely, ectopic overexpression of AXIN2 significantly reduced invasiveness, proliferation, and tumor growth. Low AXIN2 expression was associated with PCa recurrence after RP in our test population as well as in external validation cohorts, and its expression levels in PCa cells significantly impacted invasiveness, proliferation, and tumor growth. Given these novel roles, further study of AXIN2 in PCa may yield promising new predictive and therapeutic strategies. © 2016 Wiley Periodicals, Inc.
Biologically relevant 3D tumor arrays: treatment response and the importance of stromal partners
NASA Astrophysics Data System (ADS)
Rizvi, Imran; Celli, Jonathan P.; Xu, Feng; Evans, Conor L.; Abu-Yousif, Adnan O.; Muzikansky, Alona; Elrington, Stefan A.; Pogue, Brian W.; Finkelstein, Dianne M.; Demirci, Utkan; Hasan, Tayyaba
2011-02-01
The development and translational potential of therapeutic strategies for cancer is limited, in part, by a lack of biological models that capture important aspects of tumor growth and treatment response. It is also becoming increasingly evident that no single treatment will be curative for this complex disease. Rationally-designed combination regimens that impact multiple targets provide the best hope of significantly improving clinical outcomes for cancer patients. Rapidly identifying treatments that cooperatively enhance treatment efficacy from the vast library of candidate interventions is not feasible, however, with current systems. There is a vital, unmet need to create cell-based research platforms that more accurately mimic the complex biology of human tumors than monolayer cultures, while providing the ability to screen therapeutic combinations more rapidly than animal models. We have developed a highly reproducible in vitro three-dimensional (3D) tumor model for micrometastatic ovarian cancer (OvCa), which in conjunction with quantitative image analysis routines to batch-process large datasets, serves as a high throughput reporter to screen rationally-designed combination regimens. We use this system to assess mechanism-based combination regimens with photodynamic therapy (PDT), which sensitizes OvCa to chemo and biologic agents, and has shown promise in clinic trials. We show that PDT synergistically enhances carboplatin efficacy in a sequence dependent manner. In printed heterocellular cultures we demonstrate that proximity of fibroblasts enhances 3D tumor growth and investigate co-cultures with endothelial cells. The principles described here could inform the design and evaluation of mechanism-based therapeutic options for a broad spectrum of metastatic solid tumors.
Expression of Fra-1 in human hepatocellular carcinoma and its prognostic significance.
Gao, Xiao-Qiang; Ge, Yong-Sheng; Shu, Qing-Hua; Ma, Hua-Xing
2017-06-01
This study aimed to explore the clinical significance and prognostic value of Fra-1 in hepatocellular carcinoma patients after curative resection. Fra-1 expression was investigated using a combination of techniques: immunohistochemistry for 66 samples of hepatocellular carcinoma and quantitative real-time polymerase chain reaction and western blotting assays for 19 matched hepatocellular carcinoma specimens. Fra-1 was present in 38 of 66 (57.6%) tumor tissues, with intense staining in the nuclei. There was also positive staining in 14 of 66 (21.2%) adjacent peritumoral tissues, with weak staining in the cytoplasm. Quantitative real-time polymerase chain reaction and western blotting assays confirmed higher expression of Fra-1 messenger RNA and Fra-1 protein in tumor tissues than adjacent non-tumor tissues for 19 hepatocellular carcinoma samples (p < 0.001). Positive expression of Fra-1 was significantly related to vascular invasion and serum alpha-fetoprotein. Kaplan-Meier survival analysis found that overexpressed Fra-1 was correlated with poor overall survival and disease-free survival. Multivariate analysis identified Fra-1 as an independent prognostic factor. Fra-1 may be involved in the progress of hepatocellular carcinoma and could be a promising molecular candidate in the diagnosis and treatment of hepatocellular carcinoma.
Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.
2015-01-01
The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398
Mayol, Gemma; Martín-Subero, José I.; Ríos, José; Queiros, Ana; Kulis, Marta; Suñol, Mariona; Esteller, Manel; Gómez, Soledad; Garcia, Idoia; de Torres, Carmen; Rodríguez, Eva; Galván, Patricia; Mora, Jaume; Lavarino, Cinzia
2012-01-01
Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation. PMID:23144874
Ammous-Boukhris, Nihel; Mosbah, Amor; Sahli, Emna; Ayadi, Wajdi; Hadhri-Guiga, Boutheina; Chérif, Ameur; Gargouri, Ali; Mokdad-Gargouri, Raja
2016-11-01
Latent membrane protein 1 (LMP1), a major oncoprotein of Epstein Barr Virus (EBV) is responsible for transforming B lymphocytes in vitro. LMP1 is overexpressed in several EBV-associated malignancies, and different approaches have been developed to reduce its level and accordingly its oncogenic function in tumor tissues. This study aimed to use phage display peptide library to obtain peptides which could specifically bind to the cytoplasmic region of LMP1 to prevent its interaction with signaling proteins. The LMP1 C-terminus region was produced in bacterial E. coli and used as target for the phage library panning. After 3 rounds, 20 phage clones were randomly selected and 8 showed high binding affinity to the recombinant C-terminus LMP1 protein. The most interesting candidates are the FO5 "QPTKDSSPPLRV" and NO4 "STTSPPAVPHNN" peptides since both bind the C-terminus LMP1 as showed by molecular docking. Furthermore, sequence alignment revealed that the FO5 peptide shared sequence similarity with the Death Receptor 4 which belongs to the tumor necrosis factor-related apoptosis-inducing receptor which plays key role in anti-tumor immunity. Copyright © 2016 Elsevier Inc. All rights reserved.
Honda, Shohei; Haruta, Masayuki; Sugawara, Waka; Sasaki, Fumiaki; Ohira, Miki; Matsunaga, Tadashi; Yamaoka, Hiroaki; Horie, Hiroshi; Ohnuma, Naomi; Nakagawara, Akira; Hiyama, Eiso; Todo, Satoru; Kaneko, Yasuhiko
2008-09-01
Despite the progress of therapy, outcomes of advanced hepatoblastoma patients who are refractory to standard preoperative chemotherapy remain unsatisfactory. To improve the mortality rate, novel prognostic markers are needed for better therapy planning. We examined the methylation status of 13 candidate tumor suppressor genes in 20 hepatoblastoma tumors by conventional methylation-specific PCR (MSP) and found hypermethylation in 3 of the 13 genes. We analyzed the methylation status of these 3 genes (RASSF1A, SOCS1 and CASP8) in 97 tumors and found hypermethylation in 30.9, 33.0 and 15.5%, respectively. Univariate analysis showed that only the methylation status of RASSF1A but not the other 2 genes predicted the outcome, and multivariate analysis showed a weak contribution of RASSF1A methylation to overall survival. Using quantitative MSP, we found RASSF1A methylation in 44.3% of the 97 tumors. CTNNB1 mutation was detected in 67.0% of the 97 tumors. While univariate analysis demonstrated RASSF1A methylation, CTNNB1 mutation and other clinicopathological variables as prognostic factors, multivariate analysis identified RASSF1A methylation (p = 0.043; relative risk 9.39) and the disease stage (p = 0.002; relative risk 7.67) but not CTNNB1 mutation as independent prognostic factors. In survival analysis of 33 patients in stage 3B or 4, patients with unmethylated tumor had better overall survival than those with methylated tumor (p = 0.035). RASSF1A methylation may be a promising molecular-genetic marker to predict the treatment outcome and may be used to stratify patients when clinical trials are carried out.
FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity of medulloblastoma stem cells.
Manoranjan, Branavan; Wang, Xin; Hallett, Robin M; Venugopal, Chitra; Mack, Stephen C; McFarlane, Nicole; Nolte, Sara M; Scheinemann, Katrin; Gunnarsson, Thorsteinn; Hassell, John A; Taylor, Michael D; Lee, Cathy; Triscott, Joanna; Foster, Colleen M; Dunham, Christopher; Hawkins, Cynthia; Dunn, Sandra E; Singh, Sheila K
2013-07-01
Brain tumors represent the leading cause of childhood cancer mortality, of which medulloblastoma (MB) is the most frequent malignant tumor. Recent studies have demonstrated the presence of several MB molecular subgroups, each distinct in terms of prognosis and predicted therapeutic response. Groups 1 and 2 are characterized by relatively good clinical outcomes and activation of the Wnt and Shh pathways, respectively. In contrast, groups 3 and 4 ("non-Shh/Wnt MBs") are distinguished by metastatic disease, poor patient outcome, and lack a molecular pathway phenotype. Current gene expression platforms have not detected brain tumor-initiating cell (BTIC) self-renewal genes in groups 3 and 4 MBs as BTICs typically comprise a minority of tumor cells and may therefore go undetected on bulk tumor analyses. Since increasing BTIC frequency has been associated with increasing tumor aggressiveness and poor patient outcome, we investigated the subgroup-specific gene expression profile of candidate stem cell genes within 251 primary human MBs from four nonoverlapping MB transcriptional databases (Amsterdam, Memphis, Toronto, Boston) and 74 NanoString-subgrouped MBs (Vancouver). We assessed the functional relevance of two genes, FoxG1 and Bmi1, which were significantly enriched in non-Shh/Wnt MBs and showed these genes to mediate MB stem cell self-renewal and tumor initiation in mice. We also identified their transcriptional regulation through reciprocal promoter occupancy in CD15+ MB stem cells. Our work demonstrates the application of stem cell data gathered from genomic platforms to guide functional BTIC assays, which may then be used to develop novel BTIC self-renewal mechanisms amenable to therapeutic targeting. Copyright © 2013 AlphaMed Press.
Goel, Ajay; Nguyen, Thuy-Phuong; Leung, Hon-Chiu E; Nagasaka, Takeshi; Rhees, Jennifer; Hotchkiss, Erin; Arnold, Mildred; Banerji, Pia; Koi, Minoru; Kwok, Chau-To; Packham, Deborah; Lipton, Lara; Boland, C Richard; Ward, Robyn L; Hitchins, Megan P
2011-02-15
Lynch syndrome is an autosomal dominant cancer predisposition syndrome classically caused by germline mutations of the mismatch repair genes, MLH1, MSH2, MSH6 and PMS2. Constitutional epimutations of the MLH1 gene, characterized by soma-wide methylation of a single allele of the promoter and allelic transcriptional silencing, have been identified in a subset of Lynch syndrome cases lacking a sequence mutation in MLH1. We report two individuals with no family history of colorectal cancer who developed that disease at age 18 and 20 years. In both cases, cancer had arisen because of the de novo occurrence of a constitutional MLH1 epimutation and somatic loss-of-heterozygosity of the functional allele in the tumors. We show for the first time that the epimutation in one case arose on the paternally inherited allele. Analysis of 13 tumors from seven individuals with constitutional MLH1 epimutations showed eight tumors had lost the second MLH1 allele, two tumors had a novel pathogenic missense mutation and three had retained heterozygosity. Only 1 of 12 tumors demonstrated the BRAF V600E mutation and 3 of 11 tumors harbored a mutation in KRAS. The finding that epimutations can originate on the paternal allele provides important new insights into the mechanism of origin of epimutations. It is clear that the second hit in MLH1 epimutation-associated tumors typically has a genetic not epigenetic basis. Individuals with mismatch repair-deficient cancers without the BRAF V600E mutation are candidates for germline screening for sequence or methylation changes in MLH1. Copyright © 2010 UICC.
Goel, Ajay; Nguyen, Thuy-Phuong; Leung, Hon-Chiu E.; Nagasaka, Takeshi; Rhees, Jennifer; Hotchkiss, Erin; Arnold, Mildred; Banerji, Pia; Koi, Minoru; Kwok, Chau-To; Packham, Deborah; Lipton, Lara; Boland, C. Richard; Ward, Robyn L.; Hitchins, Megan P.
2013-01-01
Lynch syndrome is an autosomal dominant cancer predisposition syndrome classically caused by germline mutations of the mismatch repair genes, MLH1, MSH2, MSH6 and PMS2. Constitutional epimutations of the MLH1 gene, characterized by soma-wide methylation of a single allele of the promoter and allelic transcriptional silencing, have been identified in a subset of Lynch syndrome cases lacking a sequence mutation in MLH1. We report two individuals with no family history of colorectal cancer who developed that disease at age 18 and 20 years. In both cases, cancer had arisen because of the de novo occurrence of a constitutional MLH1 epimutation and somatic loss-of-heterozygosity of the functional allele in the tumors. We show for the first time that the epimutation in one case arose on the paternally inherited allele. Analysis of 13 tumors from seven individuals with constitutional MLH1 epimutations showed eight tumors had lost the second MLH1 allele, two tumors had a novel pathogenic missense mutation and three had retained heterozygosity. Only 1 of 12 tumors demonstrated the BRAF V600E mutation and 3 of 11 tumors harbored a mutation in KRAS. The finding that epimutations can originate on the paternal allele provides important new insights into the mechanism of origin of epimutations. It is clear that the second hit in MLH1 epimutation-associated tumors typically has a genetic not epigenetic basis. Individuals with mismatch repair–deficient cancers without the BRAF V600E mutation are candidates for germline screening for sequence or methylation changes in MLH1. PMID:20473912
Liver transplantation for hepatocellular carcinoma: a proposal of a prognostic scoring system.
Iwatsuki, S; Dvorchik, I; Marsh, J W; Madariaga, J R; Carr, B; Fung, J J; Starzl, T E
2000-10-01
The current staging system of hepatocellular carcinoma established by the International Union Against Cancer and the American Joint Committee on Cancer does not necessarily predict the outcomes after hepatic resection or transplantation. Various clinical and pathologic risk factors for tumor recurrence were examined on 344 consecutive patients who received hepatic transplantation in the presence of nonfibrolamellar hepatocellular carcinoma to establish a reliable risk scoring system. Multivariate analysis identified three factors as independently significant poor prognosticators: 1) bilobarly distributed tumors, 2) size of the greatest tumor (2 to 5 cm and > 5 cm), and 3) vascular invasion (microscopic and macroscopic). Prognostic risk score (PRS) of each patient was calculated from the relative risks of multivariate analysis. The patients were grouped into five grades of tumor recurrence risk: grade 1: PRS = 0 to < 7.5; grade 2: PRS = 7.5 to < or = 11.0; grade 3: PRS > 11.0 to 15.0; grade 4: PRS > or = 15.0; and grade 5: positive node, metastasis, or margin. The proposed PRS system correlated extremely well with tumor-free survival after liver transplantation (100%, 61%, 40%, 5%, and 0%, from grades 1 to 5, respectively, at 5 years), but current pTNM staging did not. 1) Patients with grades 1 and 2 are effectively treated with liver transplantation, 2) patients with grades 4 and 5 are poor candidates for liver transplantation, and 3) patients with grade 1 do not benefit from adjuvant chemotherapy.
LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Danny C.T.; Rudduck, Christina; Chin, Koei
2008-05-06
Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30more » primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.« less
Botta, C; Cucè, M; Pitari, M R; Caracciolo, D; Gullà, A; Morelli, E; Riillo, C; Biamonte, L; Gallo Cantafio, M E; Prabhala, R; Mignogna, C; Di Vito, A; Altomare, E; Amodio, N; Di Martino, M T; Correale, P; Rossi, M; Giordano, A; Munshi, N C; Tagliaferri, P; Tassone, P
2018-01-01
Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients’ adverse prognosis and development of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM. PMID:29158557
1999-07-01
but is generally at an advanced stage at the time of detection. Both diseases are controlled by multiple genetic defects, suggesting the involvement of...Functional characterization of OVCA1, a putative tumor suppressor. American Society of Human Genetics , submitted, 1999. Prowse, A.H., Bruening, W...Godwin, A.K. OVCA1, and novel tumor suppressor, is aberrantly expressed in ovarian carcinomas. American Society of Human Genetics , submitted, 1999
1998-08-01
has also been reported in primitive neuroectodermal tumors (19), carcinoma of the cervix uteri (20), medulloblastoma, osteosarcoma (21), astrocytoma...Knudson, A. G., Jr. Oncogenes and tumor-suppressor genes. In: W. J. Hoskins, C. A. Perez, and R. C. Young (eds.), Principles and Practice of... Young , B. D., Nakayama, K., and Steiner, D. F. Processing of wild-type and mutant proinsulin-like growth factor-IA by subtilisin-related proprotein
ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan
2015-01-01
Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.
ICan: An Integrated Co-Alteration Network to Identify Ovarian Cancer-Related Genes
Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan
2015-01-01
Background Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. Results We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). Conclusion In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data. PMID:25803614
A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability
Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin
2017-01-01
Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865
A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.
Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin
2017-02-03
Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.
MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin.
Su, Juan; Zhang, Anling; Shi, Zhendong; Ma, Feifei; Pu, Peiyu; Wang, Tao; Zhang, Jie; Kang, Chunsheng; Zhang, Qingyu
2012-04-01
The Wnt/β-catenin signaling pathway is crucial for human organ development and is involved in tumor progression of many cancers. Accumulating evidence suggests that the expression of β-catenin is, in part, regulated by specific microRNAs (miRNAs). The purpose of this study was to determine the expression of a recently identified epithelial to mesenchymal transition (EMT)-associated tumor suppressor microRNA (miR)-200a, in cancer cells. We also aimed to identify specific miR-200a target genes and to investigate the antitumor effects of miR-200a on the Wnt/β-catenin signaling pathway. We employed TOP/FOP flash luciferase assays to identify the effect of miR-200a on the Wnt/β-catenin pathway and we confirmed our observations using fluorescence microscopy. To determine target genes of miR-200a, a 3' untranslated region (3' UTR) luciferase assay was performed. Cell viability, invasion and wound healing assays were carried out for functional analysis after miRNA transfection. We further investigated the role of miR-200a in EMT by Western blot analysis. We found fluctuation in the expression of miR-200a that was accompanied by changes in the expression of members of the Wnt/β-catenin signaling pathway. We also determined that miR-200a can directly interact with the 3' UTR of CTNNB1 (the gene that encodes β-catenin) to suppress Wnt/β-catenin signaling. MiR-200a could also influence the biological activities of SGC790 and U251 cells. Our results demonstrate that miR-200a is a new tumor suppressor that can regulate the activity of the Wnt/β-catenin signaling pathway via two mechanisms. MiR-200a is a candidate target for tumor treatment via its regulation of the Wnt/β-catenin signaling pathway.
Luan, Haitao; Mohapatra, Bhopal; Bielecki, Timothy A; Mushtaq, Insha; Mirza, Sameer; Jennings, Tameka A; Clubb, Robert J; An, Wei; Ahmed, Dena; El-Ansari, Rokaya; Storck, Matthew D; Mishra, Nitish K; Guda, Chittibabu; Sheinin, Yuri M; Meza, Jane L; Raja, Srikumar; Rakha, Emad A; Band, Vimla; Band, Hamid
2018-05-15
CHIP/STUB1 ubiquitin ligase is a negative co-chaperone for HSP90/HSC70, and its expression is reduced or lost in several cancers, including breast cancer. Using an extensive and well-annotated breast cancer tissue collection, we identified the loss of nuclear but not cytoplasmic CHIP to predict more aggressive tumorigenesis and shorter patient survival, with loss of CHIP in two thirds of ErbB2 + and triple-negative breast cancers (TNBC) and in one third of ER + breast cancers. Reduced CHIP expression was seen in breast cancer patient-derived xenograft tumors and in ErbB2 + and TNBC cell lines. Ectopic CHIP expression in ErbB2 + lines suppressed in vitro oncogenic traits and in vivo xenograft tumor growth. An unbiased screen for CHIP-regulated nuclear transcription factors identified many candidates whose DNA-binding activity was up- or downregulated by CHIP. We characterized myeloid zinc finger 1 (MZF1) as a CHIP target, given its recently identified role as a positive regulator of cathepsin B/L (CTSB/L)-mediated tumor cell invasion downstream of ErbB2. We show that CHIP negatively regulates CTSB/L expression in ErbB2 + and other breast cancer cell lines. CTSB inhibition abrogates invasion and matrix degradation in vitro and halts ErbB2 + breast cancer cell line xenograft growth. We conclude that loss of CHIP remodels the cellular transcriptome to unleash critical pro-oncogenic pathways, such as the matrix-degrading enzymes of the cathepsin family, whose components can provide new therapeutic opportunities in breast and other cancers with loss of CHIP expression. Significance: These findings reveal a novel targetable pathway of breast oncogenesis unleashed by the loss of tumor suppressor ubiquitin ligase CHIP/STUB1. Cancer Res; 78(10); 2524-35. ©2018 AACR . ©2018 American Association for Cancer Research.
Olson, Gary L.; Nallaganchu, Bhaskara Rao; Benes, Cyril H.; Allen, Joshua E.; Prabhu, Varun V.; Stogniew, Martin; Oster, Wolfgang; El-Deiry, Wafik S.
2017-01-01
ABSTRACT Anti-cancer small molecule ONC201 upregulates the integrated stress response (ISR) and acts as a dual inactivator of Akt/ERK, leading to TRAIL gene activation. ONC201 is under investigation in multiple clinical trials to treat patients with cancer. Given the unique imipridone core chemical structure of ONC201, we synthesized a series of analogs to identify additional compounds with distinct therapeutic properties. Several imipridones with a broad range of in vitro potencies were identified in an exploration of chemical derivatives. Based on in vitro potency in human cancer cell lines and lack of toxicity to normal human fibroblasts, imipridones ONC206 and ONC212 were prioritized for further study. Both analogs inhibited colony formation, and induced apoptosis and downstream signaling that involves the integrated stress response and Akt/ERK, similar to ONC201. Compared to ONC201, ONC206 demonstrated improved inhibition of cell migration while ONC212 exhibited rapid kinetics of activity. ONC212 was further tested in >1000 human cancer cell lines in vitro and evaluated for safety and anti-tumor efficacy in vivo. ONC212 exhibited broad-spectrum efficacy at nanomolar concentrations across solid tumors and hematological malignancies. Skin cancer emerged as a tumor type with improved efficacy relative to ONC201. Orally administered ONC212 displayed potent anti-tumor effects in vivo, a broad therapeutic window and a favorable PK profile. ONC212 was efficacious in vivo in BRAF V600E melanoma models that are less sensitive to ONC201. Based on these findings, ONC212 warrants further development as a drug candidate. It is clear that therapeutic utility extends beyond ONC201 to include additional imipridones. PMID:28489985
Wagner, Jessica; Kline, Christina Leah; Ralff, Marie D; Lev, Avital; Lulla, Amriti; Zhou, Lanlan; Olson, Gary L; Nallaganchu, Bhaskara Rao; Benes, Cyril H; Allen, Joshua E; Prabhu, Varun V; Stogniew, Martin; Oster, Wolfgang; El-Deiry, Wafik S
2017-10-02
Anti-cancer small molecule ONC201 upregulates the integrated stress response (ISR) and acts as a dual inactivator of Akt/ERK, leading to TRAIL gene activation. ONC201 is under investigation in multiple clinical trials to treat patients with cancer. Given the unique imipridone core chemical structure of ONC201, we synthesized a series of analogs to identify additional compounds with distinct therapeutic properties. Several imipridones with a broad range of in vitro potencies were identified in an exploration of chemical derivatives. Based on in vitro potency in human cancer cell lines and lack of toxicity to normal human fibroblasts, imipridones ONC206 and ONC212 were prioritized for further study. Both analogs inhibited colony formation, and induced apoptosis and downstream signaling that involves the integrated stress response and Akt/ERK, similar to ONC201. Compared to ONC201, ONC206 demonstrated improved inhibition of cell migration while ONC212 exhibited rapid kinetics of activity. ONC212 was further tested in >1000 human cancer cell lines in vitro and evaluated for safety and anti-tumor efficacy in vivo. ONC212 exhibited broad-spectrum efficacy at nanomolar concentrations across solid tumors and hematological malignancies. Skin cancer emerged as a tumor type with improved efficacy relative to ONC201. Orally administered ONC212 displayed potent anti-tumor effects in vivo, a broad therapeutic window and a favorable PK profile. ONC212 was efficacious in vivo in BRAF V600E melanoma models that are less sensitive to ONC201. Based on these findings, ONC212 warrants further development as a drug candidate. It is clear that therapeutic utility extends beyond ONC201 to include additional imipridones.
Zhang, Feng; Zhang, Chun-Mei; Li, Shu; Wang, Kun-Kun; Guo, Bin-Bin; Fu, Yao; Liu, Lu-Yang; Zhang, Yu; Jiang, Hai-Yu; Wu, Chang-Jun
2018-01-01
Hepatoblastoma (HB) is the most common type of pediatric liver malignancy, which predominantly occurs in young children (aged <5 years), and continues to be a therapeutic challenge in terms of metastasis and drug resistance. As a new pattern of tumor blood supply, vasculogenic mimicry (VM) is a channel structure lined by tumor cells rather than endothelial cells, which contribute to angiogenesis. VM occurs in a variety of solid tumor types, including liver cancer, such as hepatocellular carcinoma. The aim of the present study was to elucidate the effect of arsenic trioxide (As2O3) on VM. In vitro experiments identified that HB cell line HepG2 cells form typical VM structures on Matrigel, and the structures were markedly damaged by As2O3 at a low concentration before the cell viability significantly decreased. The western blot results indicated that As2O3 downregulated the expression level of VM-associated proteins prior to the appearance of apoptotic proteins. In vivo, VM has been observed in xenografts of HB mouse models and identified by periodic acid-Schiff+/CD105− channels lined by HepG2 cells without necrotic cells. As2O3 (2 mg/kg) markedly depresses tumor growth without causing serious adverse reactions by decreasing the number of VM channels via inhibiting the expression level of VM-associated proteins. Thus, the present data strongly indicate that low dosage As2O3 reduces the formation of VM in HB cell line HepG2 cells, independent of cell apoptosis in vivo and in vitro, and may represent as a candidate drug for HB targeting VM. PMID:29138840
Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael
2011-01-01
Background Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI+ colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. Methodology/Principal Findings FSP-specific CD8+ T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI+ colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. Conclusions We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were 386-FLLALWECSL (FSP18) and 387-LLALWECSL (FSP19) as well as 403-IVSRTLLLV (FSP23) and 402-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI+-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or –even more important– preventive purposes. PMID:22110587
Myxoma Virus Expressing Human Interleukin-12 Does Not Induce Myxomatosis in European Rabbits▿
Stanford, Marianne M.; Barrett, John W.; Gilbert, Philippe-Alexandre; Bankert, Richard; McFadden, Grant
2007-01-01
Myxoma virus (MV) is a candidate for oncolytic virotherapy due to its ability to selectively infect and kill tumor cells, yet MV is a species-specific pathogen that causes disease only in European rabbits. To assess the ability of MV to deliver cytokines to tumors, we created an MV (vMyxIL-12) that expresses human interleukin-12 (IL-12). vMyxIL-12 replicates similarly to wild-type MV, and virus-infected cells secrete bioactive IL-12. Yet, vMyxIL-12 does not cause myxomatosis, despite expressing the complete repertoire of MV proteins. Thus, vMyxIL-12 exhibits promise as an oncolytic candidate and is safe in all known vertebrate hosts, including lagomorphs. PMID:17728229
Myxoma virus expressing human interleukin-12 does not induce myxomatosis in European rabbits.
Stanford, Marianne M; Barrett, John W; Gilbert, Philippe-Alexandre; Bankert, Richard; McFadden, Grant
2007-11-01
Myxoma virus (MV) is a candidate for oncolytic virotherapy due to its ability to selectively infect and kill tumor cells, yet MV is a species-specific pathogen that causes disease only in European rabbits. To assess the ability of MV to deliver cytokines to tumors, we created an MV (vMyxIL-12) that expresses human interleukin-12 (IL-12). vMyxIL-12 replicates similarly to wild-type MV, and virus-infected cells secrete bioactive IL-12. Yet, vMyxIL-12 does not cause myxomatosis, despite expressing the complete repertoire of MV proteins. Thus, vMyxIL-12 exhibits promise as an oncolytic candidate and is safe in all known vertebrate hosts, including lagomorphs.
Ben–Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M.; Ma, Cynthia X.; Ellis, Matthew J.
2015-01-01
Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2 targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. In this case report, we describe a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second generation HER2/EGFR tyrosine kinase inhibitor, neratinib, resulted in partial response and dramatic improvement in the patient’s function status. This partial response lasted 11 months and when the patient’s cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2 amplified breast cancer after disease progression. This case is the first report, to our knowledge, of successful single agent treatment of HER2 mutated breast cancer. Two clinical trials of neratinib for HER2 mutated, metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancer, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2 mutated solid tumors is warranted. PMID:26358790
Skinner, Donal C.
2009-01-01
The pars tuberalis is a distinct subdivision of the pituitary gland but its function remains poorly understood. Suprasellar tumors in this pars tuberalis region are frequently accompanied by hyperprolactinemia. As these tumors do not immunoreact for any of the established pituitary hormones, they are classified as non-secretory. It has been postulated that these suprasellar tumors induce hyperprolactinemia by compressing the pituitary stalk, resulting in impaired dopamine delivery to the pituitary and, consequently, disinhibition of the lactotropes. An alternative hypothesis proposed is that suprasellar tumors secrete a specific pars tuberalis factor that stimulates prolactin secretion. Hypothesized candidates are the preprotachykinin A derived tachykinins, substance P and/or neurokinin A. PMID:19028420
TES inhibits colorectal cancer progression through activation of p38.
Li, Huili; Huang, Kun; Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang
2016-07-19
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site - a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
TES inhibits colorectal cancer progression through activation of p38
Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang
2016-01-01
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy. PMID:27323777
Elderly male smokers with right lung tumors are viable candidates for KRAS mutation screening.
Yang, Yang; Shi, Chun; Sun, Hui; Yin, Wei; Zhou, Xiao; Zhang, Lei; Jiang, Gening
2016-01-07
Genetic aberrations in tumor driver genes provide specific molecular targets for therapeutic intervention, which can greatly improve therapeutic outcomes. Here, we analyzed the mutational frequency of EGFR and KRAS gene, as well as EML4-ALK rearrangement, and summarized the clinicopathological characters of Chinese lung cancer patients. We detected the mutation spectrum of 1033 primary lung cancer patients. The analyzed clinicopathological parameters included gender, age at diagnosis, smoking status, pathological TNM stage, tumor morphology and location, visceral pleural invasion, and histological type. A total of 618 patients had mutations in EGFR or KRAS gene as well as rearrangement of EML4-ALK. Exon 19 deletions and L858R in the EGFR gene were the most frequent mutations. Left-side lung cancer was more common in female patients carrying the KRAS mutation. Rearrangement of EML4-ALK was more common in non-tobacco-using male patients, who also exhibited a higher likelihood of visceral pleura invasion. Elderly females who never smoked and possessed 1-20 mm stage I adenocarcinomas in the right side exhibited a higher frequency of EGFR mutations. Elderly male smokers with right lung tumors were viable candidates for KRAS mutation screening.
Moniri Javadhesari, Solmaz; Gharechahi, Javad; Hosseinpour Feizi, Mohammad Ali; Montazeri, Vahid; Halimi, Monireh
2013-04-01
Survivin, which is a novel member of the inhibitor of apoptosis family proteins, is known to play an important role in the regulation of cell cycle and apoptosis. Differential expression of survivin in tumor tissues introduces it as a new candidate molecular marker for cancer. Here we investigated the expression of survivin and its splice variants in breast tumors, as well as normal adjacent tissues obtained from the same patients. Thirty five tumors and 17 normal adjacent tissues from women diagnosed with breast cancer were explored in this study. Differential expression of different survivin splice variants was detected and semiquantitatively analyzed using reverse transcription-polymerase chain reaction. Results showed that survivin and its splice variants were differentially expressed in tumor specimens compared with normal adjacent tissues. The expression of survivin-3B and survivin-3α was specifically detected in tumor tissues compared with normal adjacent ones (53% in tumor tissues compared to 5% in normal adjacent for survivin-3B and 65% in tumor tissues and 0.0% in normal adjacent tissues for survivin-3α). Statistical analysis showed that survivin and survivin-ΔEx3 were upregulated in benign (90%, p<0.034) and malignant (76%, p<0.042) tumors, respectively. On the other hand, our results showed that survivin-2α (100% of the cases) was the dominant expressed variant of survivin in breast cancer. The data presented here showed that survivin splice variants were differentially expressed in benign and malignant breast cancer tissues, suggesting their potential role in breast cancer development. Differential expression of survivin-2α and survivin-3α splice variants highlights their usefulness as new candidate markers for breast cancer diagnosis and prognosis.
Proteolysis of EphA2 Converts It from a Tumor Suppressor to an Oncoprotein.
Koshikawa, Naohiko; Hoshino, Daisuke; Taniguchi, Hiroaki; Minegishi, Tomoko; Tomari, Taizo; Nam, Sung-Ouk; Aoki, Mikiko; Sueta, Takayuki; Nakagawa, Takashi; Miyamoto, Shingo; Nabeshima, Kazuki; Weaver, Alissa M; Seiki, Motoharu
2015-08-15
Eph receptor tyrosine kinases are considered candidate therapeutic targets in cancer, but they can exert opposing effects on cell growth. In the presence of its ligands, Eph receptor EphA2 suppresses signaling by other growth factor receptors, including ErbB, whereas ligand-independent activation of EphA2 augments ErbB signaling. To deploy EphA2-targeting drugs effectively in tumors, the anti-oncogenic ligand-dependent activation state of EphA2 must be discriminated from its oncogenic ligand-independent state. Because the molecular basis for the latter is little understood, we investigated how the activation state of EphA2 can be switched in tumor tissue. We found that ligand-binding domain of EphA2 is cleaved frequently by the membrane metalloproteinase MT1-MMP, a powerful modulator of the pericellular environment in tumor cells. EphA2 immunostaining revealed a significant loss of the N-terminal portion of EphA2 in areas of tumor tissue that expressed MT1-MMP. Moreover, EphA2 phosphorylation patterns that signify ligand-independent activation were observed specifically in these areas of tumor tissue. Mechanistic experiments revealed that processing of EphA2 by MT1-MMP promoted ErbB signaling, anchorage-independent growth, and cell migration. Conversely, expression of a proteolysis-resistant mutant of EphA2 prevented tumorigenesis and metastasis of human tumor xenografts in mice. Overall, our results showed how the proteolytic state of EphA2 in tumors determines its effector function and influences its status as a candidate biomarker for targeted therapy. ©2015 American Association for Cancer Research.
Ren, Xuefeng; Graham, Jessica C; Jing, Lichen; Mikheev, Andrei M; Gao, Yuan; Lew, Jenny Pan; Xie, Hong; Kim, Andrea S; Shang, Xiuling; Friedman, Cynthia; Vail, Graham; Fang, Ming Zhu; Bromberg, Yana; Zarbl, Helmut
2013-01-01
Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop) and susceptible Fischer 344 (F344) strains, we mapped a novel mammary carcinoma susceptibility (Mcs30) locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker). The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs), one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.
Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma
Strub, Graham M.; Kirsh, Andrew L.; Whipple, Mark E.; Kuo, Winston P.; Keller, Rachel B.; Kapur, Raj P.; Majesky, Mark W.; Perkins, Jonathan A.
2016-01-01
Infantile hemangioma (IH) is the most common vascular tumor of infancy, and it uniquely regresses in response to oral propranolol. MicroRNAs (miRNAs) have emerged as key regulators of vascular development and are dysregulated in many disease processes, but the role of miRNAs in IH growth has not been investigated. We report expression of C19MC, a primate-specific megacluster of miRNAs expressed in placenta with rare expression in postnatal tissues, in glucose transporter 1–expressing (GLUT-1–expressing) IH endothelial cells and in the plasma of children with IH. Tissue or circulating C19MC miRNAs were not detectable in patients having 9 other types of vascular anomalies or unaffected children, identifying C19MC miRNAs as the first circulating biomarkers of IH. Levels of circulating C19MC miRNAs correlated with IH tumor size and propranolol treatment response, and IH tissue from children treated with propranolol or from children with partially involuted tumors contained lower levels of C19MC miRNAs than untreated, proliferative tumors, implicating C19MC miRNAs as potential drivers of IH pathogenesis. Detection of C19MC miRNAs in the circulation of infants with IH may provide a specific and noninvasive means of IH diagnosis and identification of candidates for propranolol therapy as well as a means to monitor treatment response. PMID:27660822
Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R).
Sokolowska, Izabela; Woods, Alisa G; Gawinowicz, Mary Ann; Roy, Urmi; Darie, Costel C
2013-08-01
Tumor differentiation factor (TDF) is an under-investigated protein produced by the pituitary with no definitive function. TDF is secreted into the bloodstream and targets the breast and prostate, suggesting that it has an endocrine function. Initially, TDF was indirectly discovered based on the differentiation effect of alkaline pituitary extracts of the mammosomatotropic tumor MtTWlO on MTW9/PI rat mammary tumor cells. Years later, the cDNA clone responsible for this differentiation activity was isolated from a human pituitary cDNA library using expression cloning. The cDNA encoded a 108-amino-acid polypeptide that had differentiation activity on MCF7 breast cancer cells and on DU145 prostate cancer cells in vitro and in vivo. Recently, our group focused on identification of the TDF receptor (TDF-R). As potential TDF-R candidates, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. Here we review the current advances on TDF, with particular focus on the structural investigation of its receptor and on its functional effects on breast and prostate cells.
El Hasasna, Hussain; Saleh, Alaaeldin; Samri, Halima Al; Athamneh, Khawlah; Attoub, Samir; Arafat, Kholoud; Benhalilou, Nehla; Alyan, Sofyan; Viallet, Jean; Dhaheri, Yusra Al; Eid, Ali; Iratni, Rabah
2016-01-01
Recently, we reported that Rhus coriaria exhibits anticancer activities by promoting cell cycle arrest and autophagic cell death of the metastatic triple negative MDA-MB-231 breast cancer cells. Here, we investigated the effect of Rhus coriaria on the migration, invasion, metastasis and tumor growth of TNBC cells. Our current study revealed that non-cytotoxic concentrations of Rhus coriaria significantly inhibited migration and invasion, blocked adhesion to fibronectin and downregulated MMP-9 and prostaglandin E2 (PgE2). Not only did Rhus coriaria decrease their adhesion to HUVECs and to lung microvascular endothelial (HMVEC-L) cells, but it also inhibited the transendothelial migration of MDA-MB-231 cells through TNF-α-activated HUVECs. Furthermore, we found that Rhus coriaria inhibited angiogenesis, reduced VEGF production in both MDA-MB-231 and HUVECs and downregulated the inflammatory cytokines TNF-α, IL-6 and IL-8. The underlying mechanism for Rhus coriaria effects appears to be through inhibiting NFκB, STAT3 and nitric oxide (NO) pathways. Most importantly, by using chick embryo tumor growth assay, we showed that Rhus coriaria suppressed tumor growth and metastasis in vivo. The results described in the present study identify Rhus coriaria as a promising chemopreventive and therapeutic candidate that modulate triple negative breast cancer growth and metastasis. PMID:26888313
Kim, Hyun-Kyoung; Park, Won Cheol; Lee, Kwang Man; Hwang, Hai-Li; Park, Seong-Yeol; Sorn, Sungbin; Chandra, Vishal; Kim, Kwang Gi; Yoon, Woong-Bae; Bae, Joon Seol; Shin, Hyoung Doo; Shin, Jong-Yeon; Seoh, Ju-Young; Kim, Jong-Il; Hong, Kyeong-Man
2014-01-01
The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends. As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA. Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation. Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.
From a 2DE-gel spot to protein function: lesson learned from HS1 in chronic lymphocytic leukemia.
Apollonio, Benedetta; Bertilaccio, Maria Teresa Sabrina; Restuccia, Umberto; Ranghetti, Pamela; Barbaglio, Federica; Ghia, Paolo; Caligaris-Cappio, Federico; Scielzo, Cristina
2014-10-19
The identification of molecules involved in tumor initiation and progression is fundamental for understanding disease's biology and, as a consequence, for the clinical management of patients. In the present work we will describe an optimized proteomic approach for the identification of molecules involved in the progression of Chronic Lymphocytic Leukemia (CLL). In detail, leukemic cell lysates are resolved by 2-dimensional Electrophoresis (2DE) and visualized as "spots" on the 2DE gels. Comparative analysis of proteomic maps allows the identification of differentially expressed proteins (in terms of abundance and post-translational modifications) that are picked, isolated and identified by Mass Spectrometry (MS). The biological function of the identified candidates can be tested by different assays (i.e. migration, adhesion and F-actin polymerization), that we have optimized for primary leukemic cells.
A Common Variant at the 14q32 Endometrial Cancer Risk Locus Activates AKT1 through YY1 Binding.
Painter, Jodie N; Kaufmann, Susanne; O'Mara, Tracy A; Hillman, Kristine M; Sivakumaran, Haran; Darabi, Hatef; Cheng, Timothy H T; Pearson, John; Kazakoff, Stephen; Waddell, Nicola; Hoivik, Erling A; Goode, Ellen L; Scott, Rodney J; Tomlinson, Ian; Dunning, Alison M; Easton, Douglas F; French, Juliet D; Salvesen, Helga B; Pollock, Pamela M; Thompson, Deborah J; Spurdle, Amanda B; Edwards, Stacey L
2016-06-02
A recent meta-analysis of multiple genome-wide association and follow-up endometrial cancer case-control datasets identified a novel genetic risk locus for this disease at chromosome 14q32.33. To prioritize the functional SNP(s) and target gene(s) at this locus, we employed an in silico fine-mapping approach using genotyped and imputed SNP data for 6,608 endometrial cancer cases and 37,925 controls of European ancestry. Association and functional analyses provide evidence that the best candidate causal SNP is rs2494737. Multiple experimental analyses show that SNP rs2494737 maps to a silencer element located within AKT1, a member of the PI3K/AKT/MTOR intracellular signaling pathway activated in endometrial tumors. The rs2494737 risk A allele creates a YY1 transcription factor-binding site and abrogates the silencer activity in luciferase assays, an effect mimicked by transfection of YY1 siRNA. Our findings suggest YY1 is a positive regulator of AKT1, mediating the stimulatory effects of rs2494737 increasing endometrial cancer risk. Identification of an endometrial cancer risk allele within a member of the PI3K/AKT signaling pathway, more commonly activated in tumors by somatic alterations, raises the possibility that well tolerated inhibitors targeting this pathway could be candidates for evaluation as chemopreventive agents in individuals at high risk of developing endometrial cancer. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Yin, Bin; Delwel, Ruud; Valk, Peter J.; Wallace, Margaret R.; Loh, Mignon L.; Shannon, Kevin M.
2009-01-01
NF1 inactivation occurs in specific human cancers, including juvenile myelomonocytic leukemia, an aggressive myeloproliferative disorder of childhood. However, evidence suggests that Nf1 loss alone does not cause leukemia. We therefore hypothesized that inactivation of the Nf1 tumor suppressor gene requires cooperating mutations to cause acute leukemia. To search for candidate genes that cooperate with Nf1 deficiency in leukemogenesis, we performed a forward genetic screen using retroviral insertion mutagenesis in Nf1 mutant mice. We identified 43 common proviral insertion sites that contain candidate genes involved in leukemogenesis. One of these genes, Bcl11a, confers a growth advantage in cultured Nf1 mutant hematopoietic cells and causes early onset of leukemia of either myeloid or lymphoid lineage in mice when expressed in Nf1-deficient bone marrow. Bcl11a-expressing cells display compromised p21Cip1 induction, suggesting that Bcl11a's oncogenic effects are mediated, in part, through suppression of p21Cip1. Importantly, Bcl11a is expressed in human chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia samples. A subset of AML patients, who had poor outcomes, of 16 clusters, displayed high levels of BCL11A in leukemic cells. These findings suggest that deregulated Bcl11a cooperates with Nf1 in leukemogenesis, and a therapeutic strategy targeting the BCL11A pathway may prove beneficial in the treatment of leukemia. PMID:18948576
Watanabe, Yoshiyuki; Kim, Hyun Soo; Castoro, Ryan J; Chung, Woonbok; Estecio, Marcos R H; Kondo, Kimie; Guo, Yi; Ahmed, Saira S; Toyota, Minoru; Itoh, Fumio; Suk, Ki Tae; Cho, Mee-Yon; Shen, Lanlan; Jelinek, Jaroslav; Issa, Jean-Pierre J
2009-06-01
Aberrant DNA methylation is an early and frequent process in gastric carcinogenesis and could be useful for detection of gastric neoplasia. We hypothesized that methylation analysis of DNA recovered from gastric washes could be used to detect gastric cancer. We studied 51 candidate genes in 7 gastric cancer cell lines and 24 samples (training set) and identified 6 for further studies. We examined the methylation status of these genes in a test set consisting of 131 gastric neoplasias at various stages. Finally, we validated the 6 candidate genes in a different population of 40 primary gastric cancer samples and 113 nonneoplastic gastric mucosa samples. Six genes (MINT25, RORA, GDNF, ADAM23, PRDM5, MLF1) showed frequent differential methylation between gastric cancer and normal mucosa in the training, test, and validation sets. GDNF and MINT25 were most sensitive molecular markers of early stage gastric cancer, whereas PRDM5 and MLF1 were markers of a field defect. There was a close correlation (r = 0.5-0.9, P = .03-.001) between methylation levels in tumor biopsy and gastric washes. MINT25 methylation had the best sensitivity (90%), specificity (96%), and area under the receiver operating characteristic curve (0.961) in terms of tumor detection in gastric washes. These findings suggest MINT25 is a sensitive and specific marker for screening in gastric cancer. Additionally, we have developed a new method for gastric cancer detection by DNA methylation in gastric washes.
2012-01-01
Background Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. Methods Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. Results Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). Conclusions These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors. PMID:23046790
Honda, Shohei; Minato, Masashi; Suzuki, Hiromu; Fujiyoshi, Masato; Miyagi, Hisayuki; Haruta, Masayuki; Kaneko, Yasuhiko; Hatanaka, Kanako C; Hiyama, Eiso; Kamijo, Takehiko; Okada, Tadao; Taketomi, Akinobu
2016-06-01
Hepatoblastoma (HB) is very rare but the most common malignant neoplasm of the liver occurring in children. Despite improvements in therapy, outcomes for patients with advanced HB that is refractory to standard preoperative chemotherapy remain unsatisfactory. To improve the survival rate among this group, identification of novel prognostic markers and therapeutic targets is needed. We have previously reported that altered DNA methylation patterns are of biological and clinical importance in HB. In the present study, using genome-wide methylation analysis and bisulfite pyrosequencing with specimens from HB tumors, we detected nine methylated genes. We then focused on four of those genes, GPR180, MST1R, OCIAD2, and PARP6, because they likely encode tumor suppressors and their increase of methylation was associated with a poor prognosis. The methylation status of the four genes was also associated with age at diagnosis, and significant association with the presence of metastatic tumors was seen in three of the four genes. Multivariate analysis revealed that the presence of metastatic tumors and increase of methylation of GPR180 were independent prognostic factors affecting event-free survival. These findings indicate that the four novel tumor suppressor candidates are potentially useful molecular markers predictive of a poor outcome in HB patients, which may serve as the basis for improved therapeutic strategies when clinical trials are carried out. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Targeting the interleukin-11 receptor α in metastatic prostate cancer: A first-in-man study.
Pasqualini, Renata; Millikan, Randall E; Christianson, Dawn R; Cardó-Vila, Marina; Driessen, Wouter H P; Giordano, Ricardo J; Hajitou, Amin; Hoang, Anh G; Wen, Sijin; Barnhart, Kirstin F; Baze, Wallace B; Marcott, Valerie D; Hawke, David H; Do, Kim-Anh; Navone, Nora M; Efstathiou, Eleni; Troncoso, Patricia; Lobb, Roy R; Logothetis, Christopher J; Arap, Wadih
2015-07-15
Receptors in tumor blood vessels are attractive targets for ligand-directed drug discovery and development. The authors have worked systematically to map human endothelial receptors ("vascular zip codes") within tumors through direct peptide library selection in cancer patients. Previously, they selected a ligand-binding motif to the interleukin-11 receptor alpha (IL-11Rα) in the human vasculature. The authors generated a ligand-directed, peptidomimetic drug (bone metastasis-targeting peptidomimetic-11 [BMTP-11]) for IL-11Rα-based human tumor vascular targeting. Preclinical studies (efficacy/toxicity) included evaluating BMTP-11 in prostate cancer xenograft models, drug localization, targeted apoptotic effects, pharmacokinetic/pharmacodynamic analyses, and dose-range determination, including formal (good laboratory practice) toxicity across rodent and nonhuman primate species. The initial BMTP-11 clinical development also is reported based on a single-institution, open-label, first-in-class, first-in-man trial (National Clinical Trials number NCT00872157) in patients with metastatic, castrate-resistant prostate cancer. BMTP-11 was preclinically promising and, thus, was chosen for clinical development in patients. Limited numbers of patients who had castrate-resistant prostate cancer with osteoblastic bone metastases were enrolled into a phase 0 trial with biology-driven endpoints. The authors demonstrated biopsy-verified localization of BMTP-11 to tumors in the bone marrow and drug-induced apoptosis in all patients. Moreover, the maximum tolerated dose was identified on a weekly schedule (20-30 mg/m(2) ). Finally, a renal dose-limiting toxicity was determined, namely, dose-dependent, reversible nephrotoxicity with proteinuria and casts involving increased serum creatinine. These biologic endpoints establish BMTP-11 as a targeted drug candidate in metastatic, castrate-resistant prostate cancer. Within a larger discovery context, the current findings indicate that functional tumor vascular ligand-receptor targeting systems may be identified through direct combinatorial selection of peptide libraries in cancer patients. © 2015 American Cancer Society.
2014-01-01
Background Syndromic forms of osteosarcoma (OS) account for less than 10% of all recorded cases of this malignancy. An individual OS predisposition is also possible by the inheritance of low penetrance alleles of tumor susceptibility genes, usually without evidence of a syndromic condition. Genetic variants involved in such a non-syndromic form of tumor predisposition are difficult to identify, given the low incidence of osteosarcoma cases and the genetic heterogeneity of patients. We recently mapped a major OS susceptibility QTL to mouse chromosome 14 by comparing alpha-radiation induced osteosarcoma in mouse strains which differ in their tumor susceptibility. Methods Tumor-specific allelic losses in murine osteosacoma were mapped along chromosome 14 using microsatellite markers and SNP allelotyping. Candidate gene search in the mapped interval was refined using PosMed data mining and mRNA expression analysis in normal osteoblasts. A strain-specific promoter variant in Rb1 was tested for its influence on mRNA expression using reporter assay. Results A common Rb1 allele derived from the BALB/cHeNhg strain was identified as the major determinant of radiation-induced OS risk at this locus. Increased OS-risk is linked with a hexanucleotide deletion in the promoter region which is predicted to change WT1 and SP1 transcription factor-binding sites. Both in-vitro reporter and in-vivo expression assays confirmed an approx. 1.5 fold reduced gene expression by this promoter variant. Concordantly, the 50% reduction in Rb1 expression in mice bearing a conditional hemizygous Rb1 deletion causes a significant rise of OS incidence following alpha-irradiation. Conclusion This is the first experimental demonstration of a functional and genetic link between reduced Rb1 expression from a common promoter variant and increased tumor risk after radiation exposure. We propose that a reduced Rb1 expression by common variants in regulatory regions can modify the risk for a malignant transformation of bone cells after radiation exposure. PMID:25092376
Kemp, Stephen F; Alter, Craig A; Dana, Ken; Baptista, Joyce; Blethen, Sandra L
2002-05-01
The primary use of magnetic resonance imaging (MRI) in the evaluation of children with short stature (SS) is to discover lesions in the central nervous system (CNS), particularly tumors that may require intervention. MRI has a secondary role in identifying structural abnormalities responsible for growth hormone deficiency (GHD). We examined data from the National Cooperative Growth Study (NCGS) Substudy 8 to determine how American physicians are using MRI in evaluating children with SS. Of the 21,738 short children enrolled in NCGS, 5% underwent MRI during their follow-up. Children who had GH stimulation testing were more likely to have had an MRI than those in whom no GH stimulation test was performed (19% vs 2%, p <0.0001). Moreover, children diagnosed with severe GHD (maximum GH <5 ng/ml) were more likely to have an abnormal finding on MRI. Of these patients, 27% demonstrated an abnormality as compared to 12% and 12.5% in patients with partial GHD and normal GH stimulation test results (>10 ng/ml), respectively. Abnormalities unrelated to the hypothalamus or pituitary represented 30% of these findings, while disorders in pituitary anatomy, including pituitary hypoplasia, pituitary stalk interruption, and ectopic posterior pituitary, represented an additional 30% of abnormal MRI examinations. CNS tumors comprised 23% of abnormal findings in these patients. We conclude that MRI provides significant value in the evaluation of children with SS, by identifying CNS tumors associated with growth failure as well as anatomical abnormalities of the pituitary. These findings are useful in confirming the diagnosis of GHD in children and identifying potential candidates for continued GH replacement in adulthood.
Kessel, Sarah; Cribbes, Scott; Bonasu, Surekha; Rice, William; Qiu, Jean; Chan, Leo Li-Ying
2017-09-01
The development of three-dimensional (3D) multicellular tumor spheroid models for cancer drug discovery research has increased in the recent years. The use of 3D tumor spheroid models may be more representative of the complex in vivo tumor microenvironments in comparison to two-dimensional (2D) assays. Currently, viability of 3D multicellular tumor spheroids has been commonly measured on standard plate-readers using metabolic reagents such as CellTiter-Glo® for end point analysis. Alternatively, high content image cytometers have been used to measure drug effects on spheroid size and viability. Previously, we have demonstrated a novel end point drug screening method for 3D multicellular tumor spheroids using the Celigo Image Cytometer. To better characterize the cancer drug effects, it is important to also measure the kinetic cytotoxic and apoptotic effects on 3D multicellular tumor spheroids. In this work, we demonstrate the use of PI and caspase 3/7 stains to measure viability and apoptosis for 3D multicellular tumor spheroids in real-time. The method was first validated by staining different types of tumor spheroids with PI and caspase 3/7 and monitoring the fluorescent intensities for 16 and 21 days. Next, PI-stained and nonstained control tumor spheroids were digested into single cell suspension to directly measure viability in a 2D assay to determine the potential toxicity of PI. Finally, extensive data analysis was performed on correlating the time-dependent PI and caspase 3/7 fluorescent intensities to the spheroid size and necrotic core formation to determine an optimal starting time point for cancer drug testing. The ability to measure real-time viability and apoptosis is highly important for developing a proper 3D model for screening tumor spheroids, which can allow researchers to determine time-dependent drug effects that usually are not captured by end point assays. This would improve the current tumor spheroid analysis method to potentially better identify more qualified cancer drug candidates for drug discovery research. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
New insights into susceptibility to glioma.
Liu, Yanhong; Shete, Sanjay; Hosking, Fay J; Robertson, Lindsay B; Bondy, Melissa L; Houlston, Richard S
2010-03-01
The study of inherited susceptibility to cancer has been one of the most informative areas of research in the past decade. Most of the cancer genetics studies have been focused on the common tumors such as breast and colorectal cancers. As the allelic architecture of these tumors is unraveled, research attention is turning to other rare cancers such as glioma, which are also likely to have a major genetic component as the basis of their development. In this brief review we discuss emerging data on glioma whole genome-association searches to identify risk loci. Two glioma genome-wide association studies have so far been reported. Our group identified 5 risk loci for glioma susceptibility (TERT rs2736100, CCDC26 rs4295627, CDKN2A/CDKN2B rs4977756, RTEL1 rs6010620, and PHLDB1 rs498872). Wrensch and colleagues provided further evidence to 2 risk loci (CDKN2B rs1412829 and RTEL1 rs6010620) for GBM and anaplastic astrocytoma. Although these data provide the strongest evidence to date for the role of common low-risk variants in the etiology of glioma, the single-nucleotide polymorphisms identified alone are unlikely to be candidates for causality. Identifying the causal variant at each specific locus and its biological impact now poses a significant challenge, contingent on a combination of fine mapping and functional analyses. Finally, we hope that a greater understanding of the biological basis of the disease will lead to the development of novel therapeutic interventions.
TS expression predicts postoperative recurrence in adenocarcinoma of the lung.
Shimokawa, Hidehiko; Uramoto, Hidetaka; Onitsuka, Takamitsu; Iwata, Teruo; Nakagawa, Makoto; Ono, Kenji; Hanagiri, Takeshi
2011-06-01
Not all patients with lung cancer require postoperative adjuvant chemotherapy after a complete resection. However, no useful markers for either selecting appropriate candidates or for predicting clinical recurrence exist. Tumor specimens were collected from 183 consecutive patients who underwent a complete resection for lung adenocarcinoma from 2003 to 2007 in our department. We analyzed the thymidylate synthase (TS) and dihydrofolate reductase (DHFR) expressions in the primary lung adenocarcinoma by immunohistochemisty. The strong expression of TS and DHFR was identified in 39 (21.3%) and 120 (65.6%) patients, respectively. The strong TS expression was identified in 11 (39.3%) of 28 patients and 28 (18.1%) of 155 patients in patients with and without recurrence, respectively (p=0.012). The strong DHFR expression was also identified in 23 (82.1%) and 97 (62.6%) of the patients with and without recurrence, respectively (p=0.045). Logistic regression models indicated the strong TS expression to be an independent factor for tumor recurrence. The strong TS and DHFR expression was associated with a poorer disease-free survival (DFS) according to the survival analysis. A multivariate analysis demonstrated the strong TS expression to be independently associated with an increased risk for poor DFS. The strong TS expression may be a useful marker for predicting postoperative recurrence in patients with lung adenocarcinoma following surgery. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Large-Scale SRM Screen of Urothelial Bladder Cancer Candidate Biomarkers in Urine.
Duriez, Elodie; Masselon, Christophe D; Mesmin, Cédric; Court, Magali; Demeure, Kevin; Allory, Yves; Malats, Núria; Matondo, Mariette; Radvanyi, François; Garin, Jérôme; Domon, Bruno
2017-04-07
Urothelial bladder cancer is a condition associated with high recurrence and substantial morbidity and mortality. Noninvasive urinary tests that would detect bladder cancer and tumor recurrence are required to significantly improve patient care. Over the past decade, numerous bladder cancer candidate biomarkers have been identified in the context of extensive proteomics or transcriptomics studies. To translate these findings in clinically useful biomarkers, the systematic evaluation of these candidates remains the bottleneck. Such evaluation involves large-scale quantitative LC-SRM (liquid chromatography-selected reaction monitoring) measurements, targeting hundreds of signature peptides by monitoring thousands of transitions in a single analysis. The design of highly multiplexed SRM analyses is driven by several factors: throughput, robustness, selectivity and sensitivity. Because of the complexity of the samples to be analyzed, some measurements (transitions) can be interfered by coeluting isobaric species resulting in biased or inconsistent estimated peptide/protein levels. Thus the assessment of the quality of SRM data is critical to allow flagging these inconsistent data. We describe an efficient and robust method to process large SRM data sets, including the processing of the raw data, the detection of low-quality measurements, the normalization of the signals for each protein, and the estimation of protein levels. Using this methodology, a variety of proteins previously associated with bladder cancer have been assessed through the analysis of urine samples from a large cohort of cancer patients and corresponding controls in an effort to establish a priority list of most promising candidates to guide subsequent clinical validation studies.
NASA Astrophysics Data System (ADS)
Isabelle, Martin; Klubben, William; He, Ting; Laughney, Ashley M.; Glaser, Adam; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.
2011-02-01
Biophysical changes such as inflammation and necrosis occur immediately following PDT and may be used to assess the treatment response to PDT treatment in-vivo. This study uses localized reflectance measurements to quantify the scatter changes in tumor tissue occurring in response to verteporfin-based PDT treatment in xenograft pancreas tumors. Nude mice were implanted with subcutaneous AsPC-1 pancreatic tumors cells in matrigel, and allowed to establish solid tumors near 100mm3 volume. The mice were sensitized with 1mg/kg of the active component of verteporfin (benzoporphryin derivative, BPD), one hour before light delivery. The optical irradiation was performed using a 1 cm cylindrical interstitial diffusing tip fiber with 20J of red light (690nm). Tumor tissue was excised progressively and imaged, from 1 day to 4 weeks, after PDT treatment. The tissue sections were stained and analyzed by an expert veterinary pathologist, who provided information on tissue regions of interest. This information was correlated with variations in scattering and absorption parameters elucidated from the spectral images and the degree of necrosis and inflammation involvement was identified. Areas of necrosis and dead cells exhibited the lowest average scatter irradiance signature (3.78 and 4.07 respectively) compared to areas of viable pancreatic tumor cells and areas of inflammation (5.81 and 7.19 respectively). Bilirubin absorbance parameters also showed a lower absorbance value in necrotic tissue and areas of dead cells (0.05 and 0.1 respectively) compared to tissue areas for viable pancreatic tumor cells and areas of inflammation (0.28 and 0.35). These results demonstrate that localized reflectance spectroscopy is an imaging modality that can be used to identify tissue features associated with PDT treatment (e.g. necrosis and inflammation) that can be correlated with histopathologically-reviewed H&E stained slides. Further study of this technique may provide means for automated discrimination of tissue features based on scatter and absorbance maps elucidated from reflectance spectral datasets and provide a valuable tool for treatment response monitoring during PDT and enabling more effective treatment planning. These results are relevant to verteporfin-based PDT trial for treatment pancreatic cancer in non-surgical candidate cases (VERTPAC-1 University College London, PI Pereira), where individualized assessment of damage and response could be beneficial, if this study is proven to be a well-controlled imaging tool.
Adoptive Cell Transfer Therapy
Dudley, Mark E.; Rosenberg, Steven A.
2008-01-01
Adoptive cell transfer therapy has developed into a potent and effective treatment for patients with metastatic melanoma. Current application of this therapy relies on the ex vivo generation of highly active, highly avid tumor-reactive lymphocyte cultures from endogenous tumor infiltrating lymphocytes or on the genetic engineering of cells using antigen receptor genes to express de novo tumor antigen recognition. When anti-tumor lymphocyte cultures are administered to autologous patients with high dose interleukin-2 following a lymphodepleting conditioning regimen, the cells can expand in vivo, traffic to tumor, and mediate tumor regression and durable objective clinical responses. Current investigation seeks to improve the methods for generating and administering the lymphocyte cultures, and future clinical trials aim to improve durable response rates and extend the patient populations that are candidates for treatment. PMID:18083376
Generation and Characterization of a Bispecific Antibody Targeting Both PD-1 and c-MET.
Wu, Yi; Yu, Min; Sun, Zujun; Hou, Weihua; Wang, Yuxiong; Yuan, Qingyun; Mo, Wei
2018-02-08
Bispecific antibodies, BsAbs, are molecules with the ability to bind to two different epitopes on the same or different antigens. c-MET, cellular-mesenchymal to epithelial transition factor, is deregulated in many types of human malignancies. Abnormal c-MET activation in cancer correlates with poor prognosis. PD-1, programmed death-1, is an additional inhibitory receptor expressed by T cells. Blocking the interactions between PD-1 and PD-L1 has emerged as a promising immunotherapy for treating cancer. The goal of this study was to identify a novel bispecific antibody targeting both c-MET and PD-1 as an anti-cancer therapeutic candidate. The BsAb was produced using 293E expression system and purified by Protein A affinity chromatography. Then the binding specificity and affinity of the BsAb was examined by FACS and biolayer light interferometry. The ability of the BsAb to inhibit the proliferation of tuman cells was measured using the CellTiter 96 Aqueous One Solution Cell Proliferation Assay kit; the potential signaling pathway involved was identified by Western Blot. Cytokine secreted by PHA-L stimulated PBMC was measured by ELISA. Effects of BsAb on PBMC-mediated lysis of MKN45 cells was measured by LDH cytotoxicity assay. Based on the original sequences of PD-1 and c-MET mAb, a BsAb gene was designed, cloned into pCEP4 vector for expression in 293E cells. The BsAb was obtained after purification of the cell culture supernatant. It can bind to PD-1 and c-MET simultaneously, the calculated affinity was 11.5 nM for PD-1 and 9.09 nM for c-MET. The BsAb enhanced IFN-γ production over control IgG by 2-3 folds. It also inhibit the c-MET pathway activation and the proliferation of tumor cells significantly, comparable to JnJ-38877605. The BsAb showed dose-dependent cytotoxic activity against MKN45 cells. Our results indicated that a novel BsAb recognizing PD-1 and c-MET was successfully generated. It could redirect T cells to kill tumor cells, while retaining its inherent ability to restore T cells and inhibit tumor cells. With this potential, this BsAb could be developed as a therapeutic candidate for the treatment of various solid tumors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Syngal, Sapna; Brand, Randall E; Church, James M; Giardiello, Francis M; Hampel, Heather L; Burt, Randall W
2015-02-01
This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient's informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer.
Syngal, Sapna; Brand, Randall E.; Church, James M.; Giardiello, Francis M.; Hampel, Heather L.; Burt, Randall W.
2015-01-01
This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient's informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz–Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer. PMID:25645574
Cheng, Heather H; Plets, Melissa; Li, Hongli; Higano, Celestia S; Tangen, Catherine M; Agarwal, Neeraj; Vogelzang, Nicholas J; Hussain, Maha; Thompson, Ian M; Tewari, Muneesh; Yu, Evan Y
2018-02-01
Previous studies suggest circulating, blood-based microRNAs (miRNAs) may serve as minimally invasive prostate cancer biomarkers, however there is limited data from prospective clinical trials. Here, we explore the role of candidate plasma miRNAs as potential biomarkers in the SWOG 0925 randomized phase II study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer. Correlative biospecimens, including circulating tumor cells (CTCs) and plasma for miRNA analysis, were collected at baseline and after 12 weeks on treatment from 50 patients enrolled on SWOG 0925. Circulating microRNAs were quantified using real-time RT-PCR microRNA array that allowed specific analysis of previously identified candidate miRNAs (miR-141, miR-200a, miR-200b, miR-210, and miR-375) as well as discovery analysis to identify new candidate miRNAs. MiRNA levels were correlated to previously reported CTC counts using CellSearch® (Veridex) and with the primary study outcome of 28-week PSA response (≤0.2, 0.2 to ≤4.0, or >4.0 ng/mL), previously shown to correlate with overall survival. We observed a correlation between baseline circulating miR-141, miR-200a, and miR-375 levels with baseline CTCs. Baseline miR-375 levels were associated with 28-week PSA response (≤0.2, 0.2 to ≤4.0, or >4.0 ng/mL, P = 0.007). Using ROC curve analysis, there was no significant difference between baseline miR-375 and baseline CTC in predicting 28-week PSA response (≤0.2 vs >0.2 ng/mL). To discover novel candidate miRNAs, we analyzed 365 miRNAs for association with the 28-week PSA response endpoint and identified new candidate miRNAs along with the existing candidates miR-375 and miR-200b (P = 0.0012, P = 0.0046, respectively. Baseline plasma miR-141, miR-200a, and miR-375 levels are associated with baseline CTC count. Baseline miR-375 was also associated with the trial endpoint of 28-week PSA response. Our results provide evidence that circulating miRNA biomarkers may have value as prognostic biomarkers and warrant further study in larger prospective clinical trials. © 2017 Wiley Periodicals, Inc.
Ellis, Matthew J; Gillette, Michael; Carr, Steven A; Paulovich, Amanda G; Smith, Richard D; Rodland, Karin K; Townsend, R Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel C
2013-10-01
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verification using targeted mass spectrometry methods. ©2013 AACR.
Jia, Zhixin; Wu, Caisheng; Jin, Hongtao; Zhang, Jinlan
2014-11-15
Saussurea involucrata is a rare traditional Chinese medicine (TCM) that displays anti-fatigue, anti-inflammatory and anti-tumor effects. In this paper, the different chemical components of Saussurea involucrata were characterized and identified over a wide dynamic range by high-performance liquid chromatography coupled with high-resolution hybrid mass spectrometry (HPLC/HRMS/MS(n)) and the mass spectral trees similarity filter (MTSF) technique. The aerial parts of Saussurea involucrata were extracted with 75% ethanol. The partial extract was separated on a chromatography column to concentrate the low-concentration compounds. Mass data were acquired using full-scan mass analysis (resolving power 50,000) with data-dependent incorporation of dynamic exclusion analysis. The identified compounds were used as templates to construct a database of mass spectral trees. Data for the unknown compounds were matched with those templates and matching candidate structures were obtained. The detected compounds were characterized based on matching to candidate structures by the MTSF technique and were further identified by their accurate mass weight, multiple-stage analysis and fragmentation patterns and through comparison with literature data. A total of 38 compounds were identified including 19 flavones, 11 phenylpropanoids and 8 sphingolipids. Among them, 7 flavonoids, 8 phenylpropanoids and 8 sphingolipids were identified for the first time in Saussurea involucrata. HPLC/HRMS/MS(n) combined with MTSF was successfully used to discover and identify the chemical compounds in Saussurea involucrata. The results indicated that this combined technique was extremely useful for the rapid detection and identification of the chemical components in TCMs. Copyright © 2014 John Wiley & Sons, Ltd.
Vilgrain, Isabelle; Sidibé, Adama; Polena, Helena; Cand, Francine; Mannic, Tiphaine; Arboleas, Mélanie; Boccard, Sandra; Baudet, Antoine; Gulino-Debrac, Danielle; Bouillet, Laurence; Quesada, Jean-Louis; Mendoza, Christophe; Lebas, Jean-François; Pelletier, Laurent; Berger, François
2013-01-01
Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology. PMID:24358106
Spoerke, Jill M; O'Brien, Carol; Huw, Ling; Koeppen, Hartmut; Fridlyand, Jane; Brachmann, Rainer K; Haverty, Peter M; Pandita, Ajay; Mohan, Sankar; Sampath, Deepak; Friedman, Lori S; Ross, Leanne; Hampton, Garret M; Amler, Lukas C; Shames, David S; Lackner, Mark R
2012-12-15
Class 1 phosphatidylinositol 3-kinase (PI3K) plays a major role in cell proliferation and survival in a wide variety of human cancers. Here, we investigated biomarker strategies for PI3K pathway inhibitors in non-small-cell lung cancer (NSCLC). Molecular profiling for candidate PI3K predictive biomarkers was conducted on a collection of NSCLC tumor samples. Assays included comparative genomic hybridization, reverse-transcription polymerase chain reaction gene expression, mutation detection for PIK3CA and other oncogenes, PTEN immunohistochemistry, and FISH for PIK3CA copy number. In addition, a panel of NSCLC cell lines characterized for alterations in the PI3K pathway was screened with PI3K and dual PI3K/mTOR inhibitors to assess the preclinical predictive value of candidate biomarkers. PIK3CA amplification was detected in 37% of squamous tumors and 5% of adenocarcinomas, whereas PIK3CA mutations were found in 9% of squamous and 0% of adenocarcinomas. Total loss of PTEN immunostaining was found in 21% of squamous tumors and 4% of adenocarcinomas. Cell lines harboring pathway alterations (receptor tyrosine kinase activation, PI3K mutation or amplification, and PTEN loss) were exquisitely sensitive to the PI3K inhibitor GDC-0941. A dual PI3K/mTOR inhibitor had broader activity across the cell line panel and in tumor xenografts. The combination of GDC-0941 with paclitaxel, erlotinib, or a mitogen-activated protein-extracellular signal-regulated kinase inhibitor had greater effects on cell viability than PI3K inhibition alone. Candidate biomarkers for PI3K inhibitors have predictive value in preclinical models and show histology-specific alterations in primary tumors, suggesting that distinct biomarker strategies may be required in squamous compared with nonsquamous NSCLC patient populations. ©2012 AACR.
Padden, Juliet; Ahrens, Maike; Kälsch, Julia; Bertram, Stefanie; Megger, Dominik A.; Bracht, Thilo; Eisenacher, Martin; Kocabayoglu, Peri; Meyer, Helmut E.; Sipos, Bence; Baba, Hideo A.; Sitek, Barbara
2016-01-01
Cholangiocellular carcinoma (CCC) and pancreatic ductal adenocarcinoma (PDAC) are two highly aggressive cancer types that arise from epithelial cells of the pancreatobiliary system. Owing to their histological and morphological similarity, differential diagnosis between CCC and metastasis of PDAC located in the liver frequently proves an unsolvable issue for pathologists. The detection of biomarkers with high specificity and sensitivity for the differentiation of these tumor types would therefore be a valuable tool. Here, we address this problem by comparing microdissected CCC and PDAC tumor cells from nine and eleven cancer patients, respectively, in a label-free proteomics approach. The novel biomarker candidates were subsequently verified by immunohistochemical staining of 73 CCC, 78 primary, and 18 metastatic PDAC tissue sections. In the proteome analysis, we found 180 proteins with a significantly differential expression between CCC and PDAC cells (p value < 0.05, absolute fold change > 2). Nine candidate proteins were chosen for an immunohistochemical verification out of which three showed very promising results. These were the annexins ANXA1, ANXA10, and ANXA13. For the correct classification of PDAC, ANXA1 showed a sensitivity of 84% and a specificity of 85% and ANXA10 a sensitivity of 90% at a specificity of 66%. ANXA13 was higher abundant in CCC. It presented a sensitivity of 84% at a specificity of 55%. In metastatic PDAC tissue ANXA1 and ANXA10 showed similar staining behavior as in the primary PDAC tumors (13/18 and 17/18 positive, respectively). ANXA13, however, presented positive staining in eight out of eighteen secondary PDAC tumors and was therefore not suitable for the differentiation of these from CCC. We conclude that ANXA1 and ANXA10 are promising biomarker candidates with high diagnostic values for the differential diagnosis of intrahepatic CCC and metastatic liver tumors deriving from PDAC. PMID:26644413
Padden, Juliet; Ahrens, Maike; Kälsch, Julia; Bertram, Stefanie; Megger, Dominik A; Bracht, Thilo; Eisenacher, Martin; Kocabayoglu, Peri; Meyer, Helmut E; Sipos, Bence; Baba, Hideo A; Sitek, Barbara
2016-03-01
Cholangiocellular carcinoma (CCC) and pancreatic ductal adenocarcinoma (PDAC) are two highly aggressive cancer types that arise from epithelial cells of the pancreatobiliary system. Owing to their histological and morphological similarity, differential diagnosis between CCC and metastasis of PDAC located in the liver frequently proves an unsolvable issue for pathologists. The detection of biomarkers with high specificity and sensitivity for the differentiation of these tumor types would therefore be a valuable tool. Here, we address this problem by comparing microdissected CCC and PDAC tumor cells from nine and eleven cancer patients, respectively, in a label-free proteomics approach. The novel biomarker candidates were subsequently verified by immunohistochemical staining of 73 CCC, 78 primary, and 18 metastatic PDAC tissue sections. In the proteome analysis, we found 180 proteins with a significantly differential expression between CCC and PDAC cells (p value < 0.05, absolute fold change > 2). Nine candidate proteins were chosen for an immunohistochemical verification out of which three showed very promising results. These were the annexins ANXA1, ANXA10, and ANXA13. For the correct classification of PDAC, ANXA1 showed a sensitivity of 84% and a specificity of 85% and ANXA10 a sensitivity of 90% at a specificity of 66%. ANXA13 was higher abundant in CCC. It presented a sensitivity of 84% at a specificity of 55%. In metastatic PDAC tissue ANXA1 and ANXA10 showed similar staining behavior as in the primary PDAC tumors (13/18 and 17/18 positive, respectively). ANXA13, however, presented positive staining in eight out of eighteen secondary PDAC tumors and was therefore not suitable for the differentiation of these from CCC. We conclude that ANXA1 and ANXA10 are promising biomarker candidates with high diagnostic values for the differential diagnosis of intrahepatic CCC and metastatic liver tumors deriving from PDAC. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Elastic Free Energy Drives the Shape of Prevascular Solid Tumors
Mills, K. L.; Kemkemer, Ralf; Rudraraju, Shiva; Garikipati, Krishna
2014-01-01
It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progression of early solid tumors in vivo and is an important step in understanding the processes underlying solid tumor growth. PMID:25072702
Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.
Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G
2018-01-01
Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.
Feng, Liang; Wang, Wei; Yao, Hang-Ping; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai
2015-01-01
Targeting receptor tyrosine kinases by therapeutic monoclonal antibodies and antibody-drug conjugates has met with tremendous success in clinical oncology. Currently, numerous therapeutic monoclonal antibodies are under preclinical development. The potential for moving candidate antibodies into clinical trials relies heavily on therapeutic efficacy validated by human tumor xenografts in mice. Here we describe methods used to determine therapeutic efficacy of monoclonal antibodies or antibody-drug conjugates specific to human receptor tyrosine kinase using human tumor xenografts in mice as the model. The end point of the study is to determine whether treatment of tumor-bearing mice with a monoclonal antibody or antibody-drug conjugates results in significant delay of tumor growth.
Identifying Candidate Chemical-Disease Linkages ...
Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment. Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment.
Jeibmann, Astrid; Schulz, Jacqueline; Eikmeier, Kristin; Johann, Pascal D; Thiel, Katharina; Tegeder, Isabel; Ambrée, Oliver; Frühwald, Michael C; Pfister, Stefan M; Kool, Marcel; Paulus, Werner; Hasselblatt, Martin
2017-02-01
Atypical teratoid/rhabdoid tumors (ATRT) are highly malignant brain tumors arising in young children. The majority of ATRT is characterized by inactivation of the chromatin remodeling complex member SMARCB1 (INI1/hSNF5). Little is known, however, on downstream pathways involved in the detrimental effects of SMARCB1 deficiency which might also represent targets for treatment. Using Drosophila melanogaster and the Gal4-UAS system, modifier screens were performed in order to identify the role of SMAD dependent signaling in the lethal phenotype associated with knockdown of snr1, the fly homolog of SMARCB1. Expression and functional role of human homologs was next investigated in ATRT tumor samples and SMARCB1-deficient rhabdoid tumor cells. The lethal phenotype associated with snr1 knockdown in Drosophila melanogaster could be shifted to later stages of development upon additional knockdown of several decapentaplegic pathway members including Smox, and Med. Similarly, the transforming growth factor beta (TGFbeta) receptor type I kinase inhibitor SB431542 ameliorated the detrimental effect of snr1 knockdown in the fruit fly. Examination of homologs of candidate decapentaplegic pathway members in human SMARCB1-deficent ATRT samples revealed SMAD3 and SMAD6 to be over-expressed. In SMARCB1-deficent rhabdoid tumor cells, siRNA-mediated silencing of SMAD3 or SMAD6 expression reduced TGFbeta signaling activity and resulted in decreased proliferation. Similar results were obtained upon pharmacological inhibition of TGFbeta signaling using SB431542. Our data suggest that SMAD dependent signaling is involved in the detrimental effects of SMARCB1-deficiency and provide a rationale for the investigation of TGFbeta targeted treatments in ATRT.
The future: genetics advances in MEN1 therapeutic approaches and management strategies.
Agarwal, Sunita K
2017-10-01
The identification of the multiple endocrine neoplasia type 1 ( MEN1 ) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come. © 2017 Society for Endocrinology.
John, Sebastian; Sivakumar, K. C.; Mishra, Rashmi
2017-01-01
Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the “biomechanical imbalances” induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a “drug repurposing approach” to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic. PMID:28663722
John, Sebastian; Sivakumar, K C; Mishra, Rashmi
2017-01-01
Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the "biomechanical imbalances" induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a "drug repurposing approach" to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic.
Chang, Ti Ling; Ito, Kosei; Ko, Tun Kiat; Liu, Qiang; Salto-Tellez, Manuel; Yeoh, Khay Guan; Fukamachi, Hiroshi; Ito, Yoshiaki
2010-01-01
The transcription factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We aimed to identify RUNX3 target genes that promote cell-cell contact to improve our understanding of RUNX3's role in suppressing gastric carcinogenesis. We compared gene expression profiles of Runx3(+/+) and Runx3(-/-) cells and observed down-regulation of genes associated with cell-cell adhesion in Runx3(-/-) cells. Reporter, mobility shift, and chromatin immunoprecipitation assays were used to examine the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistological analyses of human gastric tumors were performed to confirm the role of the candidate genes in gastric tumor development. Mobility shift and chromatin immunoprecipitation assays revealed that the promoter activity of the gene that encodes the tight junction protein claudin-1 was up-regulated via the binding of RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells from Runx3(-/-) mice was significantly reduced by restoration of claudin-1 expression, whereas knockdown of claudin-1 increased the tumorigenicity of human gastric cancer cells. Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric epithelium and cancers. The tight junction protein claudin-1 has gastric tumor suppressive activity and is a direct transcriptional target of RUNX3. Claudin-1 is down-regulated during the epithelial-mesenchymal transition; RUNX3 might therefore act as a tumor suppressor to antagonize the epithelial-mesenchymal transition. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.
Roussel, Hélène; De Guillebon, Eléonore; Biard, Lucie; Mandavit, Marion; Gibault, Laure; Fabre, Elisabeth; Antoine, Martine; Hofman, Paul; Beau-Faller, Michèle; Blons, Hélène; Danel, Claire; Barthes, Françoise Le Pimpec; Gey, Alain; Granier, Clémence; Wislez, Marie; Laurent-Puig, Pierre; Oudard, Stéphane; Bruneval, Patrick; Badoual, Cécile; Cadranel, Jacques; Tartour, Eric
2017-01-01
ABSTRACT Anaplastic lymphoma kinase (ALK) inhibitors have been successfully developed for non-small cell lung carcinoma (NSCLC) displaying chromosomal rearrangements of the ALK gene, but unfortunately resistance invariably occurs. Blockade of the PD-1-PD-L1/2 inhibitory pathway constitutes a breakthrough for the treatment of NSCLC. Some predictive biomarkers of clinical response to this therapy are starting to emerge, such as PD-L1 expression by tumor/stromal cells and infiltration by CD8+ T cells expressing PD-1. To more effectively integrate all of these potential biomarkers of clinical response to immunotherapy, we have developed a multiparametric immunofluorescence technique with automated immune cell counting to comprehensively analyze the tumor microenvironment of ALK-positive adenocarcinoma (ADC). When analyzed as either a continuous or a dichotomous variable, the mean number of tumor cells expressing PD-L1 (p = 0.012) and the percentage of tumor cells expressing PD-L1 were higher in ALK-positive ADC than in EGFR-mutated ADC or WT (non-EGFR-mutated and non-KRAS-mutated) NSCLC. A very strong correlation between PD-L1 expression on tumor cells and intratumoral infiltration by CD8+ T cells was observed, suggesting that an adaptive mechanism may partly regulate this expression. A higher frequency of tumors combining positive PD-L1 expression and infiltration by intratumoral CD8+ T cells or PD-1+CD8+ T cells was also observed in ALK-positive lung cancer patients compared with EGFR-mutated (p = 0.03) or WT patients (p = 0.012). These results strongly suggest that a subgroup of ALK-positive lung cancer patients may constitute good candidates for anti-PD-1/-PD-L1 therapies. PMID:28507793
de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I
2014-01-01
The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.
Pizzoni, S; Sabattini, S; Stefanello, D; Dentini, A; Ferrari, R; Dacasto, M; Giantin, M; Laganga, P; Amati, M; Tortorella, G; Marconato, L
2018-03-01
Distant metastases in dogs with cutaneous mast cell tumors (cMCT) are rare and incurable. The aims of this prospective study were to clarify the clinico-pathological features of stage IV cMCTs and to identify possible prognostic factors for progression-free interval (PFI) and survival time (ST). Dogs were eligible for recruitment if they had a previously untreated, histologically confirmed cMCT and if they underwent complete staging demonstrating stage IV disease. Dogs were uniformly followed-up, whereas treatment was not standardized and included no therapy, surgery, radiation therapy, chemotherapy, tyrosine-kinase inhibitors or a combination of these. 45 dogs with stage IV cMCT were enrolled. All dogs had distant metastatic disease, and 41 (91.1%) dogs had also metastasis in the regional lymph node. Histopathological grade and mutational status greatly varied among dogs. Median ST was 110 days. Notably, PFI and ST were independent of well-known prognostic factors, including anatomic site, histological grade, and mutational status. Conversely, tumor diameter >3 cm, more than 2 metastatic sites, bone marrow infiltration, and lack of tumor control at the primary site were confirmed to be negative prognostic factors by multivariate analysis. Currently, there is no satisfactory treatment for stage IV cMCT. Asymptomatic dogs with tumor diameter <3 cm and a low tumor burden, without bone marrow infiltration may be candidates for multimodal treatment. Stage IV dogs without lymph node metastasis may enjoy a surprisingly prolonged survival. The achievement of local tumor control seems to predict a better outcome in dogs with stage IV cMCT. © 2017 John Wiley & Sons Ltd.
Tohidi, R; Idris, I B; Malar Panandam, J; Hair Bejo, M
2013-04-01
Salmonella enterica serovar Enteritidis infection is a common concern in poultry production for its negative effects on growth as well as food safety for humans. Identification of molecular markers that are linked to resistance to Salmonella Enteritidis may lead to appropriate solutions to control Salmonella infection in chickens. This study investigated the association of candidate genes with resistance to Salmonella Enteritidis in young chickens. Two native breeds of Malaysian chickens, namely, Village Chickens and Red Junglefowl, were evaluated for bacterial colonization after Salmonella Enteritidis inoculation. Seven candidate genes were selected on the basis of their physiological role in immune response, as determined by prior studies in other genetic lines: natural resistance-associated protein 1 (NRAMP1), transforming growth factor β3 (TGFβ3), transforming growth factor β4 (TGFβ4), inhibitor of apoptosis protein 1 (IAP1), caspase 1 (CASP1), lipopolysaccharide-induced tumor necrosis factor (TNF) α factor (LITAF), and TNF-related apoptosis-inducing ligand (TRAIL). Polymerase chain reaction-RFLP was used to identify polymorphisms in the candidate genes; all genes exhibited polymorphisms in at least one breed. The NRAMP1-SacI polymorphism correlated with the differences in Salmonella Enteritidis load in the cecum (P = 0.002) and spleen (P = 0.01) of Village Chickens. Polymorphisms in the restriction sites of TGFβ3-BsrI, TGFβ4-MboII, and TRAIL-StyI were associated with Salmonella Enteritidis burden in the cecum, spleen, and liver of Village Chickens and Red Junglefowl (P < 0.05). These results indicate that the NRAMP1, TGFβ3, TGFβ4, and TRAIL genes are potential candidates for use in selection programs for increasing genetic resistance against Salmonella Enteritidis in native Malaysian chickens.
Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya
2016-11-01
To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p < 0.05) evoked cellular immunity against both ESAT-6, and B16 tumor cells. Intra-tumoral injection of the exosomes significantly suppressed (p < 0.001) tumor growth in syngeneic B16 tumor-bearing mice, while the exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.
Identification of Caspase-6 as a New Regulator of Alternatively Activated Macrophages*
Yao, Yongfang; Shi, Qian; Chen, Bing; Wang, Qingsong; Li, Xinda; Li, Long; Huang, Yahong; Ji, Jianguo; Shen, Pingping
2016-01-01
Alternatively activated macrophages (AAMs) play essential roles in the promotion of tissue remodeling, vasculogenesis, and tumor progression; however, the detailed mechanisms underlying the activation of AAMs remain largely unknown. Here, by using quantitative proteomic analysis, we identified 62 proteins that were up-regulated in IL-4-induced macrophages. Among these, Caspase-6 was increased significantly. Caspase-6 is important in the apoptotic signaling pathway; however, its role in non-apoptosis is also reported. Here, we first examined the non-apoptotic role of Caspase-6 in the alternative activation of macrophages after administration of IL-4, 4T1 tumor conditional medium, or co-culture with 4T1 cells. Both treatments promoted alternative activation of RAW264.7 cells and primary macrophages, whereas disruption of caspase-6 expression and activity could markedly suppress the biomarker levels of AAMs. Overexpression of Caspase-6 could significantly promote the activation of AAMs. Importantly, we further present evidence that caspase-6 could regulate breast cancer cell invasion by modulating MMP-2 and MMP-9 expression in 4T1 tumor-associated macrophages, as ablation of protein levels or activity of caspase-6 suppressed tumor cell invasion in vitro. In conclusion, the observed results markedly expanded our views of the dynamic changes in protein composition during alternative activation of macrophages, and they revealed a critical new role of caspase-6 in regulating this cellular biological process, which suggested that caspase-6 might be a key nod molecule to regulate immunological steady-state and be a therapeutic candidate for tumor immunotherapy. PMID:27325699
Molecular characterization of late stomal recurrence following total laryngectomy.
Stephen, Josena K; Symal, Mausumi; Chen, Kang Mei; Ghanem, Tamer; Deeb, Robert; Shah, Veena; Havard, Shaleta; Worsham, Maria J
2011-03-01
The goal was to determine recurrent or second primary status for late stomal malignancies, 16 and 17 years post-total laryngectomy in two laryngeal squamous cell carcinoma (LSCC) patients, based on DNA methylation signatures and HPV typing. Adopting a literature review based definition of late stomal recurrences as new primaries at the site of the stoma or neopharynx occurring >5 years after total laryngectomy, we employed a multi-gene candidate approach to examine promoter methylation in 24 tumor suppressor genes and PCR-based assays for HPV status offered additional insights into whether the late stomal tumors post-total laryngectomy were related or not. The primary tumor for Patient 1 was negative for HPV but had aberrant hypermethylation of APC, MLH1 and BRCA1. The stomal biopsy 17-years later showed presence of HPV-16 without any methylated genes. In Patient 2, HPV-11 and promoter methylation of APC identified in the primary tumor was also observed in the stomal malignancy 16 years post-total laryngectomy. Additional information provided by molecular typing for HPV and methylation markers underscored Patient 1's and 2's late stomal presentation as most likely a second primary and recurrence, respectively. DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable marker. Molecular marks to discern genetic heterogeneity or relatedness of stomal malignancies several years post-total laryngectomy can provide clues to their status as either second primaries or likely recurrences. Our results support the hypothesis that a subset of stomal recurrences after total laryngectomy represents second primary tumors.
Chantrill, Lorraine A; Nagrial, Adnan M; Watson, Clare; Johns, Amber L; Martyn-Smith, Mona; Simpson, Skye; Mead, Scott; Jones, Marc D; Samra, Jaswinder S; Gill, Anthony J; Watson, Nicole; Chin, Venessa T; Humphris, Jeremy L; Chou, Angela; Brown, Belinda; Morey, Adrienne; Pajic, Marina; Grimmond, Sean M; Chang, David K; Thomas, David; Sebastian, Lucille; Sjoquist, Katrin; Yip, Sonia; Pavlakis, Nick; Asghari, Ray; Harvey, Sandra; Grimison, Peter; Simes, John; Biankin, Andrew V
2015-05-01
Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies. The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM). Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study. Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options. ©2015 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Alberti, Nicolas, E-mail: nicoalbertibdx@gmail.com
2015-02-15
PurposeThe aim of the present study was to investigate the technical feasibility of flat-panel cone-beam CT (CBCT)-guided radiofrequency ablation (RFA) of very small (<1.5 cm) liver tumors.Materials and MethodsPatients included were candidates for hepatic percutaneous RFA as they had single biopsy-proven hepatic tumors sized ≤1.5 cm and poorly defined on ultrasonography. Following apnea induction, unenhanced CBCT scans were acquired and used to deploy the RF electrode with the aid of a virtual navigation system. If the tumor was not clearly identified on the unenhanced CBCT scan, a right retrograde arterial femoral access was established to carry out hepatic angiography and localize themore » tumor. Patients’ lesions and procedural variables were recorded and analyzed.ResultsThree patients (2 male and 1 female), aged 68, 76, and 87 years were included; 3 lesions (2 hepato-cellular carcinoma and 1 metastasis from colorectal cancer) were treated. One patient required hepatic angiography. Cycles of apnea used to acquire CBCT images and to deploy the electrode lasted <120 s. Mean fluoroscopic time needed to deploy the electrode was 36.6 ± 5.7 min. Mean overall procedural time was 66.0 ± 22.9 min. No peri- or post-procedural complications were noted. No cases of incomplete ablation were noted at 1-month follow-up.ConclusionPercutaneous CBCT-guided liver RFA with or without arterial hepatic angiography is technically feasible.« less
Widemann, Brigitte C.; Acosta, Maria T.; Ammoun, Sylvia; Belzberg, Allan J.; Bernards, Andre; Blakeley, Jaishri; Bretscher, Antony; Cichowski, Karen; Clapp, D. Wade; Dombi, Eva; Evans, Gareth D.; Ferner, Rosalie; Fernandez-Valle, Cristina; Fisher, Michael J.; Giovannini, Marco; Gutmann, David H.; Hanemann, C. Oliver; Hennigan, Robert; Huson, Susan; Ingram, David; Kissil, Joe; Korf, Bruce R.; Legius, Eric; Packer, Roger J.; McClatchey, Andrea I; McCormick, Frank; North, Kathryn; Pehrsson, Minja; Plotkin, Scott R.; Ramesh, Vijaya; Ratner, Nancy; Schirmer, Susann; Sherman, Larry; Schorry, Elizabeth; Stevenson, David; Stewart, Douglas R.; Ullrich, Nicole; Bakker, Annette C.; Morrison, Helen
2014-01-01
The neurofibromatoses (NF) are autosomal dominant genetic disorders that encompass the rare diseases NF1, NF2, and schwannomatosis. The NFs affect more people worldwide than Duchenne muscular dystrophy and Huntington's disease combined. NF1 and NF2 are caused by mutations of known tumor suppressor genes (NF1 and NF2, respectively). For schwannomatosis, although mutations in SMARCB1 were identified in a subpopulation of schwannomatosis patients, additional causative gene mutations are still to be discovered. Individuals with NF1 may demonstrate manifestations in multiple organ systems, including tumors of the nervous system, learning disabilities, and physical disfigurement. NF2 ultimately can cause deafness, cranial nerve deficits, and additional severe morbidities caused by tumors of the nervous system. Unmanageable pain is a key finding in patients with schwannomatosis. Although today there is no marketed treatment for NF-related tumors, a significant number of clinical trials have become available. In addition, significant preclinical efforts have led to a more rational selection of potential drug candidates for NF trials. An important element in fueling this progress is the sharing of knowledge. For over 20 years the Children's Tumor Foundation has convened an annual NF Conference, bringing together NF professionals to share novel findings, ideas, and build collaborations. The 2012 NF Conference held in New Orleans hosted over 350 NF researchers and clinicians. This article provides a synthesis of the highlights presented at the conference and as such, is a “state-of-the-field” for NF research in 2012. PMID:24443315
Widemann, Brigitte C; Acosta, Maria T; Ammoun, Sylvia; Belzberg, Allan J; Bernards, Andre; Blakeley, Jaishri; Bretscher, Antony; Cichowski, Karen; Clapp, D Wade; Dombi, Eva; Evans, Gareth D; Ferner, Rosalie; Fernandez-Valle, Cristina; Fisher, Michael J; Giovannini, Marco; Gutmann, David H; Hanemann, C Oliver; Hennigan, Robert; Huson, Susan; Ingram, David; Kissil, Joe; Korf, Bruce R; Legius, Eric; Packer, Roger J; McClatchey, Andrea I; McCormick, Frank; North, Kathryn; Pehrsson, Minja; Plotkin, Scott R; Ramesh, Vijaya; Ratner, Nancy; Schirmer, Susann; Sherman, Larry; Schorry, Elizabeth; Stevenson, David; Stewart, Douglas R; Ullrich, Nicole; Bakker, Annette C; Morrison, Helen
2014-03-01
The neurofibromatoses (NF) are autosomal dominant genetic disorders that encompass the rare diseases NF1, NF2, and schwannomatosis. The NFs affect more people worldwide than Duchenne muscular dystrophy and Huntington's disease combined. NF1 and NF2 are caused by mutations of known tumor suppressor genes (NF1 and NF2, respectively). For schwannomatosis, although mutations in SMARCB1 were identified in a subpopulation of schwannomatosis patients, additional causative gene mutations are still to be discovered. Individuals with NF1 may demonstrate manifestations in multiple organ systems, including tumors of the nervous system, learning disabilities, and physical disfigurement. NF2 ultimately can cause deafness, cranial nerve deficits, and additional severe morbidities caused by tumors of the nervous system. Unmanageable pain is a key finding in patients with schwannomatosis. Although today there is no marketed treatment for NF-related tumors, a significant number of clinical trials have become available. In addition, significant preclinical efforts have led to a more rational selection of potential drug candidates for NF trials. An important element in fueling this progress is the sharing of knowledge. For over 20 years the Children's Tumor Foundation has convened an annual NF Conference, bringing together NF professionals to share novel findings, ideas, and build collaborations. The 2012 NF Conference held in New Orleans hosted over 350 NF researchers and clinicians. This article provides a synthesis of the highlights presented at the conference and as such, is a "state-of-the-field" for NF research in 2012. © 2014 Wiley Periodicals, Inc.
Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim
2015-05-01
Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs. Copyright © 2014 Elsevier GmbH. All rights reserved.
Quan, Zifang; Ye, Ni; Hao, Zhongxiang; Wen, Caifang; Liao, Hong; Zhang, Manli; Luo, Lu; Cao, Sanjie; Wen, Xintian; Wu, Rui; Yan, Qigui
2015-10-01
The aim of the present study was to investigate the promoter methylation status and mRNA expression of goat tumor‑associated genes, in addition to the mRNA expression of DNA methyltransferase genes in enzootic nasal tumors (ENT). Methylation‑specific polymerase chain reaction and SYBR Green reverse transcription‑quantitative polymerase chain reaction were used to detect the methylation status and the mRNA expression levels of DNA methyltransferases (DNMTs), O6‑methylguanine‑DNA methyltransferase (MGMT), the tumor suppressor genes P73, P53, GADD45G, CHFR and THBS1, the transcription factor CEBPA, the proto‑oncogenes KRAS, NRAS and C‑myc and EGFR in 24 nasal tumor tissue samples and 20 normal nasal epithelia tissue samples. The associations between promoter methylation and DNMT, and promoter methylation and mRNA expression of the genes were analyzed. The results indicated that the expression levels of DNMT1 increased by 56% compared with those in normal nasal epithelial tissues, while MGMT, DNMT3a and DNMT3b had similar expression levels in the two tissue types. The expression levels of P53 decreased by 36.8% and those of THBS1 by 43%, while C‑myc increased by 2.9‑fold and CEBPA by 2‑fold compared with that in normal nasal epithelial tissues. GADD45G, P73, CHFR and NRAS were observed to have similar expression levels in the two tissue types. However, no expression was observed for EGFR and KRAS. CHFR, GADD45G and THBS1 were identified to be methylated in tumor suppressor genes. The methylation expression rate of the CHFR gene was ~60% in the two tissue types and for THBS1 it was 100% in the nasal tumor tissues as opposed to 20% in the normal nasal epithelial tissues. The exhaustive methylation expression rate of GADD45G was 62.5% and the partial methylation expression rate was 37.5% in nasal tumor tissue, while no methylation was observed in normal nasal epithelial tissues. C‑myc was the only gene identified to be methylated amongst proto‑oncogenes. The methylation expression rate of C‑myc was 87.5% in nasal tumor tissues and 15% in normal nasal epithelial tissues. The methylation expression rate of CEBPA was 100% in nasal tumor tissues and 40% in normal nasal epithelial tissues. The methylation expression rate of the EGFR gene was ~80% in the two tissues. In summary, the present study identified abnormal methylation of the C‑myc, CEBPA, GADD45G and THBS1 genes in nasal tumor tissues. The expression levels of DNMT1, C‑myc and CEBPA were upregulated and the expression of P53 and THBSI were downregulated in nasal tumor tissues, with a significant difference between the two groups (P<0.05). Therefore, it is suggested that these six genes may be used as diagnostic marker candidates for ENT. The results may serve as a foundation for screening of tumor‑specific markers for early diagnosis of ENT and further investigate the epigenetic mechanisms of enzootic nasal tumor virus (ENTV)‑induced nasal epithelium cell carcinoma.
Pilot study on the use of data mining to identify cochlear implant candidates.
Grisel, Jedidiah J; Schafer, Erin; Lam, Anne; Griffin, Terry
2018-05-01
The goal of this pilot study was to determine the clinical utility of data-mining software that screens for cochlear implant (CI) candidacy. The Auditory Implant Initiative developed a software module that screens for CI candidates via integration with a software system (Noah 4) that serves as a depository for hearing test data. To identify candidates, patient audiograms from one practice were exported into the screening module. Candidates were tracked to determine if any eventually underwent implantation. After loading 4836 audiograms from the Noah 4 system, the screening module identified 558 potential CI candidates. After reviewing the data for the potential candidates, 117 were targeted and invited to an educational event. Following the event, a total of six candidates were evaluated, and two were implanted. This objective approach to identifying candidates has the potential to address the gross underutilization of CIs by removing any bias or lack of knowledge regarding the management of severe to profound sensorineural hearing loss with CIs. The screening module was an effective tool for identifying potential CI candidates at one ENT practice. On a larger scale, the screening module has the potential to impact thousands of CI candidates worldwide.
A recellularized human colon model identifies cancer driver genes
Chen, Huanhuan Joyce; Wei, Zhubo; Sun, Jian; Bhattacharya, Asmita; Savage, David J; Serda, Rita; Mackeyev, Yuri; Curley, Steven A.; Bu, Pengcheng; Wang, Lihua; Chen, Shuibing; Cohen-Gould, Leona; Huang, Emina; Shen, Xiling; Lipkin, Steven M.; Copeland, Neal G.; Jenkins, Nancy A.; Shuler, Michael L.
2016-01-01
Refined cancer models are needed to bridge the gap between cell-line, animal and clinical research. Here we describe the engineering of an organotypic colon cancer model by recellularization of a native human matrix that contains cell-populated mucosa and an intact muscularis mucosa layer. This ex vivo system recapitulates the pathophysiological progression from APC-mutant neoplasia to submucosal invasive tumor. We used it to perform a Sleeping Beauty transposon mutagenesis screen to identify genes that cooperate with mutant APC in driving invasive neoplasia. 38 candidate invasion driver genes were identified, 17 of which have been previously implicated in colorectal cancer progression, including TCF7L2, TWIST2, MSH2, DCC and EPHB1/2. Six invasion driver genes that to our knowledge have not been previously described were validated in vitro using cell proliferation, migration and invasion assays, and ex vivo using recellularized human colon. These results demonstrate the utility of our organoid model for studying cancer biology. PMID:27398792
Zhang, Mingfeng; Wang, Zhaoming; Obazee, Ofure; Jia, Jinping; Childs, Erica J.; Hoskins, Jason; Figlioli, Gisella; Mocci, Evelina; Collins, Irene; Chung, Charles C.; Hautman, Christopher; Arslan, Alan A.; Beane-Freeman, Laura; Bracci, Paige M.; Buring, Julie; Duell, Eric J.; Gallinger, Steven; Giles, Graham G.; Goodman, Gary E.; Goodman, Phyllis J.; Kamineni, Aruna; Kolonel, Laurence N.; Kulke, Matthew H.; Malats, Núria; Olson, Sara H.; Sesso, Howard D.; Visvanathan, Kala; White, Emily; Zheng, Wei; Abnet, Christian C.; Albanes, Demetrius; Andreotti, Gabriella; Brais, Lauren; Bueno-de-Mesquita, H. Bas; Basso, Daniela; Berndt, Sonja I.; Boutron-Ruault, Marie-Christine; Bijlsma, Maarten F.; Brenner, Hermann; Burdette, Laurie; Campa, Daniele; Caporaso, Neil E.; Capurso, Gabriele; Cavestro, Giulia Martina; Cotterchio, Michelle; Costello, Eithne; Elena, Joanne; Boggi, Ugo; Gaziano, J. Michael; Gazouli, Maria; Giovannucci, Edward L.; Goggins, Michael; Gross, Myron; Haiman, Christopher A.; Hassan, Manal; Helzlsouer, Kathy J.; Hu, Nan; Hunter, David J.; Iskierka-Jazdzewska, Elzbieta; Jenab, Mazda; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay-Tee; Klein, Eric A.; Kogevinas, Manolis; Krogh, Vittorio; Kupcinskas, Juozas; Kurtz, Robert C.; Landi, Maria T.; Landi, Stefano; Marchand, Le Loic; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L.; Neale, Rachel E.; Oberg, Ann L.; Panico, Salvatore; Patel, Alpa V.; Peeters, Petra H. M.; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Purdue, Mark; Quiros, J. Ramón; Riboli, Elio; Rothman, Nathaniel; Scarpa, Aldo; Scelo, Ghislaine; Shu, Xiao-Ou; Silverman, Debra T.; Soucek, Pavel; Strobel, Oliver; Sund, Malin; Małecka-Panas, Ewa; Taylor, Philip R.; Tavano, Francesca; Travis, Ruth C.; Thornquist, Mark; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Vashist, Yogesh; Vodicka, Pavel; Wactawski-Wende, Jean; Wentzensen, Nicolas; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Kooperberg, Charles; Risch, Harvey A.; Jacobs, Eric J.; Li, Donghui; Fuchs, Charles; Hoover, Robert; Hartge, Patricia; Chanock, Stephen J.; Petersen, Gloria M.; Stolzenberg-Solomon, Rachael S.; Wolpin, Brian M.; Kraft, Peter; Klein, Alison P.; Canzian, Federico; Amundadottir, Laufey T.
2016-01-01
Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88×10−15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22×10−9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70×10−8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 (NR5A2), chr8q24.21 (MYC) and chr5p15.33 (CLPTM1L-TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal (n = 10) and tumor (n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7×10−8). This finding was validated in a second set of paired (n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5×10−4-2.0×10−3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology. PMID:27579533
Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma
Monje, Michelle; Mitra, Siddhartha S.; Freret, Morgan E.; Raveh, Tal B.; Kim, James; Masek, Marilyn; Attema, Joanne L.; Haddix, Terri; Edwards, Michael S. B.; Fisher, Paul G.; Weissman, Irving L.; Rowitch, David H.; Vogel, Hannes; Wong, Albert J.; Beachy, Philip A.
2011-01-01
Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive tumors of childhood that are almost universally fatal. Our understanding of this devastating cancer is limited by a dearth of available tissue for study and by the lack of a faithful animal model. Intriguingly, DIPGs are restricted to the ventral pons and occur during a narrow window of middle childhood, suggesting dysregulation of a postnatal neurodevelopmental process. Here, we report the identification of a previously undescribed population of immunophenotypic neural precursor cells in the human and murine brainstem whose temporal and spatial distributions correlate closely with the incidence of DIPG and highlight a candidate cell of origin. Using early postmortem DIPG tumor tissue, we have established in vitro and xenograft models and find that the Hedgehog (Hh) signaling pathway implicated in many developmental and oncogenic processes is active in DIPG tumor cells. Modulation of Hh pathway activity has functional consequences for DIPG self-renewal capacity in neurosphere culture. The Hh pathway also appears to be active in normal ventral pontine precursor-like cells of the mouse, and unregulated pathway activity results in hypertrophy of the ventral pons. Together, these findings provide a foundation for understanding the cellular and molecular origins of DIPG, and suggest that the Hh pathway represents a potential therapeutic target in this devastating pediatric tumor. PMID:21368213
Diverse amide analogs of sulindac for cancer treatment and prevention.
Mathew, Bini; Hobrath, Judith V; Connelly, Michele C; Kiplin Guy, R; Reynolds, Robert C
2017-10-15
Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Glycosylation Changes in Serum Proteins Identify Patients with Pancreatic Cancer.
Drabik, Anna; Bodzon-Kulakowska, Anna; Suder, Piotr; Silberring, Jerzy; Kulig, Jan; Sierzega, Marek
2017-04-07
After more than a decade of biomarker discovery using advanced proteomic and genomic approaches, very few biomarkers have been involved in clinical diagnostics. Most candidate biomarkers are focused on the protein component. Targeting post-translational modifications (PTMs) in combination with protein sequences will provide superior diagnostic information with regards to sensitivity and specificity. Glycosylation is one of the most common and functionally important PTMs. It plays a central role in many biological processes, including protein folding, host-pathogen interactions, immune response, and inflammation. Cancer-associated aberrant glycosylation has been identified in various types of cancer. Expression of cancer-specific glycan epitopes represents an excellent opportunity for diagnostics and potentially specific detection of tumors. Here, we report four proteins (LIFR, CE350, VP13A, HPT) found in sera from pancreatic cancer patients carrying aberrant glycan structures as compared to those of controls.
Oh, Ensel; Jeong, Hae Min; Kwon, Mi Jeong; Ha, Sang Yun; Park, Hyung Kyu; Song, Ji-Young; Kim, Yu Jin; Choi, Jong-Sun; Lee, Eun Hee; Lee, Jeeyun; Choi, Yoon-La; Shin, Young Kee
2017-01-01
Dermatofibrosarcoma protuberans (DFSP) is a very rare soft tissue sarcoma, generally of low-grade malignancy. DFSP is locally aggressive with a high recurrence rate, but metastasis occurs rarely. To investigate the mechanism of metastasis in DFSP, we analyzed the whole exome sequencing data of serial tumor samples obtained from a patient who had a 10-year history of recurrent and metastatic DFSP. Tracking various genomic alterations, namely somatic mutations, copy number variations, and chromosomal rearrangements, we observed a dramatic change in tumor cell population during the occurrence of metastasis in this DFSP case. The new subclone that emerged in metastatic DFSP harbored a completely different set of somatic mutations and new focal amplifications, which had not been observed in the primary clone before metastasis. The COL1A1-PDGFB fusion, characteristic of DFSP, was found in all of the serial samples. Moreover, the break position on the fusion gene was identical in all samples. Based on these observations, we suggest a clonal evolution model to explain the mechanism underlying metastasis in DFSP and identified several candidate target genes responsible for metastatic DFSP by utilizing The Cancer Genome Atlas database. This is the first study to observe clonal evolution in metastatic DFSP and provide insight for a possible therapeutic strategy for imatinib-resistant or metastatic DFSP.
Alizadeh Zarei, M; Takhshid, M A; Behzad Behbahani, A; Hosseini, S Y; Okhovat, M A; Rafiee Dehbidi, Gh R; Mosleh Shirazi, M A
2017-09-01
Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to explore the potential synergistic effects of N-Myc Downstream-Regulated Gene 2 (NDRG2) overexpression, a newly identified candidate tumor suppressor gene, with radiotherapy against proliferation of prostate LNCaP cell line. In this study, LNCaP cells were exposed to X-ray radiation in the presence or absence of NDRG2 overexpression using plasmid PSES- pAdenoVator-PSA-NDRG2-IRES-GFP. The effects of NDRG2 overexpression, X-ray radiation or combination of both on the cell proliferation and apoptosis of LNCaP cells were then analyzed using MTT assay and flow cytometery, respectively. Results of MTT assay showed that NDRG2 overexpression and X-ray radiation had a synergistic effect against proliferation of LNCaP cells. Moreover, NDRG2 overexpression increased apoptotic effect of X-ray radiation in LNCaP cells synergistically. Our findings suggested that NDRG2 overexpression in combination with radiotherapy may be an effective therapeutic option against prostate cancer.
Promising pharmacological profile of a Kunitz-type inhibitor in murine renal cell carcinoma model
de Souza, Jean Gabriel; Morais, Katia L.P.; Anglés-Cano, Eduardo; Boufleur, Pamela; de Mello, Evandro Sobroza; Maria, Durvanei Augusto; Origassa, Clarice Silvia Taemi; Zampolli, Hamilton de Campos; Câmara, Niels Olsen Saraiva; Berra, Carolina Maria; Bosch, Rosemary Viola; Chudzinski-Tavassi, Ana Marisa
2016-01-01
Renal cell carcinoma (RCC), also called kidney cancer or renal adenocarcinoma, is highly resistant to current treatments. It has been previously reported that a Kunitz-type inhibitor domain-containing protein, isolated from the salivary glands of the Amblyomma cajennense tick, triggers apoptosis in murine renal adenocarcinoma cells (Renca) by inhibiting the proteasome and endoplasmic reticulum stress. Of note, Amblyomin-X is the corresponding recombinant protein identified in the cDNA library from A. cajennense salivary glands. Herein, using orthotopic kidney tumors in mice, we demonstrate that Amblyomin-X is able to drastically reduce the incidence of lung metastases by inducing cell cycle arrest and apoptosis. The in vitro assays show that Amblyomin-X is capable of reducing the proliferation rate of Renca cells, promoting cell cycle arrest, and down-regulating the expression of crucial proteins (cyclin D1, Ki67 and Pgp) involved in the aggressiveness and resistance of RCC. Regarding non-tumor cells (NIH3T3), Amblyomin-X produced minor effects in the cyclin D1 levels. Interestingly, observing the image assays, the fluorescence-labelled Amblyomin-X was indeed detected in the tumor stroma whereas in healthy animals it was rapidly metabolized and excreted. Taken the findings together, Amblyomin-X can be considered as a potential anti-RCC drug candidate. PMID:27566592
Denicolaï, Emilie; Baeza-Kallee, Nathalie; Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique
2014-11-15
Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers.
Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice.
Ohsawa, Masahiro; Murakami, Tomoyasu; Kume, Kazuhiko
2016-01-01
Malnutrition is a common problem among cancer patients, affecting up to 85% of patients with certain cancers. In severe cases, malnutrition can progress to cachexia, a specific form of malnutrition characterized by loss of lean body mass and muscle wasting. Although this muscle wasting might be a product of enhanced protein degradation, the precise mechanisms of cancer cachexia are not fully elucidated. Based on basic and clinical research, glucose intolerance and insulin resistance have been postulated to be associated with cancer cachexia. Since insulin in the skeletal muscle inhibits protein degradation and promotes protein synthesis, insulin resistance could be a possible cause of cancer cachexia. Therefore, we investigated the involvement of insulin resistance in the development of cancer cachexia in tumor-bearing mice. The signaling protein in the insulin cascade was attenuated in the skeletal muscle and hypothalamus from tumor-bearing mice. We identified Chrysanthemum morifolium RAMAT., known as Kikuka, as a peroxisome proliferator-activated receptor γ (PPARγ) ligand. Treatment with Kikuka attenuates the skeletal muscle changes in tumor-bearing mice. These results suggest that this natural PPARγ activator might be an attractive candidate for the treatment of cancer cachexia. In the symposium, we presented the PPARγ activator-induced improvement of cancer cachexia.
Takai, Erina; Totoki, Yasushi; Nakamura, Hiromi; Kato, Mamoru; Shibata, Tatsuhiro; Yachida, Shinichi
2016-01-01
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. The genomic landscape of the PDAC genome features four frequently mutated genes (KRAS, CDKN2A, TP53, and SMAD4) and dozens of candidate driver genes altered at low frequency, including potential clinical targets. Circulating cell-free DNA (cfDNA) is a promising resource to detect molecular characteristics of tumors, supporting the concept of "liquid biopsy".We determined the mutational status of KRAS in plasma cfDNA using multiplex droplet digital PCR in 259 patients with PDAC, retrospectively. Furthermore, we constructed a novel modified SureSelect-KAPA-Illumina platform and an original panel of 60 genes. We then performed targeted deep sequencing of cfDNA in 48 patients who had ≥1 % mutant allele frequencies of KRAS in plasma cfDNA.Droplet digital PCR detected KRAS mutations in plasma cfDNA in 63 of 107 (58.9 %) patients with inoperable tumors. Importantly, potentially targetable somatic mutations were identified in 14 of 48 patients (29.2 %) examined by cfDNA sequencing.Our two-step approach with plasma cfDNA, combining droplet digital PCR and targeted deep sequencing, is a feasible clinical approach. Assessment of mutations in plasma cfDNA may provide a new diagnostic tool, assisting decisions for optimal therapeutic strategies for PDAC patients.
The genomic landscape of small intestine neuroendocrine tumors.
Banck, Michaela S; Kanwar, Rahul; Kulkarni, Amit A; Boora, Ganesh K; Metge, Franziska; Kipp, Benjamin R; Zhang, Lizhi; Thorland, Erik C; Minn, Kay T; Tentu, Ramesh; Eckloff, Bruce W; Wieben, Eric D; Wu, Yanhong; Cunningham, Julie M; Nagorney, David M; Gilbert, Judith A; Ames, Matthew M; Beutler, Andreas S
2013-06-01
Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0-0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways.
The genomic landscape of small intestine neuroendocrine tumors
Banck, Michaela S.; Kanwar, Rahul; Kulkarni, Amit A.; Boora, Ganesh K.; Metge, Franziska; Kipp, Benjamin R.; Zhang, Lizhi; Thorland, Erik C.; Minn, Kay T.; Tentu, Ramesh; Eckloff, Bruce W.; Wieben, Eric D.; Wu, Yanhong; Cunningham, Julie M.; Nagorney, David M.; Gilbert, Judith A.; Ames, Matthew M.; Beutler, Andreas S.
2013-01-01
Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0–0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways. PMID:23676460
The Emerging Roles of Long Non-coding RNA in Cancer.
Sanchez Calle, Anna; Kawamura, Yumi; Yamamoto, Yusuke; Takeshita, Fumitaka; Ochiya, Takahiro
2018-05-17
Since comprehensive analysis of the mammalian genome has revealed that the vast majority of genomic products are transcribed in long non-coding RNAs (lncRNAs), increasing attention has been paid towards these transcripts. The applied next-generation sequencing technologies have provided accumulating evidence of dysregulated lncRNAs in cancer. The implication of this finding may be seen in many forms and at multiple levels. With impacts ranging from integrating chromatin remodeling complexes to regulating transcription and post-transcriptional processes, aberrant expression of lncRNAs may have repercussions in cell proliferation, tumor progression or metastasis. lncRNAs may act as enhancers, scaffolds or decoys by physically interacting with other RNA species or proteins, resulting in a direct impact on cell signaling cascades. Even though their functional classification is well-established in the context of cancer, clearer characterization in terms of their phenotypic outputs is needed to optimize and identify suitable candidates that enable the development of new therapeutic strategies and the design of novel diagnostic approaches. The present article aims to outline different cancer-associated lncRNAs according to their contribution to tumor suppression or tumor promotion based on their most current functional annotations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Heyningen, V.; Bickmore, W.A.; Seawright, A.
Detailed molecular definition of the WAGR region at chromosome 11p13 has been achieved by chromosome breakpoint analysis and long-range restriction mapping. Here the authors describe the molecular detection of a cytogenetically invisible 1-megabase deletion in an individual with aniridia, cryptorchidism, and hypospadias but no Wilms tumor (WT). The region of overlap between this deletion and one associated with WT and similar genital anomalies but no aniridia covers a region of 350-400 kilobases, which is coincident with the extent of homozygous deletion detected in tumor tissue from a sporadic WT. A candidate WT gene located within this region has recently beenmore » isolated, suggesting nonpenetrance for tumor expression in the first individual. The inclusion within the overlap region of a gene for WT predisposition and a gene for the best-documented WT-associated genitourinary malformations leads to suggest that both of these anomalies result from a loss-of-function mutation at the same locus. This in turn implies that the WT gene exerts pleiotropic effect on both kidney and genitourinary development, a possibility supported by the observed expression pattern of the WT candidate gene in developing kidney and gonads.« less
Ueda, Masakatsu; Kanematsu, Akihiro; Nishiyama, Hiroyuki; Yoshimura, Koji; Watanabe, Kenichiro; Yorifuji, Tohru; Mikami, Yoshiki; Kamoto, Toshiyuki; Ogawa, Osamu
2010-03-01
We report a case of testicular thecoma in an 11-year-old Japanese boy with nevoid basal-cell carcinoma syndrome (Gorlin syndrome). He presented with left testicular swelling and underwent a radical orchiectomy on suspicion of a malignant paratesticular tumor. The tumor arose from the testis exophytically and was diagnosed as a thecoma histopathologically. Ovarian thecoma-fibroma group tumors are closely associated with Gorlin syndrome or with abnormalities in PTCH, a candidate gene for the syndrome. The occurrence of an extremely rare testicular thecoma in this case (the second in the literature) suggests that such an etiological association may also exist in the pathogenesis of testicular tumors.
Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells
Wang, Yu-Chi; Chao, Tai-Kuang; Chang, Cheng-Chang; Yo, Yi-Te; Yu, Mu-Hsien; Lai, Hung-Cheng
2013-01-01
The primary cause of death from breast cancer is the progressive growth of tumors and resistance to conventional therapies. It is currently believed that recurrent cancer is repopulated according to a recently proposed cancer stem cell hypothesis. New therapeutic strategies that specifically target cancer stem-like cells may represent a new avenue of cancer therapy. We aimed to discover novel compounds that target breast cancer stem-like cells. We used a dye-exclusion method to isolate side population (SP) cancer cells and, subsequently, subjected these SP cells to a sphere formation assay to generate SP spheres (SPS) from breast cancer cell lines. Surface markers, stemness genes, and tumorigenicity were used to test stem properties. We performed a high-throughput drug screening using these SPS. The effects of candidate compounds were assessed in vitro and in vivo. We successfully generated breast cancer SPS with stem-like properties. These SPS were enriched for CD44high (2.8-fold) and CD24low (4-fold) cells. OCT4 and ABCG2 were overexpressed in SPS. Moreover, SPS grew tumors at a density of 103, whereas an equivalent number of parental cells did not initiate tumor formation. A clinically approved drug, niclosamide, was identified from the LOPAC chemical library of 1,258 compounds. Niclosamide downregulated stem pathways, inhibited the formation of spheroids, and induced apoptosis in breast cancer SPS. Animal studies also confirmed this therapeutic effect. The results of this proof-of-principle study may facilitate the development of new breast cancer therapies in the near future. The extension of niclosamide clinical trials is warranted. PMID:24058587
Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J
2015-09-01
Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted. Copyright © 2015 by the National Comprehensive Cancer Network.
Gupta, Ishita; Ouhtit, Allal; Al-Ajmi, Adil; Rizvi, Syed Gauhar A; Al-Riyami, Hamad; Al-Riyami, Marwa
2018-01-01
In Oman, breast cancer is most common, representing approximately more than 25% of all cancers in women. Relatively younger populations of patients (25–40 years) present surprisingly with an aggressive phenotype and advanced tumor stages. In this study, we investigated differential gene expressions in Luminal A, Luminal B, triple-negative and Her2+ breast cancer subtypes and compared data to benign tumor samples. We identified a potential candidate gene BRIP1, showing differential expression in the four breast cancer subtypes examined, suggesting that BRIP1 has the profile of a useful diagnostic marker, suitable for targeted therapeutic intervention. RT-qPCR and Western blotting analysis showed higher BRIP1 expression in luminal samples as compared to triple-negative subtype patient’s samples. We further screened BRIP1 for eventual mutations/SNPs/deletions by sequencing the entire coding region. Four previously identified polymorphisms were detected, one within the 5′-UTR region (c.141-64G > A) and three in the BRCA-binding domain (c.2755T > C, c.2647G > A and c.3411T > C). Kaplan–Meier analysis revealed that patients with overexpression of BRIP1 displayed a poor survival rate (P < 0.05). BRIP1 has a dual function of an oncogene and a tumor suppressor gene in addition to its role as a potential biomarker to predict survival and prognosis. Data obtained in this study suggest that BRIP1 can plausibly have an oncogenic role in sporadic cancers. PMID:29138235
Genomic Heterogeneity of Osteosarcoma - Shift from Single Candidates to Functional Modules
Maugg, Doris; Eckstein, Gertrud; Baumhoer, Daniel; Nathrath, Michaela; Korsching, Eberhard
2015-01-01
Osteosarcoma (OS), a bone tumor, exhibit a complex karyotype. On the genomic level a highly variable degree of alterations in nearly all chromosomal regions and between individual tumors is observable. This hampers the identification of common drivers in OS biology. To identify the common molecular mechanisms involved in the maintenance of OS, we follow the hypothesis that all the copy number-associated differences between the patients are intercepted on the level of the functional modules. The implementation is based on a network approach utilizing copy number associated genes in OS, paired expression data and protein interaction data. The resulting functional modules of tightly connected genes were interpreted regarding their biological functions in OS and their potential prognostic significance. We identified an osteosarcoma network assembling well-known and lesser-known candidates. The derived network shows a significant connectivity and modularity suggesting that the genes affected by the heterogeneous genetic alterations share the same biological context. The network modules participate in several critical aspects of cancer biology like DNA damage response, cell growth, and cell motility which is in line with the hypothesis of specifically deregulated but functional modules in cancer. Further, we could deduce genes with possible prognostic significance in OS for further investigation (e.g. EZR, CDKN2A, MAP3K5). Several of those module genes were located on chromosome 6q. The given systems biological approach provides evidence that heterogeneity on the genomic and expression level is ordered by the biological system on the level of the functional modules. Different genomic aberrations are pointing to the same cellular network vicinity to form vital, but already neoplastically altered, functional modules maintaining OS. This observation, exemplarily now shown for OS, has been under discussion already for a longer time, but often in a hypothetical manner, and can here be exemplified for OS. PMID:25848766
Bladder Cancer-associated Protein, a Potential Prognostic Biomarker in Human Bladder Cancer*
Moreira, José M. A.; Ohlsson, Gita; Gromov, Pavel; Simon, Ronald; Sauter, Guido; Celis, Julio E.; Gromova, Irina
2010-01-01
It is becoming increasingly clear that no single marker will have the sensitivity and specificity necessary to be used on its own for diagnosis/prognosis of tumors. Interpatient and intratumor heterogeneity provides overwhelming odds against the existence of such an ideal marker. With this in mind, our laboratory has been applying a long term systematic approach to identify multiple biomarkers that can be used for clinical purposes. As a result of these studies, we have identified and reported several candidate biomarker proteins that are deregulated in bladder cancer. Following the conceptual biomarker development phases proposed by the Early Detection Research Network, we have taken some of the most promising candidate proteins into postdiscovery validation studies, and here we report on the characterization of one such biomarker, the bladder cancer-associated protein (BLCAP), formerly termed Bc10. To characterize BLCAP protein expression and cellular localization patterns in benign bladder urothelium and urothelial carcinomas (UCs), we used two independent sets of samples from different patient cohorts: a reference set consisting of 120 bladder specimens (formalin-fixed as well as frozen biopsies) and a validation set consisting of 2,108 retrospectively collected UCs with long term clinical follow-up. We could categorize the UCs examined into four groups based on levels of expression and subcellular localization of BLCAP protein and showed that loss of BLCAP expression is associated with tumor progression. The results indicated that increased expression of this protein confers an adverse patient outcome, suggesting that categorization of staining patterns for this protein may have prognostic value. Finally, we applied a combinatorial two-marker discriminator using BLCAP and adipocyte-type fatty acid-binding protein, another UC biomarker previously reported by us, and found that the combination of the two markers correlated more closely with grade and/or stage of disease than the individual markers. The implications of these results in biomarker discovery are discussed. PMID:19783793
Wolsky, Rebecca J; Price, Matt A; Zaloudek, Charles J; Rabban, Joseph T
2018-05-01
Malignant transformation of the fallopian tube mucosa, followed by exfoliation of malignant cells onto ovarian and/or peritoneal surfaces, has been implicated as the origin of most pelvic high-grade serous carcinoma. Whether a parallel pathway exists for pelvic low-grade serous tumors [ovarian serous borderline tumor (SBT) and low-grade serous carcinoma (LGSC)] remains to be fully elucidated. The literature is challenging to interpret due to variation in the diagnostic criteria and terminology for cytologically low-grade proliferations of the fallopian tube mucosa, as well as variation in fallopian tube specimen sampling. Recently, a candidate fallopian tube precursor to ovarian SBT, so-called papillary tubal hyperplasia, was described in advanced stage patients. The current study was designed to identify fallopian tube mucosal proliferations unique to patients with low-grade serous ovarian tumors (serous cystadenoma, SBT, LGSC) and to determine if they may represent precursors to the ovarian tumors. Fallopian tubes were thinly sliced and entirely examined microscopically, including all of the fimbriated and nonfimbriated portions of the tubes, from patients with ovarian serous cystadenoma (35), SBT (61), and LGSC (11) and from a control population of patients with ovarian mucinous cystadenoma (28), mature cystic teratoma (18) or uterine leiomyoma (14). The slides of the fallopian tubes were examined in randomized order, without knowledge of the clinical history or findings in the ovaries or other organs. Alterations of the mucosa of the fallopian tube were classified as type 1: nonpapillary proliferation of cytologically bland tubal epithelium exhibiting crowding, stratification, and/or tufting without papillary fibrovascular cores or as type 2: papillary alterations consisting of a fibrovascular core lined by a cytologically bland layer of tubal epithelium. A third abnormality, type 3, consisted of detached intraluminal papillae, buds, or nests of epithelium that cytologically resembled the epithelial component of SBT or LGSC. Mucosal proliferations were identified in subsets of all populations, including the control populations. Overall, type 1 proliferations were in 28% to 61% of all patients and type 2 alterations in 4% to 16%. There was no statistically significant difference in the incidence of type 1 or type 2 proliferations between the class of ovarian serous tumors (benign, SBT, LGSC), between early and advanced stage SBT, or between patients with any ovarian serous tumor and the control population of nonserous diagnoses. Type 3 alterations were only identified in patients with advanced stage SBT/LGSC and not in any early stage SBT or cystadenoma. These findings suggest that type 3 alterations floating in the fallopian tube lumen represent exfoliation of tumor cells from ovarian and/or peritoneal origin. Our study did not identify a mucosal-based proliferation of the fallopian tubes that was specific to ovarian low-grade serous tumors. Cytologically bland mucosal proliferations appear to be common in fallopian tubes from patients of all ages and unrelated to ovarian tumorigenesis. A consensus on diagnostic criteria and terminology for these types of proliferations is needed, as well as further study into their etiology, including possible association with hormonal environment.
NASA Astrophysics Data System (ADS)
Gräfe, James L.
2017-09-01
Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and experimental work are required to determine the feasibility of this new technique termed Proton Neutron Gamma-X Detection (PNGXD). The initial concept of this procedure is presented in this paper as well as future research directions.
Automated segmentation of murine lung tumors in x-ray micro-CT images
NASA Astrophysics Data System (ADS)
Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis
2014-03-01
Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.
The genetic basis of new treatment modalities in melanoma.
Kunz, Manfred
2015-01-01
In recent years, intracellular signal transduction via RAS-RAF-MEK-ERK has been successfully targeted in new treatment approaches for melanoma using small molecule inhibitors against activated BRAF (V600E mutation) and activated MEK1/2. Also mutated c-KIT has been identified as a promising target. Meanwhile, evidence has been provided that combinations between BRAF inhibitors and MEK1/2 inhibitors are more promising than single-agent treatments. Moreover, new treatment algorithms favor sequential treatment using BRAF inhibitors and newly developed immunotherapies targeting common T lymphocyte antigen 4 (CTLA-4) or programmed cell death 1 (PD-1). In depth molecular analyses have uncovered new mechanisms of treatment resistance and recurrence, which may impact on future treatment decisions. Moreover, next-generation sequencing data have shown that recurrent lesions harbor specific genetic aberrations. At the same time, high throughput sequencing studies of melanoma unraveled a series of new treatment candidates for future treatment approaches such as ERBB4, GRIN2A, GRM3, and RAC1. More recent bioinformatic technologies provided genetic evidence for extensive tumor heterogeneity and tumor clonality of solid tumors, which might also be of relevance for melanoma. However, these technologies have not yet been applied to this tumor. In this review, an overview on the genetic basis of current treatment of melanoma, treatment resistance and recurrences including new treatment perspectives based on recent high-throughput sequencing data is provided. Moreover, future aspects of individualized treatment based on each patient's individual mutational landscape are discussed.
PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells.
Yanagi, Teruki; Krajewska, Maryla; Matsuzawa, Shu-ichi; Reed, John C
2014-10-15
PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here, we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells, where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of nontransformed cells, including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening, we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in nontransformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared with adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis, and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target. ©2014 American Association for Cancer Research.
Somatic mutations in early onset luminal breast cancer
de Lyra, Eduardo Carneiro; Hirata Katayama, Maria Lucia; Maistro, Simone; de Vasconcellos Valle, Pedro Wilson Mompean; de Lima Pereira, Gláucia Fernanda; Rodrigues, Lívia Munhoz; de Menezes Pacheco Serio, Pedro Adolpho; de Gouvêa, Ana Carolina Ribeiro Chaves; Geyer, Felipe Correa; Basso, Ricardo Alves; Pasini, Fátima Solange; del Pilar Esteves Diz, Maria; Brentani, Maria Mitzi; Guedes Sampaio Góes, João Carlos; Chammas, Roger; Boutros, Paul C.; Koike Folgueira, Maria Aparecida Azevedo
2018-01-01
Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation. PMID:29854292
Tamilzhalagan, Sembulingam; Muthuswami, Muthulakshmi; Ganesan, Kumaresan
2017-04-01
Genomic Copy Number Variations (CNV) and the associated gene signatures are useful for cancer prognosis, diagnosis, and targeted therapeutics. Earlier, 7q21-22 region was reported for frequent amplification in gastric cancer and potential candidate genes were identified. An analysis of the expression pattern of the 159 genes located in this amplicon revealed the consistent elevated expression of 21 genes in gastric tumors. These genes are closely arranged within the 20 Mb region, and they showed a bimodal expression pattern. SHFM1 and 14 other genes are expressed in intestinal type gastric tumors. COL1A2 and PCOLCE genes of this region are expressed in diffuse type gastric tumors. Similarly, genome-wide expression neighbors of SHFM1 and COL1A2 also showed mutually exclusive expression pattern, and stratify intestinal and diffuse type gastric tumors. The expression of COL1A2 gene-set is associated with poor prognosis, whereas the SHFM1 gene-set is associated with better prognosis among the gastric cancer patients. Despite being physical neighbors, the SHFM1 and COL1A2 genes express differentially in the two major clinical sub-types of gastric cancer in a mutually exclusive manner. The tight gene regulations operating between these juxtaposed genes deserve investigation to understand the molecular regulatory switch defining the determinants of the gastric cancer sub-types. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Song, Hai; Lin, Chuwen; Yao, Erica; Zhang, Kuan; Li, Xiaoling; Wu, Qingzhe; Chuang, Pao-Tien
2017-03-03
Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRP CreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53 , Rb , and Pten , in mature parafollicular C cells via an inducible Cre recombinase from CGRP CreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53 / Rb -induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRP CreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Medical Therapy for Cushing's Syndrome in the Twenty-first Century.
Tritos, Nicholas A; Biller, Beverly M K
2018-06-01
Medical therapy has a useful adjunctive role in many patients with Cushing's syndrome. Patients with pituitary corticotroph adenomas who have received radiation therapy to the sella require medical therapy until the effects of radiation therapy occur. In addition, patients with Cushing's syndrome who cannot undergo surgery promptly, including those who are acutely ill and cannot safely undergo tumor resection, may benefit from medical therapy as a bridge to surgery. Other possible candidates for medical therapy are those with unresectable tumors or those whose tumor location remains unknown despite adequate diagnostic evaluation. Copyright © 2018 Elsevier Inc. All rights reserved.
Watanabe, Yoshiyuki; Kim, Hyun Soo; Castoro, Ryan J.; Chung, Woonbok; Estecio, Marcos R. H.; Kondo, Kimie; Guo, Yi; Ahmed, Saira S.; Toyota, Minoru; Itoh, Fumio; Suk, Ki Tae; Cho, Mee-Yon; Shen, Lanlan; Jelinek, Jaroslav; Issa, Jean-Pierre J.
2009-01-01
Background & Aims Aberrant DNA methylation is an early and frequent process in gastric carcinogenesis and could be useful for detection of gastric neoplasia. We hypothesized that methylation analysis of DNA recovered from gastric washes could be used to detect gastric cancer. Methods We studied 51 candidate genes in 7 gastric cancer cell lines and 24 samples (training set) and identified 6 for further studies. We examined the methylation status of these genes in a test set consisting of 131 gastric neoplasias at various stages. Finally, we validated the 6 candidate genes in a different population of 40 primary gastric cancer samples and 113 non-neoplastic gastric mucosa samples. Results 6 genes (MINT25, RORA, GDNF, ADAM23, PRDM5, MLF1) showed frequent differential methylation between gastric cancer and normal mucosa in the training, test and validation sets. GDNF and MINT25 were most sensitive molecular markers of early stage gastric cancer while PRDM5 and MLF1 were markers of a field defect. There was a close correlation (r=0.5 to 0.9, p=0.03 to 0.001) between methylation levels in tumor biopsy and gastric washes. MINT25 methylation had the best sensitivity (90%), specificity (96%), and area under the ROC curve (0.961) in terms of tumor detection in gastric washes. Conclusions These findings suggest MINT25 is a sensitive and specific marker for screening in gastric cancer. Additionally we have developed a new methodology for gastric cancer detection by DNA methylation in gastric washes. PMID:19375421
NASA Astrophysics Data System (ADS)
Harmon, Stephanie A.; Tuite, Michael J.; Jeraj, Robert
2016-10-01
Site selection for image-guided biopsies in patients with multiple lesions is typically based on clinical feasibility and physician preference. This study outlines the development of a selection algorithm that, in addition to clinical requirements, incorporates quantitative imaging data for automatic identification of candidate lesions for biopsy. The algorithm is designed to rank potential targets by maximizing a lesion-specific score, incorporating various criteria separated into two categories: (1) physician-feasibility category including physician-preferred lesion location and absolute volume scores, and (2) imaging-based category including various modality and application-specific metrics. This platform was benchmarked in two clinical scenarios, a pre-treatment setting and response-based setting using imaging from metastatic prostate cancer patients with high disease burden (multiple lesions) undergoing conventional treatment and receiving whole-body [18F]NaF PET/CT scans pre- and mid-treatment. Targeting of metastatic lesions was robust to different weighting ratios and candidacy for biopsy was physician confirmed. Lesion ranked as top targets for biopsy remained so for all patients in pre-treatment and post-treatment biopsy selection after sensitivity testing was completed for physician-biased or imaging-biased scenarios. After identifying candidates, biopsy feasibility was evaluated by a physician and confirmed for 90% (32/36) of high-ranking lesions, of which all top choices were confirmed. The remaining cases represented lesions with high anatomical difficulty for targeting, such as proximity to sciatic nerve. This newly developed selection method was successfully used to quantitatively identify candidate lesions for biopsies in patients with multiple lesions. In a prospective study, we were able to successfully plan, develop, and implement this technique for the selection of a pre-treatment biopsy location.
Isoform-Specific Upregulation of Palladin in Human and Murine Pancreas Tumors
Goicoechea, Silvia M.; Bednarski, Brian; Stack, Christianna; Cowan, David W.; Volmar, Keith; Thorne, Leigh; Cukierman, Edna; Rustgi, Anil K.; Brentnall, Teresa; Hwang, Rosa F.; McCulloch, Christopher A. G.; Yeh, Jen Jen; Bentrem, David J.; Hochwald, Steven N.; Hingorani, Sunil R.
2010-01-01
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with a characteristic pattern of early metastasis, which is driving a search for biomarkers that can be used to detect the cancer at an early stage. Recently, the actin-associated protein palladin was identified as a candidate biomarker when it was shown that palladin is mutated in a rare inherited form of PDA, and overexpressed in many sporadic pancreas tumors and premalignant precursors. In this study, we analyzed the expression of palladin isoforms in murine and human PDA and explored palladin's potential use in diagnosing PDA. We performed immunohistochemistry and immunoblot analyses on patient samples and tumor-derived cells using an isoform-selective monoclonal antibody and a pan-palladin polyclonal antibody. Immunoblot and real-time quantitative reverse transcription-PCR were used to quantify palladin mRNA levels in human samples. We show that there are two major palladin isoforms expressed in pancreas: 65 and 85–90 kDa. The 65 kDa isoform is expressed in both normal and neoplastic ductal epithelial cells. The 85–90 kDa palladin isoform is highly overexpressed in tumor-associated fibroblasts (TAFs) in both primary and metastatic tumors compared to normal pancreas, in samples obtained from either human patients or genetically engineered mice. In tumor-derived cultured cells, expression of palladin isoforms follows cell-type specific patterns, with the 85–90 kDa isoform in TAFs, and the 65 kDa isoform predominating in normal and neoplastic epithelial cells. These results suggest that upregulation of 85–90 kDa palladin isoform may play a role in the establishment of the TAF phenotype, and thus in the formation of a desmoplastic tumor microenvironment. Thus, palladin may have a potential use in the early diagnosis of PDA and may have much broader significance in understanding metastatic behavior. PMID:20436683
Map making in the 21st century: charting breast cancer susceptibility pathways in rodent models.
Blackburn, Anneke C; Jerry, D Joseph
2011-04-01
Genetic factors play an important role in determining risk and resistance to increased breast cancer. Recent technological advances have made it possible to analyze hundreds of thousands of single nucleotide polymorphisms in large-scale association studies in humans and have resulted in identification of alleles in over 20 genes that influence breast cancer risk. Despite these advances, the challenge remains in identifying what the functional polymorphisms are that confer the increased risk, and how these genetic variants interact with each other and with environmental factors. In rodents, the incidence of mammary tumors varies among strains, such that they can provide alternate ideas for candidate pathways involved in humans. Mapping studies in animals have unearthed numerous loci for breast cancer susceptibility that have been validated in human populations. In a reciprocal manner, knockin and knockout mice have been used to validate the tumorigenicity of risk alleles found in population studies. Rodent studies also underscore the complexity of interactions among alleles. The fact that genes affecting risk and resistance to mammary tumors in rodents depend greatly upon the carcinogenic challenge emphasizes the importance of gene x environment interactions. The challenge to rodent geneticists now is to capitalize on the ability to control the genetics and environment in rodent models of tumorigenesis to better understand the biology of breast cancer development, to identify those polymorphisms most relevant to human susceptibility and to identify compensatory pathways that can be targeted for improved prevention in women at highest risk of developing breast cancer.
Hong, Yoonki; Kim, Woo Jin; Bang, Chi Young; Lee, Jae Cheol; Oh, Yeon-Mok
2016-04-01
Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.
Disseminated candidiasis in addicts who use brown heroin: report of 83 cases and review.
Bisbe, J; Miro, J M; Latorre, X; Moreno, A; Mallolas, J; Gatell, J M; de la Bellacasa, J P; Soriano, E
1992-12-01
From November 1983 to April 1990, disseminated candidiasis was diagnosed in 83 heroin addicts at our institution. All patients had consumed brown heroin diluted in fresh lemon juice. Sixty-two (75%) had skin lesions, 41 (49%) had ocular lesions, and 35 (42%) had one or several costochondral tumors. Candida albicans was grown in culture or histopathologically identified in 34 cases (41%). The patients who had only cutaneous lesions were treated with ketoconazole, and they were all cured. The patients with ocular involvement received systemic amphotericin B with or without oral flucytosine; 29 of these patients developed varying degrees of vision loss. The method of treatment of costochondral tumors was not uniform; in 14 cases the lesions were resected. The one patient who died developed endocarditis involving the aortic valve. Cases of pleuropulmonary involvement, spondylitis, and large-joint arthritis have also been described among the 300 cases reported in the reviewed literature. This is a new syndrome of candidal infection in drug addicts who use brown heroin; ocular lesions are the most harmful manifestation, and loss of vision is the major sequela.
Sweetening the pot: adding glycosylation to the biomarker discovery equation.
Drake, Penelope M; Cho, Wonryeon; Li, Bensheng; Prakobphol, Akraporn; Johansen, Eric; Anderson, N Leigh; Regnier, Fred E; Gibson, Bradford W; Fisher, Susan J
2010-02-01
Cancer has profound effects on gene expression, including a cell's glycosylation machinery. Thus, tumors produce glycoproteins that carry oligosaccharides with structures that are markedly different from the same protein produced by a normal cell. A single protein can have many glycosylation sites that greatly amplify the signals they generate compared with their protein backbones. In this article, we survey clinical tests that target carbohydrate modifications for diagnosing and treating cancer. We present the biological relevance of glycosylation to disease progression by highlighting the role these structures play in adhesion, signaling, and metastasis and then address current methodological approaches to biomarker discovery that capitalize on selectively capturing tumor-associated glycoforms to enrich and identify disease-related candidate analytes. Finally, we discuss emerging technologies--multiple reaction monitoring and lectin-antibody arrays--as potential tools for biomarker validation studies in pursuit of clinically useful tests. The future of carbohydrate-based biomarker studies has arrived. At all stages, from discovery through verification and deployment into clinics, glycosylation should be considered a primary readout or a way of increasing the sensitivity and specificity of protein-based analyses.
Sweetening the pot: adding glycosylation to the biomarker discovery equation
Drake, Penelope M.; Cho, Wonryeon; Li, Bensheng; Prakobphol, Akraporn; Johansen, Eric; Anderson, N. Leigh; Regnier, Fred E.; Gibson, Bradford W.; Fisher, Susan J.
2010-01-01
Background Cancer has profound effects on gene expression, including a cell’s glycosylation machinery. Thus, tumors produce glycoproteins that carry oligosaccharides with structures that are markedly different from the same protein produced by a normal cell. A single protein can have many glycosylation sites that greatly amplify the signals they generate as compared to their protein backbones. Content We survey clinical tests that target carbohydrate modifications. for diagnosing and treating cancer. Next, we present the biological relevance of glycosylation to disease progression by highlighting the role these structures play in adhesion, signaling and metastasis, and then address current methodological approaches to biomarker discovery that capitalize on selectively capturing tumor-associated glycoforms to enrich and identify disease-related candidate analytes. Finally, we discuss emerging technologies—multiple reaction monitoring and lectin-antibody arrays—as potential tools for biomarker validation studies in pursuit of clinically useful tests. Summary The future of carbohydrate-based biomarker studies has arrived. At all stages, from discovery through verification and deployment into clinics, glycosylation should be considered a primary readout or a way of increasing the sensitivity and specificity of protein-based analyses. PMID:19959616
Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio
2005-03-01
Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.
Rajendran, Barani Kumar; Deng, Chu-Xia
2017-01-01
Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis. PMID:28477017
Yeung, Tsz-Lun; Sheng, Jianting; Leung, Cecilia S; Li, Fuhai; Kim, Jaeyeon; Ho, Samuel Y; Matzuk, Martin M; Lu, Karen H; Wong, Stephen T C; Mok, Samuel C
2018-05-31
Bulk tumor tissue samples are used for generating gene expression profiles in most research studies, making it difficult to decipher the stroma-cancer crosstalk networks. In the present study, we describe the use of microdissected transcriptome profiles for the identification of cancer-stroma crosstalk networks with prognostic value, which presents a unique opportunity for developing new treatment strategies for ovarian cancer. Transcriptome profiles from microdissected ovarian cancer-associated fibroblasts (CAFs) and ovarian cancer cells from patients with high-grade serous ovarian cancer (n = 70) were used as input data for the computational systems biology program CCCExplorer to uncover crosstalk networks between various cell types within the tumor microenvironment. The crosstalk analysis results were subsequently used for discovery of new indications for old drugs in ovarian cancer by computational ranking of candidate agents. Survival analysis was performed on ovarian tumor-bearing Dicer/Pten double-knockout mice treated with calcitriol, a US Food and Drug Administration-approved agent that suppresses the Smad signaling cascade, or vehicle control (9-11 mice per group). All statistical tests were two-sided. Activation of TGF-β-dependent and TGF-β-independent Smad signaling was identified in a particular subtype of CAFs and was associated with poor patient survival (patients with higher levels of Smad-regulated gene expression by CAFs: median overall survival = 15 months, 95% confidence interval [CI] = 12.7 to 17.3 months; vs patients with lower levels of Smad-regulated gene expression: median overall survival = 26 months, 95% CI = 15.9 to 36.1 months, P = .02). In addition, the activated Smad signaling identified in CAFs was found to be targeted by repositioning calcitriol. Calcitriol suppressed Smad signaling in CAFs, inhibited tumor progression in mice, and prolonged the median survival duration of ovarian cancer-bearing mice from 36 to 48 weeks (P = .04). Our findings suggest the feasibility of using novel multicellular systems biology modeling to identify and repurpose known drugs targeting cancer-stroma crosstalk networks, potentially leading to faster and more effective cures for cancers.
Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response.
Beltran, Himisha; Eng, Kenneth; Mosquera, Juan Miguel; Sigaras, Alexandros; Romanel, Alessandro; Rennert, Hanna; Kossai, Myriam; Pauli, Chantal; Faltas, Bishoy; Fontugne, Jacqueline; Park, Kyung; Banfelder, Jason; Prandi, Davide; Madhukar, Neel; Zhang, Tuo; Padilla, Jessica; Greco, Noah; McNary, Terra J; Herrscher, Erick; Wilkes, David; MacDonald, Theresa Y; Xue, Hui; Vacic, Vladimir; Emde, Anne-Katrin; Oschwald, Dayna; Tan, Adrian Y; Chen, Zhengming; Collins, Colin; Gleave, Martin E; Wang, Yuzhuo; Chakravarty, Dimple; Schiffman, Marc; Kim, Robert; Campagne, Fabien; Robinson, Brian D; Nanus, David M; Tagawa, Scott T; Xiang, Jenny Z; Smogorzewska, Agata; Demichelis, Francesca; Rickman, David S; Sboner, Andrea; Elemento, Olivier; Rubin, Mark A
2015-07-01
Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer. To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response. Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response. Feasibility, use of WES for decision making, and identification of novel biomarkers. A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response. The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.
de Smith, Adam J; Walsh, Kyle M; Hansen, Helen M; Endicott, Alyson A; Wiencke, John K; Metayer, Catherine; Wiemels, Joseph L
2015-01-01
The extent to which heritable genetic variants can affect tumor development has yet to be fully elucidated. Tumor selection of single nucleotide polymorphism (SNP) risk alleles, a phenomenon called preferential allelic imbalance (PAI), has been demonstrated in some cancer types. We developed a novel application of digital PCR termed Somatic Mutation Allelic Ratio Test using Droplet Digital PCR (SMART-ddPCR) for accurate assessment of tumor PAI, and have applied this method to test the hypothesis that heritable SNPs associated with childhood acute lymphoblastic leukemia (ALL) may demonstrate tumor PAI. These SNPs are located at CDKN2A (rs3731217) and IKZF1 (rs4132601), genes frequently lost in ALL, and at CEBPE (rs2239633), ARID5B (rs7089424), PIP4K2A (rs10764338), and GATA3 (rs3824662), genes located on chromosomes gained in high-hyperdiploid ALL. We established thresholds of AI using constitutional DNA from SNP heterozygotes, and subsequently measured allelic copy number in tumor DNA from 19-142 heterozygote samples per SNP locus. We did not find significant tumor PAI at these loci, though CDKN2A and IKZF1 SNPs showed a trend towards preferential selection of the risk allele (p = 0.17 and p = 0.23, respectively). Using a genomic copy number control ddPCR assay, we investigated somatic copy number alterations (SCNA) underlying AI at CDKN2A and IKZF1, revealing a complex range of alterations including homozygous and hemizygous deletions and copy-neutral loss of heterozygosity, with varying degrees of clonality. Copy number estimates from ddPCR showed high agreement with those from multiplex ligation-dependent probe amplification (MLPA) assays. We demonstrate that SMART-ddPCR is a highly accurate method for investigation of tumor PAI and for assessment of the somatic alterations underlying AI. Furthermore, analysis of publicly available data from The Cancer Genome Atlas identified 16 recurrent SCNA loci that contain heritable cancer risk SNPs associated with a matching tumor type, and which represent candidate PAI regions warranting further investigation.
Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing
Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat
2012-01-01
Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes, such as GPC3 that are distinctly expressed in liver CD90+CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. PMID:22606345
Identifying Candidate Chemical-Disease Linkages (Environmental and Epigenetic Determinants of IBD)
Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This h...
FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context.
Mader, Malte; Simon, Ronald; Steinbiss, Sascha; Kurtz, Stefan
2011-07-28
The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle.
FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context
2011-01-01
Background The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. Results We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. Conclusions FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle. PMID:21884636
The Epstein-Barr virus lytic protein BZLF1 as a candidate target antigen for vaccine development1
Hartlage, Alex S.; Liu, Tom; Patton, John T.; Garman, Sabrina L.; Zhang, Xiaoli; Kurt, Habibe; Lozanski, Gerard; Lustberg, Mark E.; Caligiuri, Michael A.; Baiocchi, Robert A.
2015-01-01
The Epstein-Barr virus (EBV) is an oncogenic, γ-herpesvirus associated with a broad spectrum of disease. While most immune-competent individuals can effectivley develop efficient adaptive immune responses to EBV, immunocompromised individuals are at serious risk for developing life threatening diseases such as Hodgkin’s lymphoma and post-transplant lymphoproliferative disorder (PTLD). Given the significant morbidity associated with EBV infection in high-risk populations, there is a need to develop vaccine strategies that restore or enhance EBV-specific immune responses. Here, we identify the EBV immediate-early protein BZLF1 as a potential target antigen for vaccine development. Primary tumors from patients with PTLD and a chimeric human-murine model of EBV-driven lymphoproliferative disorder (EBV-LPD) express BZLF1 protein. Pulsing human dendritic cells (DC) with recombinant BZLF1 followed by incubation with autologous mononuclear cells led to expansion of BZLF1-specific CD8(+) T cells in vitro and primed BZLF1-specific T-cell responses in vivo. In addition, vaccination of hu-PBL-SCID mice with BZLF1-transduced DCs induced specific cellular immunity and significantly prolonged survival from fatal EBV-LPD. These findings identify BZLF1 as a candidate target protein in the immunosurveillance of EBV and provide rationale for considering BZLF1 in vaccine strategies to enhance primary and recall immune responses and potentially prevent EBV-associated diseases. PMID:25735952
Novel targets for ATM-deficient malignancies
Winkler, Johannes; Hofmann, Kay; Chen, Shuhua
2014-01-01
Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314
Bruggeman, Jan Willem; Koster, Jan; Lodder, Paul; Repping, Sjoerd; Hamer, Geert
2018-06-15
Cancer cells have been found to frequently express genes that are normally restricted to the testis, often referred to as cancer/testis (CT) antigens or genes. Because germ cell-specific antigens are not recognized as "self" by the innate immune system, CT-genes have previously been suggested as ideal candidate targets for cancer therapy. The use of CT-genes in cancer therapy has thus far been unsuccessful, most likely because their identification has relied on gene expression in whole testis, including the testicular somatic cells, precluding the detection of true germ cell-specific genes. By comparing the transcriptomes of micro-dissected germ cell subtypes, representing the main developmental stages of human spermatogenesis, with the publicly accessible transcriptomes of 2617 samples from 49 different healthy somatic tissues and 9232 samples from 33 tumor types, we here discover hundreds of true germ cell-specific cancer expressed genes. Strikingly, we found these germ cell cancer genes (GC-genes) to be widely expressed in all analyzed tumors. Many GC-genes appeared to be involved in processes that are likely to actively promote tumor viability, proliferation and metastasis. Targeting these true GC-genes thus has the potential to inhibit tumor growth with infertility being the only possible side effect. Moreover, we identified a subset of GC-genes that are not expressed in spermatogonial stem cells. Targeting of this GC-gene subset is predicted to only lead to temporary infertility, as untargeted spermatogonial stem cells can recover spermatogenesis after treatment. Our GC-gene dataset enables improved understanding of tumor biology and provides multiple novel targets for cancer treatment.
Cai, De; Qiu, Zhiqing; Yao, Weimin; Liu, Yuyu; Huang, Haixiang; Liao, Sihai; Luo, Qun; Xie, Liming; Lin, Zhixiu
2016-06-01
Microtubules play a central role in various fundamental cell functions and thus become an attractive target for cancer therapy. A novel compound YSL-12 is a combretastatin A-4 (CA-4) analogue with more stability. We investigated its anti-tumor activity and mechanisms in vitro and in vivo for the first time. Cytotoxicity was evaluated by MTT method. In vitro microtubule polymerization assay was performed using a fluorescence-based method by multifunction fluorescence microplate reader. Intracellular microtubule network was detected by immunofluorescence method. Cell cycle analysis and apoptosis were measured by flow cytometry. Metabolic stability was recorded by liquid chromatography-ultraviolet detection and liquid chromatography-mass spectrometry. In vivo anti-tumor activity was assessed using HT-29 colon carcinoma xenografts established in BALB/c nude mice. YSL-12 displayed nanomolar-level cytotoxicity against various human cancer cell lines. A high selectivity toward normal cells and potent activity toward drug-resistant cells were also observed. YSL-12 was identified as tubulin polymerization inhibitor evidenced by effectively inhibits tubulin polymerization and heavily disrupted microtubule networks in living HT-29 cells. YSL-12 displayed potent disruption effect of pre-established tumor vasculature in vitro. In addition, YSL-12 treatment also caused cell cycle arrest in the G2/M phase and induced cell apoptosis in a dose-dependent manner. In vitro metabolic stability study revealed YSL-12 displayed considerable better stability than CA-4 in liver microsomes. In vivo, YSL-12 delayed tumor growth with 69.4 % growth inhibition. YSL-12 is a promising microtubule inhibitor that has great potential for the treatment of colon carcinoma in vitro and in vivo and worth being a candidate for further development of cancer therapy.
Koneva, Lada A; Zhang, Yanxiao; Virani, Shama; Hall, Pelle B; McHugh, Jonathan B; Chepeha, Douglas B; Wolf, Gregory T; Carey, Thomas E; Rozek, Laura S; Sartor, Maureen A
2018-01-01
The incidence of human papillomavirus (HPV)-related oropharynx cancer has steadily increased over the past two decades and now represents a majority of oropharyngeal cancer cases. Integration of the HPV genome into the host genome is a common event during carcinogenesis that has clinically relevant effects if the viral early genes are transcribed. Understanding the impact of HPV integration on clinical outcomes of head and neck squamous cell carcinoma (HNSCC) is critical for implementing deescalated treatment approaches for HPV + HNSCC patients. RNA sequencing (RNA-seq) data from HNSCC tumors ( n = 84) were used to identify and characterize expressed integration events, which were overrepresented near known head and neck, lung, and urogenital cancer genes. Five genes were recurrent, including CD274 (PD-L1) A significant number of genes detected to have integration events were found to interact with Tp63, ETS, and/or FOX1A. Patients with no detected integration had better survival than integration-positive and HPV - patients. Furthermore, integration-negative tumors were characterized by strongly heightened signatures for immune cells, including CD4 + , CD3 + , regulatory, CD8 + T cells, NK cells, and B cells, compared with integration-positive tumors. Finally, genes with elevated expression in integration-negative specimens were strongly enriched with immune-related gene ontology terms, while upregulated genes in integration-positive tumors were enriched for keratinization, RNA metabolism, and translation. Implications: These findings demonstrate the clinical relevancy of expressed HPV integration, which is characterized by a change in immune response and/or aberrant expression of the integration-harboring cancer-related genes, and suggest strong natural selection for tumor cells with expressed integration events in key carcinogenic genes. Mol Cancer Res; 16(1); 90-102. ©2017 AACR . ©2017 American Association for Cancer Research.
Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés
2014-01-01
Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.
Diagnosing and treating pancoast tumors.
Zarogoulidis, Konstantinos; Porpodis, Konstantinos; Domvri, Kelly; Eleftheriadou, Ellada; Ioannidou, Despoina; Zarogoulidis, Paul
2016-12-01
According to the American College of Chest Physician definition, a Pancoast tumor is a tumor which invades any of the structures of the apex of the chest including the first thoracic ribs or periosteum, the lower nerve roots of the bronchial plexus, the sympathetic chain and stellate gaglion near the apex of the chest or the subclavian vessels. Pancoast tumors account for less than 3-5 % of lung tumors. Areas covered: We searched the libraries scopus and pub med and found 124 related manuscripts. From those we chose 18 to include in our short commentary based on the most up-date information included. Expert commentary: The present status of the recommended treatment of Pancoast tumors for patients medically fit for surgical resection is trimodality (chemoradiation followed by radical surgery excersion) as state of the art. Patients with unresectable Pancoast tumors and poor PS 4 or distant metastasis are candidate for radiation therapy for palliation of symptoms and best supportive care. In this mini review we will present up to date information regarding diagnosis and treatment management.
Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.
Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong
2016-06-01
Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in cell culture. The selective tumor replication of this recombinant NDV, both in vitro and in vivo, along with efficient tumor cell killing makes it an attractive oncolytic virus candidate that may provide clinical benefit to patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Jiang, Zhengyu; Slater, Carolyn M; Zhou, Yan; Devarajan, Karthik; Ruth, Karen J; Li, Yueran; Cai, Kathy Q; Daly, Mary; Chen, Xiaowei
2017-05-30
Recent genome-wide profiling by sequencing and distinctive chromatin signatures has identified thousands of long non-coding RNA (lncRNA) species (>200 nt). LncRNAs have emerged as important regulators of gene expression, involving in both developmental and pathological processes. While altered expression of lncRNAs has been observed in breast cancer development, their roles in breast cancer progression and metastasis are still poorly understood. To identify novel breast cancer-associated lncRNA candidates, we employed a high-density SNP array-based approach to uncover intergenic lncRNA genes that are aberrantly expressed in breast cancer. We first evaluated the potential value as a breast cancer prognostic biomarker for one breast cancer-associated lncRNA, LincIN, using a breast cancer cohort retrieved from The Cancer Genome Atlas (TCGA) Data Portal. Then we characterized the role of LincIN in breast cancer progression and metastasis by in vitro invasion assay and a mouse tail vein injection metastasis model. To study the action of LincIN, we identified LincIN-interacting protein partner(s) by RNA pull-down experiments followed with protein identification by mass spectrometry. High levels of LincIN expression are frequently observed in tumors compared to adjacent normal tissues, and are strongly associated with aggressive breast cancer. Importantly, analysis of TCGA data further suggest that high expression of LincIN is associated with poor overall survival in patients with breast cancer (P = 0.044 and P = 0.011 after adjustment for age). The functional experiments demonstrate that knockdown of LincIN inhibits tumor cell migration and invasion in vitro, which is supported by the results of transcriptome analysis in the LincIN-knockdown cells. Furthermore, knockdown of LincIN diminishes lung metastasis in a mouse tail vein injection model. We also identified a LincIN-binding protein, NF90, through which overexpression of LincIN may repress p21 protein expression by inhibiting its translation, and upregulation of p21 by LincIN knockdown may be associated with less aggressive metastasis phenotypes. Our studies provide clear evidence to support LincIN as a new regulator of tumor progression-metastasis at both transcriptional and translational levels and as a promising prognostic biomarker for breast cancer.
Inflammation: an important parameter in the search of prostate cancer biomarkers
2014-01-01
Background A more specific and early diagnostics for prostate cancer (PCa) is highly desirable. In this study, being inflammation the focus of our effort, serum protein profiles were analyzed in order to investigate if this parameter could interfere with the search of discriminating proteins between PCa and benign prostatic hyperplasia (BPH). Methods Patients with clinical suspect of PCa and candidates for trans-rectal ultrasound guided prostate biopsy (TRUS) were enrolled. Histological specimens were examined in order to grade and classify the tumor, identify BPH and detect inflammation. Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (SELDI-ToF-MS) and two-dimensional gel electrophoresis (2-DE) coupled with Liquid Chromatography-MS/MS (LC-MS/MS) were used to analyze immuno-depleted serum samples from patients with PCa and BPH. Results The comparison between PCa (with and without inflammation) and BPH (with and without inflammation) serum samples by SELDI-ToF-MS analysis did not show differences in protein expression, while changes were only observed when the concomitant presence of inflammation was taken into consideration. In fact, when samples with histological sign of inflammation were excluded, 20 significantly different protein peaks were detected. Subsequent comparisons (PCa with inflammation vs PCa without inflammation, and BPH with inflammation vs BPH without inflammation) showed that 16 proteins appeared to be modified in the presence of inflammation, while 4 protein peaks were not modified. With 2-DE analysis, comparing PCa without inflammation vs PCa with inflammation, and BPH without inflammation vs the same condition in the presence of inflammation, were identified 29 and 25 differentially expressed protein spots, respectively. Excluding samples with inflammation the comparison between PCa vs BPH showed 9 unique PCa proteins, 4 of which overlapped with those previously identified in the presence of inflammation, while other 2 were new proteins, not identified in our previous comparisons. Conclusions The present study indicates that inflammation might be a confounding parameter during the proteomic research of candidate biomarkers of PCa. These results indicate that some possible biomarker-candidate proteins are strongly influenced by the presence of inflammation, hence only a well-selected protein pattern should be considered for potential marker of PCa. PMID:24944525
Martini, Melanie; Gnann, Alexandra; Scheikl, Daniela; Holzmann, Bernhard; Janssen, Klaus-Peter
2011-11-01
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell-matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Yanlan; Ji, Xiaoyuan; Liu, Jianhua; Tong, Winnie W L; Askhatova, Diana; Shi, Jinjun
2017-10-19
Near-infrared (NIR)-absorbing metal-based nanomaterials have shown tremendous potential for cancer therapy, given their facile and controllable synthesis, efficient photothermal conversion, capability of spatiotemporal-controlled drug delivery, and intrinsic imaging function. Tantalum (Ta) is among the most biocompatible metals and arouses negligible adverse biological responses in either oxidized or reduced forms, and thus Ta-derived nanomaterials represent promising candidates for biomedical applications. However, Ta-based nanomaterials by themselves have not been explored for NIR-mediated photothermal ablation therapy. In this work, we report an innovative Ta-based multifunctional nanoplatform composed of biocompatible tantalum sulfide (TaS 2 ) nanosheets (NSs) for simultaneous NIR hyperthermia, drug delivery, and computed tomography (CT) imaging. The TaS 2 NSs exhibit multiple unique features including (i) efficient NIR light-to-heat conversion with a high photothermal conversion efficiency of 39%. (ii) high drug loading (177% by weight), (iii) controlled drug release triggered by NIR light and moderate acidic pH, (iv) high tumor accumulation via heat-enhanced tumor vascular permeability, (v) complete tumor ablation and negligible side effects, and (vi) comparable CT imaging contrast efficiency to the widely clinically used agent iobitridol. We expect that this multifunctional NS platform can serve as a promising candidate for imaging-guided cancer therapy and selection of cancer patients with high tumor accumulation.
NASA Technical Reports Server (NTRS)
Meyer, H. M.; Frey, H. V.
2012-01-01
A new crustal thickness model was used to test the viability of 110 candidate large lunar basins previously identified using older topographic and crustal thickness data as well as photogeologic data. The new model was also used to search for new candidate lunar basins greater than 300 km in diameter. We eliminated 11 of 27 candidates previously identified in the older crustal thickness model, and found strong evidence for at least 8 new candidates.
Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.
Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul
2006-10-15
We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenming; Meng, Mei; Zhang, Bin
Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantlymore » suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.« less
Identification of Candidate B-Lymphoma Genes by Cross-Species Gene Expression Profiling
Tompkins, Van S.; Han, Seong-Su; Olivier, Alicia; Syrbu, Sergei; Bair, Thomas; Button, Anna; Jacobus, Laura; Wang, Zebin; Lifton, Samuel; Raychaudhuri, Pradip; Morse, Herbert C.; Weiner, George; Link, Brian; Smith, Brian J.; Janz, Siegfried
2013-01-01
Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the “mouse filter” for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists. PMID:24130802
Ayyildiz, Dilara; Gov, Esra; Sinha, Raghu; Arga, Kazim Yalcin
2017-05-01
Ovarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.
Chen, Bin; Wei, Wei; Ma, Li; Yang, Bin; Gill, Ryan M; Chua, Mei-Sze; Butte, Atul J; So, Samuel
2017-06-01
Drug repositioning offers a shorter approval process than new drug development. We therefore searched large public datasets of drug-induced gene expression signatures to identify agents that might be effective against hepatocellular carcinoma (HCC). We searched public databases of messenger RNA expression patterns reported from HCC specimens from patients, HCC cell lines, and cells exposed to various drugs. We identified drugs that might specifically increase expression of genes that are down-regulated in HCCs and reduce expression of genes up-regulated in HCCs using a nonparametric, rank-based pattern-matching strategy based on the Kolmogorov-Smirnov statistic. We evaluated the anti-tumor activity of niclosamide and its ethanolamine salt (NEN) in HCC cell lines (HepG2, Huh7, Hep3B, Hep40, and PLC/PRF/5), primary human hepatocytes, and 2 mouse models of HCC. In one model of HCC, liver tumor development was induced by hydrodynamic delivery of a sleeping beauty transposon expressing an activated form of Ras (v12) and truncated β-catenin (N90). In another mouse model, patient-derived xenografts were established by implanting HCC cells from patients into livers of immunocompromised mice. Tumor growth was monitored by bioluminescence imaging. Tumor-bearing mice were fed a regular chow diet or a chow diet containing niclosamide or NEN. In a separate experiment using patient-derived xenografts, tumor-bearing mice were given sorafenib (the standard of care for patients with advanced HCC), NEN, or niclosamide alone; a combination of sorafenib and NEN; or a combination sorafenib and niclosamide in their drinking water, or regular water (control), and tumor growth was monitored. Based on gene expression signatures, we identified 3 anthelmintics that significantly altered the expression of genes that are up- or down-regulated in HCCs. Niclosamide and NEN specifically reduced the viability of HCC cells: the agents were at least 7-fold more cytotoxic to HCCs than primary hepatocytes. Oral administration of NEN to mice significantly slowed growth of genetically induced liver tumors and patient-derived xenografts, whereas niclosamide did not, coinciding with the observed greater bioavailability of NEN compared with niclosamide. The combination of NEN and sorafenib was more effective at slowing growth of patient-derived xenografts than either agent alone. In HepG2 cells and in patient-derived xenografts, administration of niclosamide or NEN increased expression of 20 genes down-regulated in HCC and reduced expression of 29 genes up-regulated in the 274-gene HCC signature. Administration of NEN to mice with patient-derived xenografts reduced expression of proteins in the Wnt-β-catenin, signal transducer and activator of transcription 3, AKT-mechanistic target of rapamycin, epidermal growth factor receptor-Ras-Raf signaling pathways. Using immunoprecipitation assays, we found NEN to bind cell division cycle 37 protein and disrupt its interaction with heat shock protein 90. In a bioinformatics search for agents that alter the HCC-specific gene expression pattern, we identified the anthelmintic niclosamide as a potential anti-tumor agent. Its ethanolamine salt, with greater bioavailability, was more effective than niclosamide at slowing the growth of genetically induced liver tumors and patient-derived xenografts in mice. Both agents disrupted interaction between cell division cycle 37 and heat shock protein 90 in HCC cells, with concomitant inhibition of their downstream signaling pathways. NEN might be effective for treatment of patients with HCC. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamakado, Koichiro, E-mail: yamakado47@gmail.com; Inaba, Yasutaka; Sato, Yozo
PurposeThis phase II prospective study investigates possible benefits of radiofrequency ablation (RFA) combined with hepatic arterial chemoembolization using degradable starch microsphere (DSM) mixed with mitomycin C (MMC) in non-surgical candidates with colorectal liver metastases.Materials and MethodsThis study, approved by the respective institutional review board, included non-surgical candidates with 3 or fewer liver tumors of 3 cm or smaller, or a single lesion 5 cm or smaller. Percutaneous RFA was performed immediately after chemoembolization using DSM-MMC. Primary and secondary endpoints were the local tumor control rate, safety, and 2-year recurrence-free and overall survival rates.ResultsThis study examined 25 patients (22 males, 3 females) withmore » 38 tumors of mean maximum diameter of 2.2 ± 0.9 cm (standard deviation) (range 1.0–4.2 cm). Their mean age was 70.2 ± 8.2 years (range 55–82 years). Local tumor progression developed in 3 tumors (7.9%, 3/38) of 3 patients (12%, 3/25) during the mean follow-up of 34.9 ± 9.2 months (range 18.3–50.1 months). The 2-year local tumor control rates were 92.0% [95% confidence interval (CI), 81.4–100%] on a patient basis and 94.6% (95% CI, 87.3–100%) on a tumor basis. The respective 2-year overall and recurrence-free survival rates were 88.0% (95% CI, 75.3–98.5%) and 63.3% (95% CI, 44.2–82.5%), with median survival time of 48.4 months. Fever was the only adverse event requiring treatments in 2 patients (8%).ConclusionsThis combination therapy is safe, exhibiting strong anticancer effects on colorectal liver metastasis, which might contribute to patient survival.« less
Wang-Rodriguez, Jessica; Urquidi, Virginia; Rivard, Amber; Goodison, Steve
2003-01-01
Background Our previous characterization of a human breast tumor metastasis model identified several candidate metastasis genes. The expression of osteopontin (OPN) correlated with the metastatic phenotype, whereas thrombospondin-1 (TSP-1) and tyrosinase-related protein-1 (TYRP-1) correlated with the nonmetastatic phenotype of independent MDA-MB-435 cell lines implanted orthotopically into athymic mice. The aim of the present study was to examine the cellular distribution of these molecules in human breast tissue and to determine whether the relative expression level of these three genes is associated with human breast tumor metastasis. Methods Sixty-eight fresh, frozen specimens including 31 primary infiltrating ductal carcinomas, 22 nodal metastases, 10 fibroadenomas, and five normal breast tissues were evaluated for OPN expression, TSP-1 expression and TYRP-1 expression. Immunohistochemistry was performed to monitor the cellular distribution and to qualitatively assess expression. Quantitative analysis was achieved by enrichment of breast epithelial cells using laser-capture microdissection and subsequent real-time, quantitative PCR. Results The epithelial components of the breast tissue were the source of OPN and TSP-1 expression, whereas TYRP-1 was present in both the epithelial and stromal components. Both OPN and TSP-1 expression were significantly higher in malignant epithelial sources over normal and benign epithelial sources, but no difference in expression levels was evident between primary tumors with or without metastases, nor between primary and metastatic carcinomas. Conclusion Elevated expression of OPN and TSP-1 may play a role in the pathogenesis of breast cancer. The multiplex analysis of these molecules may enhance our ability to diagnose and/or prognosticate human breast malignancy. PMID:12927044
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Chung-Jan; Head and Neck Oncology Group, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Lin, Chien-Yu
2011-11-15
Purpose: The objective of this retrospective study was twofold: (1) to investigate prognostic factors for clinical outcomes in patients with poorly differentiated oral cavity squamous cell carcinoma and (2) to identify specific prognostic subgroups that may help to guide treatment decisions. Methods and Materials: We examined 102 patients with poorly differentiated oral cavity squamous cell carcinoma. All patients were followed for at least 24 months after surgery or until death. The 5-year rates of local control, neck control, distant metastasis, disease-free, disease-specific, and overall survival served as main outcome measures. Results: The 5-year rates were as follows: local control (79%),more » neck control (64%), distant metastases (27%), disease-free survival (48%), disease-specific survival (52%), and overall survival (42%). Multivariable analysis showed that the number of pathologically positive nodes ({>=}4 vs. {<=}3) was a significant predictor of neck control, distant metastasis, and disease-free, disease-specific, and overall survival rates. In addition, the presence of tumor depth of {>=}11 mm (vs. <11 mm) was a significant predictor of distant metastasis, disease-specific survival, and overall survival rates. The combination of the two predictors (26.5%, 27/102) was independently associated with poorer neck control (p = 0.0319), distant metastasis (p < 0.0001), and disease-free (p < 0.0001), disease-specific (p < 0.0001), and overall survival (p < 0.0001) rates. Conclusions: In patients with poorly differentiated oral cavity squamous cell carcinoma, the presence of at least 4 pathologically positive lymph nodes and of a pathological tumor depth {>=}11 mm identifies a subset of subjects with poor clinical outcomes. Patients carrying both risk factors are suitable candidates for the development of novel therapeutic approaches.« less
Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival
Thole, Theresa M; Lodrini, Marco; Fabian, Johannes; Wuenschel, Jasmin; Pfeil, Sebastian; Hielscher, Thomas; Kopp-Schneider, Annette; Heinicke, Ulrike; Fulda, Simone; Witt, Olaf; Eggert, Angelika; Fischer, Matthias; Deubzer, Hedwig E
2017-01-01
The number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas significantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identified a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicate a significant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target. PMID:28252645
Assessment of functional MR imaging in neurosurgical planning.
Lee, C C; Ward, H A; Sharbrough, F W; Meyer, F B; Marsh, W R; Raffel, C; So, E L; Cascino, G D; Shin, C; Xu, Y; Riederer, S J; Jack, C R
1999-09-01
Presurgical sensorimotor mapping with functional MR imaging is gaining acceptance in clinical practice; however, to our knowledge, its therapeutic efficacy has not been assessed in a sizable group of patients. Our goal was to identify how preoperative sensorimotor functional studies were used to guide the treatment of neuro-oncologic and epilepsy surgery patients. We retrospectively reviewed the medical records of 46 patients who had undergone preoperative sensorimotor functional MR imaging to document how often and in what ways the imaging studies had influenced their management. Clinical management decisions were grouped into three categories: for assessing the feasibility of surgical resection, for surgical planning, and for selecting patients for invasive functional mapping procedures. Functional MR imaging studies successfully identified the functional central sulcus ipsilateral to the abnormality in 32 of the 46 patients, and these 32 patients are the focus of this report. In epilepsy surgery candidates, the functional MR imaging results were used to determine in part the feasibility of a proposed surgical resection in 70% of patients, to aid in surgical planning in 43%, and to select patients for invasive surgical functional mapping in 52%. In tumor patients, the functional MR imaging results were used to determine in part the feasibility of surgical resection in 55%, to aid in surgical planning in 22%, and to select patients for invasive surgical functional mapping in 78%. Overall, functional MR imaging studies were used in one or more of the three clinical decision-making categories in 89% of tumor patients and 91% of epilepsy surgery patients. Preoperative functional MR imaging is useful to clinicians at three key stages in the preoperative clinical management paradigm of a substantial percentage of patients who are being considered for resective tumor or epilepsy surgery.
Is IGSF1 involved in human pituitary tumor formation?
Faucz, Fabio R; Horvath, Anelia D; Azevedo, Monalisa F; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R; Wit, Jan M; Bernard, Daniel J; Stratakis, Constantine A
2015-02-01
IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study, we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in the sections of GH-producing adenomas, familial somatomammotroph hyperplasia, and in normal pituitary. We identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function, in two male patients and one female with somatomammotroph hyperplasia from the same family. Of 60 female controls, two carried the same variant and seven were heterozygous for other variants. Immunohistochemistry showed increased IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared with a GH-producing adenoma from a patient negative for any IGSF1 variants and with normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation. © 2015 Society for Endocrinology.